/* * A header-only typesafe dynamic array implementation for plain C, * kinda like C++ std::vector. This code is compatible with C++, but should * only be used with POD (plain old data) types, as it uses memcpy() etc * instead of copy/move construction/assignment. * It requires a new type (created with the DA_TYPEDEF(ELEMENT_TYPE, ARRAY_TYPE_NAME) * macro) for each kind of element you want to put in a dynamic array; however * the "functions" to manipulate the array are actually macros and the same * for all element types. * The array elements are accessed via dynArr.p[i] or da_get(dynArr, i) * - the latter checks whether i is a valid index and asserts if not. * * One thing to keep in mind is that, because of using macros, the arguments to * the "functions" are usually evaluated more than once, so you should avoid * putting things with side effect (like function-calls with side effects or i++) * into them. Notable exceptions are the value arguments (v) of da_push() * and da_insert(), so it's still ok to do da_push(arr, fun_with_sideffects()); * or da_insert(a, 3, x++); * * The function-like da_* macros are short aliases of dg_dynarr_* macros. * If the short names clash with anything in your code or other headers * you are using, you can, before #including this header, do * #define DG_DYNARR_NO_SHORTNAMES * and use the long dg_dynarr_* forms of the macros instead. * * Using this library in your project: * Put this file somewhere in your project. * In *one* of your .c/.cpp files, do * #define DG_DYNARR_IMPLEMENTATION * #include "DG_dynarr.h" * to create the implementation of this library in that file. * You can just #include "DG_dynarr.h" (without the #define) in other source * files to use it there. * * See below this comment block for a usage example. * * You can #define your own allocators, assertion and the amount of runtime * checking of indexes, see CONFIGURATION section in the code for more information. * * * This is heavily inspired by Sean Barrett's stretchy_buffer.h * ( see: https://github.com/nothings/stb/blob/master/stretchy_buffer.h ) * However I wanted to have a struct that holds the array pointer and the length * and capacity, so that struct always remains at the same address while the * array memory might be reallocated. * I can live with arr.p[i] instead of arr[i], but I like how he managed to use * macros to create an API that doesn't force the user to specify the stored * type over and over again, so I stole some of his tricks :-) * * This has been tested with GCC 4.8 and clang 3.8 (-std=gnu89, -std=c99 and as C++; * -std=c89 works if you convert the C++-style comments to C comments) and * Microsoft Visual Studio 6 and 2010 (32bit) and 2013 (32bit and 64bit). * I guess it works with all (recentish) C++ compilers and C compilers supporting * C99 or even C89 + C++ comments (otherwise converting the comments should help). * * (C) 2016 Daniel Gibson * * LICENSE * This software is dual-licensed to the public domain and under the following * license: you are granted a perpetual, irrevocable license to copy, modify, * publish, and distribute this file as you see fit. * No warranty implied; use at your own risk. * * So you can do whatever you want with this code, including copying it * (or parts of it) into your own source. * No need to mention me or this "license" in your code or docs, even though * it would be appreciated, of course. */ #if 0 // Usage Example: #define DG_DYNARR_IMPLEMENTATION // this define is only needed in *one* .c/.cpp file! #include "DG_dynarr.h" DA_TYPEDEF(int, MyIntArrType); // creates MyIntArrType - a dynamic array for ints void printIntArr(MyIntArrType* arr, const char* name) { // note that arr is a pointer here, so use *arr in the da_*() functions. printf("%s = {", name); if(da_count(*arr) > 0) printf(" %d", arr->p[0]); for(int i=1; ip[i]); printf(" }\n"); } void myFunction() { MyIntArrType a1 = {0}; // make sure to zero out the struct // instead of = {0}; you could also call da_init(a1); da_push(a1, 42); assert(da_count(a1) == 1 && a1.p[0] == 42); int* addedElements = da_addn_uninit(a1, 3); assert(da_count(a1) == 4); for(size_t i=0; i<3; ++i) addedElements[i] = i+5; printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7 }" MyIntArrType a2; da_init(a2); da_addn(a2, a1.p, da_count(a1)); // copy all elements