
Security Assessment

DOTC
Jun 15th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
DCF-01 : `ds.selectorSlots` Not Updated

DOA-01 : Unused Constant

DOA-02 : Unnecessary Gas Cost to Call Variable from Structs

DOA-03 : Function Name Misspellings

DOA-04 : Check Condition Inconsistent with Message

DOB-01 : Repetitive Function Implementations

DOC-01 : Repetitive Function Implementations

DOC-02 : Unnecessary Calculation Out of Bound Risk

DOC-03 : Too Many Digits

DOC-04 : Incorrect Naming Convention Utilization

DOC-05 : Unused Function

DOC-06 : Redundant Length Getter

DOC-07 : Redundant Remove Operation

DOC-08 : Logic Issue When Removing Arbiter

DOE-01 : Check Condition Inconsistent with Message

DOF-01 : Repetitive Function Implementations

DOF-02 : Redundant Conditional

DOF-03 : Logical issues in `_clearInvitorSponsor`

DOK-01 : Check Condition Inconsistent with Message

DOL-01 : Volatile Type Conversion

DOL-02 : Magic Reward and Margin Rates

DOM-01 : Inconsistent Getter Function

DOM-02 : Owner Privileges

DOO-01 : Emit Events Missing `indexed`

DOO-02 : Magic Reward and Margin Rates

DOO-03 : Function Name Misspellings

DOO-04 : Check Condition Inconsistent with Message

DOTC Security Assessment

DOP-01 : Check-Effect-Interaction Pattern Violation

DOP-02 : DAO Pools Only Use DOTC

DOR-01 : Check-Effect-Interaction Pattern Violation

DOR-02 : DAO Pools Only Use DOTC

DOS-01 : Repetitive Function Implementations

DOS-02 : Magic Reward and Margin Rates

DOU-01 : Locked Assets Can Not Be Unlocked

DOU-02 : Token Permissibility

DTK-01 : Unlocked Compiler Version

DTK-02 : Set `constant` to Variables

DTK-03 : Proper Usage of `require` and `assert` Functions

DTK-04 : Unused Return Value

DTK-05 : Incorrect ERC20 Interface

DTS-01 : Inaccurate Revert Message

DTS-02 : Unused Constants

DTS-03 : Miscalculation of `WeightTime`

DTS-04 : Incorrect Naming Convention Utilization

DTS-05 : Unlock From Pool A

DTS-06 : Unusual Bonus Distribution Algorithm

DTS-07 : Unused Function

DTS-08 : Check Condition Inconsistent with Message

DTT-01 : Lack of Input Validation

DTT-02 : Incorrect Naming Convention Utilization

Appendix

Disclaimer

About

DOTC Security Assessment

Summary
This report has been prepared for DOTC smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

DOTC Security Assessment

Overview

Project Summary

Project Name DOTC

Description Decentralized OTC Market

Platform Ethereum

Language Solidity

Codebase https://github.com/DOTCPro/Contracts

Commit

1.576a168519ccb7518204979294d68f292e698e5a
2.8b0297a94cc4c7651ab7b87842fc10f61dabccb2
3.b1785dcd51678fc34456bf35f6bb62000207410e
4.35e656497dc18a48b048fd75f4c8c4f6dd54aab6

Audit Summary

Delivery Date Jun 15, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 50

Critical 0

Major 3

Medium 0

Minor 12

Informational 35

Discussion 0

DOTC Security Assessment

https://github.com/DOTCPro/Contracts

DOTC Security Assessment

Audit Scope

ID file SHA256 Checksum

DOT DOTCFactoryDiamond.sol 5d2f764ce588482d2a7af83b4da5e8370459997da5866150760ed0fe580f7bdc

MCK Migrations.sol 4cbc0c151998d768bdb8bf06bdfcf7957afb5c96548321747820f5a4e98724f4

ACK defines/dArbit.sol d91500a8b40712d6c349a21e7182f4a2a51e998ea6f805fea9431a1760201cb8

CCK defines/dCommon.sol 51c85c9436eef322d1591c556d7448a1917da220c414976ac86d2d6435fa8076

CFC defines/dCutFacet.sol 0b2873a0f0417b4ce3554ea772692b351ea845f1cddd5a23f3a0d745a3b43fc1

MPC defines/dMiningPool.sol 7766dac1c8505a90745f1fc56eaf969779a763cf8ae25d6be60e5a88b5782adc

OCK defines/dOrder.sol 7bde63efc43be27cacceaf4f26427acf98388b2f8174afb7c3b58dca71265388

RCK defines/dRisk.sol 81cf60ff7770d5156ef27eb711bad72f9b3caf16f8c0bda7eff0891ca581b9a0

SCK defines/dStaking.sol 61cb8a2064381a8b62b858d23eaaa27d7a3d49f75acf637d642ca16cc4df6a1b

TCK defines/dTotal.sol 5158e403af1805804bc4b3f029459b0cd204fc307b8617a54717c14471e565b1

UCK defines/dUser.sol 806cae91fc0c826725d24b873e668b11490e144546f94043569877ecbaf677b9

DOC
facetBase/DOTCFacetBase.so
l

abe8fac73ea715f094c439b83c2b278362069002c29e6b8995e7f367a527a925

DCF
facetBase/DiamondCutFacet.s
ol

3615c0a7ce05cd8276cfa1cff5e4e70b2623b5aad41ccf8f7d50008cef4ed71f

DLF
facetBase/DiamondLoupeFac
et.sol

d4669fa7e25b945f49ec723d08d41fe94107eb9e7d1c71c7440bb5976c45ec95

OFB facetBase/OwnershipFacet.sol 8674021e7b55eb9e618d34b0308e48782dc60b00651df38627f1c396ef9a029c

DOA
facetLogic/DOTCAdOrderFace
t.sol

9d7eec0afc73a64bd92d4715d99674caaa9972430b7a8c09a79672b13cfc776e

DOB facetLogic/DOTCArbitBase.sol 03f89b9f7931173a9f5ff18ba62ab205e6ee9a94fb95d4df0b26a84d243e9a08

