
FIRA: Fine-Grained Graph-Based Code Change Representation
for Automated Commit Message Generation

Jinhao Dong
Key Laboratory of High Confidence Software

Technologies (Peking University), MoE

School of Computer Science,

Peking University

Beijing, China

dongjinhao@stu.pku.edu.cn

Yiling Lou∗

Department of Computer Science,

Purdue University

West Lafayette, IN, USA

lou47@purdue.edu

Qihao Zhu, Zeyu Sun, Zhilin Li
Key Laboratory of High Confidence Software

Technologies (Peking University), MoE

School of Computer Science,

Peking University

Beijing, China

{zhuqh,szy_,1700012439}@pku.edu.cn

Wenjie Zhang, Dan Hao∗

Key Laboratory of High Confidence Software

Technologies (Peking University), MoE

School of Computer Science,

Peking University

Beijing, China

{zhang_wen_jie,haodan}@pku.edu.cn

ABSTRACT

Commit messages summarize code changes of each commit in nat-

ural language, which help developers understand code changes

without digging into detailed implementations and play an essen-

tial role in comprehending software evolution. To alleviate human

efforts in writing commit messages, researchers have proposed var-

ious automated techniques to generate commit messages, including

template-based, information retrieval-based, and learning-based

techniques. Although promising, previous techniques have limited

effectiveness due to their coarse-grained code change representations.

This work proposes a novel commit message generation tech-

nique, FIRA, which first represents code changes via fine-grained

graphs and then learns to generate commit messages automati-

cally. Different from previous techniques, FIRA represents the code

changes with fine-grained graphs, which explicitly describe the

code edit operations between the old version and the new ver-

sion, and code tokens at different granularities (i.e., sub-tokens and

integral tokens). Based on the graph-based representation, FIRA

generates commit messages by a generation model, which includes

a graph-neural-network-based encoder and a transformer-based

decoder. To make both sub-tokens and integral tokens as available

ingredients for commit message generation, the decoder is further

incorporated with a novel dual copy mechanism. We further per-

form an extensive study to evaluate the effectiveness of FIRA. Our

quantitative results show that FIRA outperforms state-of-the-art

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510069

techniques in terms of BLEU, ROUGE-L, and METEOR; and our

ablation analysis further shows that major components in our tech-

nique both positively contribute to the effectiveness of FIRA. In

addition, we further perform a human study to evaluate the quality

of generated commit messages from the perspective of developers,

and the results consistently show the effectiveness of FIRA over

the compared techniques.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Commit Message Generation, Graph Neural Network, Code Change

Representation

ACM Reference Format:

Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang,

Dan Hao. 2022. FIRA: Fine-Grained Graph-Based Code Change Representa-

tion for Automated Commit Message Generation. In 44th International Con-

ference on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA,

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.

3510069

1 INTRODUCTION

When developers commit changed code to a version control system,

each commit is supposed to be documented with a commit message.

Commitmessages summarize code changes in natural language, and

can help developers quickly understand the high-level intention

of code changes without digging into detailed implementations.

Therefore, commit messages are prevalent in software maintenance

and play an essential role in comprehending software evolution [4].

However, manually writing commit messages can be very labor-

intensive. High-quality commit messages should precisely describe

the rationales of changed code, which often requires non-trivial

manual efforts in practice. In addition, modern software has been

evolving rapidly, and frequent commit submissions put a heavy

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

burden on developers. Therefore, although commit messages are

beneficial, they are often neglected by developers due to the time

costs. As is reported, almost 14% commit messages in 23K Java

projects are empty [10].

To alleviate manual efforts in writing commit messages, re-

searchers have proposed various techniques to generate commit

messages automatically. Given a code change, these techniques

first represent the old-version and new-version code with specific

formats, such as sequences of tokens or paths of abstract syntax tree

(AST), and then generate commit messages based on the representa-

tions via different strategies such as template-based [4, 6], informa-

tion retrieval-based [16, 29], and learning-based [19, 28, 32, 41, 44]

techniques.

Although achieving promising performance, the effectiveness of

previous techniques has been restricted by their coarse-grained code

change representations. First, existing commit message generation

techniques represent the code changes by simply putting old-version

and new-version code together without explicitly highlighting fine-

grained edit operations. For example, given an expression “a = 1;”

modified into “b = 1;”, token-based representations [19, 32, 41, 44]

represent such code changes by concatenating both expressions

into one flat sequence of tokens (i.e., “- a = 1; + b = 1;”),

where -/+ denotes the old/new-version code; the AST-based rep-

resentations [28] represent the code changes by concatenating

old-version and new-version AST paths into one sequence (i.e., “-

assignment.variable.a.operator.=.literal.1; + assignme

nt.variable.b.operator.=.literal.1;”). Therefore, existing

learning-based models have to compare the code representations of

old and new versions so as to capture the subtle edit operation (i.e.,

the token “a” is changed into a new token “b”) by themselves, which

makes it more challenging to generate precise commit messages.

Second, existing code change representations mainly focus on coarse-

grained tokens (i.e., integral tokens) in the code without explicitly and

individually describing finer-grained tokens (i.e., sub-tokens of inte-

gral tokens). In fact, it is prevalent that the commit messages may

contain sub-tokens of the input code changes. For example, for a

code change that contains an integral token “setMinimumSize”, its

relevant commit message contains three tokens “set”, “minimum”,

and “size”, which are exactly the sub-tokens of the integral token

“setMinimumSize”. However, most previous techniques [19, 32, 41]

consider only integral tokens and ignore sub-tokens in their code

change representations; while a few techniques [28, 44] represent

all sub-tokens in a compound representation (e.g., one single em-

bedding vector) without representing each sub-token individually.

Such compound representations make it challenging to utilize each

sub-token as available ingredients for commit message generation.

Therefore, they exhibit a poor performance for the cases that com-

mit messages contain sub-tokens of the input code.

To address the limitations above, in this work, we propose a

novel commit message generation technique, FIRA, which first

represents code changes via fine-grained graphs and then learns

to generate commit messages automatically. Compared to previous

code change representations, FIRA makes the first attempt to ex-

plicitly describe the edit operations between the old-version and

new-version code, along with tokens at different granularities (i.e.,

integral tokens and sub-tokens). Based on the proposed graph-based

representations, FIRA then learns to generate commit messages

iteratively with an encoder-decoder model. In particular, FIRA in-

corporates the graph neural network in the encoder so as to directly

encode the graph-structured inputs; and the decoder incorporates

the transformer [39] and a novel dual copy mechanism, which can

not only generate tokens from the vocabulary but also copy both

integral tokens and sub-tokens from the input.

We perform an extensive evaluation to compare FIRA with

six state-of-the-art commit message techniques on a widely-used

benchmark [16, 19, 29, 32, 41, 44]. The results show that FIRA out-

performs all compared techniques in terms of BLEU, ROUGE-L, and

METEOR. We further analyze the effectiveness of each component

in FIRA by an ablation study and case analysis. The results further

confirm that major components (i.e., explicitly representing edit

operations and copying sub-tokens) both positively contribute to

the effectiveness of FIRA, and indeed help generate higher-quality

commit messages than previous techniques. In addition, we further

perform a human study to evaluate the quality of generated commit

messages from the perspective of developers, which consistently

shows the effectiveness of FIRA over compared techniques.

In summary, this paper makes the following contributions:

• A fine-grained graph-based code change representa-

tion for commit message generation, which explicitly de-

scribes code edit operations and tokens at different granu-

larities.

• Anovel encoder-decodermodel for commit message gen-

eration, which leverages the graph neural network in the

encoder to process the proposed graph-based representa-

tion, and leverages the transformer with a novel dual copy

mechanism in the decoder to utilize both integral tokens and

sub-tokens.

