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Abstract—Collaborative development is critical to improve the
productivity. Multiple contributors work simultaneously on the
same project and might make changes to the same code locations.
This can cause conflicts and require manual intervention from
developers to resolve them. To alleviate the human efforts of
manual conflict resolution, researchers have proposed various
automatic techniques. More recently, deep learning models have
been adopted to solve this problem and achieved state-of-the-art
performance. However, these techniques leverage classification
to combine the existing elements of input. The classification-
based models cannot generate new tokens or produce flexible
combinations, and have a wrong hypothesis that fine-grained
conflicts of one single coarse-grained conflict are independent.

In this work, we propose to generate the resolutions of merge
conflicts from a totally new perspective, that is, generation, and
we present a conflict resolution technique, MergeGen. First, we
design a structural and fine-grained conflict-aware representation
for the merge conflicts. Then, we propose to leverage an encoder-
decoder-based generative model to process the designed conflict
representation and generate the resolutions auto-regressively.
We further perform a comprehensive study to evaluate the
effectiveness of MergeGen. The quantitative results show that
MergeGen outperforms the state-of-the-art (SOTA) techniques
from both precision and accuracy. Our evaluation on multiple
programming languages verifies the good generalization ability of
MergeGen. In addition, the ablation study shows that the major
component of our technique makes a positive contribution to the
performance of MergeGen, and the granularity analysis reveals
the high tolerance of MergeGen to coarse-grained conflicts.
Moreover, the analysis on generating new tokens further proves
the advance of generative models.

Index Terms—Merge Conflict Resolution, Generative Models,
Conflict Representation

I. INTRODUCTION

Collaborative software development is essential for the de-
velopment of large-scale projects. To improve the development
efficiency, the tasks are often divided among the team for
concurrent development and different developers will create
their own branches of the main repository [1]. The developers
need to submit the pull request (aka merge request) regularly,
and code changes will be merged into the main branch after
the review of the repository maintainers [2]. However, collab-
oration increases the occurrence of conflicts when merging
code changes in the same locations. Approximately 12%
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commits are used to merge different versions of code [3],
and almost 46% of merge commits lead to conflicts, showing
the frequency of merge operations and the accompanying
conflicts. It is challenging to resolve merge conflicts, since the
developers need to understand the intentions of code changes,
which is a time-consuming and tricky task [1], [4]–[7].

In order to reduce the manual efforts of resolving conflicts,
many researchers have dedicated into proposing automatic
resolution and merge techniques [4], [8]–[14]. Given two
conflict versions A and B, and their common ancestor version
O, the aim of the resolution and merge techniques is to
produce the accurate resolution M. The traditional approaches
can be divided into three categories, i.e., unstructured merge
techniques [15], [16], structured merge techniques [17]–[19],
and semi-structured merge techniques [20]–[22]. Unstructured
merge relies solely on textual similarity, which provides good
generalization ability and execution efficiency but can only
detect conflicts and cannot resolve them automatically. Struc-
tured and semi-structured merge, on the other hand, are based
on abstract syntax trees (AST). These approaches are time-
consuming and can only be applied to specific programming
languages, limiting their applicability. To address these prob-
lems, researchers apply deep learning models into merge con-
flict resolution and propose learning-based techniques, which
achieve state-of-the-art performance. Since the learning-based
techniques only require the text of conflicts as input, they can
also be regarded as unstructured techniques so that they also
have a strong ability for generalization and high efficiency.
Different from the traditional unstructured techniques, the
learning-based techniques can master the common patterns of
merging conflicts from the history data, so they have strong
conflict-resolving ability.

However, the existing learning-based techniques treat the
conflict resolution problem as a classification problem, and
dedicate their efforts on combining the existing contents of
input, such as selecting which lines from the input or design
patterns (e.g., selecting O or concatenating A and B) to
combine the conflicts at token level. Formulating conflict
resolution as a classification task has three limitations. First,
classification can only choose the existing tokens from the
input, and cannot generate new tokens which do not exist
in the input. However, it is a common phenomenon for



the developers to create new tokens in the resolutions (e.g.,
invoking a new function to combine the contents of both
versions). Second, the patterns to merge code need to be
specially designed for different datasets, and the combinations
produced by the patterns are limited and not flexible. For
example, given the conflict versions O = XYZ, A = X′YZ′,
B = XY′Z, and the developer resolution M = X′Y′Z′, where
X′, Y′, Z′ are the modifications of the code snippets X, Y,
Z respectively. None of the patterns which simply select one
version (i.e., X′YZ′ or XY′Z) or concatenate A and B (i.e.,
X′YZ′XY′Z or X′Z′Y′ if removing the tokens appearing in O)
can produce the correct resolution, since this case requires
multiple interleaving between A and B. Third, the state-of-the-
art technique MergeBERT computes and resolves the conflicts
at token level. One single line-level conflict may consist of
several token-level conflicts, and only one token-level conflict
can be solved one time if using classification. MergeBERT
assumes the different token-level conflicts are independent.
However, this assumption is incorrect because they belong to
one line-level conflict and rely on the contents of each other.

Therefore, in this paper, we propose to solve the merge
conflict resolution problem from a totally new perspective,
i.e., producing the resolutions through generation. We put
forward a merge conflict resolution technique, MergeGen,
which leverages an encoder-decoder-based generative model
to generate the resolutions auto-regressively. The generative
models can produce new tokens that do not exist in the
input. Moreover, by producing the resolutions token by token,
the models can generate more flexible combinations, which
the classification models cannot produce. In addition, the
generative models have a strong ability of understanding
and generating code. There is no need to design patterns to
combine the inputs deliberately and the generative models can
directly generate the code which exists in the input. Moreover,
through generation, the resolutions for several token-level
conflicts in one line-level conflict can be generated at one time
and the resolving for them is regarded as an overall problem.

