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Abstract

Panoramas, or pictures with a wide field-of-view are not an entirely new concept,
such visualization existed since the last decades of the 18th century. In this thesis, a
number of techniques and methods for generating/displaying panoramic images were
investigated. Most computer generated panoramas usually undergo a two stage trans-
formation process. Initially the 3D objects are transformed into another coordinate
system, such as cylindrical or spherical coordinates. These objects are further trans-
formed into a 2D picture coordinate system, giving the final panoramic picture. The
thesis will detail two mayor methods for panoramic rendering specific for concave
surfaces of revolution. The techniques include a ray-tracer and a realtime implemen-
tation of the panoramic rendering system. Issues relating to point transformations,
polygon subdivisions, projector viewpoint compensation and the panoramic distortion
effects will be discussed.

1 Introduction

Panoramas or panoramic images try to overcome the restricted field-of-view (FOV)
of traditional displays, such as televisions and computer monitors. This is achieved
by capturing the scene in a greater field of view. Panoramas, also known as omnidi-
rectional images [42] usually come in the form of cylindrical, spherical or cubic [18]
images. A cylindrical panorama would be a single image “strip” that displays a 360°
view of the scene. Spherical panoramas often show a distorted view of the scene,
similar to the image seen through a “fish-eye” lens [37]. Cubic panoramas can be
considered as a construction of six picture faces, showing the scene from six different
viewing directions.

Today, a number of movie theaters can display films in the standard 2.35:1 as-
pect ratio format. In this thesis, any display system that is capable of displaying
images with an aspect ratio greater than 2.35:1 will be considered as a panoramic
display. Panoramic display systems employ various techniques for creating a visually
immersive environment. Many use projectors to display an image on a surface, such
as a wall, a dome, or even irregular objects. The systems discussed in Section 2 can
be classified into different categories, based on the following features:

- Display shape and type, eg.: Head mounted, curved, cubic, flat, etc.
- Renderer type: Realtime, or image-based.

- The steps involved in visualizing the panorama.

- The number of projectors/displays used.

- Interaction capabilities with the user.

Traditional perspective view rendering systems display objects by projecting 3D
geometric shapes onto a view plane, which are eventually shaded in screen space.
Ray-tracers in the other hand fire incident ray vectors trough the view plane, and
perform ray-object intersection testing. The color at the object’s intersection point is



stored at the corresponding screen location where the ray intersected the view plane.
Similar rendering techniques can be used with panoramic rendering. However, in
this case the viewing surface is no longer a plane, it is a curved surface that possibly
provides a greater field of view.

Most computer generated panoramas usually undergo a two stage transforma-
tion process. In the first stage, the 3D objects are transformed into another coordi-
nate system, such as cylindrical or spherical coordinates, depending on the type of
panorama desired. In the second stage, these objects are further transformed into a
2D picture coordinate system, which gives us the final panoramic picture.

The thesis will detail techniques for panoramic rendering specific for concave
surfaces of revolution. The entire project consisted of two main parts: The ray-tracer
implementation and the realtime implementation. The two panoramic rendering
techniques will be discussed separately in Section 3.

2 Related Work

2.1 Methods for Creating Panoramic Photographs

Early pioneers in photography devised a number of methods for constructing a ‘sin-
gle’ panoramic photograph. Barnard’s mosaic method is one example, where the
panorama consisted of a series of tiled photos, which often showed discontinuities
[13]. With the aid of computers, mosaic-based panoramas can be easily created with
a standard hand-held camera [49]. The panoramic mosaics are generated by cap-
turing a series of photographs during a horizontal panning sequence [54], and then
by mapping them onto 2D cylindrical or spherical screen coordinates. The panning
angles and translation values between two mosaics are recovered [54], and the final
panorama is constructed by blending the overlapping mosaics. The disadvantage of
this method is that imperfect image blending will cause obvious smears and “creases”
in the panorama. Color discontinuities are also a problem, because each mosaic may
not have the same color temperature or exposure.

To reduce the problem of smears and color discontinuities, Peleg and Herman [41]
developed a scanning technique, called the Manifold Projection, where a panning
camera captures the scene in a video stream. Each video frame is recorded at a close
panning proximity from the others, and treated as a 2D mosaic image that contains
a 1D image strip in the center. Two or more mosaic frames are used to estimate the
direction of the camera’s motion, which gives the correct alignment of the 1D center
strips. The final panoramic image is constructed from a series of aligned center
strips.

Mosaic related problems can be further minimized by using special purpose
panoramic cameras, such as the early Cirkut and swivel-lens cameras, or cameras that
are mounted with hyperbolic or parabolic mirrors (see [53], [52], [55], [38] and [39]
for mirror related topics). Omnidirectional video cameras such as the FullView 360
[2], use five mirrors mounted at 45° that form a five-sided pyramid. Each mirror has
a video camera looking down the 45° mirror surface, capturing %th of the panoramic
view. The five images are stitched together to form a cylindrical panoramic image.
Since each mirror/camera pair is fixed at one position, there is no need to estimate



the panning and translation values between each image segment. This minimizes
blending errors and color discontinuities in the final panorama.

2.2 Image-Based Virtual Environment Navigation

Rendering software that implements virtual environment navigation aims to provide
an interactive system, allowing the viewer to explore a panoramic scene. Image-
based rendering systems such as QuickTime VR [18] and OmniVideo [42] use images
and photographs (discussed in Section 2.1) to construct the virtual panoramic envi-
ronment. The video stream or still images are treated like an environment map [18],
and are projected onto a geometrical shape such as a cylinder, a cube or a sphere.

Figure 1: Displaying Portions of a Panorama. (A) Cylindrical, (B) Cubic and (C) Spherical Environment
Map.

In Figure 1, the shaded regions on the geometrical primitives represent the pro-
jected environment map. Only a small, perspective correct region of the environment
map is displayed at a time, because it is rendered on a conventional 2D display. The
environment map region enclosed by the view volume is projected onto the view
plane, giving the final image. The viewpoint or the camera is located in the center
of the primitive.

The QuickTime VR system is restricted to render only a single perspective view
from a static omnidirectional image. The OmniVideo [42] system overcomes this
limitation by allowing multiple perspective and panoramic views from a single om-
nidirectional video input (Figure 2). Initially, the 360° view of the scene is ortho-
graphically reflected onto the camera’s CCD by a parabolic mirror [53] [52] [38].
The system obtains a 2D perspective view of the scene by re-projecting, or warping
a small section of the omnidirectional picture onto a view plane (also called the wvir-
tual perspective camera). The pixel coordinates in the omnidirectional image for a
given virtual camera pixel coordinate are computed using transformation equations
specifically for parabolic mirrors [42]. Since the re-projections must be performed
in realtime, these transformations are pre-computed and stored in a look-up table,
known as a geometric map. This technique is also used for transforming the parabolic
panorama into a 360° cylindrical panorama.

A typical interactive environment that allows movement in the scene can be im-
plemented by simulating a camera with six degrees of freedom [18]. This includes
3D camera translation and 3D rotation at a fixed point. Most image-based render-



Figure 2: The OmniVideo system. A panoramic view and multiple perspective views (right) are created

from a single omnidirectional video frame (left).

ing systems have a fixed viewpoint, which usually reduces the camera’s degrees of
freedom to rotation and zooming only. Camera translation or navigation is possible
by implementing “hot spots” [18], which act as a predefined path (or a link) between
two panoramic scenes. The only limitation with such navigation is that the renderer
will result in “jumping” from one scene to an other. Kang [34] suggested a method
that allows navigation without jumping, by applying a transition algorithm between
two or more scenes. As the viewer passes through a hot spot, image sections are
taken from each nearby panoramic scene, which are perspective transformed and
then stitched together to create a new virtual panorama around the viewer.

2.3 Head-Mounted Displays

Instead of implementing image-based rendering on a conventional 2D display, head
mounted displays (HMD) can be used to render a perspective view of the virtual
scene. A head tracking system can register the orientation of the head and update
the camera orientation accordingly.

Some of the earliest HMD systems by Philco Corporation in 1961 [33], and later
by Ivan Sutherland in 1968 [51], used a mechanical arm to implement head tracking.
The system rendered a wire frame model of the scene on two CRT displays. Due
to high development costs, most HMD systems today still employ low resolution
displays, which may be inadequate for some practical applications. However, the
latest in liquid crystal display (LCD) technology by Kraiser Electro-Optics [9] allow
HMDs to render graphics at 1024 x 768 resolution. See-through HMD technology
can be used to create augmented virtual reality (see Feiner [26]), where computer
graphics are superimposed over visible objects.

Most HMD systems experience problems with the accuracy of the head tracking
hardware. Prolonged use of the HMD can lead to the accumulation of tracking
errors, which causes the measured head position to be out of alignment with the
true position [33]. Occasional calibration of the head tracking is necessary to correct



the measurements. In some systems, there are also latency problems [40] between
the user’s motion and the display update. Latency is an important issue, because
the user may develop symptoms of disorientation and seasickness.

2.4 “Fish Tank” Virtual Reality

Since HMD systems are usually expensive, an alternate method for creating an in-
teresting VR environment is described by Deering [23] [22]. The system uses a head
mounted shuttered glasses with a head motion tracker. The display itself is high res-
olution, stereo CRT desktop monitor. The system registers the location of each eye
and computes the two corresponding view volumes. With the origin being the eye
position, each view volume passes through the display screen, and extends “behind”
the monitor. The system renders the left and right views of the scene, which are
alternated on the screen and synchronized with the shutter glasses.