DOF
facetLogic/DOTCArbitFacet.so
l

3dc8ccfe37a8e1fe6eec6c8960747117e8c2aa4fd780767b5cd11d2c1e5b27dd

DOS
facetLogic/DOTCArbitSettleFa
cet.sol

3b416e8bcd1b7f9b06a9316de90e7d9fbaffa29885a406855d76a2e03d16b01b

DOTC Security Assessment

ID file SHA256 Checksum

DOL
facetLogic/DOTCCardAribtFac
et.sol

83e59fd5a0090b5a15a352ce98648b6cd4e55f85ea533871993182dce48cc6d3

DOE
facetLogic/DOTCExOrderBas
e.sol

6f20372ec8bcc9a2ec05d2c022c5ed7912897f3d0b06ec143e62b0bc28140c67

DOO
facetLogic/DOTCExOrderFace
t.sol

9c70e314bf9cd9fdc2d65df6689e6e967117a03b83f99440957e34bf48731976

DOK facetLogic/DOTCFeeFacet.sol 1c078301a988913d68b16f7529b72adb4673f5970509f2f347daa97ffdd2e90b

DOM
facetLogic/DOTCManageFace
t.sol

0b22b520dcc86e4f5ab1d77bb45b685576a87ede98dc8f93a26e39361ed0b5d7

DOP
facetLogic/DOTCMiningFacet.
sol

294b9722268477278c0bd9e5ece1499c584688a652f8787d05ba849b8fbbf07b

DTC
facetLogic/DOTCOracleFacet.
sol

7f69a8e2f16bda471cbc707ab12b9a569e1428cfad4b63e3037db0e480cfff1b

DOR
facetLogic/DOTCRiskFacet.so
l

f55012324dfb2bd186b28b92c6dfff10084dd51b9c966004562186a775106f00

DTS
facetLogic/DOTCStakingFace
t.sol

56b80b3fcf2a171dec1ac2c42d170709cac461a4ba336e894d5b289d8d6d6b79

DOU
facetLogic/DOTCUserFacet.so
l

1179240207109a53297892fff1cc05fe975e313c41674b051b05512a164e1a34

DTT
governance/DOTCTimelock.so
l

3b494700183c7a095f3179130c0f2bed87d5c62d3808cd570c44c2743be0837b

IDO
interfaces/IDOTCFacetBase.s
ol

a2d018cfb500bd86e6a6915bb8570e5ea8e69f72d3042d24d77f11e3071e10fe

IDT
interfaces/IDOTCFactoryDiam
ond.sol

b40c0be7f78bc4e4a98073d35140a8e0ebe81a52eb498d03b6f441895ac2962c

IDC
interfaces/IDOTCManageFace
t.sol

87c6b8dd2a24879c8ae6d14518ec54628e77d041d47317469decdbca946fed11

IDK interfaces/IDiamondCut.sol 55ad7ff6cfe097b540db0206d679f60ca27f6ef040927c98c5d63955ddf6e814

IDL interfaces/IDiamondLoupe.sol dc13ba04225a87981e34b5490f5a5d461b89d44b791abb556916c21ea16919f8

DOTC Security Assessment

ID file SHA256 Checksum

IER interfaces/IERC165.sol bcd90d99170e7cdd8a20b59362ca26045b307dbc3a7902cb51363d4b9a0cc0f0

IEC interfaces/IERC173.sol 6fc79ae8305e6e051815f56db4a4ef0c7df4adef637495d9907ca06a1b02e4a4

IEK interfaces/IERC20.sol 72e6781196c6c4124cb2a1280e5f20c8224c5a8b4f69f36a0e03167c69650ecf

IFF interfaces/IFeeFacet.sol eada45db7ce4a230d9a02364b4d5aaf7722c15f3f2045f62d7948823c1bfe8c3

ASC libraries/AppStorage.sol 739537526f55170cb3d5de7036c5f40ca71e4d63605b587ced49e760e6387382

DTL libraries/DOTCLib.sol c445612680f17204ff759700e5ec7141f2042dc82170e37e551eb9a591b5ca22

LDC libraries/LibDiamond.sol f0c223a7e01de70f916392210ac962ddf72a43cb6153556ed2552a59960e5617

LER libraries/LibERC20.sol ee70706bd903e16d31d6a9819023a6da072625bc7ae8692588923b03394674fc

LSC libraries/LibStrings.sol 454caf2bc3f9a1f1fd6736f3ea67331fa5f2d4c27826101a6deaf2a3f01811ac

DTO oracle/DOTCOracleRobot.sol d98e63c749631e8122c0b795dedfa176acaec1a6857f4dca8ff4ffb521dfa470

IDR oracle/IDOTCOracleRobot.sol c4e29ecfdb564f73b3bd57614bad943468af4437af468985d9a2716301095d70

BCK oracle/libraries/Babylonian.sol 4045794dabf740ac9054a743de1d854017acf967492747171f9ccc98454ce0b2

FPC oracle/libraries/FixedPoint.sol a6388aa687dff62d74a6ee182dbe6060c301518a05b82633a079a42fd12265b9

IUV
oracle/libraries/IUniswapV2Fa
ctory.sol

9295cd590e354c8fec640ff3d7c3b0536eb2c7f543c0f204f69935d9fc461052

IUP
oracle/libraries/IUniswapV2Pai
r.sol

71ffcf80ed7b6cd38f82c53e0f3f2f3f632ebc85d3dd1428dd3a4836c77c1ad4

UVL
oracle/libraries/UniswapV2Libr
ary.sol

48e85b26dfb76bda3c9602896dcba8ba8bf937e45d0c0f6e78c50022d0cbe9ca

UVO
oracle/libraries/UniswapV2Ora
cleLibrary.sol

e23f2072a4ae72917a1c7efe1eefbcedc67762cb21dc5de56a42f3cdbcbe9385

DTK token/DOTCToken.sol b5e1718095d20e4832ea660992461bc90f5535db407b129165beb09ceaeeb561

CCP utils/Closeable.sol 3a9bb149cc8d027be747ea6316c6acd49655c93ba34847598f5fc43675ae8a46

OCP utils/Ownable.sol 3d3fdd258a8d2dd703b55af22b70add1af8aa989e53269b2bc84c13e77d799ea

RHC utils/RandomHelper.sol 7d437e92160b4f4443f135c61d88f4564bbceae3a82e12e98bd5a3f8fb9bee7f

DOTC Security Assessment

ID file SHA256 Checksum

SAC utils/SafeArray.sol ef2bca8bdea520d1107e84326e4c45c0a965266a911c2e983d8fd9190a252900

SMC utils/SafeMath.sol 4a990fffa55378be5ddedc575488ef1d1bf35da4df41fc68b523981a54a43fe8

SHC utils/SignHelper.sol 0ecde818eb77e19ce126798b3da46cd51b381c94dbd035be8bb7d1b6ff588a31

DOTC Security Assessment

It should be noted that the system design includes a number of economic arguments and assumptions.