MergeGen uses a new structural and fine-grained conflict-
aware representation to represent merge conflicts. The simplest
representation of conflicts is simply concatenating the code of
O, A and B in conflict. It is coarse-grained and requires the
model to identify the concrete fine-grained conflicts, and align
the fine-grained conflict snippets of three versions on its own.
Therefore, we propose to compute the conflicts at token-level
and leverage a structural and conflict-aware way to represent
the fine-grained token-level conflicts. We enclose and highlight
each conflict with the designed structural tokens. Furthermore,
we align the corresponding conflict snippets of O, A and
B, and concatenate them with the structural separator. The
representation can help the models identify and align the
conflict regions, and produce flexible combinations using the
tokens from them.

We perform a comprehensive evaluation of MergeGen on
multiple programming languages, and MergeGen achieves the
state-of-the-art performance from both precision and accu-
racy for all languages. The further ablation study validates

the effectiveness of the proposed fine-grained conflict-aware
representation. Moreover, the granularity analysis reveals the
high tolerance to coarse-grained conflicts and the performance
on generating new tokens prove the advantage of generation.

In summary, this paper makes the following contributions:
• A new formulation of conflict resolution as a generation

task, which can produce new tokens that do not exist in
input, and produce more flexible combinations, without
losing the ability to generate existing tokens of input.

• A structural and fine-grained conflict-aware represen-
tation for conflicts which can help the models identify
and align the conflict regions of three versions.

• An extensive experiment evaluating our approach
against multiple programming languages, which validates
the effectiveness of our technique.

• A replication package available at https://github.com/
DJjjjhao/ase-merge.

II. MOTIVATION

Existing techniques leverage classification to resolve con-
flicts. They focus on leveraging the existing contents of three
input versions O, A, and B, so they put forward different
approaches to combine the code of three versions. Some
researchers [23] adopt and combine the inputs at line-level,
while some researchers [24] design several patterns to combine
the inputs at token-level. However, leveraging the existing
contents of input has two obvious limitations. In this section,
we will illustrate the two limitations and show some cases to
help understand. Besides the two limitations, the existing tech-
niques ignore the ability of generative models on generating
the code snippet of the input, and there is no need to design
patterns to leverage the input deliberately.

A. Limitation 1: Limited Combinations through Classification

Resolution:
private static ItemStack tryFillCanister(

AbstractFeature feature, IFluidHandler tank, 
ItemStack canister, boolean isCreativeMode

<<<<<<< a
Feature

||||||| base
final Feature

=======
final AbstractFeature

>>>>>>> b

<<<<<<< a
IFluidHandler tank, Stack canister, boolean
isCreativeMode

||||||| base
final EnumFacing side, final Stack canister

=======
final TileEntityFluidTank tank, final EnumFacing
side, final ItemStack canister

>>>>>>> b

feature,

private static ItemStack tryFillCanister(

Fig. 1: Motivating example: limited combinations through
classification

Although existing techniques propose approaches to com-
bine the input code, the limited combination patterns cannot
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cover all the situations. DeepMerge [23] combines the in-
put at line-level, which cannot generate the resolutions that
are combinations of parts within one line. MergeBERT [24]
combines the tokens through nine defined patterns, which can
generate the resolutions requiring the interleaving at token-
level. However, the proposed patterns are simple and limited,
i.e., choosing one from three versions, concatenating A and B,
and the previous combinations removing the tokens that occur
in O. The combinations generated by the patterns are limited
and not flexible.

We present a case in Fig. 1. The SOTA approach Merge-
BERT relies on the conflicts at token-level, and leverages the
pattern to combine the token-level conflicts. In Fig. 1, we
show the results of git merge at token-level of a function
declaration in Java. Git merge is the command provided
by git, which leverages the three-way merge algorithm
diff3 to merge the two branches (i.e., A and B) to their
common ancestor (i.e., O). The regions between <<<<<<<
and >>>>>>> are in conflict, which we color in red; and
the remaining regions are not in conflict, which we color in
green. The code between <<<<<<< a and ||||||| base
is from A, the code between ||||||| base and =======
is from O, and the code between ======= and >>>>>>>
b is from B. In addition, we show the developer resolution
of the conflict, and we highlight the tokens of conflicts that
are selected into the resolution. We can notice that there exist
two conflicts in the code snippet. The resolution of the first
conflict is AbstractFeature, which can be obtained by
selecting the code of B and removing the tokens that appear
in O, which is one pattern proposed by MergeBERT.

However, for the second conflict, none of the simple patterns
that combine the three versions can generate the correct
resolution. The resolution consists of multiple interleaving
of the tokens between A and B, i.e., the three code snip-
pets IFluidHandler tank, ItemStack canister,
and boolean isCreativeMode in the resolution come
from A, B, and A respectively. This resolution cannot be pro-
duced by simply selecting one from A and B or concatenating
A and B. This case can reflect the limitation of classification
on generating flexible combinations. By contrast, since the
generative model generate the resolutions token by token, it
can produce any format of combinations and cover all the
solutions that the developers will put forward.

B. Limitation 2: Classification Cannot Generate New Tokens

The second limitation of classification-based techniques is
the ability to generate new tokens which do not exist in the
input. The current techniques all pay attention to how to
combine the tokens of the input, so they cannot generate any
new tokens. However, it is a common phenomenon for the de-
velopers to write new tokens in the resolution, such as invoking
a new function to combine the contents of both versions. Here
is a real example in our dataset shown in Fig. 2. The devel-
oper invokes a new function getGraceOnArrearsAgeing
which doesn’t exist in the input. This resolution cannot be
generated by existing techniques definitely. Generative models

<<<<<<< a
product.getOutstandingLoanBalance(), 
acc.emiAmountVariations, 
acc.memberVariations, product, 
acc.inArrears);
||||||| base
product.getOutstandingLoanBalance(), 
acc.emiAmountVariations, 
acc.memberVariations, product);
=======
product.getOutstandingLoanBalance(), 
acc.emiAmountVariations, 
acc.memberVariations, product, 
product.getGraceOnDueDate());
>>>>>>> b

Resolution:
product.getOutstandingLoanBalance(), 
acc.emiAmountVariations, 
acc.memberVariations, product, 
acc.inArrears, 
product.getGraceOnArrearsAgeing());

Fig. 2: Motivating example: generating new tokens

can address this limitation, which can produce any tokens
in the vocabulary. In addition, we use Byte-Pair Encoding
(BPE) [25] tokenization to split the tokens according to the
frequency, which can generate any tokens of the programming
language and combine the sub-words of the input.

