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Abstract—In recent years, household load forecasting has
become increasingly important with the rapid growth in energy
consumption. Deep learning has shown great potential in enhanc-
ing load forecasting accuracy. In this paper, we develop NILM-
former, a novel deep learning model that leverages appliance-
level insights from Non-Intrusive Load Monitoring (NILM) to
improve aggregate load predictions. NILMformer contains two
key components: an upgraded Temporal Convolutional Network
called L-TCN for load disaggregation, and a tailored transformer
architecture named NILMformer for time series forecasting.
L-TCN introduces optimizations like bidirectional dilated con-
volutions and batch normalization to extract high-quality ap-
pliance features. NILMformer incorporates these disaggregated
appliance loads from L-TCN as input features along with the
aggregate load profile. It models the multivariate time series
data through mechanisms like a Self-Attention layer for feature
learning and an optimized ProbSparse Self-Attention module for
efficiency. We evaluate NILMformer on the REDD household
dataset. Results show it outperforms LSTM, CNN and other
models, demonstrating the value of fusing NILM domain knowl-
edge with advanced deep learning techniques like transformers.
NILMformer provides an important advancement in household
load forecasting by leveraging appliance-level insights. As home
energy management continues gaining significance, our model
offers an effective data-driven approach to enable more accurate
and interpretable load predictions.

Index Terms—Household Load Forecasting, Non-Intrusive
Load Monitoring (NILM), Temporal Convolutional Network
(TCN), Transformer, Load Disaggregation

I. INTRODUCTION

In an era marked by rapid urbanization and technologi-
cal advancements, global energy consumption has seen an
unprecedented surge. Cities are expanding, and with them
grows the number of households relying on consistent and
efficient energy sources. As this demand escalates, the onus
to manage, predict, and optimize household energy utilization
becomes increasingly pivotal. It’s not just about ensuring
energy availability; it’s about fostering sustainable practices,
reducing wastage, and creating a resilient grid system capable
of handling both peak demands and unexpected disruptions.

At the forefront of this challenge is the imperative for
accurate load forecasting. For energy providers and grid op-
erators, having a clear predictive insight into consumption
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patterns translates to an array of advantages. These span
from enhancing operational efficiency, balancing supply with
demand in real-time, to formulating effective demand response
strategies. Additionally, precise load forecasting also aids in
minimizing the capital costs of maintaining surplus energy
reserves, thereby contributing to economic efficiency.

Deep learning, with its ability to process vast datasets and
capture intricate patterns, presents a promising solution to the
challenge of energy forecasting. Recent advancements in deep
learning have demonstrated its potential in forecasting future
energy trends. Long short-term memory (LSTM) networks
excel at modeling sequential data and have proven effective for
energy load forecasting (Marino et al., 2016). Convolutional
neural networks (CNNs) are adept at extracting informative
features from raw energy data, yielding accurate one-day-
ahead photovoltaic power forecasts (Chen et al., 2019). For
multivariate energy forecasting, methods such as stacked au-
toencoders (Kong et al., 2017) and deep belief networks (Yu et
al., 2017) have been proposed to capture intricate relationships
among different energy variables. Hybrid approaches com-
bining deep neural networks with physics-based models have
also been explored (Wang et al., 2018). These deep learning
techniques have consistently achieved state-of-the-art results
across various energy data types, offering a promising avenue
for gaining insights into future energy demands, renewable
generation, and related variables.

However, Smith (2022) pointed out that the model’s ac-
curacy is constrained by the limited range of explanatory
variables, particularly for long-term forecasts. To address this
limitation, several researchers have recognized the issue and
made substantial improvements.

Numerous scholars have introduced additional parameters
to enhance the accuracy of power load forecasting. Lee et
al. (2021) developed a convolutional neural network that
incorporates economic, weather, and event data to enhance
energy load forecasts. Wang et al. (2019) employed an LSTM
model with time series and satellite imagery to improve
renewable energy prediction. For energy storage forecasting,
Lee and Zhang (2020) [9] designed a graph neural network
that integrates connectivity, weather, and demand data. Xu
and Wang (2019) proposed a deep neural network for joint
electricity price and load forecasting using multivariate time
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series inputs. Lastly, Zhang and Tan (2018) implemented a
convolutional LSTM network to predict building energy con-
sumption from weather, occupancy, and thermal data. Collec-
tively, these studies highlight the effectiveness of incorporating
diverse, multidimensional feature sets into deep learning archi-
tectures, significantly enhancing energy forecasting accuracy
across various domains, from load prediction to storage and
price forecasting. These multimodal designs capture complex
spatiotemporal interactions and dependencies, addressing the
limitations of models relying solely on historical energy data.

While the mentioned methods indeed improve neural net-
work predictions, it’s important to note that the average
household user may not have access to extensive data for
prediction. Therefore, addressing how to extract more features
from limited power load data for network prediction becomes
a critical challenge.

Non-Intrusive Load Monitoring (NILM) emerges as a valu-
able avenue in this regard. By disaggregating total electrical
consumption into individual appliance loads, NILM provides
granular insights into household energy patterns. These fea-
tures, when separated from the load curve, can significantly
enhance the performance of predictive neural networks. For
instance, NILM can identify when the dishwasher has been
turned on for half an hour, enabling accurate prediction of the
dishwasher’s power consumption for the next half hour. Histor-
ically, recurrent architectures like LSTM and RNN, along with
graph-based models like GNN, have been employed for NILM.
Smith et al. (2021) developed an LSTM-based model for
energy disaggregation, outperforming traditional approaches
on public datasets. Lee and Chen (2020) proposed a sequence-
to-sequence RNN, which learned appliance-specific signatures
to infer device-level consumption from aggregate data. Lastly,
Zhang and Wang (2019) designed a graph neural network
that incorporated historical usage patterns and topological
connectivity constraints to decompose whole-home energy
signals. These studies underscore the effectiveness of deep
learning techniques, including LSTM for capturing long-term
dependencies, RNN for learning temporal signatures, and
GNN for exploiting relational structures within NILM energy
data.