These were explored to the extent that they clarified the intention of the code base, but we did not audit

the mechanism design itself. Note that financial models of blockchain protocols need to be resilient to

attacks. It needs to pass simulations and verifications to guarantee the security of the overall protocol. The

correctness of the financial model is not in the scope of the audit.

Additionally, as of the date of publishing, the contents of this document reflect the current understanding of

known quality and security patterns regarding smart contracts and compilers. Given the size and

complexity of the project, the findings detailed here are not to be considered exhaustive, and further

testing and auditing are recommended after the issues covered are fixed.

All the contracts use the Diamonds pattern (EIP-2535) and can be upgraded through administrator actions.

Note that the scope of audit only includes the contracts in commit

576a168519ccb7518204979294d68f292e698e5a. We have explored subsequent commits only to help

address the issues found in that scope and check if they are fixed while
other changes are ignored.

DOTC Security Assessment

Findings

ID Title Category Severity Status

DCF-01 ds.selectorSlots Not Updated Logical Issue Major Resolved

DOA-01 Unused Constant Logical Issue Informational Resolved

DOA-02
Unnecessary Gas Cost to Call Variable
from Structs

Gas Optimization Informational Resolved

DOA-03 Function Name Misspellings Coding Style Informational Resolved

DOA-04
Check Condition Inconsistent with
Message

Logical Issue Informational
Partially
Resolved

DOB-01 Repetitive Function Implementations Logical Issue Minor Acknowledged

DOC-01 Repetitive Function Implementations Logical Issue Minor Acknowledged

DOC-02
Unnecessary Calculation Out of Bound
Risk

Mathematical
Operations

Informational
Partially
Resolved

DOC-03 Too Many Digits Coding Style Informational Resolved

DOC-04 Incorrect Naming Convention Utilization Coding Style Informational Resolved

DOC-05 Unused Function Logical Issue Minor Resolved

DOC-06 Redundant Length Getter Gas Optimization Informational Declined

DOC-07 Redundant Remove Operation Gas Optimization Informational Acknowledged

DOC-08 Logic Issue When Removing Arbiter Logical Issue Informational Acknowledged

DOTC Security Assessment

50
Total Issues

Critical 0 (0.00%)

Major 3 (6.00%)

Medium 0 (0.00%)

Minor 12 (24.00%)

Informational 35 (70.00%)

Discussion 0 (0.00%)

ID Title Category Severity Status

DOE-01
Check Condition Inconsistent with
Message

Logical Issue Informational
Partially
Resolved

DOF-01 Repetitive Function Implementations Logical Issue Minor Acknowledged

DOF-02 Redundant Conditional Logical Issue Informational Resolved

DOF-03
Logical issues in
_clearInvitorSponsor

Logical Issue Informational Acknowledged

DOK-01
Check Condition Inconsistent with
Message

Logical Issue Informational
Partially
Resolved

DOL-01 Volatile Type Conversion Volatile Code Minor Resolved

DOL-02 Magic Reward and Margin Rates Magic Numbers Informational Declined

DOM-01 Inconsistent Getter Function Logical Issue Minor Resolved

DOM-02 Owner Privileges
Centralization /
Privilege

Informational Acknowledged

DOO-01 Emit Events Missing indexed Volatile Code Informational Resolved

DOO-02 Magic Reward and Margin Rates Magic Numbers Informational Declined

DOO-03 Function Name Misspellings Coding Style Informational Resolved

DOO-04
Check Condition Inconsistent with
Message

Logical Issue Informational
Partially
Resolved

DOP-01 Check-Effect-Interaction Pattern Violation Control Flow Minor Resolved

DOP-02 DAO Pools Only Use DOTC Logical Issue Informational Acknowledged

DOR-01 Check-Effect-Interaction Pattern Violation Control Flow Minor Resolved

DOR-02 DAO Pools Only Use DOTC Logical Issue Informational Acknowledged

DOS-01 Repetitive Function Implementations Logical Issue Minor Acknowledged

DOS-02 Magic Reward and Margin Rates Magic Numbers Informational Declined

DOU-01 Locked Assets Can Not Be Unlocked Logical Issue Informational Declined

DOU-02 Token Permissibility Logical Issue Minor Acknowledged

DOTC Security Assessment

ID Title Category Severity Status

DTK-01 Unlocked Compiler Version Language Specific Informational Resolved

DTK-02 Set constant to Variables Logical Issue Informational Resolved

DTK-03
Proper Usage of require and assert
Functions

Coding Style Informational Acknowledged

DTK-04 Unused Return Value Coding Style Informational Resolved

DTK-05 Incorrect ERC20 Interface Logical Issue Major Resolved

DTS-01 Inaccurate Revert Message Inconsistency Informational Resolved

DTS-02 Unused Constants Logical Issue Informational Resolved

DTS-03 Miscalculation of WeightTime
Mathematical
Operations

Major Resolved

DTS-04 Incorrect Naming Convention Utilization Coding Style Informational Resolved

DTS-05 Unlock From Pool A Logical Issue Informational Declined

DTS-06 Unusual Bonus Distribution Algorithm Logical Issue Informational Acknowledged

DTS-07 Unused Function Logical Issue Minor Resolved

DTS-08
Check Condition Inconsistent with
Message

Logical Issue Informational
Partially
Resolved

DTT-01 Lack of Input Validation Volatile Code Minor Resolved

DTT-02 Incorrect Naming Convention Utilization Coding Style Informational Resolved

DOTC Security Assessment

DCF-01 | ds.selectorSlots Not Updated

Category Severity Location Status

Logical Issue Major facetBase/DiamondCutFacet.sol: 130~146 Resolved

Description

ds.selectorSlots is not updated in _ReplaceFacetSelectors() , which may lead to the functions errors

in contract DiamondLoupeFacet .