from a1 to a2 assert(da_count(a2) == 4); da_insert(a2, 1, 11); printIntArr(&a2, "a2"); // "a2 = { 42, 11, 5, 6, 7 }" da_delete(a2, 2); printIntArr(&a2, "a2"); // "a2 = { 42, 11, 6, 7 }" da_deletefast(a2, 0); printIntArr(&a2, "a2"); // "a2 = { 7, 11, 6 }" da_push(a1, 3); printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7, 3 }" int x=da_pop(a1); printf("x = %d\n", x); // "x = 3" printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7 }" da_free(a1); // make sure not to leak memory! da_free(a2); } #endif // 0 (usage example) #ifndef DG__DYNARR_H #define DG__DYNARR_H // ######### CONFIGURATION ######### // following: some #defines that you can tweak to your liking // you can reduce some overhead by defining DG_DYNARR_INDEX_CHECK_LEVEL to 2, 1 or 0 #ifndef DG_DYNARR_INDEX_CHECK_LEVEL // 0: (almost) no index checking // 1: macros "returning" something return a.p[0] or NULL if the index was invalid // 2: assertions in all macros taking indexes that make sure they're valid // 3: 1 and 2 #define DG_DYNARR_INDEX_CHECK_LEVEL 3 #endif // DG_DYNARR_INDEX_CHECK_LEVEL // you can #define your own DG_DYNARR_ASSERT(condition, msgstring) // that will be used for all assertions in this code. #ifndef DG_DYNARR_ASSERT #include #define DG_DYNARR_ASSERT(cond, msg) assert((cond) && msg) #endif // you can #define DG_DYNARR_OUT_OF_MEMORY to some code that will be executed // if allocating memory fails // it's needed only before the #define DG_DYNARR_IMPLEMENTATION #include of // this header, so the following is here only for reference and commented out /* #ifndef DG_DYNARR_OUT_OF_MEMORY #define DG_DYNARR_OUT_OF_MEMORY DG_DYNARR_ASSERT(0, "Out of Memory!"); #endif */ // By default, C's malloc(), realloc() and free() is used to allocate/free heap memory // (see beginning of "#ifdef DG_DYNARR_IMPLEMENTATION" block below). // You can #define DG_DYNARR_MALLOC, DG_DYNARR_REALLOC and DG_DYNARR_FREE yourself // to provide alternative implementations like Win32 Heap(Re)Alloc/HeapFree // it's needed only before the #define DG_DYNARR_IMPLEMENTATION #include of // this header, so the following is here only for reference and commented out /* #define DG_DYNARR_MALLOC(elemSize, numElems) malloc(elemSize*numElems) // oldNumElems is not used for C's realloc, but maybe you need it for // your allocator to copy the old elements over #define DG_DYNARR_REALLOC(ptr, elemSize, oldNumElems, newCapacity) \ realloc(ptr, elemSize*newCapacity); #define DG_DYNARR_FREE(ptr) free(ptr) */ // if you want to prepend something to the non inline (DG_DYNARR_INLINE) functions, // like "__declspec(dllexport)" or whatever, #define DG_DYNARR_DEF #ifndef DG_DYNARR_DEF // by defaults it's empty. #define DG_DYNARR_DEF #endif // some functions are inline, in case your compiler doesn't like "static inline" // but wants "__inline__" or something instead, #define DG_DYNARR_INLINE accordingly. #ifndef DG_DYNARR_INLINE // for pre-C99 compilers you might have to use something compiler-specific (or maybe only "static") #ifdef _MSC_VER #define DG_DYNARR_INLINE static __inline #else #define DG_DYNARR_INLINE static inline #endif #endif // ############### Short da_* aliases for the long names ############### #ifndef DG_DYNARR_NO_SHORTNAMES // this macro is used to create an array type (struct) for elements of TYPE // use like DA_TYPEDEF(int, MyIntArrType); MyIntArrType ia = {0}; da_push(ia, 42); ... #define DA_TYPEDEF(TYPE, NewArrayTypeName) \ DG_DYNARR_TYPEDEF(TYPE, NewArrayTypeName) // makes sure the array is initialized and can be used. // either do YourArray arr = {0}; or YourArray arr; da_init(arr); #define da_init(a) \ dg_dynarr_init(a) /* * This allows you to provide an external buffer that'll be used as long as it's big enough * once you add more elements than buf can hold, fresh memory will be allocated on the heap * Use like: * DA_TYPEDEF(double, MyDoubleArrType); * MyDoubleArrType arr; * double buf[8]; * dg_dynarr_init_external(arr, buf, 8); * dg_dynarr_push(arr, 1.23); * ... */ #define da_init_external(a, buf, buf_cap) \ dg_dynarr_init_external(a, buf, buf_cap) // use this to free the memory allocated by dg_dynarr once you don't need the array anymore // Note: it is safe to add new elements to the array after da_free() // it will allocate new memory, just like it would directly after da_init() #define