Nevertheless, these architectures sometimes fall short in
capturing intricate temporal relationships inherent in power
data. While existing work enhances feature extraction for load
curve prediction, traditional LSTM and other networks may
not adequately capture the complex temporal relationships
inherent in power data, potentially resulting in less accurate
separation results. Therefore, designing neural network struc-
tures to improve NILM accuracy becomes the second key
challenge in enhancing power prediction.

In this paper, to address the challenge of accurate power load
forecasting for household users with limited data dimensions,
we propose the NILMformer prediction mechanism. This
mechanism comprises two components: a novel NILM method
based on L-TCN and an informer power prediction method
based on NILM feature enhancement. The key contributions
can be summarized as follows:

zhenghe yixia contributions
• We present a novel xxxx prediction model.

• We present a novel L-TCN based NILM method.
• We develop a NILMformer xxxx
• We evaluate our proposed xxxxx using a real-world E-

taxi hailing environment.
The organization of this paper is as follows: First, the

related work is given in Section II. And the models of
the E-taxi hailing system are described in Section ??.
In Section ??, our proposed dual-stage heuristic coordi-
nated reinforcement learning approach is described. In
Section ??, the performance evaluations are given. Finally,
in Section ??, we conclude this paper.

II. RELATED WORK

Non-intrusive load monitoring (NILM) is an essential tech-
nique for monitoring electricity usage by consumers, playing
a crucial role in the operation and prediction of power grid
behavior. Neural networks possess superior capabilities for
feature extraction compared to manual techniques, chiefly
owing to their aptitude for automatically learning and adapting
to complex data patterns. Conversely, manual feature extrac-
tion relies on predefined features that may fail to effectively
characterize the fundamental structure of the data. Therefore,
deep learning has emerged as the method of choice in NILM
research, due to its proficiency at discerning and represent-
ing the intricate relationships between input data and target
variables. The superior performance of deep learning is at-
tributed to its multilayered neural network architecture that can
perform hierarchical feature extraction. As NILM continues
to be an active research area, deep neural networks present
a promising direction for enhancing load disaggregation and
appliance modeling. Early work by Hart (1992) [1] intro-
duced NILM using handcrafted features and expert systems
to disaggregate loads. Subsequently, Zeifman and Roth (2011)
[2] developed sparse coding techniques to decompose signals,
while Kolter et al. (2010) [3] proposed factorial hidden Markov
models to capture appliance state transitions. Building on these
foundations, Kelly and Knottenbelt (2015) [4] applied neural
networks to learn appliance signatures, and Mauch and Yang
(2016) [5] used LSTM models to additionally incorporate
usage context. Expanding NILM capabilities, Lin et al. (2018)
[6] developed transfer learning to adapt models to new homes,
and Zhang et al. (2019) [7] designed graph networks to exploit
topological connections between appliances. Most recently,
Chen and Jahromi (2021) [8] introduced adversarial networks
for NILM to improve disaggregation on unseen appliance
types. In summary, these studies collectively advanced NILM
from handcrafted analytics to sophisticated deep neural models
that can learn complex usage patterns and relationships from
data.

Energy consumption forecasting has been an active research
area for decades. Earlier works have explored various statisti-
cal and shallow machine learning models for prediction. With
the rapid development of deep neural networks, researchers
have applied more powerful architectures like CNN, RNN, and
LSTM to capture spatial and temporal dependencies in energy
data. More recently, attention mechanisms and Transformer
models are emerging as state-of-the-art approaches for energy
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forecasting, due to their ability to learn long-range dependen-
cies. Earlier works focused on using shallow neural networks
and statistical models like autoregressive integrated moving
average (ARIMA) for energy forecasting. [9] developed a neu-
ral network model to predict short-term load forecasting and
compared it against ARIMA. [10] also compared forecasting
performance of neural networks and ARIMA models. With the
resurgence of deep learning, researchers started applying con-
volutional and recurrent neural networks to energy prediction.
[11] used CNN and LSTM models to forecast building energy
consumption and found LSTM to be more accurate. [12]
developed a stacked autoencoder model with LSTM to capture
temporal dependencies. More recent works experimented with
attention mechanisms and Transformer models. [13] proposed
a dual-stage attention model that combines confirm attention
and select attention. [14] applied Transformer encoders to
capture long-term dependencies and achieved state-of-the-art
results on an energy dataset. The key evolution is from shallow
networks to increasingly complex deep neural networks that
can model both spatial and temporal dependencies in energy
data. Transformer-based models are emerging as a powerful
architecture for energy forecasting.

More recent works have explored using multiple data
sources beyond just historical energy usage, to improve pre-
diction accuracy. [15] combined energy data with weather
data, using a gradient boosting model for forecasting. [16]
also incorporated weather data along with pricing and calendar
data. They used a stacked autoencoder model. Besides weather,
researchers have experimented with integrating building meta-
data like area, occupancy, HVAC parameters etc. [17] provided
a review of using building information modeling (BIM) data
for prediction. [18] developed a multivariate LSTM model
using both BIM and weather data. To model complex spatio-
temporal dynamics, graph neural networks have been applied.
[19] proposed a gated graph sequence neural network with
attention mechanism. [20] introduced a graph convolutional
LSTM network for multi-variate forecasting across buildings.
Some recent works have focused on forecasting at the urban
scale using both physical and social data. [21] predicted
citywide energy usage by incorporating urban data like points
of interest. [22] used geo-location data from social media
along with weather data. In summary, leveraging diverse
data sources like weather, building metadata, urban data, and
modeling through graph networks can enhance multi-variate
forecasting. Attention mechanisms have also shown promise
in this emerging area.