• An extensive experiment evaluating our approach against

six state-of-the-art techniques on a widely-used benchmark,

which suggests the effectiveness of our approach by the

quantitative, qualitative, and ablation analysis.

• A human study on the quality of generated commit mes-

sages, which further shows the effectiveness of our approach

from the perspective of developers.

• Areplicationpackage available at https://github.com/DJjjjhao/

FIRA-ICSE.

2 MOTIVATION

Existing commit message generation techniques represent and uti-

lize code changes in a coarse-grained way. First, they simply put

old-version and new-version code together without explicitly de-

scribing fine-grained edit operations; second, they only focus on

coarse-grained tokens (i.e., integral tokens) without representing

sub-tokens individually. In this section, we further illustrate these

limitations with several real-world examples.

2.1 Limitation 1: Edit Operations
As shown by the example in Figure 1, we can observe that edit

operations are highly relevant to developer-written commit mes-

sages. The developer makes the edit operation (i.e., adding one

token “abstract”) and the corresponding commit message indicates

his/her intention of making the class abstract. However, existing

techniques cannot always notice such edit operations, since their

FIRA: Fine-Grained Graph-Based Code Change Representation

for Automated Commit Message Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

- private class FormAuthClientBase extends
SimpleHttpClient {

@@ -421,7 +421,7 @@ public class TestFormAuthenticator
extends TomcatBaseTest {

+ private abstract class FormAuthClientBase extends
SimpleHttpClient {

protected static final String LOGIN_PARAM_TAG =
"action=";
protected static final String LOGIN_RESOURCE =
"j_security_check";

Figure 1: Motivating example: edit operations

(a) CODISUM

(b) ATOM

Figure 2: Existing code change representations

code change representations put old-version and new-version code

together without explicitly highlighting the differences. Therefore,

they have to compare old-version and new-version code and then

infer the edit operations by themselves. For example, as shown in

Figure 2a, CODISUM [44], one of the learning-based approaches,

represents the code change by concatenating the flat token se-

quences of old-version and new-version code into one sequence.

Although each token in the sequence is annotated with old version (-

) or new version (+), CODISUM has to learn to infer the specific edit

operation (i.e., one token “abstract” is added) by itself. Similarly, in

Figure 2b, another learning-based technique ATOM [28], represents

the code changes by concatenating old-version and new-version

AST paths together, and it also has to compare two paths by itself so

as to capture the edit operations at AST level. Such coarse-grained

code change representations are actually cumbersome, especially

when code changes involve very minor edit operations with the

majority of tokens unchanged (e.g., only one token is changed in

the example). Learning-based techniques cannot always guarantee

to precisely capture such subtle edit operations, which may fur-

ther result in imprecise commit message generation. In fact, our

experimental results also confirm that these techniques all fail to

generate precise commit messages for this example.

To address this limitation, we propose to explicitly highlight edit

operations in the code change representation, which can include

more accurate information for commit message generation.

getSupportActionBar().addTab(newTab);

@@ -219,7 +220,7 @@ public class FeatureToggles extends
SherlockActivity{

newTab.setText("Text!");
}

}

+ newTab.setTabListener(FeatureToggles.this);

Figure 3: Motivating example: sub-tokens

2.2 Limitation 2: Sub-tokens
As shown by the example in Figure 3, we can observe that sub-

tokens in the input code can provide very helpful hints for commit

message generation. For example, the developer-written commit

message “Add tab listener for feature toggles” consists of the sub-

tokens “tab”, “listener”, “feature” and “toggles” in the input code.

However, existing techniques focus on integral tokens and seldom

treat sub-token as equally important as integral token. For example,

most existing techniques [19, 32, 41] ignore sub-tokens in their

code change representations, while a few techniques [28, 44] de-

scribe all sub-tokens in a compound representation (e.g., one single

embedding vector) without representing sub-tokens explicitly and

individually. Such compound representations restrict the utilization

of sub-tokens. For example, with such representations, existing

techniques can only generate the frequent sub-tokens that are in-

cluded in the vocabulary, but often fail to generate those infrequent

sub-tokens that are excluded in the vocabulary or seldom occur

in the training set. Actually, for the generation tasks related to

program code, such infrequent sub-tokens can be very prevalent

since they are often project specific tokens (e.g., “tab” and “toggles”

in the example). Therefore, existing coarse-grained code change

representations make it challenging to generate commit messages

containing such sub-tokens.

Therefore, to fully utilize sub-tokens in the code, we propose

to treat all integral tokens and sub-tokens equally important and

represent sub-tokens individually in the code change representation.

In addition, to make both frequent and infrequent sub-tokens as

ingredients of the commit message, we further leverage a novel

dual copy mechanism additionally for sub-tokens in our model so

that both integral tokens and sub-tokens can be either copied or

generated from the vocabulary.

3 CODE CHANGE REPRESENTATION

This section presents our fine-grained graph-based code change

representation, which explicitly includes edit operations and sub-

tokens to enable more precise commit message generation. In par-

ticular, the graph construction consists of four steps, including (1)

building chopped abstract syntax trees (Section 3.1), (2) adding sub-

tokens (Section 3.2), (3) annotating edit operations (Section 3.3), and

(4) incorporating additional sequential information (Section 3.4).We

then introduce each step in detail and use the motivating example

in Figure 1 for illustration.

3.1 Chopped Abstract Syntax Trees
A typical code change often includes the modified code and its

surrounding context. For example, a code change in GitHub (e.g.,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

Figure 4: Graph𝐴𝑆𝑇 : chopped AST

Figure 1 and Figure 3) often contains multiple lines of code and each

line starts with its change type. More specifically, “-” denotes the

deleted old-version code, “+” denotes the added new-version code,

and the empty character “ ” denotes the unchanged code both in

old and new version. A code change may involve single or multiple

hunks. Here, a hunk refers to the continuous lines with the same

change type. Among commits in GitHub, some may modify only

one token in a hunk, while some may modify hundreds of lines in

multiple hunks. Existing learning-based techniques often represent

all the changed code together, e.g., CODISUM [44] concatenates all

deleted/added hunks as one sequence and ATOM [28] constructs

AST of the entire code file even if the code changes occur in only

several lines in the file. Representing the code change as a whole can

obfuscate details among hunks and thus makes it more challenging

for the commit message generation model to summarize essential

features from such a coarse-grained representation. Therefore, in

FIRA, we propose to construct AST at hunk level, so that more

detailed information can be reservedwhen the code change involves

multiple hunks.

More specifically, given a code change, we first separate it into

several hunks according to their change types; then for each hunk,

we parse it to construct its own abstract syntax tree, i.e., chopped

AST. In this way, we obtain a set of chopped ASTs for the given code

change, which are actually a set of graphs with basic semantic and

syntactic information of each hunk. In particular, for the chopped

AST of a deleted hunk (i.e., all its lines are deleted), we denote it

as AST𝑜𝑙𝑑 since the relevant code only exists in the old version;

for the chopped AST of an added hunk (i.e., all its lines are added),

we denote it as AST𝑛𝑒𝑤 since the relevant code only exists in the

new version. We denote the graph constructed in this phase as

Graph𝐴𝑆𝑇 . Figure 4 presents the Graph𝐴𝑆𝑇 of changed lines in the

illustration example, where “class dcl” is the abbreviation of the

AST node type “class_declaration”, and “c0” is the placeholder of

the class name “FormAuthClientBase”.

Figure 5: Graph𝑡𝑜𝑘𝑒𝑛 : Graph𝐴𝑆𝑇 extended with sub-tokens

3.2 Sub-tokens
Asmentioned in Section 2, commitmessages often contain coarse/fine-

grained tokens (i.e., integral tokens and sub-tokens) in the input

code. Such a phenomenon is prevalent, since it is a common prac-

tice for developers to name a function or a class with phrases.