da_free(a) \ dg_dynarr_free(a) // add an element to the array (appended at the end) #define da_push(a, v) \ dg_dynarr_push(a, v) // add an element to the array (appended at the end) // does the same as push, just for consistency with addn (like insert and insertn) #define da_add(a, v) \ dg_dynarr_add(a, v) // append n elements to a and initialize them from array vals, doesn't return anything // ! vals (and all other args) are evaluated multiple times ! #define da_addn(a, vals, n) \ dg_dynarr_addn(a, vals, n) // add n elements to the end of the array and zeroes them with memset() // returns pointer to first added element, NULL if out of memory (array is empty then) #define da_addn_zeroed(a, n) \ dg_dynarr_addn_zeroed(a, n) // add n elements to the end of the array, will remain uninitialized // returns pointer to first added element, NULL if out of memory (array is empty then) #define da_addn_uninit(a, n) \ dg_dynarr_addn_uninit(a, n) // insert a single value v at index idx #define da_insert(a, idx, v) \ dg_dynarr_insert(a, idx, v) // insert n elements into a at idx, initialize them from array vals // doesn't return anything // ! vals (and all other args) is evaluated multiple times ! #define da_insertn(a, idx, vals, n) \ dg_dynarr_insertn(a, idx, vals, n) // insert n elements into a at idx and zeroe them with memset() // returns pointer to first inserted element or NULL if out of memory #define da_insertn_zeroed(a, idx, n) \ dg_dynarr_insertn_zeroed(a, idx, n) // insert n uninitialized elements into a at idx; // returns pointer to first inserted element or NULL if out of memory #define da_insertn_uninit(a, idx, n) \ dg_dynarr_insertn_uninit(a, idx, n) // set a single value v at index idx - like "a.p[idx] = v;" but with checks (unless disabled) #define da_set(a, idx, v) \ dg_dynarr_set(a, idx, v) // overwrite n elements of a, starting at idx, with values from array vals // doesn't return anything // ! vals (and all other args) is evaluated multiple times ! #define da_setn(a, idx, vals, n) \ dg_dynarr_setn(a, idx, vals, n) // delete the element at idx, moving all following elements (=> keeps order) #define da_delete(a, idx) \ dg_dynarr_delete(a, idx) // delete n elements starting at idx, moving all following elements (=> keeps order) #define da_deleten(a, idx, n) \ dg_dynarr_deleten(a, idx, n) // delete the element at idx, move the last element there (=> doesn't keep order) #define da_deletefast(a, idx) \ dg_dynarr_deletefast(a, idx) // delete n elements starting at idx, move the last n elements there (=> doesn't keep order) #define da_deletenfast(a, idx, n) \ dg_dynarr_deletenfast(a, idx, n) // removes all elements from the array, but does not free the buffer // (if you want to free the buffer too, just use da_free()) #define da_clear(a) \ dg_dynarr_clear(a) // sets the logical number of elements in the array // if cnt > dg_dynarr_count(a), the logical count will be increased accordingly // and the new elements will be uninitialized #define da_setcount(a, cnt) \ dg_dynarr_setcount(a, cnt) // make sure the array can store cap elements without reallocating // logical count remains unchanged #define da_reserve(a, cap) \ dg_dynarr_reserve(a, cap) // this makes sure a only uses as much memory as for its elements // => maybe useful if a used to contain a huge amount of elements, // but you deleted most of them and want to free some memory // Note however that this implies an allocation and copying the remaining // elements, so only do this if it frees enough memory to be worthwhile! #define da_shrink_to_fit(a) \ dg_dynarr_shrink_to_fit(a) // removes and returns the last element of the array #define da_pop(a) \ dg_dynarr_pop(a) // returns the last element of the array #define da_last(a) \ dg_dynarr_last(a) // returns the pointer *to* the last element of the array // (in contrast to dg_dynarr_end() which returns a pointer *after* the last element) // returns NULL if array is empty #define da_lastptr(a) \ dg_dynarr_lastptr(a) // get element at index idx (like a.p[idx]), but with checks // (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0) #define da_get(a, idx) \ dg_dynarr_get(a,idx) // get pointer to element at index idx (like &a.p[idx]), but with checks // and it returns NULL if idx is invalid #define da_getptr(a, idx) \ dg_dynarr_getptr(a, idx) // returns a pointer to the first element of the array // (together with dg_dynarr_end() you can do C++-style iterating) #define da_begin(a) \ dg_dynarr_begin(a) // returns a pointer to the past-the-end element of the array // Allows C++-style iterating, in case you're into that kind of thing: // for(T *it=da_begin(a), *end=da_end(a); it!