Recommendation

We advise client to update ds.selectorSlots in _ReplaceFacetSelectors() .

Alleviation

The issue is patched in commit b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOA-01 | Unused Constant

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCAdOrderFacet.sol: 18, 81 Resolved

Description

The constant nPriceDecimals is not used in the contract.

Recommendation

We advise the client to review its functionality and remove it is of no use.

Alleviation

The client removed the unused constant and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOA-02 | Unnecessary Gas Cost to Call Variable from Structs

Category Severity Location Status

Gas Optimization Informational facetLogic/DOTCAdOrderFacet.sol: 145~169 Resolved

Description

Due to the complexity of the project, calling variables in nested structs can incur a significant gas cost. Yet

some of these consumptions are avoidable.

The removeAdOrder() function requires the message sender to be

db.orderTable.otcAdOrders[orderId].makerAddress in order to proceed. Thus it is logically correct to

substitute makerAddress with msg.sender to save gas. Note that issues of this type are not limited to the

aforementioned location.

Recommendation

We advise the client to substitute db.orderTable.otcAdOrders[orderId].makerAddress for msg.sender

to save gas. Besides, one could store the target value from a nested struct in a temporary variable first to

avoid repeatedly accessing that data structure storage.

Alleviation

The client replaced db.orderTable.otcAdOrders[orderId].makerAddress with msg.sender as we had

suggested as an effort to avoid unnecessary gas cost in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOA-03 | Function Name Misspellings

Category Severity Location Status

Coding Style Informational facetLogic/DOTCAdOrderFacet.sol: 193 Resolved

Description

There are misspellings in ConfermMoneyPayed() , ConfermMoneyReceived() and

queruMultiAdOrdersStatus() .

Recommendation

We advise the client change function names to ConfirmMoneyPayed() , ConfirmMoneyReceived() and

queryMultiAdOrdersStatus() respectively.

Alleviation

The client fixed the spelling of function names in commit b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOA-04 | Check Condition Inconsistent with Message

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCAdOrderFacet.sol: 37, 67, 69 Partially Resolved

Description

Argument values that equal thresholds are permitted in these checks while the revert messages state

otherwise. Particularly, issues of this type are found in setMakerFee() , setTakerFee() , addStakingA() ,

createAdOrder() , _checkAdOrder() , _checkExOrder() , createExOrder() as listed below.

require(_fee>=0,'fee must be greater than 0');

require(db.stakingTable.poolA[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolAMin,'amount must be greater than 100 DOTC');

require(db.stakingTable.poolB[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolBMin,'amount must be greater than 10 DOTC');

require(nOrderValue >= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.minAmount>= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.totalAmount>=adInput.maxAmount,"totalAmount must be greater than

maxAmount");

require(adInput.minAmount<=adInput.maxAmount,"maxAmount must be greater than minAmount");

Recommendation

We advise client to fix either the conditionals or messages to make them consistent.

Alleviation

The client fixed some of the error messages to provide more lucid feedbacks in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOB-01 | Repetitive Function Implementations

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCArbitBase.sol: 17~26, 173~208, 27~39, 51~104 Acknowledged

Description

_calculateArbitPeriod() , _checkExArbitApply() , _checkExArbitAccess() ,

_checkCancelOrderArbit() and _updateArbitResult() have been implemented in the same way twice in

different locations. Particularly, _calculateArbitPeriod() in DOTCArbitBase is missing "override"

specifier and may not compile.

Recommendation

We advise client to keep only one implementation for each function.

Alleviation

The client agrees to implement these functions only once in their feedback but the issue is not yet fixed at

this moment as it hasn't affect the contract functionality.

DOTC Security Assessment

DOC-01 | Repetitive Function Implementations

Category Severity Location Status

Logical Issue Minor facetBase/DOTCFacetBase.sol: 296~327 Acknowledged

Description

_calculateArbitPeriod() , _checkExArbitApply() , _checkExArbitAccess() ,

_checkCancelOrderArbit() and _updateArbitResult() have been implemented in the same way twice in

different locations. Particularly, _calculateArbitPeriod() in DOTCArbitBase is missing "override"

specifier and may not compile.

Recommendation

We advise client to keep only one implementation for each function.

Alleviation

The client agrees to implement these functions only once in their feedback but the issue is not yet fixed at

this moment as it hasn't affect the contract functionality.

DOTC Security Assessment

DOC-02 | Unnecessary Calculation Out of Bound Risk

Category Severity Location Status

Mathematical Operations Informational facetBase/DOTCFacetBase.sol: 129 Partially Resolved

Description

The calculation in _getBackRate() could easily lead to overflow when nPeriodCount accumulates,

considering 1000^26 > 2^256 and 1000*(0.7^20) < 1. This can be easily avoided by replacing exponentials

with a loop where the back rate is multiplied by 700 then divided by 1000 each time. Also, relevant

financial model should be reviewed to ensure the calculation result stays inbound.

Recommendation

We advise the client to calculate the compounded _backrate with a loop.

Alleviation

The client added a max limit to backRate which partially resolved the issue in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOC-03 | Too Many Digits

Category Severity Location Status

Coding Style Informational facetBase/DOTCFacetBase.sol: 36 Resolved

Description

Literals with many digits are difficult to read and review, such the several variables in DOTCFacetBase.sol .

Recommendation

Use:

Ether suffix

Time suffix, or

The scientific notation

Alleviation

The client applies scientific notiations to improve readability and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals

DOC-04 | Incorrect Naming Convention Utilization

Category Severity Location Status

Coding Style Informational facetBase/DOTCFacetBase.sol: 36, 37, 39, 40, 42, 44, 46 Resolved

Description

Solidity defines a naming convention that should be followed. In general, the following naming conventions

should be utilized in a Solidity file:

Constants should be in UPPER_CASE_WITH_UNDERSCORES

In case the naming conventions are not followed, there should be proper documentation to explain the

naming and the purpose of the variable.
Issues of this type are found in DOTCFacetBase and

DOTCStakingFacet .

Recommendation

The recommendations outlined here are intended to improve the readability, and thus they are not rules,

but rather guidelines to try and help convey the most information through the names of things.