For example, given a method named as “deleteOldThreadDumps”,

this integral token consists of four sub-tokens “delete old thread

dumps”, which describe the functionality of the method and might

be adopted in the commit message when code changes are relevant

to this method. Therefore, in our representation, we consider not

only the integral tokens but also their sub-tokens. More specifically,

in each Graph𝐴𝑆𝑇 , for the node with an integral token, we split it

into separated sub-tokens according to the widely-adopted naming

convention (i.e., camel case and snake case), represent these sub-

tokens as extra nodes in the graph, and then connect them with

their belonging integral token nodes. In this way, the chopped AST

is extended with nodes and edges relevant to sub-tokens, where

integral tokens and sub-tokens are equally-important individuals

and both can be directly utilized in the subsequent commit mes-

sage generation. We denote the graph constructed in this phase as

Graph𝑡𝑜𝑘𝑒𝑛 . Figure 5 presents the Graph𝑡𝑜𝑘𝑒𝑛 , which extends the

Graph𝐴𝑆𝑇 (i.e., Figure 4) with sub-token information.

Figure 6: Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 : Graph𝑡𝑜𝑘𝑒𝑛 extended with edit nodes

3.3 Edit Operations
So far, all nodes in the graph represent code elements, which are

denoted as code nodes for distinction. Based on Graph𝑡𝑜𝑘𝑒𝑛 , we

further introduce edit nodes to explicitly represent fine-grained

edit operations between AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 . In particular, we

consider five edit nodes, including v𝐴𝐷𝐷 , v𝐷𝐸𝐿 , v𝑀𝑂𝑉𝐸 , v𝑈𝑃𝐷𝐴𝑇𝐸 ,

and v𝑀𝐴𝑇𝐶𝐻 .

• v𝐴𝐷𝐷 . If the code node 𝑣 exists in AST𝑛𝑒𝑤 but not in AST𝑜𝑙𝑑 ,

𝑣 is newly-added and should be connected with an edit node
v𝐴𝐷𝐷 .

• v𝐷𝐸𝐿 . If the code node 𝑣 exists in AST𝑜𝑙𝑑 but not in AST𝑛𝑒𝑤 ,
𝑣 is deleted and should be connected with an edit node v𝐷𝐸𝐿 .

• v𝑀𝑂𝑉𝐸 . If the code node 𝑣 exists in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤
and the positions of 𝑣 and its sub-tree are moved, the node
𝑣 in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 should be connected with an

edit node v𝑀𝑂𝑉𝐸 .

• v𝑈𝑃𝐷𝐴𝑇𝐸 . If the code node 𝑣 exists in both AST𝑜𝑙𝑑 and

AST𝑛𝑒𝑤 and its value is updated, the nodes 𝑣 in both AST𝑜𝑙𝑑
andAST𝑛𝑒𝑤 should be connectedwith an edit node v𝑈𝑃𝐷𝐴𝑇𝐸 .

• v𝑀𝐴𝑇𝐶𝐻 . If a node 𝑣 exists in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 and

its value and position remain unchanged, the nodes 𝑣 in both

FIRA: Fine-Grained Graph-Based Code Change Representation

for Automated Commit Message Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 should be connected with an edit node

v𝑀𝐴𝑇𝐶𝐻 .

According to the description above, we further insert edit nodes

to the Graph𝑡𝑜𝑘𝑒𝑛 by connecting them with the original code nodes.

We denote the graph constructed in this phase as Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 . Fig-

ure 6 presents the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 , which further extends theGraph𝑡𝑜𝑘𝑒𝑛
(i.e., Figure 5) with edit nodes.

Figure 7: Graph𝑠𝑒𝑞 : one-line graph

Figure 8: Graph𝑓 𝑖𝑛𝑎𝑙 : fine-grained representation for code

changes

3.4 Additional Sequential Information
So far, the code change has mainly been represented based on

the AST structure. As suggested by previous work [19, 44, 45], the

sequential information (i.e., treating code as a flat token sequence)

can also be helpful for commit message generation, since it can

reserve the adjacent relationship and the order of the tokens. There-

fore, we further extend Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 with additional sequential

information so as to include more helpful information. In particular,

we first build an extra one-line graph (denoted as Graph𝑠𝑒𝑞) by

regarding each token as a node and connecting every two adjacent

nodes. Figure 7 presents the Graph𝑠𝑒𝑞 of the code change hank.

Then, we merge Graph𝑠𝑒𝑞 with the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 by using the nodes

existing in both graphs as the anchor nodes. More specifically, for

each node 𝑣𝑖 in Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 , if 𝑣𝑖 matches with the node 𝑣 𝑗 in
Graph𝑠𝑒𝑞 , 𝑣𝑖 is removed from Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 and all its connected

edges are re-connected with 𝑣 𝑗 . In this way, we combine the AST-
based information (i.e., Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛) and sequential information

(i.e., Graph𝑠𝑒𝑞) into one larger graph, i.e., as Graph𝑓 𝑖𝑛𝑎𝑙 . Figure 8

presents the Graph𝑓 𝑖𝑛𝑎𝑙 for the illustration example, which further

extends the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 (i.e., Figure 6) with additional sequential

information.

4 MODEL ARCHITECTURE

Figure 9 presents the overview of our model, whose input is the

final graph-based code change representation and output is the

generated commit message. Overall, the model is in an encoder-

decoder architecture. In the encoder, we adopt graph neural net-

works (GNN) due to its strong capability of processing graph-

structured data [12, 13, 22, 30, 34, 40, 43]. In the decoder, we leverage

the transformer architecture [39], which is the state-of-the-art se-

quence to sequence model and is widely used in various generation

tasks [1, 37, 46], to generate tokens in commit messages iteratively.

When generating the next token, the decoder first performs self-

attention between the current token and the previously generated

tokens, and then performs cross-attention over input tokens embed-

ded by the encoder. In addition, to fully utilize the integral tokens

and sub-tokens in inputs, the decoder further incorporates a novel

dual copy mechanism, which can copy both integral tokens and

sub-tokens from the inputs. In other words, in each iteration, the

model can choose an integral token or a sub-token with highest

probability from the vocabulary or directly from the inputs. We

then describe each component in detail.

Figure 9: Architecture of the proposed model

4.1 Encoder

Given the final graph-based representation of code changes, i.e.,

Graph𝑓 𝑖𝑛𝑎𝑙 , the encoder first embeds the nodes with an embedding

layer (i.e., in Section 4.1.1); then the graphs are represented by

embedding vectors and an adjacency matrix, which can be further

fed to a graph neural network layer (i.e., in Section 4.1.2); the final

output of the encoder is learned representation vectors for each

node, which can be further used by the decoder.

4.1.1 Embedding Layer. Formally, the final graph-based represen-

tation of code changes Graph𝑓 𝑖𝑛𝑎𝑙 can be defined as G = (V, E),
whereV denotes the nodes and E denotes the edges in the graph.

As mentioned above, V contains two types of nodes, i.e., code

nodes and edit nodes. We establish a lookup table for both nodes

and covert them to embedding vectors based on the table. In par-

ticular, the embedding vectors of code nodes can be denoted as

[𝒄1, 𝒄2, ..., 𝒄𝑁𝑐] and the embedding vectors of edit nodes can be de-
noted as [𝒆1, 𝒆2, ..., 𝒆𝑁𝑒], where 𝑁𝑐 and 𝑁𝑒 denote the numbers of

code nodes and edit nodes, respectively. Therefore, the embedding

vectors𝐸 for the graph can be represented by [𝒄1, 𝒄2, ..., 𝒄𝑁𝑐 , 𝒆1, 𝒆2, ...

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

, 𝒆𝑁𝑒], where 𝐸 ∈ R𝑑𝑥×𝑁 , 𝑁 = 𝑁𝑐 + 𝑁𝑒 , and 𝑑𝑥 denotes the em-

bedding size. Note that embedding vectors are learnable and are

initialized randomly.