Deering found that the resulting stereo image had significant positional errors
on the screen, mainly due to the physical properties of most monitors. To minimize
such errors, it was necessary to compensate for the curvature and the refraction
properties of the faceplate glass.

2.5 Multiple-Projector Panoramic Displays

The limitation of image-based rendering is that the user is restricted to view the
panorama on a conventional 2D display only. While HMD systems can overcome
such limitations, wearing the display itself can be inconvenient and can suffer from
latency issues. However, panoramic scenery can be displayed on a large screen,
sometimes large enough to require several projectors.

Figure 3: SGI Reality Center 3300W: (4) two and (B) three projector system. Panoram Technologies’
(C) FFP Series (up to 30m wide) and (D) PanoWall2 KS.

An example of a three-projector theater display is the FFP Series [1], which gives
an aspect ratio of 3.33:1 (Figure 3c¢). The PanoWall2 KS [4] rear-projection system
is smaller and uses two projectors (see Figure 3d). In both systems, edge blending is
applied on the image sections to form the complete picture. To prevent discontinu-
ities in the final image, the projectors must be accurately aligned. The SGI Reality



Center 3300W [6] system tries to overcome such alignment problems by housing the
projectors inside the unit (Figure 3a and 3b).

Theater-based screens that use multiple projectors don’t offer a complete immer-
sion, because the scenes are displayed in a forward view only. (However, they can
be configured to act as an image-based VR system, as detailed in Section 2.2). An
ideal system would be configured to surround the viewer with a spherical display. A
cubic approximation of the spherical display was first demonstrated by the CAVE
system [20] and later, the HUTCAVE [32] system. Most CAVE-like systems im-
plement three or four display walls (the fourth being the floor); however the PDC
VR-CUBE [12] uses six walls to completely surround the viewer (Figure 4b).

Inside the cube structure, the user’s left and right viewpoints are constantly
tracked. The shuttered glasses worn by the user are synchronized with the alternating
left and right views projected on the display. Each display wall is represented as a
separate view plane by the renderer (Figure 4a). During the rendering process, the
objects are clipped and projected onto the view planes using off-axis perspective
projection. Using the front view plane as an example, the projection of a 3D point
is given by:

(d — 2p) (w0 — mp)

€T = Tp +
2o — Zp (1)
d—2p) (Yo — ¥
N ()
2o — Zp
A typical view vector runs from the view origin O = [z,, Yo, 2] to a 3D point P

= [Zp, Yp, 2p|. The projection of P occurs when the view vector intersects the view
plane at I = [z;, y;]. The value for d in Equation 1 is the distance between the front
wall and the center of the CAVE system.

/P

View Volume

/

Figure 4: (A) Off-axis projection: Point I is the projection of the world coordinate P onto the view plane,
with respect to the view origin O. The three separate grey regions are independent view volumes. (B) Inside

the PDC VR-CUBE.

One benefit of using cubic approximation is that the renderer can be imple-
mented with standard graphics libraries, such as OpenGL [11]. The difficulty with



most CAVE systems is the physical construction of the displays. Particular atten-
tion must be paid to edge matching and alignment of the display screens. Other
common problems include geometrical distortions (caused by the projector) and the
rendered frames not being synchronized for all displays [32]. Systems such as the
RAVE [5] attempt to minimize edge matching and alignment related problems by
using pre-built rear-projection televisions. Pre-built displays also offer the flexibility
of constructing different viewing environments by rearranging the displays, rather
than having a fixed cubic arrangement.

CAVE systems often show visible discontinuities in the panorama where the dis-
play edges are aligned. Such problems can be minimized by implementing a 360°
display in the shape of a cylindrical screen. These systems use three projectors to
cover the entire display area. For each projector, the 3D objects are clipped and
transformed onto 2D cylindrical coordinates using off-axis perspective projection.
The resulting cylindrical segments are further transformed into a 2D picture co-
ordinate system, which are later blended together during the rendering stage. An
example is illustrated in Figure 5. However, due to the curved nature of the cylindri-
cal screen, the projectors must be equipped with an infinite focus lens to minimize
blurring in the image.

Kang’s [34] image-based rendering system discussed in Section 2.2 was also im-
plemented on cylindrical displays. In this case, the panoramic photographs were
rendered on the cylindrical surface, and the user’s viewpoint was fixed in the center
of the cylinder.

View Volume

El Projector

Figure 5: Projection onto a cylinder: I is the projection of the 3D point P onto the view cylinder, with

respect to the eye position O. The three separate grey regions are independent view volumes.

Raskar [43] recognized some of the technical difficulties associated with the con-
struction of multi-projector displays. Instead of using precise display configurations,
Raskar’s method allows the projectors to be causally aligned, and assumes that the
display wall may be irregular in shape. With the aid of a stereo camera, the system
first obtains stereo images of a test pattern for each projector. Each stereo image is



then used to evaluate the surface geometry using triangulation techniques, which are
later combined into a common polygonal surface model. During the rendering stage,
the scene is projected from the user’s viewpoint onto the polygonal surface model.
The texture mapped polygons are rendered from the projector’s viewpoint and then
displayed on the actual surface. Raskar extends his method [44] [45] by augmenting
computer generated images onto the viewer’s environment. This was achieved by
using a head-tracking system, where a perspective correct view of the virtual objects
are displayed on irregularly shaped real objects.

2.6 Single-Projector Panoramic Displays

In Section 2.5, some difficulties were identified with multiple projector systems. It is
a challenging task to construct a multi-display system, because it requires constant
maintenance to preserve the precise display configurations. A single-projector sys-
tem is usually simpler to setup, because problems such as intensity matching, edge
matching and alignment are no longer an issue.

Most single-projector systems consist of a dome screen, designed to cover the
user’s field of view, and a projector that displays a suitable panoramic picture. Since
the panorama’s field of view can reach 180, the projector is usually equipped with
a “fisheye” or infinite focus lens. Before the panorama is rendered, the 3D objects
in space are projected radially onto the dome to obtain the 2D polar coordinates
[37]. These spherical coordinates are then re-projected onto 2D image coordinates,
producing a suitable picture for the display. Since this transformation is non-linear,
flat polygons must be subdivided to approximate the dome’s curvature, otherwise
the displayed objects will show geometrical distortions on the screen [56] [37]. The
transformation also “compresses” the 2D image at the edge of the hemisphere, while
the center is represented in a higher resolution [37]. Such distortions can cause
problems for low-resolution projectors, because the final image will have poor texture
detail at the edges.

In 1983, Max [37] proposed a 12m radius display system, based on a planetarium
dome. Since the display was very large, unwanted distortions and aliasing effects
present in some computer images would have been very obvious. To provide ade-
quate image resolution for the display, the graphics were pre-rendered for the special
Omnimax [3] film format.

The limitation of the Omnimax-based system is that the panorama is pre-rendered,
making the display environment non-interactive. The VisionDome [56] and the Vi-
sionStation [7] system (Figure 6) overcomes such limitations by using graphics accel-
erators to implement a realtime rendering system. The OpenGL renderer, modified
by ARC [8], allows polygon subdivision, and provides the 180° field of view required
for the display.

Dome-based displays limit the panorama’s field of view to 180°. The Panoscope
360 system [19] overcomes this limitation by using a different approach in displaying
the panoramic image. In this case, the display surrounded the viewer with a 360°
panorama. The viewer’s head was situated inside a large spherical mirror, through
an opening. The top of the hemisphere was covered with an opaque canvas, where a
2D spherical panorama was projected from above (see Figure 7). The panorama was
specifically distorted to approximate the curvature of the reflector. The spherical



Figure 6: (A) The VisionDome. (B) The VisionStaion.
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Figure 7: Panoscope 360° (cross sectional view).
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reflector corrects the distortion in the panorama, and the reflection seen by the
viewer becomes perspective correct.

The greatest benefit with single-projector systems is the simplicity of the display
construction. The drawbacks with such displays include the need for preprocessing
of polygons (eg. subdivision) to minimize geometrical distortions. Also, projecting
a 2D image onto the display causes additional problems, because pixels of fixed size
are mapped onto a curved surface. Therefore, at the steepest regions of the screen,
the projected pixels will be stretched over a greater display area, which results in
low texture detail at the edges.

3 Panoramic Rendering

3.1 Representing Projection Surfaces with Profile Curves

This section will introduce the concept of panoramic rendering for concave surfaces
of revolution. The relationship between 3D points and 3D surfaces of revolution, and
the significance of the “profile curve” will be described. The discussions presented
here are intended to be an introductory topic for the subsequent Sections 3.2 and 3.3,
which deal with the ray-tracer and the realtime implementation of the panoramic
renderer respectively.

3.1.1 The Profile Curve

A surface of revolution can be constructed by revolving a 2D curve around a line, the
principal axis. The geometric shape of the symmetrical surface is governed by the
2D function, the profile curve. Since most curved displays are symmetrical about its
principal axis, 2D profile curves provide a convenient way for modelling a display’s
shape. Therefore Sections 3.2 and 3.3 will only focus on surfaces of revolution (also
referred as projection surfaces, or simply surfaces).