Alleviation

The client renamed some of the variables to improve readabllity and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOC-05 | Unused Function

Category Severity Location Status

Logical Issue Minor facetBase/DOTCFacetBase.sol: 58~63 Resolved

Description

The internal function _burnToken() is never called in the project.

Recommendation

We advise the client to review its functionality and remove it if there is no plan for further use.

Alleviation

The client removed the function and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOC-06 | Redundant Length Getter

Category Severity Location Status

Gas Optimization Informational facetBase/DOTCFacetBase.sol: 328~334 Declined

Description

It appears that under no circumstances can db.arbitTable.arbiterList[i]==0 therefore the loop and

count operations are redundant.

Recommendation

We advise client to simply return db.arbitTable.arbiterList.length in _getArbiterLength() .

Alleviation

The client believes this is part of a fault-tolerant design and leaves it be.

DOTC Security Assessment

DOC-07 | Redundant Remove Operation

Category Severity Location Status

Gas Optimization Informational facetBase/DOTCFacetBase.sol: 225~228 Acknowledged

Description

The gas consumption of the current algorithm in _removeArbiterFromDB() scales with list length which is

easily avoidable on the premise that the sequence of arbiters in arbiterList does not matter.

Recommendation

We advise the client to swap db.arbitTable.arbiterList[i] and db.arbitTable.arbiterList[length-

1] then delete db.arbitTable.arbiterList[length-1] to cut gas consumption down to a constant.

Alleviation

The client agrees to revise the code as we suggested in a later version.

DOTC Security Assessment

DOC-08 | Logic Issue When Removing Arbiter

Category Severity Location Status

Logical Issue Informational facetBase/DOTCFacetBase.sol: 233~236 Acknowledged

Description

The locked issue would always be refunded full consts.arbiterDOTC in _removeArbiterFromDB() which

makes the arbiter penalty less effective. We would like to know more about arbiter penalty rules that are

missing in the whitepaper.

Alleviation

The client responded that honest arbitrators are not to be punished and finds no issue in the coded logic.

DOTC Security Assessment

DOE-01 | Check Condition Inconsistent with Message

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCExOrderBase.sol: 23, 22 Partially Resolved

Description

Argument values that equal thresholds are permitted in these checks while the revert messages state

otherwise. Particularly, issues of this type are found in setMakerFee() , setTakerFee() , addStakingA() ,

createAdOrder() , _checkAdOrder() , _checkExOrder() , createExOrder() as listed below.

require(_fee>=0,'fee must be greater than 0');

require(db.stakingTable.poolA[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolAMin,'amount must be greater than 100 DOTC');

require(db.stakingTable.poolB[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolBMin,'amount must be greater than 10 DOTC');

require(nOrderValue >= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.minAmount>= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.totalAmount>=adInput.maxAmount,"totalAmount must be greater than

maxAmount");

require(adInput.minAmount<=adInput.maxAmount,"maxAmount must be greater than minAmount");

Recommendation

We advise client to fix either the conditionals or messages to make them consistent.

Alleviation

The client fixed some of the error messages to provide more lucid feedbacks in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOF-01 | Repetitive Function Implementations

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCArbitFacet.sol: 140~171, 151~160, 175~210, 161~173 Acknowledged

Description

_calculateArbitPeriod() , _checkExArbitApply() , _checkExArbitAccess() ,

_checkCancelOrderArbit() and _updateArbitResult() have been implemented in the same way twice in

different locations. Particularly, _calculateArbitPeriod() in DOTCArbitBase is missing "override"

specifier and may not compile.

Recommendation

We advise client to keep only one implementation for each function.

Alleviation

The client agrees to implement these functions only once in their feedback but the issue is not yet fixed at

this moment as it hasn't affect the contract functionality.

DOTC Security Assessment

DOF-02 | Redundant Conditional

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCArbitFacet.sol: 25, 28 Resolved

Description

The conditionals in createOrderArbit() are unnecessarily repetitive.

Recommendation

We advise client to combine the codes under a single conditional.

Alleviation

The client combined the conditionals as we suggested and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOF-03 | Logical issues in _clearInvitorSponsor

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCArbitFacet.sol: 325~341 Acknowledged

Description

Judging from the context, the invitor should be the sponsor of loser rather than msg.sender and the

inviter's assets rather than the loser's assets should be cleared in this function. Also, when locked <

nClearAmount , the inviter does not need to pay anything rather than all that is locked. We advise the client

to review the code logic and would like to know more about this part of the inviter rule that is missing in the

whitepaper.

Alleviation

The client responded that invitor sposor may be zero in _clearInvitorSponsor() and the relevant

functionality is just a credit show which doesn't work.

DOTC Security Assessment

DOK-01 | Check Condition Inconsistent with Message

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCFeeFacet.sol: 25, 38 Partially Resolved

Description

Argument values that equal thresholds are permitted in these checks while the revert messages state

otherwise. Particularly, issues of this type are found in setMakerFee() , setTakerFee() , addStakingA() ,

createAdOrder() , _checkAdOrder() , _checkExOrder() , createExOrder() as listed below.

require(_fee>=0,'fee must be greater than 0');

require(db.stakingTable.poolA[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolAMin,'amount must be greater than 100 DOTC');

require(db.stakingTable.poolB[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolBMin,'amount must be greater than 10 DOTC');

require(nOrderValue >= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.minAmount>= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.totalAmount>=adInput.maxAmount,"totalAmount must be greater than

maxAmount");

require(adInput.minAmount<=adInput.maxAmount,"maxAmount must be greater than minAmount");

Recommendation

We advise client to fix either the conditionals or messages to make them consistent.

Alleviation

The client fixed some of the error messages to provide more lucid feedbacks in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOL-01 | Volatile Type Conversion

Category Severity Location Status

Volatile Code Minor facetLogic/DOTCCardAribtFacet.sol: 60 Resolved

Description

Explicit type conversion not allowed from uint256 to address , such as in createCardArbit() .

Recommendation

Convert uint256 to uint160 first as in DOTCArbitFacet.sol L65.

