{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "orig_nbformat": 2, "kernelspec": { "name": "python3810jvsc74a57bd01b27a185e5e38addd349bee67c436665dc7832e161e2a923b2540665280bf8fe", "display_name": "Python 3.8.10 64-bit ('base': conda)" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from fmskill import ModelResult, PointObservation, Connector\n", "import fmskill.metrics as mtr \n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " 'OresundHD'\nFile: ../tests/testdata/TS.dfs0\n- Item: 3: Klagshamn: Surface elevation (meter)\n\nTimeaxis: TimeAxisType.EquidistantCalendar\nNumber of items: 12\n" ] } ], "source": [ "fn = '../tests/testdata/TS.dfs0'\n", "mr = ModelResult(fn, 'OresundHD', item='Klagshamn: Surface elevation')\n", "print(mr)\n", "print(mr.dfs)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "PointObservation: Klagshamn, x=366844.15, y=6154291.6\n50328 2015-01-01 01:00:00\n" ] } ], "source": [ "fn = '../tests/testdata/smhi_2095_klagshamn.dfs0'\n", "o1 = PointObservation(fn, x=366844.15, y=6154291.6, item=0, name='Klagshamn') \n", "print(o1)\n", "print(o1.n_points, o1.start_time)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "c:\\users\\jem\\source\\fmskill\\fmskill\\connection.py:181: UserWarning: Item type mismatch! Obs 'Klagshamn' item: Water Level, model 'OresundHD' item: Surface Elevation\n warnings.warn(\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ " with \n", " - obs=Klagshamn(n=50328) :: model=OresundHD" ] }, "metadata": {}, "execution_count": 4 } ], "source": [ "con = Connector(o1, mr, validate=False)\n", "con" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "\n", "PointComparer: Klagshamn" ] }, "metadata": {}, "execution_count": 5 } ], "source": [ "cc = con.extract()\n", "cc" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-06-03T17:22:06.657120\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEgCAYAAACadSW5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABoq0lEQVR4nO2dd3yV1f343yebBLJDBgESIGEFSABREAVEFEdFrYq2Wkdb1Gq1W21ttfWrtdXW+qu2Fa3Vtta9t+JAERAIYRPCyCR7kZCQfX5/3Ptcbm7ueO6+Nznv1ysvyDNPnvU5ny2klCgUCoVC4Swh/h6AQqFQKIITJUAUCoVC4RJKgCgUCoXCJZQAUSgUCoVLKAGiUCgUCpdQAkShUCgULqEEiEIBCCGyhBBSCBHmxXMsFUJUeev4CoWvUQJEMaIQQpQJIc42+/1KIUQLMNGPw1IoghIlQBQjFiHEtcDjwAVAuZ+Ho1AEHUqAKEYkQog1wJ+Ac6WUG62sv14IsV8I0S6EOCKEuNFi/S+EEDVCiGohxPeM5q8pxnXnCyH2Gfc9KoT4mcW+PxVC1Bv3v95s+QVCiCIhRJsQolIIca/ZOs3Edr1xXYsQ4iYhxClCiF1CiFYhxGNm218nhNgghHjYuG2pEOI8j11AhQLwmr1XoQhgbgYWA8ullDttbFMPXAgcAc4E3hdCbJVSbhdCrAR+AiwHSoEnLPb9J3CFlPJLIUQCkG22Lg2IA8YBK4BXhBBvSClbgA7gO8BeIA/4WAixQ0r5htn+pwI5xjG9BXwAnA2EA0VCiJellOvNtn0WSAbWAP8UQoyTqn6RwkMoDUQxElkBbAZ229pASvmulPKwNLAe+Ag4w7j6CuBfUsq9UspO4LcWu/cCM4QQsVLKFinldot1v5NS9kop3wOOA1ON5/xcSrlbSjkgpdwFPA8ssTj2fVLKLinlRxgEzvNSynop5VHgS6DAbNtyKeWTUsp+DIIkHUjVd4kUCscoAaIYidwE5AJPCSGEtQ2EEOcJITYLIZqFEK3A+Rhm8gAZQKXZ5pUWu3/TuH25EGK9EGKh2bomKWWf2e+dwGjjOU8VQnwmhGgQQhwzjjOZwdSZ/f+Eld9Hm/1eq/3HKOiwWK9QuIUSIIqRSD0G89MZwN8sVwohIoFXgYeBVCllPPAeoAmbGiDTbJfx5vtLKbdKKVcBY4E3gJd0jut/GMxS46WUccA/zM6pUAQcSoAoRiRSymrgLGClEOIRi9URQCTQAPQZnc/nmK1/CbheCDFdCBEN/EZbIYSIEEJ8WwgRJ6XsBdqAfp3DGgM0Sym7hBALgG+59McpFD5CCRDFiEVKWYlBiFwG/N5seTtwGwZB0YLhQ/6W2fr3gf8HfAYcAjYZV3Ub/70GKBNCtGEwQ12tc0g/AH4nhGjHIJT0ai4KhV8QKiBDoXAPIcR0YA8QaeHfUCiGNUoDUShcQAhxidFclQD8AXhbCQ/FSEMJEIXCNW7E4CM5jMHHcbN/h6NQ+B5lwlIoFAqFSygNRKFQKBQuoQSIQqFQKFxiWNbCSk5OlllZWf4ehkKhUAQNhYWFjVLKFGf2GZYCJCsri23btvl7GAqFQhE0CCGcbmmgTFgKhUKhcAklQBQKhULhEkqAKBQKhcIllABRKBQKhUsoAaJQKBQKl1ACRKFQKBQuoQSIQqFQKFxCCRCFwoccqW5gzZ/+w/OfbPH3UBQKtxmWiYQKRSBS39LGip8/wpGaRp75cCNL5uSSkRzv72EpFC6jNBCFwge0tHdw/l1/pab5GE///Fp6+/p5Z/Mufw9LoXALJUAUCi/TcaKblXc8yu7So7x8z41ct3IRqQmxbNx72N9DUyjcQgmQYcizH27k9sdeoK3jhL+HogAee+MzthSX8eKvv88Fp81GCMGsSePYW1bt76EpFADsL69xaT/lAxlm7DpcxXV/eAaA6MgIfv/9S/07IAX/fH8Dy/KncvHiAtOyvKwMnnjnC/r7BwgNVfM4hX/5bMcBl/ZTT+4w44XPthIWGsJpMybx8vpCfw9nxFNe28TBqnouWjRn0PJpE9I40d1LTfMxP41MoTjJwao6l/ZTAmSYsa5wP6fNmMTqpfM5XN1AeW2Tv4c0oiksMVTIPmN2zqDlWWnJAJTWNPp8TAqFJYeONri0nxIgw4hjxzvZVlLO8oJpnGn8YH1dXOrnUY1sDlcbXswpGYP79GQbBUhZrRIgCv9TojQQxc7DVUgpOXV6NjOzMggLDWHHoUp/D2tEc7imgaTYGOJGRw9aPiE1EYCyOqUhKvxLb18fR2qUBjLi2XHYICzyp4wnMiKcGRMz2HlYCRB/cri6gckZQ7uERkWEk54UR5kyMSr8TGlNE339Ay7tqwTIMGLHoUrGJowhLTEOgDmTM9l5uMrPoxrZGATIWKvrslKTlABR+B1XzVegBMiwYsehSvInj0cIAcDU8akcbWyl40S3n0c2Munt66OirtmqBgIGR3qp8oEo/IwSIAp6evvYW15D/pTxpmXah8tV+6bCPcrrmukfGLApQLLTk6isb6avv9/HI1MoTrL7yFFS4se4tK8SIMOE4opaenr7yJ98UoBMGWcwnWiRQArfol13mxpIajJ9/QNUN7b6cFQKxWAKD5YzP3eiS/sqATJMMHega2gfLldjvBXu4VCApCUBKDOWwm90dnWzt6ya+VODUIAIIVYKIQ4IIQ4JIe60sv7bQohdxp+NQog51o6jMPg/oiLCyck86bBNGBNDwphopYH4icPVDaZoK2toAkQ50hWepL9/ACmlrm13HKpiYEAGnwYihAgFHgfOA2YAVwkhZlhsVgoskVLOBu4D1vp2lMHDzsNVzMoeR1ho6KDlkzNSlA/ETxyurmdSerIpqMGSCWMTEUIoAaLwGE3HjpPznbs5+2eP6BIi20rKAJgXbAIEWAAcklIekVL2AC8Aq8w3kFJulFK2GH/dDGT6eIxBgZSSHYcrB5mvNCalp3BElcvwC7ZyQDQiI8LJSIpTJiyFx3j2o02U1jTyaVExm/Yecbj9tgPlpCXGutzYzJ8CZBxgnuVWZVxmi+8C73t1REFKTdMxmts6mD1p6OWbnJFCWW2jivTxMVJKjtQ02hUgANnpyUoDUXiMNzbsICstCSEEnxTtd7j9tpJy5udm2dSSHeFPAWJtxFZ1LiHEMgwC5A6bBxNijRBimxBiW0PDyDLZaHHc0yakDVk3Kd0Q6VPV0DJkncJ71LW00dnV41CAqGRChac40d3D18WlXHbmPHIzx1J00H4ViuMnuiiuqHXZgQ7+FSBVgLnNJRMY0mFHCDEbeApYJaW0+aZJKddKKedLKeenpNh/aYcbByprAcjNTB2yblK6MRekWplJfImjCCyNrLRkKhua6e3r88WwFMOYzfuO0NPbx9L8XOZMHm+KzLRF0cFKpJRBK0C2AjlCiGwhRARwJfCW+QZCiAnAa8A1UsoSP4wxKCipqmdUZDiZKQlD1mkfMBWJ5VtOChDrZUw0stOTGBiQVDW0+mBUiuHM5ztLCAkRLM6bQv6U8ZTWNHLseKfN7bcdKANcd6CDHwWIlLIPuBX4ENgPvCSl3CuEuEkIcZNxs98AScDfhBA7hBDb/DTcgKakso6ccamEhAy9nZkpCYSFhqhILB9zuLqBkBBhCtW1RVaq6gui8Azrd5ZQMGUCcaOjTf7Q3aVHbW6/raScccnxptp5ruDXPBAp5XtSylwp5WQp5f3GZf+QUv7D+P/vSSkTpJT5xp/5/hxvoFJSVUdupvWZbmhoCFlpySoSy0h3Ty///XgzTceOe/U8h6sbGJ+SSES4/a7R2enGviB16v4oXKerp5fN+46wZE4uALOyDQJkb9kQr4CJbQfK3TJfgcpED3oGBgYor2tikh1b++SMFGXCMvLA/97nmt8/zUV3P6472coVDh2td+j/AMhMiSckRCgflcItvtpziO7ePpblTwVg/NhExkRHsafUugBp6zhBSVUd83Oz3DqvEiBBTkPrcbp7+5gwNtHmNlMyUiipqmNgwLWa/8MFKSX//XgzABv3HuazogNeO09xRa3VqDhLwsPCmJSeYgqEUChc4f2v9xARHmYSIEII8rIy2FNm3YS17YCh1bLSQEY4FfXNAHYFSEHOBNo7u0Z8TazyuiaO1DTy8E2XkRI/hr+8us4r56lraeNYxwmmjXcsQABmTExnf4USIArX6O3r43+fbuGceTOIGRVpWp6XPY7dR45a1bQ37j0MwGkzJrl1biVAgpyKekNk83g7AkSLstDKFoxUtMzcZflTufmiJbyzeTcH3eiFYIv95TUATJ+oX4CUVNWpUF6FS/z55XXUNB3jlouXDlqel51BU1sH9S3tQ/bZuPcwM7MyiLdotewsSoAEOZX1hgRBexpIXnYGcTGj+NRLJptgYfP+I0RHRTB7ciY3X7SE8LBQHn31E4+fp9ioTUybkK5r+xkT0+nt61d+KoXTvPXVDn79rze59IwCVi7IG7RuZlYGwBAz1sDAAJv2HWHRzMlun18JkCCnor6ZmKhIEsbYnkmEhYayYt50Ptiyx6uO40Bn15EqZk/KJCw0lLTEOFYvnc9/1m2mq6fXo+cprqxl9KhIxumsLzTD+KLvK6vx6DgUw5e+/n5u++sLrPr135g9KZN//vzaIdvkZRkisSwd6XvLqmk93slCN81XoARI0FNR38yE1ESHtWxWLsjjaGOr3bC+4U5JZT1Tx5/M1v/OOafR1tHFO5t2efQ8mgNdb30hzVeyr1wJEIU+Hn31E/76+qfcevEyvvjLz6yaosYmjCE5bjR7LHJB3tm8G4Bz5lsWP3ceJUCCnIq6ZsZbyUC35NxTZgLwwZa93h5SQNLe2UV1UytTzRzby/KnkZ4Ux3PrvvbouYoranU70AFiRkUyMTWJ/RWuCZDDR+u5c+1rPLfu6xGtYY4U+vr7eeSVdZw9bzp/ve0qoqMirW4nhCAvO4NdR6oGLX9jQxHzp05knI7vhiOUAAlyKuqb7fo/NDJTEpiZlcGH20amANGc5eYJl6GhIVx11gLe/Xo3zW0dHjnP8RNdVNQ36wrhNWfGxHSXNBApJRfd/Th/eOEDrn7gn/z8H684fYxAoq65jVfWF9LTqwIKbPH1/lKONrby/QvOcLjtGbNy2FZSTkOrwZG+v7yGLcVlXLHEMznZSoAEMd09vdS1tDEh1bEAATh77nQ27D7kcZt/MHCg0iBAplpoBt9evoDevn5e/WK7R85TUmm7MrI9ZkxMp7iilv5+53J1dh6uYl95DU/+9Bp+sGopf3r5Yz7aGpyTBCklK37xCJf/9gl+/LeX/D2cgGVd4X6EEKyYN93htpeeMZeBAcl/jPlPT7//FWGhIXznnIUeGYsSIEGMVqJdjwYCsHzuNFPJg5HGwaP1wNDquAU5E8jJHMuLn2/1yHmKjQmB08bri8DSmDVpHF09vabS/Hr5eNs+AC44bRZ/vvlyJmekcMeTrwVl0ui2A+XsPnKU8LBQnnz3S6obW/09pIBk3fb9zM+dSMKYGIfb5k8Zz/K50/jjCx/SdOw4//54E99YOIfUxFiPjEUJkCBGSyIcn6JPgJwxOwc4mUQ0kqiobyYtMZZRkRGDlgshWL30FD7bcYC65ja3z1NcUUtIiGDKOOdaCszNmQDA9oMVTu23/WAFWWlJpCfFExkRzt1XX8COQ5Ws3xl8xas/21EMwKd/+gm9ff38d91mP48o8NAmgMsKpure53fXraKupY1xV/yC+pZ2bv/mWR4bjxIgQYwpC12nCSt+dDSTM1IocvIjNRyoqGuyqamtXjafgQHJK18Uun2e4opaJqWnEBkR7tR+0yemExUR7rQA2VN21BSuCYa/JTYmimc/2uTUcQKBr/YcJjczlcWzcjg9bzLPfLhJBQVYsPvIUfr6B1gwLUv3PovyJnP9ykV09/Zx/cpFLJmjX/g4QgmQIEYTINb6gNiiYMp4pz9SwwF7wQZ52eOYmZXBi5+53y2guLJ2UKiwXsJCQ5k9aRzbD5br3qe3r48DlXWmhDGAUZERXLFkPq+s3053kPm69pQeJX+KocfctecsYn95jalmk8JAYYnhejjbw+PJn36HvU/fy1M/+45Hx6MESBBTWd9CakIsUU7MdufmTuRITSOtdhrNDDeklMZ8Gdu9OVYvm8+GPYfcav3b3z9ASWWdUyG85szNmcj2gxW6/RcHq+rp7esnLztj0PKLF+fT0dUdVGasE909lNY2MWOiwXd0xdJ5REWE88yHG/08ssCisKScxNgYJtp5lq0RGhrCjKwMqz2D3EEJkCBGbwivOfmTMwHYdbjKwZbDh6a245zo7rWbL3PlslMGVet1hYr6Zrp7+4ZEeullbs4E2jq6dPdu0ZJCzTUQMNT6iooI592vd7s0Dn9QUlWHlJLpRgESNzqaS88o4PlPt4zIqEFbFJaUMy9ngu4kVW+jBIgNpJQBH8lSUd/M+LHOJQPNmGj42BSPoPLhFXWOKxbnZKayND+XJ9/90uX7rpVkd8WEBTAv1zlH+p6yakJCxJCQ4eioSJblTw2qpNHyWkNR0EnGBlsA156zkJb2Tj7Yssdfwwoo+vr72VNWTYEx4CIQUALECv39A6y841HiL/qRx8tceAopJRV1zmsg48cmMCoy3JQXMRKo1MKdHQQbrLngTI7UNPLJ9mKXznPAxRwQjbzscUSEh5ns3I7YU3qUKRljh0SWAayYN52SqjoqjX6yQMdaW4JlBVOJixllKr0x0jlS3UhvX7/JzBcIKAFihQ+27uGjbfvo6ull9X1r2X0k8Mw9rcc76ejqdlqAhISEkJuZSrGLZTOCET0aCMClZxSQFBvD2ne+cOk8BypriR8dTUr8GJf2jwgPY1b2ON0ayN6y6iHmK43lcw1JZq4KQ19TUd9MZHjYoGsXHhbGygUzeXfzLhWNBaZ31tUJijdQAsQKL31eSFJsDIf/ez8xUZHc9tgL/h7SEEw5IE4KEDA8gCNJA7H2cbJGZEQ431p+Ku9s3k3HiW6nz3Ogso6p41Pdsk/PzZlAYUm5ww9mV08vB4/WD3Gga+RlZzA2YQzrtu93eSy+xFZR0OUF06ltbuOQMRE0mPho615Ou+X3vL1xp0eOV2wykSoBEtB8ufsgS+bkMn5sIj+9fAWf7yihVKdj01do48lKcy4aAwwPYGlt44hxTuqtWAwGLaSrp5cPtjpvdy+uqHX75Z6XO4GW9k7KjD4Be+caGJDkZY+zuj4kJITlBdP5ZPv+oJi92zLHLp41BYANuw/5ekhu0d8/wJo//5ev95fy3Yf/TWeX8xMSS4oraklLjHW7CZQnUQLEgobWdkprGk3NVi5fMg8g4HwhmgDJTkt2sOVQpo1PY2BABuWszhUq6pt1Z+svnjWFpNgYXt+ww6lzaNV+3TUvaPH9jvJBTBFYE61rIGAoXVPb3BYUfUZsRRROm5BGUmwMG/YElwDZcbiS8rom1lx4Bg2t7Tz7ofuJnVqbgEBCCRALtEgazbY8KSOFzJQEj5b/aOs4we/+/Q5bi8tcPkZpbRNjoqNIjHVcD8cS7SE8MEIisSqdCHcOCw3lokVzeGfTLqcqwmo1rKZmuhaBpTEzKwMhxJAmQJbsKTXUjMoxqy5sydmaH6QosM1YvX19VDcds3qPhBAsnjWFL3cf9MPIXEfLwfnNNRcye1Km25UBpJQUV9YyXWeXS1+hBIgFJaay3yc/BAtnTGKTBwsQ3v30m9zzzFucd+ejtHd2uXSM0ppGstOSXbK3a3+b1no1UOnt6+OeZ97i1kf/xwEXx2r6OOks9wJwyeICjnWc4Itd+hPxDnjIPj0qMoLJGSlDmgBZsresmtzMVCLCw2xuMzEtickZKawrDGwBcrSxFSmlzXu0YFo2B6vqXX5X/EFhSTnjxyYwLiWB75xzGl/vL3X5GQaDZaSlvVNpIIFOSWU94WGhgzI9T5sxifK6Jupb3C+2193Ty3/XbSYrLYmmtg6Xy4iX1jYOipl3hphRkYwfmxDwAuT/vfYpv/v3O/zj7S+Yfv09rLzjUVNfA72YPk5OBBssK5hKaEgI63fqn/VqVWTtaQR6mZmVzl4HvUH2lFXbdKCbc/a86Xy+s4S+/n63x+Utjhqr7o5Ltp7TpFkD9pUHTzfNPaXVzDL6p761fAEhIYLnPnG9cZn2rrpa5cBbKAFiQUlVHVPGjSU09OSlyTM+wK52jDPng617aWnv5PHbvkV2ejIvr3e+/pKUktLaRrJdFCBgmCkHeiTW/z7ZwsIZk6h++Y/8+poLWL+zhEvv+btTTmG9IbzmjB4VRUHOeKfMJkWHKpmZlWFXI9BLXtY4SirrbNayOn6ii9KaxkFFFG1x9tzptHd2uWUu9Tb1LYZJQWqC9RLj2vvnyKwXKPT191NcWWsSfOlJ8SyZncuLn21zOaDB1CZAaSCBTVltI1kWdWa08gqecEY+/+kWkuNGs2L+dC44dRaf7yxxuuhdXUsbnV09LjnQNaaNT6O4sjZgI3SqG1vZfrCCixbNYWxCLL+97iL+fPPlbNh9iC3FpbqPczLc2bmM/cV5U/h6f6numfuOQ5UUGAsBusvMrAz6BwZs9gbZXz7YT2ePZflTEUIEdDhvfatBsx9rI8w6Oz2Z6KgIh2a9QOHQ0Xp6evsGRcitXjafkqo6drpYQqi4opboqAinCqf6AiVALKhsaBnysclMSWD0qEj2u2nyOX6ii7c27uSKpfMJDwvj3FNm0tnV43SEycEqQ/RUroslM8Awk2nv7KK2+ZjLx/Am7xnrOF24cLZp2bfPPpWoiHCnquY62zNFI3/KeLp6enVFqpXXNlHX0kbBFM+UmNAEgxZpZYn2IdVjwkqKG03BlPEBnVBYZ9RAkuNGW10fEhJCzrixTjfb8hfWapR988y5hIaE8OJnrjUuK66oZWpmqseLIbqLX0cjhFgphDgghDgkhLjTyvppQohNQohuIcTPvD2erp5eGo8dH/KxEcJQb8jd7O23Nu7kRHcvVy47BYCl+bmEh4XyoZMtSLUXKWec6/Z2zZEeqGastzftYsLYxEEvYWzMKBbNnMxnOw7oPk5lfQtJsTHEjIp06vya/Xr3EcezXi1nZMV8xy1G9TB1fCqhISE2TTZ7yqqJighnUrq+plXL505j497DLiVH+oL6ljYSxkTbNf9NzkjhcHWDD0flOto4zQNxkuPGcPa86bz4uWtmrOLKWqYFWAQW+FGACCFCgceB84AZwFVCiBkWmzUDtwEP+2JMWilva+aOrNQkyuvcqyv0wqdbyUxJ4PQ8Q47J6FFRLM6bwkfGtqR6OVg11NHvLJoD3tUESSkl73+9m7JazydYnuju4ePCfXxj4ewhUWZL83PZebiK5rYOXceqqLfdSMoe0yemExIi2K3DbPL+lj1MTE3yWIZwZEQ4OZljbWoge8uqmT4hbZCfzh5nz51Ob19/wIbC1re22zRfaUwZN5YjNY1O94z3B2W1TSSMiWZMdNSg5auXzqe0ptHpHicnunsoq20KOP8H+FcDWQAcklIekVL2AC8Aq8w3kFLWSym3Aj5JmdYEiDU744TUJCobml32GTS3dfDB1r2sXjp/kBq6NH8qu44cdao/R0lVHZMzUnR/QKwxITWRkBBBqYsC4OX1hZx/11+Zf9P9Hs9of+3LIk5093LRojlD1p05OwcpJZv26cvL0bLQnWVUZAQ548Y61EB6evv4ZHsx5y3I82iJ7ZlZGeyxY8KylYFujcWzphARHhawZqz61nabDnSNyRkp9Pb1u9WvxVeU1zUN8aOCoU9LSIjg7U3OlTbRSt0rATKYcUCl2e9VxmV+o9KOvXzC2EROdPfS1HbcpWO/9uV2evv6uWr5gkHLF+dNMXwQnUhUPHi0bpB67ArhYWFkJie4rIE8/8kWAJraOnj/a8+U2177zhcs/+mf+f6f/k3+lPGcPW+oSWhuzkSEEBSW6Cs46EwWuiWzssc51EC+2nOI4ye6OW/BTJfOYYu8rAwOVzcMKYHReryTo42tuhzoGtFRkSyaOYmPC53TdH1FXUubYw0kw2CuPVQd+NUTyuuarVoHEsbEMDdngtONvgI1hBf8K0CsTddcDgkSQqwRQmwTQmxraHDNVlpljEfPTIkfsk5rRlRZ79oM6PlPt5KTOZa5FrX8T52eTWhICF/t0SdABgYGOHS0wS3/h0Z2erJLGsjAwACf7ijm+pWLiImK5NMi92e2hSXl3Pjn/7K/ooYzZuXw9v23WnUYjomOYtqENF1hqceOd9LW0eWSCQtg1qRMjtQ02q1j9P6WPYSHhbKsYJpL57BFXvY4Q/axReCGZtbS40A357wFeew8XMWRAPQj1Le2M1aHBgIEvB9ESklZbZNN8/KS2bls3l/Kie4e3ccsrqhFCOGRHCNP408BUgWYxz1mAi4Heksp10op50sp56ek6HMuWlJZ30xibAzRUUMdrpoZpMKF/grVja18tuMA3zprwRAzR8yoSObmTNAdiVXV0EJXT69bEVgak9KTKa2xX7TPGpX1LbR1dHHajEksnjXFKae2Lda+8wXRUREUP/M7Pvzjj+yGK87Pnci2kjKH5kRTjwkXTFgAMyamI6W0G2jw/pY9nDErZ4i92100AWGpAWkRWM5oIABXnWXQfN1JZvMGvX19NLd1ONRAMlMSiAgPC/j6bc1tHXR0ddsscro0fyo9vX18vV9/KHpxRS1ZaUlW+774G38KkK1AjhAiWwgRAVwJvOXH8VBZ32Kz7almBnGlQc8HW/cgpeQyY2FGSxbPMuQc6Km95IkILI3s9GSqm1qd9mGY6j6NT+XM2TnsLaumpV2fU9sanV3dPP/pVi47cx6xMaMcbj9/6kRqm9uoNmqMttC0RVc1EK1xzz4bWeGV9c3sKa3mvAV5Lh3fHlPGjSUyPGxIJNbeshpGj4p0oZFYIsvyp/L0+18FlCO68ZjBJOxIgISGhpCdlhTwGkh5nWFCZksDWTxrCkIIPndi0lVcWRuQ5ivwowCRUvYBtwIfAvuBl6SUe4UQNwkhbgIQQqQJIaqAnwB3CyGqhBD2dV03qGpssWkvT44bTUiIMMWsO8OmvUdIGBNts5PY6XmT6erp1dVIyJQD4qYPBE5W8nU2kkqr+5SbmcqCaVmA/jas1vho2z7aO7v4zjmn6dr+lKmGc25z0LnPWpc7Z5gybixhoSE2S2ho0XMrPez/AENRx+kT061qIDOzMlzKB7j14mWU1Tbx5lc7PDRK96lvtZ+Fbs6UcWM5dDSwBYhWhn+iDa03fnQ0+ZMz+WKXvoi4gYEBDlQGXhVeDb/mgUgp35NS5kopJ0sp7zcu+4eU8h/G/9dKKTOllLFSynjj/90vSGWDyvpmm6aT0NAQxsaPcSnxbtO+I5w2fZLNl35xXg6gr+dBSVUd0VERZCTHOz0OS7JdDOUtqapn9KhI0hLjTOXH3SmV8eHWfYweFcmZs3N0bT9nciahISEOwyHL65oICw0hLTHOpXFFhIcxZdxYmxUIPi0qJi0x1mlzkl5mZY8bkn29x04XQkesOj2f7PRkHnl1nSeG5xHqmo1Z6AmOuzhOyRjLoer6gK2eACc1kCw7VSJOmzGJwoPlDAw41gQr61s40d0bnAJECLFLx88nvhqsN+k40U1TW4fNmQNAWmIctc3Oya8T3T3sK68xzdStkZoYy4Sxibp6YR88Ws+UjLEeCRnVNJBSB82LLCmpqmPq+DSEECSMiWFyRopDbcAeG/ceZvGsKYSH6asjFR0VycysDLaVlNndrrS2kYmpSW6FO8+YmG7VhCWl5NOiYpblT/No+K45edkZHG1sNZkH61vaaGhtN9WGcpbQ0BBuv3Q5G3YfCpjaWJoGMjZejwaSQmdXz5BJ3M7DlTz84kc8/f4GvzdJK69rZvSoSBLG2G76NC93Im0dXbq0KVMNrCA1YYUC37DzcxHgmsc6wNDjcE1LjKW2xTkN5GCVYcY0w8FLX5AznqJDjs1AR2oamTLOM5c8LTGWyPAwFzSQwWHE86dOdDo5SqOnt4/9FTXkT3aujtS83AkOQ3lLaxpd6thozoyJhnBay3plByprqW1u46yCqW4d3x5aNrzmBzkZgeV6tPsN551ObEwUj7wSGFqISYDo0UCMfj/zD++zH25k7o3/x8+feIXvPvRv5t34f+w+4lq9KU9QVmeYtNibVMyfatDa9UwYTSG8waiBADdKKcvt/JQBP/DBOL2OI+cXQFqC8xrIyT7G9n0WBVMmUFJVz/ETtnseDAwMcKS6QXcJC0eEhISQlZbkVChvV08vZbVN5JqFFM7PzaK8rsnpUutg+BD39vUze1KmU/vNyh5HQ2u73RL7pbVNbhWcBIMG0j8wwEGL6J9PiwxO0LM8HL5rTp5JgBjMWNZqLDnLmOgovnveYl5ev42jAZCUV9/STkR4GHE6gidOChDDvejq6eW2x17gzNk51L/2J9594Ic0tXVwys0P8Oun39RdrcCTlNc1O5y0zJiYTmR4mG4BkjAmmhQHQQb+wq4AkVJucHQAPdsEA3ocrmmJsdS1tDllgz1QaYzhdhA1lT9lPFJKu5nPNU3H6O7tc7kPiDUmpac4pYEcPtqAlHJQ2Y78KYaPv566UZbsMu4za5Jzs2pHBQc7TnTT0NruVsl7gBlZ1iOxPi0qZsLYRLePb4/MlATiYkaZHOlFhypJio0hPck1n47GrRcvo39A8sQ7X3himG5R32pIItRjBpyYmkhoSIgpmfDDrXtp6+jirqvOIyV+DOefNotdT/2Gbyyczf3Pvcc5v/iLLj+DJymvs50DohEeFkb+lPG6zL7FlTVMM5qLAxFdxmEhxIVCiCIhRLMQok0I0S6E8Joz2x9U1DUTGhJCRlK8zW3SEuPo7eunpV1/2ZHiilompiZazS0xx9JcYY0jxg+9llTlCZxNJjR1bDTTqBx9zO1RXFFLSIhwOqpMm53bOqcWDeOuBpKbmUpIiGCf2XkGBgb4fMcBlhVM9eqLLYQgLzvDJEC2HijjlGlZbp9zUkYKS+fk8vqGIk8M0y30ZKFrhIeFkZWWZDJhvfT5NpJiY1hmZkYcmxDLy/fexNM/v5bCknKflm9p6zhBS3unXT+qxrzciWw/WOFQwO0vr/VYjTVvoNe7+BfgWiDJGBE1RkrptXBaf1Be10RmSoJdh2uq0U7rTCRWcYW+ByArLYmYqEj2lNmexWsx8JM8KUDSkmlp79Rdi0sL4TXXqNIS44gfHc1eFzrGHTxaR1ZqktONmNKTjOe0ESGlCUV3NYRRkRFMSk8ZpIHsOnKUprYOlnvRfKUxPzeLwpJyWto72FtWbQphdpcLF85mT2m1R2tLbd53hPU7nUsqNWSh6zfPTB2fyt6yak509/DWxp1csrjAavDF6mXziYoIN7UF8AV6IrA05udOpL2zyxSWb42G1nbqWtqcrjrgS/QKkEpgjwzk+Dk3qahvdpgvoIWD6vWDaFnMeiIoQkJCmJmV7kADaSAkRLic12CN7HSDuq23xEVJVR1pibGDEv6EEMzMSnep4dbBqnpyXMhp0c5pS+BqZjl3NRAwaIdbik9mvn9ibM7k6fIl1jh73nROdPfyp5c+ZmBAsmBatkeOe8YsQ8i0MzXY7PHu5l0svPVBlv74T3zkRHuC+pZ2XRFYGgumZbOvvIaX1xdy/EQ3Vyydb3W7UZERzMudwBYfRptp1br1aCCnGKMy7ZmxdhmDAeZMds4/6Ev0CpBfAO8JIe4SQvxE+/HmwHyNoQCaIwFieND1RmIdbWylo6tbdwRFnoPifUdqGhmfkuiRtqkaMyYa24XqND9pIbyWzMzKcFoDkVJy8Gi9y1n1ednj2FtWbdUnVVJVx5joKKdmt7Y4Z/4MyuuaTALy5fWFzJo0zifd4ZbMMfSMuf+59wgPC2Vpfq5HjjtnciZREeFs2nfE7WP19fdz81+eY+r4VBLGRPP4m5/r2k9KqauUuzmnzZiElJLr/vAMaYmxg8xXlpwyNYuiQxU+6wevJeTqabMwbUIa0VERdsOpte6Fc5yMUPQlegXI/UAnEAWMMfsZFvT3D1DV0OKwZpKzGojWgMpRBJaGo8iiw9UNHvV/AORkjiUqIlxXq00pJfvKa6wKxKnj02hu63Aq8qW+pZ32zi6Xi8TNnJhBS3unVZPi3rJqZkxM94iPYtXpcwgPC+Vvb33OrsNVfL2/lGvPWej2cfUwJjqK7xjPdd6CPEaP8kzNrYjwMOMMXX9NJlu8u3k3lfUt/P57l3L5knl8vvOAro92e2cXXT29urLQNZbMySV+dDRSSn6wailhoaE2t50/NYsT3b0eaUWth/K6ZqIiwnX9PWGhoRRMGW83l6mwpJz0pLiAjcAC0DuVTZRSnuPVkfiR6qZW+gcGHM4c4mJGERkeRp2d0FFznI3hNi+gt9zKQ3ikpoFvLBzaI8MdwkJDmZmVYVKX7VHTdIyW9k6riWxaZNiRmgYSY2N0nfvgUffqemnO+z2l1aRbBD/sK6/h/FOt16jqLCqic8tWQuPj6G89RvSCU4guKLB5nvSkeK47dxFPvP0Fb2zYQcKYaK47d5FLY3aFP998OfNzJ3Lx4nyPHnfO5PE8t+5rpJRuCdq/vfk545Lj+cai2XT39rL2nS/ZebjKVKXAFs7kgGhERYTz4R9uZ0txKTd+40y722r+oq0HypjtAzNQeZ2heZneazk/N4sn3/uSvv7+IYJQSskn24u9GibuCfRqIOuEEMNWgOitmSSEcCobvbiiltiYKN2lNGZlGx5ya36QjhPd1Le0k+1mYpw1CqaMZ9uBcodF9uzlIWi5KUecCAnWHIiu+EDgpMC1jMRqOnacupY2k3nOnM6iIiquv4GGv/yF2nvupeHRR6m4/gY6i+xHJP3p5su5Yul8UhPG8Mo9N5Fko3+3N4iNGcVNFy1xuSSLLWZmZXCs4wRHHRSltEdJZR0fbdvHmgvPJCw01PTR3q6jX0t9i5aF7twMe8H0bG695CyHlQumjEshLmaUR7QsPRjKuOv3T86fOpHOrh72W6l0sLW4jLqWNs6Zb9mkNbDQK0BuAT4QQpwYjmG8epIINVIT9NfDOlBV51QM99iEMSTHjR5S/wjMwlK9kHewrGAqrcc72XG40u52mn/GWib0pAyjBuJEtdSDR+sJCw1xOVt8bEIsyXGjhwgQrbCjNedj55atyJ4e0PwmAwPI3l46t2y1e64x0VH87+7vsX3trzlrbmDPCvWSZ9LgnM/f0XjklXVEhIdx44UGbSA7PZnYmChdVRXqW411sLxkogkJCeG0GZM84ufRQ3l9k64ILA1TUVArVRz+/dEmoiLCucTDWqen0SVAjGG7IVLKUcMxjLeiTn/VVmc1EGdiuIUQNrvgmcJSPRBVZImmJjvqzb5h9yEmpiZZtcmOHmVwWDtTbrvCWLzSnh3bEflTxg+JtNF6LZxipf5Y9IJTEBERoBW2DAlBhIcTveAUl8cQrDibv9PWcYL7/vMO33v436wr3Me+smqeeu9Lrl+5iFRjgElISAj5k8dTdMj+ZATMTVje+5QsmjmZPaXVHHOiZbQrnOjuob6l3SkNJCdzLGOio4ZEYvX09vH8Z1u5+PR84kbbrqkVCNjVAYUQaVLKWne3CXTK65pJio0hZpT9ZD8wRGJt3u94RtPe2UVVQ4vTNWzyssfxrw++YmBgYFD1XlNYqhc0kLTEOE6ZmsVLn2/jrm+dZ3WbgYEB1u8q4SI7PphJ6SlOmbCONrYwzs2qwktm5/KbZ96iua3D5Hv5en8p0yakEW/l5YsuKGDCv552ygcyXEmKG01aYqzd0HGNvv5+Vvz8EbYUlzEmOop/vreB0JAQxkRHcd/1qwZtm5c9TpdvRfMleksDAVg00xC19fX+Us45xfNl9zWcsWJohISEMC93wpBIrPe+3k1zW4fu9gb+xJEG8p6OY+jZJqDRnF96SEuMo6H1uMMoEy1j29kqmrOyx3H8RPeQzoeltY2MitQX4eEK16w4jR2HKtloo7Xu1/tLaW7rYLkd883kjBSO1OjXQKoaWt0OhV2an2uqjAuGDndf7C5hcd4Um/tEFxSQfOMaElavJvnGNT4THp1FRTQ+sdahv8WX5GWPs5u8qvHMBxvZUlzGf3/5XRpe+xP/79YrWXX6HN6+/5YhGmluZirHOk44rI1W39JO/Ohoj4alW7JgWjYhIYKNHsp3sYWWA+KsOXZ+bhY7j1QNKta59p0vSUuMZUWA+z/AsQCZY/R52PppB9zvbORnSmsbdc/s0xJikVI6fDkOmIooOquBGCOxLOpKGSrLJnutdMa15y4kMyWB7zz49JAZ0cDAAH959ROioyJYdXq+zWNkpyVTUd+sK4RTSmnUQNwTIKdOzyY9KY6/v7UeKSUbdh+iraPLK02e3MHkvNfptPcVeVkZ7CuvsRtAIaXk0dc+YW7OBL61fAGREeH88NKzePW3N7N41tAeLlpUnWUBSkuczQFxhdiYUczKHucDAeK8BgJwxqwp9PT2mVpa7y2t5v0texyGKAcKjoophhp9HrZ+xkgpXa8tHQAMDAxQVtuku8Kt3lwQrcaTs6XXTaGpFnbp0tpGr0RgacTGjOLFX6+h8dhxFvzgAW599H/09ffT09vHtQ/+i5c+38ZPL19ht/d3Zko8AwNSl4+opb2TE929ZLppwgoPC+Ouq87j06Jivv+n/3D/c++RMCaalafobzPrC83A5LwfGED29ND42OMBIURmT8qks6vHrua47UA5e0qrWXPhGbomMFpej70yHWAspOiBRE9HLJo5mc37S73ayre0ppHwsFC7tfSssXzudKIiwnnhU0MQx91Pv0FMVCQ3X7TEC6P0PN7THYOE2uY2unp6dVe4NWWjO4jEKq6oZVJ6CpER4U6NJzZmFBNTkwZpIFJKSmsb7ZplPMGivMlUvPAg9z77No+8so5N+47QfsJQr+e+61fxq6vPt7u/Zo6qamhxaJo62miowTTOA9nct16yjNqWYzzw3PsA/GHNpbr8WXBSM5A9PYiICCb862mPm7Q6i4rora5GhIUh+/pgYICOTZvoLCz0yvmcQcuP2HWkymY49dPvf8WoyHCuXKYv0CArLYmw0BBTno8t6lrame6DPheLZk7m72+tZ3fpUfKneCeru6zWYAZ3tnlZzKhIrl+5iKfe20BoaAhvfLWD33/vEpLjAjd50By/trQNBLSZl94Chbo1kMpa3RnolszKHjcoDLLx2HHaOro8noVujdiYUfz5B1fw55svp6evj+y0ZF6590buvuYCh7NPcwHiCG2bTDdNWGCIXrv/u5ew7uEf89Jv1vDz1efq3neQZqAjnNdZNAHV+vLLSCBq5kxDBJiXzucsMyamExIiTGX1Lens6uZ/n37NZWfO0x0RFB4WRnZ6MiWV9gVIfUub13x65mhRhh86UaPLWcrqmlwOR7/76gsYGz+GJ97+gmtWnMbPVgdPyt2I10C0qCG9GoipIq+dbPT+/gEOVtVzzjzXnGBnzs7hnc27qG5sJSM53hSn704nOmf58eUr+PHlK5zaRxMGegSIlrzmbhSWOcvnTnd6Hy2sV/b2eiWc11xA0d9P1IwZdB886LXzOcuoyAhyM1PZZaOUzesbdtDW0cUN553u1HENARW2I/L6+vtpauvwug8EICM5noIp43l3827uuGqlV85RVtvIBafNdmnfjOR4Djx7Hy3HO31SX82TOArjtRuaJKVstrc+GDhS3YAQQrfzKzoqktiYKLsmrIr6Zrp6el1uQ6lFOn1aVMzVK04zS+AL3LLOAImxMURFhOsWIEIIt5sjOYNWwsQ8bNc8rNcb4byWAiru4lXEXbzKa+dzhdmTMtl2oMzquiff/ZJJ6cmcOXuos9wek9NT2LzPdgZ447HjgHdzQMw5/9RZPPj8B7S0d5AwRl+pHb2c6O6htrmNLCcd6ObEjIrUbXYNJBxpIIWABKzZLiQwyeMj8jGGCrcJToUSOmpte7KIomsCJH/KeBJjY/ho2z6uXnEae0qrSYqN8XgpC08jhCAzJUFXaYyqhhbGxo/xaginOfZ8HdEFBV77kNsSUIEgODRmTxrHS59vo72za1CQxPaSctbvLOGhGy8blJOkh0kZKbQe7xyUn2OOq2VMXOWC02Zx/3Pv8dG2fazW6cvRixaB5c3ulIGKoyisbCnlJOO/lj9BLzzA4APRynDoJS0x1q4GcsBo+3VVAwkJCeGihXN4c+MOunt62VJcSv6U8S6H8Poy/2BccjxVjfo0EF+q6972ddhDyzsJJKFhjtaP3rKg5l9e/YTRoyL5/gWLnT6meXFNa/giidCcBdOySYqN4d3Nnm8wpZUZctUHEszobWkrhBBXCyF+bfx9ghBigXeH5hsOVzfoDuHVcFTOpLiyloQx0SS7UXDvyrNOoa2ji/99soVdR45y5mzX+kD4Ov8gMyVBnxPdA1nozmAqYRIaGhC+h0Di1OmGJlVfGXMRALp6enl9QxFXnbXApXIaWsCHLT+IVsbEF050gNDQEFYuyOP9LXs8Hs57yJjv4o0yQ4GOXr30b8BC4FvG39uBx70yIg+gt3Hi8RNd1Da3McXJcuJpibF2m0odqDTUwHIn6e+sgqmMS47nhoeeRUrpclVOX8+8xyXHc7Sx1eE98LUGopmSUm67ze+hsxqBkpk+NiGWaRPS+GLXQdOyT7cXc/xEt8vF/DRzjq3aaFrPG1/kgWhccOosGo8dZ6sNf4+r7DdW3falPy9Q0CtATpVS3gJ0AUgpW4AIr43KTdo6unRtpz3cU5wMj01PjKOto4vOrm6r6/W2sbVHeFgYD37/UsDQEU+bJTqLr2feaQmx9Pb109Juu3jdie4emts6fKqBQGCZkgItM/3M2Tls2H3INDt/46sdjImOcrkfxehRUaQmxNqszlzf2k5YaIjVemXeYuWCmcRERfLQix969Lj7y2uYPsEzzcuCDb0CpFcIEYrBcY4QIgXwXlqnm3T39enaTlM9nddADDONupah5UzaOk5Q03TM5RwQc65ecRo1rzzEu7//ocsPp69n3lpVVq1UtzW8EcIbiNjTMPzpk7HGmbNzOdZxgp2HK+nvH+DNjTs4/9Q8pxNhzZmUnmzXhDU2PtanH92EMTH88tvn8dqXRbz11Q6PHXd/hUGAjET0hsD8P+B1YKwQ4n7gMuBur43KTbp79AoQw+zI2QQ9LRu9punYkMgLzYHuagTW0HM5rxZbhqt6M8rIEs0pWtfSxjQbL5UpiTDIYt6dwVGGu7fzT5zl7LnTEULwzubddBpLk69alO/WMSdlpLBh9yGr6+pafFPGxJKfXXEOL3y2lZv/8j+W5k8lNmaUW8draG2ntrnNapO1kYAuASKlfE4IUQgsxxDSe7GUcr9XR+YG3b29jjfCoIGMTRjj9EN0Mht9qB9EK6LoagSWu/iiNIc9NKeoNe1MYyRoINY0jEECxMv5J86SmhjLwhmTePOrHRxtbCE6KoILF7qWGKcxOSOF5z/dQk9v35Bw7fqWdp850M2JCA/jHz+6mtNv+wP/+Xgzt1y8zK3jab1nXDUxexpruU7eRG8U1qMY+qI/LqV8zFPCQwixUghxQAhxSAhxp5X1Qgjx/4zrdwkh5uo5bo9eE1Z1PVMynO/HnW4UINVNrUPW7SmtJjws1CdlR6zh76J9Y+ONJiw7mfqaBuJuJV5P40mnth7fUyD5ZAAuWVzA9oMVrH3nS646a4Hdwpl6mJSezMCAHNKaAHxTidcWi/ImMzdnAk+9t8HtY23ad5hQY18Pf+MPv5peH8h24G7jh/whIcR8d09s9Kk8DpwHzACuEkJYhhqdB+QYf9YAf9dz7O6ePl2RWAer6p32fwCkxI8mMjzM1APAnMKD5eRlZfgsQc6SQR33jEX7fOmkTY4bTUiIcKiBxMZEuf2B8iSefvkCMerLETd+40ymTUhjwthEfnfdRW4fTwuPt4zEklIaKvH6SYAAfGv5AnYcqqTcmMPhKut3lpA/ZTzRUf7PIveHX01vS9tnpZTnAwuAEuAPQoiDDnZzxALgkJTyiJSyB3gBWGWxzSrg39LAZiBeCOHQWzUgJU1tx+1u09nVzdHGVqfLrYMh0W9iapIpA1VDSklhSTnzcic6fUxPoX24YhYu9EvRvtDQEJLjRtt1olc1tHikiKIn8cbLF2gahiPGREex+5/3cPi5+8nwgHnRlAtiIUDaO7s40d3rFxOWxjeMnTXf2bzL5WMcbWhh494jXHjaLE8Ny2XMKz77MtfJ2Wq8U4BpQBZQ7Oa5xwHmjZOrjMuc3cYq+8vtd9nVokNcMWEBTExNNGWgapTXNdHS3ulQgHgr/l87LkDyrbf4LXFubPwYU6axNTzRytbTqERDA2GhoR5rZJSWGEtURPiQSKyaJoPv0J95E7njU8nJHMvbm1wTIFJKbnzkv0SGh3HNCv+2nrWs+Bx/2WU+03p12VmEEH8ALgUOAy8C90kpW908t636Ws5uY9hQiDUYzFwwJpmdhys5w04BOFdDeDWy0pJ5c+OOQcu0Tn72BIi3nNzWjusvJ21qQqxdE1ZVQ2vARa0EmlN7OBASEkJ2evIQE1ZNs/8FCMDKU/J46r0vrTr5HfHsh5t4d/Nu/nLLaia7+A3xFJYVn8MzMnz2/OrVQEqBhVLKlVLKf3lAeIBBmzDv7pIJVLuwDQBSyrVSyvlSyvlhoSHssFGeWkML4XXFhAUGDaS+pX1QMuGGPYcYFRlO/pRMm/t5y05pK+rHHyaU1IRYm070vv5+aluOBZwDHYLP5BQMTE5PGVIPy6SB+Lk46JmzczjR3cv2gxWONzajr7+fX/3zDRbOmMQPL3EvissT+FN71itA1gIrhRC/AY/VwtoK5AghsoUQEcCVwFsW27wFfMcYjXUacExKWePowKMiI2yWp9Y4VF1PYmyMy6Wds4x1b8wjTDbsPsRp0ycRHmZ7NmN+swkNpbe62mdRP74qnWEwYVnXQGqb2xgYkGSmxHt1DIrAYFKGIZnQPKglUDSQM4z93L/c5Zw7d2txGdVNrdz+zeVOVyn2Bv4M2ND71z+OoRbWVcbf3a6FJaXsA24FPgT2Ay9JKfcKIW4SQtxk3Ow94AhwCHgS+IGeY8dGj2Ln4Sq7Rf0OVzcw2UoRRb0f2YmphlYpWiRWe2cXOw5XsniW/baz2s2Ov+wyBND68ss+ifrxZYhfakIsHV3ddJwYWurF1Mo2ADUQheeZnJFCe2eXqf8HGDSQyPAwn5YxsUZqYiw5mWP5crdzAuTjwv0IITjbhQZm3sJSe/bVZFGv4e9UKeVcIUQRGGphGbUGt5BSvodBSJgv+4fZ/yVwi7PHjR89iqPAK+sL+dFlZ1vd5tDRehbOmDxombkfgbAw4i+5hLiLV1mV6FrlTc2+u3nfEQYGpN2+5eZJPuEZGab+2NYSzVzBXsa5o8Q2T6JlGNe3tpNt0SRnJGShO4uvk798iRbKe6SmgRRj2G5N8zHSk+IConbUGbNyeH1DEQMDA7q1iY8L9zE3ZwJJblTb9ia+TCYelrWwoiLCWTRzMn96+WO6eoZmpff09lFR3zzE/zHIGdXTQ+tLL9mcrWckxxMbE8XeMoNLZsOeQ4SECE6bYb1NiqUGEBof51O7pS/tpCez0Yf6QUZEFroTs79AK6roaUx9QapPRmLVNB3zu/9D4/S8ybS0d5pKEDmivbOLzfuOsGJe4GgflvgyH0SvALGshbUBeMBro/IA912/iqqGFv725udD1pXVNjEwIIdki5s+strMSEqbN0AIQV7WOFO/8g+37mVezkSbZVEsb2p/6zGf2i19aSe1J0CqGlqICA9zq1dKIOOsQAi0ooqexlpZ9+qmVl3+D1+YYU6fabAYmPdCscfnOw7Q1z/AinmutVfwBa5MFjuLikgNC3O6/pLLtbAA2w0xAoCz5k7jnPkzuP+597jpG2cOyhS1FcKrfWSPvfEmx15/Hdnfb/cG5GVn8MoX26lpauXr/aXcd71lHqTZsa0Uz/NlkUPwbutWc7QM43orjvSjja2MS473qfnClyYiZ02FgVZU0dOMiowgIyneFIklpaS8ronzFuTZ3c9XZpjc8akkxcbw1Z7DfO+CMxxu/3HhfkZFhnN63mSH2/oCa8+2syHp2rVOCg3TlWNnju7gZyllMWbJg0KICsD/BWDs8Ktvn8+SHz/M859u5bvnn2zLqc2GzDUQ8xuR/tt7ibt4lcMbUDBlAmvf+ZKHXvwIgFWnz7E5lpGUZzDWgQnLl+YrVz5E7ggcZwXCSHguJmWczAWpa2njRHevybRlC1