C. Neglecting Generative Models’ ability to Generate Existing
Tokens

The motivation of the existing techniques to combine the
contents of the input is that many tokens of the resolutions
come from the conflicts. However, they ignore the ability of
the generative models to generate the tokens of the input. The
pre-trained code-related models are trained on a large amount
of code corpus, and have strong ability in code comprehension
and generation [26]–[28]. After fine-tuning on the merge
resolution task, for the tokens of input which can be adopted
to the output directly, the models can learn the capacity to
generate them easily.

Therefore, generation is a better direction for the merge
conflict resolution task, which can not only generate the tokens
of input, but also produce new tokens and more flexible
combinations.

III. APPROACH

In this section, we will give a detailed introduction of
MergeGen, and the overview of our approach is in Fig. 3.
MergeGen consists of two major components, i.e., the struc-
tural and fine-grained conflict-aware representation for merge
conflicts and the encoder-decoder generative model which
resolves the conflicts through generation. Given the O, A, and
B versions of conflicts, we first represent the conflicts with the
proposed structural and fine-grained conflict-aware represen-
tation. After that, we feed the conflict representation to the
encoder-decoder generative model to produce the resolutions
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Fig. 3: The overview of MergeGen: the conflicts are first represented by our proposed structural and fine-grained representation
and then put to the generative model to generate the resolutions token by token.

token by token through generation. We will first introduce the
proposed representation in Section III-A and then introduce
the proposed model in Section III-B

A. Structural and Fine-grained Conflict-aware Representation

<boc, beginning of conflict>
conflict code of 𝒜

<soc, separator of conflict>
conflict code of 𝒪

<soc, separator of conflict>
conflict code of ℬ

<eoc, ending of conflict>

non-conflict code

<bos, beginning of sequence>

…

…

<eos, ending of sequence>

Fig. 4: The structural and fine-grained conflict-aware repre-
sentation of merge conflicts

The first component of MergeGen is the specially-designed
representation for the merge conflicts, defined as Repremerge.
The simplest way to represent the conflicts is to directly
concatenate the three versions in conflict, i.e., O, A, and
B. However, this trivial representation requires the model to
identify the concrete fine-grained conflicts, and align the fine-
grained conflict snippets of three versions on its own. This
is challenging for models especially when there are multiple
finer-grained conflicts in one coarse-grained conflict. To solve
this problem, we propose a structural and fine-grained conflict-
aware representation for the conflicts, shown in Figure 4.

First, we compute the conflicts at token-level, which are
finer-grained and more accurate than the line-level conflicts.
Within one line-level conflict, there exist common code snip-
pets which are actually not conflicts, and exist several smaller
and more accurate conflicts. For example, given a conflict
where O is final int a = 0, A is final long a =
0, and B is int a = 0. The developer resolution M is
long a = 0 which consists of both two smaller changes,
i.e., changing the type from int to long and removing

the modifier final. The line-level merge will identify the
whole line of each version as only one conflict and selecting
one version or combining several versions at line-level as
the resolution is incorrect, while the token-level merge can
identify two smaller conflicts and the combination of respec-
tive resolutions can obtain the correct answer. The proposed
representation and the generation process of this example are
shown in Fig. 3.

Then, we leverage a structural and conflict-aware way to
represent the fine-grained token-level conflicts. According to
Fig. 4, the proposed representation consists of two types of re-
gions, i.e., non-conflict regions and conflict regions. The non-
conflict regions are directly put into the final representation.
The conflict regions are enclosed by two proposed structural
tokens, i.e., ⟨boc⟩ and ⟨eoc⟩, which represent the beginning
and the end of conflicts respectively. In addition, we align
the corresponding conflict snippets of the O, A and B, and
concatenate them with the structural separator ⟨soc⟩. This can
help the models align the areas of three versions and combine
the tokens of them.

Finally, we enclose the whole conflict with ⟨bos⟩ and ⟨eos⟩,
which represents the beginning and end of the whole sentence,
and we obtain the final representation of the merge conflicts
Repremerge. To sum up, the proposed conflict representation
is structural and fine-grained conflict-aware, where the conflict
regions are enclosed with the structure tokens and are distin-
guished from the non-conflict regions. The models can easily
identify the conflict and non-conflict regions, and align the
conflict snippets from different versions. The representation
can help the models focus on the conflict regions, and produce
flexible combinations using the tokens from the input.

B. Generative Model

The biggest difference of MergeGen from the previous
techniques is leveraging generation to produce the resolutions.
We adopt an encoder-decoder-based generative model to pro-
cess our proposed representation and generate the resolutions
auto-regressively. Since we require both the encoder and
the decoder, we utilize the state-of-the-art encoder-decoder-
based pre-trained model T5 (Text-To-Text Transfer Trans-
former) [29], which specializes in the text-to-text tasks. Spe-
cially, we use CodeT5, which is based on T5 architecture and



pre-trained on code-related tasks. The encoder and the decoder
of CodeT5 are all based on Transformer [30] architecture.

1) Encoder: After we obtain the final representation of the
merge conflicts Repremerge, we first feed it to the encoder to
obtain the high dimensional representation, which is then fed
to the decoder to guide generation.

As we have introduced in Section III-A, to represent the
conflicts in a structural way, we add some structural tokens.
We insert the structural tokens into the vocabulary of CodeT5
and assign the randomly-initialized and trainable embedding
vectors to them. The final conflict representation Repremerge

can be tokenized with the tokenizer of CodeT5 into several
tokens, which is defined as [t1, t2, ..., tNc ], where Nc is the
length of the tokens of Repremerge. Then we pass the sequence
of tokens to the vocabulary and obtain the embedding vectors
Ec, which can be represented by [e1, e2, ..., eNc

], where Ec ∈
Rdx×Nc and dx is the dimension of the embedding.

