
Revisiting Learning-based Commit Message
Generation

Jinhao Dong†, Yiling Lou‡, Dan Hao†*, Lin Tan§
†Key Laboratory of High Confidence Software Technologies (Peking University), MoE

School of Computer Science, Peking University, Beijing, China
‡School of Computer Science, Fudan University, Shanghai, China

§Department of Computer Science, Purdue University, West Lafayette, USA
dongjinhao@stu.pku.edu.cn, yilinglou@fudan.edu.cn, haodan@pku.edu.cn, lintan@purdue.edu

Abstract—Commit messages summarize code changes and help
developers understand the intention. To alleviate human efforts
in writing commit messages, researchers have proposed various
automated commit message generation techniques, among which
learning-based techniques have achieved great success in recent
years. However, existing evaluation on learning-based commit
message generation relies on the automatic metrics (e.g., BLEU)
widely used in natural language processing (NLP) tasks, which
are aggregated scores calculated based on the similarity between
generated commit messages and the ground truth. Therefore, it
remains unclear what generated commit messages look like and
what kind of commit messages could be precisely generated by
existing learning-based techniques.

To fill this knowledge gap, this work performs the first study to
systematically investigate the detailed commit messages generated
by learning-based techniques. In particular, we first investigate
the frequent patterns of the commit messages generated by state-
of-the-art learning-based techniques. Surprisingly, we find the ma-
jority (˜90%) of their generated commit messages belong to simple
patterns (i.e., addition/removal/fix/avoidance patterns). To further
explore the reasons, we then study the impact of datasets, input
representations, and model components. We surprisingly find that
existing learning-based techniques have competitive performance
even when the inputs are only represented by change marks (i.e.,
“+”/“-”/“ ”). It indicates that existing learning-based techniques
poorly utilize syntax and semantics in the code while mostly
focusing on change marks, which could be the major reason for
generating so many pattern-matching commit messages. We also
find that the pattern ratio in the training set might also positively
affect the pattern ratio of generated commit messages; and model
components might have different impact on the pattern ratio.

Index Terms—Commit Message Generation, Deep Learning,
Pattern-based

I. INTRODUCTION

When developers submit code changes in version control
systems, they are supposed to attach a commit message to
summarize their submitted code changes. Commit messages
are written in natural language and indicate what is changed
and why changes happen. Commit messages are of vital impor-
tance for software maintenance, because developers often read
commit messages to understand the implementation rationale
and code semantics. In addition, many important software en-
gineering tasks such as automated release-note generation [1],
[2] and identification of bug-introducing commits [3], [4] rely
on high-quality commit messages.

*Corresponding author.

However, it is laborious to write high-quality commit mes-
sages to summarize code changes. With the rapid iteration of
the software, writing commit messages burdens developers.
Thus, there are often low-quality commit messages or empty
commit messages. Prior work shows that around 14% of
commit messages in more than 23K open-source Java projects
are completely empty [5].

Given the importance of commit messages and the required
manual effort in writing them, researchers have proposed
various automatic commit message generation techniques,
including rule-based [6]–[8], information retrieval-based [9]–
[11] and learning-based [12]–[16] techniques. With the devel-
opment of deep learning models, especially in NLP domain,
learning-based commit message generation techniques have
achieved substantial improvements. Although there are many
learning-based techniques, most of them are evaluated with
NLP metrics (e.g., BLEU). Since these NLP metrics can only
measure the overall performance by aggregated scores, it still
remains unclear what the generated commit messages look
like and what kind of commit messages could be precisely
generated by existing learning-based techniques.

In this work, we perform the first study to systematically in-
vestigate the detailed commit messages generated by learning-
based techniques. In particular, we first distill the frequent
patterns 1 of the commit messages generated by state-of-the-
art learning-based techniques in a semi-auto way. We leverage
sequential pattern mining algorithm to automatically mine raw
frequent patterns in the generated commit messages, based
on which we further manually summarize frequent patterns.
Typically, the frequent patterns are often of simple format, e.g.,
the format of Addition Pattern is “Add [missing] ... [for|to
...]”, and a real case is “Add missing null check to should-
Backup method”. Compared with NLP metrics, we believe that
patterns could reflect more details (e.g., what is changed and
why) of the generated commit messages. Therefore, in the first
research question, we statistically investigate what generated
commit messages look like via the lense of patterns.

• RQ1: What kind of commit messages could be gen-
erated by existing learning-based techniques?

1A frequent pattern is a subsequence which frequently appears among a
given corpus.

The main finding for RQ1 is as follows.
Findings of RQ1: The majority (i.e., ˜90%) of commit

messages generated by learning-based techniques belong
to simple patterns, and the ratio is much higher than that
in ground truth (˜50%). Interestingly, although achieving
not bad performance regarding NLP metrics, the majority
of commit messages generated by learning-based techniques
belong to simple patterns, such as removal (e.g., “Remove
unused ...”) and fix patterns (e.g., “Add ... to ...”). In addition,
we also find that learning-based techniques have a bias towards
generating commit messages of short length (4.5 tokens on
average), indicating that they still have limited performance
on generating flexible/complex commit messages.

To further figure out the reasons for such a high ratio of
pattern-matching commit messages, we then systematically
study the impact of datasets, input representations, and model
components on the effectiveness of existing learning-based
techniques by the following research questions. Different from
existing work, which evaluates commit message generation
techniques with NLP metrics, our focus on the effectiveness
is mainly related to the pattern of generated commit messages.

• RQ2/3/4: How do datasets, input representations, and
model components affect the effectiveness of learning-
based commit message generation techniques?

The main findings of each RQ are as follows.
Findings of RQ2: The ratio of commit messages fitting

with patterns in the generated commit messages is pos-
itively associated with the ratio in the training set. The
relatively high ratio of patterns in the training set might be one
reason for the exorbitantly high ratio in the generated commit
messages. Besides, even when increasing the ratio of non-
patterns in the training set, the quality of generated non-pattern
commit messages remains broadly unchanged, indicating that
non-pattern data are challenging for models to learn.

Findings of RQ3: Existing learning-based techniques
have competitive performance even when the inputs are
only represented by change marks (i.e., “+”/“-”/“ ”).
Change marks refer to the character leading each line in the
code changes, including “+”/ “-”/“ ”, which means that in the
new version this line is added/removed/unchanged compared
to the old version. This finding implies that existing techniques
mainly utilize marks for commit message generation and fail to
capture the syntax and semantics of input code, which could
be the major reason why they could only generate commit
message of simple patterns.

Findings of RQ4: Model components have different in-
fluence on the ratio of pattern-matching commit messages.
Moreover, models pay more attention to tokens with changed
marks (i.e., “+” and “-”) than unchanged marks (i.e., “ ”).

In summary, this paper makes the following contributions:
(1) A novel perspective on pattern to evaluate generated

commit messages. Compared to NLP metrics, patterns could
show the detailed distribution and structures of messages.

(2) A comprehensive evaluation on the commit message
generation techniques regarding both newly-proposed pattern
metrics and traditional NLP metrics.

(3) A deep exploration on the factors relevant to the high
ratio of patterns, including datasets, input representations, and
model components.

