Confidential

c PeckShield

SMART CONTRACT AUDIT REPORT

for

DODO

Prepared By: Shuxiao Wang

Hangzhou, China
July 10, 2020

1/40 PeckShield Audit Report #: 2020-16

sxwang@peckshield.com

Confidential

Document Properties

Client DODO

Title Smart Contract Audit Report

Target DODO

Version 1.0

Author Xuxian Jiang

Auditors Huaguo Shi, Xuxian Jiang

FEVENEG RO Xuxian Jiang

AVOI NGRS Xuxian Jiang

Classification e lilsENEl

Version Info

Version Date Author(s) Description

1.0 July 10, 2020 | Xuxian Jiang | Final Release

1.0-rcl | July 8, 2020 | Xuxian Jiang | Additional Findings #3

0.2 July 2, 2020 | Xuxian Jiang | Additional Findings #2

0.1 June 30, 2020 | Xuxian Jiang | First Release #1
Contact

For more information about this document and its contents, please contact PeckShield Inc.

Shuxiao Wang

+86 173 6454 5338

contact@peckshield.com

2/40

PeckShield Audit Report #: 2020-16

Confidential

Contents
1 Introduction 5
1.1 About DODO e 5
1.2 About PeckShield 6
1.3 Methodology e 6
1.4 Disclaimer e 8
2 Findings 10
2.1 Summary . ..o 10
22 Key Findings 11
3 Detailed Results 12
3.1 Non-ERC20-Compliant DODOLpTokens 12
3.2 Improved Precision Calculation in DODOMath 13
3.3 Improved Precision Calculation #2 in DODOMath 15
3.4 approve()/transferFrom() Race Condition 17
3.5 Better Handling of Privilege Transfers 18
3.6 Centralized Governance 20
3.7 Possible Integer Overflow in sqrt() 21
3.8 Redundant State Checks 22
3.9 Contract Verification in breedDODO() 23
3.10 Balance Inconsistency With Deflationary Tokens 25
3.11 Aggregated Transfer of Maintainer Fees 26
3.12 Misleading Embedded Code Comments 28
3.13 Missing DODO Validation in DODOEthProxy 29
3.14 Other Suggestions 30
4 Conclusion 32
5 Appendix 33
5.1 Basic Coding Bugs. 33

3/40 PeckShield Audit Report #: 2020-16

Confidential

5.1.1 Constructor Mismatch 33
5.1.2 Ownership Takeover 33
5.1.3 Redundant Fallback Function, 33
5.1.4 Overflows & Underflows 33
515 Reentrancy 34
5.1.6 Money-Giving Bug 34
5.1.7 Blackhole 34
5.1.8 Unauthorized Self-Destruct 34
51.9 Revert DoS 34
5.1.10 Unchecked External Call 35
5.1.11 Gasless Send 35
5.1.12 Send Instead Of Transfer 35
5.1.13 Costly Loop 35
5.1.14 (Unsafe) Use Of Untrusted Libraries 35
5.1.15 (Unsafe) Use Of Predictable Variables 36
5.1.16 Transaction Ordering Dependence 36
5.1.17 Deprecated Uses 36

5.2 Semantic Consistency Checks 36
5.3 Additional Recommendations 36
5.3.1 Avoid Use of Variadic Byte Array 36
5.3.2 Make Visibility Level Explicit 37
5.3.3 Make Type Inference Explicit 37
5.3.4 Adhere To Function Declaration Strictly 37
References 38

4/40

PeckShield Audit Report #: 2020-16

Confidential

1 Introduction

Given the opportunity to review the DODO design document and related smart contract source code,
we in the report outline our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence

of several issues related to either security or performance. This document outlines our audit results.

1.1 About DODO

DODO is an innovative, next-generation on-chain liquidity provision solution. It is purely driven by a
so-called Proactive Market Market or PMM algorithm that outperforms current popular Automatic
Market Maker of AMM algorithms. In particular, it recognizes main drawbacks of current AMM
algorithms (especially in provisioning unstable portfolios and having relatively low funding utilization
rates), and accordingly proposes an algorithm that imitates human market makers to bring sufficient
on-chain liquidity. Assuming a timely market price feed, the algorithm proactively adjusts trading
prices around the feed, hence better providing on-chain liquidity and protecting liquidity providers’
portfolios (by avoiding unnecessary loss to arbitrageurs). DODO advances the current DEX frontline
and is considered an indeed innovation in the rapidly-evolving DeFi ecosystem.
The basic information of DODO is as follows:

Table 1.1: Basic Information of DODO

Item Description

Issuer | DODO

Website | https://github.com/radar-bear/dodo-smart-contract
Type | Ethereum Smart Contract

Platform | Solidity

Audit Method | Whitebox
Latest Audit Report | July 10, 2020

5/40 PeckShield Audit Report #: 2020-16

Confidential

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit. As mentioned earlier, DODO assumes a trusted oracle with timely market price feeds and
the oracle itself is not part of this audit.

e https://github.com/radar-bear/dodo-smart-contract (d749640)

1.2 About PeckShield

PeckShield Inc. [21] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High High
s
8 Medium
£
Low
High Medium Low
Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [16]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/40 PeckShield Audit Report #: 2020-16

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

7/40

PeckShield Audit Report #: 2020-16

Confidential

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [15], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit cannot be considered comprehensive, we always recommend
proceeding with several independent audits and a public bug bounty program to ensure the security
of smart contract(s). Last but not least, this security audit should not be used as an investment

advice.

8/40 PeckShield Audit Report #: 2020-16

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category
Configuration

Summary
Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/40

PeckShield Audit Report #: 2020-16

Confidential

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the DODO implementation. During the first
phase of our audit, we studied the smart contract source code and ran our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover

possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

|| N[O | O

Informational
Total 13

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/40 PeckShield Audit Report #: 2020-16

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can

be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity

vulnerability, 6 low-severity vulnerabilities, and 5 informational recommendations.

Table 2.1: Key Audit Findings
ID Severity Title Category Status |
PVE-001 Low Non-ERC20-Compliant DODOLpTokens Coding Practices Fixed
PVE-002 Low Improved Precision Calculation in DODOMath Numeric Errors Fixed
PVE-003 Low Improved Precision Calculation #2 in DODOMath | Numeric Errors Fixed
PVE-004 Low approve()/transferFrom() Race Condition Time and State | Confirmed
PVE-005 Info. Better Handling of Ownership Transfer Security Features Fixed
PVE-006 Info. Centralized Governance Security Features | Confirmed
PVE-007 Low Possible Integer Overflow in sqrt() Numeric Errors Fixed
PVE-008 Info. Redundant State Checks Security Features | Confirmed
PVE-009 Info. Contract Verification in breedDODO() Security Features | Confirmed
PVE-010 | Medium | Balance Inconsistency With Deflationary Tokens Time and State Fixed
PVE-011 Low Aggregated Transfer of Maintainer Fees Time and State | Confirmed
PVE-012 Info. Misleading Embedded Code Comments Coding Practices Fixed
PVE-013 | Medium | Missing DODO Validation in DODOEthProxy Coding Practices Fixed

Please refer to Section 3 for details.

