--- hide: - toc --- # View Job Workloads Once a job is created, it will be displayed in the job list. 1. In the job list, click the **┇** on the right side of a job and select **Job Workload Details** . ![Click Menu Item](../../images/view-wl01.png) 2. A pop-up window will appear asking you to choose which Pod to view. Click **Enter** . ![Pop-up Enter](../../images/view-wl02.png) 3. You will be redirected to the container management interface, where you can view the container’s working status, labels and annotations, and any events that have occurred. ![View Details](../../images/view-wl03.png) 4. You can also view detailed logs of the current Pod for the recent period. By default, 100 lines of logs are displayed. To view more detailed logs or to download logs, click the blue **Insight** text at the top. ![Logs](../../images/view-wl04.png) 5. Additionally, you can use the **...** in the upper right corner to view the current Pod's YAML, and to upload or download files. Below is an example of a Pod's YAML. ```yaml kind: Pod apiVersion: v1 metadata: name: neko-tensorboard-job-test-202404181843-skxivllb-worker-0 namespace: default uid: ddedb6ff-c278-47eb-ae1e-0de9b7c62f8c resourceVersion: '41092552' creationTimestamp: '2024-04-18T10:43:36Z' labels: training.kubeflow.org/job-name: neko-tensorboard-job-test-202404181843-skxivllb training.kubeflow.org/operator-name: pytorchjob-controller training.kubeflow.org/replica-index: '0' training.kubeflow.org/replica-type: worker annotations: cni.projectcalico.org/containerID: 0cfbb9af257d5e69027c603c6cb2d3890a17c4ae1a145748d5aef73a10d7fbe1 cni.projectcalico.org/podIP: '' cni.projectcalico.org/podIPs: '' hami.io/bind-phase: success hami.io/bind-time: '1713437016' hami.io/vgpu-devices-allocated: GPU-29d5fa0d-935b-2966-aff8-483a174d61d1,NVIDIA,1024,20:; hami.io/vgpu-devices-to-allocate: ; hami.io/vgpu-node: worker-a800-1 hami.io/vgpu-time: '1713437016' k8s.v1.cni.cncf.io/network-status: |- [{ "name": "kube-system/calico", "ips": [ "10.233.97.184" ], "default": true, "dns": {} }] k8s.v1.cni.cncf.io/networks-status: |- [{ "name": "kube-system/calico", "ips": [ "10.233.97.184" ], "default": true, "dns": {} }] ownerReferences: - apiVersion: kubeflow.org/v1 kind: PyTorchJob name: neko-tensorboard-job-test-202404181843-skxivllb uid: e5a8b05d-1f03-4717-8e1c-4ec928014b7b controller: true blockOwnerDeletion: true spec: volumes: - name: 0-dataset-pytorch-examples persistentVolumeClaim: claimName: pytorch-examples - name: kube-api-access-wh9rh projected: sources: - serviceAccountToken: expirationSeconds: 3607 path: token - configMap: name: kube-root-ca.crt items: - key: ca.crt path: ca.crt - downwardAPI: items: - path: namespace fieldRef: apiVersion: v1 fieldPath: metadata.namespace defaultMode: 420 containers: - name: pytorch image: m.daocloud.io/docker.io/pytorch/pytorch command: - bash args: - '-c' - >- ls -la /root && which pip && pip install pytorch_lightning tensorboard && python /root/Git/pytorch/examples/mnist/main.py ports: - name: pytorchjob-port containerPort: 23456 protocol: TCP env: - name: PYTHONUNBUFFERED value: '1' - name: PET_NNODES value: '1' resources: limits: cpu: '4' memory: 8Gi nvidia.com/gpucores: '20' nvidia.com/gpumem: '1024' nvidia.com/vgpu: '1' requests: cpu: '4' memory: 8Gi nvidia.com/gpucores: '20' nvidia.com/gpumem: '1024' nvidia.com/vgpu: '1' volumeMounts: - name: 0-dataset-pytorch-examples mountPath: /root/Git/pytorch/examples - name: kube-api-access-wh9rh readOnly: true mountPath: /var/run/secrets/kubernetes.io/serviceaccount terminationMessagePath: /dev/termination-log terminationMessagePolicy: File imagePullPolicy: Always restartPolicy: Never terminationGracePeriodSeconds: 30 dnsPolicy: ClusterFirst serviceAccountName: default serviceAccount: default nodeName: worker-a800-1 securityContext: {} affinity: {} schedulerName: hami-scheduler tolerations: - key: node.kubernetes.io/not-ready operator: Exists effect: NoExecute tolerationSeconds: 300 - key: node.kubernetes.io/unreachable operator: Exists effect: NoExecute tolerationSeconds: 300 priorityClassName: baize-high-priority priority: 100000 enableServiceLinks: true preemptionPolicy: PreemptLowerPriority status: phase: Succeeded conditions: - type: Initialized status: 'True' lastProbeTime: null lastTransitionTime: '2024-04-18T10:43:36Z' reason: PodCompleted - type: Ready status: 'False' lastProbeTime: null lastTransitionTime: '2024-04-18T10:46:34Z' reason: PodCompleted - type: ContainersReady status: 'False' lastProbeTime: null lastTransitionTime: '2024-04-18T10:46:34Z' reason: PodCompleted - type: PodScheduled status: 'True' lastProbeTime: null lastTransitionTime: '2024-04-18T10:43:36Z' hostIP: 10.20.100.211 podIP: 10.233.97.184 podIPs: - ip: 10.233.97.184 startTime: '2024-04-18T10:43:36Z' containerStatuses: - name: pytorch state: terminated: exitCode: 0 reason: Completed startedAt: '2024-04-18T10:43:39Z' finishedAt: '2024-04-18T10:46:34Z' containerID: >- containerd://09010214bcf3315e81d38fba50de3943c9d2b48f50a6cc2e83f8ef0e5c6eeec1 lastState: {} ready: false restartCount: 0 image: m.daocloud.io/docker.io/pytorch/pytorch:latest imageID: >- m.daocloud.io/docker.io/pytorch/pytorch@sha256:11691e035a3651d25a87116b4f6adc113a27a29d8f5a6a583f8569e0ee5ff897 containerID: >- containerd://09010214bcf3315e81d38fba50de3943c9d2b48f50a6cc2e83f8ef0e5c6eeec1 started: false qosClass: Guaranteed ```