II. BACKGROUND AND RELATED WORK

A. Commit Message Generation Techniques

Existing commit message generation techniques include
rule-based [6]–[8], information retrieval-based [9]–[11] and
learning-based [12]–[16] techniques. Rule-based techniques
use pre-defined rules , whose generated commit messages are
often verbose and become less effective when code changes
do not fit any rules. Information retrieval-based techniques
select the commit messages whose code changes are similar
to the query one from the database, and would be less
effective when there is no similar code changes in the database.
With the recent development of deep learning, learning-based
techniques have achieved great improvement. Learning-based
techniques regard commit message generation as a translation
task and leverage models with encoder-decoder architectures.
TABLE I shows five state-of-the-art learning-based techniques,
which are also the studied techniques in this study. The second
column presents the encoder-decoder architecture adopted in
each technique, and the last three columns present whether
each technique incorporates attention, copy, and anonymiza-
tion mechanisms. In particular, (1) attention mechanism [17],
[18] makes the decoder focus on most valuable input tokens
when generating each output token; (2) copy mechanism [19],
[20] copies tokens from code changes to address the out-
of-vocabulary (OOV) problem [20], [21]; (3) anonymization
mechanism [14] replaces identifiers in code changes with
placeholders, which can reduce the vocabulary size and solve
the OOV problem when new identifiers appear.

TABLE I: The state-of-the-art learning-based techniques.

Techniques Encoder-Decoder Attention Copy Anonymization
Architecture Mechanism Mechanism Mechanism

NMT [12] GRU-GRU " $ $

PtrGN [13] GRU-GRU " " $

CODIS [14] GRU-GRU " " "

CoreGen [15] Transformer-Transformer " $ $

FIRA [16] GNN-Transformer " " "

B. Existing Metrics on Commit Message Generation

Existing techniques [12]–[16] evaluate the generated com-
mit messages with the NLP metrics BLEU, ROUGE-L, and
METEOR, which actually calculate the similarity between
generated commit messages and the ground truth.

BLEU [22] measures the precision of the generated se-
quence, which is the average of the modified n-gram precision
(i.e., 1-gram, 2-grams, 3-grams and 4-grams for BLEU-4). The
modified n-gram precision refers to the ratio of matched n-
grams to the n-grams in the generated sequence.

ROUGE-L [23] is a F-score based on the longest common
sub-sequences (LCS) between two sequences. A longer LCS
indicates a higher similarity between two sentences.

METEOR [24] is a F-score of 1-gram precision and 1-gram
recall between the generated sequence and the ground truth,
with a penalty when the order of matched tokens is wrong.

Although widely used, all these metrics are aggregated
scores, and thus cannot reflect the detailed distribution and
structures of generated commit messages. Therefore, besides
the metrics, in this work, we propose a novel perspective, i.e.,
pattern, to evaluate generated commit messages.

C. Existing Studies on Commit Message Generation

There are some existing studies on commit message gen-
eration. Tao et al. [25] evaluate existing commit message
generation techniques with different BLEU metrics and find
different results between different BLEU variants. Tian et
al. [26] define a standard for “good” commit messages by
manually investigating real-world commit messages. Different
from existing studies, our work proposes a novel perspective,
i.e., pattern, to study the details and distribution of commit
messages generated by learning-based techniques.

III. PATTERN

A. Definition

Definition III.1 (Pattern). A pattern is a frequent subsequence
of commit messages.

Definition III.2 (Pattern Ratio). Pattern ratio is the ratio of
commit messages fitting with patterns to all commit messages.

Definition III.3 (Pattern Message and Non-Pattern Mes-
sage). A pattern message is a commit message fitting with
certain pattern, while a non-pattern message is a commit
message which cannot fit with any pattern.

Definition III.4 (Pattern Group and Non-Pattern Group).
Pattern group refers to the group of code changes whose
ground truth commit messages fit with certain pattern, while
non-pattern group refers to the group of code changes whose
ground truth commit messages do not fit with any pattern.

In this work, we mainly investigate the distribution and
structures of generated commit messages through the lense
of pattern (i.e., frequent sequences in generated messages).

B. Pattern Collection

Our pattern collection includes two phases: pattern mining
and pattern merging. In the mining phase, we leverage
MaxSP [27] to mine raw frequent patterns from the commit
messages generated by all studied learning-based techniques.
MaxSP is a sequential pattern mining algorithm, which keeps
the longest sequence among sequences with containment rela-
tionship. In particular, we use the implementation of MaxSP
provided by the widely-used data mining library SPMF [28].
In total, we mine 28 raw patterns from commit messages
generated by all studied techniques. In the merging step, we
iteratively merge the similar patterns to obtain more general
patterns. In particular, we abstract the concrete nouns used
in the same position, e.g., we merge patterns “Fix typo in
...”, “Fix bug in ...” and “Fix npe in ...” into a new pattern

“Fix ... in ...”. In addition, we merge finite alternative patterns
into one pattern with “|”, e.g., we merge patterns “Add ... to
...” and “Add ... for ...” to a new pattern “Add ... to|for ...”.
Besides, we enclose the optional contents in patterns with “[]”,
e.g., we merge patterns “Add ...” and “Add missing ...” to a
new pattern “Add [missing] ...”. For space limits, the complete
merging process is in our replication package. To alleviate
the threat from manual pattern merging, the first two authors
independently merge patterns and an experienced colleague
will be involved if they have discrepancies.

C. Our Patterns

In this way, we obtain four merged patterns and we then
introduce their details as follows.

(1) Addition Pattern. The format is “Add [missing] ...
[for|to ...]”. The pattern is often related to the commit message
where the commit adds certain element. For example, the
message “Add missing nullcheck” fits with the Addition Pat-
tern. In particular, Addition Pattern consists of six sub-patterns,
including (1) “Add missing ... for ...”, (2) “Add missing ... to
...”, (3) “Add ... for ...”, (4) “Add ... to ...”, (5) “Add missing ...”,
and (6) “Add ...”. These sub-patterns are ranked from complex
to simple ones, thus they are mutually-exclusive. For example,
a commit message fitting with the first sub-pattern, would
not further be considered as fitting with the following sub-
patterns. Note that, the last sub-pattern “Add ...” is actually not
very general and does not broadly include many long/complex
messages. In fact, most of the generated commit messages
fitting with this sub-pattern follow a short format “Add” +
“determiner (e.g., a/some)” + “noun” (e.g., comment/javadoc)
or “Add” + “identifier” + “noun” (e.g., method/constructor),
and their average length is short (i.e., 3.33 tokens).

(2) Removal Pattern. The format is “Remove
unused|unnecessary ...”. The pattern is often related to
the commit message where the commit removes redundant
elements (e.g., code, imports, and methods) in code changes.
For example, “Remove unused member”. Removal Pattern
consists of 2 sub-patterns, (1) “Remove unused ...”, and (2)
“Remove unnecessary ...”.

(3) Fix Pattern. The format is “Fix ... [in|when ...]”. The
pattern is often related to the commit message where the
commit fixes some bugs. For example, “Fix a buffer leak”.
Fix Pattern consists of 3 sub-patterns, (1) “Fix ... in ...”, (2)
“Fix ... when ...”, and (3) “Fix ...”.

(4) Avoidance Pattern. The format is “Don’t|do not ... [if
...]”. The commit message fitting with this pattern states not to
do some wrong behavior. Fig. 1 shows an example. Avoidance
Pattern consists of 4 sub-patterns, (1) “Don’t ... if ...”, (2) “Do
not ... if ...”, (3) “Don’t ...”, and (4) “Do not ...”.