When projecting a point onto a surface or when determining the direction of
an incident ray, the surface’s symmetrical property becomes an advantage. It’s
symmetry allows the transformations to be done in the 2D profile curve space, rather
than directly with the 3D surface itself. To illustrate this point, the projection surface
in Figure 8a can be represented with an infinite number of 2D profile curve “slices”
revolving around the 7 axis. This means that any point P in 3D space will lie in
the plane of a slice, the profile curve space. As illustrated in Figures 8b and 8c,
the point’s X and Y displacement in the 3D space is represented by the radius R in
the profile curve space; and the point’s Z displacement remains unchanged for both
coordinate systems:

r=y/12+y2,
p yp (2)
z = zp.

The profile curve resides in the profile curve space and it can be defined as a function
of r:

z=f(r) for 0 <7 <7Tmes. (3)
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Figure 8: The relationship between the 2D profile curve and a 3D point P. (4) 3D view. (B) Orthographic
view in the Y and Z plane, and (C) in the X and Y plane. (D) The point P in the 2D profile curve space.

Tmaz 1S the upper limit for the function and its value will depend on the following:
When specifying the interval [0, 7pqz], it is assumed that the function f(r) is con-
tinuous, that is f(r) is defined for all  in that range [50]. However, defining 4z
simply on the notion of continuity is not sufficient. The value for 7,4, should be
selected carefully, because it also affects the panoramic field of view (FOV) of the
rendering system. Details on specifying 7,4, will be explained in Section 3.1.2. From
this point onwards, when f(r) is defined or referred to, only the curve between the
interval of [0, rq.] Will be of interest.

f(r) must also pass the vertical line test. The curve is classified as a function, only
if no vertical line crosses the curve more than once. This is an important property,
because when projecting the panorama from the surface onto a 2D image plane (see
Section 3.1.2), each pixel in the image plane cannot be assigned with more than one
color.

It is assumed that the rendering system will deal with arbitrary profile curve
functions. Therefore it is essential to represent f(r) in a dynamic manner. The

12



software implementation accepts a function string using the infix notation from the
user. The software converts this function string to the Reverse Polish notation. The
resulting postfix representation will consist of a sequence of custom operation codes.
Each code is used as an index for a custom jump table, where the CPU jumps and
executes the corresponding arithmetic operation. This code sequence is executed
every time f(r) is called or referred to.

As a final note, the graph in Figure 8d shows point P lying in the profile curve
space. The view origin O is located at [0, 0, 0] in the viewing coordinate system, while
the Z-axis specifies forward direction. The projection of P on the surface is indicated
by I. This occurs when the view vector running from from O to P intersects the
curve f(r). The details on computing the intersection point I is discussed in Section
3.3.1.

3.1.2 The Screen Space and the Projection Surface

When rendering a panoramic image, the resulting picture is eventually stored in a
2D image space (or screen space). To be more precise, the panoramic transformation
of a 3D object is considered as a two-step process: Initially the object is projected
onto a surface of revolution, then it is re-projected onto a 2D image plane. Therefore
it is necessary to discuss the relationship between the actual projection surface and
the 2D image space. In addition, if the panorama is to be displayed on a physical
curved display, the projector’s viewpoint must be also taken into consideration (see
Section 3.4). For the moment, the projector’s viewpoint will be ignored and only
the surface - image plane relationship will be discussed.

The 2D image plane is assumed to be coincident with the X Y-plane of the viewing
coordinate system. The view origin O and the 3D surface are centered on the
image plane, where the principal axis runs parallel with the plane’s normal. This
arrangement is intended to create an orthographic projection of the surface on the
plane. The image plane’s area is defined by its width [2jef:, Zrigne] and its fized
height [Yiop, Ybottom| (the units also correspond with the viewing coordinate system):

Ytop = 17 Yvottom = _1; (4)
Lleft = _Xres/Y;’es’ Tright = Xres/Y;’es-

The plane’s width varies according to the aspect ratio of the screen’s resolution (in
pixels), X,es and Y;.cs. Therefore, in some cases the plane’s area may be too small to
accommodate the entire panoramic image, because the panorama is clipped by the
image plane’s edges during the orthographic projection. As a result the panoramic
FOV is not only dependent on 7,4, but also on the image plane’s area. The following
discussion assumes that the image plane has an aspect ratio of 4:3, because most
video projectors use this screen format.

The clipping of a panorama will largely depend on the profile curve configuration.
The examples in Figures 9a to 9c show three different projection surfaces. No clipping
will occur in Figure 9a, because the function is discontinuous when r > 1. Therefore
Tmaz 18 set to 1, which coincides with the screen’s top and bottom edges, y;,, and
Ybottom -

However, f(r) can define a curve that is continuous in [0, rpee = 00|, as shown
in Figure 9b, creating a FOV that is greater than 180°. Infinity is not a practical

13
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Figure 9: Cross-sectional view of a surface defined by (A) f(r) =v/1—72, (B) f(r) = —r?2 +1 and (C
g

f(r) = —tanh(r — 1). The possible directions for the view vector V is also illustrated.

I

2D Image Plane

Figure 10: (A) An image plane with a 4:3 aspect ratio is clipping a parabolic projection surface. The

four images (B - E) show a parabolic panorama (on a 4:3 image plane) with different values for rmae: (B)

0.5, (C) 1.0, (D) 1.333 and (E) 1.666 =/1.3332 + 12.

14



value for 7r,,4:, because the screen’s edges will clip the projection surface, and the
panorama’s FOV will be limited (see Figure 10a). Therefore it is more practical to
set Tmaz 1o a value that coincides with the image plane’s maximum radius, 7screen-
With this approach, any object that is potentially projected outside 7,4, is marked
as invisible and can be discarded. To fully utilize the screen’s area (as in Figure
10€e), Tscreen can be initialized with the image plane’s diagonal radius:

T4 (fﬂm‘ght - ﬂfleft);
Yd (ytop - ybottom); (5)

— 2 2
T'screen = \/ Ly + Yy

However, it is also sufficient to initialize 7screen, With either z4 or y4 (see Figures
10c and 10d). As a final test, if f(r) is continuous in [0, Tscreen), then rmes =
T'sereen, Otherwise rp,q. 18 initialized with a value that marks the end of the function’s
continuity.

The function in Figure 9c shows a special case where some potential view vectors
may not cross the profile curve, even though f(r) is continuous in [0, oo]. The bot-
tom view vector V in Figure 9c just grazes the profile curve. Any potential vectors
below it will completely miss the curve, and therefore no projection is possible. In
this case ry,q; should be positioned where the curve’s tangent is coincident with the
view vector.

1
2
1
2

The final panoramic picture is represented as a raster image with a fixed resolu-
tion. The orthographic transformation described earlier, directly projects the 3D
surface onto raster image plane. Unfortunately this process does not provide a uni-
form sampling of the curved surface. There may be regions on the surface where
gradient is high relative to the image plane. These regions will be represented with
less detail in the raster image, as shown in Figure 11a.

A B

ke
i
b

[ | [ [ [ [ ] ] [=

Figure 11: (A) Two segments of the profile curve in equal length (red) are projected onto the image plane

below. (B) The fire extinguisher’s hose is under sampled and suffers from aliasing.
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The two curve segments in the illustration (shown red), are mapped on the image
plane below, which has a fixed pixel resolution. Both segments are equal in length.
However, one segment is represented with four pixels on the image plane, while the
other is under sampled. In the latter case, more information is compressed into a
small raster image area.

As shown in Figure 11b, aliasing effects are also more prevalent in the under
sampled regions of the panorama. Objects with fine detail are not sampled ade-
quately and they partially disappear (see the fire extinguisher’s hose). A method for
minimize such effects, is detailed in Section 3.2.

3.2 Using Profile Curves for Ray-tracing

Section 3.1 introduced some of the concepts behind the profile curve, the projection
surface and the image plane. In this section, the theory will be used to describe a
panoramic renderer using the ray-tracer [30] implementation. Issues such as how to
fire the initial rays into the scene, and how to relate between the raster coordinate
system and the image plane coordinate system will be described. Additionally, a
method for minimizing aliasing in the final image is also detailed.

The raster coordinate system simply defines how the individual pixels are accessed in
the image. The origin in the image is located at the top left corner. The relationship
between a raster coordinate [Xj, Y;] and an image plane coordinate [z, y,] is given

by:

Ty = (Xsc - Xs)/Xsm

Yo = (Ys = Yec) /Yic, (6)

where [ X, Ysc] correspond to the image center in raster coordinates. The coordinate
given by [z, yy] is a normalized offset from the origin O, within the area specified
by Equation 4. It also represents the direction of the initial ray vector (or the view
vector) in the XY -plane of the viewing coordinate system. The ray’s third direction,
2y, will be evaluated by using x,, y, and the profile curve f(r).

Point I corresponds to the intersection point of the view vector V with the profile
curve. As mentioned earlier, the surface to image plane projection is orthographic.
Therefore [x,, y,] is a direct projection of the point I. The radius 7, of the offset
[y, Yu] 18 used to evaluate the ray’s Z-direction, z,:

Ty = /72 + Y2,

(7)
2y = f(ry), for ry, < Tz

The view vector V is the unit vector of [y, Yo, 2p]). It is important to note that

the ray-tracer discards any incident rays whose radius r, lies outside 7,4;. In such

situations f(r,) and V are not evaluated and the corresponding pixel at [Xs, Ys] is

set to the default background color.

