
Vessel Detection in Sentinel-1 Imagery
Favyen Bastani, Piper Wolters, Rose Hendrix, Joseph Ferdinando, Ani Kembhavi

Allen Institute for Artificial Intelligence, Seattle, USA

I. INTRODUCTION

In this document, we detail the approach in our xView3
submission. The xView3 dataset presents the challenge of
detecting vessels and other maritime objects in synthetic
aperture radar (SAR) images captured by the ESA’s Sentinel-
1 satellite. The dataset spans over 600 Sentinel-1 scenes, and
tasks include detecting maritime objects, classifying whether
objects are vessels and whether vessels are fishing vessels, and
estimating the lengths of vessels.

Although we experimented with several object detection
approaches tailored for the vessel detection problem, such as
comparing images of the same location captured at different
times to distinguish mobile ships from static islands and
platforms, we found that a standard object detection pipeline
performed best on this dataset.

Thus, as in the reference code, we train a Faster R-CNN
model with a ResNet-50 backbone. We use only the vh, vv,
and bathymetry channels as input to the model. To make
the best use of the provided data, we employ several data
augmentations; to account for the partially labeled training
set, we adopt a pseudo-labeling-like approach to add missing
labels in the training set.

II. DATA PRE-PROCESSING

We first describe how we re-normalized the provided data,
and how we split the data into training and validation splits.

A. Data Normalization

We re-normalize the provided SAR vh and vv intensities,
along with the bathymetry/elevation data, to values between
0 and 1. Note that the provided SAR intensities have already
been pre-processed with logarithm and other operations, while
the bathymetry is provided in meters. Additionally, bathymetry
and elevation are combined into one channel, which is negative
over water bodies to provide depth information, and positive
over terrain to provide elevation information.

The reference code normalizes all inputs by computing the
minimum and maximum values in each channel for every
800× 800 window, and linearly mapping that range to [0, 1].
However, since this normalization is conducted on a per-
window basis, it does not preserve absolute intensity and
bathymetry values: for example, if a given window is fully
on land, the original bathymetry values would all be positive,
but it would not be immediately clear that it is land from the
normalized values.

Thus, instead, we adopt a fixed global normalization for
each channel, as follows:

Fig. 1: Since scenes in xView3-Train are automatically labeled
using AIS data, in some cases there are missing labels. Here,
only a subset of the wind turbines in an off-shore wind farm
are annotated (blue boxes).

• vh, vv: we clip values to [−50, 20], and re-scale linearly
to [0, 1].

• Bathymetry: we clip values to [−6000, 2000], and re-scale
linearly to [0, 1].

B. Training and Validation Splits

The xView3 dataset consists of two subsets:
• xView3-Train: 554 Sentinel-1 scenes labeled automati-

cally using AIS data.
• xView3-Validation: 50 Sentinel-1 scenes labeled largely

by hand.
xView3-Validation is labeled more comprehensively: in

xView3-Train, since AIS data is the primary source of ground
truth, if a maritime object is not broadcasting AIS then it will
not be labeled. We show an example of this issue in Figure 1.

Furthermore, xView3-Train includes 315 scenes in the Bay
of Biscay that appear in neither xView3-Validation nor the
public test set.

Although the subsets are named to suggest one subset
be used for training and one for validation, the competition



organizers stated that participants can leverage the provided
data in different ways.

Thus, because xView3-Validation consists of a different data
distribution, which in theory is closer to annotations in the
test set, we opt to establish modified training and validation
splits. Our training set consists of 239 scenes in xView3-Train
(we exclude scenes in the Bay of Biscay) and 25 of the 50
scenes in xView3-Validation. Our validation set consists of the
remaining 25 scenes in xView3-Validation.

C. Bounding Boxes

While fine-grained bounding box labels are provided in
xView3-Validation, xView3-Train only includes point labels
specifying the center position of maritime objects. We opt to
only use the point labels across the entire dataset. To train the
Faster R-CNN detector, which expects bounding box labels,
we construct boxes of a fixed 40 × 40 size around the point
labels.

III. METHODOLOGY

A. Data Augmentation

We employ several data augmentations to make the best use
of the training and validation data.

Random Cropping. We extract random 800 × 800 windows
from the scenes, which are around 30,000 × 20,000 pixels in
size. In contrast to the reference code, the selected windows
need not be aligned with a grid: we select the top-left corner
of the window uniformly from the scene, while excluding
windows that do not contain any valid data.

Random Flipping. We randomly flip the cropped windows
horizontally and vertically with 0.5 probability each.

We also experimented with random jitter, random resizing,
random rotation, and Gaussian noise, but these augmentations
did not provide an improvement in performance.

