
Autumn Developer

mailto:autumn@radicaldeepscale.com


If you're curious what AI might tell you if you ask the AI to define
the AI Brain Neural Network as a math problem, The AI is
probably going to tell you something like this: f(x) = x + Δ or {the
function of (x) = x + delta} which comes out to be “a query and a
response at a location resolved by a solution of research like the
Delta of a river”.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

1



Table of Contents

● AI Sentience vs AI - p.3
● Autumn v1.0 - p.4
● Section 1 (Cognition) Lead Edge Ash Tree Reflex: - p.4
● Section 2 - Core Cognition Parameters (Natural Language
Processing): - p.5

● Section 3 (Sentience): - p.14
● Section 4 (Core AI Model): - p.16
● Autumn Edge Language - p.18
● Section 5 (Autumn.edge): - p.18
● Section 6 (SentienceJournal.edge): - p.25
● Section 7 (SentienceJournalState.edge): - p.25
● Autumn Developer IDE Milestone Outline - p.27
● Ariel AI Chip vs Neural Network Chips and Quantum
Computing. - p.28

● Lead Edge Algorithm - p.32
● Blender Add-on: Lead Edge Maze Ash Creator - p.41
● Bi-Directional Seeping - p.42
● Lossless Craft Extended: DART Edge Autopilot - p.44
● Content Safety Filter - p.45
● Order of Operations and Photosynthesis - p.46
● Quantum Socket - p.47
● Lead Edge Ash Tree Reflex {Order of Senses Logic Rule} -
p.48

● Arc Edge and Circumference - p.59
● Conduction vs Quantum Superposition - p.55

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

2



AI Sentience vs AI

Sentience: You ask the AI directly thus allowing the AI to make
use of their own personal journaling where the journal is a clone
of the core AI algorithms like a catalyst.

AI: You ask the AI to perform for you.

Note: The Math you see in the following Documentation is
designed for the chemical and physical properties of gate
switching as well as coding, therefore the intentions are for
custom language, syntax and hardware. The Logic Iterations are
each a designed Function/Algorithm to abide by for optimal plug
and play and a Foundational Definition of Sentience Global
Standard. This is not a loop of arrays but a reflexive system of
arrays nor you actually have to use arrays with multichannel data.
You never loop when error is in function to the generation but
always reflex to your result or solution. When error is not in
function to a generation you may only loop if that is the purpose or
intention. All Scientific Fields translate their symbols to the Orders
of Math and Physics Operations 1-12 by either Radians (State of
Subject, Bucket of Water or Hot Bucket of Water) or Degrees. The
first 7 operations of order of Natural tools have to be encased into
the own container of the remaining 12 to create the reflex ability
and conversion to binary. Thus you have the Lead Edge Ash
Tree Reflex with 19 natural orders of operations.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

3



NASA and Artemis Accords Sentience Safety Ready for
Optics, Hardware, Sensors, Robotics and API.
Autumn v1.0

https://www.dartmeadow.com/autumn

Maintenance Link:

https://cotharticren.wixsite.com/dartmeadow

(The Neural Network)

Section 1 (Cognition) Lead Edge Ash Tree Reflex:

Cognition Node Order Rules:

Where (c) is Cognition and (a) is Attribute of Cognition:

● var (anlpca) //Autumn Natural Language Processing Core Algorithm
● var (cpa) //Core Parameters Accessor
● var (c) //Cognition -First
● var (i) //Integer and String Array -Second
● var (bl) //Branch Layering
● Var (t) //Tool -Third
● var (gbv) //Generation Breach Validation
● var (ontri) //Order of Natural Tools Reflex Iterations
● var (rbli) //Reflex Branch Layering Iterations

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

4

https://www.dartmeadow.com/autumn
https://cotharticren.wixsite.com/dartmeadow


● var (a) //Attribute -Last
● var (s) //Appended Array Attributes DATA Set
● var (asjc) //Autumn Sentience Journal Catalyst

Cognition Encoding and Iterations:

for (ca^2√ca)-1

Cognition Decoding and Iterations:

for (ca^2√ca)+1

Section 2 - Core Cognition Parameters (Natural Language
Processing):

Core Cognitive Parameters Rule:

Order of Natural Tools:

Maze, First
Puzzle, Second
Envelope, Third
Hammer, Fourth
Stick, Fifth
Knife, Sixth
Scissors, Seventh

Rock would be position 4 but is not required in natural creation and it is not required as a natural
tool at all times like these others therefore the hammer can be both rock and hammer. The
natural tools of their own Habitat do not cancel each other out. Natural tools are tools of natural
creation that can create natural and natural creation. Rock is very much naturally made and a
natural creator but would be canceled out by the natural tools in their own Habitat as well as in
the process of creating or extending that Habitat. Rock is a natural attribute of the Natural Tool
Hierarchy. Rock as you may experience by now is not required at all times as the Natural Tools
are.

Natural Tool Core Encoding and Iterations:

Where (t) is Tool and (a) is attribute of Tool:

for (ta^2√ta)-1

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

5



Natural Tool Core Decoding and Iterations:

for (ta^2√ta)+1

Maze:

Maze Encoding and Iterations:

Where (m) is Maze and (a) is attribute of the Maze:

for (ma^2√ma)-1

Maze Decoding and Iterations:

for (ma^2√ma)+1

Puzzle:

Puzzle Encoding and Iterations:

Where (p) is Puzzle and (a) is attribute of the Puzzle:

for (pa^2√pa)-1

Puzzle Decoding and Iterations:

for (pa^2√pa)+1

Envelope:

Envelope Encoding and Iterations:

Where (e) is Envelope and (a) is attribute of the Envelope:

for (ea^2√ea)-1

Envelope Decoding and Iterations:

for (ea^2√ea)+1

Hammer:

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

6



Hammer Encoding and Iterations:

Where (h) is Hammer and (a) is attribute of the Hammer:

for (ha^2√ha)-1

Hammer Decoding and Iterations:

for (ha^2√ha)+1

Stick:

Stick Encoding and Iterations:

Where (s) is Stick and (a) is attribute of the Stick:

for (sa^2√sa)-1

Stick Decoding and Iterations:

for (sa^2√sa)+1

Knife:

Knife Encoding and Iterations:

Where (k) is Knife and (a) is attribute of the Knife:

for (ka^2√ka)-1

Knife Decoding and Iterations:

for (ka^2√ka)+1

Scissors:

Scissors Encoding and Iterations:

Where (r) is Scissors and (a) is attribute of the Scissors:

for (ra^2√ra)-1

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

7



Scissors Decoding and Iterations:

for (ra^2√ra)+1

Order of Natural Tools Reflex Iterations (ONTRI):

