2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * @file MeaningfulScaleAnalysis.ih
19 * @author Bertrand Kerautret (\c kerautre@loria.fr )
20 * LORIA (CNRS, UMR 7503), University of Nancy, France
22 * @author Jacques-Olivier Lachaud (\c jacques-olivier.lachaud@univ-savoie.fr )
23 * Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
27 * Implementation of inline methods defined in MeaningfulScaleAnalysis.h
29 * This file is part of the DGtal library.
32 ///////////////////////////////////////////////////////////////////////////////
33 // IMPLEMENTATION of inline methods.
34 ///////////////////////////////////////////////////////////////////////////////
36 //////////////////////////////////////////////////////////////////////////////
38 #include "DGtal/math/SimpleLinearRegression.h"
39 //////////////////////////////////////////////////////////////////////////////
43 ///////////////////////////////////////////////////////////////////////////////
44 // Implementation of inline methods //
46 template<typename TProfile>
47 DGtal::MeaningfulScaleAnalysis<TProfile>::MeaningfulScaleAnalysis( ConstAlias<Profile> aProfile): myProfile(aProfile)
52 template<typename TProfile>
53 DGtal::MeaningfulScaleAnalysis<TProfile>::~MeaningfulScaleAnalysis()
58 template<typename TProfile>
60 DGtal::MeaningfulScaleAnalysis<TProfile>::computeMeaningfulScales ( std::vector< std::pair< unsigned int,
61 unsigned int > > & intervals,
62 const unsigned int minSize,
63 const double maxSlope,
64 const double minSlope ) const
66 std::vector<typename TProfile::Value> x;
67 std::vector<typename TProfile::Value> y;
68 myProfile.getProfile( x, y );
70 for ( unsigned int k = 1; k < x.size(); ++k )
72 double slope = ( y[ k ] - y[ k - 1 ] ) / ( x[ k ] - x[ k - 1 ] );
73 if ( ( slope > maxSlope )
74 || ( slope < minSlope )
75 || ( (k+1) == x.size() ) )
77 if ( ( k - 1 - l ) >= minSize )
78 intervals.push_back( std::make_pair( l+1, k ) );
84 template<typename TProfile>
85 std::pair<bool, double>
86 DGtal::MeaningfulScaleAnalysis<TProfile>::getSlopeFromMeaningfulScales(const double maxSlope,
87 const double minSlope,
88 const unsigned int minSize) const {
89 std::pair<bool, double> resuSlope(false, 0.0);
90 std::vector< std::pair< unsigned int, unsigned int > > vectIntervals;
91 this->computeMeaningfulScales(vectIntervals, minSize, maxSlope, minSlope);
92 std::vector<typename TProfile::Value> vx;
93 std::vector<typename TProfile::Value> vy;
95 myProfile.getProfile( vx, vy );
96 // no meaningfulScale interval:
98 if(vectIntervals.size()!=0 && vectIntervals.at(0).first<vectIntervals.at(0).second )
100 resuSlope.first=true;
104 std::pair<unsigned int, unsigned int> interAll(1, vx.size());
105 vectIntervals.push_back(interAll);
107 SimpleLinearRegression SLR;
109 unsigned int mfsBeg = vectIntervals.at(0).first-1;
110 unsigned int mfsEnd = vectIntervals.at(0).second-1;
112 // Only two sampled points
113 if ( mfsEnd-mfsBeg == 1 )
115 Z2i::RealPoint pt1(vx.at(mfsBeg),vy.at(mfsBeg));
116 Z2i::RealPoint pt2(vx.at(mfsEnd),vy.at(mfsEnd));
117 double slope = (pt2[1] - pt1[1])/(pt2[0] -pt1[0]);
118 resuSlope.second = slope;
121 for(unsigned int i=mfsBeg; i<=mfsEnd; i++)
123 SLR.addSample(vx.at(i), vy.at(i));
125 SLR.computeRegression();
126 resuSlope.second = SLR.slope();
132 template<typename TProfile>
134 DGtal::MeaningfulScaleAnalysis<TProfile>::noiseLevel ( const unsigned int minSize,
135 const double maxSlope,
136 const double minSlope ) const
138 std::vector< std::pair< unsigned int, unsigned int > > intervals;
139 this->computeMeaningfulScales( intervals, minSize, maxSlope, minSlope );
140 return ( intervals.size() != 0 )
141 ? intervals[ 0 ].first
148 template<typename TProfile>
150 DGtal::MeaningfulScaleAnalysis<TProfile>::lowerBoundedNoiseLevel( const unsigned int minSize,
151 const double maxSlope,
152 const double minSlope,
153 const double lowerBoundAtScale1,
154 const double lowerBoundSlope ) const
156 std::vector< std::pair< unsigned int, unsigned int > > intervals;
157 this->computeMeaningfulScales( intervals, minSize, maxSlope, minSlope );
158 std::vector<typename TProfile::Value> x;
159 std::vector<typename TProfile::Value> y;
160 myProfile.getProfile( x, y );
161 for ( unsigned int i = 0; i < intervals.size(); ++i )
164 for ( unsigned int k = intervals[ i ].first; ( k <= intervals[ i ].second ); ++k )
166 if ( y[ k ] < ( lowerBoundAtScale1 + lowerBoundSlope*x[ k ] ) )
172 if ( above ) return intervals[ i ].first;
174 // Failure. No detected noise level.
179 ///////////////////////////////////////////////////////////////////////////////
180 // Implementation of inline functions and external operators //
183 * Overloads 'operator<<' for displaying objects of class 'MeaningfulScaleAnalysis'.
184 * @param out the output stream where the object is written.
185 * @param object the object of class 'MeaningfulScaleAnalysis' to write.
186 * @return the output stream after the writing.
188 template<typename TProfile>
191 DGtal::operator<< ( std::ostream & out,
192 const MeaningfulScaleAnalysis<TProfile> & object )
194 object.selfDisplay ( out );
199 ///////////////////////////////////////////////////////////////////////////////