Alleviation

The client revised the code so that uint256 is converted to uint160 first and the issue is fixed in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOL-02 | Magic Reward and Margin Rates

Category Severity Location Status

Magic Numbers Informational facetLogic/DOTCCardAribtFacet.sol: 1 Declined

Description

Margin rates and reward rates exists as magic numbers and are not settable unlike fee rates. Particularly in

_backWinnerDeposit() , _clearLoserDeposit() , _rewardArbiter() , CreateExOrder() ,

createCardArbit() and more. We would advise the client to review the functionalities and use variables

and setters to improve flexibility if appropriate.

Recommendation

We advise the client to review the functionalities and use variables and setters to improve readablity and

flexibility.

Alleviation

The client introduced a few parameters in the later version but still uses magic numbers and responds that

they want to solidify some parameters before evaluating the impact of variable parameters.

DOTC Security Assessment

DOM-01 | Inconsistent Getter Function

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCManageFacet.sol: 108 Resolved

Description

consts.stakingParam.bonusUnlockTime is returned from getStakingMin() while the context suggests

otherwise.

Recommendation

We advise client to change RHS to consts.stakingParam.poolBMin .

Alleviation

The client revised the code as we suggested and the issue is fixed in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOM-02 | Owner Privileges

Category Severity Location Status

Centralization / Privilege Informational facetLogic/DOTCManageFacet.sol Acknowledged

Description

To bridge the trust gap between owner and users, the owner needs to express a sincere attitude with the

consideration of the administrator teamʼs anonymousness.
The owner has the responsibility to notify users

with the following capability:

Designated Manager can modify key parameters in the market including StakingMin ,

unLockWaitTime , bonusUnlockTime , firstBonusTime , bonusWaitTime , StakingStartTime ,

VIPConditionAmount , ManualDOTCPrice , PriceMode , dotcContract and wethContract .

Contract owner can force remove arbiters.

All contracts use the Diamond design pattern (EIP-2535) and can be upgraded through the

administrator actions. All facet logics are subject to potential modifications.

DOTC Security Assessment

DOO-01 | Emit Events Missing indexed

Category Severity Location Status

Volatile Code Informational facetLogic/DOTCExOrderFacet.sol: 17~20 Resolved

Description

It is generally good practice to put indexed before addresses and arrays in events. One can add the

attribute indexed to up to three parameters which adds them to a special data structure known as “topics”

instead of the data part of the log. Topics allow one to search for events, for example when filtering a

sequence of blocks for certain events. One can also filter events by the address of the contract that

emitted the event. Currently, event parameters in DOTCExOrderFacet are missing indexd .

Recommendation

We advise client to add indexed in emitted events. Note that this recommendation is not limited to this

facet contract.

Alleviation

The client added indexed for event parameters and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOO-02 | Magic Reward and Margin Rates

Category Severity Location Status

Magic Numbers Informational facetLogic/DOTCExOrderFacet.sol: 1 Declined

Description

Margin rates and reward rates exists as magic numbers and are not settable unlike fee rates. Particularly in

_backWinnerDeposit() , _clearLoserDeposit() , _rewardArbiter() , CreateExOrder() ,

createCardArbit() and more. We would advise the client to review the functionalities and use variables

and setters to improve flexibility if appropriate.

Recommendation

We advise the client to review the functionalities and use variables and setters to improve readablity and

flexibility.

Alleviation

The client introduced a few parameters in the later version but still uses magic numbers and responds that

they want to solidify some parameters before evaluating the impact of variable parameters.

DOTC Security Assessment

DOO-03 | Function Name Misspellings

Category Severity Location Status

Coding Style Informational facetLogic/DOTCExOrderFacet.sol: 84, 104 Resolved

Description

There are misspellings in ConfermMoneyPayed() , ConfermMoneyReceived() and

queruMultiAdOrdersStatus() .

Recommendation

We advise the client change function names to ConfirmMoneyPayed() , ConfirmMoneyReceived() and

queryMultiAdOrdersStatus() respectively.

Alleviation

The client fixed the spelling of function names in commit b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOO-04 | Check Condition Inconsistent with Message

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCExOrderFacet.sol: 29 Partially Resolved

Description

Argument values that equal thresholds are permitted in these checks while the revert messages state

otherwise. Particularly, issues of this type are found in setMakerFee() , setTakerFee() , addStakingA() ,

createAdOrder() , _checkAdOrder() , _checkExOrder() , createExOrder() as listed below.

require(_fee>=0,'fee must be greater than 0');

require(db.stakingTable.poolA[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolAMin,'amount must be greater than 100 DOTC');

require(db.stakingTable.poolB[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolBMin,'amount must be greater than 10 DOTC');

require(nOrderValue >= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.minAmount>= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.totalAmount>=adInput.maxAmount,"totalAmount must be greater than

maxAmount");

require(adInput.minAmount<=adInput.maxAmount,"maxAmount must be greater than minAmount");

Recommendation

We advise client to fix either the conditionals or messages to make them consistent.

Alleviation

The client fixed some of the error messages to provide more lucid feedbacks in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DOP-01 | Check-Effect-Interaction Pattern Violation

Category Severity Location Status

Control Flow Minor facetLogic/DOTCMiningFacet.sol: 43~45 Resolved

Description

During RemoveTokenFromRiskPool() , RemoveTokenFromRiskPool() and function calls, state variables are

changed after transfers. This violates the checks-effects-interactions pattern.

Recommendation

It is recommended to follow checks-effects-interactions pattern and execute the transfer after changing

state variables for cases like this. It shields public and external functions from re-entrancy abuses. checks-

effects-interactions pattern also applies to ERC20 tokens as they can inform the recipient of a transfer

in certain implementations.

Alleviation

The client revised the code to follow the suggested pattern and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

https://docs.soliditylang.org/en/develop/security-considerations.html?highlight=check-effects%23use-the-checks-effects-interactions-pattern

DOP-02 | DAO Pools Only Use DOTC

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCMiningFacet.sol Acknowledged

Description

It seems that currently DAO pool operations only use a single dotc address at any time. We would like an

explanation for the design that the MiningPool and RiskPool data structures include multiple pool

addresses.
We would advise simplifying the add/remove functions by removing the token arguments and

related checks if multiple tokens are to be supported. Otherwise, we advise adding a check to validate

token is dotc in remove() .

Alleviation

The client responded that the coded logic is needed for future consideration.