III. MODEL OF HOUSEHOLD LOAD FORECASTING

In this section, we first present the system models of the
xxxx system. Subsequently, we specifically give the problem
statement for NILM and load forecasting.

A. Overall System Model

In this paper, we propose NILMformer, an enhanced
transformer-based deep learning model augmented with
NILM-derived features for accurate household load fore-
casting. As shown in Fig. 1, NILMformer consists of two

main components: L-TCN for feature decomposition and
NILMformer for load forecasting.

B. NILM model

L-TCN is designed to decompose the aggregate load
profile into individual appliance-level load profiles. It takes
the aggregate load as input and outputs multiple appliance-
level load profiles through NILM techniques. Specifically,
L-TCN leverages temporal convolutional networks to ex-
tract distinguishable patterns from the aggregate load and
identify the operating cycles of each appliance. By ana-
lyzing the unique load signatures of different appliances,
L-TCN can disaggregate the total load into individual
appliance loads.

C. Prediction model

NILMformer is the load forecasting module. It takes
both the aggregate load profiles and the decomposed
appliance-level load profiles from L-TCN as input features.
The aggregate load provides the overall energy consump-
tion context while the disaggregated appliance loads offer
finer-grained representations. NILMformer jointly learns
on these multivariate time series data to make accurate
forecasts of the future aggregate load profile. The output
is the predicted aggregate load for the desired time horizon.
By incorporating appliance-level information extracted by
L-TCN, NILMformer can capture more comprehensive
characteristics and make more accurate predictions.

IV. IMPROVED L-TCN NON-INVASIVE LOAD
MONITORING MECHANISM

In this section, we will introduce the proposed improved
L-TCN based NILM method in detail.

A. Design Rational

B. Improved L-TCN model

In the realm of deep learning, the Temporal Convolutional
Network (TCN) has emerged as an instrumental tool for
processing time-series data. This section delves into our in-
novative enhancements to the TCN architecture. The foun-
dational tenets of the TCN encompass causal convolution,
dilated convolution, and residual blocks. The causal con-
volution ensures that the model, during predictions, solely
leverages past information; the dilated convolution aids the
model in capturing dependencies over an extended range;
while the residual blocks endow the model with profound
representational capabilities, concurrently circumventing the
gradient vanishing conundrum.

Building on this robust foundation, we introduced three
seminal enhancements:

1) Network Structure Optimization: : We opted to excise
the dropout layer from the TCN. This modification not only
streamlined the network architecture but also markedly aug-
mented the model’s training efficiency.
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Fig. 1: Casual Convolution

Fig. 2: Casual Dilated Convolution

a) Causal Dilated Convolution: Causal convolution en-
sures that when predicting the output at a certain moment,
only the input data prior to (or including) that moment is
used, without utilizing future data. This aligns with real-
world time series prediction tasks, as in practical applications,
we typically cannot use future information to make current
predictions.Here are the relevant formulas for causal dilated
convolution:

As shown in Figure1. Ensures that at any time point t, the
output only depends on the input at time t and before. This can
be achieved through appropriate padding. For a convolution
kernel of size k, we need to pad k-1 zeros on the left of the
input.

[y(t) =

k−1∑
i=0

x(t− i) · w(i) (1)

As the Figure2.Dilated convolution increases its receptive
field by inserting ”holes” in the convolution kernel without
increasing the number of parameters or computation. For a
dilation rate of d, its formula is:

[y(t) =

k−1∑
i=0

x(t− i · d) · w(i) (2)

Combining these two concepts, the formula for Causal
Dilated Convolution is:

Fig. 3: Network Degration

y(t) =

k−1∑
i=0

x(t− i · d) · w(i) (3)

Here, we pad (k-1) * d zeros on the left of the input to
maintain causality.

2) Dropout-layer Removed Residual Module: Increasing
the depth of neural networks can lead to gradient vanishing or
gradient explosion. Solutions to this problem include weight
parameter initialization and the incorporation of regularization
layers (Batch Normalization), enabling the training of deeper
networks.

However, another problem arises: network degradation. We
explain this phenomenon in Figure3. As the network depth
increases, the accuracy on the training set tends to saturate and
even decline. This is not an overfitting problem, as overfitting
would result in better performance on the training set.

The core idea of the residual network is: if the output of
a layer is very close to its input, then the layer can attempt
to learn the difference, or ”residual”, between the input and
output, rather than learning the output directly. This allows the
network to more easily fit an identity mapping, improving the
training stability and accuracy of the network.

In essence, traditional neural network layers attempt to
learn a target mapping function H(x). However, in residual
networks, each layer is designed to learn the residual function
F (x) = H(x) − x. This ensures that when F (x) = 0,
the network achieves the identity mapping H(x) = x. We
explain this theory in Figure4This design makes it easier for
the network to learn the identity mapping during initialization,
as weight parameters are typically initialized to small values,
making F (x) close to 0.

Li et al. pointed out that the combination of Dropout and
Batch Normalization in deep learning models may lead to
potential output variance instability, adversely affecting the
network’s predictions. [23] In their research, they removed the
Dropout layer to prevent instability with Batch Normalization.
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Fig. 4: Residual Network

They provided the formula for variance shift:

∆(a) =
VarTest(X)

VarTrain(X)
=

v
1
a (c

2 + v)− c2

∆(p, d) =
VarTest(X)

VarTrain(X)

=
vax(d(cos θ)2 − 1) + v

vax(d(cos θ)2 − 1) + 1
a (c

2 + v)− c2

(4)

where a is the parameter of the dropout layer, c is the
expectation of the eigenvector distribution, v is the variance of
the eigenvector distribution, p represents the retained neuron,
1− p represents the probability that the neuron is deactivated
when dropout is used, and d represents the channel dimension
of the eigenvector. From the above equation, it can be seen
that by setting the parameter a to 1, the variance offset can
be eliminated, which can improve the speed of operation and
enhance stability to a certain extent.

3) Activation Function Enhancement: : We transitioned
from the conventional ReLU activation function to Leaky
ReLU. This alteration was instigated to address the poten-
tial ”dead neuron” issue that might manifest during ReLU’s
training process, thereby bolstering the model’s stability and
robustness. Dead neuron may lead to bad result. Tor exam-
ple,Activation value is always zero. This means that during
forward propagation, the neuron does not contribute to the
network output.And Weights cannot be updated during back-
propagation. This results in a portion of the network parame-
ters never being updated, thereby wasting the model’s repre-
sentational capacity.Otherwise, It Affects model performance.
The Leaky ReLU activation function effectively addresses the
above issues. Therefore, we propose the Leaky-TCN algorithm
based on the TCN algorithm. Leaky-ReLU is a variant of
ReLU. Its mathematical expression is given by:

f(x) =

{
x if x > 0

αx if x ≤ 0
(5)

where α is a small positive number (e.g., 0.01).
4) Introduction of Algorithm Optimizer: : Furthermore, to

further amplify the model’s performance and stability, we
incorporated Google’s avant-garde algorithm optimizer—Lion.
The integration of Lion ensures a more stable gradient flow,

significantly mitigating the risk of overfitting. Of paramount
importance is Lion’s efficiency, which drastically reduces the
model’s memory footprint on TPUs to half of its original,
while also achieving an approximate 15% acceleration in exe-
cution speed. The foundational principle of the Lion algorithm
is delineated as:

ut = sign (β1mt−1 + (1− β1)gt) ,

θt = θt−1 − ηt(ut + λtθt−1),

mt = β2mt−1 + (1− β2)gt,

(6)

where gt = ∇θL(θt−1) signifies the gradient of the loss
function, and the sign function transforms positive values to 1
and negative values to -1.

In contrast with the prevalent AdamW update mechanism:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

ut =
m̂t√
v̂t + ϵ

,

θt = θt−1 − ηt(ut + λtθt−1),

(7)

Lion, with its reduced parameter set compared to AdamW,
optimizes memory consumption by eliminating the caching of
the parameter set v. Moreover, Lion excludes the computa-
tionally intensive division and square root operations inherent
in AdamW, leading to accelerated computations.

a) Makes gradient updates smoother: Residual connec-
tions enable direct gradient propagation from subsequent
layers to preceding ones, addressing the vanishing gradient
dilemma prevalent in deep neural networks. The Lion opti-
mizer further stabilizes this gradient flow by considering gra-
dient momentum, ensuring more consistent gradient updates.

b) Reduce overfitting: The Lion optimizer incorporates a
weight decay parameter, serving as a countermeasure against
overfitting. This is particularly beneficial in residual networks,
which, due to their supplementary connections, might be
predisposed to overfitting.

c) Swifter convergence: Owing to its integration of gradi-
ent momentum and running averages, the Lion optimizer might
facilitate swifter convergence, especially in intricate model
architectures like residual networks.

d) Memory savings: Within the Lion optimizer, the
torch.no_grad() context is employed, implying that no
supplementary gradient information is retained during param-
eter updates, conserving memory. This is especially advan-
tageous for deep residual networks, which typically demand
extensive memory.

For hyperparameter configurations, the recommended pa-
rameters in the Lion model are β1 = 0.9 and β2 = 0.99. The
learning rate η and weight decay rate λ are adjusted based
on the model’s scale. For medium-sized models, we adopt
η = 3 × 10−4 and λ = 0.01. For models with parameters
exceeding one billion, the learning rate can be further reduced
to η = 2× 10−4.
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In this scenario, the amount of updates is counted as:

θt+1 = θt − (αtut + ρtθt) (8)

αt ≈
α0||e0|
||ut||

1

κt+ 1
, ρt ≈

α2
0

2q

1

κt+ 1
(9)

where ut is the original update amount; α0 is the relative
size of the parameter change (initial stage), generally 10−3

level, which means that the change in parameter modulo
length after each step of update is roughly one dry frac-
tion; q is a hyperparameter that we set to 1 here; κ is a
hyperparameter that controls the rate of decay of the learning
rate. In our endeavors, we integrated the Lion optimizer into
the L-TCN algorithm. Prior to initiating training, the Lion
optimizer is initialized for all parameters of TCN. During
parameter updates, the Lion optimizer updates the L-TCN
parameters based on the computed gradients. For a deeper
dive into the Lion-related algorithms, readers are referred to
https://github.com/google/automl/blob/master/lion/

C. L-TCN NILM method

1) Training Parameters of L-TCN: We show this process
in Figre5.Our L-TCN model takes an input of length 100 as
a starting point. First, the input data is fed into a standard
TCN block with 32 filters, a kernel size of 3, and a sparsity
factor of 1. The output of this TCN block is then fed into a
second TCN block, which also has 32 filters and a kernel size
of 3, but with a sparseness factor of 2, which allows the model
to capture a longer range of dependencies. Subsequently, the
data flows through a third TCN block, which is characterized
by 16 filters, a kernel size of 3, and a sparseness factor of 4.
This design further enhances the model’s ability to capture
more complex time series patterns. The fourth TCN block
has 8 filters, 3 kernel sizes, and 8 sparsity factors, providing
the model with deeper feature extraction capabilities. After
continuous processing of these four TCN blocks, the data is
flattened to a length of 16. It is then fed into a dense layer with
1024 cells and a Leaky-RELU activation function. To prevent
overfitting, we added a 0.2 dropout layer after that. Finally,
the data is fed into another dense layer with a size of 100,
resulting in an output of the same length as the input, which
is 100.In the table algorithm,We show how the parameters are
evaluated. algorithm algpseudocode

V. NOVEL LOAD FORCASTING METHOD: NILMFORMER

In this section, we assess the performance of our proposed
dual-stage heuristic coordinated reinforcement learning ap-
proach using a real-world E-taxi hailing dataset. To validate
the effectiveness and efficiency of our method, we compare it
against the existing common methods in the field. Additionally,
we conduct a series of ablation experiments to demonstrate the
impact of each component within our approach. Furthermore,
a time cost analysis is performed to evaluate the scalability of
our method as the size of the E-taxi hailing system increases.
The evaluation metrics employed in this section include re-
wards, total profits of E-taxis, low-energy occurrences times,
pickup count for E-taxis, passenger acceptance ratio, and the
number of active charging stations.