Then we feed the embedding vectors Ec to the transformer
layer. The transformer layer of the encoder consists of one
multi-head self-attention layer and one fully connected feed-
forward network. The encoder consists of L transformer
layers, and the computation process of each layer is as follows.
Given the hidden states of the last layer X l−1

e (X0
e = Ec), the

transformer layer computes the multi-head self-attention, i.e.,
Ae. The multi-head attention is the concatenation of several
single-head attention Ae(i), which is the weighted sum of
X l−1

e . The computation formula is shown in Equation 1 and
Equation 2, and to make the formula concise, we simplify
X l−1

e to Xe.

Ae(i) = WvXe · softmax
(
Xe

TWk
T ·WqXe√
dx

)
(1)

Ae = Wo[Ae(1);Ae(2); ...;Ae(h)] (2)

In the equations, Wq ∈ Rdx×dx , Wk ∈ Rdx×dx , Wv ∈
Rdx×dx , Wo ∈ Rdx×hdxdenote the projection parameters, and
h is the number of heads. After that, the attention Ae is
passed to the fully connected feed-forward network to obtain
the output of the encoder at the l-th layer, i.e., X l

e, as shown
in Equation 3.

X l
e = W2 · max(0,W1Ae + b1) + b2 (3)

In the equation, W1 ∈ Rdx×dx , W2 ∈ Rdx×dx , b1 ∈ Rdx ,
b2 ∈ Rdx are learnable parameters. After passing the L layers
of the encoder, we can obtain the final output of the encoder,
that is, XL

e , which then serves as the input of the decoder. To
make the illustration convenient, we simplify XL

e to Xe in the
following description.

2) Decoder: After the encoder processes and encodes the
conflicts, we can obtain the final high dimensional represen-
tation of the conflicts Xe. Then, the decoder feeds on Xe and
generates the tokens of resolutions one by one.

The decoder is also based on the transformer structure.
Besides the self-attention and fully connected feed-forward
network of the encoder, the decoder has another extra layer,

the cross-attention layer over the output of the encoder. Given
the hidden states of the already generated k− 1 tokens Xk−1

d

(i.e., [x1
d,x

2
d, ...,x

k−1
d ]), the process to generate the k-th token

is as follows.
Similar to Equation 1 and Equation 2, the first step is

self-attention over the already generated tokens which can be
computed in Equation 4 and Equation 5.

ak
d(i) = WvX

k−1
d · softmax

((
Xk−1

d

)T
WT

k ·Wqx
k−1
d√

dx

)
(4)

ak
d = Wo[a

k
d(1);a

k
d(2); ...;a

k
d(h)] (5)

After that, the decoder has a unique layer (i.e., cross-
attention layer) that does not exist in the encoder. The cross-
attention layer is used to integrate the input information
and guide the generation process. The cross-attention is also
multi-head attention and the computation process is shown in
Equation 6 and Equation 7.

ak
c (i) = WvXe · softmax

(
XT

e W
T
k ·Wqa

k
d√

dx

)
(6)

ak
c = Wo[a

k
c (1);a

k
c (2); ...;a

k
c (h)] (7)

Similar to Equation 3 of the encoder, the cross attention
ak
c is passed to the fully connected feed-forward network to

obtain the output of the decoder. Since the decoder needs to
generate the token from the vocabulary, the output needs to be
resized to the size of the vocabulary, as shown in Equation 8.

xk
d = W ·

(
W2 · max(0,W1a

k
c + b1) + b2

)
(8)

W ∈ R|V |×dx is a trainable parameter, |V | is the size of
the vocabulary, and the output xk

d ∈ R|V |.
Finally, the likelihood of each token in the vocabulary

being chosen as the subsequent token will be computed,
which can be obtained by a softmax layer ensuring the sum
of probabilities is 1. The probability distribution across the
vocabulary is denoted by pk, where pk(i) represents the
probability of the ith token to be generated. The computation
of pk(i) is performed according to Equation 9.

pk(i) =
exp{xk

d(i)}∑|V |
j=1 exp{xk

d(j)}
(9)

Therefore, according to pk, the token with the highest
probability in the vocabulary will be selected as the kth token.

IV. EXPERIMENTAL SETUP

• RQ1: Overall effectiveness. How does MergeGen per-
form on generating merge conflict resolutions? We com-
pare the effectiveness of MergeGen on generating the
resolutions with the state-of-the-art techniques.

• RQ2: Multi-language effectiveness. How does Merge-
Gen perform for different languages? One advantage of



MergeGen is that it belongs to unstructured techniques
and can be applied to any programming languages.
Therefore, we evaluate the performance of MergeGen for
multiple languages to verify its generalization ability.

• RQ3: Ablation analysis and granularity analysis.
(1) RQ3.a: Ablation analysis. How does the proposed
merge conflict representation perform? We evaluate the
performance of the variant of MergeGen without the
representation to validate the benefits brought by it.
(2) RQ3.b: Granularity analysis. How does MergeGen
perform for coarse-grained conflicts? The existing state-
of-the-art technique MergeBERT can only be used at
token-level conflict, which is limited when the code has
large scale and the computation of token-level conflicts
are time-consuming.

• RQ4: Performance on new tokens. How effectively
does MergeGen perform on generating new tokens? The
ability to generate new tokens is one key advantage of
MergeGen against others, so we validate it in this RQ.

A. Dataset

We evaluate our proposed model on the well-constructed
multilingual dataset, which is established by the state-of-the-
art technique MergeBERT and has been used to evaluate
all the advanced techniques [24]. This dataset is collected
from more than 100,000 open source software repositories
and reserves the commits that have merge conflicts. For
each commit, it includes two conflict versions A and B, the
common base O, and the resolution of the developer M.
Following the common practice in deep learning [31], [32],
we randomly split the dataset of each programming language
into training/validation/testing set by an approximate ratio of
8:1:1.

B. Compared Techniques

We compare our technique with the SOTA merge conflict
resolution techniques, including the unstructured techniques,
the structured techniques, and the learning-based techniques.

Diff3 [15] algorithm is the default merge algorithm of
the version control system. As the unstructured techniques,
diff3 operates only according to the code text at line-level. It
identifies the conflicts where version A and version B modifies
the same places of their common ancestor O. Diff3 cannot
resolve the conflicts and require the intervention of developers.