/57IQQLJo5ma/26tNAPi7cx5mzc90qc+8p7D3bzkwWtWvtypTOnYJN/veAOeCM2TnkZWfw+BufccN5p5tmvYeq64mJijSZWmzdCEc3QJtFPfLKOmZNGkdetn0B7i0NINCcsFER4cTFjLJpwjplapbPxuLsh8jdma8rAsHXmqivmZyRwifbDXPPUmNWumUbBEt8qZmdnjeFtzftoqG13eTot0ZlfTPFFbV873zne8R7A08JWdO1RmcrVzPcCWJ2+mS+RgjBLauWUXSo0lR2GQwayJRxKSaB4qodemJaEt9avoCI8DD+7/pVfokqCVQnrCEbfbAAkVL6XANx1h7sCZ+ESkgczKT0FI42ttLV00tprVGA2Okfrk2IUu+60yc+O80ctXHvYbvbvbVxJwDnn+r/2lfgucAYbdLT1N9vNUnbHnY1ECHEX7EuKAQQ7+zJ/MG3zz6Vn/z9Jf7z8WZThNTBqnrysk+W0nBntvPfX36XJ396jVvVON3RIHwZnusM1gRIc1sHXT29fumFrvf6DnefhD+YnJGClJIj1Q2maKystCSr2/qjn838qVlEhIfx+Y4DrDo93+Z2L68vZPrEdKZPDIzug540f0YXFFDX12e/gKAVHJmwtrm4LmAYEx3FqkX5vPjZVv5yyxX0D0gOVddzxdKTFenduRFCCLeFh1smkwD94KUmjGG3MUJNw18hvM6YiILJJxFopktb5E82VCMqLClnb1k1E1OTbL4z/pgQRUWEc1bBVN7etIs//+CKIZaEvv5+Xvp8G+t3lvDg9y/16licxd/mT7sCREr5rK8G4k2+ffapvPDZVj7cuo/0pDgGBiRzJg+uV+XNG2HvRXf3hQnUD15qQizrtg8u2BwsSYT+fin14O/Ok84wbUIaMVGRbCkuY9eRqiHvnjn+mhBdtHAOP3j0f+wvr2GGsdBnc1sHv1j7Kq9+sZ3W453MmjSOW93sYOhrvD3J8E/XIx9z7ikzSI4bzb8++IpzT5kJYPchNsfdG+CL3tiB+MFLTYyl9Xgn3T29poiV4Z5E6LdwYWPnyeRbbwm45wAMPWLmT53IB1v3UlrTyDfPtN1Y1F8TolWn53PrX5/nv+u+5oHvXUJ//wBX3reWT4sOcM2K0zjv1DwuOHUWMaP83zhKL76YZIwIARIeFsZ3z1vMQy99yPaDFWSmJOgq4+6JGxBsvbE9hRbhVt/azvixhrphVY0tCCH8XkTPG/haIzBNPIzPVsemTXQWFgasJnLhabP5+ROvADisIeWPCVFGcjwXnDqLp97bwN1Xn8/9z73Hx4X7WfuTa/j+hY7zQwIRX5gDHUZhCSFChRA/9uhZ/cAPL1lGXMwoymqb+P4FZ+iKmPJIRE4Q9sb2BOYCRONoYyupCWPsVisOVnydUe7vzpPOcv3KRWSmJLBwxiSHBUf9xS+uPJeG1naW/+wRHnjufb57/uKgFR7gm/JFDt9kKWW/EGIV8IjHz+5DxqUksPupe9hTVq27iqanzEvDUcNwhKmcSfPJSKyqhpaA93+4iieeFWdNYNEFBSTfegudhYUBF0RhSVLcaA7+5/8ICw2xWbTQ30EBi2flcOM3zuSJt7/g9LzJPHbbVY53CmB88e0RUkfuiLH+VRyGboQd2nIp5XaPj8gDzJ8/X27b5pkgMZ/atYMkqkYPR6obmHz1r3j659dy/XmnAzDru/cyOSOFN+5zusCyX3D2frgVju2GCWw4PDeBEhQgpeRgVT3Z6UnDUlO2hxCiUEo53/GWJ9F7hRYZ//2d2TIJnOXMyYIRX9ljfV1yw9tYK6hYWd/Cktm5/hqSUzhzP8zvQ/KNa1w7nxP2asv7rv1oxQcD8XlwRKDkMwkhyB2f6vPz+gvzZ8kV9BZTDK7YtSDE1yU3vE3MqEhioiJNAqS9s4tjHSdMDvVAx1qU05hzVtDfemzQB9pT90GvCczW+QL9eXBEoOYzDWcsn5mYkBCn27PqEiBCiFQM5dszpJTnCSFmYOiR/k9nT6iwjrMvUKDM2OyRmnCytW2lsfXv+LHB4QMZEuW0cSMdX30FISGmDzRA42OPe6YekU57ta37HgzPgz1Gqq/QV1izVlg+M6NDQmwXArOBXhPWM8C/gF8Zfy/B4A9RAsRDDMeSG+blTCqNSYTjU4JDA9HuR+Njj9OxaZOhyRiYNJK6B35P94EDyN5ekNIgWNy8D3rMpbbuezA8D44IxHym4YDNYrEWz8zxgYGh/RccoFeAJEspXxJC3AWGfuZCiH5nT6awz3AruZGaEMtBY++VYNNAwCLKSetUKQQMDNC1Zw+m4qUhIcQsXOiTRD5b9z0YngeF53DG/2lLO7V8Zjrmzu2weyAr6BUgHUKIJE62tD2NAG8oNRJwdcbmK+d7amIsG4yd3iobDEmEwZaFbv6ShcbH0f7Rx4M1EiEQERE+zQK3dd+HgzNd4Rhn/V32tFN3tT69AuQnwFvAZCHEV0AKcLnLZw0gvPkxDcQoKV86W8clx9N47DgnunuorG8mPTFOV2ikdt1C4+OGOK39gflLFpmba8q7IDSU+EsuIe7iVSPy/ir8g9NdL61op576NukVIHuBJcBUDKXcD+BeL5GAwJsvW6C+yL50tk5KN3R8LK1ppKy2iQmpjv0fpuvW3W3yLRAWFjAfal+YioZjeX+F53DF32Wundbcc6+hZXdfn9vfJr0CZJOUci4GQQKAEGI7YLsqWhDgzZctUF9kXzpbtZbBR2oaKamqY7mDCgCdRUUno5o0/8LAAPT00PrSSxx7882AEMTedPbam3joESzDwZnuLoGo+XsSVycxQyZn4Pa3yVFDqTRgHDBKCFHAyTa2sUC0S2cMILz5snnz2G717Pahs1Xre73jUCVHG1vJzbRdwHLIwy3E4H+lDChB7C1shunq1GiHozPdKYdxgGr+nsaVSYzp2dImZ0K4/W1ypIGcC1wHZAJ/NlveDvzS5bMGCN582bxx7M6iIo698abb6qevwiVT4seQmhDLC58ZCvxNHZ9mc9tBD7cxqmnMOSvo2rff8Pf294+IGbWtiYczGq3l/Q00n5IzOCsQAlXzDwTMny1P+e/0NJR6VgjxTSnlqy6fJYDx5sfUk8f2hvrpbYQQnDI1i3c27wJg/tSJNre1/HCaRzXFXbxqWM2o7WEzTNcFjXbQhMM8XyWIZuZOO4yVCc8m3pjU6i1l8qoQ4gJgJhBltvx3tvdSeBJvqJ9Oj8EF09nS/Fze2byLzJQEJqZa74MN9h/ukZZgZu3vdfbltzbhAIJuZu6sQBiOJjxP4ul3SW8pk39g8HksA54CLgO2eGwUAY6vnXKW5+ssKqK3uhoRFobs7/dL+KirtuXvnb+YvWXVXLnsFIc9WDz9cA83Z6oz12fIhEPDAxnzvsQZgeCJopYK59BdjVdKOVsIsUtK+VshxJ+A11w9qRAiEUMplCygDLhCStliZbungQuBeillnqvncwdfO+XMz0dYGKPPOIOOL79E9vUZwlkvu8wv4ayutlCNGx3N07+4zjNjGGHOVHd8F9bs3VEzpgedDwT0Cc7hcL+DEb0C5ITx304hRAbQBGS7cd47gU+klA8KIe40/n6Hle2eAR4D/u3GudzC10458/PR08PxTz45ubK/n/CMDL+8GP5uoTrSnKnW8mGc+TCONFNOIN3v4ab52kNvMuA7Qoh44CFgOwat4Xk3zrsKeNb4/2eBi61tJKX8Amh24zxu44u2kFbPZ2nu8YPPQ0N7IVLvutMrLVS10hudRUW2t3GyZayv75unGWKCcuF6RxdYb5Ws53r7Ek+MJ1Dutyb4Gx59lPJrr6PmnnsD5jp7A0d5ID8CvgJ+L6XsA14VQrwDREkp3amFlSqlrAGQUtYIIWwnCPgZX8/ktPOZome86PPQM1OynPmn3nWnR1uo6s5vGGHOVEuNz1O+i0Az9Xisn0qA3G9LC0IgJcB6A0cmrEzgUWCaEGIXsBGDQNnk6MBCiHWAtcD/X1lZ5jZCiDXAGoAJEyZ49Ni+jgLSzufN8FW9L67lzL+/9ZhHX1S9pgdXPhDBHL1l/vd6Mn8jkEw9nh5PINxvk+DXTI/DPAHWUR7IzwCEEBHAfAytbW8AnhRCtEopZ9jZ92xb64QQdUKIdKP2kQ7UuzT6wedbC6wFQ090d4/nDp6ygXq1ZIbeD7eVmb+nxmUZXeZohh0IHwhf4o2/N9DyJAJtPO5iy4LQW11NZ1HRsHt+hbQM87O2kRBxwELgdOO/8cBuKeX1Lp1UiIeAJjMneqKU8hc2ts0C3nEmCit/4kS58Y03/HKzAs1EYAvTOO1E6Xgzg9ky2ixQiiWOBALNyeut8fj77/RU5QhfIYQolFLOd2YfRz6QtRiSB9uBrzGYsP5sLeTWSR4EXhJCfBeowFga3hjh9ZSU8nzj788DS4FkIUQVcI+eNrp99fVUXH+DX25WoJkIbGE5U2p96aVB0T6pd91J3e8f9JogHGQr9mN02Ugk0DQ5b4wnECZy0QXGVsN9fR77HvhbKFriyAcyAYgEDgJHgSqg1d2TSimbgOVWllcD55v9fpVrJ3Bc5sNbNyKYVPJBD7h5tE9PD01P/8urgjCYrpMi+AiUiZwnn/NAEIqWOPKBrBSG9OGZGPwfPwXyhBDNGEq83+ODMTqPwO7N8uaNCJRoEL0MifYxtmztrajwWK9vq+cNsuukCC4CZYLiyec8UISiObp8IABCiEwMPpBFGLLDk6SU8d4bmus48oE0PrGWhkcfNXwwQ0NJue22EV36wNzXMahlqw97fSsUnibQzD3uYu63FOHhHtdAvOEDuQ2DwDgd6OVkCO/