4.1.2 Graph Neural Network. The embedding vectors are further

fed into a graph convolution network (GCN) layer. GCN [22] is a

variant of the graph neural network (GNN) and it leverages the first-

order approximation of Chebyshev Spectral CNN (ChebNet) [7] to

aggregate the feature information among all neighbor nodes [43].

Here we use an adjacency matrix and the embedding vectors 𝐸
to identically represent the input graph G, so that GCN can directly

process the input. For an adjacency matrix 𝐴 of G (𝐴 ∈ {0, 1}𝑁×𝑁),
𝐴𝑖, 𝑗 means whether there exists an edge between the node 𝑣𝑖 and
the node 𝑣 𝑗 in G. In order to preserve the information of each

node itself, we further include self-connections to each node in

the graph and obtain an enhanced adjacency matrix 𝐴 with self-

connections. In addition, to avoid gradient explosion caused by

accumulated degrees, we apply symmetric normalization to 𝐴 and

get the normalized adjacency matrix 𝐴, as shown in Equation 1. 𝐷

denotes the degree matrix of 𝐴, which can be computed by 𝐷𝑖𝑖 =∑
𝑗 𝐴𝑖 𝑗 .

𝐴 = 𝐷− 1
2𝐴𝐷− 1

2 . (1)

The output of GCN in the 𝑙th iteration can be computed as

Equation 2.𝑊𝑔 ∈ R𝑑𝑥×𝑑𝑥 is the trainable parameters. 𝑋 𝑙−1 denotes
the embedding vectors of the nodes in the last iteration, and initially

𝑋 0 is the embedding vectors of all nodes (i.e., 𝐸). In addition, to
boost the learning process, we employ residual connection [15] and

layer normalization [2] similar to the transformer architecture [39].

𝑋 𝑙 =𝑊𝑔𝑋
𝑙−1𝐴, (2)

After 𝐿 iterations, the final representation of the nodes can be

denoted as 𝑋𝐿 , i.e., 𝑋𝐿 ∈ R𝑑𝑥×𝑁 .

4.2 Decoder

The decoder is built on top of a transformer architecture with a

novel dual copy mechanism for both integral tokens and sub-tokens.

4.2.1 Transformer Layer. Here we use the decoder part of trans-

former [39], which is stacked by multi-head self-attention, multi-

head attention over the output of the encoder, and a fully-connected

feed-forward network.

For better illustration, we denote the output of the encoder as𝑋𝑒 ,

i.e., 𝑋𝑒 = 𝑋𝐿 . The decoder decides each token in the commit mes-

sage iteratively, which is based on both the output of the encoder

𝑋𝑒 and the currently generated tokens. When generating the 𝑘th
token in the commit message, we denote the output of the decoder

as 𝒙𝑘
𝑑
, (i.e., 𝒙𝑘

𝑑
∈ R𝑑𝑥), which can be computed as Equation 3. For

better illustration, we use 𝑋𝑘−1
𝑑

to represent the already generated

output [𝒙1
𝑑
, 𝒙2

𝑑
, ..., 𝒙𝑘−1

𝑑
] of the decoder.

𝒙𝑘𝑑 = Transformer(𝑋𝑒 , 𝑋
𝑘−1
𝑑) (3)

Next, we introduce the detailed computation process of trans-

former. First, transformer computes multi-head self-attention (i.e.,

𝑎𝑘
𝑑
).𝑎𝑘

𝑑
is the concatenation of multiple single attention𝑎𝑘

𝑑
(𝑖), which

is the weighted sum of the already generated output𝑋𝑘−1
𝑑

, as shown

in Equation 4 and Equation 5.𝑊𝑄 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,𝑊𝐾 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,

𝑊𝑉 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,𝑊𝑂 ∈ R𝑑𝑥×ℎ𝑑𝑥 denote the projection parameters,
and ℎ is the number of heads.

𝒂𝑘𝑑 (𝑖) =𝑊𝑉 (𝑖)𝑋𝑘−1
𝑑 · softmax

����
(
𝑋𝑘−1
𝑑

)𝑇
𝑊𝐾 (𝑖)𝑇 ·𝑊𝑄 (𝑖)𝒙𝑘−1

𝑑√
𝑑𝑥

	

�
(4)

𝒂𝑘𝑑 =𝑊𝑂 [𝒂𝑘𝑑 (1); 𝒂𝑘𝑑 (2); ...; 𝒂𝑘𝑑 (ℎ)] (5)

Second, transformer computes multi-head attention between 𝑎𝑘
𝑑

and the output of the encoder𝑋𝑒 , which is denoted as 𝑎
𝑘
𝑒 and shown

in Equation 6 and Equation 7.

𝒂𝑘𝑒 (𝑖) =𝑊𝑉 (𝑖)𝑋𝑒 · softmax
(
𝑋𝑒

𝑇𝑊𝐾 (𝑖)𝑇 ·𝑊𝑄 (𝑖)𝒂𝑘
𝑑√

𝑑𝑥

)
(6)

𝒂𝑘𝑒 =𝑊𝑂 [𝒂𝑘𝑒 (1); 𝒂𝑘𝑒 (2); ...; 𝒂𝑘𝑒 (ℎ)] (7)

Third, 𝑎𝑘𝑒 passes a fully connected feed-forward network to get

the output 𝒙𝑘
𝑑
, as shown in Equation 8.𝑊1 ∈ R𝑑𝑥×𝑑𝑥 ,𝑊2 ∈ R𝑑𝑥×𝑑𝑥 ,

𝑏1 ∈ R𝑑𝑥 , 𝑏2 ∈ R𝑑𝑥 are trainable parameters.
𝒙𝑘𝑑 =𝑊2 ·max(0,𝑊1𝒂

𝑘
𝑒 + 𝑏1) + 𝑏2 (8)

𝒙𝑘
𝑑
is then fed to a linear layer and transformed into a |𝑉 |-

dimension vector 𝒐𝑘𝑣 as shown in Equation 9. |𝑉 | denotes the size
of the vocabulary and𝑊𝑣 ∈ R |𝑉 |×𝑑𝑥 is a trainable parameter.

𝒐𝑘𝑣 =𝑊𝑣𝒙
𝑘
𝑑 (9)

At last, for each token in the vocabulary, the decoder calculates

its probability of being selected as the next token by passing 𝒐𝑘𝑣
to a softmax layer. 𝒑𝑘𝑣 denotes the probability distribution across
the vocabulary, and 𝒑𝑘𝑣 (𝑖) denotes the probability of the 𝑖th token
being selected, which is computed as Equation 10.

𝒑𝑘𝑣 (𝑖) =
𝑒𝑥𝑝{𝒐𝑘𝑣 (𝑖)}∑ |𝑉 |
𝑗=1 𝑒𝑥𝑝{𝒐𝑘𝑣 (𝑗)}

(10)

4.2.2 Dual Copy Mechanism. To fully utilize both integral tokens

and sub-tokens during commit message generation, we propose and

include a novel dual copy mechanism in the decoder. In this way,

when generating each token in the commit message, the candidate

tokens can be selected not only from the vocabulary but also from

the integral tokens or sub-tokens in the input.

More specifically, in the 𝑘th iteration, the probability of each
input token being copied is computed according to the current

output of the decoder (i.e., 𝒙𝑘
𝑑
). In FIRA, we consider the input

token which is the most similar to 𝒙𝑘
𝑑
with the highest probability

of being copied. Given an input token (i.e., a code node 𝑣 𝑗 in G),
its similarity to 𝒙𝑘

𝑑
can be computed by the sum of its embedding

vector 𝒙 𝑗
𝑒 and the output of the decoder 𝒙

𝑘
𝑑
, as shown in Equation 11.