IV. STUDY DESIGN

NLP metrics measure the overall performance with aggre-
gated scores and hide the details of what generated commit
messages look like. Therefore, we first conduct a compre-
hensive evaluation of existing techniques from not only NLP

. . .
println(name, " took ", format(result));

@@ -137,7 +137,7 @@ public class Profiler {
. . .

+ if (!mute && log.isDebugEnabled()) {

Commit message: Don't print end message if profiler was muted

- if (log.isDebugEnabled()) {

Fig. 1: Example of Avoidance Pattern

metrics but also patterns, to reflect both overall and concrete
performance of generated commit messages (RQ1).

According to the results of RQ1, we surprisingly find that
the majority of commit messages generated by existing tech-
niques belong to some patterns, which have simple formats.
Next, we explore the potential reasons for the huge increase of
pattern ratio between the ground truth and generated commit
messages. For a deep learning technique, dataset and model are
two primary components, which may affect the final perfor-
mance. In the commit message generation task, besides them,
how to represent code change is another important factor.
Therefore, we will explore the influence of the three factors,
dataset, input representation, and model components, on the
performance of the learning-based techniques, especially on
the ratio of patterns (i.e., reflected by RQ2/3/4).

A. Dataset

We adopt a well-established benchmark [14], [29], widely-
used in existing commit message generation [9], [10], [12]–
[16]. This benchmark is collected from the top 1,000 popular
Java projects in GitHub, excluding the rollback and merge
commits and extracting the first line from the messages [29].
The commit messages are evenly distributed in these projects
and no projects concentrate the majority of the messages.
Code changes not occurring in .java files and duplicated code
changes are removed [14]. Finally, the dataset contains 90,661
code change and commit message pairs. Following all the
existing work [12]–[16] and common practice in deep learning,
we randomly split the dataset into training/validation/testing
sets by an approximate ratio of 8:1:1. To reduce the influence
resulting from random split, we randomly split the dataset five
times with the same ratio, and compute the average results.
The results of five splits are similar, e.g., the average standard
deviation of Table II is only 0.30.

B. Threats to Validity

Threats to internal validity lie in the obtainment of pat-
terns and implementation of studied techniques. To alleviate
the former threat, we adopt the implementation of pattern
mining algorithm provided by the widely-used [28] library
SPMF. To alleviate the latter threat, we reuse the replication
package of a learning-based technique if it is available and
executable [15], [16], and re-implement it strictly following
the paper if not. Moreover, we get similar results on these
techniques as previous work [25], indicating the correctness of
the re-implementation. Threats to external validity lie in the
dataset, which may affect the generalization of our findings. To

alleviate these threats, we adopted the widely-used benchmark.
In our future, we will conduct more experiments on projects
in other programming languages. Threats to construct validity
lie in the metrics used to measure the performance of the
techniques. To alleviate this threat, besides the widely used
NLP metrics, we also propose a new perspective, i.e., pattern,
to show the detailed distribution and structures of messages.

V. RQ1: PATTERN RATIO

In this section, we comprehensively revisit existing tech-
niques with both NLP metrics and patterns. In particular, this
section explores three sub-questions. (1) RQ1.a: how do the
patterns of generated commit messages distribute? (2) RQ1.b:
how do the pattern length and pattern ratio affect the pattern
distribution? (3) RQ1.c: how do models perform for pattern
and non-pattern group? Since RQ1.a shows the pattern ratios
in the generated messages are very high and they vary among
different patterns, we further investigate the influential factors
(e.g., length and ratio) in RQ1.b and the model performance
on pattern and non-pattern messages in RQ1.c.

A. Procedure

The common process of a deep learning application is
training models on the training set and testing models on
the testing set. Since models have seen the right answers
during training, models are supposed to achieve a similar
distribution to the ground truth if being tested on the training
set. To verify how well models learn the training set, we test
models not only on the testing set, but also on the training
set in RQ1. Following previous works [9], [10], [12]–[16], we
first evaluate generated commit messages on NLP metrics. In
addition, we compute the pattern ratio of commit messages
generated by each model and the pattern ratio of ground
truth commit messages. When judging whether one commit
message belongs to a pattern, we leverage regular expression
matching. Next, to compare the performance of models on
generating pattern messages and non-pattern messages, we
compute NLP metrics for the commit messages generated
for code changes in pattern group and non-pattern group.
Moreover, we explore the relationship between metrics and
pattern ratios. We select the generated commit messages whose
BLEU is higher than a certain threshold (which is from 0 to
100 with the interval of 10) and compute their pattern ratios.

B. Results and Analysis

TABLE II: NLP metrics of various techniques.

Model NMT PtrGN CODIS CoreGen FIRA

Training
Set

BLEU 16.94 17.41 18.03 17.17 18.76
ROUGE-L 20.41 21.17 21.81 22.54 22.83
METEOR 13.34 14.09 14.69 16.30 16.06

Testing
Set

BLEU 14.63 16.36 16.57 13.53 17.48
ROUGE-L 17.31 19.82 19.84 17.31 21.19
METEOR 10.91 13.01 13.08 11.72 14.58

1) RQ1.a-Pattern Ratio Distribution: Table II presents the
quality of the commit messages generated by each technique

for both the training and testing set. From the table, FIRA
achieves the best performance on the testing set on all metrics,
which is consistent with the conclusions of existing work [16].
CoreGen performs competitively on the training set, but poorly
on the testing set, indicating that CoreGen has a poor gener-
alization ability, which is neglected by previous work [15].

TABLE III: Pattern ratios of various techniques

Model Ground NMT PtrGN CODIS CoreGen FIRA Average
Truth Increase

Training
Set

All Patterns 46.60 88.89 86.36 88.29 88.78 85.43 40.95
Addition 15.50 19.08 23.07 22.20 21.59 21.48 5.99
Removal 3.11 13.00 11.07 12.91 9.26 10.66 8.26

Fix 23.88 50.87 47.35 47.38 54.84 47.03 25.62
Avoidance 4.11 5.94 4.88 5.81 3.09 6.26 1.08

Testing
Set

All Patterns 46.64 89.75 86.94 89.65 90.04 85.62 41.77
Addition 15.36 19.05 22.81 22.66 21.15 21.48 6.07
Removal 3.32 12.90 11.38 13.84 9.41 10.90 8.37

Fix 23.91 52.05 48.00 47.78 56.45 47.02 26.35
Avoidance 4.05 5.74 4.75 5.38 3.04 6.21 0.98

Table III presents the ratio of commit messages fitting with
the patterns. Row “All Patterns” presents the total ratio of all
patterns in the ground truth and generated commit messages,
while the other rows present the ratio of single pattern. We
compute the increase of pattern ratio between the ground
truth and generated commit messages, and column “Average
Increase” presents the average increase of all techniques. From
the first rows of the two datasets, for all techniques, most
generated commit messages fit with patterns on both the
training set and the testing set. For example, the total pattern
ratio of CODIS on the testing set is 89.65%. The pattern ratios
in the generated commit messages are much higher than the
pattern ratios in the ground truth, and the average increase
is 40.95% and 41.77% on the training set and the testing set
respectively. We also have similar findings on sub-patterns,
i.e., the ratio of sub-patterns in generated commit messages is
generally higher than the ratio in the ground truth. Through the
lenses of patterns, we discover the problem that NLP metrics
cannot discover. Although achieving not bad performance re-
garding NLP metrics, the majority (˜90%) of generated commit
messages fit with a few simple patterns. That is, they have
the limited capacity on generating flexible commit messages.
Considering the huge increase of pattern ratio between ground
truth and generated commit messages, many generated commit
messages fitting with patterns are wrong and they should
belong to non-pattern. Here we illustrate this finding through
a real case in Fig. 2. In this case, developers trim the MVEL
scripts before compiling them. The ground truth accurately
describes this behavior, which does not fit with any pattern
(i.e., non-pattern message). However, all the studied techniques
generate the message belonging to Fix Pattern, which is too
general and contains useless information.