JDIME [19] is a semi-structured technique which can only
be applied into Java. To reduce the time cost of structured
merge techniques, JDIME switches between structured and un-
structured techniques with auto-tuning. Structured techniques
are adopted when the conflicts are detected and unstructured
techniques are adopted when the conflicts are not detected.

jsFSTMerge [18] adds the grammar of JavaScript to the
semi-structured tool FSTMerge [17] to target at JavaScript.
It adds the syntax information to the model, including which
nodes can permute safely (e.g., method declarations) and the
order of which nodes cannot be changed (e.g., statements).

MergeBERT [24] is a learning-based technique and
achieves the state-of-the-art performance. This approach for-
mulates merge conflict generation as a classification task,
which defines nine patterns to interleave the inputs at token-
level (e.g., choosing O or concatenating B and A). Classifica-
tion has huge limitations in merge conflict generation, i.e., it
cannot generate flexible combinations of the input and cannot
generate new tokens.

C. Evaluation Metrics

Since the resolution is code, following the previous
works [23], [24], [33], [34], we regard the generated resolution
as correct only when it exactly matches the ground truth
resolution. For each conflict, we will choose the resolution
with the highest probability among those generated by the
models. We compute both precision and accuracy of the
string match. Accuracy is the percentage of the conflicts for
which the model can generate the exactly-matched resolutions
among all the conflicts. Since the generated resolutions might
not meet the grammar constraints of the languages, we also
compute precision, which is the percentage of the correctly-
resolved conflicts among the conflicts for which the model
can generate the syntactically-valid resolutions. Accuracy can
reflect the real performance, since it concern the performance
on the whole dataset.

D. Implementation

Representation. Following the previous works [23], [24],
MergeGen leverages the command git merge provided by
git to obtain the conflicts at token-level of the three versions
O, A, and B. Since git merge can only operate at line-
level, we put each token at one single line, and execute the
command to obtain the conflicts at token-level.

Model. MergeGen is established on the base of the pre-
trained model CodeT5. Since the SOTA technique Merge-
BERT adopts the small version of the pre-trained model
CodeBERT 1 with 84M parameters, to make the comparison
fair, we also leverage CodeT5-small 2 with 60M parame-
ters [27], which are even smaller than MergeBERT-small.
CodeT5 consists of 6 encoder layers and 6 decoder layers, and
the hidden state size of 512. The vocabulary size is 32,102,
consisting of two newly-added structure-related words (i.e.,
⟨boc⟩ and ⟨eoc⟩, and we use the separator of CodeT5 as
⟨soc⟩) and 32,100 words from the original vocabulary. The
length of the input sequence (including the conflict regions
of the three versions and the surrounding context) is limited
to 500 BPE tokens and the output resolution is limited to
200 BPE tokens. In the fine-tuning phase, we leverage the
AdamW optimizer [35] with the learning rate of 0.0001 and
the batch size of 210. We tune the hyper-parameters and select
the best performing model in the validation set. The training
time ranges from 0.5 to 4.5 hours for different languages. In
the inference phase, we set the beam size of the generation as 3
and choose the top-1 output with the highest probability. After

1https://huggingface.co/huggingface/CodeBERTa-small-v1
2https://huggingface.co/Salesforce/codet5-small



that, following the existing work [24], we leverage tree-sitter 3

parser to check whether the output satisfies the syntax of that
language. Only when it meets the syntax, we will regard it as
the resolution candidate, otherwise, we will think MergeGen
cannot generate a valid resolution for the conflict.

Environment. The experiments are carried out on a worksta-
tion that is equipped with a 56-core CPU and 190G memory.
When fine-tuning the models, we leverage six 24G GPUs of
GeForce RTX 3090.

V. RESULTS AND ANALYSIS

In this section, we first present the overall performance of
MergeGen from precision and accuracy (RQ1) in Section V-A,
the results for different languages (RQ2) in Section V-B,
ablation study and granularity analysis (RQ3) in Section V-C,
and the performance on new tokens in Section V-D.

A. RQ1: Overall Effectiveness

TABLE I: Overall performance of merge conflict generation
of MergeGen and the compared techniques on Java

Model Precision Accuracy

diff3 85.5 2.2
JDIME [19] 26.3 21.6
MergeBERT [24] 63.9 63.2

MergeGen (our tool) 69.2 67.7

In this research question, we compare the performance of
MergeGen and other techniques. In Table I, we present the
precision and accuracy of the resolutions generated by differ-
ent techniques. The compared techniques include diff3, the
state-of-the-art technique MergeBERT [24], and the state-of-
the-art semi-structured technique on Java, i.e., JDIME [19].

As we can see in Table I, MergeGen achieves the best
performance among the compared techniques, and the im-
provements of precision and accuracy towards the SOTA
technique MergeBERT are 8.3% and 7.1%, proving the ef-
fectiveness of MergeGen. The accuracy of MergeGen is close
to the precision, which indicates that MergeGen can produce
syntactically-correct and valid resolutions for most cases.

Our results contradict the statements in MergeBERT, which
claims that the generative models are not applicable to the
conflict resolution tasks and the naturalness hypothesis of
code [36] is not enough to understand the intentions of
developers when merging programs. In fact, the code-related
language models are pre-trained through auto-regressive tasks
to generate tokens of code one by one (e.g., CodeGPT [28]
and CodeT5 [27]). Therefore, the pre-trained models have the
strong ability to understand and generate the programs [26]–
[28]. In addition, in the merge conflict resolution task, many
code snippets in the resolution are from the input, and it is
simple for pre-trained models to directly generate the code
which exists in the input. The better performance of MergeGen
shows that there is no need to design patterns to combine the

3https://tree-sitter.github.io/tree-sitter

inputs and the generative models can learn how to generate
the tokens of input which needs to be put in the resolutions.

MergeBERT formulates the conflict resolution task to a
classification task, and for a line-level conflict consisting
of several token-level conflicts, MergeBERT resolves each
small conflict independently and cannot refer to other small
conflicts. It assumes that the resolving processes for the token-
level conflicts are independent, which is incorrect because
they belong to one line-level conflict. By contrast, MergeGen
puts all small conflicts together and generate the resolutions
for them at a time, which regards resolving several relevant
conflicts as an overall problem.