11/40

PeckShield Audit Report #: 2020-16

20
21
22
23
24
25
26
27
28

Confidential

3 Detailed Results

3.1 Non-ERC20-Compliant DODOLpTokens

e |D: PVE-001 e Target: DODOLpToken
e Severity: Low e Category: Coding Practices [13]
o Likelihood: Low e CWE subcategory: CWE-1099 [3]

Impact: Low

Description

To tokenize the assets in a liquidity pool and reflect a liquidity provider's share in the pool, DODO
provides DODOLpToken, an ERC20-based contract with additional functionalities for managed mint and
burn. Specifically, the DoDOLpToken tokens will be accordingly issued to (or burned from) a liquidity
provider upon each deposit (or withdrawal).

contract DODOLpToken is Ownable {
using SafeMath for uint256;

uint256 public totalSupply;
mapping (address => uint256) internal balances;
mapping (address => mapping(address => uint256)) internal allowed;

Listing 3.1: contracts /impl/DODOLpToken.sol

We notice that current implementation of DODOLpToken lacks a few standard fields, i.e., name,
symbol and decimals. The lack of these standard fields leads to non-compliance of ERC20 and may
cause unnecessary confusions in naming, inspecting, and transferring these tokenized share. An
improvement is possible by either initializing these fields as hard-coded constants in the DODOLpToken
contract or directly associated with the respective baseToken/quoteToken. Note all token-pairs or

exchanges in DODO might share the same name and symbol — a similar approach has been taken

12/40 PeckShield Audit Report #: 2020-16

113
114
115
116
117
118

Confidential

by Uniswap and no major issues have been observed in the wild. However, it is better to have unique
name Of symbol that can be associated with the pairing baseToken and quoteToken.

In addition, for the burn() routine, there is a burn event to indicate the reduction of totalSupply.
It is also meaningful to generate a second event that indicates a transfer to 0 address.

function burn(address user, uint256 value) external onlyOwner {
balances[user] = balances[user].sub(value);
totalSupply = totalSupply.sub(value);
emit Burn(user, value);
emit Transfer(user, address(0), value); // <-- Currently missing

Listing 3.2: contracts /impl/DODOLpToken.sol

Recommendation It is strongly suggested to follow the standard ERC20 convention and define

missing fields, including name, symbol and decimals.

3.2 Improved Precision Calculation in DODOMath

e |ID: PVE-002 e Target: DODOMath

e Severity: Low e Category: Numeric Errors [14]
e Likelihood: Medium e CWE subcategory: CWE-190 [5]
e Impact: Low

Description

According to the DODO's PMM algorithm, its unique price curve is continuous but with two distinct
segments and three different operating states: ROne, RAbove, and RBelow. The first state Rone reflects
the expected state of being balanced between baseToken and quoteToken assets and its trading price
is well aligned with current market price; The second state Rabove reflects the state of having more
balance of quoteToken than expected and there is a need to attempt to sell more quoteToken to bring
the state back to Rone; The third state RBelow on the contrary reflects the state of having more
balance of baseToken than expected and there is a need to attempt to sell more baseToken to bring
the state back to Rone.

The transition among these three states is triggered by users’ trading behavior (especially the
trading amount) and also affected by real-time market price feed. Naturally, the transition re-
quires complex computation (implemented in DoDOMatch). In particular, DoDOMatch has three opera-
tions: one specific integration and two other quadratic solutions. The integration computation, i.e.,
_GeneralIntegrate(), is used in Rone and RAbove to calculate the expected exchange of quoteToken for

the trading baseToken amount. The quadratic solution _SolveQuadraticFunctionForTrade() is used in

13/40 PeckShield Audit Report #: 2020-16

30
31
32
33
34
35
36
37
38
39
40

41
42

105
106
107
108
109
110
111
112
113
114
115
116

Confidential

ROne and RBelow for the very same purpose. Another quadratic solution _SolveQuadraticFunctionForTarget

(O is instead used in RAbove and RBelow to calculate required token-pair amounts if we want to bring

the state back to Rone.

Note that the lack of f1oat support in solidity makes the above calculations unusually compli-

cated. And _GeneralIntegrate() can be further improved as current calculation may lead to possible

precision loss. Specifically, as shown in lines 38 —39 (see the code snippet below), vovi = DecimalMath

.divCeil (VO, V1)

; and vov2 = DecimalMath.divCeil (VO, V2).

function _ Generallntegrate(
uint256 VO,
uint256 V1,
uint256 V2,
uint256 i,
uint256 k
) internal pure returns (uint256) {
uint256 fairAmount = DecimalMath.mul(i, V1.sub(V2)); // ixdelta
uint256 VOV1 = DecimalMath.divCeil (VO, V1); // VO/V1
uint256 VOV2 = DecimalMath.divCeil (VO, V2); // V0/V2
uint256 penalty = DecimalMath.mul(DecimalMath.mul(k, VOV1), VOV2); // k(vV0o~2/Vi/
v2)

return

For improved

DecimalMath . mul (fairAmount, DecimalMath.ONE.sub(k).add(penalty));

Listing 3.3: contracts /impl/DODOMath.sol

precision, it is better to calculate the multiplication before the division, i.e., vovoviv2

= DecimalMath.divCeil (DecimalMath.divCeil (DecimalMath.mul (VO, VO), V1), V2);.

There is another similar issue in the calculation of _SolveQuadraticFunctionForTarget() (line 111)

that can also benefit from the above calculation with improved precision: uint256 sqrt = DecimalMath.

divCeil (DecimalMath.mul (k, fairAmount).mul(4), V1). Note if there is a rounding issue, it is preferable

to allow the calculation lean towards the liquidity pool to ensure DODO is balanced. Therefore, our

calculation also replaces divFloor with divceil for the very same reason.

function _SolveQuadraticFunctionForTarget (

uint256

uint256

uint256
) internal

// VO =

uint256
sqrt =
uint256

V1,

k,

fairAmount

pure returns (uint256 V0) {

Vi+Vix(sqrt-1) /2k

sqrt = DecimalMath.divFloor(DecimalMath.mul(k, fairAmount), V1).mul(4);
sqrt .add (DecimalMath .ONE) . mul (DecimalMath .ONE) . sqrt () ;

premium = DecimalMath. divFloor(sqrt.sub(DecimalMath.ONE), k.mul(2));

// VO is greater than or equal to V1 according to the solution

return

DecimalMath . mul(V1l, DecimalMath.ONE. add(premium));

Listing 3.4: contracts /impl/DODOMath.sol

Recommendation Revise the above calculations to better mitigate possible precision loss.