Finding 1: For all the learning-based techniques, the
majority (i.e., ˜90%) of generated commit messages belong
to simple patterns, and the ratio is much higher than that
in ground truth (i.e., ˜50%).

@@ -82,7 +82,7 @@ public class MvelScriptEngineService
extends AbstractComponent implements Script

@Override
public Object compile(String script) {

}

- return MVEL.compileExpression(script,
new ParserContext(parserConfiguration));

Commit message:
Ground Truth: Trim MVEL scripts before compiling them
NMT: Fix bug in <unk>
PtrGNCMsg: Fix MvelScriptEngineService compile
CODISUM: Fix bug in MvelScriptEngineService
CoreGen: Fix the tests
FIRA: Fix MVEL MVEL

+ return MVEL.compileExpression(script.trim(),
new ParserContext(parserConfiguration));

Fig. 2: Case in which techniques generate pattern messages
but the ground truth belongs to non-pattern.

The huge increase of pattern ratio between ground truth and
generated messages is especially surprising for the training
set, because models have seen the “correct answers” of the
code changes of the training set during training. This indicates
that models cannot memorize the distribution of the training
set, and non-pattern data is challenging for models to learn.

Finding 2: The huge increase of pattern ratio between
generated and ground truth commit messages is especially
surprising for the training set because models have seen
the “correct answers” of the training set, indicating that
non-pattern data is challenging for models to learn and
generate correct commit messages.

All
Data

All
Patterns

Addition
Pattern

Removal
Pattern

Fix
Pattern

Avoidance
Pattern

0

4

8

12

16

20

Le
ng

th

Ground Truth Commit Messages

All
Data

All
Patterns

Addition
Pattern

Removal
Pattern

Fix
Pattern

Avoidance
Pattern

Generated Commit Messages

Fig. 3: Length distribution of ground truth and generated
commit messages on the training set. For simplicity, we omit
the outliers.

2) RQ1.b-Influence of Number and Length on Ratio of each
Pattern: To explore the relationship between the ratio of a
pattern in generated commit messages and the lengths of
commit messages belonging to this pattern in the training set,
we show the box plot of length distribution of ground truth
and generated commit messages on the training set in Fig. 3.
It contains two subfigures. The left and right are the ground
truth and generated commit messages. Each subfigure contains
several groups of data, e.g., “All Data” is the group of training
data, “All Patterns” is the group of data fitting with any pattern,
Addition Pattern is the group of data fitting with Addition
Pattern. The vertical axis refers to the length distribution.

From the last column of Table III, the ratio of each pattern
all increases between ground truth and generated commit
messages, but the increase differs a lot among each specific
pattern. One possible factor for different increases might be the
length of commit messages of different patterns. Comparing
Removal Pattern with Avoidance Pattern, they have similar
pattern ratios in the training set which are the lowest among
all patterns (i.e., 3.11% and 4.11% in the first column of
Table III), but Removal Pattern messages are generally shorter
than Avoidance Pattern messages, according to the left part of
Fig. 3. As a result, the increase of pattern ratio of Removal
Pattern is higher than Avoidance Pattern (i.e., 8.37% vs 0.98%
in the last column of Table III). This indicates that shorter
length of certain pattern will result in higher increase of that
pattern. The reason might be that shorter commit messages
are easier to learn and make the model tend to generate more
commit messages of that pattern. Another influence factor is
the pattern ratio in the training set. Comparing Fix Pattern
with Addition Pattern, they have similar length distribution,
but the pattern ratio of Fix Pattern is higher in the training
set (i.e., 23.88% vs 15.50%). As a result, the increase of
pattern ratio of Fix Pattern is higher than Addition Pattern
(i.e., 26.35% vs 6.07%). This indicates that higher ratio of
certain pattern in the training set will result in higher increase
of that pattern. The reason might be that higher ratio of certain
pattern provides more data for models to learn and make them
tend to generate messages of that pattern.

Finding 3: The increase of pattern ratio between gener-
ated and ground truth messages of different patterns differs
a lot. The larger number and shorter length of messages
fitting with one pattern in the training set contribute to the
higher ratio of that pattern in the generated messages.

Then, comparing the two parts of Fig. 3, the generated
commit messages are generally shorter than the ground truth
on both all data and each pattern. For example, the decrease of
first quartile, median, and third quartile of lengths of all data
are 1, 2, and 4. In particular, the average length of all generated
messages is less than 5. This indicates that models tend to
generate short commit messages. Combining with Finding 1,
the majority of generated commit messages are short and
belong to simple patterns. Existing techniques have the limited
capacity on generating flexible and complex commit messages.

Finding 4: Generated commit messages are shorter than
the ground truth ones. Existing models mostly generate
simple messages with short length and simple patterns,
and have the limited capacity on generating flexible and
complex ones.

3) RQ1.c- Performance for Pattern and Non-Pattern Group:
Table IV presents the quality of commit messages generated
for the code changes in pattern group and non-pattern group.
From the table, the NLP metrics for pattern group are generally
higher than non-pattern group for all techniques, and more

TABLE IV: Performance for pattern and non-pattern group.

Model BLEU ROUGE-L METEOR

NMT Pattern 21.17 25.91 16.16
Non-Pattern 8.92 9.82 6.33

PtrGN Pattern 22.60 28.36 18.68
Non-Pattern 10.92 12.38 8.08

CODIS Pattern 22.79 28.36 18.90
Non-Pattern 11.14 12.42 8.01

CoreGen Pattern 18.88 25.21 16.95
Non-Pattern 8.85 10.40 7.14

FIRA Pattern 23.57 29.45 20.31
Non-Pattern 12.17 13.99 9.59

than twice. The higher NLP metrics indicate that models
perform better on pattern group than non-pattern group. In
other words, the performance of existing techniques is mainly
contributed by pattern group and they have a poor capacity on
generating commit messages for non-pattern group.

Finding 5: The NLP metrics for pattern group are
much higher than the metrics for non-pattern group, which
indicates that models have a better capacity on generating
pattern messages than generating non-pattern messages.

Fig. 4 presents the relationship between pattern ratio and
BLEU threshold of each technique. The horizontal axis refers
to the BLEU threshold, and the vertical axis refers to the
pattern ratio of generated messages whose BLEU is higher
than the threshold. From the figure, the curves of all techniques
have the same trend which decreases first and then increases.

0 20 40 60 80
BLEU

78

80

82

84

86

88

Ra
tio

 o
f p

at
te

rn
s (

%
)

NMT
PtrGNCMsg
CODISUM

CoreGen
FIRA

Fig. 4: The change of pattern ratio with the increase of BLEU
threshold.