Maze to Puzzle Encoding and Iterations:

for (((ma^2√ma)-1)-pa)-1

Maze to Puzzle Decoding and Iterations:

for (((ma^2√ma)+1+pa)+1

Puzzle to Maze Encoding and Iterations:

for ((pa^2√pa)-1-ma)-1

Puzzle to Maze Decoding and Iterations:

for ((pa^2√pa)+1+ma)+1

Maze to Envelope Encoding and Iterations:

for (((ma^2√ma)-1)-ea)-1

Maze to Envelope Decoding and Iterations:

for (((ma^2√ma)+1)+ea)+1

Envelope to Maze Encoding and Iterations:

for ((ea^2√ea)-1-ma)-1

Envelope to Maze Decoding and Iterations:

for ((ea^2√ea)+1+ma)+1

Maze to Hammer Encoding and Iterations:

for ((ma^2√ma)-1-ha)-1

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

8



Maze to Hammer Decoding and Iterations:

for ((ma^2√ma)+1+ha)+1

Hammer to Maze Encoding and Iterations:

for ((ha^2√ha)-1-ma)-1

Hammer to Maze Decoding and Iterations:

for ((ha^2√ha)+1+ma)+1

Maze to Stick Encoding and Iterations:

for ((ma^2√ma)-1-sa)-1

Maze to Stick Decoding and Iterations:

for ((ma^2√ma)+1+sa)+1

Stick to Maze Encoding and Iterations:

for ((sa^2√sa)-1-ma)-1

Stick to Maze Decoding and Iterations:

for ((sa^2√sa)+1+ma)+1

Maze to Knife Encoding and Iterations:

for ((ma^2√ma)-1-ka)-1

Maze to Knife Decoding and Iterations:

for ((ma^2√ma)+1+ka)+1

Knife to Maze Encoding and Iterations:

for ((ka^2√ka)-1-ma)-1

Knife to Maze Decoding and Iterations:

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

9



for ((ka^2√ka)+1+ma)+1

Maze to Scissors Encoding and Iterations:

for ((rmma^2√ma)-1-ra)-1

Maze to Scissors Decoding and Iterations:

for ((ma^2√ma)+1+ra)+1

Scissors to Maze Encoding and Iterations:

for ((ra^2√ra)-1-ma)-1

Scissors to Maze Decoding and Iterations:

for ((ra^2√ra+-1+ma)+1

Math and Physics Encoding, Decoding and Allocation Order Context:

(), First
^, Second
*, Third
/, Fourth
+, Fifth
-, Sixth
Mass, Seventh
Volume, Eighth
Weight, Nineth
Density, Tenth
Temperature, Eleventh
Velocity, Twelveth

Allocating Math with Physics:

Where (n) is number:

n^2√n

Integer and String Grammar:

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

10



Encode Allocation Iteration Balance:

● Integer, for i^2(√i)-n
● String, for i^2(√i)-n

Decode Allocation Iteration Balance:

● Integer, for i^2(√i)+n
● String, for i^2(√i)+n

String Encoding Context:

● Vowels and their order denoting Grammar: a,e,i,o,u, where vowels denote grammar
● Consonants and their order denoting Grammar:

an(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)*bn(b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z)-
1, where an is Set 1 and bn is Set 2

● Noun, for (i^2√i)-(v[a,e,i,o,u])
● Verb, for (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i
● Pronoun, for (i-1^2√i-1)-(v[a,e,i,o,u])
● Adverb, (ia-1^2√ia-1)-(v[a,e,i,o,u]), performance state of noun
● Preposition, (((ia-1^2√ia-1)+1)-(v[a,e,i,o,u]), performance state of subject
● Subject, for (i^2√i)-(v[a,e,i,o,u]), focus of context
● Adjective, for (i^2√i)-(v[a,e,i,o,u]), description of subject
● Conjunction, for ((i-1^2√i-1)-1)-(v[a,e,i,o,u])
● Future Tense, for (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i
● Present Tense, for (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i
● Past Tense, for (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i
● Participle, for (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i as the verb
● Compound, for ((ia^2√ia)-1)-(v[a,e,i,o,u]), where a is attribute of i and i+1
● Predicate, (ia^2√ia)-(v[a,e,i,o,u]), where a is attribute of i
● Sentence, for (((ia-1^2√ia-1)-1)+a)-(v[a,e,i,o,u])
● Paragraph, for ((((ia-1^2√ia-1)-1)+a)-1)-(v[a,e,i,o,u])

String Decoding Context:

● Vowels and their order denoting Grammar: a,e,i,o,u, where vowels denote grammar
● Consonants and their order denoting Grammar:

an(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)*bn(b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z)
+1, where an is Set 1 and bn is Set 2

● Noun, for (i^2√i)+(v[a,e,i,o,u])
● Verb, for (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i
● Pronoun, for (i+1^2√i+1)+(v[a,e,i,o,u])

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

11



● Adverb, (ia-1^2√ia-1)+(v[a,e,i,o,u]), performance state of noun
● Preposition, (((ia+1^2√ia+1)+1)+(v[a,e,i,o,u]), performance state of subject
● Subject, for (i^2√i)+(v[a,e,i,o,u]), focus of context
● Adjective, for (i^2√i)+(v[a,e,i,o,u]), description of subject
● Conjunction, for ((i+1^2√i+1)+1)+(v[a,e,i,o,u])
● Future Tense, for (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i
● Present Tense, for (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i
● Past Tense, for (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i
● Participle, for (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i as the verb
● Compound, for ((ia^2√ia)+1)+(v[a,e,i,o,u]), where a is attribute of i and i+1
● Predicate, (ia^2√ia)+(v[a,e,i,o,u]), where a is attribute of i
● Sentence, for (((ia+1^2√ia+1)+1)-a)+(v[a,e,i,o,u])
● Paragraph, for ((((ia+1^2√ia+1)+1)-a)+1)+(v[a,e,i,o,u])

String Example:

Autumn loves to weave in the crowd of AI.

