DGtal  1.5.beta
NormalCycleComputer.ih
1 /**
2  * This program is free software: you can redistribute it and/or modify
3  * it under the terms of the GNU Lesser General Public License as
4  * published by the Free Software Foundation, either version 3 of the
5  * License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program. If not, see <http://www.gnu.org/licenses/>.
14  *
15  **/
16 
17 /**
18  * @file NormalCycleComputer.ih
19  * @author Jacques-Olivier Lachaud (\c jacques-olivier.lachaud@univ-savoie.fr )
20  * Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
21  *
22  * @date 2020/02/18
23  *
24  * Implementation of inline methods defined in NormalCycleComputer.h
25  *
26  * This file is part of the DGtal library.
27  */
28 
29 
30 //////////////////////////////////////////////////////////////////////////////
31 #include <cstdlib>
32 //////////////////////////////////////////////////////////////////////////////
33 
34 ///////////////////////////////////////////////////////////////////////////////
35 // IMPLEMENTATION of inline methods.
36 ///////////////////////////////////////////////////////////////////////////////
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 // ----------------------- Standard services ------------------------------
40 
41 //-----------------------------------------------------------------------------
42 template <typename TRealPoint, typename TRealVector>
43 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
44 NormalCycleComputer( ConstAlias< SurfaceMesh > aMesh )
45  : myMesh( aMesh )
46 {}
47 
48 
49 //-----------------------------------------------------------------------------
50 template <typename TRealPoint, typename TRealVector>
51 typename DGtal::NormalCycleComputer<TRealPoint, TRealVector>::ScalarMeasure
52 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
53 computeMu0() const
54 {
55  ScalarMeasure mu0( &myMesh, 0.0 );
56  auto& face_mu0 = mu0.kMeasures( 2 );
57  face_mu0.resize( myMesh.nbFaces() );
58  Index idx_f = 0;
59  for ( const auto& f : myMesh.allIncidentVertices() )
60  {
61  RealPoints p( f.size() );
62  for ( Index idx_v = 0; idx_v < f.size(); ++idx_v )
63  p[ idx_v ] = myMesh.positions() [ f[ idx_v ] ];
64  face_mu0[ idx_f++ ] = Formula::area( p );
65  }
66  return mu0;
67 }
68 
69 //-----------------------------------------------------------------------------
70 template <typename TRealPoint, typename TRealVector>
71 typename DGtal::NormalCycleComputer<TRealPoint, TRealVector>::ScalarMeasure
72 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
73 computeMu1() const
74 {
75  ScalarMeasure mu1( &myMesh, 0.0 );
76  auto& edge_mu1 = mu1.kMeasures( 1 );
77  edge_mu1.resize( myMesh.nbEdges() );
78  Index idx_e = 0;
79  for ( const auto& e : myMesh.allEdgeVertices() )
80  {
81  const auto & right_faces = myMesh.allEdgeRightFaces()[ idx_e ];
82  const auto & left_faces = myMesh.allEdgeLeftFaces ()[ idx_e ];
83  if ( right_faces.size() != 1 || left_faces.size() != 1 )
84  {
85  edge_mu1[ idx_e ] = 0.0;
86  }
87  else
88  {
89  const RealPoint a = myMesh.positions()[ e.first ];
90  const RealPoint b = myMesh.positions()[ e.second ];
91  const RealPoint right = myMesh.faceCentroid( right_faces[ 0 ] );
92  const RealPoint left = myMesh.faceCentroid( left_faces [ 0 ] );
93  const RealVector right_n = Formula::normal( a, right, b );
94  const RealVector left_n = Formula::normal( a, b, left );
95  edge_mu1[ idx_e ] = Formula::twiceMeanCurvature( a, b, right_n, left_n );
96  }
97  idx_e++;
98  }
99  return mu1;
100 }
101 
102 //-----------------------------------------------------------------------------
103 template <typename TRealPoint, typename TRealVector>
104 typename DGtal::NormalCycleComputer<TRealPoint, TRealVector>::ScalarMeasure
105 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