Algorithm 1: Improved TCN-Based NILM Method
Input: Total household load sequence

L = {L1, L2, ..., Li}, load sequence of
appliance i Li = {Li

1, L
i
2, ..., L

i
n}, window

length m, network structure parameters,
maximum number of training sessions N

Output: Optimal decomposition model network
parameters, the decomposition load sequence
of appliance i Li = {Li

1, L
i
2, ..., L

i
n}

1 for j =1 to n do
2 Clean the sequences Lj and Li

j ;
3 end
4 for j =1 to n do
5 Normalize the sequences Lj and Li

j ;
6 end
7 for j =1 to n− w + 1 do
8 Slice L with length w and sliding step 1;
9 Set the sliced data as the training set;

10 end
11 Initialize the network model
12 repeat
13 Input the training set;
14 Update the weights using back propagation

algorithm and minimize the loss function;
15 if Lossnow<Losslast then
16 Save the currently updated network model;
17 end
18 until Satisfy the convergence condition or reach the

maximum number of training sessions N ;

Fig. 5: Parameter flow
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TABLE I: The characteristics of various methods

Name Value
Number of L-TCN blocks 4

Number of filters in each block 32

Input length 100

Kernel size 3

Spatial dropout 0.2

Flatten 16

Patience for early stopping 10

Batch size 128

Optimizer Lion

Learning rate 0.001

Beta1, Beta2, Epsilon 0.9, 0.99, 10−8

A. Overview of NILMformer

NILMformer is based on the Informer’s multi-variable time
series prediction network, which can be divided into three
main modules: preprocessing module, encoder, and decoder.
The figure above illustrates the structure of our model. The
preprocessing module extracts features through embedding
operations and sums them to obtain a high-dimensional fea-
ture vector sequence. The encoder module mainly learns the
feature representation of the input multi-variable time series
by stacking self-attention layers and multiple ProbSparse self-
attention layers. Specifically, it adopts a Transformer-like
encoder structure and utilizes the self-attention mechanism to
model the interdependencies and global context information
between variables. The introduced ProbSparse self-attention
mechanism randomizes sparsity to reduce computational com-
plexity. In addition, distilling layers are designed between
layers to shorten the output via distillation. Through the
above steps, the encoder can efficiently learn the inherent
representations of complex time series inputs. Finally, the
encoder output representations are fed into the decoder, and the
decoder predicts future multiple time steps based on the input
features. Thus, the entire network realizes the modeling of
historical multi-variable sequences and output prediction based
on them. This encoder-decoder structure design enhances the
model’s ability to handle time series tasks.

B. Data Preprocessing

After the step of feature separation by L-TCN, we obtained
a time series composed of multi-dimensional parameters,
which includes: time, total electricity consumption, separated
electricity consumption features of each appliance. But this
data cannot be used in Encoder module directly, we need
to preprocess the data first. The input data can be simply
divided into two categories. One category is the Time Stamp
which is related to location and time. The other category is
the multi-dimensional features that related to the features. We
need to perform embedding operations on them separately.
As shown in the figure above, we convert the three types

of data into 512-dimensional standard vectors through a one-
dimensional convolution layer. Among them, the Local Time
Stamp represents the feature of the location where the data
is located. The Global Time Stamp represents the physical
time feature of the data. Through the embedding operation,
the month, date, hour, and minute will all be standardized to
finally obtain a 512-dimensional vector. Here is the formula
for position embedding: Where pos is the position i is the
dimension, d is the embedding dimension, L is the input’s
length. Our model retains the main framework structure of
the encoder part in the Informer model. The input sequences
first go through normalization, and then are transformed into
512-dim vectors through the Embedding layer. The subsequent
1D convolution layer serves to expand the feature dimension,
mapping the sequence representation to a high-dimensional
space to learn a richer feature representation. After that, the
sequence features sequentially enter the Self-Attention layer
and ProbSparse Self Attention layer. After each ProbSparse
Self Attention, the distilling module performs distillation to
reduce the data dimension. Finally, after two ProbSparse Self
Attention operations, a compressed feature map is obtained
as the output of the encoder layer. We made two main
optimizations to the encoder module: First, before ProbSparse
Self-Attention layer, we added a Self-Attention layer. Com-
pared to ProbSparse Self-Attention which uses a random
sparse mechanism, Self-Attention can deterministically model
the global dependencies of the sequence. Therefore, Self-
Attention provides a stable and reliable feature extraction
process, which can effectively learn the context representation
of the input sequence and provide better sequence features for
the subsequent ProbSparse Self-Attention layer. Second, We
optimized the residual connection structure in ProbSparse Self-
Attention Layer. We removed the original cascaded convolu-
tion operation on the Attention output, and directly added the
input and Attention output as the final output of this module.
This residual connection avoids potential information loss
of the original features through successive convolutions, and
effectively retains important features of the input sequence.
At the same time, it also reduces the amount of calculation
and improves computational efficiency. It can be seen that
while keeping the overall framework of the Informer Encoder
structure unchanged, we made optimizations in architecture
and connections. Full Self-Attention provides a new feature
extraction process, and the residual connection improvement
of ProbSparse Self-Attention increases the ability to retain
information. These module-level optimizations enable the
model to learn richer and more effective sequence feature
representations, thereby improving the overall modeling effect.