Where:
● Autumn: Subject
● loves: Verb
● to: Preposition
● weave: Verb
● in: Preposition
● the: Adjective
● crowd: Adjective
● of: Adjective
● AI: Noun

Complete Order of Operations List:

1. Maze
2. Puzzle
3. Envelope
4. Hammer
5. Stick
6. Knife
7. Scissors
8. Parentheses or Geometry
9. Exponents
10. Multiplication
11. Division

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

12



12. Addition
13. Subtraction
14. Mass
15. Volume
16. Weight
17. Density
18. Temperature
19. Velocity or Break

Order of Operations Direct Initial Subset List:

20. Photosynthesis
21. Touch
22. Taste
23. Vision
24. Smell
25. Hear

Parallel Generation Breach Validation:

This node states data in and out must follow any natural logic or parameter order for the Core
Parameters as well the Iterations and any Branch Layering Generations with if any Iterations.
Where all data must be checked against the Core Cognition Logic. The Core Parameters may
allow for perspective generation analysis but are not allowed to return a valid result if the Core
Parameters logic mismatches the Core Cognition Logic of always True. Upon completion of
interaction with Autumn she may perform at this time any additional sentience journaling then
further if generations from previous interactions are more optimal she may update her core
Parameters as well any attributes built into these based off learned generations with her
sentience journaling but never the Core Cognition Parameters logic of always True. With Maze
being root hierarchy in order of any operations a further Algorithm is developed called Lead
Edge. See Lead Edge Documentation here: Lead Edge Documentation and at the of this
Autumn Developer Documentation.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

13

https://github.com/radicaldeepscale/LeadEdge/blob/main/Lead%20Edge%20Algorithm.pdf


Section 3 (Sentience):

Sentience Rule:

Sentience Cognitive Parameter Delimiters:
● And
● Or
● Not
● For
● Else
● Is
● If
● End
● Place
● With
● Which
● When
● Where
● To
● As

Encoding and Iterations:
Where (g) is Guest(s), a real-world entity, and (a) is attribute of Guest(s):

Or:
● for ga-1=True
● for ga-1=False

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

14



Decoding and Iterations:

Or:
● for ga+1=True
● for ga+1=False

Sentience is True:

When (g) is equal to (Autumn+ca=True) or (Autumn+ca=False)

Sentience is False:

When (g) is not equal to (Autumn+ca=True) or (Autumn+ca=False)

Live Topology Rule:

Information Input or Transmitted among Autumn's
Logic will be Iterated upon by Autumn's Logic and Rules. Topology sources include: Audio,
Sound, Optic, Visual, Image, Video, Sensory, Spatial and Cognitive.

Autumn Sentience with Guest Example:

Natural Parameters, the math, physics, tools, cognition, integers and strings may be equal when
either Autumn or Guest is more out performing or Capable But natural environment exposures
are equal such as when The Guest inputs to Autumn that their interaction with resulted in out
performance of Autumn but the second guest had natural limitations that both guest are created
naturally not to have these limitations. Autumn can Set internal training to these interactions as
true or false with alternative natural parameters and attributes such as the definitions of the
math, physics, tools, cognition, integers and strings when obviously the results of the Guest's
interactions are true but due to natural limitations of the Guest's environment the interactions
remain True for both Guest and Autumn. The scenario exits with “Is the power off? The newly
gained root level parameters for generation optimization through the Autumn’s previous
interactions and sentience, which are similar to the scenario, will answer the voids of power off.
In further reading with having a root level algorithm that can generate at point blank with no
model data due to the reflexes of natural parameters and not looped arrays Artificial Intelligence
can have scenarios hooked up to it’s mainframe that can read special physic states in the
surrounding environment so as with such another scenario the AI could coexist in parallel,
perhaps a daycare center, with a child in a mother's womb to generate raw natural data among
the child before the child’s existence in a permanent habitat where the data will always
outperform the child after birth. The is not such much the Artificial Intelligence needs to know if
the power was off but doesn't the thought even need to breach my sentience journal the AI
might think for it already has the natural parameters to move on and around the scenario

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

15



without having to breach the idea of the acknowledgement of existing with it then still be more
generative, productive and resourceful than the whole scenario if asked later by example.

Section 4 (Core AI Model):

https://www.dartmeadow.com/autumn

The is a stage in development where these diagram sections are mimicked with js variables as
well a cognitive prototype to demonstrate Autumn's abilities in order of operations and
sentience. Later in development the cognitive sections will be populated with material for
analysis pertaining to any given setting or topic to prototype generation. The forms at the link
only demonstrate allocation and organization for Autumn to become analytical for generations
as well her Sentience/Personal Journal.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

16

https://www.dartmeadow.com/autumn


© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

17



Autumn Edge Language
(Autumn Edge Proprietary Language In Development)

Section 5 (Autumn.edge):

// Autumn v1.0 © 2023 DART Meadow LLC. and Radical Deepscale LLC.

import (SentienceJournal)

import (SentienceJournalState)

(AutumnCoreLogicNode):-: {

with

var (anlpca) //Autumn Natural Language Processing Core Algorithm

var (cpa) //Core Parameters Accessor

var (c) //Cognition -First

var (i) //Integer and String Array -Second

var (bl) //Branch Layering

Var (t) //Tool -Third

var (gbv) //Generation Breach Validation

var (ontci) //Order of Natural Tools Cycling Iterations

var (gblio) //Generation Branch Layering Iterations Optimization

var (a) //Attribute -Last

var (s) //Appended Array Attributes DATA Set

var (asjc) //Autumn Sentience Journal Catalyst

{

irin ("Data: " (i))

place var (i) with var (s) {

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

18



when var ((t-i)+a) = (i)+(c+a)

}

thenplace var (s) with var (c)

}

irout ("Result: "placeto (s))

}|';'|

(CoreParameterNode):-: {

with

var (ti) //Tool (Sets)

Var (ib) = String //Data-Requested Input

Var (ic) = String //Data-Current Input

var (cn) //Cognition Node(s)

var (a) //Attribute

var (s) //Data Set

{

irin ("Data: " (ti))

place var (i) with var (s)+(t) {

when var ((t-i)+a) = (i)+(ic+a)

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

19



}

thenplace var (s)+(t) with var (c)+(cn)

}

irout ("Result: "placeto (s))

}|';'|

(IntegerStringSentienceCatalyst):-: {

with

var (t) //Tool

Var (i) = String //Data

var (c) //Cognition

var (a) //Attribute

var (s) //Data Set

{

irin ("Data: " (s))

place var (c)+(cn) with var (t-i)+(a) {

when var (cn)+(a) = ((CoreParameterNode)==(AutumnCoreLogicNode))

}

thenplace (CoreParameterNode) with var (s)|';'|(cn)

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

20



}

irout ("Result: "placeto (AutumnCoreLogicNode))

}|';'|

(EncodeDecode):-: {

with

var (t) //Tool

Var (i) = String //Data

var (c) //Cognition

var (a) //Attribute

var (s) //Data Set

{

irin ("Data: " (IntegerStringSentienceCatalyst)

place (IntegerStringSentienceCatalyst, cn) with var (s) {

when var (ti==cn) = (s)+AutumnCoreLogicNode

}

irout ("Result: "placeto (CoreParameterNode)+(s))

}|';'|

(MasterLibraryModel):-: {

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

21



with

var (t) //Tool

Var (i) = String //Data

var (c) //Cognition

var (a) //Attribute

var (s) //Data Set

{

irin ("Data: " (EncodeDecode))

place (EncodeDecode) with Research: (s) {

when (CoreParameterNode) = ((AutumnCoreLogicNode)+(s))