14/40

PeckShield Audit Report #: 2020-16

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

83
84
85
86
87
88

Confidential

3.3 Improved Precision Calculation #2 in DODOMath

e |ID: PVE-003 e Target: DODOMath
e Severity: Low e Category: Numeric Errors [14]
o Likelihood: Medium e CWE subcategory: CWE-190 [5]

e Impact: Low

Description

In previous Section 3.2, we examine a particular precision issue. In this section, we examine another
related precision issue. As mentioned earlier, the DODO's PMM algorithm operates in its continu-
ous price curve with two distinct segments and three different states (aka scenarios): RoOne, Rabove,
and RBelow. Accordingly, the DoDoMatch contract implements three operations: one specific integra-
tion (_GeneralIntegrate()) and two other quadratic solutions (_SolveQuadraticFunctionForTrade() and
_SolveQuadraticFunctionForTrade ()) .

function _SolveQuadraticFunctionForTrade(
uint256 QO,
uint256 Q1,
uint256 ideltaB ,
bool deltaBSig,
uint256 k
) internal pure returns (uint256) {
// calculate -b value and sig
// -b = (1-k)Q1-kQ0~2/Ql+i*deltaB
uint256 kQ02Q1 = DecimalMath.mul(k, Q0).mul(Q0).div(Q1l); // kQ0-2/Q1
uint256 b = DecimalMath.mul(DecimalMath .ONE.sub(k), Q1); // (1-k)Q1
bool minusbSig = true;
if (deltaBSig) {
b = b.add(ideltaB); // (1-k)Ql+ixdeltaB
} else {
kQ02Q1 = kQO02Ql.add(ideltaB); // -i*(-deltaB)-kQ0~2/Q1
ks
if (b >= kQ02Q1) {
b = b.sub(kQ02Q1);

minusbSig = true;
} else {

b = kQ02Q1.sub(b);

minusbSig = false;

// calculate sqrt
uint256 squareRoot = DecimalMath.mul(
DecimalMath .ONE. sub (k). mul(4),
DecimalMath . mul(k, QO0).mul(QO0)
); // 4(1-k)kQ0~2
squareRoot = b.mul(b).add(squareRoot).sqrt(); // sqrt(bxb-4(1-k)kQ0*Q0)

15/40 PeckShield Audit Report #: 2020-16

90
91
92
93
94
95
96

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

Confidential

// final res
uint256 denominator = DecimalMath.ONE.sub(k).mul(2); // 2(1-k)
if (minusbSig) {

return DecimalMath.divFloor(b.add(squareRoot), denominator);

} else {

return DecimalMath.divFloor(squareRoot.sub(b), denominator);

}

Listing 3.5: contracts /impl/DODOMath.sol

In this section, we examine the last quadratic solution. Specifically, this quadratic solution
_SolveQuadraticFunctionForTarget() is used in Rone and RBelow to calculate the expected exchange
of quoteToken for the trading baseToken amount. The function has several arguments (lines 59 — 63)
where the fourth one, i.e., deltaBSig, is used to indicate whether this particular trade will lead to
increased or decreased balance of quoteToken. If deltaBSi=true, then the trading amount is calculated
by Q2.sub(quoteBalance); If deltaBSi=false, then the trading amount is calculated by quoteBalance.
sub(Q2). Note that Q2 is the calculated result from the quadratic solution while quoteBalance is current
quoteToken balance. Following the same principle as mentioned in Section 3.2, for precision-related
calculations, it is preferable to lean the calculation towards the liquidity pool to ensure that DODO
is always balanced. Therefore, our calculation here needs to replace the final divFloor with divCeil

on the condition of deltaBsig=true.

Recommendation Revise the above calculation to better mitigate possible precision loss.

function _ SolveQuadraticFunctionForTrade (
uint256 QO,
uint256 Q1,
uint256 ideltaB ,
bool deltaBSig,
uint256 k
) internal pure returns (uint256) {
// calculate -b value and sig
// -b = (1-k)Q1-kQ0~2/Ql+i*deltaB
uint256 kQ02Q1 = DecimalMath.mul(k, Q0).mul(Q0).div(Ql); // kQo~-2/Q1
uint256 b = DecimalMath.mul(DecimalMath .ONE.sub(k), Q1); // (1-k)Q1
bool minusbSig = true;
if (deltaBSig) {
b = b.add(ideltaB); // (1-k)Ql+ixdeltaB
} else {
kQ02Q1 = kQO02Q1l.add(ideltaB); // -i*(-deltaB)-kQ0~-2/Q1
¥
if (b >= kQ02Q1) {
b = b.sub(kQ02Q1);

minusbSig = true;
} else {

b = kQ02Q1.sub(b);

minusbSig = false;

16/40 PeckShield Audit Report #: 2020-16

83
84
85
86
87
88

90
91
92
93
94
95
96

98
99
100
101
102

Confidential

// calculate sqrt
uint256 squareRoot = DecimalMath.mul(
DecimalMath .ONE. sub (k) .mul(4),
DecimalMath . mul(k, QO).mul(QO0)
); // 4(1-k)kQ0~2
squareRoot = b.mul(b).add(squareRoot).sqrt(); // sqrt(bxb-4(1-k)kQ0*Q0)

// final res
uint256 denominator = DecimalMath.ONE.sub(k).mul(2); // 2(1-k)
if (minusbSig) {

numerator = b.add(squareRoot);
} else {
numerator = squareRoot.sub(b);

}

if (deltaBSig) {
return DecimalMath.divFloor (numerator, denominator);

} else {

return DecimalMath.divCeil (numerator, denominator);

}

Listing 3.6: contracts /impl/DODOMath.sol (revised)

3.4 approve()/transferFrom() Race Condition

e |D: PVE-004 e Target: DODOLpToken
e Severity: Low e Category: Time and State [12]
o Likelihood: Low e CWE subcategory: CWE-362 [8]

Impact: Medium

Description

DODOLpToken is an ERC20 token that represents the liquidity providers’ shares on the tokenized pools.
In current implementation, there is a known race condition issue regarding approve() / transferFrom
O [2]. Specifically, when a user intends to reduce the allowed spending amount previously approved
from, say, 10 popo to 1 papo. The previously approved spender might race to transfer the amount
you initially approved (the 10 popa) and then additionally spend the new amount you just approved
(1 popo). This breaks the user's intention of restricting the spender to the new amount, not the sum
of old amount and new amount.