JDIME is one semi-structured conflict resolution tool. The
semi-structured approaches leverage the language-specific fea-
tures, so they can be only applied to the targeted language.
From Table I, we can notice that JDIME performs much
worse than the learning-based techniques MergeBERT and
MergeGen. The precision and accuracy of JDIME is only
26.3% and 21.6%. This is because the structured techniques
can only deal with some simple cases, which are conflicts
from text, but not conflicts from syntax, such as the order of
functions. They cannot resolve the real conflicts and combine
the input to obtain a resolution.

As for diff3, the precision is really high (i.e., 85.5%), but
the accuracy is too low (i.e., 2.2%). This is natural because
diff3 cannot resolve conflicts, and it can only merge the
changes which don’t modify the same location of the base
version. Therefore, it cannot produce valid resolutions for most
conflicts, so the accuracy is low. For thousands of conflicts, it
can only generate valid resolutions for 140 of them.

B. RQ2: Multi-language effectiveness

TABLE II: Performance of MergeGen and the state-of-the-art
techniques on different languages

Language Model Precision Accuracy

Java
MergeBERT 63.9 63.2
JDIME 26.3 21.6
MergeGen 69.2 67.7

C# MergeBERT 68.7 67.3
MergeGen 75.4 73.8

JavaScript
MergeBERT 66.9 65.6
jsFSTMerge 15.8 3.6
MergeGen 70.9 68.3

MergeGen is not targeted at certain specific programming
languages, and it does not require the language information
like the structured tools. Therefore, MergeGen is applicable
to any language and has a good generalization ability. In
this research question, besides Java, we evaluate MergeGen
on another two languages, that is, JavaScript and C#. The
two languages are dynamically-typed and statically-typed lan-
guages respectively. In Table II, we present the precision
and accuracy of MergeGen and the existing state-of-the-art
technique MergeBERT. Besides, we present the state-of-the-
art semi-structured techniques JDIME and jsFSTMerge, which
are designed to target at Java and JavaScript respectively.



According to the table, MergeGen achieves better perfor-
mance than MergeBERT for each language. The improvements
of precision for Java, C#, and JavaScript are 8.3%, 9.8%,
and 6.0% respectively; and the improvements of accuracy
for the three languages are 7.1%, 9.7%, and 4.1% respec-
tively. Among these languages, Java and C# are statically-
typed languages, which require the variables to be declared
explicitly, while JavaScript is one dynamically-typed language,
whose variables are inferred according to the value assigned to
them. Therefore, the dynamically-typed languages have more
flexible syntax, and are more error-prone at the same time. The
structured and semi-structured merge techniques depend on the
syntax so it is more challenging for them to match and merge
at the abstract syntax tree (AST)-level on dynamically-typed
languages. We can notice that the semi-structured technique js-
FSTMerge performs poorly on JavaScript, which is consistent
with the previous work [18], [24].

By contrast, MergeGen performs well on both dynamically-
typed languages and statically-typed languages uniformly,
reflecting the applicability the MergeGen on both types of
languages. Since MergeGen treats the input as a sequence of
tokens, it is not influenced by the type of the languages.

C. RQ3: Ablation Study and Granularity Analysis

TABLE III: Performance of MergeGen and the variant remov-
ing the merge representation

Model Precision Accuracy

MergeBERT (token-level) 63.9 63.2
MergeGenrepr−(line-level) 68.9 66.8

MergeGen (token-level) 69.2 67.7

1) RQ3.a-Ablation Study: In this section, we conduct an
ablation study to investigate the effectiveness of the component
of MergeGen. The major component of MergeGen is the
structural and fine-grained conflict-aware representation for the
merge conflict. To verify the benefits brought by it, we propose
a variant of MergeGen, i.e., MergeGenrepr−, by removing
the merge representation. We remove the structural tokens
enclosing the conflict region, and remove the separators that
separate the conflict regions of three versions. Instead, we
directly concatenate the code of base version O, and two
conflict versions A and B. This representation can also be
seen as the line-level conflicts, which simply put the coarse-
grained conflict regions returned by git merge at line-level
together. Then, we feed the line-level conflicts to MergeGen
and the results are shown in Table III.

According to the table, both the precision and the accuracy
decline without the merge representation, which is 68.9% and
66.8%, respectively. The performance on the more important
metric, i.e., accuracy, declines more. This can indicate that
the proposed merge representation is effective for producing
resolutions for conflicts. Without the merge representation, the
model has to identify the fine-grained conflict regions by itself
and align the corresponding conflict regions of three versions,

which is challenging especially when there are multiple finer-
grained conflicts in one coarse-grained conflict and there are
few common tokens as anchors to align the three versions. By
contrast, with the merge representation, the conflicts are en-
closed and marked explicitly with specially-defined structural
tokens. In addition, the tokens of three versions are aligned and
put together, using the separators to separate them. Through
this representation, the models can directly generate the code
which is not in conflict, and pay more attention to the conflict
regions.

Resolution:
IndexShard ref = IndexShard.createPrimary(indexShard);
assert addShardReference(ref, ref.routingEntry());
return ref;

Resolution of MergeGenrepr−:
IndexShard ref = new IndexShard(indexShard);
assert addShardReference(ref, ref.routingEntry());
return ref;

------version	𝓐------
IndexShard ref = new IndexShard(indexShard, true);
assert addShardReference(ref, ref.routingEntry());
return ref;

------version	𝒪−−−−−−
return new IndexShard(indexShard, true);

------versionℬ−−−−−−
return IndexShard.createPrimary(indexShard);

Fig. 5: The real case where MergeGenrepr− produces resolu-
tion with poorer quality than MergeGen

We further look into one real case in our dataset where
MergeGenrepr− generates a wrong resolution, but MergeGen
can generate the correct one, shown in Fig. 5. In the figure, we
present the code from O, A and B, the ground truth resolution
written by the developer and the resolution generated by
MergeGenrepr−. We highlight the wrongly-generated tokens
in italics, and MergeGenrepr− wrongly chooses the version of
A, i.e., retaining new and omitting createOnPrimary. The
code of three versions is concatenated simply, so the model has
to identify the conflicts and align the corresponding conflicts of
three versions by itself. In this case, MergeGenrepr− wrongly
aligns the keyword return of the three versions and thinks
that the first sentence of A is not in conflict so that wrongly
generates the contents of this sentence. We show our proposed
structural representation of merge conflict of this case in
Fig. 6. In this representation, the conflicts are aligned correctly,
which can help the model focus on the conflicts and produce
flexible combinations of the tokens. Since A does not modify
the keyword new and B removes new, the developer tends
to remove new. MergeGen can generate the resolution that
exactly matches the ground truth.