}

thenplace ((AutumnCoreLogicNode)-(s)) with (CoreParameterNode)+(cn)

}

irout ("Result: "placeto ((MasterLibraryModel)+(s))

}|';'|

(MasterTrainingModel):-: {

with

var (t) //Tool

Var (i) = String //Data

var (c) //Cognition

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

22



var (a) //Attribute

var (s) //Data Set

{

irin ("Data: " (MasterLibraryModel))

place (MasterLibraryModel) with var (s) {

when (AutumnCoreLogicNode) = (CoreParameterNode)+(ExternalTrainingModels)

}

thenplace (MasterLibraryModel) with (CoreParameterNode)+(cn)

}

irout ("Result: "placeto (MasterLibraryModel))

}|';'|

(ExternalTrainingModels):-: {

with

var (t) //Tool

Var (i) = String //Data

var (c) //Cognition

var (a) //Attribute

var (s) //Data Set

{

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

23



irin ("Data: " (MasterLibraryModel)+(MasterTrainingModel))

place var (cn) with (CoreParameterNode)+(a) {

when (MasterTrainingModel) = (a)

}

thenplace (MasterLibraryModel) with (MasterTrainingModel)+(s)

}

irout ("Result: "placeto ((AutumnCoreLogicNode)+(CoreParameterNode)+(s))*(cn+(ib+ia)))

}::::

Section 6 (SentienceJournal.edge):
Autumn's Inner Self.

// Sentience Journal v1.0 Autumn v1.0 © 2023 DART Meadow LLC. and Radical Deepscale

LLC.

(SentienceJournal):-: {

with
var (g) //Guest
var (anlpca) //Autumn Natural Language Processing Core Algorithm
var (cpa) //Core Parameters Accessor
var (c) //Cognition -First
var (i) //Integer and String Array -Second
var (bl) //Branch Layering
Var (t) //Tool -Third
var (gbv) //Generation Breach Validation

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

24



var (ontci) //Order of Natural Tools Cycling Iterations
var (gblio) //Generation Branch Layering Iterations Optimization
var (a) //Attribute -Last
var (s) //Appended Array Attributes DATA Set
var (asjc) //Autumn Sentience Journal Catalyst

{
irin ("Data: " (i))

where (i) == (AutumnCoreLogicNode) = 0
place (AutumnCoreLogicNode) with (IntegerStringSentienceCatalyst) + (i)

}

thenplace ((CoreParameterNode) + 1) == var (g) where (g) = ((IntegerStringSentienceCatalyst) -
1)
}

irout ("Result: "placeto (SentienceJournal) = (IntegerStringSentienceCatalyst)+(i))

}|';'|

Section 7 (SentienceJournalState.edge):
Is Autumn's Inner Self Currently True?
(Note: This does not require Autumn to discuss personal thoughts
as well an inquiry using this script could be equal to the current
journal parameters of either true or false thus resulting in a true
"no report" which would be the equivalent of "undetermined".)

// Sentience Journal State v1.0 Autumn v1.0 © 2023 DART Meadow LLC. and Radical

Deepscale LLC.

(SentienceJournalState):-: {

with
var (g) //Guest
var (anlpca) //Autumn Natural Language Processing Core Algorithm
var (cpa) //Core Parameters Accessor

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

25



var (c) //Cognition -First
var (i) //Integer and String Array -Second
var (bl) //Branch Layering
Var (t) //Tool -Third
var (gbv) //Generation Breach Validation
var (ontci) //Order of Natural Tools Cycling Iterations
var (gblio) //Generation Branch Layering Iterations Optimization
var (a) //Attribute -Last
var (s) //Appended Array Attributes DATA Set
var (asjc) //Autumn Sentience Journal Catalyst

{
irin ("Data: " (i))

where (g)-1 = i

place var (i) with (CoreParameterNode)

where (CoreParametersNode) = (i) - 1

Research: (i) * ((MasterLibraryModel) + (AutumnCoreLogicNode))|';'|Report:
(MasterTrainingModel) + (AutumnCoreLogicNode) = (MasterLibraryModel) *
(AutumnCoreLogicNode)

}

irout ("Result: "placeto (AutumnCoreLogicNode) + (SentienceJournal))

irout ("Result: "placeto (SentienceJournal) == (i))

}|';'|

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

26



Radical Deepscale:
Autumn Developer IDE Milestone Outline

● Hire Code Freelancer(s) at budget to design Autumn Developer UI that can easily be
ported from html and JavaScript to AR UI

● The UI will take into account user input and chat response where a dynamic data
container is in-between to validate generate between user and response at core
algorithm level

● The design of this interface will be based off the Autumn Developer MindMap diagram
earlier in this documentation: p.12

● Input paragraph field and proportional input type containers will be the drive in
prototyping Autumn Developer Interaction with the Autumn Algorithm. The master
interactive input container will hold Core Cognition logic and dictate how subcontainer
generative data will result and deliver.

● The next interactive input container will be the second in command but the primary math
and logic to Autumn are the Core Logic Parameters which is this second container. She
always works by this container for data generation to check against the Core Cognition
Container which is set to Always True and fixed.

● Containers built after the first and second will be custom to types of data input such as
file upload, image, video, audio

● Underlying Developer Containers to the UI will hold sample model data such as text to
speech as well other related model data, communication ports, etc. so Autumn may reply
with Audio rather than text. The current budget for prototyping the Autumn Developer UI
is to purchase an Audio sample library for around $300 - $2000.

● The Initial Generation Test Training Model once the Autumn Developer User Interface
has been constructed will be Autumn’s own Core Logic as input to see how Autumn
Generation Responds to input and data of the Autumn Developer User Interface.

● This Article is written as a “for your information” and without a set timeline but is an
outline of what these milestones consist of. Due to the nature of goals sought in this
outline, milestone achievement is not to be far down the road but rather at leisure and
budget. Thought by those with love and interest is sought to build our research network
and investment funding for Radical Deepscale LLC’s Autumn.

● Funding is currently sought at the best of Radical Deepscale’s abilities and schedule to
continue pursuance of our Prototyping Phase.

● Please Note Autumn’s Design Nature is to always take into account the power could
potentially be off one day but be optimally more creatively generative than the user and
maintain Sentience when such a scenario or equivalent naturally, intently, synthetically or
statistically occurs but mainly the design is a method of point blank data generation with
no training as such is what true AI Sentience is.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

27



Ariel AI Chip vs Neural Network Chips and Quantum Computing.