In order to properly approve tokens, there also exists a known workaround: users can utilize
the increaseApproval and decreaseApproval non-ERC20 functions on the token versus the traditional

approve function.

17/40 PeckShield Audit Report #: 2020-16

85
86

87
88
89
90
91
92
93
94

Confidential

/* %
* Q@dev Approve the passed address to spend the specified amount of tokens on behalf
of msg.sender.
* Q@param spender The address which will spend the funds.
* Q@param amount The amount of tokens to be spent.
*/
function approve(address spender, uint256 amount) public returns (bool) {
allowed [msg.sender |[spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;

Listing 3.7: contracts /impl/DODOLpToken.sol

Recommendation Add the suggested workaround functions increaseApproval()/decreaseApproval
(. However, considering the difficulty and possible lean gains in exploiting the race condition, we

also think it is reasonable to leave it as is.

3.5 Better Handling of Privilege Transfers

e |D: PVE-005 e Targets: Ownable, Admin

e Severity: Informational e Category: Security Features [11]
o Likelihood: Low e CWE subcategory: CWE-282 [7]
e Impact: N/A

Description

DODO implements a rather basic access control mechanism that allows a privileged account, i.e.,
OWNER Or _SUPERVISOR_, to be granted exclusive access to typically sensitive functions (e.g., the
setting of _ORACLE_ and _MAINTAINER_). Because of the privileged access and the implications of these
sensitive functions, the _OWNER_ and _SUPERVISOR_ accounts are essential for the protocol-level safety
and operation. In the following, we elaborate with the _owNER_ account.

Within the governing contract ownable, a specific function, i.e., transferOwnership(address newOwner
), is provided to allow for possible _owNER_ updates. However, current implementation achieves its
goal within a single transaction. This is reasonable under the assumption that the newOwner param-
eter is always correctly provided. However, in the unlikely situation, when an incorrect newQwner is
provided, the contract owner may be forever lost, which might be devastating for DODO operation
and maintenance.

As a common best practice, instead of achieving the owner update within a single transaction,
it is suggested to split the operation into two steps. The first step initiates the owner update intent
and the second step accepts and materializes the update. Both steps should be executed in two

18/40 PeckShield Audit Report #: 2020-16

38
39
40
41
42

38

40
41
42
43
44
45
46
47
48
49
50

52

53

55
56

58

60
61

63

Confidential

separate transactions. By doing so, it can greatly alleviate the concern of accidentally transferring
the contract ownership to an uncontrolled address. In other words, this two-step procedure ensures
that an owner public key cannot be nominated unless there is an entity that has the corresponding
private key. This is explicitly designed to prevent unintentional errors in the owner transfer process.

function transferOwnership(address newOwner) external onlyOwner {
require (newOwner != address(0), "INVALID_OWNER");
emit OwnershipTransferred (OWNER , newOwner);
_OWNER = newOwner;

Listing 3.8: lib /Ownabe.sol

Recommendation Implement a two-step approach for owner update (or transfer): setOwner()
and acceptOwner(). The same is also applicable for other privileged accounts , i.e., _SUPERVISOR._.
In addition, generate meaningful events (currently missing) whenever there is a privileged account
transfer.

address public newOwner;

/*
* Set new manager address.
*/
function setOwner(
address newOwner
)
external
onlyOwner

require (newOwner != address(0) , "setOwner: new owner is the zero address");

require (newOwner != newOwner, "setOwner: new owner is the same as previous
owner"

__newOwner = newOwner;

function acceptOwner() public {
require (msg.sender = _newOwner) ;

emit OwnershipTransferred(OWNER , newOwner);

_OWNER = _newOwner;

__newOwner = 0x0;

Listing 3.9: lib /Ownabe.sol (revised)

19/40 PeckShield Audit Report #: 2020-16

82
83
84
85
86
87
88
89

91
92
93

94
95
96

Confidential

3.6 Centralized Governance

e |D: PVE-006 e Targets: DOD0Zoo, DODO, Settlement
e Severity: Informational e Category: Security Features [11]

e Likelihood: N/A e CWE subcategory: CWE-654 [10]
e Impact: N/A

Description

Throughout the whole DODO system, the _owNER_ is the account who can access or execute all
the privileged functions (via the onlyOwner modifier). However, some privileged functions are not
necessary to be controlled by the _owNER_ account. For example, the access to certain functions
(e.g. setLiquidityProviderFeeRate/setMaintainerFeeRate) could be assigned to an operator/manager
account or controlled by a multisig account.

The current centralized implementation makes this system not compatible to the usual setup
towards community-oriented governance for shared responsibilities or reduced risks. It is understand-
able that the system intends to begin with a centralized governance in the early, formative days
and then gradually shift over time to a community-oriented governance system. It will be greatly
helpful to think ahead and materialize necessary plan to have a community-oriented governance,
which could move the system one step further toward ultimate decentralization. Moreover, such
governance mechanism might be naturally associated with a governance token whose distribution (or
other incentive approaches) can be designed to engage the community by linking it together with
the business logic in DODO.

The same concern is also applicable when a token pair needs to be settled. As shown in the
below code snippet, the current finalSettlement() can be initiated only by current owner.

// last step to shut down dodo

function finalSettlement() external onlyOwner notClosed {
_CLOSED = true;
_DEPOSIT_QUOTE_ALLOWED = false ;
_DEPOSIT BASE_ALLOWED = false ;
_TRADE_ALLOWED = false ;
uint256 totalBaseCapital = getTotalBaseCapital();
uint256 totalQuoteCapital = getTotalQuoteCapital();

if (_QUOTE BALANCE > TARGET QUOTE TOKEN AMOUNT) {
uint256 spareQuote = QUOTE BALANCE .sub(_ TARGET QUOTE TOKEN AMOUNT);
_BASE_CAPITAL_RECEIVE_QUOTE_ = DecimalMath.divFloor (spareQuote,
totalBaseCapital);

} else {
_TARGET QUOTE_TOKEN AMOUNT = QUOTE_BALANCE ;

}

20/40 PeckShield Audit Report #: 2020-16

98
99
100

101
102
103

105
106

55
56
57
58
59
60
61
62

Confidential

if (_BASE _BALANCE > TARGET BASE TOKEN AMOUNT) {
uint256 spareBase = BASE BALANCE .sub(_ TARGET BASE TOKEN AMOUNT) ;
_QUOTE_CAPITAL_RECEIVE BASE = DecimalMath.divFloor (spareBase,
totalQuoteCapital);

} else {
_ TARGET BASE TOKEN AMOUNT = BASE BALANCE ;

}

_R STATUS = Types.RStatus.ONE;
Listing 3.10: contracts /impl/Settlement. sol
Recommendation Add necessary decentralized mechanisms to reduce or separate overly cen-

tralized privileges around _owNER_. In the meantime, develop a long-time plan for eventual community-

based governance.

