# Copyright (c) 2023, Tri Dao. from typing import Optional, Union, List, Tuple import torch import torch.nn as nn # isort: off # We need to import the CUDA kernels after importing torch import flash_attn_3._C # Registers operators with PyTorch # isort: on flash_attn_3_cuda = torch.ops.flash_attn_3 def maybe_contiguous(x): return x.contiguous() if x is not None and x.stride(-1) != 1 else x def round_multiple(x, m): return (x + m - 1) // m * m def round_up_headdim(head_size: int) -> int: from flash_attn_config import CONFIG if not CONFIG["build_flags"]["FLASHATTENTION_DISABLE_HDIM64"]: if head_size <= 64: return 64 if not CONFIG["build_flags"]["FLASHATTENTION_DISABLE_HDIM96"]: if head_size <= 96: return 96 if not CONFIG["build_flags"]["FLASHATTENTION_DISABLE_HDIM128"]: if head_size <= 128: return 128 if not CONFIG["build_flags"]["FLASHATTENTION_DISABLE_HDIM192"]: if head_size <= 192: return 192 if not CONFIG["build_flags"]["FLASHATTENTION_DISABLE_HDIM256"]: if head_size <= 256: return 256 return 256 @torch.library.custom_op("flash_attn_3::_flash_attn_forward", mutates_args=(), device_types="cuda") def _flash_attn_forward( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, k_new: Optional[torch.Tensor] = None, v_new: Optional[torch.Tensor] = None, qv: Optional[torch.Tensor] = None, out_: Optional[torch.Tensor] = None, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k: Optional[torch.Tensor] = None, cu_seqlens_k_new: Optional[torch.Tensor] = None, seqused_q: Optional[torch.Tensor] = None, seqused_k: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_k: Optional[int] = None, page_table: Optional[torch.Tensor] = None, kv_batch_idx: Optional[torch.Tensor] = None, leftpad_k: Optional[torch.Tensor] = None, rotary_cos: Optional[torch.Tensor] = None, rotary_sin: Optional[torch.Tensor] = None, seqlens_rotary: Optional[torch.Tensor] = None, q_descale: Optional[torch.Tensor] = None, k_descale: Optional[torch.Tensor] = None, v_descale: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, causal: bool = False, window_size_left: int = -1, window_size_right: int = -1, attention_chunk: int = 0, softcap: float = 0.0, rotary_interleaved: bool = True, scheduler_metadata: Optional[torch.Tensor] = None, num_splits: int = 1, pack_gqa: Optional[bool] = None, sm_margin: int = 0, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)] v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new) ] seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)] page_table, kv_batch_idx, leftpad_k = [ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k) ] rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)] seqlens_rotary = maybe_contiguous(seqlens_rotary) out, softmax_lse, out_accum, softmax_lse_accum = flash_attn_3_cuda.fwd( q, k, v, k_new, v_new, qv, out_, cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, page_table, kv_batch_idx, leftpad_k, rotary_cos, rotary_sin, seqlens_rotary, q_descale, k_descale, v_descale, softmax_scale, causal, window_size_left, window_size_right, attention_chunk, softcap, rotary_interleaved, scheduler_metadata, num_splits, pack_gqa, sm_margin, ) if out_accum is None: out_accum = torch.tensor([], device=out.device) if softmax_lse_accum is None: softmax_lse_accum = torch.tensor([], device=out.device) return out, softmax_lse, out_accum, softmax_lse_accum @torch.library.register_fake("flash_attn_3::_flash_attn_forward") def _flash_attn_forward_fake( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, k_new: Optional[torch.Tensor] = None, v_new: Optional[torch.Tensor] = None, qv: Optional[torch.Tensor] = None, out_: Optional[torch.Tensor] = None, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k: Optional[torch.Tensor] = None, cu_seqlens_k_new: Optional[torch.Tensor] = None, seqused_q: Optional[torch.Tensor] = None, seqused_k: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_k: Optional[int] = None, page_table: Optional[torch.Tensor] = None, kv_batch_idx: Optional[torch.Tensor] = None, leftpad_k: Optional[torch.Tensor] = None, rotary_cos: Optional[torch.Tensor] = None, rotary_sin: Optional[torch.Tensor] = None, seqlens_rotary: Optional[torch.Tensor] = None, q_descale: Optional[torch.Tensor] = None, k_descale: Optional[torch.Tensor] = None, v_descale: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, causal: bool = False, window_size_left: int = -1, window_size_right: int = -1, attention_chunk: int = 0, softcap: float = 0.0, rotary_interleaved: bool = True, scheduler_metadata: Optional[torch.Tensor] = None, num_splits: int = 1, pack_gqa: Optional[bool] = None, sm_margin: int = 0, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Symbolic fake implementation of flash attention forward. Returns tensors with the correct shapes and dtypes without actual computation. """ # Determine if