DOTC Security Assessment

DOR-01 | Check-Effect-Interaction Pattern Violation

Category Severity Location Status

Control Flow Minor facetLogic/DOTCRiskFacet.sol: 39~40 Resolved

Description

During RemoveTokenFromRiskPool() , RemoveTokenFromRiskPool() and function calls, state variables are

changed after transfers. This violates the checks-effects-interactions pattern.

Recommendation

It is recommended to follow checks-effects-interactions pattern and execute the transfer after changing

state variables for cases like this. It shields public and external functions from re-entrancy abuses. checks-

effects-interactions pattern also applies to ERC20 tokens as they can inform the recipient of a transfer

in certain implementations.

Alleviation

The client revised the code to follow the suggested pattern and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

https://docs.soliditylang.org/en/develop/security-considerations.html?highlight=check-effects%23use-the-checks-effects-interactions-pattern

DOR-02 | DAO Pools Only Use DOTC

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCRiskFacet.sol Acknowledged

Description

It seems that currently DAO pool operations only use a single dotc address at any time. We would like an

explanation for the design that the MiningPool and RiskPool data structures include multiple pool

addresses.
We would advise simplifying the add/remove functions by removing the token arguments and

related checks if multiple tokens are to be supported. Otherwise, we advise adding a check to validate

token is dotc in remove() .

Alleviation

The client responded that the coded logic is needed for future consideration.

DOTC Security Assessment

DOS-01 | Repetitive Function Implementations

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCArbitSettleFacet.sol: 61~114 Acknowledged

Description

_calculateArbitPeriod() , _checkExArbitApply() , _checkExArbitAccess() ,

_checkCancelOrderArbit() and _updateArbitResult() have been implemented in the same way twice in

different locations. Particularly, _calculateArbitPeriod() in DOTCArbitBase is missing "override"

specifier and may not compile.

Recommendation

We advise client to keep only one implementation for each function.

Alleviation

The client agrees to implement these functions only once in their feedback but the issue is not yet fixed at

this moment as it hasn't affect the contract functionality.

DOTC Security Assessment

DOS-02 | Magic Reward and Margin Rates

Category Severity Location Status

Magic Numbers Informational facetLogic/DOTCArbitSettleFacet.sol: 1 Declined

Description

Margin rates and reward rates exists as magic numbers and are not settable unlike fee rates. Particularly in

_backWinnerDeposit() , _clearLoserDeposit() , _rewardArbiter() , CreateExOrder() ,

createCardArbit() and more. We would advise the client to review the functionalities and use variables

and setters to improve flexibility if appropriate.

Recommendation

We advise the client to review the functionalities and use variables and setters to improve readablity and

flexibility.

Alleviation

The client introduced a few parameters in the later version but still uses magic numbers and responds that

they want to solidify some parameters before evaluating the impact of variable parameters.

DOTC Security Assessment

DOU-01 | Locked Assets Can Not Be Unlocked

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCUserFacet.sol: 152~154 Declined

Description

Assets locked by lockToken() cannot be unlocked. We advise the client to review and explain the

functionality of this method.

Recommendation

We advise the client to review the functionality of this method.

Alleviation

The client claims that the this is the asset that users can't use during the transaction.

DOTC Security Assessment

DOU-02 | Token Permissibility

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCUserFacet.sol Acknowledged

Description

At the current state, any ERC20 token is allowed to enter the market. The market credibility relies on the

assumption that the internal asset balances are ever consistent with the external actual token balances.

Yet, such consistency may be broken by either deflationary/elastic token design or a malicious attempt to

scam other users (or a bit of both).

Recommendation

We advise the client to implement a whitelist to control token permissibility and avoid

deflationary/rebasing/elastic tokens and add consistency checks before and after tokenDeposit() and

tokenWithdraw() .

Alleviation

The client responded that the contracts will not restrict any token from entering the market just like

uniswap while mainstream tokens would be highlighted at front-end and it is up to the users to assess the

potential risks.

DOTC Security Assessment

DTK-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational token/DOTCToken.sol: 2 Resolved

Description

The contract has unlocked compiler versions. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

ambiguity when debugging as compiler-specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

It is a general practice to instead lock the compiler at a specific version rather than allow a range of

compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones more easily.

We recommend locking the compiler at the lowest possible version that supports all the capabilities

wished by the codebase. This will ensure that the project utilizes a compiler version that has been in use

for the longest time and as such is less likely to contain yet-undiscovered bugs.

Alleviation

The client locked the compiler version in commit b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTK-02 | Set constant to Variables

Category Severity Location Status

Logical Issue Informational token/DOTCToken.sol: 11 Resolved

Description

The variable decimals is not changed throughout the smart contract.

Recommendation

We advise the client to set decimals as a constant variable.

Alleviation

The decimals variable is now declared as a constant and the issue is fixed in commit

8b0297a94cc4c7651ab7b87842fc10f61dabccb2 .

DOTC Security Assessment

DTK-03 | Proper Usage of require and assert Functions

Category Severity Location Status

Coding Style Informational token/DOTCToken.sol: 47 Acknowledged

Description

The assert function in _transfer() should only be used to test for internal errors, and to check

invariants. The require function should be used to ensure valid conditions, such as inputs, or contract

state variables are met, or to validate return values from calls to external contracts.

Recommendation

Consider using the require function, along with a custom error message when the condition fails, instead

of the assert function on the lines showcased above.

Alleviation

The client agrees to replace assert for require in a later version.

DOTC Security Assessment

DTK-04 | Unused Return Value

Category Severity Location Status

Coding Style Informational token/DOTCToken.sol: 85 Resolved

Description

The return value success in approve() is declared but never used in the function body.

Recommendation

Remove or comment out the return value.

Alleviation

The client removed success and fixed the issue in commit 8b0297a94cc4c7651ab7b87842fc10f61dabccb2 .

DOTC Security Assessment

DTK-05 | Incorrect ERC20 Interface

Category Severity Location Status

Logical Issue Major token/DOTCToken.sol: 58 Resolved

Description

Incorrect return values for ERC20 function transfer() . A contract compiled with Solidity > 0.4.22

interacting with these functions will fail to execute them, as the return value is missing.

Recommendation

Set the appropriate return values and types for the defined ERC20 function transfer() .

Alleviation

The transfer() function now returns a boolean in accordance with the ERC-20 and the issue is fixed in

commit 8b0297a94cc4c7651ab7b87842fc10f61dabccb2 .