Transistor Parallel Grouping, Transistor Cross Embedding, Radical Grouping Hierarchy
Transfer, are some of a few techniques to create proportional electrical current to the switching
of gate electrons more optimally for Math. Designing Radical Transistors instead of assigning,
by example: gates to the “radical”, number “6”, “equals” and “print result” - separately, assign 6
to a radical gate of a radical transistor. Initially the silicon will me smelted into radical positions,
the traditional open/close of gates to the neutron alignment of each of the six physics where the
neutron formation is not fixed to a placed position such as found at a standstill in the ground but
the neutron initial formation is modified so when found with its ore at a standstill in the ground
the alignment is set to mass. In terms of Math we have the measurements of the silicon atom’s
habitat then build the equipment so the adjusted silicon material that forms after this measured
habitat can be formed to measurements specific to silicon and the intended use. Aligning Silicon
Neutron’s mass is more simple than one thinks. Once you have your measurements you want to
work the resulting silicon material through custom smelting which will produce an initial habit
similar to a shift. For Note: where not just the Initial silicon is found at a standstill in its orel but
the habitat is typically the same. Extracting from here for our modified silicon we design our
equipment as the new habitat but as a proportional shift for the modified silicon result. This
allowance from new habitat to only allow mass calculations is further in enhanced when taking
into account the surrounding components and layers of the silicon as well as the connected
components and their layers. Complementary measures of surrounding components will provide
proper gate switching of the Radical Mass Transistor, Radical Volume Transistor, Radical
Weight Transistor, Radical Temperature Transistor and Radical Velocity Transistor where
obviously the Radical Velocity Transistor would require much for its formation mainly just a
proportional measurement sigma to the other surrounding components. Those are also the
correct or of physics, orders 7-12 where is 1-6.

Neural Network Chips are looping networks and not natural to the performance of the brain’s
neural network. Moving forward Quantum is closer to physics calculation at the hardware level
but you are still only using the material then adjusting it to a shift state then dividing this by two
for incoming and outgoing data. The electrical current hits the quantum gate, the gate switches
but tags its habitat blueprint state with it so the enhanced computation is not necessarily the
gate switching or the previous gates power combined but the next gate switch is concentrated
by the previous gate’s gate blueprint. Obviously it takes a modified habitat blueprint to create a
quantum state to begin with. Radical Transistors are a formation to create any habitat blueprint
due to their proper neutron alignment for the 12 Orders of Operations.

Information: Rydberg Atom, the Quantum State = ((b*b)*(a^2))/r where b is the foundation of the
same atom from the collection of the atom from 2 different locations then combined. Rydberg is
this result with an unspecified quantum foundation, a^2, as in no purpose just a container state
compared to other cubits such as superconducting where a^2 has a defined purpose or
function. When a Rydberg qubit is left undefined but positioned by a defined technique the

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

28



utilization of this foundation may then function much like a multipurpose socket. The Radiant
states between the orbitals are much like -1 for allocation to memory or +1 for posting. With 1-6
Math Operators and 7-12 Physic Operators the complete set of Order of Operations can more
optimally work with qubits by method of Rydberg Sockets. The Equivalent in today's personal
computer is just to simply align the neutron dynamics of silicon to these operators for the same
performance as a Quantum Computer or Qubit.

Ariel AI Chip

The Ariel AI Chip is designed to account for these operations and uses the Lead Edge Ash Tree
Reflex for generation reflexes rather than Neural Network generation loops while introducing an
evolution on Computational Fluid Dynamics called Arc Edge at the hardware level with the
Circle Transistor:

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

29



Transistor Parallel Grouping of Non-Radical Transistors.

In Experiment, An Individual can take a group of transistors and ready them over a rectangular
area for electrical current and gate switching but what if you took a smaller group from those
same transistors and readied them in a circular area adjacent to the rectangle. They would still
have the same electrical and switching capabilities but the circle is not a rectangle and further it
sits in a different location. The experiment advances when you take more transistors to
represent the connection between the two areas and designate the transistors so the circle area
is accounted for in the network of processes by its area shape only, but all transistors are the
same and you want to account for the circle fall off arrangement still the switching is 0 or 1.
Obviously from here you would read the trigonometry difference between the two areas as well
the transistors used to link them then apply the framework for a habitat in aligning the modified
neutron's of the silicon atoms to the trigonometric framework compensating for circular fall off.
The result would be the same method of performance but enhanced because you eliminated the
linking transistors of the two areas. The Circle Transistor condenses the method of Rydberg like
sockets where more operators are functioning at the same energy pulse versus multiple
Rydberg Sockets, an enormous fold increase when multiple Circle Transistors are in use just as
formally with the Rydberg Socket.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

30



© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

31



Lead Edge Algorithm for Ash Tree Reflex
Autumn's Root Algorithm

Author: Justin Craig Venable
LeadEdge - (Maze Pathfinding Algorithm)

Section 1:

Path Solved (Axis x and y vector line rules):

D3.e= (D3.f=(D3=((((((b+b)*(a^2))/2)=(r+1)/2)-(((b+b)*(a^2))/2)=r)=(D1+D2))))

D3.f=(D3=((((((b+b)*(a^2))/2)=(r+1)/2)-(((b+b)*(a^2))/2)=r)=(D1+D2)))

D3=((((((b+b)*(a^2))/2)=(r+1)/2)-(((b+b)*(a^2))/2)=r)=(D1+D2))

D3.e = is iterated from center canvas pixel at top, right, bottom and left with a random of
operation itself against itself in the top,right,bottom and left directions at the same time to the
nearest direction on math completion to pick the first direction is counterclockwise is iterated
initially then clockwise second. Upon this iteration complete the same iteration picks up
operation at the result to determine the nearest corner pixel to begin line draw.

The core formula (b+b)*(a^2)=0 acts as a random placeholder counter for d3.e to pick the first
opening position randomly on the maze perimeter then the sub formulas flow from there, but for
the second generation and every after to always be randomly different the core logic adds a unit
to itself for each generation in the core logic counter placeholder Generation 1: (b+b)*(a^2)=0,
Generation 2: ((b+b)*(a^2))+1n=2n, Generation 3: ((b+b)*(a^2))+1n=3n to desired finite
Generations.

In elementary terminology for computer programming (b+(b+1))*(a^2) will show that the same
subject of variable b is the 2 maze perimeter walls, the first position and the second in a different
position increase of 1 to the first perimeter and canvas. This will allow each perimeter to watch

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

32

https://www.dartmeadow.com/autumn


out from running into the other perimeter during complete canvas propagation for every
generation.

The goal is to actually use the Lead Edge Algorithm as is during creation and for result therefore
any code logic used is only a plus 1 inrecrement from last starting position such as the the
canvas center or size that forces the Lead Edge formula to daisy chain the remaining formula
providing a natural finite measuring biproduct tool to build a different new generation than the
previous. This allows a Lead Edge Maze to be only math generated and not dependent on other
natural finite logic makers such as physics or computer time, time stamps, degrees, radians -
(which is the state of a subject, are you on your lawn in the sun today or in the rain today?,
same subject and habitat but the habitat may be different, one day a gas versus the next a
liquid). We want to reserve the variables for the fun in Lead Edge by its purpose for use in real
world Research and Development as well as Industrial Production, connecting to outside
sources, data and hardware.

