{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\"Data
\n", "

Epidemiology 202

\n", "

Network Models

\n", "

Bruno Gonçalves
\n", " www.data4sci.com
\n", " @bgoncalves, @data4sci

\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from collections import Counter\n", "from pprint import pprint\n", "\n", "import pandas as pd\n", "import numpy as np\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt \n", "\n", "import networkx as nx\n", "\n", "import scipy\n", "from scipy.optimize import curve_fit\n", "\n", "import tqdm as tq\n", "from tqdm.notebook import tqdm\n", "\n", "import watermark\n", "\n", "import epidemik\n", "from epidemik import EpiModel, NetworkEpiModel\n", "\n", "%load_ext watermark\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by print out the versions of the libraries we're using for future reference" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.13.2\n", "IPython version : 8.32.0\n", "\n", "Compiler : Clang 16.0.0 (clang-1600.0.26.6)\n", "OS : Darwin\n", "Release : 24.3.0\n", "Machine : arm64\n", "Processor : arm\n", "CPU cores : 16\n", "Architecture: 64bit\n", "\n", "Git hash: 6d9f1a6eb4084a40d0e306ad0ba8a2eaa55e5c85\n", "\n", "watermark : 2.5.0\n", "epidemik : 0.1.2\n", "matplotlib: 3.10.0\n", "networkx : 3.4.2\n", "pandas : 2.2.3\n", "tqdm : 4.67.1\n", "numpy : 2.2.2\n", "scipy : 1.15.1\n", "\n" ] } ], "source": [ "%watermark -n -v -m -g -iv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load default figure style" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "plt.style.use('./d4sci.mplstyle')\n", "colors = plt.rcParams['axes.prop_cycle'].by_key()['color']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# A simple Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us start with a network where eveyrone is connected to everybody else" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "np.random.seed(1234)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "N = 300\n", "beta = 0.05\n", "G_full = nx.erdos_renyi_graph(N, p=1.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And an SI model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "must be real number, not str", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/epidemiology101-UtPQcdCX-py3.13/lib/python3.13/site-packages/IPython/core/formatters.py:770\u001b[0m, in \u001b[0;36mPlainTextFormatter.__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 763\u001b[0m stream \u001b[38;5;241m=\u001b[39m StringIO()\n\u001b[1;32m 764\u001b[0m printer \u001b[38;5;241m=\u001b[39m pretty\u001b[38;5;241m.\u001b[39mRepresentationPrinter(stream, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose,\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_width, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnewline,\n\u001b[1;32m 766\u001b[0m max_seq_length\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_seq_length,\n\u001b[1;32m 767\u001b[0m singleton_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msingleton_printers,\n\u001b[1;32m 768\u001b[0m type_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtype_printers,\n\u001b[1;32m 769\u001b[0m deferred_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdeferred_printers)\n\u001b[0;32m--> 770\u001b[0m \u001b[43mprinter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpretty\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 771\u001b[0m printer\u001b[38;5;241m.