When the BLEU threshold is relatively low, the pattern
ratio decreases with the increase of BLEU. This is because
compared with non-pattern messages, more pattern messages
have low BLEU and are filtered out. Many generated commit
messages fitting with patterns are wrong and they should
belong to non-pattern. These wrong pattern messages differ
a lot from the ground truth and have rather low BLEU. If
the BLEU threshold increases, wrong pattern messages with
low-quality will be filtered out. When the threshold increases
from 0 to where pattern ratio is lowest, in the commit messages

which are filtered out, on average, 45% are predicted as pattern
messages but they should belong to non-pattern, and only
3% are predicted as non-pattern messages but they should
belong to certain pattern. More pattern messages are wrongly
predicted and filtered out than non-pattern messages, so the
pattern ratio decreases.

When the BLEU threshold is relatively high, the pattern
ratio increases with the increase of BLEU. When increasing
the BLEU threshold continuously, the quality of remaining
messages is increasingly higher. According to Finding 5,
models perform better on generating commit messages fitting
with pattern than non-pattern. Therefore, with the further
increase of BLEU, the ratio of pattern messages will increase.

Finding 6: When increasing the BLEU threshold, the
pattern ratio decreases first and then increases. The reason
for the decrease is that the wrongly-generated pattern
messages with low quality are filtered out, while the reason
for the increase is that models perform better on generating
pattern messages.

VI. RQ2: DATASET

In this section, we explore the influence of the pattern
ratio in datasets by two sub-questions. (1) RQ2.a: how does
the pattern ratio in the training set influence the pattern
ratio in the generated commit messages? (2) RQ2.b: how
does the pattern ratio in the training set influence the model
performance on pattern group and non-pattern group? These
two sub-questions investigate the impact of the pattern ratio
in the training set by two aspects.

A. Procedure

To explore the relationship between pattern ratio in gen-
erated commit messages and the training set, we reduce the
pattern ratio in the training set and retrain the model with the
modified training set. The reduction procedure is as follows.
We divide the training set into n+1 groups, including n groups
whose commit messages belong to n pre-defined patterns in
Section III and one group containing non-pattern data. We
reduce the number of data belonging to n patterns and increase
the number of non-pattern data to keep the total number of
data unchanged. In particular, we randomly reduce the number
of each pattern by 10% to 90% and the interval is 10%. In
addition, we randomly select non-pattern data with the number
of removed pattern data to keep the total number unchanged.
We retrain models using the modified training set and test the
retrained models using the original testing set.

B. Results and Analysis

1) RQ2.a-Influence of Pattern Ratio in the Training Set:
Fig. 5 presents the change of pattern ratio in the generated
commit messages with the decrease of pattern ratio in the
training set. The horizontal axis refers to the decrease ratio of
pattern messages in the training set and the vertical axis refers
to the pattern ratio in the generated commit messages. From
this figure, with the decrease of patterns in the training set,

0 20 40 60 80
Ratio of decrease (%)

20

40

60

80

100

Ra
tio

 o
f p

at
te

rn
s (

%
)

NMT
PtrGNCMsg
CODISUM
CoreGen
FIRA

Fig. 5: The change of pattern ratio in the generated commit
messages with the decrease of pattern ratio in the training set.

the pattern ratio in the generated commit messages decreases
continuously. This indicates that the pattern ratio in the gener-
ated commit messages is positively associated with the pattern
ratio in the training set, and models are inclined to generating
commit messages which appear frequently in the training set.

Finding 7: With the decrease of pattern ratio in the
training set, the pattern ratio in generated commit messages
decreases continuously. The pattern ratio in generated
commit messages is positively associated with the ratio
in the training set.

0 20 40 60 80
Ratio of decrease (%)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

BL
EU

NMT
PtrGNCMsg
CODISUM
CoreGen
FIRA

NMT-pattern
PtrGNCMsg-pattern
CODISUM-pattern
CoreGen-pattern
FIRA-pattern

NMT-non-pattern
PtrGNCMsg-non-pattern
CODISUM-non-pattern
CoreGen-non-pattern
FIRA-non-pattern

Fig. 6: The change of BLEU in the generated commit mes-
sages with the decrease of pattern ratio in the training set.

2) RQ2.b-Change of Performance on Different Groups:
Fig. 6 presents the change of BLEU for different groups with
the decrease of pattern ratio in the training set. Besides the
total commit messages, we also show the results of commit
messages generated for code changes of pattern group and
non-pattern group to see the influence of pattern ratio on
different groups. From this figure, with the decrease of pattern
ratio in the training set, the BLEU of total generated commit
messages decreases continuously. In addition, the BLEU for
pattern group decreases and BLEU for non-pattern group
remains almost unchanged. Therefore, the decrease of BLEU
for total commit messages results from the decrease of BLEU

for pattern group. The reason is that, with the decrease of
pattern ratio in the training set, pattern data become gradually
insufficient for models to learn. The capacity of models on
generating pattern messages decreases and the quality of
generated commit messages decreases.

On the other hand, although we increase the ratio of non-
pattern data in the training set and correspondingly the ratio of
non-pattern messages in the generated messages increases, the
quality of non-pattern messages does not improve and their
BLEU is always lower than BLEU of pattern messages. In
other words, the high ratio of pattern messages is not the
reason for the poor quality of non-pattern messages and non-
pattern data are inherently challenging for models to learn.

Finding 8: With the decrease of pattern ratio in the training
set, the BLEU of generated commit messages decreases.
The decrease results from the BLEU decrease of pattern
group, while the BLEU of non-pattern group remains
almost unchanged, which indicates that non-pattern data
are inherently challenging for models to learn.

VII. RQ3: INPUT REPRESENTATION

In this section, we explore the influence of input code
change representation by two sub-questions. (1) RQ3.a: how
do the models perform with only change marks? (2) RQ3.b:
how do the models perform for pattern and non-pattern groups
with only change marks? These two sub-questions investigate
the overall performance and separate performance when input
code changes are represented with only change marks.

A. Procedure

In code changes, each line starts with a change mark, i.e.,
“+”, “-” and “ ”, indicating the line is added, deleted or
unchanged. Code changes consist of two types of tokens, code
text tokens and change mark tokens. For example, given a code
change, “- a = 0; + a = 1;”, code text tokens are “a”,
“=”, “0”, “;”, “a”, “=”, “1”, “;” and mark tokens are “-”,
“+”. We propose a simplified representation which replaces
each token in code changes with the corresponding mark,
called mark representation. Mark representation contains only
change information of code changes, not concrete code text
information. In the previous example, the mark representation
is “- - - - + + + +”. To explore the impact of input
representation, we train a model with mark&code representa-
tion (default), and only mark representation respectively, and
compare their performance.

B. Results and Analysis

1) RQ3.a-Competitive Performance with Only Mark Rep-
resentation: Table V presents the results of each technique
trained by the dataset with different input representation. Row
“Code&Mark” presents the results when using code&mark
representation (i.e., the default setting), while Row “Only
Mark” presents the results using only mark representation.

From the table, the performance of using only mark rep-
resentation is close to using code&mark representation. For

TABLE V: Results of models when using various input
representation

Model BLEU ROUGE-L METEOR

NMT Code&Mark 14.63 17.31 10.91
Only Mark 12.80 15.49 8.62

PtrGN Code&Mark 16.36 19.82 13.01
Only Mark 13.17 15.45 9.88

CODIS Code&Mark 16.57 19.84 13.08
Only Mark 14.24 16.46 10.46

CoreGen Code&Mark 13.53 17.31 11.72
Only Mark 10.28 13.35 8.21

FIRA Code&Mark 17.48 21.19 14.58
Only Mark 15.42 18.07 11.62

example, the BLEU of FIRA using mark and code&mark
representation are 15.42 and 17.48, respectively. FIRA with
only mark representation even outperforms NMT and CoreGen
with code&mark representation. We further remove marks
from code&mark representation and reserve only code text
in implementing a variant of each technique, and find that this
variant achieves poorer performance than the corresponding
technique using only mark representation. That is, using only
mark representation can achieve competitive performance and
the code text of code changes brings limited gain to the per-
formance. This is surprising because mark representation is a
very summarized representation including only three symbols
(i.e., “+”, “-”, and “ ”), and has no syntax or semantics.