TwG4Xx+l1wlJS7F7YQJmdBArmNmjzlq2WVXEtGW4vqGJ4EWi+Hnffl0DU2u1qIEKIP2PM/dAS/4KB+fPny23bttndRn38bONKgqEzsyF17QMDdR98RyD6LyzxuAYipfyJe0MKXAJtdhJI6Cpe56I9NhhepJGAug++JRD9F55Aby0shWIQ5rWHzBOlHOFsTSurxwiwWk7BiCfug7/RnoOWF18M+OchUGp1eRq91XgVikEMySN5+WVdNX/c9T+pmbNnCGY/YKB2WrRnEgxE/4UnUALECZTNeDCuJEq5+yINV1OArwnWD1qgdlrUM7EZjmZzJUB0oma+1nFlJuvOi6TnfErQ6yMYP2iB2mnRmYnNcHo+lQDRiZ4HZDg9GHrx9UzW0fmUoB/eBGqnRb0TqeH2fCoBohNHD8hwezCcwdczWXvnUyau4Yt5YzN/CwxL9E6khtvzqQSIThzOfIfZgxGsBLNzWGGbYJig6ZlIufp8Bqp1QwkQJ7D3gKgPV2AQrM5hhX2GywTNleczkIWnEiAeQn24HOOrWVQwOocV9hlOEzTt+dTyWBy9D4EsPJUA8SAj/cNlT0AE8ixK4R+cmVAMtwmaM+9DIAvPESdAAtWWGOw4eiF8MYtS9zZ4cGVCMZwmaIPeh+5ujr3xpm0BEsDCc0QJEDUL9h6OBIS3Z1Hq3gYXvjTLBOLEInrBKRAWBsaclmOvv263pXOgCs9hWwvLWr2k4VD/J1BxVOtHm0Wl3HabVz7u6t66jj9qi/mqNpQ2sWh49FEqrr8hYOplRRcUEH/JJYYGboDs7w/KZ3ZYaiADnZ1WZ6OBbEsMdszV7ND4ONPLMEgL8eIsSt1b1/CX5uYrs0wgO6DjLl7FsTffDOpndngKkI4OJGLIQxPItsThgHY9h/MHabjhzw+sL8wygTyx0DPpCnSGpQAJiYmx+dAEqi1xuOBP27a6t87jygc2EH0Ktgj0iYWjSVegX+vhKUCio5nw5JMBfeGHK76a8SmnuWdw9gMbjNc90CcWgyZdPT00PvY4ybfeAvhHm3eGYSlAIPAfmuGKsm0HH868K+q6ex7TpMt4XTs2baJj61aipk4N+Gs9bAWIwn+MdNv2cMayGm5vdTUtL75If+sxQuPjAq7IoS9w18ykTboaH3ucjk2bYGAAenro2r3bsIGfS9XbQ0jLuvrDgPnz58tt27Z57fiWD0yg2ymHK9p1H6kfLl9jfr279u0f3BFQiIDpDOhLPGnSs9osKySEmIULSb71Fq9fTyFEoZRyvjP7KA3ESSwfmNS77qTu9w8GtJ3SX3hbsPoz6mukYfncx61aZehEqX3otH8D2NziDTxp0tM0EVO73v5+RHi4T4SHqygB4iSWD0z7Rx8HvJ3SH/jK2aps8r7B8joDg+z25hqIZtrqLCoa9vfC06ZUzfwbd/GqoLBqDHsB4mkzh+UDM+acFXQWFipbvAW2Iks8/TIoX4jnsKcxWl7nuItXmT5y2rtlbtpqfflljr355rDXCL0VNBIsQUDD2gcyxKboIfus8oE4xlwDYWDAq7Zxdf3dR4/GqOc6Nz6xloZHHzXc89BQUm67jeQb1/jiT1C4SdD4QIQQicCLQBZQBlwhpWyx2GY88G8gDRgA1kopH3XmPKZZsIfts5azg2CZLfgSa5El3jIxqevvPnpMgXqus9IIRxb+KqZ4J/CJlDIH+MT4uyV9wE+llNOB04BbhBAznDmJqWBbiPHPDOBwuOFIdEEBybfe4pOieQr38FRxQ/Oimal33Unnlq0BU8BQ4Xn8YsISQhwAlkopa4QQ6cDnUsqpDvZ5E3hMSvmxo+Obh/GqUE//o0xMwYGt++TK/bNnElPPQ2ASNCYsIFVKWQNgFCJj7W0shMgCCoCvnT2RN80b6kXQhzIxBQeW96mzqOhkSGlfn1M+LFsmsWAshaKwjdcEiBBiHQb/hSW/cvI4o4FXgR9JKdvsbLcGWAMwYcIEZ07hEupFUAxXBgkOLVEQnPJh2fKFqLDr4YXXBIiU8mxb64QQdUKIdDMTVr2N7cIxCI/npJSvOTjfWmAtGExYlut7e3upqqqiq6vLmT/DJv29vQz86WHT70d6ewndv98jxx5uREVFkZmZSXh4uL+HonCA1WxoACGc8o3YCm9VTvbhhb9MWG8B1wIPGv9903IDIYQA/gnsl1L+2d0TVlVVMWbMGLKyshDGLmDu0N/ZSU9pmamMQ0R2FqHR0W4fd7ghpaSpqYmqqiqys7P9PRyFA4ZELgoB4eHEX3KJ3Zar1rBmuvRneXVlcvY8/hIgDwIvCSG+C1QAlwMIITKAp6SU5wOnA9cAu4UQO4z7/VJK+Z4rJ+zq6vKY8AAIjY4mIjuLgY4OQmJilPCwgRCCpKQkGhoa/D0UhQ4siyW6IjgcnsMPPjFlcvYOfhEgUsomYLmV5dXA+cb/bwA887U34inhoREaHa0Ehw48fd0V3iPQGzC5ivK9eAd/5YGMSKqqqli1ahU5OTlMnjyZ22+/nZ6eHn8Pi6VLl6KFPWdlZdHY2Gha9/nnn3PhhRcC8Mwzz5CSkkJBQQE5OTmce+65bNy40S9jVniP6IICkm9c47EPbGdREY1PrPVrPoin8lzMCYS/y98oAeIjpJRceumlXHzxxRw8eJCSkhKOHz/Or341OCitr6/PTyPUx+rVqykqKuLgwYPceeedXHrppexXwQMKG2imo4ZHH6Xi+hv89rE1T3D0hPkqUP4uf6MEiI/49NNPiYqK4vrrrwcgNDSURx55hKeffpq//e1vXH755XzjG9/gnHPOoaOjgxtuuIFTTjmFgoIC3nzTEGOwd+9eFixYQH5+PrNnz+bgwYOUlZWRl5dnOs/DDz/MvffeCxg0izvuuIMFCxaQm5vLl19+CcCJEye48sormT17NqtXr+bEiRMu/U3Lli1jzZo1rF271o0roxjOWCuq6U8h4inNyppJbCQy7KvxWuNHj73IjsOVHj1m/uTx/OXW1TbX7927l3nz5g1aFhsby4QJE+jr62PTpk3s2rWLxMREfvnLX3LWWWfx9NNP09rayoIFCzj77LP5xz/+we233863v/1tenp66O/vp66uzu64+vr62LJlC++99x6//e1vWbduHX//+9+Jjo5m165d7Nq1i7lz5w7aZ9myZYSGhgJw/Phxpk2bZvP4c+fO5YknnnB0eRQjFGvtWjsLC4Peia3CkQ0oDcRHSCmtOpO15StWrCAxMRGAjz76iAcffJD8/HyWLl1KV1cXFRUVLFy4kAceeIA//OEPlJeXM2rUKIfnvfTSSwGYN28eZWVlAHzxxRdcffXVAMyePZvZs2cP2uezzz5jx44d7Nixg6eeesrh36VQ2EIzHcUsXGioSTdMZuyeNokFKyNSA7GnKXiLmTNn8uqrrw5a1tbWRmVlJaGhocTExJiWSyl59dVXmTp1cHmw6dOnc+qpp/Luu+9y7rnn8tRTT5Gbm8vAwIBpG8tEycjISMBgMjP3r3gqMqqoqIjp06d75FiK4YlWVHO49c1RJXqUBuIzli9fTmdnJ//+978B6O/v56c//SnXXXcd0RahwOeeey5//etfTbP7IqPN+MiRI0yaNInbbruNiy66iF27dpGamkp9fT1NTU10d3fzzjvvOBzLmWeeyXPPPQfAnj172LVrl0t/0/r161m7di3f//73XdpfMXJQM/bhiRIgPkIIweuvv87LL79MTk4Oubm5REVF8cADDwzZ9te//jW9vb3Mnj2bvLw8fv3rXwPw4osvkpeXR35+PsXFxXznO98hPDyc3/zmN5x66qlceOGFdv0VGjfffDPHjx9n9uzZ/PGPf2TBggW6/44XX3yR/Px8cnNzeeCBB3j11VeVBqLQhafDgxX+Z1h3JDRn//796kPnR9T1VygCm2Aq565QKBQBgWXPINU7SD9KgCgUihHLkOrDQhj+DQlRNbN0oHwgCoVixDKk+rD27zAJN/Y2SgNRKBQjCnOTVW91NSIsDNnXBwMDgzQQQkPpra6ms6hIaSE2UAJEoVCMGIaYrEJCICyM+MsvJ2rGdJMPpGvffo69/jqtL7/MsTffVKYsGygBolAoRgxDTFYDA9DfT3hGBgmrTyYYNz6x1qSVWJZ/V42pTqJ8ID7EVjn3Z555hltvvdXfw+ONN95g3759pt9/85vfsG7dOj+OSKHwLKay7iHGT19IiNXMeFvl31UV3sEoDcRHaOXcb775Zt588036+/tZs2YNv/rVr5g5c6bHz9fX10dYmHO394033uDCCy9kxowZAPzud7/z+LgUCn9i3jDLXriurcZaqjHVYJQG4iPslXPv7OyksrKSlStXMnXqVH77298C0NHRwQUXXMCcOXPIy8vjxRdfBKCwsJAlS5Ywb948zj33XGpqagBD+fZf/vKXLFmyhPvvv5+srCxTnazOzk7Gjx9Pb28vTz75JKeccgpz5szhm9/8Jp2dnWzcuJG33nqLn//85+Tn53P48GGuu+46XnnlFQA++eQTCgoKmDVrFjfccAPd3d2AoQHVPffcw9y5c5k1axbFxcU+va4KhbNoGfEJq1fbzYy3ljnvjcZUwYwSIHbwZMcxR+Xct2zZwnPPPceOHTt4+eWX2bZtGx988AEZGRns3LmTPXv2sHLlSnp7e/nhD3/IK6+8QmFhITfccMOgplStra2sX7+ee+65hzlz5rB+/XoA3n77bc4991zCw8O59NJL2bp1Kzt37mT69On885//ZNGiRVx00UU89NBD7Nixg8mTJ5uO2dXVxXXXXceLL77I7t276evr4+9//7tpfXJyMtu3b+fmm2/m4