\u001b[39mflush()\n\u001b[1;32m 772\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m stream\u001b[38;5;241m.\u001b[39mgetvalue()\n", "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/epidemiology101-UtPQcdCX-py3.13/lib/python3.13/site-packages/IPython/lib/pretty.py:419\u001b[0m, in \u001b[0;36mRepresentationPrinter.pretty\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m meth(obj, \u001b[38;5;28mself\u001b[39m, cycle)\n\u001b[1;32m 409\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 410\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mobject\u001b[39m\n\u001b[1;32m 411\u001b[0m \u001b[38;5;66;03m# check if cls defines __repr__\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 417\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(_safe_getattr(\u001b[38;5;28mcls\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__repr__\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 418\u001b[0m ):\n\u001b[0;32m--> 419\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_repr_pprint\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcycle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _default_pprint(obj, \u001b[38;5;28mself\u001b[39m, cycle)\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n", "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/epidemiology101-UtPQcdCX-py3.13/lib/python3.13/site-packages/IPython/lib/pretty.py:794\u001b[0m, in \u001b[0;36m_repr_pprint\u001b[0;34m(obj, p, cycle)\u001b[0m\n\u001b[1;32m 792\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"A pprint that just redirects to the normal repr function.\"\"\"\u001b[39;00m\n\u001b[1;32m 793\u001b[0m \u001b[38;5;66;03m# Find newlines and replace them with p.break_()\u001b[39;00m\n\u001b[0;32m--> 794\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mrepr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m lines \u001b[38;5;241m=\u001b[39m output\u001b[38;5;241m.\u001b[39msplitlines()\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m p\u001b[38;5;241m.\u001b[39mgroup():\n", "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/epidemiology101-UtPQcdCX-py3.13/lib/python3.13/site-packages/epidemik/EpiModel.py:562\u001b[0m, in \u001b[0;36mEpiModel.__repr__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 560\u001b[0m text \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mParameters:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 561\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m rate, value \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparams\u001b[38;5;241m.\u001b[39mitems():\n\u001b[0;32m--> 562\u001b[0m text \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m \u001b[39;49m\u001b[38;5;132;43;01m%s\u001b[39;49;00m\u001b[38;5;124;43m : \u001b[39;49m\u001b[38;5;132;43;01m%f\u001b[39;49;00m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m%\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mrate\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 563\u001b[0m text \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mTransitions:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransitions\u001b[38;5;241m.