𝑊1 ∈ R𝑑𝑥×𝑑𝑥 ,𝑊2 ∈ R𝑑𝑥×𝑑𝑥 , 𝒗 ∈ R𝑑𝑥 are learnable parameters.

𝑠𝑘 (𝑗) = 𝒗𝑇 tanh(𝑊1𝒙
𝑘
𝑑 +𝑊2𝒙

𝑗
𝑒) (11)

FIRA: Fine-Grained Graph-Based Code Change Representation

for Automated Commit Message Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

The similarity of 𝑘th token 𝒔𝒌 is further fed to a softmax layer,

which generates the probability of each input token being copied,

i.e., 𝒑𝑘𝑐 = softmax(𝒔𝑘).
At the end of the iteration, we combine the probability distri-

bution across the vocabulary tokens (i.e., 𝒑𝑘𝑣) and the probability
distribution across input tokens (i.e., 𝒑𝑘𝑐) as Equation 13. 𝑔 are

learned according to the output of the decoder, as shown in Equa-

tion 12.𝒘 ∈ R1×𝑑𝑥 is the learnable parameter. In this way, the 𝑘th
token to be selected in the commit message would be a token from

the vocabulary or copied from inputs.

𝑔 =
1

1 + 𝑒𝑥𝑝{𝒘𝒙𝑘
𝑑
}

(12)

𝒑𝑘 = [𝑔 ∗ 𝒑𝑘𝑣 ; (1 − 𝑔) ∗ 𝒑𝑘𝑐] (13)

5 EXPERIMENTAL SETUP

5.1 Research Question

• RQ1: Overall effectiveness. How does FIRA perform com-

pared to the state-of-the-art commit message generation

techniques?

• RQ2: Ablation analysis. How does each component of

FIRA contribute to the effectiveness?

• RQ3: Human evaluation. How does FIRA perform from

the perspective of developers?

5.2 Dataset

Our experiments are evaluated on thewell-established benchmark [20 ,

44], which has been widely used in previous commit message gen-

eration techniques [16, 19, 29, 32, 41, 44]. The dataset is based on

the commits from top 1,000 popular Java projects in GitHub, ex-

cluding rollback/merge commits and duplicated code changes. For

each commit, it includes the first sentence of the relevant commit

message. In total, the dataset contains 90,661 pairs of commits and

the relevant commit messages. Following existing work [44], we

randomly select 75,000 commits as the training set, 8,000 commits

as the validation set, and the remaining 7,661 commits as the testing

set.

5.3 Compared Techniques

We compare FIRA with six state-of-the-art commit message gener-

ation techniques as follows.

Information retrieval-based techniques leverage informa-

tion retrieval (IR) to adopt existing commit messages from similar

code changes. We consider two representative IR-based techniques

NNGen [29] and LogGen [16] for comparison.

Learning-based techniques leverage neural machine transla-

tion (NMT) models to generate commit messages automatically.

We consider four state-of-the-art learning-based techniques, i.e.,

CODISUM [44], ATOM [28], CoreGen [32], and CoRec [41] for

comparison.

5.4 Implementation

Representations. FIRA applies GumTree [11] to map ASTs of old-

version and new-version code and then to identify edit operations.

GumTree [11] is a representative AST mapping algorithm and has

been widely adopted in various tasks [5, 14, 18, 24, 26, 31].

Model. In the encoder, we set the size of the input graphs (i.e., the

maximum number of nodes) up to 650, containing up to 370 code

nodes and 280 edit nodes, which is more than the number of the

graph nodes of each training data so that the largest graphs in the

training set can be included. In the decoder, we set the maximum

length of each commit message as 30, which is longer than the

length of all commit messages in the training set. For the hyper-

parameters, we configure the six-layer GNN with 0.20 dropout

rate [36], and the six-layer eight-head transformerwith 0.10 dropout

rate and 256-dimension hidden states. In the training phase, we

adopt the cross-entropy loss function and the Adam optimizer [21]

with 0.0001 learning rate. We tune these hyper-parameters and
select the best performing model in the validation set.

Compared techniques.We directly reuse the implementations of

the compared techniques from their reproducible packages, if their

packages are available and executable [28, 29, 32, 41]; otherwise,

we re-implement the techniques strictly following the description

in their papers.

Environment. The experiments are performed on a Dell worksta-

tion with Intel Xeon CPU E5-2680 v4 @ 2.40GHz, running Ubuntu

16.04.6 LTS. The models are trained on two 24G GPUs of GeForce

RTX 3090 and two 24G GPUs of NVIDIA TITAN RTX.

5.5 Evaluation Metrics

We use the commit messages (i.e., manually written by developers)

in the dataset as the ground truth. In particular, given a code change,

we compare the similarity between the generated commit message

with the ground truth. Following previous work on commit message

generation [16, 19, 28, 29, 32, 41, 44], we use thewidely-usedmetrics,

BLEU, ROUGE-L, and METEOR to measure the similarity. Their

computation details are presented as follows.

BLEU measures the precision of generated sequences by calcu-

lating its average of the modified n-gram precision (i.e., 1-gram,

2-grams, 3-grams and 4-grams for BLEU-4) [33]. The modified n-

gram precision refers to the ratio of the number of matched n-grams

to the number of all the n-grams in the generated sequence. So far,

researchers have proposed several variants of BLEU. According to

a recent human study [38], the B-Norm BLEU exhibits the most

consistently with human judgements on the quality of commit mes-

sages. Therefore, in this paper, we use B-Norm BLEU as one of the

metrics.

ROUGE-L calculates the F-score of precision and recall based on

the longest common sub-sequences (LCS) between the generated

sequence and the ground truth [25]. A longer LCS indicates the

higher similarity between two sentences.

METEOR calculates the harmonic mean of 1-gram precision

and 1-gram recall of the generated sequence against the ground

truth [3]. It also includes a penalty mechanism when the matched

tokens are not adjacent.

6 RESULTS AND ANALYSIS

In this section, we first present the overall results of FIRA (RQ1) in

Section 6.1, the results of the ablation study (RQ2) in Section 6.2

and human evaluation (RQ3) in Section 6.3.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

Table 1: Overall commit message generation results

Model BLEU ROUGE-L METEOR

LogGen [16] 8.95 10.50 8.34

NNGen [29] 9.16 11.24 9.53

CoreGen [32] 14.15 18.22 12.90

CODISUM [44] 16.55 19.73 12.83

ATOM [28] 8.35 10.17 8.73

CoRec [41] 13.03 15.47 12.04

FIRA 17.67 21.58 14.93

6.1 RQ1: Overall Effectiveness

Table 1 presents average of BLEU, ROUGE-L and METEOR on all

the commit messages generated by FIRA and compared techniques.

Figure 10 further shows the distribution of ROUGE-L in a box plot.

Figure 10: Box plot of ROUGE-L

As shown by the table and the figure, FIRA outperforms all the

compared techniques including the best IR-based technique NNGen

and the best learning-based technique CODISUM on all metrics,

indicating effectiveness both in precision (i.e., BLEU, ROUGE-L and

METEOR) and recall (i.e., ROUGE-L andMETEOR). For example, the

improvements achieved by FIRA range from 7% to 112%, 9% to 112%,

and 16% to 79% in BLEU, ROUGE-L, and METEOR, respectively. In

addition, it is notable that the IR-based approaches LogGen and

NNGen perform significantly worse. A potential reason is that these

techniques can only retrieve existing messages from the retrieved

database instead of generating new commit messages. In other

words, they are no longer effective, once there exists no similar

code change as the given code change.