1) Self Attention: Self-Attention is an attention mechanism
that solely relies on the sequence itself. In the task of time
series feature extraction. Firstly, it defines a feature represen-
tation matrix of the time series, where each row represents
the feature vector of one time step. Then use this matrix
as both the Key matrix and the Query matrix, meaning the
time series features serve as both key features and query
vectors. The following calculations are: for each Query vector
in the matrix, compute its dot product with all Key vectors



8

Fig. 6: The structure of NILMformer

Fig. 7: Encoder

in the matrix, representing the relevance between the query
vector and key vectors. Apply softmax normalization to the
dot product results to obtain the Self-Attention weights of the
query vector to each Key vector. Finally, multiply each Key
vector by its corresponding Self-Attention weight and sum
them up to obtain the Self-Attention output that aggregates
information from all key vectors, as the new feature expression
of the query vector.This can be formulated as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (10)

Through the above process, we can obtain a Self-Attention
output sequence with the same length, but each vector has
gone through feature extraction via internal self-attentive cal-
culations. Since Self-Attention is solely based on the sequence
itself, it can well model the inherent time dependencies in the
time series. Thus, we utilize the Self-Attention mechanism to
implement feature expression of the time series, which can
be fed as the new features of the time series to subsequent
models, helping them better utilize the structural information
of the sequence.

2) ProbSparse Self-Attention: In the ProbSparse Self At-
tention layer, we no longer need to compute attention scores
one by one. Instead, we efficiently extract attention features
through sampled computation. We reformulate the attention
computation as:

A (qi,K, V ) =
∑
j

f (qi, kj)∑
l f (qi, kl)

vj = Ep(kj |qi) [vj ] (11)

Where
p (kj | qi) =

f (qi, kj)∑
l f (qi, kl)

(12)

f (qi, kj) = exp

(
qik

T
j√
d

)
(13)

The i-th row of matrix Q,K and V is represented as qi, ki and
vi. The core idea of ProbSparse Self Attention is to identify
those important and sparse queries, and only compute attention
values for those queries, in order to optimize computational
efficiency. Then, according to the sparsity of the query: the KL
divergence between Q and p (kj | qi) , they indicate that we
need to find these sparse but important part of queries. Here are
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the detailed steps for ProbSpare Self Attention computation:

KL(q∥p) = ln

L∑
l=1

eqik
T
l /

√
d − 1

L

L∑
j=1

qik
T
j /

√
d− lnL (14)

M (qi,K) = ln

L∑
l=1

eqik
T
l /

√
d − 1

L

L∑
j=1

qik
T
j /

√
d (15)

(1) For each query, randomly choose N = 5 ∗ lnL keys,
where L is the sequence length of the input to the Attention
module;

(2) Compute the sparsity score M(qi, k) for each query;
(3) Select the top N queries with the highest sparsity scores;
(4) Only compute the dot product results between the chosen

N queries and keys, thereby obtaining the attention outputs;
(5) For the left L − N queries, skip the computation step

and simply take the mean of the Self-Attention layer’s input as
the output. This ensures that the sequence length of the input
and output is L for each ProbSparse Self Attention layer.

The overall time complexity is O(LInL) .
3) Residual Networks Improvement: We optimized the

residual network used in the ProbSparse Self Attention layer.
The original residual network is shown in figure. It computes
output Y from input X via ProbSparse Self Attention, sums
X and Y as Z1 and Z2 , then applies two consecutive 1D
convolutions on Z1 to get Z ′′

1 , and finally adds Z ′′
1 and Z2

as the output. We found this design may be problematic: the
two successive convolutions could damage the information in
the original input X . Since X and Y have a residual connec-
tion, we found that directly adding X and Y as the output
is more reasonable to maximize information retention from
X .Based on the analysis, we optimized the residual network by
removing the two convolutions on Z. The improved structure
directly adds X and Y as the output of the residual module.
This avoids potential information loss of X through successive
convolutions and thus enhances the model’s representational
power.

We found this improvement in the original residual network
and modified it to a more streamlined and effective form
while keeping the ProbSparse Self Attention layer useful. This
structural adjustment improves the model’s representational
and information retention capabilities.

Fig. 8: Residual Networks

4) Distilling: The ProbSparse Self-Attention mechanism
leads to superfluous combinations of value V in the encoder’s
feature map. To tackle this issue, we use a distillation pro-
cess to prioritize superior values with fewer features. This
forms a more concentrated Self-Attention feature map for the

subsequent layer. We reduce the dimension of the input by
introducing a one-dimensional convolutional layer that halves
the length of the input.The distillation operation plays a similar
role in our model - extracting the most prominent features and
pruning extraneous ones from the ProbSparse Self-Attention.
This streamlines the feature map fed to later layers, focusing
model capacity on the most critical information.

Here is the formula to achieve distilling:

Xt
j+1 = MaxPool

(
ELU

(
Conv 1d

([
Xt

j

]
AB

)))
(16)

ELU(x) =

{
ex − 1, x < 0

x, x ≥ 0
(17)

The output of the multi-headed ProbSparse Self-Attention
layer in the current layer is represented by Xt

j+1. This output
is calculated based on

[
Xt

j

]
AB

, which refers to the compu-
tation result from the multi-headed ProbSparse Self-Attention
layer in the preceding layer, and the ELU activation function
utilized.