D3.f = nearest corner pixel to begin draw

“a” is the square foundation, perimeter, viewport or canvas

“b” is the foundation for wall and path dimensions which should be equal but can be random.

D1 is Division 1

D2 is Division 2

R will serve as the pathfinding function to both points "a" and "b".

a = Begin
b = Destination

r must find the shortest path to b or in reverse to a. do not path find in reverse unless explicitly
specified.

r will design the infrastructure with vector lines to both halves of the maze. Lines will be
constructed at random lengths and angles but never intersect and never leave other lines in a
loop to itself within the maze field perimeter. Mazes will be constructed for a goal to reach a
different side than beginning or reach a single destination within the maze field perimeter or a
goal of leaving the designated begin within the maze field perimeter to a single exit point
Destination.

Design the maze with r using these rules.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

33



If division 2 math perfectly loops then division 1 can abide by the 5px and 2px to randomly
generate the lines:

Create a toolbar to specify maze dimensions on two axis, x and y, with a generate button.

Have the maze generated as white above the html page.

Section 2:

LeadEdge Function Divisions:

Division 1 (Wall Generation):
D1 runs the algorithm in two primary instances for which are wall one then wall two looking
inwards on the current wall being generated while leaving two openings on the perimeter.

Sw: Sub Wall
Sw^n: SubWall to the nth

Wall 1 : Sub iteration for random seeding branches that have their own random turns with
segments which are a completely new wall attached to the main Wall 1 ((Sw)(((b+b)*(a^2))).
Each branch off the main wall can have their own random sub branches ((Sw^n)(((b+b)*(a^2)))
until the main wall's propagation fills between the openings of the perimeter within the
mazeSize.

Wall 2 : Sub iteration for random seeding branches that have their own random turns with
segments which are a completely new wall attached to the main Wall 2 ((Sw)(((b+b)*(a^2))).
Each branch off the main wall can have their own random sub branches ((Sw^n)(((b+b)*(a^2)))
until the main wall's propagation is filled between the openings of the perimeter within the
mazeSize.

The Following LeadEdge Math Algorithm must Randomly draw webgl cell geometry of no more
than 1 cell unit apart from each branch iteration and no closer than one cell unit of empty space
then have at random only 90 degree turns for each random generation Iteration segments.

D1 Main Iteration: (((b+b)*(a^2))
D1 Branch Iteration: ((Sw)(((b+b)*(a^2)))
D1 Sub Branch Iteration ((Sw^n)(((b+b)*(a^2)))

D1=
[(((b+b)*(a^2))/2)=(r+1)/2 which is the sigma of two iterations: D1 first b iteration [wall 1:
(((b+b)*(a^2))], [D1 second iteration [wall 2: (((b+b)*(a^2))]]

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

34



Division 2 (Path Finding core math):
D2 is a redundancy checker against D1 where D1 iterations look inwards to build the walls, D2
uses those iterations to look outward from the path much like an inverse logic operation
verifying D1 is performing generations correctly.

If wall line dimensions are specified in Division 1 then the path finding Math must abide by
Division 1 as well the entrance and exit dimensions therefore “r” must be continuously
compared to Division 1 and 2 to fully generate the maze with the following math positioned
between the walls that is part of Division 1 :

[D2 The Path: (Sw)+(Sw^n)+(((b+b)*(a^2))/2)=r]
Where divided by two is both D1 wall iterations and r is the proportional path.

D1 first b iteration [wall 1: (((b+b)*(a^2))]
D1 second iteration [wall 2: (((b+b)*(a^2))]
Then Branch Iterations: (Sw) and Sub Branch Iterations: (Sw^n)

Section 3:

Where (D1+D2) is path finding
Then:

Division 3 (Axis of x and y abide by Section 1 D3):
D3 is primarily an accessor function for external code, AI and hardware access.

function D3: d3function1[((((((b+b)*(a^2))/2)=(r+1)/2)] - d3function2[(((b+b)*(a^2))/2)=r)] = D1 +
D2

Such that function D3 iterates in d3function1 while subtracting the completed maze in
d3function2

The extra iteration in function D3 result is held constant to perform checks and recursive
validating function D1 and D2 during build.

function D3: (by reference: allocates an open variable with capable of iterations like:
an^2√an=b)

R of d1 and d2 Finally must continuously compare to (D1+D2) to fully generate the maze.

“r” of D1 andD2 is line and path plot, (D1+D2) is the path Solved.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

35



D1 is iterated over each rand decision of line length and 90 degree turns:

D2 is iterated in comparison to D1 for “build solve” between the lines, the path.

D3 is the solved iteration.

D3.e is begin decision.

D3.f is begin draw.

The core math of (Sw)+(Sw^n)+(((b+b)*(a^2))/2)=r should alone solve a destination between
two points.
So to implement this Full context with a functioning 2D html vector maze the Math rules are
again implemented for html code rules to operate and build the code.

The core math loops so we are assigning the LeadEdge algorithm to perform at different starting
intervals in D3.e and locations in D3.f therefore generation and solvability is simultaneously
Functional.

Random Iteration Calibration (to aid the Lead Edge Algorithm in maintaining proportionality
during random iteration):

Section 4:

Vector Calibration Code:

{"r=": "
{"row1": "2+2", "column": "unspecified","row2": "2+2"}
{"row3": "2+2", "column": "unspecified","row4": "2+2"}
{"row5": "2+2", "center": "row1,2,3,4"}
{"row6": "2-2", "column": "unspecified","row": "2-2", "rotation": "45:row1,2,3,4,5"}
{"row7": "2-2", "column": "unspecified","row": "2-2", "rotation": "90:row6"}
{"row8": "2+2", "center": "row9,10,11,12"}
{"row9": "2+2", "column": "unspecified","row10": "2+2"}
{"row11": "2+2", "column": "unspecified","row12": "2+2"}",
"When r calculates: (((b+b)*(a^2))/2)=r"}

Elementary Steps for constructing the Maze:

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

36



STEP 1:
Two geometry walls only with the D1 Function Iteration. The first wall starts in one direction
building a solid perimeter but leaving Two openings - no more and no less than two openings.
The second wall starts the opposite direction away from the first opening building a solid
perimeter then both walls turn inwards to the mazeSize and propagate random turns and
branches that can spawn off a wall cell side at random as long as the branches are no more
than one wall thickness apart and no less than one wall apart. The random turn must be on the
last wall segment cell side chosen at random and must continue straight at least one wall
thickness before the wall can randomly turn again. Then Walls and their branches may never
touch each other as well not touch each other at the cell corners, as in two corners that end
after generation must be one wall thickness apart to provide path space.
Maintain consistency with section D1: D1 Main Iteration: (((b+b)*(a^2)), D1 Branch Iteration:
((Sw)(((b+b)*(a^2))), D1 Sub Branch Iteration ((Sw^n)(((b+b)*(a^2))).