\u001b[39medges(data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n", "\u001b[0;31mTypeError\u001b[0m: must be real number, not str" ] } ], "source": [ "SI_full = NetworkEpiModel(G_full)\n", "SI_full.add_interaction('S', 'I', 'I', beta=beta)\n", "SI_full" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "kavg= 299.0\n", "[('S', 'I', {'agent': 'I', 'rate': 'rate'})]\n" ] } ], "source": [ "print(\"kavg=\", SI_full.kavg_)\n", "print(SI_full.transitions.edges(data=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We perform 100 runs" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def simulate_runs(model, Nruns):\n", " values = []\n", "\n", " for i in tqdm(range(Nruns), total=Nruns):\n", " model.simulate(100, seeds={30: 'I'})\n", " values.append(model.I)\n", "\n", " values = pd.DataFrame(values).T\n", " values.columns = np.arange(values.shape[1])\n", " \n", " return values" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5c484df21d494171b0937331f3c59ea5", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/100 [00:00 2\u001b[0m values_full \u001b[38;5;241m=\u001b[39m \u001b[43msimulate_runs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mSI_full\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mNruns\u001b[49m\u001b[43m)\u001b[49m\n", "Cell \u001b[0;32mIn[9], line 5\u001b[0m, in \u001b[0;36msimulate_runs\u001b[0;34m(model, Nruns)\u001b[0m\n\u001b[1;32m 2\u001b[0m values \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28mrange\u001b[39m(Nruns), total\u001b[38;5;241m=\u001b[39mNruns):\n\u001b[0;32m----> 5\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msimulate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m100\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mseeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\u001b[38;5;241;43m30\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mI\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m values\u001b[38;5;241m.\u001b[39mappend(model\u001b[38;5;241m.\u001b[39mI)\n\u001b[1;32m 8\u001b[0m values \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(values)\u001b[38;5;241m.\u001b[39mT\n", "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/epidemiology101-UtPQcdCX-py3.13/lib/python3.13/site-packages/epidemik/NetworkEpiModel.py:112\u001b[0m, in \u001b[0;36mNetworkEpiModel.simulate\u001b[0;34m(self, timesteps, seeds, **kwargs)\u001b[0m\n\u001b[1;32m 109\u001b[0m prob \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrng\u001b[38;5;241m.\u001b[39mrandom()\n\u001b[1;32m 111\u001b[0m rate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparams[infections[state_i][state_j][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrate\u001b[39m\u001b[38;5;124m\"\u001b[39m]]\n\u001b[0;32m--> 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mprob\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m<\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mrate\u001b[49m:\n\u001b[1;32m 113\u001b[0m new_state \u001b[38;5;241m=\u001b[39m infections[state_i][state_j][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 