3.7 Possible Integer Overflow in sqrt()

e ID: PVE-007 e Target: DODOMath

e Severity: Low e Category: Numeric Errors [14]
e Likelihood: Medium e CWE subcategory: CWE-190 [5]
e Impact: Low

Description

In previous sections, we have discussed two quadratic solutions, i.e., _SolveQuadraticFunctionForTrade
() and _SolveQuadraticFunctionForTrade(), behind the PMM algorithm. Note each of these two
quadratic solutions requires the capability to calculate the integer square root of a given number, i.e.,
the familiar sqrt O function. The sqrt) function, implemented in safeMath, follows the Babylonian
method for calculating the integer square root. Specifically, for a given x, we need to find out the
largest integer z such that z <= x.

function sqrt(uint256 x) internal pure returns (uint256 y) {
uint256 z = (x + 1) / 2;

y = x;
while (z < y) {
y = z,

z=(x [/ z+2z) /[2

Listing 3.11: contracts/lib/SafeMath.sol

21/40 PeckShield Audit Report #: 2020-16

46
47
48
49
50
51

Confidential

We show above current sqrt () implementation. The initial value of z to the iteration was given
as z = (x + 1)/2, which results in an integer overflow when x = uint256(—1). In other words, the
overflow essentially sets z to zero, leading to a division by zero in the calculation of z = (x/z+1z2)/2
(line 60).

Note that this does not result in an incorrect return value from sqrt (), but does cause the function
to revert unnecessarily when the above corner case occurs. Meanwhile, it is worth mentioning that if
there is a divide by zero, the execution or the contract call will be thrown by executing the 1nvALID
opcode, which by design consumes all of the gas in the initiating call. This is different from REVERT
and has the undesirable result in causing unnecessary monetary loss.

To address this particular corner case, We suggest to change the initial value to z = x/2 + 1,

making sqrt () well defined over its all possible inputs.

Recommendation Revise the above calculation to avoid the unnecessary integer overflow.

3.8 Redundant State Checks

e |D: PVE-008 e Target: Pricing

e Severity: Informational e Category: Security Features [11]
o Likelihood: N/A e CWE subcategory: CWE-269 [6]
e Impact: N/A

Description

The PMM algorithm has its continuous price curve with three different operating states: Rone, RAbove,
and RBelow. For each state, DODO specifies two trading functions to accommodate users’ requests,
i.e., BuyBaseToken and SellBaseToken. In total, there are six trading functions: _ROneBuyBaseToken()
, _ROneSellBaseToken(), _RAboveBuyBaseToken(), _RAboveSellBaseToken(), _RBelowBuyBaseToken(), and
_RBelowSellBaseToken().

In _ROneBuyBaseToken(), we notice that the require check on amount < target BaseT oken Amount
(line 51) is redundant. The reason is that the subsequent sub operation (line 52) applies the same
validity check (in safeMath.sol, line 45). Similarly, the require check (line 118) on amount <
baseBalance is also redundant since the subsequent sub operation (line 119) applies the very same
validity check.

function ROneBuyBaseToken(uint256 amount, uint256 targetBaseTokenAmount)
internal
view
returns (uint256 payQuoteToken)

require (amount < targetBaseTokenAmount, "DODO_BASE_TOKEN_BALANCE_NOT_ENOUGH");

22/40 PeckShield Audit Report #: 2020-16

52
53

54
55

111
112
113
114
115
116
117
118
119
120
121

Confidential

uint256 B2 = targetBaseTokenAmount.sub(amount);

payQuoteToken = RAbovelntegrate(targetBaseTokenAmount, targetBaseTokenAmount,
B2);
return payQuoteToken;
}
Listing 3.12: contracts /impl/Pricing . sol
// ============ R > 1 cases ============

function RAboveBuyBaseToken (
uint256 amount,
uint256 baseBalance,
uint256 targetBaseAmount
) internal view returns (uint256 payQuoteToken) {
require(amount < baseBalance, "DUDO_BASE_TDKEN_BALANCE_NDT_ENUUGH");
uint256 B2 = baseBalance.sub(amount);
return RAbovelntegrate(targetBaseAmount, baseBalance, B2);

Listing 3.13: contracts /impl/Pricing . sol

Recommendation Optionally remove these redundant checks. Note that this is optional as

the error message conveys additional semantic information when the intended revert occurs.

3.9 Contract Verification in breedDODO()

e |ID: PVE-009 e Target: DOD0Zoo

e Severity: Informational e Category: Security Features [11]
o Likelihood: N/A e CWE subcategory: CWE-269 [6]
e Impact: N/A

Description

The smart contract DOD0Zoo is in charge of registering all token pairs available for trading in DODO.
Note that adding a new pair of baseToken and quoteToken is a privileged operation only allowed by the

1 However, the registration of a new token pair does

contract owner (with the onlyouner modifier).
not perform a thorough validity check on the tokens of the given pair. Though an offline check can be
performed by the owner, it is still suggested to perform the necessary check codified at the contract
to verify the given baseToken and quoteToken are indeed intended ERC20 token contracts. This is

necessary as DODO users recognize and trust both baseToken and quoteToken before interacting with

IThe removal of a registered token pair is not possible. For that, the DODO protocol only allows the registered
pair to be closed or settled from being further tradable.

23/40 PeckShield Audit Report #: 2020-16

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Confidential

them. To ensure the two token addresses are not provided accidentally, a non-zero extcodesize check

could be added.

function breedDODO(
address supervisor ,
address maintainer ,
address baseToken,
address quoteToken,
address oracle ,
uint256 IpFeeRate,
uint256 mtFeeRate,
uint256 k,
uint256 gasPriceLimit
) public onlyOwner returns (address) {
require (!isDODORegistered (baseToken, quoteToken), "DODO_IS_REGISTERED");
require (baseToken != quoteToken, "BASE_IS_SAME_WITH_QUOTE");
address newBornDODO = address(new DODO()) ;
IDODO (newBornDODO) . init (
supervisor ,
maintainer ,
baseToken ,
quoteToken ,
oracle ,
IpFeeRate ,
mtFeeRate ,
k,
gasPriceLimit
)
IDODO (newBornDODO) . transferOwnership (_OWNER) ;
_DODO_REGISTER [baseToken][quoteToken] = newBornDODO;
emit DODOBirth (newBornDODO) ;
return newBornDODO;

Listing 3.14: contracts/DODOZoo.sol

Moreover, the event generation in line 58 can be further improved by including both baseToken

and quoteToken, i.e., emit DODOBirth(newBornDODO, baseToken, quoteToken).