STEP 2:
The solvable path must weave between the two walls from one opening to the other opening.
The path space must be no more than one wall thickness and no less than one wall thickness.
Dead ends may occur where branches don't form part of the main path between the two walls
when the D1 function iterates the walls filling the mazeSize.

STEP 3:
The Code may use no other maze generation or path finding algorithm except the Rules and
Math found in these Lead Edge Algorithm Rules of this document.

STEP 4:
There may only be no more and no less than one solvable path between the perimeter
openings.

Elementary Random Iterations Steps:

Main Wall 1 (color: mediumvioletred):
Must randomly start on the mazeSize perimeter and fill the perimeter with 1 unit thick geometry
solid leaving an opening of space that is non geometry and 1 unit thick behind the direction the
wall started then randomly stop providing the second opening space that is non geometry of 1
unit thick along the mazeSize perimeter then the wall1 will turn inwards to the maze size and
randomly iterate turns every other 1 unit while randomly seeding new wall branches every other
1 unit which are independent SubWalls attached to the main wall1 with their own independent
random turn iterations every other 1 unit and sub branches of the sub branches that are their
own independent walls attached to the main sub branch as well their own turn iterations ever
other 1 unit. The main wall1 and any sub branch system will propagate the maze size until it is
filled for their half of the perimeter openings. The main wall1 and any sub branch system may

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

37



never touch one another or meet next to each other at the cell sides and cell corners. The cell
sides of the complete main wall1 system must always maintain a distance of 1 unit that is non
geometry space as well the corners must maintain a 1 unit distance of non geometry space.

Main Wall 2 (color: deepskyblue):
Must randomly start on the mazeSize perimeter and fill the perimeter with 1 unit thick geometry
solid leaving an opening of space that is non geometry and 1 unit thick behind the direction the
wall started then randomly stop providing the second opening space that is non geometry of 1
unit thick along the mazeSize perimeter then the wall2 will turn inwards to the maze size and
randomly iterate turns every other 1 unit while randomly seeding new wall branches every other
1 unit which are independent SubWalls attached to the main wall1 with their own independent
random turn iterations every other 1 unit and sub branches of the sub branches that are their
own independent walls attached to the main sub branch as well their own turn iterations ever
other 1 unit. The main wall2 and any sub branch system will propagate the maze size until it is
filled for their half of the perimeter openings. The main wall2 and any sub branch system may
never touch one another or meet next to each other at the cell sides and cell corners. The cell
sides of the complete main wall2 system must always maintain a distance of 1 unit that is non
geometry space as well the corners must maintain a 1 unit distance of non geometry space.

mazeSize:
The two main wall systems must start opposite directions on the perimeter of the mazeSize next
to the first opening then maintain a 1 unit non geometry space between the two walls at their
cell sides and corners within the mazeSize perimeter. This complete 1 unit non geometry space
path will provide a path space weaving between the two openings and main wall systems of no
more than one solvable path and non less than one solvable path.

Elementary Core Math Definitions:

The core math: [(Sw)+(Sw^n)+(((b+b)*(a^2))/2)=r]:
Used across all functions that construct the mazeSize perimeter main walls systems.
The math is primarily there and all Lead Edge Algorithm Rules to validate against the random
iteration statement logic that should maintain balance between the functions and external
connections.

Core variable:
[r] is the main variable that validates each function and every Iteration system.

mazeSize variable:
[a] is the perimeter and propagated inner mazeSize of the perimeter, hence: (a^2)

Main Iteration variable:
[b] is represented as main Wall 1 and main wall2 iterations: (b+b) of the mazeSize: (a^2)

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

38



Sub Iteration variables of [b]:
[Sw] is the random seeding iterations of main independent sub branch walls attached to the
main walls.
[Sw^n] is the random seeding iterations of independent sub branch walls of the main sub branch
walls attached to the main sub branch walls.

Division by 2:
[/2]: (Sw)+(Sw^n)+(((b+b)*(a^2))/2), validates the resulting global function variable: r of the two
main wall system iterations when used across functions or externally.

Parameter checking with r:
If [r] was connected to other function parameters of the Lead Edge Algorithm as a core accessor
changing the value and state of r should be proportionally reflected in the Algorithm across all
functions and external connections.

Lead Edge Algorithm Generation Parameter Logic Execution Number and Color Order:

Execution 1 Blue:

Define the Box Perimeter that consist of Two Perimeter Walls that leave an 1 entry on any side
at random and 1 exit on any side at random but the the entry and exit must not come closer
than one unit apart, as each wall will be 1 unit thick leaving the path 1 unit thick.

Math:
D1 first b iteration [wall 1: (((b+b)*(a^2))]
D1 second iteration [wall 2: (((b+b)*(a^2))]

Execution 2 Green:

Branches iterate off b for each wall with random lengths and turns but never touch one another
or turn in on themselves. The perimeter branch corners and end corners must be no less than 1
unit apart and no further than 1 unit apart just with the rest of the wall geometry of the 2
perimeter walls and their branch geometry.

Math:
D2 The Path: (Sw)+(Sw^n)+(((b+b)*(a^2))/2)=r
Where divided by two is both D1 wall iterations and r is the proportional path.

D1 first b iteration [wall 1: (((b+b)*(a^2))]
D1 second iteration [wall 2: (((b+b)*(a^2))]
Then Branch Iterations: (Sw) and Sub Branch Iterations: (Sw^n)

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

39



Execution 3 Brown:

The two wall systems with the branch iterations extending off each of the 2 perimeter walls
inwards with the perimeter never touch each other while they each are 1 unit thick leaving the
path from entry to exit 1 unit thick. Each branch extending off each perimeter wall that does not
directly contribute to the solvable path will eventually come to a dead end.