Section 3.1.2 introduced the problems relating to the non-linear sampling of the
3D surface. The remaining paragraphs in this Section will discuss an anti-aliasing
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feature for the ray-tracer. Anti-aliasing does not solve the nonlinear sampling prob-
lem nor the panoramic distortion problem. The intention is to minimize defects such
as the staircasing effects along the edges and the partially disappearing objects (see
Figure 11b).

Anti-aliasing is a widely researched area, and several techniques have been de-
veloped, see details in [27] [35] [14] [57]. The panoramic renderer uses the stochastic
sampling technique, where irregular sampling is applied for each pixel. The idea be-
hind irregular sampling is to represent high frequency image details with featureless
noise, which is less perceptible than the defects caused by aliasing [24].

The ray-tracer uses an adaptive anti-aliasing feature that only enables the al-
gorithm when a contrasting feature in the panorama was detected. A contrasting
feature may include object boundaries, or a sudden transition in brightness. Defects
such as the staircasing effect are more obvious at the object boundaries, because the
human visual system is most sensitive to the luminance (or the brightness) compo-
nent in the image. Therefore, multi-sampling should be applied where the contrasting
features occur. The luminance is derived from the weighted average of a RGB color.
The weighting factors were adopted from the PAL and NTSC standards [17] [36].

Y = 0.2989R + 0.5866G + 0.1144B. (8)

The ray-tracer keeps track of the luminance computed at the previous pixel location
Y;—1 and at the pixel location immediately above (in the previous scan line), Y;_.
The luminance for the current pixel Y; is also computed. If the absolute difference
between Y; and Y;_1, or Y; and Y;_; is above a tolerance value, the anti-aliasing is
enabled. This method allows the ray-tracer to selectively multi-sample contrasting
features, and dedicate less computing time for the smooth features.

Figure 12: Anti-aliasing: (4) Original spherical panorama. (B) Original enlarged image area. (C) Image

area with anti-aliasing. (D) Hot-spot image, highlighting the luminance boundaries.

An adaptive anti-aliasing example is shown in Figure 12. Picture 12a displays a
spherical panorama, where a small square region is magnified and illustrated in Fig-
ure 12b. After applying the adaptive anti-aliasing algorithm to the entire panorama,
the magnified square region in Figure 12c shows less signs of rough edges. The hot-
spot image in Figure 12d highlights the areas where the ray-tracer has spent the

17



most time in rendering. The darker regions indicate more processing time, which is
typical at the luminance boundaries and at the object edges.

3.3 Techniques for Realtime Rendering

The realtime implementation of the panoramic renderer uses OpenGL [11] for dis-
playing the transformed primitives. This Section will cover topics related to panoramic
transformation techniques only, and will not discuss OpenGL specific setup or inter-
face routines. It is assumed that the OpenGL rendering subsystem was initialized
with an orthographic viewport, with Z-buffering enabled.

Rendering panoramic images in realtime is more complicated than in the ray-
tracer implementation. Unlike in the ray-tracer, the object transformation process
is reversed. In this case the 3D geometry is projected onto the surface and then onto
the image plane. The renderer faces the problem of how to execute such projections
in realtime, given a set of arbitrary points and an arbitrary profile curve. This section
will describe a method for such transformations in two parts: The first section will
detail the projection of points in general, and the second will describe how such
projections might be executed in realtime.

3.3.1 Projecting Points onto a Surface of Revolution

The problem of projecting a point onto the surface of revolution (see Figure 8), was
stated at the end of Section 3.1.1: Given a view vector V, running from the origin O
to an arbitrary point P in space, how is the vector’s intersection point I determined
with an arbitrary profile curve? By examining Figure 8d in more detail, the view
vector in the profile curve space can be simply expressed as a linear function of r:

z=m-r, whose gradient m is given by
9
" (9)
Ty
where z,, and r, is the Z and radial displacement of P from O, (see Equation 2). In
general, the intersection I occurs when the profile curve f(r) meets the line m - r:

m-r = f(r), (10)

0=f(r)—m-r.
The intersection coordinate [z;, r;] is computed by solving for the root in Equation
10.

Solving for Equation 10 is difficult, because the renderer deals with arbitrary
profile curves, and f(r) has no explicit representation within the program. Therefore,
it cannot use analytical methods for calculating the root directly. Besides, functions
with higher order are difficult to solve analytically, and there is no known method
for solving transcendental functions [50]. However, there are numerical methods for
finding roots [21], such as the Direct Search Method, the Newton-Raphson Method,
the Secant Method and the Bisection Method [10].

In this project the Bisection Method was adopted, because of its simplicity, accu-
racy and low computational cost (it only calls f(r) once per iteration). The Bisection
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Method iteratively searches for the root r; between the search range r; and ro. When
applying this algorithm on profile curves, the initial search range becomes r; = 0 and
T9 = Tmaz- 1N each iteration, the Bisection Method computes the mid value 7,4,
which is substituted into Equation 10 to obtain z,,;4q. The search range narrows,
depending on the sign of z,,4:

Tmid = 5(r1 + 12);

Zmid = f(rmid) — M Tmid;

if (zmig > 0), then 11 = 7pq; else 79 = Tmid;

if (|ry1 —re| <€), then 7; = g, exit iteration loop.

After several iterations, the range [r1, r2] will eventually converge to 7;, and the loop
is terminated when the absolute difference between r; and 7o falls below a chosen
tolerance . However, there is a limitation with the Bisection Method. The algorithm
assumes that there is no more than one root between r; and r9. Therefore when
defining f(r), it is important to make sure that no view vectors cross f(r) more than
once in the [0, ryq,] interval.

Once the root r; is found, the Z component of the intersection point I is calculated
by solving for f(r;). r; is equally useful for finding the 3D intersection point with
the 3D surface:

t= Q, the scaling value t,
Ty
Ti = Ty - L,
Yi = Yo - L, (12)
zi = f(r:),

therefore I = [x;, yi, 2i].

Equation 12 essentially scales the X and Y components of the view vector (or more
precisely the X and Y components of P) with the ratio of r; and r,. Note that the
surface to image plane projection is orthographic, and there is no need for finding
z;. The value for z; is only useful when the [z;, y;] components need compensation
for the projector’s viewpoint (see details in Section 3.4). Otherwise, z; and y; are
expressed as I, the direct orthographic projection of I on the image plane:

(13)

2z = \/m (see below for details),

therefore I' = [z, ., 2I].

As mentioned earlier, the OpenGL rendering system was used for displaying all
the transformed objects. OpenGL implements a Z-buffer for removing hidden sur-
faces, and therefore it is necessary to keep the transformed primitives “sorted” on
the display. When passing I’ to the rendering subsystem, it is essential to specify
a depth value as well. This depth value ensures that the transformed objects are
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occluded in the right order. It would be incorrect to use the value z; from Equation
12 for Z-buffering, because all the projected points I lie on the same curved surface,
and therefore z; does not distinguish which object is situated further away from
the viewer. However, the magnitude of the vector V (running from O to P) can
be treated as the depth value (see Equation 13). Therefore, the depth parameter
in I’ will be given a larger magnitude for points that are further away from the viewer.

Apart from point transformations, the realtime renderer faces an additional problem
of dealing with partially visible objects. For example, if some points in the polygon
lie outside the profile curve’s clipping region (that is outside 7,4 ), how should the
renderer deal with such points? This is a major problem, because the curve outside
Tmaz 18 possibly undefined, and therefore no projection is possible beyond 7.,44-

Figure 13: Using a tangent line (red) to extend the profile curve (blue). The potential view vectors V

are also illustrated.

A simple method that gets around this problem uses a tangent line to extend the
profile curve beyond 7,4;. Figure 13 shows how the tangent line (in red) begins from
Tmaz and runs to infinity. This arrangement allows the transformation of partially
visible objects onto the tangent line. Note that if all the points in the object fall on
the tangent line (that is outside 7,4z ), the object is discarded and not passed to the
rendering subsystem. The grey area in Figure 13 indicates the blind spot, a region
where no projection is possible. This blind spot is present because some potential
view vectors V either run parallel or do not cross the tangent line. In this case, any
point that falls into the grey region is assigned with an extreme value, which places
it outside 7,4, (therefore making the point invisible).

The tangent line is determined just before f(r) terminates at ry,q,. Its gradient
mp is given by:

f(rmax - 5) - f(rmax) (14)

mr = 5 ;
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where ¢ is a small R-displacement. The tangent line is expressed as

z = mT(T - Tma:r:) + Zmaz, (15)

where zpar = f(Tmaz). By expressing a view vector in the form of Equation 9, its
R-intercept r; with tangent line is obtained as follows:

z=m-r, the view vector from Equation 9,
m-r =mp(r — rmaz) + Zmaz, which simplifies to... (16)
mr - Tmax — Zmazx

mr —m '

r=r,=

The view vector is in the blind spot when (m7p —m) > 0, which in that case r; is
given an extreme value, placing it well outside 7,,4,. The 3D intersection point I for
the view vector V and the tangent plane is found by substituting r; into Equation
12. After applying Equation 13 to the point I, the partially visible objects are simply
passed to the rendering pipeline, and possibly clipped by the 2D image plane during
the orthographic transformation.

3.3.2 Implementing Realtime Transformations

One drawback with the transformation methods detailed in Section 3.3.1 is that
they are computationally expensive. The main problem lies with finding the R-
intercept r; for the profile curve and a view vector. The Bisection Method iteratively
determines the root for each intersection. When processing thousands of points,
the time required for processing the entire database can become very significant.
Therefore, this Section will introduce a simple speedup technique based on lookup
tables.