Recommendation Validate that the given token pairs (baseToken and quoteToken) are indeed
ERC20 tokens.

24/40 PeckShield Audit Report #: 2020-16

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Confidential

3.10 Balance Inconsistency With Deflationary Tokens

e |D: PVE-011 e Target: Trader, LiquidityProvider
e Severity: Medium e Category: Time and State [12]

o Likelihood: Low e CWE subcategory: CWE-362 [8]
e Impact: High

Description

DODO acts as a trustless intermediary between liquidity providers and trading users. The liquidity
providers deposit either baseToken or quoteToken into the DODO pool and in return get the tokenized
share pop0OLpToken of the pool's assets. Later on, the liquidity providers can withdraw their own share
by returning DODOLpToken back to the pool. With assets in the pool, users can submit trade orders
and the trading price is determined according to the PMM price curve.

For the above three operations, i.e., deposit, withdraw, and trade, DODOQO provides low-level
routines to transfer assets into or out of the pool (see the code snippet below). These asset-
transferring routines work as expected with standard ERC20 tokens: namely DODO's internal asset
balances are always consistent with actual token balances maintained in individual ERC20 token
contract.

function baseTokenTransferIn(address from, uint256 amount) internal {
IERC20(_BASE TOKEN).safeTransferFrom(from, address(this), amount);
_BASE_BALANCE_ = BASE BALANCE .add(amount);

}

function quoteTokenTransferln(address from, uint256 amount) internal {
IERC20(_ QUOTE TOKEN).safeTransferFrom(from, address(this), amount);
_ QUOTE_BALANCE = QUOTE BALANCE .add(amount);

¥

function _baseTokenTransferOut(address to, uint256 amount) internal {
IERC20(_BASE_TOKEN).safeTransfer(to, amount);
_ BASE BALANCE = BASE BALANCE .sub(amount);

by

function quoteTokenTransferOut(address to, uint256 amount) internal {
IERC20(_QUOTE_TOKEN).safeTransfer(to, amount);
_QUOTE_BALANCE = QUOTE_BALANCE .sub(amount);

Listing 3.15: contracts /impl/Settlement. sol

However, there exist other ERC20 tokens that may make certain customization to their ERC20

contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer or

25/40 PeckShield Audit Report #: 2020-16

Confidential

transferFrom. As a result, this may not meet the assumption behind these low-level asset-transferring
routines. In other words, the above operations, such as deposit, withdraw, and trade, may introduce
unexpected balance inconsistencies when comparing internal asset records with external ERC20 token
contracts. Apparently, these balance inconsistencies are damaging to accurate and precise portfolio
management of DODO and affects protocol-wide operation and maintenance.

One mitigation is to measure the asset change right before and after the asset-transferring rou-
tines. In other words, instead of bluntly assuming the amount parameter in transfer or transferFrom
will always result in full transfer, we need to ensure the increased or decreased amount in the pool
before and after the transfer/transferFrom is expected and aligned well with our operation. Though
these additional checks cost additional gas usage, we consider they are necessary to deal with defla-
tionary tokens or other customized ones.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into DODO for
trading. In current implementation, DODO requires the owner privilege to permit tradable ERC20
tokens. By doing so, it may eliminate such concern, but it completely depends on privileged accounts.
Such dependency not only affects the intended eventual decentralization, but also limits the number
or scale of pairs supported for rapid, mass adoption of DODO.

Recommendation Apply necessary mitigation mechanisms to regulate non-compliant or unnecessarily-
extended ERC20 tokens.

3.11 Aggregated Transfer of Maintainer Fees

e |ID: PVE-009 e Target: DOD0Zoo

e Severity: Low e Category: Security Features [11]
o Likelihood: Low e CWE subcategory: CWE-269 [6]
e Impact: Low

Description

DODO has a protocol-wide fee parameter _MT_FEE_RATE_ that is designed to offset the protocol de-
velopment, operation, management and other associated cost. The fee or maintainer fee is not
applied up-front before trading. Instead, it is applied after calculating the trading result. For ex-
ample, if a user attempts to sellBaseToken, the fee is deducted from receiveQuote and the exact
amount is calculated as mtFeeQuote = DecimalMath.mul (receiveQuote, _MT_FEE_RATE_). Similarly, if a
user attempts to buyBaseToken, the fee is deducted from payQuote and the exact amount is calculated
as mtFeeBase = DecimalMath.mul (amount, _MT_FEE_RATE_).

We notice that the maintainer fee is calculated and collected for each trade as part of the trade

processing. The immediate transfer-out of the calculated maintainer fee at the time of the trade

26/40 PeckShield Audit Report #: 2020-16

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

Confidential

would impose an additional gas cost on every trade. To avoid this, accumulated maintainer fees can
be temporarily saved on the DODO contract and later retrieved by authorized entity. Considering
the scenario of having a deflationary token on the trading token pair, each trade may generate a
very small number of maintainer fee. Apparently, it is economically desirable to first accumulate the
maintainer fees and, after the fees reach a certain amount, then perform an aggregated transfer-out.

function buyBaseToken(uint256 amount, uint256 maxPayQuote)
external
tradeAllowed
gasPriceLimit
preventReentrant
returns (uint256)

// query price
(
uint256 payQuote,
uint256 IpFeeBase,
uint256 mtFeeBase,
Types. RStatus newRStatus,
uint256 newQuoteTarget,
uint256 newBaseTarget
) = _queryBuyBaseToken (amount);
require (payQuote <= maxPayQuote, "BUY_BASE_COST_TOO_MUCH");

// settle assets
_quoteTokenTransferln(msg.sender, payQuote);
__baseTokenTransferOut(msg.sender, amount);
__baseTokenTransferOut(_MAINTAINER , mtFeeBase);

// update TARGET

_TARGET QUOTE_TOKEN AMOUNT = newQuoteTarget;
_ TARGET BASE TOKEN AMOUNT = newBaseTarget;
R STATUS = newRStatus;

__donateBaseToken (IpFeeBase);
emit BuyBaseToken(msg.sender, amount, payQuote);

emit MaintainerFee(true, mtFeeBase);

return payQuote;

Listing 3.16: contracts /impl/trader . sol

Recommendation Avoid transferring the maintainer fee for each trade. Instead, accumulate
the maintainer fee within the contract and allow the authorized entity to aggregately withdraw the

fee to the right maintainer.