TABLE VI: Ratio of each pattern with different mark types

Mark Type Addition Removal Fix Avoidance Non
Pattern Pattern Pattern Pattern Pattern

“+”&“ ”
Ground Truth 39.14 0.06 13.78 3.05 43.98
Code&Mark 60.24 0 27.12 4.35 8.29
Only Mark 80.91 0 16.47 1.58 1.04

“-”&“ ”
Ground Truth 0.53 24.01 10.21 2.79 62.47
Code&Mark 0 68.70 1.67 1.67 27.96
Only Mark 0 88.62 0.21 0.05 11.11

“+”&“-”&“ ”
Ground Truth 9.51 1.53 29.93 4.45 54.58
Code&Mark 11.60 8.34 61.37 6.24 12.45
Only Mark 9.17 11.44 74.75 0.33 4.31

Next, we present pattern ratios with different mark types
to further explore the impact of marks. We divide the code
changes into three groups according to the mark type, includ-
ing (1) “+”&“ ”, (2) “-”&“ ”, and (3) “+”&“-”&“ ”. For the
code changes of each mark type, we present the ratio of each
pattern in corresponding commit messages in Table VI. The
row “Ground Truth” presents the pattern ratios in the ground
truth; the rows “Code&Mark” and “Only Mark” present the
pattern ratios when using code&mark representation and only
mark representation, respectively. Each column represents the
results in different patterns and non-pattern.

From this table, for the code changes of each mark type, in
the corresponding ground truth commit messages, non-pattern
occupies the highest ratio (˜50%). Besides non-pattern, for
each mark type, there exists one pattern with the highest ratio,
and we call it mark-related pattern. The mark-related pattern

has strong correlation with the mark type, e.g., for the mark
type with “+”&“ ” marks, Addition Pattern is the mark-related
pattern (ratio is 39.14%). This observation is expected because
code changes with only “+” and “ ” marks usually result
from developers’ intention on adding something. Similarly, the
mark-related patterns of mark type “-”&“ ” and “+”&“-”&“
” are Removal Pattern and Fix Pattern, respectively. As the
mark-related pattern has strong correlation with marks, with
only marks, models tend to generate correct commit messages
belonging to that pattern. However, for each mark type, non-
pattern occupies the highest ratio, so many non-pattern data
share similar mark sequences to the mark-related pattern data,
which indicates that marks alone may not be sufficient for
correct commit message generation for non-pattern data. In
other words, besides code change marks, models need to
capture the semantics and syntax of code text to generate
commit messages of non-pattern. On the other hand, models
generate much higher ratio of commit messages fitting with
the mark-related pattern, and much lower ratio of non-pattern,
indicating many generated commit messages of mark-related
patterns are wrong and they should belong to non-pattern. To
sum up, we hypothesize that the existing techniques mainly
leverage marks in message generation, instead of capturing the
semantics and syntax of code text, and thus most generated
commit messages belong to simple patterns.

For each mark type, the quality of commit messages gener-
ated for code changes whose ground truths belong to the mark-
related pattern is much better than non-pattern. For example,
for the mark type “+”&“ ”, BLEU for Addition Pattern and
non-pattern are 25.82 and 7.90, respectively. Moreover, in the
cases whose BLEU exceeds 50, Addition Pattern and non-
pattern occupy 86.06% and 8.53% respectively, indicating that
models can mainly deal with the cases where commit messages
have strong correlation with change marks. When using only
mark representation, these cases can also be solved. With
only mark representation, BLEU on Addition Pattern is 23.25,
similar to code&mark. Therefore, only mark representation
can achieve similar performance to code&mark representation.

Finding 9: Models fail to capture the syntax and
semantics of input code and mainly leverage marks to
generate commit messages, so they generate high ratio of
pattern messages and have competitive performance even
when the inputs are only represented by change marks.

2) RQ3.b-Performance for Pattern and Non-Pattern Group:
Table VII presents the NLP metrics of the commit messages
generated for the code changes in pattern group and non-
pattern group, when training models with various input rep-
resentation. Rows “Code&Mark” and “Only Mark” show the
results using code&mark and mark representation. The left
part of each column is NLP metric values and the right (Decl)
is the decrease ratio from code&mark representation. In this
table, the decrease ratio from code&mark representation to
mark representation for non-pattern group is higher than
pattern group. For example, the decrease ratio of BLEU of

TABLE VII: Results for pattern group and non-pattern group
when using various input representation

Model BLEU/Decl ROUGE-L/Decl METEOR/Decl

NMT
Code&Mark Pattern 21.17 - 25.91 - 16.16 -

Non-Pattern 8.92 - 9.82 - 6.33 -

Only Mark Pattern 18.92 11% 24.05 7% 13.51 16%
Non-Pattern 7.37 17% 7.88 20% 4.27 33%

PtrGN
Code&Mark Pattern 22.60 - 28.36 - 18.68 -

Non-Pattern 10.92 - 12.38 - 8.08 -

Only Mark Pattern 18.91 16% 23.32 18% 15.14 19%
Non-Pattern 8.07 26% 8.47 32% 5.21 36%

CODIS
Code&Mark Pattern 22.79 - 28.36 - 18.90 -

Non-Pattern 11.14 - 12.42 - 8.01 -

Only Mark Pattern 20.06 12% 24.32 14% 15.90 16%
Non-Pattern 9.06 19% 9.48 24% 5.63 30%

CoreGen
Code&Mark Pattern 18.88 - 25.21 - 16.95 -

Non-Pattern 8.85 - 10.40 - 7.14 -

Only Mark Pattern 15.02 20% 21.25 16% 13.26 22%
Non-Pattern 6.06 32% 6.32 39% 3.72 48%

FIRA
Code&Mark Pattern 23.57 - 29.45 - 20.31 -

Non-Pattern 12.17 - 13.99 - 9.59 -

Only Mark Pattern 21.21 10% 25.82 12% 16.82 17%
Non-Pattern 10.27 16% 11.18 20% 7.00 27%

CoreGen for non-pattern group and pattern group are 32%
and 20% respectively. That is, without code text, models lose
more performance on non-pattern group than pattern group.
Mark representation contains limited information, which lacks
syntax and semantics. However, non-pattern commit messages
are of flexible formats, and more difficult to generate, so when
using only mark representation, models have a poorer capacity
on generating non-pattern commit messages.

Finding 10: Using only mark representation loses more
performance on non-pattern group than pattern group. The
limited information contained in mark is not sufficient for
generating flexible and complex non-pattern messages.

VIII. RQ4: MODEL COMPONENT

In this section, we explore the influence of model compo-
nents by three sub-questions. (1) RQ4.a: how does the atten-
tion mechanism affect the effectiveness? (2) RQ4.b: how does
the copy mechanism affect the effectiveness? (3) RQ4.c: how
does the anonymization mechanism affect the effectiveness?