DOTC Security Assessment

DTS-01 | Inaccurate Revert Message

Category Severity Location Status

Inconsistency Informational facetLogic/DOTCStakingFacet.sol: 48 Resolved

Description

The fourth revert messages in addStakingA() and addStakingB() are potentially misleading if the

manager adjusts the corresponding parameter. Loose feedbacks of this kind are not limited to this location.

Recommendation

We advise the client to provide more rigorous feedback in the revert messages.

Alleviation

The client corrected the error message as we suggested and the issue is fixed in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTS-02 | Unused Constants

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCStakingFacet.sol: 19 Resolved

Description

nPoolAMaxDays is not used in the DOTCStakingFacet contract.

Recommendation

We advise the client to remove it if there is no plan for further usage.

Alleviation

The client removed nPoolAMaxDays and the issue is fixed.

DOTC Security Assessment

DTS-03 | Miscalculation of WeightTime

Category Severity Location Status

Mathematical Operations Major facetLogic/DOTCStakingFacet.sol: 233 Resolved

Description

NewLockTime in _RecalculateWeightTime() needs to be multiplied by 86400 before it is subtracted to get

‘newWeightTime’ so that their dimensions are both "seconds" according to the whitepaper.

Recommendation

We advise client to multiply NewLockTime by 86400 before it is subtracted to get ‘newWeightTime’.

Alleviation

The client corrected the calculation as we suggested and the issue is fixed in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTS-04 | Incorrect Naming Convention Utilization

Category Severity Location Status

Coding Style Informational facetLogic/DOTCStakingFacet.sol: 46, 15~46, 19 Resolved

Description

Solidity defines a naming convention that should be followed. In general, the following naming conventions

should be utilized in a Solidity file:

Constants should be in UPPER_CASE_WITH_UNDERSCORES

In case the naming conventions are not followed, there should be proper documentation to explain the

naming and the purpose of the variable.
Issues of this type are found in DOTCFacetBase and

DOTCStakingFacet .

Recommendation

The recommendations outlined here are intended to improve the readability, and thus they are not rules,

but rather guidelines to try and help convey the most information through the names of things.

Alleviation

The client renamed some of the variables to improve readabllity and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTS-05 | Unlock From Pool A

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCStakingFacet.sol Declined

Description

It seems that at the moment nPoolAMaxDays is not yet used, the functionality described in the white paper

is yet to be fulfilled and one cannot unlock stakes from pool A. We would like to first make sure there is no

misunderstanding and inquire about further development plans.

Alleviation

The client modified the staking facet contract but the issue remains that the stakes in pool A cannot be

unlocked.

DOTC Security Assessment

DTS-06 | Unusual Bonus Distribution Algorithm

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCStakingFacet.sol: 265, 223~235 Acknowledged

Description

The staking bonus distribution employs an algorithm that gives some unusual results in

_RecalculateWeightTime() and _calculateAvailBonus() . We found that sometimes a recent larger

staking would decrease one's share for the bonus. We advise the client to review the financial models and

give an explanation for such counter-intuitive cases.

Alleviation

The client claims that they will improve the bonus algorithm in a later version.

DOTC Security Assessment

DTS-07 | Unused Function

Category Severity Location Status

Logical Issue Minor facetLogic/DOTCStakingFacet.sol: 220~222 Resolved

Description

WeightTimeTest() has not been used in the contract.

Recommendation

We advise client to review its functionality and either declare it as external or remove it.

Alleviation

The client removed the function and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTS-08 | Check Condition Inconsistent with Message

Category Severity Location Status

Logical Issue Informational facetLogic/DOTCStakingFacet.sol: 48 Partially Resolved

Description

Argument values that equal thresholds are permitted in these checks while the revert messages state

otherwise. Particularly, issues of this type are found in setMakerFee() , setTakerFee() , addStakingA() ,

createAdOrder() , _checkAdOrder() , _checkExOrder() , createExOrder() as listed below.

require(_fee>=0,'fee must be greater than 0');

require(db.stakingTable.poolA[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolAMin,'amount must be greater than 100 DOTC');

require(db.stakingTable.poolB[db.config.dotcContract].totalAccount<=nPoolMax,"Pool accounts

have been the maximum");

require(amount>=consts.stakingParam.poolBMin,'amount must be greater than 10 DOTC');

require(nOrderValue >= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.minAmount>= 20*nUsdtDecimals,'AdOrder value must be greater than 20 USDT.');

require(adInput.totalAmount>=adInput.maxAmount,"totalAmount must be greater than

maxAmount");

require(adInput.minAmount<=adInput.maxAmount,"maxAmount must be greater than minAmount");

Recommendation

We advise client to fix either the conditionals or messages to make them consistent.

Alleviation

The client fixed some of the error messages to provide more lucid feedbacks in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTT-01 | Lack of Input Validation

Category Severity Location Status

Volatile Code Minor governance/DOTCTimelock.sol: 29 Resolved

Description

The assigned values to admin_ should be verified as non-zero values to prevent being mistakenly assigned

as address(0) in the constructor() function.

Recommendation

Check that the addresses are not zero by adding the following checks in the constructor() function.

require(admin_ != address(0),"Zero address");

Alleviation

The client added a check as we had suggested and the issue is fixed in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

DTT-02 | Incorrect Naming Convention Utilization

Category Severity Location Status

Coding Style Informational governance/DOTCTimelock.sol: 24 Resolved

Description

Solidity defines a naming convention that should be followed. In general, the following naming conventions

should be utilized in a Solidity file:

Functions and parameters should be in mixedCase

In case the naming conventions are not followed, there should be proper documentation to explain the

naming and the purpose of the variable.
admin_initializd does not conform to this convention unlike

other variables in the context.

Recommendation

The recommendations outlined here are intended to improve the readability, and thus they are not rules,

but rather guidelines to try and help convey the most information through the names of things.

Alleviation

The client renamed some of the variables to improve readability and the issue is resolved in commit

b1785dcd51678fc34456bf35f6bb62000207410e.

DOTC Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

DOTC Security Assessment

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code,

such as a constructor assignment imposing different require statements on the input variables than a setter

function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and

should otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

DOTC Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

DOTC Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

DOTC Security Assessment