B. Object Detection Model

We use Faster R-CNN with a backbone consisting of
ResNet-50 followed by a feature pyramid network. The back-
bone is pre-trained on ImageNet while the RPN and ROI heads
are randomly initialized.

We extend this model in three ways:
• We apply the backbone to also predict other provided

attributes of object labels.
• We extend the backbone to support pseudo-labeling that

adds labels with non-binary ground truth probability
distributions.

• We do not back-propagate the loss in regions of the image
intersecting low-confidence labels.

We also use a sliding window inference scheme that ensures
predictions are made on window edges only when needed.
After describing the training procedure, we detail each of these
extensions below.

Training. We use SGD optimizer with 0.9 momentum and
0.0005 weight decay. We initialize with a 0.001 learning
rate, but decay the learning rate two times by 1/10 down to

0.00001; the decay is scheduled based on when the training
loss plateaus.

The training data is sparse, consisting of many more back-
ground windows with no objects than foreground windows
containing object labels. Thus, as in the reference code, we opt
to balance the frequency at which we present the model with
background and foreground windows, and arrange for training
batches to consist of 2/3 foreground and 1/3 background on
average. In contrast to the reference code, though, we make
full use of all background windows, instead of selecting a
subset of background windows upon initialization: specifically,
we sample each training batch from the set of all windows,
and use weighted sampling (where background windows are
assigned a lower weight than foreground windows) to achieve
the 2/3 to 1/3 ratio.

Attribute Prediction. In addition to specifying an object’s
center position, the ground truth data includes several other
attributes, including a confidence estimate (low, medium, or
high), whether the object is a vessel, whether the object is
a fishing vessel, and the vessel length. We extend our model
to predict these attributes as a joint training task, in the hope
that learning to predict attributes will help the model become
better at detecting objects.

To do so, during training, we apply the ResNet-50 backbone
on 128× 128 crops around each ground truth label. Note that
this is done separately from the Faster R-CNN pipeline: we
do not use the predicted proposals or ROI pooling here, but do
share the backbone parameters. We then apply a three-layer
head for each attribute. We predict the label confidence, vessel
class, and fishing vessel class using softmax heads trained
with cross-entropy loss, and predict the vessel length using
a regression head trained with L1 loss. Losses are masked
if the attribute is not available for a particular object label.
We add these losses to the Faster R-CNN losses with a 1/20
re-weighting.

Since we predict the vessel and fishing classes using this
auxiliary attribute prediction model, we do not require the
Faster R-CNN ROI head to perform classification. Thus, we
train a single-class Faster R-CNN model, leaving classification
up to the attribute predictor.

Pseudo-labeling. We employ one round of a pseudo-labeling-
like approach to fill in missing labels in xView3-Train. Specif-
ically, we train our model on all 50 scenes in xView3-
Validation, and apply it on each scene in xView3-Train.
We identify high-confidence predictions (confidence score
exceeding 0.8) that are at least 20 pixels away from the
closest pre-existing ground truth label, and add those points
as additional labels. We annotate each of these new points
with the confidence score that the model produced. We also
eliminate ground truth labels where the model did not make
any prediction with at least 0.1 confidence score.

We then train the final model on our training set with these
new labels included. However, when computing the binary
cross entropy objectness loss for these labels, we use the
confidence score from the original model as the ground truth



positive class probability rather than a binary ground truth
distribution. This way, the added labels are treated as “softer”
targets than the provided ground truth labels, reflecting that
they may not all be correct.
Low-confidence Labels. Labels in the xView3 dataset include
a confidence attribute, which may be low, medium, or high.
During evaluation, only predictions matching with medium-
and high-confidence labels are rewarded when computing
recall, while predictions matching with low confidence labels
are ignored.

Thus, we opt to use only medium- and high-confidence
labels as positive examples when training the detector. Nev-
ertheless, intuitively we should not penalize the detector for
predicting points corresponding to low-confidence labels. To
accomplish this, we modify the RPN and ROI heads to discard
proposals that intersect with low-confidence labels with at least
0.5 IoU.
Sliding Window Inference. Due to the large size of the
Sentinel-1 scenes (approximately 30K × 20K pixels), GPU
memory limitations make it infeasible to provide the entire
scene as input to the model. Instead, we adopt a sliding
window inference strategy, where we divide the scene into
3072×3072 windows and process each window independently.
We can then concatenate the predictions across windows to
derive the final output.

However, we find that predictions along the borders of
these windows are less accurate than predictions well in the
center of the windows. For example, a vessel that is cut in
two across two windows may be missed or even predicted
twice. To mitigate issues along window borders, we employ
an overlapping window inference strategy.