YcfdvtaKRSBiqrpNRglQGzgaVunnnLuSUlJjBo1iksvvZQNGzYwa9Ys1q1bxx133MGXX35JXFwcBw4cYM+ePaxYsYL8/Hz+7//+j6qqKtPxVps5AlevXm3SWl544QXTuj179nDGGWcwa9YsnnvuOfbu3Wt37AcOHCA7O5vc3FwArr32Wr744gvTemsl4xWK4Yqq6XUSJUBs4OmOYzNnzsSyPpd5OXdL4SKEIDc3l8LCQmbNmsVdd93F7373O6SUzJw509SvY/fu3Xz00Uem/czLwl900UW8//77NDc3U1hYyFlnnQXAddddx2OPPcbu3bu55557hpSAt8RRvTRbJeMViuGA6n1uGyVAbOBpW6ejcu4ff/wxzc3NnDhxgjfeeIPTTz+d6upqoqOjufrqq/nZz37G9u3bmTp1Kg0NDWzatAmA3t5emxrE6NGjWbBgAbfffjsXXnihqctge3s76enp9Pb2msq6A4wZM4b29vYhx5k2bRplZWUcOnQIgP/85z8sWbLEreuhUAQDKurKPkqA2MDTtk5H5dwXL17MNddcQ35+Pt/85jeZP38+u3fvNvVAv//++7n77ruJiIjglVde4Y477mDOnDnk5+ezceNGm+ddvXo1//3vfweZtu677z5OPfVUVqxYMaj8+5VXXslDDz1EQUEBhw8fNi2PioriX//6F5dffjmzZs0iJCSEm266ya3roVAEA4HU0z0QUeXcFT5BXX9FMGLKXDcKkeFcZNGVcu5KA1EoFAobDNee7p5CCRCFQqGwg9bTXeV/DEVloisUCoUDbGWmj3RGlACxlYuh8C7D0c+mGHlEFxQowWGBX0xYQohEIcTHQoiDxn8TrGwTJYTYIoTYKYTYK4T4rTvnjIqKoqmpSX3MfIyUkqamJqKiovw9FIVC4WH8pYHcCXwipXxQCHGn8fc7LLbpBs6SUh4XQoQDG4QQ70spN7tywszMTKqqqmhoaHBv5AqniYqKIjMz09/DUCgUHsZfAmQVsNT4/2eBz7EQINKgKhw3/hpu/HFZfQgPDyc7O9vV3RUKhUJhgb+isFKllDUAxn/HWttICBEqhNgB1AMfSym/9t0QFQqFQmEPr2kgQoh1QJqVVb+ysswqUsp+IF8IEQ+8LoTIk1LusXG+NcAagAkTJjg/YIVCoVA4hdcEiJTybFvrhBB1Qoh0KWWNECIdg4Zh71itQojPgZWAVQEipVwLrAVDJrrLA1coFAqFLvzlA3kLuBZ40Pjvm5YbCCFSgF6j8BgFnA38Qc/BCwsLjwshDnhwvL4kDjjm70G4gRq/f1Hj9y/BPP6pzu7gl1pYQogk4CVgAlABXC6lbBZCZABPSSnPF0LMxuBgD8Xgq3lJSqmrx6oQYpuzNV0CBSHEWinlGn+Pw1XU+P2LGr9/Cebxu/Ld9IsGIqVsApZbWV4NnG/8/y5gJGbtvO3vAbiJGr9/UeP3L8E+fqcYltV4g1kDUSgUCn/gyndzuBZTXOvvASgUCkWQ4fR3c1gKEGNEVlAghFgphDgghDhkzMpHCHGvEOKoEGKH8ed8f4/TGtbGblz+Q+PyvUKIP/pzjPawce1fNLvuZcY8pIDExvjzhRCbjePfJoRY4O9x2sLG+OcIITYJIXYLId4WQsT6e5zWEEI8LYSoF0LsMVvmsERTIOPSd1NKqX789IMhQOAwMAmIAHYCM4B7gZ/5e3wujn0ZsA6ING431t9jdWb8Ftv8CfiNv8fq5PX/CDjPuM35wOf+HquT498KLDFucwNwn7/HamP8ZwJzgT1my/4I3Gn8/53AH/w9Tm//BL0GYmsWbFz3MyGEFEIk+2t8DlgAHJJSHpFS9gAvYCjzEgzYGvvNwINSym4AKaXdHB8/YvfaC0PZ5iuA5/00PkfYGr8EtFl7HFDtp/E5wtb4pwJfGLf5GPimn8ZnFynlF0CzxeJVGCJHMf57sS/H5Aw2NKjLjVaDASGELl9IUAsQIUQo8DhwHobZy1VCiBnGdeOBFRjChAOVcUCl2e9VxmUAtwohdhlvdCCqwrbGngucIYT4WgixXggRqJ137F17gDOAOinlQZ+OSj+2xv8j4CEhRCXwMHCX74emC1vj3wNcZFx2OTDex+NyB10lmgKEZzAkZpuzB7iUkwLcIUEtQLA/i3wE+AVuFGD0Adaak0jg78BkIB+owWBKCTRsjT0MSABOA34OvCQCswmLrfFrXEXgah9ge/w3Az+WUo4Hfgz806ej0o+t8d8A3CKEKATGAD0+HdUIwZoGJaXcL6V0KgE72AWI1VmMEOIi4KiUcqd/hqWbKgbPsDKBaillnZSyX0o5ADyJQVAGGlbHblz+mjSwBRgAAtGEaGv8CCHCMMzEXvTDuPRia/zXAq8Zl71MYD47YPvZL5ZSniOlnIdBgB/2y+hco85Ymgk9JZqGA8EuQKzNYiIxFGz8jY/H4gpbgRwhRLYQIgK4EnhLewiNXIKN+l9+xurYgTeAswCEELkYHKSN/hqkHWyNHwxlc4qllFV+G51jbI2/Glhi3OYsIFBNcLae/bEAQogQ4G7gH34co7NoJZrARomm4Uawt7S1NoupwGDG2mm0nGQC24UQC6SUtb4fom2klH1CiFuBDzFEpTwtpdwrhPiPECIfg0pfBtzov1Fax87YDwJPG51zPcC10hiWEkjYGr9x9ZUEtvnK3vX/PvCoUYvqwlihOtCwM/7bhRC3GDd7DfiX3wZpByHE8xh6GiULIaqAezDU9ntJCPFdjCWa/DdC3xDUmejGl6QEQ1mUoxhmNd8y+xAghCgD5kspA3EWrFAoFH5BCJEFvCOlzLNY/jmGNIJtjo4R1CYsKWUfoM1i9mMouLjX/l4KhUIxsjFqUJuAqUKIKiHEd4UQlxi1qYXAu0KIDx0eJ5g1EIVCoVD4j6DWQBQKhULhP5QAUSgUCoVLBJ0AMZYm+Y/Z72FCiAYhxDv+HJdCoVCMNIJOgAAdQJ4wtLkFQ7mSo84cwBi9pVAoFAo3CEYBAvA+cIHx/4NKTgghFgghNgohioz/TjUuv04I8bIQ4m0MFUsVCoVC4QbBKkBeAK4UQkQBs4GvzdYVA2dKKQswZKM/YLZuIYbEtrN8NlKFQqEYpgSlKUdKucuYBHMV8J7F6jjgWSFEDoZM7nCzdR9LKS1LMCsUCoXCBYJVAwFD3ZmHGVpy4j7gM2N25TeAKLN1HT4am0KhUAx7glIDMfI0cExKuVsIsdRseRwnnerX+XhMCoVCMWIIWg1ESlklpXzUyqo/Ar8XQnyFoUibQqFQKLyAKmWiUCgUCpcIWg1EoVAoFP5FCRCFQqFQuIQSIAqFQqFwiaAQIEKI8UKIz4QQ+4UQe4UQtxuXJwohPhZCHDT+m2BcnmTc/rgQ4jGLY10lhNgthNglhPhACBGI/boVCoUi4AkKJ7qxR3i6lHK7EGIMUAhcjCFMt1lK+aAQ4k4gQUp5hxAiBigA8oA8KeWtxuOEYegZPUNK2SiE+CPQKaW81+d/lEKhUAQ5QaGBSClrpJTbjf9vx9B9cByG3ufPGjd7FoNQQUrZIaXcgKEntDnC+BMjDA3TYzEIFIVCoVA4SdAlEhpLmBRgqH+VKqWsAYOQEUKMtbevlLJXCHEzsBtDVvpB4BbvjlihUCiGJ0GhgWgIIUYDrwI/klK2ubB/OHAzBgGUAewC7vLoIBUKhWKEEDQCxPjxfxV4Tkr5mnFxndE/ovlJ6h0cJh9ASnlYGpw/LwGLvDNihUKhGN4EhQAx+iv+CeyXUv7ZbNVbwLXG/18LvOngUEeBGUKIFOPvKzD4UxQKhULhJMEShbUY+BKD72LAuPiXGPwgLwETgArgcq1cuxCiDIOTPAJoBc6RUu4TQtwE3A70AuXAdVLKJp/9MQqFQjFMCAoBolAoFIrAIyhMWAqFQqEIPJQAUSgUCoVLKAGiUCgUCpdQAkShUCgULqEEiEKhUChcQgkQhUKhULiEEiAKhUKhcAklQBQKhULhEv8fRMq7plqSN1cAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "cc[\"Klagshamn\"].plot_timeseries();" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " n bias rmse urmse mae cc si \\\n", "observation \n", "Klagshamn 169 0.187172 0.191682 0.041336 0.187172 0.8423 0.325449 \n", "\n", " r2 \n", "observation \n", "Klagshamn -5.549174 " ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
nbiasrmseurmsemaeccsir2
observation
Klagshamn1690.1871720.1916820.0413360.1871720.84230.325449-5.549174
\n
" }, "metadata": {}, "execution_count": 7 } ], "source": [ "cmp = cc[\"Klagshamn\"]\n", "cmp.skill()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0.19168248446362082" ] }, "metadata": {}, "execution_count": 8 } ], "source": [ "mtr.rmse(cmp.obs, cmp.mod, unbiased=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ] }