The main priority is to eliminate all the function calls to the Bisection algorithm
and to the profile curve execution unit during point transformations. Such calls are
removed by evaluating a number of view vectors V, and storing the corresponding
intersection points in a lookup table. This is where the projection surface’s symmet-
rical property becomes a real advantage: The lookup table needs be implemented in
the 2D profile curve space only.

As shown in Figure 14, the view vector is rotated 180° in small increments, A©.
The angle © at each increment (measured relative to the R-axis) is converted and
used as a lookup table index (see Equation 17). The profile curve or the tangent
intersection point I is calculated for every view vector (as in Section 3.3.1). Only
the r; and z; components of I is stored in the table.

TabIdx = round (QEZE)@) . (17)

When transforming the actual 3D point P, the vector V running from O to P
is determined. This vector is then expressed in the form of Equation 9. By using
right angle trigonometry, the gradient m (given by Equation 9) is used to compute
the angle of V| relative to the R-axis:

O = tan"'(m). (18)
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F igure 14: The view vector V is rotated by small angle increments A©, and the corresponding intersection
points I with f(r) (blue) or the tangent line (red) are evaluated.

The angle is then converted to the corresponding lookup table index, TabIdx (see
Equation 17). Equations 12 and 13 will use the r; and z; entries from the table to
find the intersection point I, and its orthographic projection I’ respectively.

Equations 18 and 17 will only index the nearest r; and z; values for a given view
vector gradient. Therefore, the size of the angle increment A©® will have a dominant
role in the accuracy of the point transformations. If the resolution is too low, the
3D points will be snapped to the nearest 3D projection point I. This effect is very
noticeable in animated scenes, because moving objects pop or jitter from one place
to an other. Also, small geometric objects will not be represented adequately and
they will suffer from geometrical distortions.
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F igure 15: ©p, the smallest angle between two orthographically projected pixels on the profile curve. The

image plane is illustrated underneath.

The smallest possible movement for an animated object is usually governed by the
pixel resolution of the raster image. In order to minimize the popping or jittering of
moving objects, the ideal angle increment A® should correspond to ©,, the smallest
angle between two orthographically projected pixels on the curved surface (see Figure
15). However, the value for ©, may be very small for high resolution raster images,
and would result with a very large lookup table. A number of subjective trials reveal
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that it is sufficient to use a fixed value for A©®. Typically, this value should be
adjusted for a given raster resolution, until the jittering effect of moving objects is
no longer visible. For example, one-twentieth of a degree was found to be sufficient
for a raster resolution of 1024 x 768 pixels.

A number of trials with different scene complexities reveal that the lookup ta-
ble method gives up to 15 fold speed improvement over the direct transformation
methods. Details on these trials are discussed in Sections 5.2 and 4.2.

3.3.3 Polygon Subdivision

When projecting straight-edged geometrical primitives onto a curved surface, a num-
ber of problems can arise. Polygon edges can’t be mapped directly onto the sur-
face without seeing geometrical distortions in the panorama, because the panoramic
transformations are not affine [46]. This section will detail a polygon subdivision
technique that attempts to minimize such geometrical distortions.

Figure 16: One of the two base polygons (left) undergoes isotropic subdivision (right). Note the cracking
formed at the shared edge (right).

Polygon subdivision introduces intermediate points along the edges or within
the primitive itself. These points are also projected onto the surface, thus giving
a better approximation for the entire polygon. The extra points will increase the
polygon count passed to the rendering pipeline, which directly affects the rendering
performance. Therefore it is necessary to select and subdivide only those polygons
that create the greatest geometrical distortion.

The renderer implements a recursive isotropic subdivision algorithm, where the
triangular base-polygon’s edges are bisected and form four sub-polygons [31] [16]
(see Figure 16). The sub-polygons are numbered 1 to 4 to aid the description of the
algorithm below:

//---- The subdivision routine ----
DivideRecurse(BasePoints[3], LOD)
begin
if (LOD = 0) then //Check if the current recursion depth is 0
begin

//1f DivideRecurse() was called for the first time, then apply
// the panoramic transformation for all vertices in BasePoints[ ].
end
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else begin
//Apply the panoramic transformation for those vertices in
// BasePoints[ ] that weren’t transformed in the previous recursion.
end;

if (all vertices in BasePoints[ ] are invisible) then return;

//-- Initiate subdivision if the magnitude for the longest edge is above the threshold --
if (Magnitude_LongestEdge(BasePoints) > THRESHOLD) and (LOD < Max_LOD) then
begin
//Bisect each edge in the triangle and save the midpoints
MidPoints[3] := BisectEdges(BasePoints);

NewPoints[3] := Form sub-triangle 1 from MidPoints[ ] and BasePoints[ 1;
DivideRecurse(NewPoints, LOD+1);

NewPoints[3] := Form sub-triangle 2 from MidPoints[ ] and BasePoints[ ];
DivideRecurse(NewPoints, LOD+1);

NewPoints[3] := Form sub-triangle 3 from MidPoints[ ] and BasePoints[ ];
DivideRecurse(NewPoints, LOD+1);

NewPoints[3] := Form sub-triangle 4 from MidPoints[ ];
DivideRecurse(NewPoints, LOD+1);
end

//-- Render the polygon --
else begin
RenderPolygon(BasePoints) ;
end;
end;

The recursive function DivideRecurse() accepts an array of points that form
the base triangle. If DivideRecurse() was called for the first time, all the points in
the array will undergo the panoramic transformation. Otherwise, only the new ver-
tices generated in the previous recursion will be transformed. If all the transformed
points in the array are invisible (outside the profile curve’s clipping radius 7r,44),
then DivideRecurse() will exit.

The Magnitude_LongestEdge () function will return the magnitude for the longest
edge in the triangle. If this magnitude is above the THRESHOLD value, the subdivi-
sion is enabled. THRESHOLD represents the length of longest straight edge allowed in
screen space. This parameter is supplied by the user, and it can be adjusted to allow
finer or coarser edge divisions.

If the division is activated, the midpoint for each edge is calculated, and the four
sub polygons will be formed, as shown in Figure 16. Each sub polygon is called with
the DivideRecurse() function. The recursive cycle repeats until the magnitude
of the subdivision edges fall below the THRESHOLD, or until the algorithm’s recur-
sive depth reaches a maximum level of detail, Max_LOD. This prevents the rendering
pipeline from being overloaded with sub-polygons. When the recursion stops, the
triangle is drawn.

In the worst case scenario, this algorithm will generate all the possible sub poly-
gons for all recursion levels (up to Max_LOD). The worst case complexity for a given
recursion level L is given by

O(L) = 4*;
(VAL +1)(V4L 4 2) (19)

Op(L) = 5 , for 0 <L < Max_LOD,
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where Oy(L) is the maximum number of triangles generated, and O,(L) is the max-
imum number of points transformed. This complexity only occurs when the magni-
tude for all the subdivision edges (in all recursion levels) are above the THRESHOLD
value. If a scene consists of N polygons, the maximum number of points transformed
(in the worst case) is given by:

_ N(x/47+ 1)(VAL + 2)

5 , for 0 < L < Max_LOD. (20)

Op(L)
When no subdivision occurs (L = 0), the best case is given by:
Op(L) = 3N. (21)

Unfortunately, subdivision introduces the cracking problem as shown in Figure
16. This occurs when one polygon receives a greater level of detail than its neigh-
bouring polygon. The intermediate points drift away from the shared edge, because
they provide a better approximation of the projection surface. Unfortunately, due
to lack of time, the cracking problem was not addressed properly (details in Section
5.2), and therefore this topic is left open for possible future work.

3.4 Compensating for the Projector

So far only the orthographic surface/image plane relationship was discussed in detail
(Section 3.1.2), and projector’s viewpoint was largely ignored. The orthographic
transformation is adequate for viewing a panorama on a conventional 2D monitor.
However, if the panorama is displayed on a curved display, the direct orthographic
transformation method is insufficient. In this case, the projector’s viewpoint must
be taken into consideration.

P
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€

Figure 17: Projector viewpoint compensation for point transformations.

Figure 17 shows the projector’s position Op, located at some distance d away
from origin O. The assumptions are the following: The system uses a conventional
video projector. The projector is always behind the view origin; O > Op. The
projector must be positioned along the principal Z-axis. The distance d is adjusted
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so that the image height displayed by the projector corresponds to the height of the
2D image plane in the viewing coordinate system.

Let’s assume that the value for the intersection point I was already computed
by Equation 12, and its orthographic transformation I’ was evaluated by Equation
13. By observing the projector’s view vector (long dashed line), it is easy to see that
projector’s view of the surface is perspective, and therefore the correct position of I’
would be at I,. This does not suggest that the orthographic transformation method
should be abandoned. Instead, a projector viewpoint compensation can be applied
on the point I'. This essentially adjusts I’ to the correct position I., which involves
the scaling of the z} and y, components in I'. The scaling value is proportional to
the projector’s Z-displacement from the origin O and the point I:

t= (zid) ) , the scaling value ¢,
xéc = x; -1, (22)
y;lc = y; -1,

where [z}, y;.] is the image plane coordinate at I,,. This compensation applies for
point transformations only, and therefore it is only useful for the realtime rendering
algorithms discussed in Section 3.3.1.