2) RQ3.b-Granularity Analysis: MergeGenrepr− can not
only be regarded as the ablation model of MergeGen, but also
be regarded as the line-level implementation of MergeGen,
since the concatenation of O, A, and B is just the combination
of the conflicts of three versions at line-level returned by git
merge. From Table III, MergeGenrepr− still performs better
than MergeBERT.



<boc, beginning of conflict>
IndexShard ref = new

<soc, separator of conflict>
return new

<soc, separator of conflict>
return

<eoc, ending of conflict>

<bos, beginning of sequence>

…

IndexShard.createPrimary(
indexShard);
assert addShard(ref, ref. 
routingEntry());
return ref;

<eos, ending of sequence>

Fig. 6: The proposed merge conflict representation of the case
in Fig. 5

The line-level conflicts are coarse-grained, and one
line-level conflict might consist of several finer-grained
token-level conflicts. Although fine-grained conflicts are
more concrete and accurate, and can generally produce
more accurate resolutions, it suffers from limitations in
some cases. First, when the conflict size is huge and
the diff3 algorithm at token-level is time-consuming,
the token-level approach is not applicable. Secondly,
the resolution at token-level might be incorrect, for
example, given O = core.workflow.TlsContext,
A = core.workflow.chooser.Chooser, B =
core.state.TlsContext. The resolution at token-level
is core.state.chooser.Chooser and incorrect, while
the correct one should be the concatenation of A and B.

The existing SOTA technique MergeBERT leverages clas-
sification to select a combination pattern to combine the
resolutions of conflicts. Therefore, the resolutions they can
generate rely on the granularity of the conflicts. If MergeBERT
is applied at line-level, it can only generate the combinations
of the lines. By contrast, since MergeGen produces resolutions
through generation, the flexibility of the resolutions it can
generate will not be influenced by the granularity of the
input. The effect of finer-grained representation is to make the
models know which parts are the real conflicts and important,
and focus on producing resolutions for them.

MergeGenrepr− is the line-level version of MergeGen, i.e.,
leveraging the conflicts of O, A, B at line-level. It performs
still better than MergeBERT, reflecting that MergeGen can
achieve good performance at both line-level and token-level,
and are not limited by the granularity of the input. In other
words, MergeGen has high tolerance to coarse-grained con-
flicts. However, MergeBERT can only operate on token-level.

D. RQ4: Effectiveness on Generating New Tokens

When resolving the conflicts, the developers will not only
adopt the existing tokens of the conflicts, but also create
new tokens, such as invoking a new function to combine the
contents of both versions. None of the previous approaches

can produce the resolutions containing new tokens, but since
MergeGen is a generative model, it can definitely generate new
tokens. In this research question, we evaluate the effectiveness
of MergeGen in generating new tokens. We choose data from
the test set in which the ground truth resolutions include
new tokens that are not present in conflicts. This subset of
data constitutes an average of 6.5% of the total dataset for
each language. Subsequently, we compute the precision and
accuracy of the resolutions produced by MergeGen for this
subset. For comparison, we also assess the precision and
accuracy of data with resolutions that do not incorporate any
new tokens.

The average precision and accuracy achieved by MergeGen
in each language are 34.5% and 33.7%, respectively, for the
subset containing new tokens. For comparison, the precision
and accuracy for the subset containing no new tokens are
74.5% and 72.4%, respectively. The performance of generating
resolutions containing new tokens is not as good as generating
those containing only existing tokens. This is reasonable be-
cause the vocabulary of new tokens is really large and generat-
ing the correct new tokens is more difficult than generating the
tokens from the little vocabulary of existing tokens in conflicts.
Even so, MergeGen outperforms the existing classification-
based techniques, which cannot generate any new tokens.

VI. DISCUSSION

A. Threats to Validity

Threats to internal validity mainly lie in the implementation
of MergeGen. To reduce the threat, we build our model based
on existing mature and widely-used tools/libraries. Our model
is established on the basis of the CodeT5 API provided by
HuggingFace 4. The APIs of pre-trained models provided by
HuggingFace are the most popular in NLP community and
are widely used by researchers and developers [24], [37]. In
addition, we use the most widely-used tool git merge to
obtain the conflicts. We also use the popular code parser tool
tree-sitter to judge whether the generated resolution satisfies
the syntax. Moreover, the first two authors have checked
the implementation carefully. Threats to external validity
mainly lie in the dataset we use to evaluate MergeGen and
the compared techniques. To migrate the threat, we utilize
the well-established multilingual benchmark, which has been
constructed on the open source projects [24]. Furthermore, we
follow the common practice in deep learning [31], [32] to split
the dataset and conduct a comprehensive evaluation including
multi-language evaluation, ablation study, granularity analysis,
and analysis on new tokens. Nonetheless, threats in terms
of practicality and realism persist in the evaluation process,
i.e., we do not split the dataset following the development
timeline. Threats to construct validity mainly lie in the eval-
uation metrics. To reduce the threat, we follow the previous
works [23], [24] to use precision and accuracy to evaluate
the effectiveness of MergeGen. In addition, following them,
we regard the output as a candidate only when it passes the

4https://github.com/huggingface/transformers



syntactic check. Furthermore, following the previous works
about code generation [33], [34], we regard the generated
program correct only when it exactly matches the ground truth.