Table 2: Penalty-BLEU of all approaches

Model LogGen NNGen CoreGen CODISUM ATOM CoRec FIRA

Penalty-BLEU 7.15 8.07 11.15 12.07 7.42 10.49 13.30

BLEU may overrate the precision of the cases that the actual

number of the matched n-grams is small but the length of the

commit message is even shorter, which may result in biased average

of all commit messages. Therefore, for those short commit messages,

we introduce a penalty mechanism by multiplying their original

BLEU with a penalty factor, to reduce their impact on the final

average score. The penalty factor 𝑓𝑖 of the 𝑖-th commit message can
be computed as Equation 14, which is the ratio of the length of the

𝑖-th ground truth commit message to the total length of all ground
truth commit messages.

𝑓𝑖 = 𝑙𝑒𝑛(𝑚𝑠𝑔𝑖)/
∑
𝑗

𝑙𝑒𝑛(𝑚𝑠𝑔 𝑗) (14)

We denote the BLEU with an enhanced penalty as penalty-BLEU

for distinction. Table 2 presents the penalty-BLEU of all approaches.

From the table, we can find that our approach also outperforms

other approaches in terms of the penalty-BLEU, indicating FIRA is

consistently effective on generating commit messaging of different

lengths.

In summary, our quantitative results show that FIRA outper-

forms all six compared techniques in terms of all studied metrics;

meanwhile FIRA is consistently effective on generating commit

messages of different lengths.

6.2 RQ2: Ablation Study
In this section, we further perform an ablation study to investigate

the effectiveness of each component in FIRA. The major novelty

of FIRA is explicitly including and analyzing (1) edit operations

between old and new versions, and (2) copying sub-tokens with a

dual copy mechanism. Therefore, to investigate their contribution,

we further build two variants of FIRA by (1) removing the edit

operations from the code change representation graph (i.e., denoted

as FIRA𝑒𝑑𝑖𝑡−), and (2) degrading the dual copy mechanism into

single copy mechanism for integral tokens which cannot copy

sub-tokens anymore (i.e., denoted as FIRA𝑠𝑢𝑏−). In addition, we
build a naive model by removing both components (i.e., denoted

as FIRA𝑏𝑜𝑡ℎ−) for comparison. Table 3 presents the effectiveness of
the default FIRA and variants. In the following sections, we then

analyze the contribution of each component quantitatively and

qualitatively.

Table 3: Results of the ablation study

Model BLEU ROUGE-L METEOR

FIRA𝑒𝑑𝑖𝑡− 17.39 21.15 14.54

FIRA𝑠𝑢𝑏− 17.36 20.97 14.09

FIRA𝑏𝑜𝑡ℎ− 16.82 20.15 13.42

FIRA 17.67 21.58 14.93

6.2.1 Contribution of edit operations. As shown in Table 3, the

effectiveness of FIRA𝑒𝑑𝑖𝑡− becomes worse in terms of all three

metrics, indicating that including edit operations is helpful for

commit message generation.

We further look into some cases that FIRA𝑒𝑑𝑖𝑡− exhibits less

effective than the default FIRA in terms of these metrics. Figure 11

presents such a real-world case, which includes the code changes,

the ground truth, the commit messages generated by the default

FIRA, FIRA𝑒𝑑𝑖𝑡−, and other compared techniques, including the
best IR-based technique NNGen and the best learning-based tech-

nique CODISUM. In this example, developers rename the method

from “getInputEventListener” to “getInputEventHandler” in

FIRA: Fine-Grained Graph-Based Code Change Representation

for Automated Commit Message Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

return mInputEventHandler;
}

throw new IllegalStateException("Fragment InputEventListener
already present");

}
mFragment.setInputEventHandler(mInputEventHandler);

@@ -264,7 +264,7 @@ public class PlaybackOverlayFragment extends
DetailsFragment {

@@ -290,7 +290,7 @@ public abstract class PlaybackControlGlue {
throw new IllegalStateException("Fragment
OnItemViewClickedListener already present");

}
mFragment.setOnItemViewClickedListener(mOnItemViewClickedListener);

+ if (mFragment.getInputEventHandler() != null) {

- public final InputEventHandler getInputEventListener() {
+ public final InputEventHandler getInputEventHandler() {

- if (mFragment.getInputEventListener() != null) {

Figure 11: Case analysis: edit operations

two involving files, and the manual commit message exactly de-

scribes such edit operations. As shown in the figure, the default

FIRA can precisely generate the exactly samemessage as developers,

whereas after removing explicit representation of edit operations

FIRA𝑒𝑑𝑖𝑡− fails to generate such correct message. In addition, we
can observe that other compared techniques cannot generate the

precise commit message neither, since none of them represents edit

operations explicitly. Such observations further confirm our intu-

ition that representing edit operations explicitly can help the model

to capture the fine-grained code changes, enabling more precise

commit message generation. On the contrary, if the old-version and

new-version code are represented in combination without high-

lighting their differences, the model has to learn to capture such

edit operations by itself, which can be challenging especially when

there are only a few tokens changed.

import java.awt.event.*;
import java.util.*;

@@ -39,6 +40,8 @@ public class TransferCallDialog{
this.setOkButtonText(GuiActivator.getResources()

.getI18NString("service.gui.TRANSFER"));
+ this.setMinimumSize(new Dimension(300, 300));

addOkButtonListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)

@@ -6,6 +6,7 @@
package net.java.sip.communicator.impl.gui.main.call;
+import java.awt.*;

Figure 12: Case analysis: copying sub-tokens

6.2.2 Contribution of copying sub-tokens. As shown in Table 3, the

performance of FIRA𝑠𝑢𝑏− declines, indicating the dual copy mecha-
nism for sub-tokens indeed boosts commit message generation.

We further look into some cases that FIRA𝑠𝑢𝑏− exhibits less ef-
fective than the default FIRA in terms of these metrics. Figure 12

presents such a real-world case in our dataset, including the code

changes, the ground truth, the commit messages generated by the

default FIRA, FIRA𝑠𝑢𝑏−, and other compared techniques. In the ex-
ample, the developer commit message contains several sub-tokens

in the newly-added code (i.e., setMinimumSize) and the integral to-

ken in its belonging class name “TransferCallDialog”. As shown

in the figure, the default FIRA can effectively utilize sub-tokens in

the input code, while the FIRA𝑠𝑢𝑏− without the dual copy mecha-
nism is incapable of copying the infrequent sub-token (i.e., minimum)

to the commit message. In addition, other compared techniques fail

to generate precise commit messages neither. For example, NNGen

generates a completely irrelevant commit message. For CODISUM,

it includes only two sub-tokens in the generated commit message

and generates the commit message with poor readability. Since

CODISUM only leverages a single copy mechanism for integral

token, it can only generate the frequent sub-tokens from the vocab-

ulary (e.g., two successfully generated sub-tokens set and size)

but fails to generate the infrequent sub-token (e.g., minimum) that

is excluded in the vocabulary or seldom occurs in the training set.

Table 4: Results for copying sub-tokens

Model Copy Ratio (%) #Different Sub-tokens Occurrence Frequency

NNGen 10.53 436 689

CODISUM 3.77 115 1097

FIRA𝑠𝑢𝑏− 5.40 159 1118

FIRA 11.95 454 643

To confirm the explanation above, we further investigatewhether

dual copy mechanism has correctly copied sub-tokens into commit

messages. In particular, we denote the sub-token appears both in the

input code change and the commit message as a copy token. We then

compute the ratio of the number of correctly-copied copy tokens

to the number of all copy tokens in our testing set. A higher ratio

indicates the technique is more effective in copying sub-tokens. We

also present the number of different correctly-copied sub-tokens.