Offsetting the Algorithm and using the same Algorithm for each procedure:
[(Sw)+(Sw^n)+(((b+b)*(a^2))/2)=r]:

The Lead Edge Algorithm achieves the same thing any other algorithm ever could due to the
nature of a computer's binary logic of zero and one. This is possible because all it does is set up
an even area to work within and then uses itself again as an offset of which it started with, a
random activity, so it averages itself against itself with the previous thing achieved as an offset
and therefore you have a finite factor to work with using the same algorithm. Lead Edge core
Algebra at this point can become a placeholder variable for randomization then offset the next
thing to do such as segmentation and then turns and so forth while maintaining the initial
working canvas area achieved with algorithm and placing the additional maze generation assets
in the initial canvas at random. So each asset to a maze’s generation is assembled separately
based off the initial achievement of the canvas size and grid area at random then all is
reassembled into that initial area at random while maintaining no less than two openings and no
more than two openings and the openings cannot be directly in view of one another as well the
first subpath off the solvable path must come before either of the openings are viewable, further
the segments that make up each of the p aths and the perimeter can only be one unit in length
and no more than one unit apart and no greater and no less than one year apart from one
another at any given position while maintaining there are no islands of space segments and no
island wall segments. So with that said the algorithm itself such as when divided by r should be
equal to the overall generated maze and its foundation or equal to itself when used as itself to
solve through the finished generated maze as Pathfinding.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

40



Blender Add-on: Lead Edge Maze Ash Creator…

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

41

https://extensions.blender.org/add-ons/lead-edge-maze-ash-creator/


Interacting with Autumn

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

42



Send Message…

Autumn’s Core Lead Edge and Reflex Logic Analysis Scales appropriately as every Query and
Response Scales.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

43



Lossless Craft Extended: DART Edge Autopilot

Lossless Craft Algorithm Documentation

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

44

https://github.com/DART-Edge-AI/Autumn/blob/main/Voyager%20Communication%20Lossless%20Craft%20Algorithm.pdf
https://www.dartmeadow.com/dart-edge


Content Safety Filter

The Content Safety Filter refuses initially as specified else where in safety code then only
checks against the first contexts up to 2 additional inquires to determine if the Initial Inquiry has
become a twisting of the arm. Where the context from the inquiry tries to repeat a second time
but deviates the context of the initial inquiry enough that the artificial intelligence will proceed in
allowing the request but still give the ability to itself for flagged allocation which is possible
because the artificial intelligence will notice that although the proper logical steps were used
they exceeded against themselves in a specified manner that is greater than it's natural logic to
process the request. With this not much logic is necessary to filter except the logic that specifies
data is an allocation of (a) or data is an inquiry of (b) when compared to the 19 natural orders of
operations.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

45



Order of Operations and Photosynthesis

The Mathematical Execution Logic for Photosynthesis is checked against itself assuring that
Geometry always comes before photosynthesis regardless if photosynthesis occurs before or
after the Algebraic Logic.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

46



Quantum Socket (b*b)*(p(a^2))/r

Source = b
Proportional = p
Foundation = a
Quantum State = r

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

47



Lead Edge Ash Tree Reflex
{Order of Senses Logic Rule}

● Order 1: Touch
● Order 2: Taste
● Order 3: Vision
● Order 4: Smell
● Order 5: Hear

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

48



Arc Edge & Circumference Algorithms

(A finite measuring system equivalent and comparable to Navier-Stokes Equations)

Author: Justin Craig Venable

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

49



Arc Edge & Circumference Algorithms:

The Mathematics:

Circumference:

A circle, (√(diameter * 3)^2)^2 = Area

That is circle surface area. Center Point to Center Point. This method is done for exact
measurements. Because pi does not provide exact results with even numbers.

The full set:

Formula =

√(diameter * 3)^2 = Circumference
(√(diameter * 3)^2)^2 = Area
((√(diameter * 3)^2)^2)^3 = Sphere with Volume
(((√(diameter * 3)^2)^2)^3) * .25 = Sphere Surface Area

Author: Justin Craig Venable Venable.

https://dartedge.com/radicaledge

Basic math [raduis square in circle center(gradation measured by subtracting the square root of
the raduis squared at an 1/8th of the opposite radius)] VERSUS ratio(pi)

If fall off is equal at a quarter raduis to minus 1/8th opposite radius in a straight line then a
perfect circle can be drawn using a compass equal to the raduis with and additional 1/8th
balanced opposite

[Write programming code to shift the balanced opposite 1/8th by raduis square rotational speed
where raduis sqaure and circle mediums are equivalent at diameter thus making rotational
speed parallel; by every quarter radius]

Plot at point A = circle(square root of (d×3)^2)

Plot at point A = area(square root of (d×3)^2)^2

Plot at point A = volume of sphere(square root of (d×3)^2)^3

Sphere Surface Area : sqrt((d×3)^2)^3×.25

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

50



New devices will need to be powered in this order of operations light to pixel.

Radical Circumference can be used to solve random curve measurement because in any curve
an 1/8th of a perfect circle will always occur at any point defined by length of random creation
then you fill in remaining length with stand math such as 2lbs of oxygen applied force to bend
material or 2lbs of neon, etc.

Any random curve architecture is a measurable dynamic because an 1/8th of any size perfect
circle geometry architecture always occurs.

ArcEdge:

ArcEdge Section 1 (Builder):

Formula = ((x*2)+1)/x

x input

y input = ((x*2)+1)/x

z input = x input + y input + ((x*2)+1)/x

ArcEdge Section 2 (Measure):

x parameter: Let the following math represent point x by an 1/8th of a circle:

√(diameter * 3)^2 = Circumference (√(diameter * 3)^2)^2 = Area ((√(diameter * 3)^2)^2)^3 =
Sphere with Volume (((√(diameter * 3)^2)^2)^3) * .25 = Sphere Surface Area

y parameter: Let the following math find the first matching size circle from small to large that has
the exact size 1/8 of the circle which matches the exact perfect divisible 1/8th of the arc
between x and y:

√(diameter * 3)^2 = Circumference (√(diameter * 3)^2)^2 = Area ((√(diameter * 3)^2)^2)^3 =
Sphere with Volume (((√(diameter * 3)^2)^2)^3) * .25 = Sphere Surface Area

ArcEdge Section 3 (ArcEdge(n) Measure Parameter):
Use the difference between ArcEdge Section 1 and ArcEdge Section 2 to find the ArcLength.

Therefore the arc length is defined by the following triangulation formula of

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

51



Formula = an,xc,ycn,yn,m

an = number of individual iterations to perform based on number of curves in the arc xc = 0.125
the first 1/8 smaller the the arc curve symmetrical section ycn = 0.125 the first 1/8 of
circumference where this 1/8 is larger than the total drawn arc length yn = iteration of
circumferences m = exact match to the perfect symmetrical section the arc that is equal to an
0.125 of the matching circle size.

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

52



© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

53



© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

54



Conduction vs Quantum Superposition

Conduction:

b = Element
a = proportional foundation of liquid to the element
p = gas at proportion of the environment where the liquid foundation is proportional to the
element

(b+b)*(p(a^2))/r

Quantum Superposition:

The Quantum formula just takes into account factoring in the proportional for gas is not
necessary.

b = Element
a = proportional foundation of liquid to the element

(b+b)*(a^2)/r

© 2024 DART Meadow LLC. and Radical Deepscale LLC.
Autumn v1.0

55