=end; ++it) foo(*it); // (see da_lastptr() to get a pointer *to* the last element) #define da_end(a) \ dg_dynarr_end(a) // returns (logical) number of elements currently in the array #define da_count(a) \ dg_dynarr_count(a) // get the current reserved capacity of the array #define da_capacity(a) \ dg_dynarr_capacity(a) // returns 1 if the array is empty, else 0 #define da_empty(a) \ dg_dynarr_empty(a) // returns 1 if the last (re)allocation when inserting failed (Out Of Memory) // or if the array has never allocated any memory yet, else 0 // deleting the contents when growing fails instead of keeping old may seem // a bit uncool, but it's simple and OOM should rarely happen on modern systems // anyway - after all you need to deplete both RAM and swap/pagefile.sys #define da_oom(a) \ dg_dynarr_oom(a) // sort a using the given qsort()-comparator cmp // (just a slim wrapper around qsort()) #define da_sort(a, cmp) \ dg_dynarr_sort(a, cmp) #endif // DG_DYNARR_NO_SHORTNAMES // ######### Implementation of the actual macros (using the long names) ########## // use like DG_DYNARR_TYPEDEF(int, MyIntArrType); MyIntArrType ia = {0}; dg_dynarr_push(ia, 42); ... #define DG_DYNARR_TYPEDEF(TYPE, NewArrayTypeName) \ typedef struct { TYPE* p; dg__dynarr_md md; } NewArrayTypeName; // makes sure the array is initialized and can be used. // either do YourArray arr = {0}; or YourArray arr; dg_dynarr_init(arr); #define dg_dynarr_init(a) \ dg__dynarr_init((void**)&(a).p, &(a).md, NULL, 0) // this allows you to provide an external buffer that'll be used as long as it's big enough // once you add more elements than buf can hold, fresh memory will be allocated on the heap #define dg_dynarr_init_external(a, buf, buf_cap) \ dg__dynarr_init((void**)&(a).p, &(a).md, (buf), (buf_cap)) // use this to free the memory allocated by dg_dynarr // Note: it is safe to add new elements to the array after dg_dynarr_free() // it will allocate new memory, just like it would directly after dg_dynarr_init() #define dg_dynarr_free(a) \ dg__dynarr_free((void**)&(a).p, &(a).md) // add an element to the array (appended at the end) #define dg_dynarr_push(a, v) \ (dg__dynarr_maybegrowadd(dg__dynarr_unp(a), 1) ? (((a).p[(a).md.cnt++] = (v)),0) : 0) // add an element to the array (appended at the end) // does the same as push, just for consistency with addn (like insert and insertn) #define dg_dynarr_add(a, v) \ dg_dynarr_push((a), (v)) // append n elements to a and initialize them from array vals, doesn't return anything // ! vals (and all other args) are evaluated multiple times ! #define dg_dynarr_addn(a, vals, n) do { \ DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL als vals to dg_dynarr_addn!"); \ if((vals)!=NULL && dg__dynarr_add(dg__dynarr_unp(a), n, 0)) { \ size_t i_=(a).md.cnt-(n), v_=0; \ while(i_<(a).md.cnt) (a).p[i_++]=(vals)[v_++]; \ } } DG__DYNARR_WHILE0 // add n elements to the end of the array and zeroe them with memset() // returns pointer to first added element, NULL if out of memory (array is empty then) #define dg_dynarr_addn_zeroed(a, n) \ (dg__dynarr_add(dg__dynarr_unp(a), (n), 1) ? &(a).p[(a).md.cnt-(size_t)(n)] : NULL) // add n elements to the end of the array, which are uninitialized // returns pointer to first added element, NULL if out of memory (array is empty then) #define dg_dynarr_addn_uninit(a, n) \ (dg__dynarr_add(dg__dynarr_unp(a), (n), 0) ? &(a).p[(a).md.cnt-(size_t)(n)] : NULL) // insert a single value v at index idx #define dg_dynarr_insert(a, idx, v) \ (dg__dynarr_checkidxle((a),(idx)), \ dg__dynarr_insert(dg__dynarr_unp(a), (idx), 1, 0), \ (a).p[dg__dynarr_idx((a).md, (idx))] = (v)) // insert n elements into a at idx, initialize them from array vals // doesn't return anything // ! vals (and all other args) is evaluated multiple times ! #define dg_dynarr_insertn(a, idx, vals, n) do { \ DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL as vals to dg_dynarr_insertn!"); \ dg__dynarr_checkidxle((a),(idx)); \ if((vals)!