R4

Figure 18: Projector viewpoint compensation for ray-tracing.

The ray-tracer rendering system requires a different approach for projector viewpoint
compensation. In this case the initial view vectors must be adjusted. As illustrated in
Figure 18, the original view vector V is fired into the scene for a given radius r,, and
passes though the intersection point I. With the projector viewpoint compensation
enabled, the correct view vector would be V¢, passing trough I.. This would give a
new radius, 7,.. The compensated intersection point I lies on the projector’s view
vector (long dashed line), which passes trough the given radius r,.

The correct view vector \A/c is determined by evaluating point I. and 7, first.
The Bisection Method detailed in Section 3.3.1 (Equation 11) can be adopted for
solving the root r,.. This requires the projector’s view vector to be expressed as a
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linear function:

z=m(r —ry), whose gradient m is given by
d (23)

m:E

)

where d is the projector’s distance. Just like in Equation 10, the intersection point
occurs when the profile curve f(r) meets the projector’s view vector. Therefore,

f(r),
flr) =m(r—ry).
The root ry is solved by applying Equation 24 in the Bisection algorithm (Equa-

tion 11). Finally, the new view vector V. is calculated by scaling the z, and ,
components of V and by computing its Z-direction, z.:

m(r — ’I“U()) (24)

t= T—U, the scaling value t,
Tve
Tye = Ty - T, (25)
Yve = Yo - T,

Zye = f(T’UC)a for Tve < Tmaz,

where \A/'c is the unit vector of [Ty, Yuves Zue)-

4 Results

This section will summarize how the testing and the results were obtained for the ray-
tracer and for the realtime implementation. The all the relevant pictures are placed
in Appendix A.1 and A.2, which correspond to the ray-tracer and the realtime results
respectively. The discussions and comments relating to all the results will be detailed
in Section 5.

4.1 The Ray-tracer Implementation

The testing procedure for the ray-tracer was straightforward. Initially, a test scene
was modelled, called “Toys”. The scene contained a number of objects with varying
complexity and detail. A back-and-white tiled floor was also used to highlight the
panoramic distortion effects in the final image. A number of profile curve config-
urations were tried to observe the panoramic effects. Figures 21a to 21d are four
examples of panoramic pictures. Their profile curve configurations are illustrated in
Figures 21e to 21h respectively.

A panoramic simulation was also performed, because no curved display was avail-
able for testing. During the simulation, a hyperbolic panorama was perspective pro-
jected (texture mapped) onto a virtual display (shown in Figure 22). The texture
mapping was applied as if a real projector would project the panorama onto the
physical display. The virtual projector’s displacement was -5.0 units from the origin.
A perspective camera was positioned in the center of the display, which emulated the
user’s viewpoint. The user’s perspective view of the display is illustrated in Figure
22c.
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The anti-aliasing feature of the ray-tracer was also tested. Figure 23 shows two
images of the same scene with anti-aliasing disabled and enabled (Figures 23a and
23b respectively). As detailed in Section 3.2, the adaptive anti-aliasing algorithm
was only activated if the change in the luminance value for each pixel was above a
tolerance value. In Figure 23b, the tolerance was set to 3% and number of samples
per anti-aliased pixel was set to 32. A small section of the panorama was enlarged
to highlight the differences.

4.2 The Realtime Implementation

The evaluation for the realtime rendering system involved a series of test runs, with
different scene complexities and profile curve configurations. The testing procedure
was divided into two main parts; one used the direct transformation method and
the other used the lookup table method for transforming points. The direct method
made a number of function calls to the Bisection routines (Equation 11) and to the
profile curve. The lookup table method implemented the algorithms discussed in
Section 3.3.2. The five test scenes used in the trials are illustrated in Figure 24. The
scenes in Figure 24a to 24e have increasing number of polygons, and their properties
are also listed in Table 1.

Scene Number of | Polygon
Objects Count
Cubes 8 336
Pool 13 2020
Hardware 20 4848
Toys 86 6934
Biology 15 17242

Table 1: Test scene properties.

When the trials were executed, the polygon subdivision routines were disabled
(the maximum level of detail (LOD) was set to 0). This was intended to prevent
the subdivision algorithm from introducing intermediate points within the polygons.
The position of the viewpoint and the movement of objects may also trigger polygon
subdivision. As a result, the total number of points transformed would dynamically
change. Initially, the interest lies in comparing scenes with a fixed (or known) number
of points.

The direct transformation method and the lookup table method executed four
trials in each scene. This was intended to observe the performance of the transforma-
tion routines with different profile curve configurations (see Equations 26). The first
equation was a simple linear function, the second was a cubic and the last one was a
hyperbolic. Note that the equations are represented exactly as they were fed to the
equation compiler. The fourth profile curve configuration was “NULL”, where the
panorama transformations were disabled and only the standard perspective trans-
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formations were used.

Curve 1: f(r) = —r +1;
Curve 2: f(r)=—r-r-r+r-r+r+1; (26)

Curve 3: f(r) = —\/4+ 612 + 3.

The testing procedures described above were conducted on a mid-range Pentium
III processor (450MHz), using a 3dFx Voodoo3 2000 graphics card. Figure 26 shows
the performance (in frames per second) for the direct transformation and for the
lookup table method. The horizontal axis in Figure 26 illustrate the number of
vertices transformed per frame in each scene. These results are summarized in Table
2. The table also includes the performance ratio between the two methods. Each
ratio was calculated by dividing the lookup table’s frame rate with the corresponding
direct transformation’s frame rate.

Scene | FPS (Direct Method) | FPS (Table Method) | Performance Ratio
C.1 C.2 C.3 C.1 C.2 C.3 1| C2 C.3
Cubes || 60.80 | 51.80 32.00 60.30 | 60.40 | 60.40 0.99 | 1.17 1.89
Pool || 18.00 | 8.70 5.40 60.30 | 60.30 | 60.30 | 3.35 | 6.93 | 11.17
Hardware || 7.50 | 3.60 2.20 33.40 | 33.20 | 33.60 4.45 | 9.22 15.09
Toys || 5.20 | 2.50 1.60 22.40 | 22.40 | 22.40 4.31 | 8.96 14.00
Biology || 2.10 | 1.00 0.60 9.30 | 9.30 9.30 4.43 | 9.30 15.50

Table 2: Performance summary with the polygon subdivision disabled. Note: C.1, C.2 and C.3 represent

Curve 1, Curve 2 and Curve 3 respectively.

To observe how the polygon subdivision affected the rendering performance, ad-
ditional trials were conducted with the Toy scene. The Toy scene was chosen, because
it features a variety of objects with differing sizes. The transformation routines used
the lookup table method, with Curve 2 (from Equation 26) as the profile curve con-
figuration. Each trial used a different maximum level of detail (LOD), ranging from
0 to 9. The division threshold value was fixed to 0.2. The trials used the same
fixed viewpoint and viewing orientation. When the ten trials were completed, the
whole testing procedure was repeated, but this time the division threshold value
was changed to 0.1. The graph in Figure 25 illustrates how the polygon subdivision
affected the rendering performance. Table 3 lists the ten LOD settings used with
two division threshold values. Each row summarizes the average number of points
transformed per frame.

Additional results for the realtime rendering system include Figures 27 and 28.
Figures 27a and 27b demonstrate the polygon subdivision routines at work. These
illustrations were prepared in wire-frame mode to highlight the polygon boundaries.
The perspective views of the scenes are also included in the small sub-window. Fig-
ures 27c¢ and 27d illustrate the captured screens for the realtime renderer.

Figure 28 demonstrates a simulation of the panoramic rendering system, which
uses a similar arrangement as the ray-tracer’s panoramic simulation in Figure 22.
The panorama was rendered for a hyperbolic surface, which was perspective pro-
jected into the virtual display (Figure 28b). The virtual projector’s displacement
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LOD Average Points Transformed
Threshold = 0.1 | Threshold = 0.2
0 20802 20802
1 23034 21870
2 24714 22974
3 26550 23778
4 27534 24114
5 28278 24594
6 29238 25122
7 30198 25650
8 31158 26178
9 32118 26706

Table 3: Number of points transformed per frame in the Toy scene, when the polygon subdivision was

enabled.

was -5.0 units from the origin. A perspective camera simulates the user’s viewpoint
and sees a perspective view of the panoramic scene (Figure 28¢c).

4.3 Projector Viewpoint Compensation

The final set of results are relevant to the projector viewpoint compensation tech-
niques, discussed in Section 3.4. The Toy Scene was used again for the evalu-
ation, because it contains a number of detailed objects. The profile curve was
f(r)=2—(r+0.01)", and the view orientation was downwards.

Figure 19: Perspective viewpoint compensation for the ray-tracer (f(r) = 2 — (r + 0.01)"):
(A) No viewpoint compensation, (B) d = —1.0, (C) d = —0.25. For the realtime renderer:
(D) No viewpoint compensation, (E) d = —1.0, (F) d = —0.25.
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Figures 19a to 19e reveal how the panorama was affected when the projector’s view-
point was changed for the ray-tracer and for the realtime renderer. The image group
19a to 19b are the results for the ray-tracer. The first picture is the original view-
point, with no perspective viewpoint compensation enabled. The next two pictures
illustrate the effect of viewpoint compensation, with the projector’s origin succes-
sively moved closer to the viewer’s origin. The image group 19d to 19e use the same
configuration as the first three illustrations, but this time the realtime renderer was
used to generate the images.