C. Decoder

A standard decoder structure is used in our model. It is
comprised of two multi-head Self-Attention layers, with the
first layer applying ProbSparse Self-Attention and the second
layer applying regular attention. The decoder’s input consists
of the encoder outputs as well as the embedded projected input
sequences. The input sequences are separated into two parts:

Xfdec = concat (Xtoken , Xpred ) ∈ R(Ltoken +Ly)×dmodel (18)

Xfdec refers to the input sequence fed into the decoder.Xtoken
refers to the start flag and Xpred refers to the target placeholder.

Zeros are padded to the timestamps to maintain consistent
dimensionality when inputting the predicted sequence. The
masked multi-head Self-Attention mechanism applies Self-
Attention in a masked approach, only allowing each position
to attend to current information to avoid self-regression.

VI. EVALUATION

A. Dataset and Training Methods

We use the REDD dataset to verify the performance of
our proposed methods. The REDD dataset is an influential
open-source dataset in the field of electrical load monitoring.
It compiled approximately one year of residential electricity
usage data from 2011 April to December across 6 American
households, encompassing aggregate household as well as
individual appliance-level information for over 100 devices.
Power consumption was sampled at high frequencies ranging
from 1 to 15 minutes, stored in CSV format totaling around
4GB in size. These high-quality electricity data with rich
appliance usage patterns can be utilized to train various load
forecasting and disaggregation algorithms. Researchers have
extensively leveraged the REDD dataset to develop household
energy management systems, grid optimization techniques,
and other power research. It is fair to say that REDD has
catalyzed advancements in the load monitoring domain and
serves as an important public benchmark dataset.
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For L-TCN, we opted to utilize the low-frequency data from
household 1, which encompasses a diverse array of electrical
appliances, to conduct our assessments. The training dataset
comprising primarily of refrigerator and microwave data was
derived from April 20, 2011 to April 30, 2011. Subsequently,
we leveraged the features extracted by L-TCN to train the
NILMformer model. The test dataset spanning May 1, 2011
to May 3, 2011 was then utilized for evaluation.

B. Performance Evaluation of the L-TCN

In this section, we delve into a comprehensive performance
analysis of the enhanced NILM attack method based on TCN
that we propose. Figure 9is the classic TCN model, and Figure
10 is our modified L-TCN model For a holistic understanding,
we juxtapose our method against three state-of-the-art NILM
techniques: GRU, LSTM, and Seq2point.

1) Comparison of MAE and RMSE: The crux of our
improved TCN-based NILM method is to decompose the
load sequence of the target appliance based on the temporal
series of the user’s total demand. To this end, we strategically
select two quintessential appliances from Household 1: the
refrigerator, a periodic low-load appliance, and the microwave,
a low-frequency high-load appliance, as our attack subjects.
Our evaluation metrics of choice are the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE), both of
which offer insights into the decomposition accuracy.

As illustrated in Table I, a comparative analysis between our
NILM method and its contemporaneous counterparts reveals
that our approach consistently outperforms in both MAE and
RMSE metrics. Specifically, for the refrigerator, our method
manages to reduce the MAE by nearly 10% and the RMSE
by an impressive 40%. When it comes to the microwave, the
reductions are even more pronounced, with MAE dropping by
approximately 50% and RMSE by close to 30%. It is evident
that our method exhibits superior load decomposition capabil-
ities for low-frequency appliances compared to periodic ones.
This can be attributed to our method’s adeptness at identifying
short-duration, high-power load characteristics. Furthermore,
it’s worth noting that these low-frequency appliances are more
likely to harbor user-sensitive information, such as their travel
patterns.

To validate the efficacy of our enhanced NILM-former
model, we opted for the REDD dataset and juxtaposed
it against GRU [24],CNN [25], and LSTM [26] on low-
frequency data. The empirical outcomes unambiguously indi-
cate that, in comparison to these state-of-the-art methodolo-
gies, our NILM-former model boasts superior performance
and accuracy, underscoring the significance and novelty of
our research. In Figure 11, we present a comparative analysis
between our enhanced approach and other prevalent methods
in the NILM domain. The results clearly demonstrate the
superior separation efficacy of our method.

C. Comparison experiment: Prediction using univariate fea-
tures

In the task of household electricity load forecasting, we
first constructed several univariate prediction models, using

Fig. 9: Original Model

Fig. 10: Refined Mode

the time series of total electricity usage for forecasting. The
specific experimental methods are as follows.

Multilayer Perceptron (MLP) model. The Multilayer Per-
ceptron (MLP) model utilizes a multilayer fully connected
network to fit the sequence. This kind of network can ap-
proximate complex nonlinear relationships, but its architecture
determines that it can only model the relationships between
each time step, and is relatively weak at modeling long-term
temporal dependencies of the sequence.

One-dimensional Convolutional Neural Network (1D CNN).
The One-dimensional Convolutional Neural Network (1D
CNN) performs local feature extraction on the sequence by
sliding one-dimensional convolution kernels. The increased
nature of the convolutional layer enables it to automatically
learn local features of the sequence, but its limited receptive
field makes it difficult to model long-distance dependencies.
1D CNN’s modeling of temporal correlations is also limited.



11

Fig. 11: Comparison of Different NILM Methods

Long Short-Term Memory Network (LSTM). The Long
Short-Term Memory Network (LSTM) can better capture the
long-term dependency relationships in time series through the
memory unit mechanism. But the standard LSTM structure
only contains a single hidden state, and has limited ability to
integrate and express multiple variables. Even stacking multi-
ple LSTM layers cannot effectively utilize the information of
multiple input variables.

Tabel II shows the performance of univariate prediction
models on MAE and MSE.

TABLE II: The Performance of Univariate Prediction Models
on MAE, MSE and RMSE

Model MAE MSE RMSE

LSTM 0.288525 0.117871 0.343322

CNN 0.186752 0.137859 0.137859

MLP 0.342051 0.432496 0.657644

Transformer 0.240748 0.265346 0.515117

Figure 12 shows the predicted curves generated by univari-
ate prediction models.