Specifically, we use 3072×3072 windows during inference,
but arrange for windows to share an 800-pixel overlap with
each adjacent window above, below, to the left, and to the
right. We only retain predictions in the center 2272× 2272 of
the window, with the exception of windows on the border of
the Sentinel-1 scene, in which case we retain predictions up
to that border. Finally, after concatenating predictions across
windows, we perform a duplicate pruning step to remove
predicted points that are within 10 pixels of a higher-scoring
point. This strategy ensures that the model has enough context
to make each prediction.
Exponential Moving Average. We find that using the expo-
nential moving average (EMA) of parameters from training
provides more stable performance during inference than using
the best-performing or most recent parameters. Thus, we save
the parameters using EMA with a decay of 0.995 on each
training step.

C. Attribute Prediction Model
Although we extend our object detector to predict attributes

such as vessel length, we find that its accuracy is limited and
highly variable. Thus, while the auxiliary attribute prediction
heads were useful for joint training and improving detection
performance, a separate attribute prediction model provided
better accuracy at actually recovering the attribute values.

Our attribute prediction model architecture is similar to the
auxiliary attribute prediction heads detailed in the previous
sub-section. The model inputs 128×128 crops around ground
truth points, and predicts the confidence annotation, binary
vessel class, binary fishing class, and vessel length. To train the
model, in addition to random vertical and horizontal flipping,
we translate the crop by up to 8 pixels in either direction along
both axes.

During inference, we apply the model on a crop around each
point predicted by the object detector. We label the point as a
vessel if the vessel class probability exceeds 0.5, and label it
as a fishing vessel if the fishing class probability also exceeds
0.5. We directly use the predicted vessel length in the output
as well.

D. Hyperparameter Tuning

We tune the confidence threshold to obtain the maximum
score on our validation set. We also evaluate the model
parameters (after EMA) periodically during training, and save
the parameters that provide best performance on our validation
set.

E. Test-Time Augmentation and Ensembling

We do not use an ensemble of models. However, we do
employ test-time augmentation to derive a small improvement
in performance. Specifically, during inference, we apply the
model four times: once on the original image, once with the
image flipped vertically, once with it flipped horizontally, and
once with it flipped both ways. We then average the scores of
predictions produced across the four augmentations.

IV. APPROACHES TAILORED FOR VESSEL DETECTION

We experimented with several approaches tailored specifi-
cally for the vessel detection problem. However, we did not
attain any performance improvement with these approaches.
Nevertheless, we detail these attempts, which were not ulti-
mately incorporated into our final approach, in this section.

A. Comparing Overlapping Images

Intuitively, comparing the current window to windows ex-
tracted from spatially overlapping Sentinel-1 scenes captured
at different times should improve performance, by enabling the
model to avoid predicting static islands and rocks as maritime
objects. For example, we might find a feature in the current
image that looks like a vessel, but appears in every overlapping
image as well; in this case, we may conclude that the feature
is actually a small island and not a vessel. This approach was
very feasible to adopt for xView3 since the vast majority of
scenes in xView3 overlap with at least one other scene in
xView3-Train.

We experimented with several approaches that implement
this idea. In one variation, we employ a shared encoder that
inputs a two-channel image consisting of the SAR vh and vv
channels, and outputs a feature map at a reduced resolution.
We first compute features through the encoder in the current
window w. We then identify up to four windows from other



Sentinel-1 scenes that overlap w, apply the encoder indepen-
dently on each of these windows, and average the extracted
features at each pixel across the windows. We concatenate the
features computed in the current window with the averaged
features computed in overlapping windows, and feed the con-
catenated result to the feature pyramid network and the RPN
and ROI heads. In this way, downstream networks can compare
the feature representation of pixels in the current window
against averaged features of the same pixels in windows from
Sentinel-1 scenes captured at different times.

However, none of the variations we tested provided a
performance improvement.

B. Static Infrastructure

We found that many maritime objects in xView3 correspond
to static infrastructure such as wind turbines. Intuitively,
localizing these objects a priori and reproducing them in
the appropriate positions at inference time should improve
performance. We localize static infrastructure by identifying
longitude-latitude points that are covered by a point within
10 pixels across 5 different spatially overlapping Sentinel-1
scenes: if a maritime object is annotated in the same location
across so many images, then it is likely a static object.
However, we did not observe a performance improvement
from this approach.

V. CONCLUSION AND ACKNOWLEDGEMENTS

Our approach achieves 0.576 aggregate score on the public
test set, and 0.578 aggregate score on the hidden test set. We
would like to thank Global Fishing Watch and Defense Inno-
vation Unit for releasing the xView3 dataset and organizing
the competition.