we're in varlen mode is_varlen_q = cu_seqlens_q is not None # Get dimensions from query tensor if is_varlen_q: # varlen mode: q is (total_q, num_heads, head_size) total_q, num_heads, head_size = q.shape batch_size = cu_seqlens_q.shape[0] - 1 if max_seqlen_q is None: raise ValueError("max_seqlen_q must be provided if cu_seqlens_q is provided") seqlen_q = max_seqlen_q else: # batch mode: q is (batch_size, seqlen_q, num_heads, head_size) batch_size, seqlen_q, num_heads, head_size = q.shape total_q = batch_size * q.shape[1] # Get value head dimension head_size_v = v.shape[-1] # Determine output dtype (FP8 inputs produce BF16 outputs) q_type = q.dtype if q_type == torch.float8_e4m3fn: out_dtype = torch.bfloat16 else: out_dtype = q_type # Create output tensor if out_ is not None: # If out_ is provided, _flash_attn_forward becomes non-functional raise TypeError("Tracing (torch.compile/torch.export) with pre-allocated output tensor is not supported.") if is_varlen_q: out = torch.empty((total_q, num_heads, head_size_v), dtype=out_dtype, device=q.device) else: out = torch.empty((batch_size, seqlen_q, num_heads, head_size_v), dtype=out_dtype, device=q.device) # Create softmax_lse tensor if is_varlen_q: softmax_lse = torch.empty((num_heads, total_q), dtype=torch.float32, device=q.device) else: softmax_lse = torch.empty((batch_size, num_heads, seqlen_q), dtype=torch.float32, device=q.device) # TODO(guilhermeleobas): Implement "get_num_splits" # There's an heuristic to compute num_splits when "num_splits <= 0" # assert that num_splits is > 0 for now if num_splits <= 0: raise ValueError(f"tracing (torch.compile/torch.export) with num_splits <= 0 not supported. Got {num_splits=}") if num_splits > 1: if is_varlen_q: out_accum = torch.empty((num_splits, num_heads, total_q, head_size_v), dtype=torch.float32, device=q.device) softmax_lse_accum = torch.empty((num_splits, num_heads, total_q), dtype=torch.float32, device=q.device) else: out_accum = torch.empty((num_splits, batch_size, num_heads, seqlen_q, head_size_v), dtype=torch.float32, device=q.device) softmax_lse_accum = torch.empty((num_splits, batch_size, num_heads, seqlen_q), dtype=torch.float32, device=q.device) else: # Tensors are not set when num_splits < 1 out_accum = torch.tensor([], device=out.device) softmax_lse_accum = torch.tensor([], device=out.device) return out, softmax_lse, out_accum, softmax_lse_accum @torch.library.custom_op("flash_attn_3::_flash_attn_backward", mutates_args=("dq", "dk", "dv"), device_types="cuda") def _flash_attn_backward( dout: torch.Tensor, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor, softmax_lse: torch.Tensor, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k: Optional[torch.Tensor] = None, sequed_q: Optional[torch.Tensor] = None, sequed_k: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_k: Optional[int] = None, dq: Optional[torch.Tensor] = None, dk: Optional[torch.Tensor] = None, dv: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, is_causal: bool = False, window_size_left: int = -1, window_size_right: int = -1, softcap: float = 0.0, deterministic: bool = False, sm_margin: int = 0, ) -> torch.Tensor: # dq, dk, dv are allocated by us so they should already be contiguous dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)] softmax_d, *rest = flash_attn_3_cuda.bwd( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, sequed_q, sequed_k, max_seqlen_q, max_seqlen_k, softmax_scale, is_causal, window_size_left, window_size_right, softcap, deterministic, sm_margin, ) return softmax_d @torch.library.register_fake("flash_attn_3::_flash_attn_backward") def _flash_attn_backward_fake( dout: torch.Tensor, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor, softmax_lse: torch.Tensor, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k: Optional[torch.Tensor] = None, sequed_q: Optional[torch.Tensor] = None, sequed_k: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_k: Optional[int] = None, dq: Optional[torch.Tensor] = None, dk: Optional[torch.Tensor] = None, dv: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, is_causal: bool = False, window_size_left: int = -1, window_size_right: int = -1, softcap: float = 0.0, deterministic: bool = False, sm_margin: int = 0, ) -> torch.Tensor: is_varlen_q = cu_seqlens_q is not None is_varlen_k = cu_seqlens_q is not None is_varlen = is_varlen_q or is_varlen_k or sequed_q is not None or sequed_k is not None if not is_varlen_q: batch_size = q.size(0) seqlen_q = q.size(1) seqlen_k = k.size(1) total_q = batch_size * q.size(1) else: batch_size = cu_seqlens_q.size(0) - 1 total_q = q.size(0) seqlen_q = max_seqlen_q seqlen_k = max_seqlen_k if window_size_left >= seqlen_k - 1: window_size_left = -1 if window_size_right >= seqlen_q - 1: window_size_right = -1 if is_causal: window_size_right = 0 is_causal = window_size_left < 0 and window_size_right == 0 head_size = q.size(-1) head_size_v = v.size(-1) head_size_rounded = round_up_headdim(max(head_size, head_size_v)) # Hopper gpus uses cuda compute capabilities 9.0 cap = torch.cuda.get_device_capability(q.device) arch = cap[0] * 10 + cap[1] is_local = (window_size_left >= 0 or window_size_right >= 0) and not is_causal if head_size_rounded <= 64: kBlockM_sm90 = 96 if (is_causal and softcap > 0.0) else 128 elif head_size_rounded <= 96: kBlockM_sm90 = 64 elif head_size_rounded <= 128: kBlockM_sm90 = 64 if (is_causal or is_local or softcap > 0.0) else 80 else: kBlockM_sm90 = 64 kBlockM_sm80 = 128 if head_size_rounded <= 64 else 64 kBlockM_sm86 = 64 if head_size_rounded <= 192 else 32 if arch >= 90: kBlockM = kBlockM_sm90 elif arch == 86 or arch == 89: kBlockM = kBlockM_sm86 else: kBlockM = kBlockM_sm80 num_heads = q.shape[-2] seqlen_q_rounded = round_multiple(seqlen_q, kBlockM) total_q_padded_rounded = round_multiple(total_q + batch_size * kBlockM, kBlockM) dq = torch.empty_like(q) if dq is None else dq dk = torch.empty_like(k) if dk is None else dk dv = torch.empty_like(v) if dv is None else dv if not is_varlen: softmax_d = torch.empty((batch_size, num_heads, seqlen_q_rounded), dtype=torch.float32, device=q.device) else: softmax_d = torch.empty((num_heads, total_q_padded_rounded), dtype=torch.float32, device=q.device) return softmax_d def setup_context(ctx, inputs, output): q, k, v = inputs[:3] out, softmax_lse, _, _ = output ctx.save_for_backward(q, k, v, out, softmax_lse) ctx.softmax_scale = inputs[-11] ctx.causal = inputs[-10] ctx.window_size = [inputs[-9], inputs[-8]] ctx.attention_chunk = inputs[-7] ctx.softcap = inputs[-6] ctx.sm_margin = inputs[-1] def _backward(ctx, dout, *grads): q, k, v, out, softmax_lse = ctx.saved_tensors dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, None, None, # cu_seqlens_q, cu_seqlens_k, None, None, # sequed_q, sequed_k, None, None, # max_seqlen_q, max_seqlen_k, dq, dk, dv, ctx.softmax_scale, ctx.causal, ctx.window_size[0], ctx.window_size[1], ctx.softcap, False, # deterministic ctx.sm_margin, ) return dq, dk, dv, *((None,) * 21) _flash_attn_forward.register_autograd(_backward, setup_context=setup_context) class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward( ctx, qkv, softmax_scale, causal, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, deterministic=False, num_heads_q=None, sm_margin=0, return_softmax=False, ): if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) if qkv.dim() == 5: assert qkv.shape[-3] == 3 q, k, v = qkv.unbind(dim=-3) else: assert qkv.dim() == 4 assert num_heads_q is not None num_heads_k = (qkv.shape[2] - num_heads_q) // 2 assert num_heads_k * 2 + num_heads_q == qkv.shape[2] q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2) out, softmax_lse, *rest = _flash_attn_forward( q, k, v, None, None, # k_new, v_new None, # qv None, # out None, None, None, # cu_seqlens_q/k/k_new None, None, # seqused_q/k None, None, # max_seqlen_q/k None, None, None, # page_table, kv_batch_idx, leftpad_k, None, None, None, # rotary_cos/sin, seqlens_rotary q_descale, k_descale, v_descale, softmax_scale, causal=causal, window_size_left=window_size[0], window_size_right=window_size[1], attention_chunk=attention_chunk, softcap=softcap, sm_margin=sm_margin, ) # ctx.save_for_backward(q, k, v, out_padded, softmax_lse) ctx.save_for_backward(q, k, v, out, softmax_lse) ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.window_size = window_size ctx.attention_chunk = attention_chunk ctx.softcap = softcap ctx.deterministic = deterministic ctx.ndim = qkv.dim() ctx.sm_margin = sm_margin return (out, softmax_lse) if return_softmax else out @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse = ctx.saved_tensors assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk" if ctx.ndim == 5: qkv_shape = q.shape[:-2] + (3, *q.shape[-2:]) dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device) dq, dk, dv = dqkv.unbind(dim=-3) else: num_heads_q = q.shape[2] num_heads_k = k.shape[2] qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:]) dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device) dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2) _flash_attn_backward( dout, q, k, v, out, softmax_lse, None, None, # cu_seqlens_q, cu_seqlens_k, None, None, # sequed_q, sequed_k, None, None, # max_seqlen_q, max_seqlen_k, dq, dk, dv, ctx.softmax_scale, ctx.causal, ctx.window_size[0], ctx.window_size[1], ctx.softcap, ctx.deterministic, ctx.sm_margin, ) dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension return dqkv, None, None, None, None, None, None, None, None, None, None, None, None