106 computeMu2() const
107 {
108  ScalarMeasure mu2( &myMesh, 0.0 );
109  auto& vertex_mu2 = mu2.kMeasures( 0 );
110  vertex_mu2.resize( myMesh.nbVertices() );
111  Index idx_v = 0;
112  for ( const auto& faces_v : myMesh.allIncidentFaces() )
113  {
114  const RealPoint a = myMesh.positions()[ idx_v ];
115  RealPoints pairs;
116  for ( auto f : faces_v )
117  {
118  const auto & vtcs = myMesh.allIncidentVertices()[ f ];
119  Index j = std::find( vtcs.cbegin(), vtcs.cend(), idx_v ) - vtcs.cbegin();
120  if ( j != vtcs.size() )
121  {
122  const Index prev = ( j + vtcs.size() - 1 ) % vtcs.size();
123  const Index next = ( j + vtcs.size() + 1 ) % vtcs.size();
124  pairs.push_back( myMesh.positions()[ vtcs[ next ] ] );
125  pairs.push_back( myMesh.positions()[ vtcs[ prev ] ] );
126  }
127  }
128  vertex_mu2[ idx_v++ ] = Formula::gaussianCurvatureWithPairs( a, pairs );
129  }
130  return mu2;
131 }
132 
133 //-----------------------------------------------------------------------------
134 template <typename TRealPoint, typename TRealVector>
135 typename DGtal::NormalCycleComputer<TRealPoint, TRealVector>::TensorMeasure
136 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
137 computeMuXY() const
138 {
139  const RealTensor zeroT { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
140  TensorMeasure muXY( &myMesh, zeroT );
141  auto& edge_muXY = muXY.kMeasures( 1 );
142  edge_muXY.resize( myMesh.nbEdges() );
143  Index idx_e = 0;
144  for ( auto e : myMesh.allEdgeVertices() )
145  {
146  const auto & right_faces = myMesh.allEdgeRightFaces()[ idx_e ];
147  const auto & left_faces = myMesh.allEdgeLeftFaces ()[ idx_e ];
148  if ( right_faces.size() != 1 || left_faces.size() != 1 )
149  edge_muXY[ idx_e ] = zeroT;
150  else
151  {
152  const RealPoint a = myMesh.positions()[ e.first ];
153  const RealPoint b = myMesh.positions()[ e.second ];
154  const RealPoint right = myMesh.faceCentroid( right_faces[ 0 ] );
155  const RealPoint left = myMesh.faceCentroid( left_faces [ 0 ] );
156  const RealVector right_n = Formula::normal( a, right, b );
157  const RealVector left_n = Formula::normal( a, b, left );
158  edge_muXY[ idx_e ] =
159  Formula::anisotropicCurvatureH1( a, b, right_n, left_n );
160  }
161  idx_e++;
162  }
163  return muXY;
164 }
165 
166 //-----------------------------------------------------------------------------
167 template <typename TRealPoint, typename TRealVector>
168 typename DGtal::NormalCycleComputer<TRealPoint, TRealVector>::TensorMeasure
169 DGtal::NormalCycleComputer<TRealPoint, TRealVector>::
170 computeMuXYs() const
171 {
172  const RealTensor zeroT { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
173  TensorMeasure muXYs( &myMesh, zeroT );
174  auto& edge_muXYs = muXYs.kMeasures( 1 );
175  edge_muXYs.resize( myMesh.nbEdges() );
176  Index idx_e = 0;
177  for ( auto e : myMesh.allEdgeVertices() )
178  {
179  const auto & right_faces = myMesh.allEdgeRightFaces()[ idx_e ];
180  const auto & left_faces = myMesh.allEdgeLeftFaces ()[ idx_e ];
181  if ( right_faces.size() != 1 || left_faces.size() != 1 )
182  edge_muXYs[ idx_e ] = zeroT;
183  else
184  {
185  const RealPoint a = myMesh.positions()[ e.first ];
186  const RealPoint b = myMesh.positions()[ e.second ];
187  const RealPoint right = myMesh.faceCentroid( right_faces[ 0 ] );
188  const RealPoint left = myMesh.faceCentroid( left_faces [ 0 ] );
189  const RealVector right_n = Formula::normal( a, right, b );
190  const RealVector left_n = Formula::normal( a, b, left );
191  edge_muXYs[ idx_e ] =
192  Formula::anisotropicCurvatureH2( a, b, right_n, left_n );
193  }
194  idx_e++;
195  }
196  return muXYs;
197 }
198 
199 
200 ///////////////////////////////////////////////////////////////////////////////
201 ///////////////////////////////////////////////////////////////////////////////