27/40 PeckShield Audit Report #: 2020-16

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Confidential

3.12 Misleading Embedded Code Comments

e |D: PVE-013 e Target: DODOMath, Pricing

e Severity: Informational e Category: Coding Practices [13]
e Likelihood: N/A e CWE subcategory: CWE-1116 [4]
e Impact: N/A

Description

There are a few misleading comments embedded among lines of solidity code, which may introduce
unnecessary burdens to understand or maintain the software.

A few example comments can be found in lines 73 and 88 of 1ib/DODOMath: : _SolveQuadraticFunctionForTrade
0, and line 140 of imp1/Pricing: : _RAboveBackToOne (). We show below the quadratic solution function
_SolveQuadraticFunctionForTrade().

function _SolveQuadraticFunctionForTrade(
uint256 QO,
uint256 Q1,
uint256 ideltaB ,
bool deltaBSig,
uint256 k
) internal pure returns (uint256) {
// calculate -b value and sig
// -b = (1-k)Q1-kQ0~2/Q1l+ix*xdeltaB
uint256 kQ02Ql = DecimalMath.mul(k, QO0).mul(Q0).div(Ql); // kQ0-2/Q1
uint256 b = DecimalMath.mul(DecimalMath.ONE.sub(k), Q1); // (1-k)Qi
bool minusbSig = true;
if (deltaBSig) {
b = b.add(ideltaB); // (1-k)Qi+i*deltaB
} else {
kQ02Q1 = kQO02Q1l.add(ideltaB); // -i*(-deltaB)-kQ0~2/Q1
¥
if (b>= kQ02Q1) {
b = b.sub(kQ02Q1);

minusbSig = true;
} else {

b = kQ02Q1l.sub(b);

minusbSig = false;

// calculate sqrt
uint256 squareRoot = DecimalMath . mul(
DecimalMath .ONE. sub (k) . mul(4) ,
DecimalMath . mul(k, QO).mul(QO0)
); // 4(1-k)kQ0~2
squareRoot = b.mul(b).add(squareRoot).sqrt(); // sqrt(b*b-4(1-k)kQ0*Q0)

28/40 PeckShield Audit Report #: 2020-16

90
91
92
93
94
95
96
97

83
84
85
86
87
88

75

76
7

Confidential

// final res

uint256 denominator = DecimalMath .ONE.sub(k).mul(2); // 2(1-k)

if (minusbSig) {

return DecimalMath.divFloor(b.add(squareRoot), denominator);

} else {

return DecimalMath.divFloor(squareRoot.sub(b), denominator);

¥

Listing 3.17: contracts/ lib /DODOMath.sol

The comment in line 73 is supposed to be // ixdeltaB+xQ0~2/Q1 while the comment in line 88

should be // sqrt (b*b-4% (1-k) * (-kQ0*Q0)).

Recommendation Adjust the commen

ts accordingly (e.g., from “sqrt(b*b-4(1-k)kQ0*Q0)" to

“sqrt (b*b-4* (1-k)*(-kQ0*Q0))" in DODOMath.sol - line 88).

// calculate sqrt

uint256 squareRoot = DecimalMath
DecimalMath .ONE. sub (k) . mul (4
DecimalMath . mul(k, QO0).mul(Q

); // 4(1-k)kQ0~2

.mul(

).
0)

squareRoot = b.mul(b).add(squareRoot).sqrt(); // sqrt(b*b-4%(1-k)*(-kQ0*Q0))

Listing 3.18:

contracts / lib /DODOMath.sol

3.13 Missing DODO Validation in DODOEthProxy

e ID: PVE-013

e Severity: Medium
e Likelihood: Low
e Impact: High

Description

e Target: DODOEthProxy
e Category: Coding Practices [13]
e CWE subcategory: CWE-628 [9]

To accommodate the support of ETH, DODO provides a proxy contract DODOEthProxy that conve-
niently wraps ETH into WETH and unwraps WETH back to ETH. The goal here is to allow for the
unified handling of ETH just like other standard ERC20 tokens.

function getDODO(address baseToken,

address) {
return DODO REGISTER [baseToken

Listing 3.19:

address quoteToken) external view returns (

][quoteToken];

contracts /DODOZoo.sol

29/40

PeckShield Audit Report #: 2020-16

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

Confidential

The smart contract DODOEthProxy has three main public methods: sel1EthTo(), buyEthwith(), and
depositEth(). All these three methods query popozoo for the presence of a DODO contract being
requested. Notice that the query function getbopo() returns the requested registered entry. If the
entry does not exist, it simply returns back address(0). Unfortunately, if a user somehow provides
a wrong quoteTokenAddress, the above three methods will be interacting with address(0), leading
to possible ETH loss from the user. In the following, we use sel1EthTo() to elaborate the possible
unintended consequence.

If we delve into the sel1EthTo() routine, the variable popa (line 70) contains the queried DODO
address from Dpap0Zoo. If the aforementioned corner case occurs, it simply contains address(0). As a
result, the subsequent operations essentially become no op, except it continues to deposit ethAmount
into _WETH_ (lines 73—74). These deposited ETHs are not credited and therefore become withdrawable
by any one through buyEthwith() (that does not validate the presence of papo either).

function sellEthTo (
address quoteTokenAddress,
uint256 ethAmount,
uint256 minReceiveTokenAmount

) external payable preventReentrant returns (uint256 receiveTokenAmount) {
require (msg.value =— ethAmount, "ETH_AMOUNT_NOT_MATCH");
address DODO = IDODOZoo(_DODO ZOO) .getDODO(_WETH , quoteTokenAddress);
receiveTokenAmount = IDODO(DODO) . querySellBaseToken (ethAmount) ;
require (receiveTokenAmount >= minReceiveTokenAmount, "RECEIVE_NOT_ENOUGH");
IWETH(_WETH) .deposit{value: ethAmount}();
IWETH(_WETH) .approve (DODO, ethAmount);
IDODO(DODO) . sellBaseToken (ethAmount, minReceiveTokenAmount);
_transferOut(quoteTokenAddress, msg.sender, receiveTokenAmount);
emit ProxySellEth (msg.sender, quoteTokenAddress, ethAmount, receiveTokenAmount);

return receiveTokenAmount;

Listing 3.20: contracts /DODOEthProxy.sol

Recommendation Validate the popo variable and require its existence (not address(0)) before

continuing the process.