class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, q, k, v, softmax_scale, causal, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, num_splits=1, pack_gqa=None, deterministic=False, sm_margin=0, return_softmax=False, ): if softmax_scale is None: softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5) # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward( out, softmax_lse, *rest = _flash_attn_forward( q, k, v, None, None, # k_new, v_new qv, # qv None, # out None, None, None, # cu_seqlens_q/k/k_new None, None, # seqused_q/k None, None, # max_seqlen_q/k None, None, None, # page_table, kv_batch_idx, leftpad_k, None, None, None, # rotary_cos/sin, seqlens_rotary q_descale, k_descale, v_descale, softmax_scale, causal=causal, window_size_left=window_size[0], window_size_right=window_size[1], attention_chunk=attention_chunk, softcap=softcap, num_splits=num_splits, pack_gqa=pack_gqa, sm_margin=sm_margin, ) # ctx.save_for_backward(q, k, v, out_padded, softmax_lse) ctx.save_for_backward(q, k, v, out, softmax_lse) ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.window_size = window_size ctx.attention_chunk = attention_chunk ctx.softcap = softcap ctx.deterministic = deterministic ctx.sm_margin = sm_margin return (out, softmax_lse) if return_softmax else out @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse = ctx.saved_tensors assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk" dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, None, None, # cu_seqlens_q, cu_seqlens_k, None, None, # sequed_q, sequed_k, None, None, # max_seqlen_q, max_seqlen_k, dq, dk, dv, ctx.softmax_scale, ctx.causal, ctx.window_size[0], ctx.window_size[1], ctx.softcap, ctx.deterministic, ctx.sm_margin, ) dq = dq[..., : q.shape[-1]] # We could have padded the head dimension dk = dk[..., : k.shape[-1]] dv = dv[..., : v.shape[-1]] return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None class FlashAttnVarlenFunc(torch.autograd.Function): @staticmethod def forward( ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, softmax_scale, causal, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, num_splits=1, pack_gqa=None, deterministic=False, sm_margin=0, return_softmax=False, ): if softmax_scale is None: softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5) # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward( out, softmax_lse, *rest = _flash_attn_forward( q, k, v, None, None, # k_new, v_new qv, # qv None, # out cu_seqlens_q, cu_seqlens_k, None, # cu_seqlens_k_new seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, None, None, None, # page_table, kv_batch_idx, leftpad_k, None, None, None, # rotary_cos/sin, seqlens_rotary q_descale, k_descale, v_descale, softmax_scale, causal=causal, window_size_left=window_size[0], window_size_right=window_size[1], attention_chunk=attention_chunk, softcap=softcap, num_splits=num_splits, pack_gqa=pack_gqa, sm_margin=sm_margin, ) # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k) ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k) ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.window_size = window_size ctx.attention_chunk = attention_chunk ctx.softcap = softcap ctx.deterministic = deterministic ctx.sm_margin = sm_margin return (out, softmax_lse) if return_softmax else out @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk" dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, ctx.max_seqlen_q, ctx.max_seqlen_k, dq, dk, dv, ctx.softmax_scale, ctx.causal, ctx.window_size[0], ctx.window_size[1], ctx.softcap, ctx.deterministic, ctx.sm_margin, ) dq = dq[..., : q.shape[-1]] # We could have padded the head dimension dk = dk[..., : k.shape[-1]] dv = dv[..., : v.shape[-1]] return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None def flash_attn_qkvpacked_func( qkv, softmax_scale=None, causal=False, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, deterministic=False, num_heads_q=None, sm_margin=0, return_attn_probs=False, ): """dropout_p should be set to 0.0 during evaluation If Q, K, V are already stacked into 1 tensor, this function will be faster than calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation of the gradients of Q, K, V. For multi-query and grouped-query attention (MQA/GQA), please see flash_attn_kvpacked_func and flash_attn_func. If window_size != (-1, -1), implements sliding window local attention. Query at position i will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive. Arguments: qkv: (batch_size, seqlen, 3, nheads, headdim) dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). window_size: (left, right). If not (-1, -1), implements sliding window local attention. softcap: float. Anything > 0 activates softcapping attention. alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to the attention score of query i and key j. deterministic: bool. Whether to use the deterministic