In addition, we further present the average number of times of the

correctly-copied sub-tokens occurring in the training messages,

which can reflect the occurrence frequency of the sub-tokens. Ta-

ble 4 presents the results. Based on the table, we can notice that

FIRA can correctly copy more sub-tokens than other techniques,

and FIRA can copy more infrequent sub-tokens. Furthermore, we

notice that only FIRA can copy the sub-tokens never occurring

in the training set. Without the dual copy mechanism, the per-

formance of FIRA𝑠𝑢𝑏−declines a lot. We can notice that NNGen
performs well in terms of copying sub-token, because instead of

generating new commit messages, IR-based techniques select ex-

isting messages based on the similarity of the code changes and

similar code changes may have common sub-tokens. However, note

that the overall performance of IR-based techniques (i.e., as shown

in Table 1) is much worse than FIRA (i.e., 9.16 v.s 17.67 in BLEU).

In summary, the results further indicate FIRA can copy sub-tokens

effectively.

6.3 RQ3: Human Evaluation
To further study the quality of generated commitmessages from the

perspective of developers, we perform a human study to evaluate

the commit messages generated by FIRA and compared techniques.

We compare FIRA with the best retrieval-based technique NNGen

and the best learning-based technique CODISUM. We invite six

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

developers1 to participate in this study, who have industrial experi-

ence in Java programming language ranging from 3 to 5 years.

Table 5: Scoring criterion

Score Definition

0 Neither relevant in semantic nor having shared tokens.

1 Irrelevant in semantic but with some shared tokens.

2 Partially similar in semantic, but each contains exclusive information.

3 Highly similar but not identical in semantic.

4 Identical in semantic.

6.3.1 Study Design. Following previous work [28, 41], we ran-

domly select 100 commits from the testing set and design a ques-

tionnaire for manual evaluation. For each commit, the questionnaire

includes the code change, the ground truth commit message, and

the commit messages generated by FIRA as well as the compared

techniques (i.e., the best IR-based technique NNGen and the best

learning-based technique CODISUM). Each invited participant is

asked to score the commit messages generated by three techniques

(i.e., FIRA, CODISUM, and NNGen) based on the code changes and

the ground truth commit message. The score ranges from 0 to 4, and

a higher score indicates a higher similarity between the generated

commit message and the ground truth. We follow the existing scor-

ing criterion [28, 29], and detailed definition is shown in Table 5. To

avoid bias, all three techniques are anonymous in the questionnaire

and each participant fills in the questionnaire separately.

Table 6: Results of the human evaluation

Model Low (%) Medium (%) High (%) Average Score

NNGen 71.3 13.2 15.5 0.98

CODISUM 38.0 19.8 42.2 2.06

FIRA 35.5 20.3 44.2 2.15

6.3.2 Results. For each technique, we measure the quality of its

generated commit message based on the average scores of six partic-

ipants on that commit message. In particular, in line with previous

work [28, 29], we regard the commit messages scored 0 and 1 as

low-quality, scored 2 as medium-quality, and scored 3 and 4 as

high-quality. Table 6 presents the ratio of commit messages of dif-

ferent quality. As shown in the table, a large proportion (i.e., 44.2%)

of commit messages generated by FIRA are considered as high-

quality by the participants. In addition, FIRA exhibits the largest

ratio of high-quality commit messages while the lowest ratio of

low-quality commit messages. The average score also indicates the

out-performance of FIRA over compared techniques. To confirm

our observations, we further conducted a Wilcoxon signed-rank

test [42] between the scores of FIRA and the other techniques. The

results further confirm that difference between the scores of FIRA

and NNGen/CODISUM is statistically significant at the confidence

level of 95%.

6.3.3 Successful cases. We further present two cases that FIRA

achieves higher scores in Figure 13 and Figure 14. Each figure in-

cludes the code change, the ground truth, and the commit messages

1None of them are co-authors of this paper.

@@ -88,6 +88,7 @@ public class DeepLearningAutoEncoderTest extends
TestUtil {

// cleanup
mymodel.delete();

frame.delete();
p.delete();
l2_frame.delete();

@@ -95,7 +96,6 @@ public class DeepLearningAutoEncoderTest extends
TestUtil {

reconstructed.delete();
((Frame)DKV.get(Key.make("Difference")).get()).delete();
diff.delete();

}
}

+ frame.add("dummy", resp);

- resp.remove(null);

Figure 13: Example of fixing memory leak

generated by FIRA and the compared techniques, i.e., NNGen and

CODISUM.

The first example in Figure 13 shows the code changes for fixing a

memory-leak bug. In particular, the old-version code “resp.remove

(null);” fails to delete the object “resp”, which results in a mem-

ory leak; while the new-version code puts “resp” as a member

of “frame”, which can successfully delete “resp” once “frame” is

deleted. As shown in the figure, FIRA successfully predicts the in-

tention of fixing memory leak and also the location of where mem-

ory leak occurs, which we consider as a precise commit message;

whereas, other approaches fail to generate such commit messages.

Locale locale = MetricsUtils.getMetricsReporterLocale(stormConf);
if (locale != null) {

builder.formattedFor(locale);

@@ -37,11 +36,7 @@ public class ConsolePreparableReporter implements
PreparableReporter<ConsoleRepo

LOG.debug("Preparing...");
ConsoleReporter.Builder builder =
ConsoleReporter.forRegistry(metricsRegistry);

+ builder.outputTo(System.out);

- PrintStream stream = System.out;
- if (stream != null) {
- builder.outputTo(stream);
- }

Figure 14: Example of removing unnecessary null check

The second example in Figure 14 shows the code changes for re-

moving an unnecessary null check, since the object “stream” never

becomes null. As shown in the figure, FIRA appears to capture the

functionality of changed code (i.e., null check) and thus generates

similar message with the ground truth. In contrast, the compared

approaches fail to generate proper descriptions for the given code

change: NNGen generates completely irrelevant message while

CODISUM generates over-general and uninformative message.

7 DISCUSSION

7.1 Threats to Validity

The internal threat to validity lies in the implementation of com-

pared techniques and our approach. To reduce this threat, we di-

rectly reuse the implementation of the compared techniques from

their reproducible packages, if their packages are available and exe-

cutable [28, 29, 32, 41]; otherwise, we re-implement the techniques

FIRA: Fine-Grained Graph-Based Code Change Representation

for Automated Commit Message Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

strictly following their papers. We also build our approach based on

existing mature tools/libraries, such as GumTree [11]. In addition

to code review, we also sampled 100 data items from our dataset

and manually ensure there is no violation case where camel case

or snake case is not applicable.

The external threat to validity lies in the dataset used in the ex-

periment. To mitigate this threat, we use a well-established dataset,

which has been constructed on popular Java projects from GitHub

and well-cleaned by previous work [20, 44].

The construct threat lies in the metrics used in evaluation. To

reduce this threat, we adopt several metrics that have been widely

used by prior work on commit message generation [16, 19, 28, 29,

32, 41, 44]. In addition, we further perform a human evaluation

to evaluate the effectiveness from the perspective of developers.

We strictly follow the procedure of previous work [28, 41] and

invite experienced developers, so as to reduce the threats in human

evaluation (e.g., the limited number of participants [23]).

7.2 Limitations

The section discusses the limitations in FIRA. First, our approach

would be less effective when the code change cannot be parsed

into valid AST. In this case, FIRA would utilize only sub-token

identifiers and sequential information during learning. Such cases

are actually not observed in our dataset according to our manual

inspection, which however are still possible in practice. Second,

when the training set contains highly-similar code changes as the

given one and the frequency of these similar data items is quite low

(e.g., only once), FIRA is less effective than the retrieval-based ap-

proaches. It is a common drawback for learning-based techniques,

since retrieval-based approaches can inherently retrieve the cor-

rect commit message for the similar inputs from the training set.

Third, when the commit message contains tokens absent from both

vocabulary and the input code change, FIRA would fail to generate

these tokens in the commit message.

8 RELATEDWORK

The existing work on commit message generation can be catego-

rized as template-based, information retrieval-based, and learning-

based techniques.

