Computation of the convex hull of a set of lattice points in arbitrary dimension by Quick Hull algorithm, for arbitrary integer types, and check of the output. This example is used to evaluate the overflow risk when using limited integers for computing the convex hull.
#include <cstdlib>
#include <iostream>
#include <chrono>
#include "DGtal/base/Common.h"
#include "DGtal/geometry/tools/QuickHull.h"
template <typename Point>
std::vector< Point >
{
std::vector< Point > V;
Point c = Point::diagonal( iR );
double R2 = (double) R * (double) R;
for ( int i = 0; i < nb; ) {
p[ k ] =
DGtal::int64_t( round( (
double) rand() * 2.0 * R / (
double) RAND_MAX ));
if ( ( p - c ).squaredNorm() < R2 ) { V.push_back( p - c ); i++; }
}
return V;
}
template <typename Point>
std::vector< Point >
{
std::vector< Point > V;
Point c = Point::diagonal( Converter::cast( iR ) );
double R2 = (double) R * (double) R;
for ( int i = 0; i < nb; ) {
p[ k ] = Converter::cast(
DGtal::int64_t( round( (
double) rand() * 2.0 * R / (
double) RAND_MAX )) );
if ( ( p - c ).squaredNorm() < R2 ) { V.push_back( p - c ); i++; }
}
return V;
}
template < DGtal::Dimension dim, typename Integer >
bool
{
const auto V = randomPointsInBall< Point >( nb, R );
ConvexHull hull;
hull.setInput( V );
hull.computeConvexHull();
std::cout << "#points=" << hull.nbPoints()
<< " #vertices=" << hull.nbVertices()
<< " #facets=" << hull.nbFacets() << std::endl;
double total_time = 0;
std::for_each( hull.timings.cbegin(), hull.timings.cend(),
[&total_time] ( double t ) { total_time += t; } );
std::cout << "purge duplicates= " << round(hull.timings[ 0 ]) << " ms." << std::endl;
std::cout << "init simplex = " << round(hull.timings[ 1 ]) << " ms." << std::endl;
std::cout << "quickhull core = " << round(hull.timings[ 2 ]) << " ms." << std::endl;
std::cout << "compute vertices= " << round(hull.timings[ 3 ]) << " ms." << std::endl;
std::cout << "total time = " << round(total_time) << " ms." << std::endl;
std::cout << "Checking hull ... " << std::endl;
auto start = std::chrono::steady_clock::now();
bool ok = hull.check();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed_seconds = end-start;
std::cout << " ... in " << elapsed_seconds.count() << "s"
<< " => " << ( ok ? "OK" : "ERROR" ) << std::endl;
return ok;
}
template < DGtal::Dimension dim >
bool
{
const auto V = randomPointsInBallBigInteger< Point >( nb, R );
ConvexHull hull;
hull.setInput( V );
hull.computeConvexHull();
std::cout << "#points=" << hull.nbPoints()
<< " #vertices=" << hull.nbVertices()
<< " #facets=" << hull.nbFacets() << std::endl;
double total_time = 0;
std::for_each( hull.timings.cbegin(), hull.timings.cend(),
[&total_time] ( double t ) { total_time += t; } );
std::cout << "purge duplicates= " << round(hull.timings[ 0 ]) << " ms." << std::endl;
std::cout << "init simplex = " << round(hull.timings[ 1 ]) << " ms." << std::endl;
std::cout << "quickhull core = " << round(hull.timings[ 2 ]) << " ms." << std::endl;
std::cout << "compute vertices= " << round(hull.timings[ 3 ]) << " ms." << std::endl;
std::cout << "total time = " << round(total_time) << " ms." << std::endl;
std::cout << "Checking hull ... " << std::endl;
auto start = std::chrono::steady_clock::now();
bool ok = hull.check();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed_seconds = end-start;
std::cout << " ... in " << elapsed_seconds.count() << "s"
<< " => " << ( ok ? "OK" : "ERROR" ) << std::endl;
return ok;
}
int main(
int argc,
char* argv[] )
{
int dim = argc > 1 ? atoi( argv[ 1 ] ) : 3;
int nb = argc > 2 ? atoi( argv[ 2 ] ) : 1000;
double R = argc > 3 ? atof( argv[ 3 ] ) : 100.0;
std::string i = argc > 4 ? argv[ 4 ] : "int64";
bool ok = true;
if ( ( i != "int64" ) && ( i != "bigint" ) && ( i != "allbigint" ) )
{
ok = false;
}
if ( (
dim < 2 ) || (
dim > 6 ) )
{
ok = false;
}
if ( ! ok ) return 1;
if ( i == "bigint" )
{
case 2 : ok = checkQuickHull< 2, DGtal::BigInteger >( nb, R ); break;
case 3 : ok = checkQuickHull< 3, DGtal::BigInteger >( nb, R ); break;
case 4 : ok = checkQuickHull< 4, DGtal::BigInteger >( nb, R ); break;
case 5 : ok = checkQuickHull< 5, DGtal::BigInteger >( nb, R ); break;
case 6 : ok = checkQuickHull< 6, DGtal::BigInteger >( nb, R ); break;
}
}
else if ( i == "int64" )
{
case 2 : ok = checkQuickHull< 2, DGtal::int64_t >( nb, R ); break;
case 3 : ok = checkQuickHull< 3, DGtal::int64_t >( nb, R ); break;
case 4 : ok = checkQuickHull< 4, DGtal::int64_t >( nb, R ); break;
case 5 : ok = checkQuickHull< 5, DGtal::int64_t >( nb, R ); break;
case 6 : ok = checkQuickHull< 6, DGtal::int64_t >( nb, R ); break;
}
}
else if ( i == "allbigint" )
{
case 2 : ok = checkQuickHullBigInteger< 2 >( nb, R ); break;
case 3 : ok = checkQuickHullBigInteger< 3 >( nb, R ); break;
case 4 : ok = checkQuickHullBigInteger< 4 >( nb, R ); break;
case 5 : ok = checkQuickHullBigInteger< 5 >( nb, R ); break;
case 6 : ok = checkQuickHullBigInteger< 6 >( nb, R ); break;
}
}
return ok ? 0 : 1;
}
bool checkQuickHull(int nb, double R)
bool checkQuickHullBigInteger(int nb, double R)
std::vector< Point > randomPointsInBallBigInteger(int nb, double R)
boost::int64_t int64_t
signed 94-bit integer.
DGtal::uint32_t Dimension
Aim: a geometric kernel to compute the convex hull of digital points with integer-only arithmetic.
----------— INTEGER/POINT CONVERSION SERVICES -----------------—
Aim: Implements the quickhull algorithm by Barber et al. , a famous arbitrary dimensional convex hull...
int main(int argc, char **argv)
std::vector< Point > randomPointsInBall(int nb, int R)
unsigned int dim(const Vector &z)