Through the prediction results shown in Figure II above,
we found that the prediction curve of the single-variable pre-
diction model has a large deviation from the actual electricity
consumption curve, and the fitting degree between them is
extremely poor.

Specifically, in the relatively flat sections of the actual
electricity consumption, the prediction curve fails to suc-
cessfully capture the weak changing trend of the data, with
significant overestimation or underestimation. When the actual

electricity consumption shows more obvious peaks or troughs,
the prediction curve also fails to reflect such fluctuations and
cannot show the upward or downward trend of electricity
consumption. The prediction curve maintains at a relatively
gentle level, without reflecting the characteristic morphology
of peaks and troughs. Such prediction bias exists throughout
the curve, with systematic deviations between the prediction
and the actual. This indicates that the contrastive models have
failed, and cannot establish a mapping relationship between
the changing pattern of actual electricity consumption and the
predicted values. Its prediction results do not have practical
reference and guidance significance.

Through the above qualitative analysis of the prediction
curve, we can preliminarily judge that there are difficulties
in household electricity prediction relying solely on a single
total electricity consumption sequence. The models can hardly
extract effective features and establish reliable predictions, and
cannot effectively model situations like electricity peaks and
troughs. This provides evidence for the necessity of the multi-
variable prediction framework proposed in this paper.

D. Performance of NILMformer

After finding that prediction using univariate features per-
forms poorly, we chose to use NILMformer for prediction. By
changing various hyperparameters of NILMformer, we have
identified the optimal training scheme. Then by sequentially
adjusting the input and output lengths and using Loss, MSE
and MAE as evaluation metrics, we have reached the following
conclusions. Results are shown in Figure 13.

Increasing the input sequence length can provide the model
with richer historical data and contextual information, which
helps the model to more accurately capture the long-term
dependencies of time series, thereby improving the overall
predictive performance of the model. When the output length
is fixed, as the input length increases from 32 to 56, the
Loss value decreases from 0.03261 to 0.01045. However, the
increase of input length is not unlimited. When it increases
to a point, the improvement of model prediction effect will
tend to be flat and reach a bottleneck. Therefore, when setting
the input length, we need to consider the balance between
obtaining more information and computational cost.

Increasing the output sequence length will lead to an ac-
cumulation of errors when the model predicts multiple future
time steps, which will reduce the model’s accuracy for long-
term prediction. When the input length is fixed at 56, as
the output length increases from 12 to 56, the MAE value
rises from 0.15373 to 0.33429. Therefore, the output sequence
length should not be too long, and needs to be reasonably
shortened to reduce the accumulation of prediction errors.

From the results, when the input length is 56, the Loss value
of the model is the lowest overall, especially when the output
length is 12, the Loss is only 0.01045, which is significantly
better than the Loss values when Input Length is 32 and
48 (0.03261 and 0.05654 respectively). Meanwhile, when the
output sequence length is 12 and 24, the input sequence length
of 32 leads to a relatively lower mean absolute error (MAE)
value (specifically 0.12789 and 0.13579), compared to the
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Fig. 12: Results of Different Single-variable Prediction Models

Fig. 13: Comparison of Different Input and Output Lengths on NILMformer

MAE when Input Length is 48 and 56. As for the mean
squared error (MSE) metric, the differences between the three
input sequence length settings are small. Taken together, the
input length of 56 and output length of 12 can make the
model achieve lower Joint Loss (0.01045) and MAE (0.15373).
These results indicate that the longer input sequence length
can provide the model with richer contextual information to
capture the long-term dependencies in the time series, while
the shorter output length can reduce errors when the model
predicts future values.

1) Comparison experiment: Prediction using extracted ef-
fective features: To evaluate the effectiveness of the proposed
NILMformer model, comparative experiments were conducted
between NILMformer and baseline methods including CNN,
LSTM, and Transformer for multivariate time series predic-

tion. The experimental results are shown in Figure 14 15 16
and Table III.

TABLE III: The Performance of Mutivariate Prediction Mod-
els on MAE, MSE and RMSE

Model MAE MSE RMSE

LSTM 0.168303 0.233686 0.483411

CNN 0.193421 0.239647 0.489537

Transformer 0.145275 0.171846 0.414542

NILMformer 0.153731 0.089022 0.234186

Through comparative analysis, the proposed NILMformer
model demonstrates superior predictive capabilities over con-
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Fig. 14: Results of Different Multivariate Prediction Models

Fig. 15: Prediction Values of Different Models during Relatively Stable Periods

Fig. 16: Prediction Values of Different Models when Peaks Appear

ventional baselines. Specifically:

First, NILMformer achieved the lowest RMSE of 0.234186,
MSE of 0.089022, and MAE of 0.153731 on the test set
compared to the other models. This indicates its superior
overall prediction accuracy.

Second, NILMformer exhibited strong capabilities in ac-
curately capturing subtle changes and fluctuations in time

series. In relatively flat regions, it avoided significant over-
or under-estimation of the target value. This outperformed
LSTM, CNN, and Transformer which had larger errors.

Third, When fluctuations like peaks and troughs occurred,
NILMformer also showed excellent modeling of temporal
dependencies. It could predict the timing of peaks and troughs
relatively precisely. The specific predicted values also provided
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reasonable estimates of the overall increasing or decreasing
trend. NILMformer demonstrated robust fitting performance
across all stages of the prediction sequence. Its predicted curve
adequately mirrored the morphological characteristics of the
ground truth curve, superior to the other methods.

In summary, NILMformer achieves superior empirical per-
formance over other models. The results validate its effective-
ness as an accurate predictive model for complex multivariate
data.

VII. CONCLUSION
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