The template-based techniques [4, 6, 35] analyze code changes

and generate commit messages with pre-defined patterns. For ex-

ample, Buse and Weimer [4] design pre-defined templates based

on path predicates, while Cortés-Coy et al. [6] propose templates

based on method stereotypes [9] and commit stereotypes [8]. In

general, the template-based techniques tend to describe what is

changed but has weak capability of capturing the rationales and

purposes of code changes. In addition, they are effective only when

the cases perfectly fit with the pre-defined rules, but cannot be

general due to the diversity of commit messages.

The information retrieval-based approaches [16, 17, 29] leverage

IR techniques to adopt existing commit messages from similar code

changes. For example, given a code change as a query, Liu et al. [29]

leverage cosine similarity and BLEU to select a most similar code

change from the training set; similarly, Huang et al. [17] use both

syntax similarity and semantic similarity as the similarity metric.

However, IR-based techniques are no longer effective once there is

no similar code change in the retrieved database and they can only

output existing commit messages instead of generating new ones.

More recently, researchers propose to leverage advanced learn-

ing techniques in commit message generation. The learning-based

techniques [19, 27, 28, 32, 41, 44] regard commit message genera-

tion as a translation problem, and adopt neural machine translation

(NMT) models to generate commit message for the given code

change. Existing learning-based techniques first represent the old-

version and new-version code with specific formats respectively,

such as sequences of tokens [32] or paths of abstract syntax tree

(AST) [28], concatenate both representations, and generate commit

messages via different learning models. The code representations

in existing learning-based techniques are coarse-grained, since (1)

they represent the code changes by simply putting old-version and

new-version code together, and thus edit operations have to be

learned by models, and (2) they only focus on integral tokens with-

out individually describing sub-tokens, and thus commit message

with infrequent sub-tokens cannot be generated. To address these

limitations, we propose a fine-grained graph-based representation

for code changes to enable more powerful commit message genera-

tion. In addition to the code change representation, we propose a

novel model that is different from prevision work. In particular, we

leverage a graph neural network in the encoder so as to directly

encode the graph-structured inputs; and we equip the decoder with

the transformer and a novel dual copy mechanism, which can not

only generate tokens from the vocabulary but also directly copy

both integral tokens and sub-tokens from the input.

9 CONCLUSION

In this work, we propose a novel commit message generation tech-

nique, FIRA, which first represents code changes via fine-grained

graphs and then learns to generate commit messages automatically.

Compared to previous code change representations, FIRA explicitly

describes the edit operations between the old-version and new-

version code, along with tokens at different granularities. Based

on the proposed graph-based representations, FIRA generates com-

mit messages by a generation model. FIRA incorporates the graph

neural network in the encoder so as to directly encode the graph-

structured inputs; and the decoder incorporates the transformer

and a novel dual copy mechanism, which can not only generate

tokens from the vocabulary but also directly copy both integral

tokens and sub-tokens from the input. We perform an extensive

evaluation to compare FIRAwith six commit message techniques on

a widely-used benchmark. The results show that FIRA outperforms

all compared techniques in terms of BLEU, ROUGE-L, andMETEOR.

We further analyze the effectiveness of each component in FIRA by

an ablation study and case analysis. The results further confirm that

major components both positively contribute to the effectiveness

of FIRA. In addition, we further perform a human study to evaluate

the quality of generated commit messages from the perspective of

developers, which consistently shows the effectiveness of FIRA.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation

of China under Grant No. 61872008. We are grateful for Jiashuo

Liang for his help on the implementation of the transformer.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, and Wenjie Zhang, Dan Hao

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A transformer-based approach for source code summarization. arXiv preprint
arXiv:2005.00653 (2020).

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[3] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[4] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. 33–42.

[5] Eduardo C Campos and Marcelo de A Maia. 2019. Discovering common bug-fix
patterns: A large-scale observational study. Journal of Software: Evolution and
Process 31, 7 (2019), e2173.

[6] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating commit messages via sum-
marization of source code changes. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation. IEEE, 275–284.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional neural networks on graphs with fast localized spectral filtering. arXiv
preprint arXiv:1606.09375 (2016).

[8] Natalia Dragan, Michael L Collard, Maen Hammad, and Jonathan I Maletic. 2011.
Using stereotypes to help characterize commits. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 520–523.

[9] Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2006. Reverse en-
gineering method stereotypes. In 2006 22nd IEEE International Conference on
Software Maintenance. IEEE, 24–34.

[10] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 422–
431.

[11] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 313–324.

[12] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE, 729–734.

[13] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[14] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. 2016. Discovering bug
patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering. 144–156.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Dis-
tributed representations of code changes. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 518–529.

[17] Yuan Huang, Nan Jia, Hao-Jie Zhou, Xiang-Ping Chen, Zi-Bin Zheng, and Ming-
Dong Tang. 2020. Learning Human-Written Commit Messages to Document Code
Changes. Journal of Computer Science and Technology 35, 6 (2020), 1258–1277.

[18] Md Rakibul Islam and Minhaz F Zibran. 2020. How bugs are fixed: exposing
bug-fix patterns with edits and nesting levels. In Proceedings of the 35th Annual
ACM Symposium on Applied Computing. 1523–1531.

[19] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 135–146.

[20] Siyuan Jiang and Collin McMillan. 2017. Towards automatic generation of
short summaries of commits. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). IEEE, 320–323.

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Russell V Lenth. 2001. Some practical guidelines for effective sample size deter-
mination. The American Statistician 55, 3 (2001), 187–193.

[24] Shanshan Li, Xu Niu, Zhouyang Jia, Ji Wang, Haochen He, and Teng Wang. 2018.
Logtracker: Learning log revision behaviors proactively from software evolution
history. In Proceedings of the 26th Conference on Program Comprehension. 178–188.

[25] Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of machine
translation quality using longest common subsequence and skip-bigram statistics.
In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04). 605–612.
[26] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves

Le Traon. 2018. A closer look at real-world patches. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 275–286.

[27] Qin Liu, Zihe Liu, Hongming Zhu, Hongfei Fan, Bowen Du, and Yu Qian. 2019.
Generating commit messages from diffs using pointer-generator network. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, 299–309.

[28] Shangqing Liu, Cuiyun Gao, Sen Chen, Nie Lun Yiu, and Yang Liu. 2020. ATOM:
Commit message generation based on abstract syntax tree and hybrid ranking.
IEEE Transactions on Software Engineering (2020).

[29] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 373–384.

[30] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 664–676.

[31] Zhen Ni, Bin Li, Xiaobing Sun, Tianhao Chen, Ben Tang, and Xinchen Shi. 2020.
Analyzing bug fix for automatic bug cause classification. Journal of Systems and
Software 163 (2020), 110538.

[32] Lun Yiu Nie, Cuiyun Gao, Zhicong Zhong, Wai Lam, Yang Liu, and Zenglin
Xu. 2021. CoreGen: Contextualized Code Representation Learning for Commit
Message Generation. Neurocomputing 459 (2021), 97–107.

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[35] Jinfeng Shen, Xiaobing Sun, Bin Li, Hui Yang, and Jiajun Hu. 2016. On automatic
summarization of what and why information in source code changes. In 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
Vol. 1. IEEE, 103–112.

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[37] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
Treegen: A tree-based transformer architecture for code generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8984–8991.

[38] Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Hongyu Zhang, Dongmei Zhang,
and Wenqiang Zhang. 2021. On the Evaluation of Commit Message Generation
Models: An Experimental Study. arXiv preprint arXiv:2107.05373 (2021).

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[41] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy.
2021. Context-aware Retrieval-based Deep Commit Message Generation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 4 (2021),
1–30.

[42] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196–202.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[44] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.
2019. Commit message generation for source code changes. In IJCAI.

[45] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt,
and Alexander L Gaunt. 2018. Learning to represent edits. arXiv preprint
arXiv:1810.13337 (2018).

[46] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.