A. Procedure

As shown in Table I, the components of the studied models
include attention, mechanism, and anonymization mechanism.
To explore the impact of each component on the pattern ratios
and NLP metrics, we compare the performance of the default
model and its variants with different components removed.
Note that CoreGen leverages the transformer [30] (whose
attention cannot be removed) and has no other components,
so we exclude CoreGen in this RQ.

B. Results and Analysis

Table VIII presents the quality of commit messages gener-
ated by each approach and their variants removing different
components. Row “Orignal” presents the measurement results
of commit messages generated by the model while the other

TABLE VIII: Results of models removing each component

Model BLEU ROUGE-L METEOR Pattern Ratio

NMT Original 14.63 17.31 10.91 89.75
Attention mechanism 13.66 16.24 10.09 91.37

PtrGNCMsg
Original 16.36 19.82 13.01 86.94

Attention mechanism 15.81 18.81 12.13 86.95
Copy mechanism 15.97 18.97 12.31 88.37

CODISUM

Original 16.57 19.84 13.08 89.65
Attention mechanism 15.93 18.88 12.30 93.50

Copy mechanism 16.29 19.42 12.79 89.35
Anonymization 16.03 19.38 12.20 88.92

FIRA
Original 17.48 21.19 14.58 85.62

Copy mechanism 17.13 20.73 14.13 83.58
Anonymization 17.19 21.31 14.40 84.90

rows represents the results of the model without that com-
ponent. Column “Pattern Ratio” presents the ratio of commit
messages fitting with the patterns to all generated messages.

1) RQ4.a-Attention Mechanism: From the table, the atten-
tion component influences the quality of generated commit
messages. When the attention component is removed, all the
NLP metric values decrease. In addition, the ratio of pattern-
matching commit messages in the generated commit messages
increases. One potential reason might be that without the
attention mechanism, the capacity of models decreases and the
models generate more commit messages with simple patterns.

TABLE IX: Attention weights on marks

Model Ratio of Number Attention Weights
Changed Unchanged Changed Unchanged

NMT

38.12 61.88

46.37 53.63
PtrGN 64.51 35.49
CODIS 56.90 43.10
FIRA 66.42 33.58

To further explore the attention mechanism, we compute
attention distribution, and show the results in Table IX. We get
attention on each input token, which indicates to what extent
the decoder concentrates on this token. Columns “Ratio of
Number” refer to the ratio of the number of input tokens with
changed/unchanged marks to the number of total tokens, while
Columns “Attention Weights” refer to the attention weights of
models on input tokens with changed/unchanged marks.

From this table, the ratio of input tokens with changed
marks is lower than the ratio of tokens with unchanged
mark (i.e., 38.12% vs 61.88%). Although the ratio of input
tokens with changed marks is lower, the attention weight on
tokens with changed marks is higher than that on tokens with
unchanged marks. This indicates that the models focus on
changed tokens more, and changed tokens are more important
for capturing the intention behind code changes.

Finding 11: When generating commit messages, the
decoder pays more attention on changed tokens (i.e.,“+”
and “-”) than unchanged tokens, indicating that changed
tokens are more important for capturing the intention
behind code changes.

Next, we explore which input tokens a learning-based

technique concentrates the most by identifying its top-10
concentrated tokens as follows. Whenever a learning-based
technique generates an output token, we compute the attention
on input tokens during this process and select the top-10 input
tokens with the highest attention weights, which are regarded
as concentrated tokens; then we calculate the occurring times
of all concentrated tokens through the whole commit genera-
tion process of a technique and select the top-10 concentrated
tokens with the largest occurring times.

TABLE X: Top-10 input tokens models pay most attention to

Model Top-10 Input Tokens

NMT ⟨nl⟩, ⟨eos⟩, public, class, ⟨nb⟩, ⟨add⟩,
⟨delete⟩, ⟨start⟩, ., {

PtrGN
⟨extend− 1⟩, class, ⟨extend− 3⟩
⟨extend− 4⟩, ⟨extend− 2⟩, ⟨extend− 5⟩,
⟨eos⟩, ⟨extend− 6⟩, ⟨extend− 7⟩, return

CODIS c0, n0, n2, n3, n1, n4, f0, n5, a0, ⟨eos⟩
FIRA n0, n2, n1, import, n3, get, ⟨nl⟩, c0, if, f0

Table X presents the top-10 concentrated tokens the models
pay most attention to. From the table, NMT pays attention
to special tokens (e.g., ⟨nl⟩ and ⟨add⟩) and keywords (e.g.,
public and class), which are anchors of code changes and
contain significant information. PtrGN pays attention to the
extended vocabulary words (i.e., ⟨extend−x⟩), which are used
to represent the out-of-vocabulary identifiers and ⟨extend−x⟩
represents a different OOV word in different code changes.
Identifiers are key components of code changes and appear
in commit messages frequently, so extended words are paid
much attention to. Similarly, CODIS and FIRA leverage
anonymization to represent identifiers as placeholders, so they
pay more attention to placeholders (e.g., c0 and n0); NMT
does not leverage anonymization and identifiers do not have
uniform forms, and thus identifiers are not within the top-10
input tokens. In addition, FIRA pays attention to the keywords
(e.g., import and if).

2) RQ4.b-Copy Mechanism: The copy mechanism is effec-
tive for commit message generation. When a copy mechanism
is removed from the model, all NLP metric values decrease.
The metric values for both pattern group and non-pattern group
decrease. In addition, when removing the copy mechanism, the
pattern ratio decreases for most techniques.

3) RQ4.c-Anonymization Mechanism: After removing
anonymization, due to the limitation of vocabulary size, many
identifiers occurring less than the threshold are excluded from
the vocabulary and replaced by ⟨unk⟩. Therefore, the model
generates more ⟨unk⟩ in the commit messages and cannot
generate identifiers correctly. From the table, after removing
anonymization, all NLP metric values decrease, indicating that
anonymization is beneficial for commit message generation.
Without anonymization, the pattern ratio decreases.

Finding 12: Model components have different influence
on the ratio of pattern-matching commit messages, in par-

ticular, without attention mechanism, the ratio increases.

IX. DISCUSSION

In this section, we discuss our findings and implications.
The majority of automatically generated commit messages
belong to simple patterns (Finding 1-2). Finding 1 and
Finding 2 show that both in the testing and training sets, the
majority (i.e., ˜90%) of generated commit messages belong to
simple patterns and such a ratio is much higher than that in
the ground truth (i.e., ˜50%).

Based on the findings, we have the following implications.
(1) Pattern-based metrics are necessary for evaluating commit
message generation techniques. Our findings indicate a huge
gap between evaluating existing techniques by NLP metrics
and by patterns. Pattern-based metrics can capture the struc-
tural details of generated messages, which are missed by
existing NLP metrics; while NLP metrics show the semantic
similarity between generated messages and the ground truth.
These two metrics are complementary; (2) A two-stage gener-
ation paradigm might be a potential direction. Since our find-
ings indicate that models generate more messages of certain
patterns, a potential direction is to generate commit messages
in two stages: first generating an abstract and pattern-based
representation, and then concretizing the intermediate patterns.
Existing techniques tend to generate commit messages with
short length (Finding 3-4). Finding 3 and Finding 4 show that
the generated commit messages are shorter than the ground
truth ones and the pattern with shorter length is more inclined
to be generated by the existing techniques.