=NULL && dg__dynarr_insert(dg__dynarr_unp(a), (idx), (n), 0)){ \ size_t i_=(idx), v_=0, e_=(idx)+(n); \ while(i_ < e_) (a).p[i_++] = (vals)[v_++]; \ }} DG__DYNARR_WHILE0 // insert n elements into a at idx and zeroe them with memset() // returns pointer to first inserted element or NULL if out of memory #define dg_dynarr_insertn_zeroed(a, idx, n) \ (dg__dynarr_checkidxle((a),(idx)), \ dg__dynarr_insert(dg__dynarr_unp(a), (idx), (n), 1) \ ? &(a).p[dg__dynarr_idx((a).md, (idx))] : NULL) // insert n uninitialized elements into a at idx; // returns pointer to first inserted element or NULL if out of memory #define dg_dynarr_insertn_uninit(a, idx, n) \ (dg__dynarr_checkidxle((a),(idx)), \ dg__dynarr_insert(dg__dynarr_unp(a), idx, n, 0) \ ? &(a).p[dg__dynarr_idx((a).md, (idx))] : NULL) // set a single value v at index idx - like "a.p[idx] = v;" but with checks (unless disabled) #define dg_dynarr_set(a, idx, v) \ (dg__dynarr_checkidx((a),(idx)), \ (a).p[dg__dynarr_idx((a).md, (idx))] = (v)) // overwrite n elements of a, starting at idx, with values from array vals // doesn't return anything // ! vals (and all other args) is evaluated multiple times ! #define dg_dynarr_setn(a, idx, vals, n) do { \ DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL as vals to dg_dynarr_setn!"); \ size_t idx_=(idx); size_t end_=idx_+(size_t)n; \ dg__dynarr_checkidx((a),idx_); dg__dynarr_checkidx((a),end_-1); \ if((vals)!=NULL && idx_ < (a).md.cnt && end_ <= (a).md.cnt) { \ size_t v_=0; \ while(idx_ < end_) (a).p[idx_++] = (vals)[v_++]; \ }} DG__DYNARR_WHILE0 // delete the element at idx, moving all following elements (=> keeps order) #define dg_dynarr_delete(a, idx) \ (dg__dynarr_checkidx((a),(idx)), dg__dynarr_delete(dg__dynarr_unp(a), (idx), 1)) // delete n elements starting at idx, moving all following elements (=> keeps order) #define dg_dynarr_deleten(a, idx, n) \ (dg__dynarr_checkidx((a),(idx)), dg__dynarr_delete(dg__dynarr_unp(a), (idx), (n))) // TODO: check whether idx+n < count? // delete the element at idx, move the last element there (=> doesn't keep order) #define dg_dynarr_deletefast(a, idx) \ (dg__dynarr_checkidx((a),(idx)), dg__dynarr_deletefast(dg__dynarr_unp(a), (idx), 1)) // delete n elements starting at idx, move the last n elements there (=> doesn't keep order) #define dg_dynarr_deletenfast(a, idx, n) \ (dg__dynarr_checkidx((a),(idx)), dg__dynarr_deletefast(dg__dynarr_unp(a), idx, n)) // TODO: check whether idx+n < count? // removes all elements from the array, but does not free the buffer // (if you want to free the buffer too, just use dg_dynarr_free()) #define dg_dynarr_clear(a) \ ((a).md.cnt=0) // sets the logical number of elements in the array // if cnt > dg_dynarr_count(a), the logical count will be increased accordingly // and the new elements will be uninitialized #define dg_dynarr_setcount(a, n) \ (dg__dynarr_maybegrow(dg__dynarr_unp(a), (n)) ? ((a).md.cnt = (n)) : 0) // make sure the array can store cap elements without reallocating // logical count remains unchanged #define dg_dynarr_reserve(a, cap) \ dg__dynarr_maybegrow(dg__dynarr_unp(a), (cap)) // this makes sure a only uses as much memory as for its elements // => maybe useful if a used to contain a huge amount of elements, // but you deleted most of them and want to free some memory // Note however that this implies an allocation and copying the remaining // elements, so only do this if it frees enough memory to be worthwhile! #define dg_dynarr_shrink_to_fit(a) \ dg__dynarr_shrink_to_fit(dg__dynarr_unp(a)) #if (DG_DYNARR_INDEX_CHECK_LEVEL == 1) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3) // removes and returns the last element of the array #define dg_dynarr_pop(a) \ (dg__dynarr_check_notempty((a), "Don't pop an empty array!"), \ (a).p[((a).md.cnt > 0) ? (--(a).md.cnt) : 0]) // returns the last element of the array #define dg_dynarr_last(a) \ (dg__dynarr_check_notempty((a), "Don't call da_last() on an empty array!"), \ (a).p[((a).md.cnt > 0) ? ((a).md.cnt-1) : 0]) #elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 2) // removes and returns the last element of the array #define dg_dynarr_pop(a) \ (dg__dynarr_check_notempty((a), "Don't pop an empty array!"), \ (a).p[--(a).md.cnt]) // returns the last element of the array #define dg_dynarr_last(a) \ (dg__dynarr_check_notempty((a), "Don't call da_last() on an empty array!"), \ (a).p[(a).md.cnt-1]) #else // invalid DG_DYNARR_INDEX_CHECK_LEVEL #error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) ! #endif // DG_DYNARR_INDEX_CHECK_LEVEL // returns the pointer *to* the last element of the array // (in contrast to dg_dynarr_end() which returns a pointer *after* the last element) // returns NULL if array is empty #define dg_dynarr_lastptr(a) \ (((a).md.cnt > 0) ? ((a).p + (a).md.cnt - 1) : NULL) // get element at index idx (like a.p[idx]), but with checks // (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0) #define dg_dynarr_get(a, idx) \ (dg__dynarr_checkidx((a),(idx)), (a).p[dg__dynarr_idx((a).md, (idx))]) // get pointer to element at index idx (like &a.p[idx]), but with checks // (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0) // if index-checks are disabled, it returns NULL on invalid index (else it asserts() before returning) #define dg_dynarr_getptr(a, idx) \ (dg__dynarr_checkidx((a),(idx)), \ ((size_t)(idx) < (a).md.cnt) ? ((a).p+(size_t)(idx)) : NULL) // returns a pointer to the first element of the array // (together with dg_dynarr_end() you can do C++-style iterating) #define dg_dynarr_begin(a) \ ((a).p) // returns a pointer to the past-the-end element of the array // Allows C++-style iterating, in case you're into that kind of thing: // for(T *it=dg_dynarr_begin(a), *end=dg_dynarr_end(a); it!=end; ++it) foo(*it); // (see dg_dynarr_lastptr() to get a pointer *to* the last element) #define dg_dynarr_end(a) \ ((a).p + (a).md.cnt) // returns (logical) number of elements currently in the array #define dg_dynarr_count(a) \ ((a).md.cnt) // get the current reserved capacity of the array #define dg_dynarr_capacity(a) \ ((a).md.cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) // returns 1 if the array is empty, else 0 #define dg_dynarr_empty(a) \ ((a).md.cnt == 0) // returns 1 if the last (re)allocation when inserting failed (Out Of Memory) // or if the array has never allocated any memory yet, else 0 // deleting the contents when growing fails instead of keeping old may seem // a bit uncool, but it's simple and OOM should rarely happen on modern systems // anyway - after all you need to deplete both RAM and swap/pagefile.sys // or deplete the address space, which /might/ happen with 32bit applications // but probably not with 64bit (at least in the foreseeable future) #define dg_dynarr_oom(a) \ ((a).md.cap == 0) // sort a using the given qsort()-comparator cmp // (just a slim wrapper around qsort()) #define dg_dynarr_sort(a, cmp) \ qsort((a).p, (a).md.cnt, sizeof((a).p[0]), (cmp)) // ######### Implementation-Details that are not part of the API ########## #include // size_t, malloc(), free(), realloc() #include // memset(), memcpy(), memmove() #ifdef __cplusplus extern "C" { #endif typedef struct { size_t cnt; // logical number of elements size_t cap; // cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB is actual capacity (in elements, *not* bytes!) // if(cap & DG__DYNARR_SIZE_T_MSB) the current memory is not allocated by dg_dynarr, // but was set with dg_dynarr_init_external() // that's handy to give an array a base-element storage on the stack, for example // TODO: alternatively, we could introduce a flag field to this struct and use that, // so we don't have to calculate & everytime cap is needed } dg__dynarr_md; // I used to have the following in an enum, but MSVC assumes enums are always 32bit ints static const size_t DG__DYNARR_SIZE_T_MSB = ((size_t)1) << (sizeof(size_t)*8 - 1); static const size_t DG__DYNARR_SIZE_T_ALL_BUT_MSB = (((size_t)1) << (sizeof(size_t)*8 - 1))-1; // "unpack" the elements of an array struct for use with helper functions // (to void** arr, dg__dynarr_md* md, size_t itemsize) #define dg__dynarr_unp(a) \ (void**)&(a).p, &(a).md, sizeof((a).p[0]) // MSVC warns about "conditional expression is constant" when using the // do { ... } while(0) idiom in macros.. #ifdef _MSC_VER #if _MSC_VER >= 1400 // MSVC 2005 and newer // people claim MSVC 2005 and newer support __pragma, even though it's only documented // for 2008+ (https://msdn.microsoft.com/en-us/library/d9x1s805%28v=vs.90%29.aspx) // the following workaround is based on // http://cnicholson.net/2009/03/stupid-c-tricks-dowhile0-and-c4127/ #define