As the projector was moved closer to the user’s viewpoint, the perspective com-
pensation was increased. This effect was identical for the ray-tracer and the realtime
renderer. If the projector was coincident with user’s viewpoint, the compensation
applied on the panorama would be extreme, and the resulting image would be un-
intelligible. However, in practical situations the projector is never coincident with
the view origin. Most conventional projectors display images in the 4:3 aspect ratio,
which provides a narrow field of view. In order to cover the entire curved display
area, such projectors would be always situated at some distance away from the user’s
viewpoint.

5 Discussion

5.1 The Ray-tracer Implementation

The ray-tracer’s biggest advantage is that the resulting panoramas did not show signs
of geometric distortions - a problem that was specific for the realtime renderer (see
Section 5.2). The ray-tracer rendered the panorama one pixel at a time. Therefore,
all the objects were drawn to match the surface’s contour as close as possible. (Note
that the term geometric distortion should not be confused with panoramic distortion.
Panoramic distortion is the actual warping effect caused by the wide FOV in the
panorama.)

The images rendered by the ray-tracer are shown in Figure 21. Figure 21a il-
lustrates the subtle panoramic distortions caused by the quadratic profile curve. In
this case, the field of view was not very wide, because the panorama was clipped by
the 2D image plane (see Figure 21e).

Some curves created extreme warping effects in the panorama, and sometimes
allowed the view vectors to cross the profile curve twice. This effect is illustrated in
Figure 21b, where the tricycle appears to be conjoined due to the double intersection
of the view vectors. Such effects were only possible with the ray-tracer, because it did
not use numerical methods for estimating the initial direction for the view vectors
(assuming that the projector viewpoint compensation was disabled).

The spherical panorama in Figure 21c did not experience clipping by the 2D im-
age plane, because the profile curve’s upper limit 7,4, corresponded with the image
plane’s minimum radius. Figure 21d is an example of a parabolic panorama, that
has an extremely wide field of view. Its corresponding cross-sectional surface plot
(Figure 21h) reveals that the user’s viewpoint was well inside projection surface.
If this panorama was displayed on a physical surface, the viewer would be able to
glance backwards.
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The panoramic simulation in Figure 22 used a hyperbolic virtual display to match
the panorama’s distortion. The user’s viewpoint in Figure 22b was emulated by a
perspective camera, which created the result in Figure 22c. The contour of the vir-
tual display corrected the distortion in the panorama, and made the scene appear
perspective correct. This effect was highlighted by the fire extinguisher’s edge. How-
ever, the panorama/virtual display relationship also had a side-effect; the objects in
the perspective view showed signs of pixel stretching, which made the objects appear
as jagged (Figure 22d).

The jagged edges and aliasing effects were partially caused by the nonuniform
sampling of the curved surface, during the panoramic rendering process (see Section
3.1.2). These artifacts were predominant in the regions where the profile curve’s
tangent became very steep with respect to the image plane. These problems were
very obvious in panoramas that had a very wide FOV (Figure 21d), or at the edges
of the spherical panorama (Figure 21c).

The adaptive anti-aliasing technique introduced in Section 3.2 was designed to min-
imize the sharply notched edges at the object boundaries. Figure 23 shows two
spherical panoramas of the same scene, with anti-aliasing disabled (Figure 23a) and
enabled (Figure 23d). The smaller sub-windows magnify a portion of the panorama’s
edge. The anti-aliased image reveals that the staircasing artifacts at the edges and
on the floor tiles were minimized.

O

<

Small Object

[ [ ®TTT]

Surface Image Plane

Figure 20: Two primary rays missing a small object.

As mentioned in Section 3.2, the ray-tracer only activated the anti-aliasing algo-
rithm when a contrasting feature or a sudden transition in luminance was detected.
This method for detecting edges did not work for certain situations. The adaptive
anti-aliasing failed to detect luminance boundaries when an object in the scene was
very far away, or when it was very small, typically one screen pixel in size. Figure
20 illustrates this problem. Two primary rays were fired at two neighbouring pixels.
The primary rays completely missed the small object. As a result, the anti-aliasing
was not activated, because the renderer assumed that there was no object present
in the first place.

5.2 The Realtime Implementation

The primary goal for the realtime rendering system was to execute panoramic point
transformations in realtime, typically around 30 frames per second. The results in
Section 4.2 indicate that this was possible on a mid-range Pentium III class machine.
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It is obvious that the direct transformation method suffered in performance when
the number of vertices transformed per frame was increased. This was illustrated
in the performance graph, Figure 26a. Additionally, the performance was not only
dependent on the vertex count, the algorithm was also directly affected by the com-
putation complexity of the profile curve equation (see Equations 26).

The first equation (Curve 1) performed the best, because it had the lowest com-
putational complexity, about 2 arithmetic operations. As expected, the average
frame rate for the cubic profile curve (Curve 2) was lower, because the penalty for
executing f(r) was 7 operations. The last equation was the worst performer, because
it contained an expensive square root and a power operation.

As mentioned in Section 3.1.1, the equation was stored as a sequence of cus-
tom operation codes. As a result, there were additional overheads for executing the
profile curve equation. One overhead was the time required for accessing the jump
table, and the other was the delay for executing the jump instruction for each custom
opcode. However, the main slowdown occurred in the Bisection algorithm (Equation
11), because the algorithm called the profile curve subroutine for several iterations.

The performance for the lookup table method was constant for all profile curve config-
urations in the same scene (Figure 26b). The dependency on the profile curve’s com-
plexity was eliminated, because intersection points were pre-calculated and stored
in the table. The time required to calculate the table index (in Equation 17) and to
access the lookup table was constant.

Table 2 illustrates that the frame rate improvement for the lookup table method
was significant for the Hardware, Toy and the Biology scenes. The most significant
performance gains were observed with the computationally expensive curves, such as
Curve 2 and Curve 3. These gains are highlighted by the performance ratios, listed
in Table 2. However, the lookup table method did not show very significant gains
in the Cube scene. The scene’s complexity was simple enough for the direct method
to achieve up to 60.8 frames per second with Curve 1, which slightly outperformed
the lookup table method. The performance results for the perspective renderer are
also included in Figure 26. The graphs for the perspective renderer indicate that
the maximum output for the OpenGL rendering pipeline was about 61 frames per
second.

It has been shown that the lookup table method does provide some significant
frame rate improvement over the direct transformation method. However, the test
scenes in Figure 24 were relatively simple in complexity. Some practical applications
may implement scenes that easily exceed the complexity of the test scenes used in
this project, and would result in a significant performance drop for the panoramic
renderer. Therefore, even the lookup table method may not be entirely practical for
very complex scenes.

Figure 25 shows how the rendering system performed with different levels of sub-
division detail (LOD). When the subdivision was disabled (LOD = 0), the system
demonstrated the best case scenario, as specified by Equation 21. According to
Equation 20, the worst case behaviour for the Toy scene (with 6934 polygons) would
be over 900 million point transformations, given that LOD = 9. However, Table 3
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illustrates that the actual number of points transformed was close to the best case
scenario for both threshold settings.

The graphs in Figure 25 illustrate that the frame rate started to level out as
the LOD was increased. It turned out that the number of subdivisions did not
significantly change for the higher LOD settings, because the actual threshold level
was reached by the majority of the subdivided triangles. This indicated that the
system rarely reached the worst case complexity (Equation 20), and remained closer
to the best case behaviour. The test also revealed that the performance overhead
for transforming the division points was approximately 20% to 30%, with LOD = 9.

Figure 25 also illustrates that the overall performance worsened when the thresh-
old value was decreased from 0.2 to 0.1. The worst case complexity was only possible
when the subdivision threshold value was very close to 0. Therefore, the two main
factors that directly affected the rendering performance were the maximum LOD
setting and the subdivision threshold value.

However, the subdivision performance is also affected by other variables, such as
the profile curve’s shape, the viewing location and the size of various objects in the
scene. For example, a scene consisting of very large triangles will make a perfect
candidate for excessive subdivision. In contrast, small detailed objects may not trig-
ger the division algorithms at all. In practical situations, the scene data may need
some preprocessing to minimize the demand for subdivision in the rendering stage.
For example, very large polygons can be broken down in the modelling stage. This
may eliminate the need for changing the maximum LOD and subdivision threshold
settings.

Figure 27 illustrates how the polygon subdivision algorithms attempted to approx-
imate the curvature of the projection surface. Figures 27a and 27b highlight the
actual polygon boundaries. Some surfaces (such as nearby walls) were greater in
magnitude than the subdivision threshold, and therefore they were recursively de-
composed into smaller triangles. The actual level of detail was dynamically varied
when the viewpoint changed location. This caused popping effects in the geomet-
ric models, because the intermediate points were suddenly introduced (or removed)
in the scene. Such effects were minimized by increasing the maximum level of de-
tail and/or by decreasing the subdivision threshold. Of course, this increased the
computational cost for rendering the entire scene.

Unfortunately, when a polygons’s edge was divided, the algorithm had no way
of determining which neighbouring polygons were immediately affected by this divi-
sion. Therefore, when two (or more) neighbouring polygons received a different level
of detail, the number of subdivision points along their edges did not match. This
developed cracks within the model, see Figures 27c and 27d. The cracking effect was
very obvious in the walls and ceilings, because they consisted of large polygons. This
problem was worsened when the profile curve created extreme panoramic distortions
in the scene.