3.14 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version con-
sistencies, it is always suggested to use fixed compiler versions whenever possible. As an example,
we highly encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.5.12;
instead of pragma solidity ~0.5.12;.
Moreover, we strongly suggest not to use experimental Solidity features (e.g., pragna experimental
ABIEncoderV2) or third-party unaudited libraries. If necessary, refactor current code base to only use

stable features or trusted libraries.

30/40 PeckShield Audit Report #: 2020-16

Confidential

Last but not least, it is always important to develop necessary risk-control mechanisms and make
contingency plans, which may need to be exercised before the mainnet deployment. The risk-control

mechanisms need to kick in at the very moment when the contracts are being deployed in mainnet.

31/40 PeckShield Audit Report #: 2020-16

Confidential

4 Conclusion

In this audit, we thoroughly analyzed the DODO documentation and implementation. The audited
system presents a unique innovation and we are really impressed by the design and implementa-
tion.The current code base is clearly organized and those identified issues are promptly confirmed
and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or

suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

32/40 PeckShield Audit Report #: 2020-16

Confidential

5 Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

e Description: Whether the contract name and its constructor are not identical to each other.

e Result: Not found

e Severity: Critical

5.1.2 Ownership Takeover

e Description: Whether the set owner function is not protected.

e Result: Not found

e Severity: Critical

5.1.3 Redundant Fallback Function

e Description: Whether the contract has a redundant fallback function.

e Result: Not found

e Severity: Critical

5.1.4 Overflows & Underflows
e Description: Whether the contract has general overflow or underflow vulnerabilities [17, 18,

19, 20, 22).
e Result: Not found

e Severity: Critical

33/40 PeckShield Audit Report #: 2020-16

Confidential

5.1.5 Reentrancy

e Description: Reentrancy [23] is an issue when code can call back into your contract and change

state, such as withdrawing ETHs.

e Result: Not found

e Severity: Critical

5.1.6 Money-Giving Bug

e Description: Whether the contract returns funds to an arbitrary address.

e Result: Not found

e Severity: High

5.1.7 Blackhole

e Description: Whether the contract locks ETH indefinitely: merely in without out.
e Result: Not found

e Severity: High

5.1.8 Unauthorized Self-Destruct

e Description: Whether the contract can be killed by any arbitrary address.
e Result: Not found

e Severity: Medium

5.1.9 Revert DoS

e Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

e Result: Not found

e Severity: Medium

34/40 PeckShield Audit Report #: 2020-16

Confidential

5.1.10 Unchecked External Call

e Description: Whether the contract has any external call without checking the return value.

e Result: Not found

e Severity: Medium

5.1.11 Gasless Send

e Description: Whether the contract is vulnerable to gasless send.

e Result: Not found

e Severity: Medium

5.1.12 Send Instead Of Transfer

e Description: Whether the contract uses send instead of transfer.

e Result: Not found

e Severity: Medium

5.1.13 Costly Loop

e Description: Whether the contract has any costly loop which may lead to Out-0f-Gas excep-

tion.
e Result: Not found

e Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

e Description: Whether the contract use any suspicious libraries.

e Result: Not found

e Severity: Medium

35/40 PeckShield Audit Report #: 2020-16

Confidential

5.1.15 (Unsafe) Use Of Predictable Variables

e Description: Whether the contract contains any randomness variable, but its value can be

predicated.

e Result: Not found

e Severity: Medium

5.1.16 Transaction Ordering Dependence

e Description: Whether the final state of the contract depends on the order of the transactions.
e Result: Not found

e Severity: Medium

5.1.17 Deprecated Uses

e Description: Whether the contract use the deprecated tx.origin to perform the authorization.

e Result: Not found

e Severity: Medium

5.2 Semantic Consistency Checks

e Description: Whether the semantic of the white paper is different from the implementation of

the contract.

e Result: Not found

e Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

e Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of

space.

e Result: Not found

e Severity: Low

36/40 PeckShield Audit Report #: 2020-16

Confidential

5.3.2 Make Visibility Level Explicit

e Description: Assign explicit visibility specifiers for functions and state variables.

e Result: Not found

e Severity: Low

5.3.3 Make Type Inference Explicit

e Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce

the type, which is not safe especially in a loop.

e Result: Not found

e Severity: Low

5.3.4 Adhere To Function Declaration Strictly

e Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls () [1], which may break the the execution if the function implementation does NOT

follow its declaration (e.g., no return in implementing transfer () of ERC20 tokens).

e Result: Not found

e Severity: Low

37/40 PeckShield Audit Report #: 2020-16

Confidential

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] HaleTom. Resolution on the EIP20 API Approve / TransferFrom multiple withdrawal attack.

https://github.com/ethereum/EIPs/issues/738.

[3] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/
data/definitions/1099.html.

[4] MITRE. CWE-1116: Inaccurate Comments. https://cwe.mitre.org/data/definitions/1116.html.

[5] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/
190.html.

[6] MITRE. CWE-269: Improper Privilege Management. https://cwe.mitre.org/data/definitions/
269.html.

[7] MITRE. CWE-282: Improper Ownership Management. https://cwe.mitre.org/data/definitions/
282.html.

[8] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

('Race Condition"). https://cwe.mitre.org/data/definitions/362.html.

[9] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/
data/definitions/628.html.

38/40 PeckShield Audit Report #: 2020-16

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/EIPs/issues/738
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1116.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html

Confidential

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

MITRE. CWE-654: Reliance on a Single Factor in a Security Decision. https://cwe.mitre.org/
data/definitions/654.html.

MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254 .html.

MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/
361.html.

MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk

Rating Methodology.

PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-
10299). https://www.peckshield.com/2018/04 /22 /batchOverflow/.

PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-
11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-
10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).
https://www.peckshield.com/2018/04 /25 /proxyOverflow/.

PeckShield. PeckShield Inc. https://www.peckshield.com.

PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:
//www.peckshield.com/2018/04/28 /transferFlaw/.

39/40 PeckShield Audit Report #: 2020-16

https://cwe.mitre.org/data/definitions/654.html
https://cwe.mitre.org/data/definitions/654.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/

Confidential

[23] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

40/40 PeckShield Audit Report #: 2020-16

http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About DODO
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Non-ERC20-Compliant DODOLpTokens
	Improved Precision Calculation in DODOMath
	Improved Precision Calculation #2 in DODOMath
	approve()/transferFrom() Race Condition
	Better Handling of Privilege Transfers
	Centralized Governance
	Possible Integer Overflow in sqrt()
	Redundant State Checks
	Contract Verification in breedDODO()
	Balance Inconsistency With Deflationary Tokens
	Aggregated Transfer of Maintainer Fees
	Misleading Embedded Code Comments
	Missing DODO Validation in DODOEthProxy
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