implementation of the backward pass, which is slightly slower and uses more memory. The forward pass is always deterministic. return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (batch_size, seqlen, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedFunc.apply( qkv, softmax_scale, causal, q_descale, k_descale, v_descale, window_size, attention_chunk, softcap, deterministic, num_heads_q, sm_margin, return_attn_probs, ) def flash_attn_func( q, k, v, softmax_scale=None, causal=False, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, num_splits=1, pack_gqa=None, deterministic=False, sm_margin=0, return_attn_probs=False, ): """dropout_p should be set to 0.0 during evaluation Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads than Q. Note that the number of heads in Q must be divisible by the number of heads in KV. For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V. If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix. For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is: 1 1 1 1 0 1 1 1 1 1 If seqlen_q = 5 and seqlen_k = 2, the causal mask is: 0 0 0 0 0 0 1 0 1 1 If the row of the mask is all zero, the output will be zero. If window_size != (-1, -1), implements sliding window local attention. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive. Arguments: q: (batch_size, seqlen, nheads, headdim) k: (batch_size, seqlen, nheads_k, headdim) v: (batch_size, seqlen, nheads_k, headdim) dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). window_size: (left, right). If not (-1, -1), implements sliding window local attention. alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i + seqlen_k - seqlen_q - j|) is added to the attention score of query i and key j. deterministic: bool. Whether to use the deterministic implementation of the backward pass, which is slightly slower and uses more memory. The forward pass is always deterministic. return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (batch_size, seqlen, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). """ return FlashAttnFunc.apply( q, k, v, softmax_scale, causal, qv, q_descale, k_descale, v_descale, window_size, attention_chunk, softcap, num_splits, pack_gqa, deterministic, sm_margin, return_attn_probs, ) def flash_attn_varlen_func( q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, seqused_q=None, seqused_k=None, softmax_scale=None, causal=False, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), attention_chunk=0, softcap=0.0, num_splits=1, pack_gqa=None, deterministic=False, sm_margin=0, return_attn_probs=False, ): return FlashAttnVarlenFunc.apply( q, k, v, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, softmax_scale, causal, qv, q_descale, k_descale, v_descale, window_size, attention_chunk, softcap, num_splits, pack_gqa, deterministic, sm_margin, return_attn_probs, ) def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None): return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype) def flash_attn_with_kvcache( q, k_cache, v_cache, k=None, v=None, qv=None, rotary_cos=None, rotary_sin=None, cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None, cache_batch_idx: Optional[torch.Tensor] = None, cache_leftpad: Optional[torch.Tensor] = None, page_table: Optional[torch.Tensor] = None, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k_new: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, rotary_seqlens: Optional[torch.Tensor] = None, q_descale: Optional[torch.Tensor] = None, k_descale: Optional[torch.Tensor] = None, v_descale: Optional[torch.Tensor] = None, softmax_scale=None, causal=False, window_size=(-1, -1), # -1 means infinite context window attention_chunk=0, softcap=0.0, # 0.0 means deactivated rotary_interleaved=True, scheduler_metadata=None, num_splits=0, # Can be tuned for speed pack_gqa=None, # Can be tuned for speed sm_margin=0, # Can be tuned if some SMs are used for communication return_softmax_lse=False, ): """ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from k and v. This is useful for incremental decoding: you can pass in the cached keys/values from the previous step, and update them with the new keys/values from the current step, and do attention with the updated cache, all in 1 kernel. If you pass in k / v, you must make sure that the cache is large enough to hold the new values. For example, the KV cache could be pre-allocated with the max sequence length, and you can use cache_seqlens to keep track of the current sequence lengths of each sequence in the batch. Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc. If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc. If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens). See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function. Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads than Q. Note that the number of heads in Q must be divisible by the number of heads in KV. For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V. If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix. For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is: 1 1 1 1 0 1 1 1 1 1 If seqlen_q = 5 and seqlen_k = 2, the causal mask is: 0 0 0 0 0 0 1 0 1 1 If the row of the mask is all zero, the output will be zero. If window_size != (-1, -1), implements sliding window local attention. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive. Note: Does not support backward pass. Arguments: q: (batch_size, seqlen, nheads, headdim) k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table, or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache) page_block_size can be arbitrary (e.g, 1, 2, 3, 64, etc.). v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table, or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache) k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate k with k_cache, starting at the indices specified by cache_seqlens. v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k. qv [optional]: (batch_size, seqlen, nheads, headdim_v) rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16. rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos. cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the KV cache. cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache. If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1]. If the indices are not distinct, and k and v are provided, the values updated in the cache might come from any of the duplicate indices. cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0. page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). window_size: (left, right). If not (-1, -1), implements sliding window local attention. softcap: float. Anything > 0 activates softcapping attention. rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in. If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False, rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1 (i.e. GPT-NeoX style). num_splits: int. If > 1, split the key/value into this many chunks along the sequence. If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic to automatically determine the number of splits. Don't change this unless you know what you are doing. return_softmax_lse: bool. Whether to return the logsumexp of the attention scores. Return: out: (batch_size, seqlen, nheads, headdim). softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). """ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension" assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension" if softmax_scale is None: softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5) if cache_seqlens is not None and isinstance(cache_seqlens, int): cache_seqlens = torch.full( (q.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device ) cache_seqlens = maybe_contiguous(cache_seqlens) out, softmax_lse, *rest = _flash_attn_forward( q, k_cache, v_cache, k, v, qv, None, # out cu_seqlens_q, None, # cu_seqlens_k cu_seqlens_k_new, None, # seqused_q cache_seqlens, max_seqlen_q, None, # max_seqlen_k page_table, cache_batch_idx, cache_leftpad, rotary_cos, rotary_sin, rotary_seqlens, q_descale, k_descale, v_descale, softmax_scale, causal=causal, window_size_left=window_size[0], window_size_right=window_size[1], attention_chunk=attention_chunk, softcap=softcap, rotary_interleaved=rotary_interleaved, scheduler_metadata=scheduler_metadata, num_splits=num_splits, pack_gqa=pack_gqa, sm_margin=sm_margin, ) # return (out, softmax_lse) if return_softmax_lse else out return (out, softmax_lse, *rest) if return_softmax_lse else out def get_scheduler_metadata( batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, cache_seqlens: torch.Tensor, qkv_dtype=torch.bfloat16, headdim_v=None, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k_new: Optional[torch.Tensor] = None, cache_leftpad: Optional[torch.Tensor] = None, page_size: Optional[int] = None, max_seqlen_k_new=0, causal=False, window_size=(-1, -1), # -1 means infinite context window attention_chunk=0, has_softcap=False, num_splits=0, # Can be tuned for speed pack_gqa=None, # Can be tuned for speed sm_margin=0, # Can be tuned if some SMs are used for communication ): cache_seqlens = maybe_contiguous(cache_seqlens) if headdim_v is None: headdim_v = headdim scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata( batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v, qkv_dtype, cache_seqlens, cu_seqlens_q, None, # cu_seqlens_k cu_seqlens_k_new, None, # seqused_q cache_leftpad, page_size, max_seqlen_k_new, causal, window_size[0], window_size[1], attention_chunk, has_softcap, num_splits, pack_gqa, sm_margin, ) return scheduler_metadata