Figure 28 illustrates a panoramic simulation for the realtime renderer. The panorama

was rendered for a hyperbolic surface, and then it was re-projected onto a simulated
display (Figure 28b). The perspective correct view of the scene (Figure 28¢c) high-
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lights the importance of polygon subdivision. The fire extinguisher’s edge suffered
from slight geometrical distortions, because the model lacked subdivision points.
These unwanted effects became worse when the level of detail was decreased. The
ray-traced equivalent of this simulation did not suffer from geometric distortions, be-
cause no approximation techniques were used to render the objects (see Figure 22).
As a result, the ray-tracer has the advantage of producing better quality panoramas
than the realtime renderer.

6 Conclusion

Most perspective displays, such as CRT monitors, are limited by their narrow field
of view. To overcome this limitation, a number of panoramic display systems were
developed in the past. Unfortunately, Section 2 revealed that most commercial
panoramic display systems are very expensive, and limited their use for specialized
applications only. However, a cheaper alternative for panoramic visualization is
possible. An effective panoramic display environment can be achieved by surrounding
the viewer with a curved display. With this arrangement, a conventional projector
can be used the displayed panorama on the curved surface. In order to make the
scene look perspective correct, the rendering system must be capable of generating
panoramas that match the curvature of the display.

6.1 Review

The project’s aim was to develop a rendering software that allows conventional pro-
jectors to display panoramas on a symmetrical curved display. The entire project
consisted of two main parts: The ray-tracer implementation and the realtime imple-
mentation. Since most curved displays are symmetrical about its principal axis, 2D
profile curves provided a convenient way for modelling a display’s shape. The render-
ing system accepted an arbitrary profile curve, that was used to construct a concave
surface of revolution. This allowed the rendering system to generate panoramas for
displays other than the standard dome configuration.

The symmetrical property of the surface was an advantage for executing point
transformations, or when determining the initial rays for the ray-tracer. These trans-
formations were performed in the 2D profile curve space, rather than directly with
the 3D surface itself. The rendering process involved two steps: Initially the object
was projected onto a surface of revolution, then it was orthographically re-projected
onto a 2D image plane. If the panorama was to be displayed on a physical surface,
the final step had to compensate for the projector’s perspective viewpoint.

The ray-tracer’s task was to to determine the initial rays for each image plane co-
ordinate. This coordinate also represented the ray’s direction in the XY -plane. To
solve for the Z-direction, the radius of the 2D coordinate was computed first. The
radius was substituted into the profile curve equation, which returned the ray’s Z-
component.

This type of projection was orthographic, and it did not provide a uniform sam-
pling of the 3D surface on the image plane. Regions where the surface gradient was
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high relative to the image plane were under sampled. As a result, aliasing effects
were prevalent in those regions of the panorama.

The adaptive anti-aliasing technique described in Section 3.2 did minimize the
staircasing artifacts in object edges; however, there were cases where the anti-aliasing
algorithm failed. The algorithm failed to detect luminance boundaries for very small
objects, typically those that were one screen pixel in size. The primary rays that
monitor the luminance values completely missed the small object, and as a result
the anti-aliasing was not activated.

The realtime implementation faced several problems when it came to panoramic
transformations. The projection of several points onto the 3D surface had to be
executed in realtime for a given arbitrary profile curve configuration. Section 3.3.1
introduced a direct transformation technique, that used approximation methods for
projecting points onto a surface of revolution. In order to deal with partially visible
objects, the transformation algorithm used a tangent line to extend the profile curve
beyond the limit r,,4,. This arrangement allowed the transformation of partially
visible objects onto tangent line, and then passed to the rendering pipeline.

The performance tests demonstrated that the direct transformation method was
inadequate for realtime rendering. Its performance was not only dependent on the
number of points in the scene, it was also affected by the computational complexity
of the profile curve equation.

The lookup table method (introduced in Section 3.3.2) eliminated the profile
curve dependency problem, because the intersection points were pre-calculated and
stored in the table. The access time for the lookup table was constant, even when
computational expensive profile curve configurations were used. The test results
illustrated that the lookup table method achieved up to 15-fold improvement in
performance over the direct transformation method. Such improvements were par-
ticulary significant for complex scenes and computationally expensive profile curves.

Straight polygon edges suffered geometrical distortions in the panorama, because
the transformations were not affine. To minimize this problem, a recursive isotropic
subdivision algorithm was implemented in the rendering system. The algorithm
dynamically varied the degree of subdivision, based on the size of each sub-triangle in
2D screen space. The performance tests revealed that the overhead for transforming
the division points remained close to the best case behaviour (Equation 21), and it
rarely reached the worst case complexity (Equation 20).

The subdivision algorithms also introduced the cracking problem, where gaps
appeared between several triangles. The problem appeared when two (or more)
neighbouring polygons received a different level of detail. As a result, the number of
subdivision points along their edges to did not match. This problem was worse for
large polygons and when the profile curve created extreme panoramic distortions in
the scene.

6.2 Future Work

The lookup table method demonstrated that realtime panoramic rendering was pos-
sible. However, some practical applications may implement scenes that would easily
exceed the complexity of the test scenes used in this project. In such situations,
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the resulting rendering performance would be poor. The most expensive part in the
lookup table algorithm was Equation 17, where the angle of the view vector was
calculated. To further increase the performance, the arc tangent operation should
be removed, perhaps replaced with a fast approximation algorithm or with an arc
tangent lookup table.

The cracking problem in the polygon subdivision can be solved by adding new data
management algorithms to handle winged edge representations of triangles [15] [47]
[48]. Such structures use edge lists [28] to keep track of triangles that share a com-
mon edge. Each entry in the list separates two triangle faces and maintains a pointer
for each. If a triangle’s edge was bisected, its corresponding edge structure in the
list will point to the neighbouring polygon affected by the subdivision. To eliminate
the cracking problem, the neighbouring triangle’s edge is also bisected.

The actual ray-tracing was a time consuming process, particulary when the anti-
aliasing algorithms were used. The most expensive operation for the ray-tracer was
the ray-object intersection tests. The renderer used a hierarchial bounding boxes [30]
[25] for grouping objects together. The rendering efficiency was highly dependent on
how well each bounding box fitted the enclosed object.

Ideally, the computation time for the intersection tests should be relatively inde-
pendent of the scene’s complexity. This property may be achieved by implementing
a space partitioning data structure, such as octrees [29]. Octrees recursively subdi-
vide the scene space into 8 sub-octants until the maximum partition criterion is met.
More subdivision would be applied in the regions where the objects densely popu-
late the scene. Each nonempty partition contains a list of objects that penetrate the
partition volume. Rather than checking a ray against all set of bounding volumes,
only those surfaces are tested that occupy the partition volume intersected by the
ray.
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A Illustrations

Appendix A.1 and A.2 contain all the illustrations, results for the ray-tracer and the
realtime implementation respectively. The panoramic rendering software and the
test scenes are available to download from the following web address:
http://www-personal .monash.edu.au/ ddea3/project/index.shtml

Please read the online documentation for more details.

A.1 Images for the Ray-tracer

Figure 21: Ray-traced panoramas, with different profile curve configurations:

(A) f(r) = —r3 +r2 47+ 1. (B) f(r) = —0.1r* +2.25r2 + 0.2c0s(8r) + 1.

(C) f(r)y=v1—72 (D) f(r) = —2.5r2 + 1.

Slides (E) to (H) are the projection surfaces used to create the panoramas in (A) to (D). The red regions
highlight the visible portions of the surface on the 2D image plane.
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Figure 22: (4) The hyperbolic panorama, f(r) = 3 — V4 + 6r2. (B) The panorama is projected into a
virtual curved display, with a perspective camera in the center. (C) The perspective view obtained by the

camera. (D) An enlarged portion of the perspective view, highlighting the pixel stretching effects.

Figure 23: Anti-alias example (f(r) = v/1 —r2): (A) Original. (B) Anti-aliasing enabled.
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A.2 TImages and Data for the Realtime Implementation

Figure 24: Perspective view of the test scenes:
(A) “Cubes”, (B) “Pool”, (C) “Hardware”, (D) “Toys”, (E) “Biology”.

Performance for the Toy Scene with
Polygon Subdivision

E Thresh = 0.1
B Thresh =0.2

LoDO  LODA1 Loz LOoD3  LOD4 LODS LoDs&  LODY7  LODS  LOD9
Level of Detail

Figure 25: Frame rate for the Toy Scene, with the polygon subdivision enabled at different levels of detail.

There were two tests, one with the subdivision threshold set to 0.1 and the other set to 0.2.
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A Performance for Direct Transformation, LOD =0
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Figure 26: Performance results for (4) the direct transformation method and (B) the lookup table method,
with three profile curve configurations. The performance for the standard perspective transformation is also

included. The polygon subdivision was disabled.
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Figure 27: Subdivision example for (4) f(r) = —r2 + 1 and (B) f(r) = —loge(r + 0.1).
Realtime renderer for (C) f(r) = —r2 + 1 and (D) f(r) = —2r + 1.

Figure 28: (4) The hyperbolic panorama, f(r) = 3 — /4 + 6r2. (B) The panorama is projected into a
virtual curved display, with a perspective camera in the center. (C) The perspective view obtained by the

camera.
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