These findings further imply that the existing models tend to
generate simple messages with short length. One potential di-
rection to address this limitation is to include some constraints
during the future commit message generation, such as adding
extra loss to the commit messages of short length and simple
patterns during training, which could encourage the models to
generate more flexible and longer commit messages.
Generating non-pattern commit messages should be an
important future direction (Finding 5-8). Our findings (i.e.,
Finding 5 and Finding 6) further show that the performance
of existing models is much better in generating pattern mes-
sages than non-pattern messages. In addition, Finding 7 and
Finding 8 further show the non-pattern messages are inherently
more challenging for models to learn, since increasing the ratio
of non-patterns in the training set fails to improve the quality
of generated non-pattern commit messages in the testing set.

These findings actually indicate that the overall “decent”
performance of existing models is mainly contributed by their
good performance in generating those pattern messages. In
other words, generating non-pattern messages is currently a
challenging bottleneck in existing techniques and is definitely
an important future direction to explore.
Syntax and semantics in code changes should be better
captured (Finding 9-12). Finding 9 and Finding 10 show
that models have comparable performance even with input
code changes only represented as change marks, while such
an observation is more evident on pattern messages.

These findings actually imply that existing models fail
to fully capture the syntax and semantics in code changes,
especially when generating non-pattern messages. There are
two potential directions to future better capture syntax and
semantics in code changes: (1) Better code change representa-
tion. Finding 11 shows that changed tokens are more important
for commit message generation while too many unchanged
tokens are a disturbance for models to capture the syntax and
semantics. Thus, the code change representation that reserves
all changed tokens but a subset of important unchanged tokens
(e.g., class names and method names), might help models
to pay more attention to changed tokens; (2) Specific model
design for code changes. Finding 12 indicates the components
have different influence on the pattern ratio and are all relevant
to the high pattern ratio. Given the current models are mainly
adopted from the NLP domain, a more specific model design
for code changes might help better capture the syntax and
semantics, such as conducting the attention mechanism within
changed tokens and unchanged tokens respectively and then
merging them with different weights.
Implications for developers. In addition to the implications
mentioned above for researchers, we briefly discuss our im-
plications for developers. First, when developers are using
existing automated commit message generation tools, our find-
ings could suggest different user expectations on generating
different commit messages. In particular, if developers need
some commit messages of simple patterns, it is more feasible
for them to trust and directly use these automated messages;
but if they need something more flexible and more com-
plicated, the automated messages might not be satisfactory.
Second, when developers write commit messages during their
development activities, our findings encourage them to present
complex messages in a more structured and uniform format.
This is because our findings show that commit messages of
patterns are easier for models to learn and commit messages
of non-pattern are more challenging, and these well-structured
messages would also serve as high-quality training data for
future learning-based techniques.

X. CONCLUSION

In this work, we conduct a comprehensive study on existing
learning-based commit message generation techniques from a
novel perspective pattern. We find that most generated commit
messages (˜90%) belong to simple patterns, much more than
the ground truth (˜50%). Inspired by this observation, we
explore the reason for so many pattern messages by varying
the dataset, input representation, and components of models.

XI. DATA AVAILABILITY

Our package is available at [31], which contains the dataset,
commit messages, and scripts for reproduction.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China under Grant No. 62232001.

REFERENCES

[1] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Arena: an approach for the automated generation of release
notes,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.
106–127, 2016.

[2] S. S. Nath and B. Roy, “Towards automatically generating release notes
using extractive summarization technique,” in International Conference
on Software Engineering & Knowledge Engineering, SEKE, 2021, pp.
241–248.

[3] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[4] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic iden-
tification of bug-introducing changes,” in 21st IEEE/ACM international
conference on automated software engineering (ASE’06). IEEE, 2006,
pp. 81–90.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 422–431.

[6] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, 2010, pp. 33–42.

[7] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation. IEEE, 2014, pp.
275–284.

[8] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization
of what and why information in source code changes,” in 2016 IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1. IEEE, 2016, pp. 103–112.

[9] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[10] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[11] Y. Huang, N. Jia, H.-J. Zhou, X.-P. Chen, Z.-B. Zheng, and M.-D. Tang,
“Learning human-written commit messages to document code changes,”
Journal of Computer Science and Technology, vol. 35, no. 6, pp. 1258–
1277, 2020.

[12] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 135–146.

[13] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2019, pp. 299–309.

[14] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in IJCAI, 2019.

[15] L. Y. Nie, C. Gao, Z. Zhong, W. Lam, Y. Liu, and Z. Xu, “Coregen:
Contextualized code representation learning for commit message gener-
ation,” Neurocomputing, vol. 459, pp. 97–107, 2021.

[16] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “FIRA:
fine-grained graph-based code change representation for automated
commit message generation,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 970–981.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[18] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, 2015, pp.
1412–1421.

[19] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems 28: Annual Conference on

Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, 2015, pp. 2692–2700.

[20] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, 2017,
pp. 1073–1083.

[21] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion with neural
attention and pointer networks,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, 2018, pp. 4159–4165.

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[23] C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,”
in Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), 2004, pp. 605–612.

[24] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization, 2005, pp. 65–72.

[25] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang, and
W. Zhang, “On the evaluation of commit message generation models: An
experimental study,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 126–136.

[26] Y. Tian, Y. Zhang, K. Stol, L. Jiang, and H. Liu, “What makes
a good commit message?” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 2389–2401. [Online]. Available:
https://doi.org/10.1145/3510003.3510205

[27] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Mining maximal
sequential patterns without candidate maintenance,” in International
Conference on Advanced Data Mining and Applications. Springer,
2013, pp. 169–180.

[28] P. Fournier-Viger, J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z. Deng, and H. T. Lam, “The SPMF open-source data mining
library version 2,” in Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2016, Riva
del Garda, Italy, September 19-23, 2016, Proceedings, Part III, ser.
Lecture Notes in Computer Science, B. Berendt, B. Bringmann,
É. Fromont, G. C. Garriga, P. Miettinen, N. Tatti, and V. Tresp,
Eds., vol. 9853. Springer, 2016, pp. 36–40. [Online]. Available:
https://doi.org/10.1007/978-3-319-46131-1 8

[29] S. Jiang and C. McMillan, “Towards automatic generation of short sum-
maries of commits,” in 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 2017, pp. 320–323.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[31] “Replication package,” https://doi.org/10.5281/zenodo.7042270, 2022.

https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.5281/zenodo.7042270

	Introduction
	Background and related work
	Commit Message Generation Techniques
	Existing Metrics on Commit Message Generation
	Existing Studies on Commit Message Generation

	Pattern
	Definition
	Pattern Collection
	Our Patterns

	Study Design
	Dataset
	Threats to Validity

	RQ1: Pattern Ratio
	Procedure
	Results and Analysis
	RQ1.a-Pattern Ratio Distribution
	RQ1.b-Influence of Number and Length on Ratio of each Pattern
	RQ1.c- Performance for Pattern and Non-Pattern Group

	RQ2: Dataset
	Procedure
	Results and Analysis
	RQ2.a-Influence of Pattern Ratio in the Training Set
	RQ2.b-Change of Performance on Different Groups

	RQ3: Input Representation
	Procedure
	Results and Analysis
	RQ3.a-Competitive Performance with Only Mark Representation
	RQ3.b-Performance for Pattern and Non-Pattern Group

	RQ4: Model Component
	Procedure
	Results and Analysis
	RQ4.a-Attention Mechanism
	RQ4.b-Copy Mechanism
	RQ4.c-Anonymization Mechanism

	Discussion
	Conclusion
	Data Availability
	References