B. Limitations

This section introduces the limitations of MergeGen. First,
because of the limitation of computing resources, we set
a maximal length to the conflicts and resolutions, and the
parts exceeding the limit will be discarded. Therefore, the
effectiveness of MergeGen will be influenced when dealing
with too long code, which is a common limitation of learning-
based techniques. The length limit we set can occupy 95% of
the data in our dataset, and with enough resources MergeGen
can process any length of the code in theory. Although the fine-
tuning process requires many computing resources, a common
issue among deep learning models including MergeBERT,
MergeGen can operate efficiently after being fine-tuned once.
Second, although MergeGen has the ability to generate new
tokens which do not exist in the input, it is challenging to
deal with the case where the developers write the new words
with no connection to the context. Third, MergeGen will have
limited performance when there is no sufficient information
to judge which version should be selected. For example, O is
int a = 0, A is int a = 1, and B is int a = -1. No
evidence can be leveraged to make the judgement, and more
context is required.

VII. RELATED WORK

Recently, a growing number of people of the software
development community become interested in merge conflict
resolution. Researchers and developers realize the importance
of effective conflict resolution techniques in promoting col-
laborative software development and improving efficiency.
To reduce the efforts of developers to resolve the conflicts,
researchers have proposed various techniques to automatically
generate resolutions for the merge conflicts. The conflict res-
olution and merge techniques can be mainly divided into four
categories, unstructured merge techniques, structured merge
techniques, semi-structured techniques, and the state-of-the-
art learning-based techniques.

Unstructured Techniques. Unstructured merge techniques
operate only according to code text, and do not consider
the syntax and the structure information of the programming
languages. The merge algorithm adopted in the version control
system such as git is just unstructured merge technique,
i.e., diff3 algorithm. diff3 identifies the conflicts where
version A and version B modifies the same places of their
common ancestor O. Since diff3 has no priori knowledge,
they cannot resolve the conflicts and the developers have to
intervene the resolution process. Despite the poor conflict
resolution ability, the unstructured merge techniques have a
strong generalization ability and can be applied into any
languages, since the techniques operate only based on text.
Therefore, the model version control systems leverage the
unstructured merge technique, i.e., diff3 algorithm.

Structured Techniques. Structured merge techniques rep-
resent the programs as trees or graphs (e.g., abstract syntax
trees, AST), which can improve the precision compared to
the unstructured techniques. They conduct tree match and
tree merge to merge the conflicts. In addition, the structured
merge techniques integrate the information of the specific
language, such as the syntax of that language. For example,
the information about the program elements whose order can
be changed (e.g., the function declaration) is effective in
merging many conflicts [17], [19]. Westfechtel et al. [38]
and Buffenbarger et al. [20] leverage the context-free and
context-sensitive information during the process of merging
the conflicts. Researchers have proposed various approaches
based on comparison and merge of structure towards specific
languages, such as Java [21] and C++ [22]. The limitations
of structured techniques are obvious, i.e., they require the
knowledge of the specific language and have poor generaliza-
tion ability [17], [19]. In addition, the matching and merging
on the tree and graph is time-consuming, which has high
computational complexity because of catching the renamings
and shifted code [11].

Semi-structured Techniques. To leverage the precision
of structured merge techniques and utilize the generalization
ability and efficiency of unstructured merge techniques, re-
searchers have proposed semi-structured techniques to find a
balance between them. Apel et al. [17] propose FSTMerge,
which is based on structured approaches and increases the gen-
eralization ability. It allows the users to add the syntax of new
language to help resolve the conflicts of that language. Tavares
et al. [18] adds the grammar of JavaScript to FSTMerge
and obtains jsFSTMerge which can solve the conflicts of
JavaScript. Apel et al. [19] propose to select between unstruc-
tured and structured merge techniques dynamically. Structured
techniques are adopted when the conflicts are detected and
unstructured techniques are adopted when the conflicts are
not detected. Leßenich et al. [11] find that the structured
merge has high computational complexity, and employs a
lookahead mechanism to reduce the cost of structured merge.
Previous studies find that although semi-structured techniques
can reduce the number of detected conflicts [17], [39], they
will neglect some conflicts and cause false negatives [9].

Learning-based Techniques. More recently, with the
promising achievements of deep learning techniques in code-
related tasks [32], [33], [40], researchers also adopt deep
neural networks to merge conflict resolution task and propose
the learning-based approaches [23], [24], which achieve the
state-of-the-art performance. The learning-based techniques
only leverage the text of conflicts and can also be regarded
as unstructured techniques. Despite operating only based on
text, the learning-based techniques have a better ability to
resolve the conflicts, because they have mastered the common
pattern of how to resolve by learning from the history conflict-
resolution pairs. Existing learning-based techniques leverage
classification to resolve conflicts. They focus on leveraging
the existing contents of three input versions O, A, and B, so
they put forward different approaches to combine the code



of three versions. DeepMerge [23] is the first leaning-based
technique, which adopts and combines the inputs at line-level.
Another learning-based technique MergeBERT [24] designs
several patterns to combine the inputs at token-level. Although
achieving not bad performance, the existing learning-based
techniques are limited because of leveraging classification
to generate resolutions. They cannot generate new tokens or
produce flexible combinations, and have a wrong hypothesis
that fine-grained conflicts of one single coarse-grained conflict
are independent.

VIII. CONCLUSION

In this work, we propose an automatic merge conflict res-
olution technique, MergeGen. Different from previous works,
MergeGen produces the resolutions through generation, in-
stead of classification. Generation has great advantages to-
wards classification, that is, it can not only generate the exist-
ing tokens of the input similar to classification, but also gen-
erate new tokens and more flexible combinations. MergeGen
first represents the merge conflicts through a structural and
fine-grained conflict-aware representation, and then leverages
the encoder-decoder-based generative model to produce the
resolutions token by token. Through the extensive evaluation,
MergeGen achieves the state-of-the-art performance on all
studied languages. The ablation study verifies the effectiveness
of the proposed representation, and the granularity analysis
reveals the tolerance to coarse-grained conflicts. Moreover, the
analysis on generating new tokens further prove the advance
of generative models.
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