DG__DYNARR_WHILE0 \ __pragma(warning(push)) \ __pragma(warning(disable:4127)) \ while(0) \ __pragma(warning(pop)) #else // older MSVC versions don't support __pragma - I heard this helps for them #define DG__DYNARR_WHILE0 while(0,0) #endif #else // other compilers #define DG__DYNARR_WHILE0 while(0) #endif // _MSC_VER #if (DG_DYNARR_INDEX_CHECK_LEVEL == 2) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3) #define dg__dynarr_checkidx(a,i) \ DG_DYNARR_ASSERT((size_t)i < a.md.cnt, "index out of bounds!") // special case for insert operations: == cnt is also ok, insert will append then #define dg__dynarr_checkidxle(a,i) \ DG_DYNARR_ASSERT((size_t)i <= a.md.cnt, "index out of bounds!") #define dg__dynarr_check_notempty(a, msg) \ DG_DYNARR_ASSERT(a.md.cnt > 0, msg) #elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 1) // no assertions that check if index is valid #define dg__dynarr_checkidx(a,i) (void)0 #define dg__dynarr_checkidxle(a,i) (void)0 #define dg__dynarr_check_notempty(a, msg) (void)0 #else // invalid DG_DYNARR_INDEX_CHECK_LEVEL #error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) ! #endif // DG_DYNARR_INDEX_CHECK_LEVEL #if (DG_DYNARR_INDEX_CHECK_LEVEL == 1) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3) // the given index, if valid, else 0 #define dg__dynarr_idx(md,i) \ (((size_t)(i) < md.cnt) ? (size_t)(i) : 0) #elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 2) // don't check and default to 0 if invalid, but just use the given value #define dg__dynarr_idx(md,i) (size_t)(i) #else // invalid DG_DYNARR_INDEX_CHECK_LEVEL #error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) ! #endif // DG_DYNARR_INDEX_CHECK_LEVEL // the functions allocating/freeing memory are not implemented inline, but // in the #ifdef DG_DYNARR_IMPLEMENTATION section // one reason is that dg__dynarr_grow has the most code in it, the other is // that windows has weird per-dll heaps so free() or realloc() should be // called from code in the same dll that allocated the memory - these kind // of wrapper functions that end up compiled into the exe or *one* dll // (instead of inline functions compiled into everything) should ensure that. DG_DYNARR_DEF void dg__dynarr_free(void** p, dg__dynarr_md* md); DG_DYNARR_DEF void dg__dynarr_shrink_to_fit(void** arr, dg__dynarr_md* md, size_t itemsize); // grow array to have enough space for at least min_needed elements // if it fails (OOM), the array will be deleted, a.p will be NULL, a.md.cap and a.md.cnt will be 0 // and the functions returns 0; else (on success) it returns 1 DG_DYNARR_DEF int dg__dynarr_grow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed); // the following functions are implemented inline, because they're quite short // and mosty implemented in functions so the macros don't get too ugly DG_DYNARR_INLINE void dg__dynarr_init(void** p, dg__dynarr_md* md, void* buf, size_t buf_cap) { *p = buf; md->cnt = 0; if(buf == NULL) md->cap = 0; else md->cap = (DG__DYNARR_SIZE_T_MSB | buf_cap); } DG_DYNARR_INLINE int dg__dynarr_maybegrow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed) { if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) >= min_needed) return 1; else return dg__dynarr_grow(arr, md, itemsize, min_needed); } DG_DYNARR_INLINE int dg__dynarr_maybegrowadd(void** arr, dg__dynarr_md* md, size_t itemsize, size_t num_add) { size_t min_needed = md->cnt+num_add; if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) >= min_needed) return 1; else return dg__dynarr_grow(arr, md, itemsize, min_needed); } DG_DYNARR_INLINE int dg__dynarr_insert(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n, int init0) { // allow idx == md->cnt to append size_t oldCount = md->cnt; size_t newCount = oldCount+n; if(idx <= oldCount && dg__dynarr_maybegrow(arr, md, itemsize, newCount)) { unsigned char* p = (unsigned char*)*arr; // *arr might have changed in dg__dynarr_grow()! // move all existing items after a[idx] to a[idx+n] if(idx < oldCount) memmove(p+(idx+n)*itemsize, p+idx*itemsize, itemsize*(oldCount - idx)); // if the memory is supposed to be zeroed, do that if(init0) memset(p+idx*itemsize, 0, n*itemsize); md->cnt = newCount; return 1; } return 0; } DG_DYNARR_INLINE int dg__dynarr_add(void** arr, dg__dynarr_md* md, size_t itemsize, size_t n, int init0) { size_t cnt = md->cnt; if(dg__dynarr_maybegrow(arr, md, itemsize, cnt+n)) { unsigned char* p = (unsigned char*)*arr; // *arr might have changed in dg__dynarr_grow()! // if the memory is supposed to be zeroed, do that if(init0) memset(p+cnt*itemsize, 0, n*itemsize); md->cnt += n; return 1; } return 0; } DG_DYNARR_INLINE void dg__dynarr_delete(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n) { size_t cnt = md->cnt; if(idx < cnt) { if(idx+n >= cnt) md->cnt = idx; // removing last element(s) => just reduce count else { unsigned char* p = (unsigned char*)*arr; // move all items following a[idx+n] to a[idx] memmove(p+itemsize*idx, p+itemsize*(idx+n), itemsize*(cnt - (idx+n))); md->cnt -= n; } } } DG_DYNARR_INLINE void dg__dynarr_deletefast(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n) { size_t cnt = md->cnt; if(idx < cnt) { if(idx+n >= cnt) md->cnt = idx; // removing last element(s) => just reduce count else { unsigned char* p = (unsigned char*)*arr; // copy the last n items to a[idx] - but handle the case that // the array has less than n elements left after the deleted elements size_t numItemsAfterDeleted = cnt - (idx+n); size_t m = (n < numItemsAfterDeleted) ? n : numItemsAfterDeleted; memcpy(p+itemsize*idx, p+itemsize*(cnt - m), itemsize*m); md->cnt -= n; } } } #ifdef __cplusplus } // extern "C" #endif #endif // DG__DYNARR_H // ############## Implementation of non-inline functions ############## #ifdef DG_DYNARR_IMPLEMENTATION // by default, C's malloc(), realloc() and free() is used to allocate/free heap memory. // you can #define DG_DYNARR_MALLOC, DG_DYNARR_REALLOC and DG_DYNARR_FREE // to provide alternative implementations like Win32 Heap(Re)Alloc/HeapFree // #ifndef DG_DYNARR_MALLOC #define DG_DYNARR_MALLOC(elemSize, numElems) malloc(elemSize*numElems) // oldNumElems is not used here, but maybe you need it for your allocator // to copy the old elements over #define DG_DYNARR_REALLOC(ptr, elemSize, oldNumElems, newCapacity) \ realloc(ptr, elemSize*newCapacity); #define DG_DYNARR_FREE(ptr) free(ptr) #endif // you can #define DG_DYNARR_OUT_OF_MEMORY to some code that will be executed // if allocating memory fails #ifndef DG_DYNARR_OUT_OF_MEMORY #define DG_DYNARR_OUT_OF_MEMORY DG_DYNARR_ASSERT(0, "Out of Memory!"); #endif #ifdef __cplusplus extern "C" { #endif DG_DYNARR_DEF void dg__dynarr_free(void** p, dg__dynarr_md* md) { // only free memory if it doesn't point to external memory if(!(md->cap & DG__DYNARR_SIZE_T_MSB)) { DG_DYNARR_FREE(*p); *p = NULL; md->cap = 0; } md->cnt = 0; } DG_DYNARR_DEF int dg__dynarr_grow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed) { size_t cap = md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB; DG_DYNARR_ASSERT(min_needed > cap, "dg__dynarr_grow() should only be called if storage actually needs to grow!"); if(min_needed < DG__DYNARR_SIZE_T_MSB) { size_t newcap = (cap > 4) ? (2*cap) : 8; // allocate for at least 8 elements // make sure not to set DG__DYNARR_SIZE_T_MSB (unlikely anyway) if(newcap >= DG__DYNARR_SIZE_T_MSB) newcap = DG__DYNARR_SIZE_T_MSB-1; if(min_needed > newcap) newcap = min_needed; // the memory was allocated externally, don't free it, just copy contents if(md->cap & DG__DYNARR_SIZE_T_MSB) { void* p = DG_DYNARR_MALLOC(itemsize, newcap); if(p != NULL) memcpy(p, *arr, itemsize*md->cnt); *arr = p; } else { void* p = DG_DYNARR_REALLOC(*arr, itemsize, md->cnt, newcap); if(p == NULL) DG_DYNARR_FREE(*arr); // realloc failed, at least don't leak memory *arr = p; } // TODO: handle OOM by setting highest bit of count and keeping old data? if(*arr) md->cap = newcap; else { md->cap = 0; md->cnt = 0; DG_DYNARR_OUT_OF_MEMORY ; return 0; } return 1; } DG_DYNARR_ASSERT(min_needed < DG__DYNARR_SIZE_T_MSB, "Arrays must stay below SIZE_T_MAX/2 elements!"); return 0; } DG_DYNARR_DEF void dg__dynarr_shrink_to_fit(void** arr, dg__dynarr_md* md, size_t itemsize) { // only do this if we allocated the memory ourselves if(!(md->cap & DG__DYNARR_SIZE_T_MSB)) { size_t cnt = md->cnt; if(cnt == 0) dg__dynarr_free(arr, md); else if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) > cnt) { void* p = DG_DYNARR_MALLOC(itemsize, cnt); if(p != NULL) { memcpy(p, *arr, cnt*itemsize); md->cap = cnt; DG_DYNARR_FREE(*arr); *arr = p; } } } } #ifdef __cplusplus } // extern "C" #endif #endif // DG_DYNARR_IMPLEMENTATION