114\u001b[0m population[t, node_j] \u001b[38;5;241m=\u001b[39m new_state\n", "\u001b[0;31mTypeError\u001b[0m: '<' not supported between instances of 'float' and 'str'" ] } ], "source": [ "Nruns = 100\n", "values_full = simulate_runs(SI_full, Nruns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And plot them. Each run has it's own stochastic path, despite the strong connectivity constraint" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'values_full' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[11], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m fig, ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[43mvalues_full\u001b[49m\u001b[38;5;241m.\u001b[39mmedian(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\u001b[38;5;241m.\u001b[39mplot(ax\u001b[38;5;241m=\u001b[39max, color\u001b[38;5;241m=\u001b[39mcolors[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 4\u001b[0m values_full\u001b[38;5;241m.\u001b[39mplot(ax\u001b[38;5;241m=\u001b[39max, color\u001b[38;5;241m=\u001b[39mcolors[\u001b[38;5;241m0\u001b[39m], lw\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m.5\u001b[39m)\n\u001b[1;32m 5\u001b[0m ax\u001b[38;5;241m.\u001b[39mget_legend()\u001b[38;5;241m.\u001b[39mremove()\n", "\u001b[0;31mNameError\u001b[0m: name 'values_full' is not defined" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADkUAAAkrCAYAAADpnSvWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3QuQ1eV5wOF3L4AQEJaLoIKyCCpoxqzATMaKBSVq0WhFaDFoq05Nkxgxpk2xaWtik6jJWBOJY5I6xjsoSkiskVRAjEqsFhEQDEYuQYtCUER2ucNu55yZdMpocv4Ley7f8jwzZ1B4z/neszDMcZzfflUtLS0tAQAAAAAAAAAAAAAAAABQ4arLvQAAAAAAAAAAAAAAAAAAQBaiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJokgAAAAAAAAAAAAAAAAAIAmiSAAAAAAAAAAAAAAAAAAgCaJIAAAAAAAAAAAAAAAAACAJteVegPZrx44dsXLlynjttdfit7/9bWzdujUaGxtjz5490a1bt/yjX79+MXTo0Bg2bFgcccQR5V4ZAAAAAAAAAAAAAAAAgAomiqRNrV27Nh577LF48sknY+HChfkAMqshQ4bEuHHj4oILLogxY8ZEVVVVUXcFAAAAAAAAAAAAAAAAIC1VLS0tLdEO7dq1K5YtWxaLFi3KP15++eVYsWJF7N27t+BzFyxYEKNHjy7Jnu3Fc889F7fddls8/vjj0dzcfNCvd+KJJ8aUKVPiyiuvjE6dOrXJjgAAAAAAAAAAAAAAAACkrV1Ekbt3745XX301Hz7+PoJcvnx5q24p/P9EkdmtX78+rrvuunj00UeL8vqDBw+OO+64I84555yivD4AAAAAAAAAAAAAAAAA6aiNxORueswFj7+//TH3Y+5GyFwYSWnNmjUrrrjiimhsbCzaGatWrYpzzz03f2PknXfe6dZIAAAAAAAAAAAAAAAAgENYElHkrl274stf/nI+gly6dGns3Lmz3Csd0nKXi95www3xrW99K//PpfDjH/84VqxYEbNnz44jjzyyJGcCAAAAAAAAAAAAAAAAUFmqWkpVtR2ELVu2RF1dXcnOW7BgQYwePbpk56VmypQp8f3vf78sZx9//PHx7LPPRt++fctyPgAAAAAAAAAAAAAAAADlU13Gs0nQV7/61bIFkTm/+c1vYuzYsbF58+ay7QAAAAAAAAAAAAAAAABAeYgiyezhhx+Om2++uVXPqa+vz4eUP//5z2PdunXR1NQUu3btio0bN8Z//dd/xbRp0/K3clZVVWV+zeXLl8df/dVfRQKXnAIAAAAAAAAAAAAAAADQhqpaEijLtmzZEnV1dSU7b8GCBflQj/1vaBwxYkQ0NjZmmh80aFDccsstMWHChEzB48qVK+Mf//Ef46c//WnmnXKvP3Xq1MzzAAAAAAAAAAAAAAAAAKTNTZEUlOtmL7/88sxB5CWXXBLLli2LiRMnZr4B8sQTT4zZs2fHPffcE507d870nH/+53+OFStWZJoFAAAAAAAAAAAAAAAAIH3tNorMxXhDhgyJSZMmxa233pq//fHv/u7vyr1Wku6777544YUXMs1+8YtfjOnTp8fHPvaxAzorF18+8cQTcdhhhxWc3bt3b1xzzTUHdA4AAAAAAAAAAAAAAAAA6amNdhJAHnfccTF8+PAYMWJE/sdTTz01unfvvt/cM888U7YdU9XU1BTXX399ptmLL744pk2bdtBnnnnmmfHQQw/lX6+QXOz62GOPxYQJEw76XAAAAAAAAAAAAAAAAAAqW5JR5KBBg/4vfsz9mAsge/ToUe612qUf/ehHsXHjxoJzAwcOjLvvvjsfqLaF8ePH52+dvOOOOwrOfvOb3xRFAgAAAAAAAAAAAAAAABwCkogiO3XqFLfccks+gsw96urqyr3SIWHPnj3x3e9+N9Ps7bff/qGbOQ/WzTffHLNmzYp33nnnj84tXbo0fvGLX8S5557bpucDAAAAAAAAAAAAAAAAUFmqIwGdO3eOqVOnxtixYwWRJfTII4/E+vXrC86deeaZccEFF7T5+V27ds3fApnFv/3bv7X5+QAAAAAAAAAAAAAAAABUliSiSMrj3nvvzTSXC1aL5bLLLoujjjqq4NzTTz+dKeAEAAAAAAAAAAAAAAAAIF2iSD7S22+/HQsWLCg4N2zYsDj77LOLtkeHDh3i6quvLjjX3Nwc06dPL9oeAAAAAAAAAAAAAAAAAJSfKJKPNHPmzHxoWMill15a9F1yZ1RVVRWcmzFjRtF3AQAAAAAAAAAAAAAAAKB8RJF8pDlz5mSamzRpUtF3OeaYY+K0004rOPfKK6/Ehg0bir4PAAAAAAAAAAAAAAAAAOUhiuRDdu3aFc8991zBuaFDh0Z9fX1Jdho3blymuXnz5hV9FwAAAAAAAAAAAAAAAADKQxTJhyxcuDB27NhRcG7s2LEl2ac1Z82dO7fouwAAAAAAAAAAAAAAAABQHqJIPjKKzGL06NFRKiNGjIiuXbu22e4AAAAAAAAAAAAAAAAApEcUyYcsXrw409zw4cOjVKqrq6OhoaHg3Jo1a2Lr1q0l2QkAAAAAAAAAAAAAAACA0hJFckBRZK9eveLYY4+NUsoSYba0tMSSJUtKsg8AAAAAAAAAAAAAAAAApSWKZD/vv/9+vPnmmwXnTjrppJLscyBniiIBAAAAAAAAAAAAAAAA2idRJPtZtWpVprnBgwdHqQ0ZMqRN3wMAAAAAAAAAAAAAAAAAaRFFsp+1a9e2aaDYlrKemfU9AAAAAAAAAAAAAAAAAJAWUSQHFBQOGDAgSq1fv35RW1tbcG7NmjUl2QcAAAAAAAAAAAAAAACA0hJFsp9169ZlDhRLrbq6Ovr06dNm7wEAAAAAAAAAAAAAAACAtBS+do9DyqZNmyo2ivz9ue+8884fndm2bVvs2LEjOnfufMDnNDY2RnNzc+b5qqqqfLQJAAAAAAAAAAAAAAAAVJ5cK9TS0pJ5PtcKdevWrag7cWBEkeznvffeyzTXu3fvKIcsN0X+/n3079//gM9pTRCZk/sLcd++fQd8HgAAAAAAAAAAAAAAAFA5WtsXUTqutmM/mzdvzjRXrso567lZ3wcAAAAAAAAAAAAAAAAA6RBF0uqYsKamJrp06RLlcPjhh2eaE0UCAAAAAAAAAAAAAAAAtD+iSPazffv2gjNdu3aNcsl6U2SW9wEAAAAAAAAAAAAAAABAWkSR7GfPnj0FZzp06FCSXQ7m7N27dxd9FwAAAAAAAAAAAAAAAABKSxRJq2PCckaRtbW1bRZ3AgAAAAAAAAAAAAAAAJAWUSStjgmzhonF4KZIAAAAAAAAAAAAAAAAgEOXKJL9NDc3F5ypqqqKcqmurm6z9wEAAAAAAAAAAAAAAABAWkSRtPomxr1790Yl32TZmhslAQAAAAAAAAAAAAAAAEiHKJKkosisZ3fs2LHouwAAAAAAAAAAAAAAAABQWqJIWh0TiiIBAAAAAAAAAAAAAAAAKIfaspxKxerUqVPBme3bt0e5bNu2rSRRZFVVVbS0tLTqOTU1NQd1JgAAh6bm5uZ4//339/u5urq6qK72PWwAADh4Pm8CAFBMPm8CAFBMPm8CANDW9u3b1+q+iMokimQ/3bt3jw0bNvzRmZ07d+ZvbKytLf0fn8bGxkxzPXr0OKhzcv/B3Jq/6HJBZNeuXQ/qTAAADk27du2KJUuW7Pdz5557bqZvWAIAAIX4vAkAQDH5vAkAQDH5vAkAQFtrampqVS/kG3JULr8z7KdXr16Z5rZu3Vr0XQ7m3KzvAwAAAAAAAAAAAAAAAIB0iCLZT8+ePTPNbdmypei7HMy5Wd8HAAAAAAAAAAAAAAAAAOkQRXJANyxu2LCh6Lsc6Lk1NTXRo0ePkuwDAAAAAAAAAAAAAAAAQOmIItlP//79M81t3LgxKjWKPOqoo6Kqqqok+wAAAAAAAAAAAAAAAABQOqJI9lNfX59p7u23345Sa2xsjG3btrXZewAAAAAAAAAAAAAAAAAgLaJI9jNw4MBMc6tXr45SW7VqVaY5USQAAAAAAAAAAAAAAABA+ySKZD+DBg3KNPfGG29EqYkiAQAAAAAAAAAAAAAAAA5tokg+dFNk165dC869/vrrJdnnQM78+Mc/XvRdAAAAAAAAAAAAAAAAACg9UST7qaqqik984hOZbm1sbGyMUlq8eHGmuYaGhqLvAgAAAAAAAAAAAAAAAEDpiSL5kFNPPbXgTEtLS7zyyitRSosWLSo4U1dXF/X19SXZBwAAAAAAAAAAAAAAAIDSEkXyISNHjsw096tf/SpKZf369fHWW28VnBs+fHhJ9gEAAAAAAAAAAAAAAACg9ESRfMiZZ56ZaW7evHlRKnPnzs00d9ZZZxV9FwAAAAAAAAAAAAAAAADKQxTJhxx11FExbNiwgnMLFy6M7du3V1QUefbZZxd9FwAAAAAAAAAAAAAAAADKQxTJAceFO3fujP/4j/8o+i47duzIdE7v3r2joaGh6PsAAAAAAAAAAAAAAAAAUB6iSD7SxRdfnGluxowZRd/liSeeiMbGxoJz48ePj6qqqqLvAwAAAAAAAAAAAAAAAEB5iCL5SH/yJ38S9fX1Bed+/vOfx5tvvlnUXe68885Mc5deemlR9wAAAAAAAAAAAAAAAACgvESRfKTcjYuTJ08uOLd379743ve+V7Q9Xn755XjmmWcKzh177LFx+umnF20PAAAAAAAAAAAAAAAAAMpPFMkf9NnPfjY6dOhQcO4HP/hBrFu3rig7XH/99ZnmvvCFL+RDTgAAAAAAAAAAAAAAAADaL1Ekf9CAAQNi0qRJBed27twZX/7yl9v8/NmzZ8e8efMKzh1++OHxuc99rs3PBwAAAAAAAAAAAAAAAKCyiCIr3OWXX56/AbHQIzdXDP/wD/+Q6QbGn/zkJ3H33Xe32bnr16/P31SZxec///l8GAkAAAAAAAAAAAAAAABA+yaK5I86+eST48orr8w0e80118Qvf/nLgz7zgw8+iAsvvDDefffdgrN9+vSJ66+//qDPBAAAAAAAAAAAAAAAAKDyiSIp6Oabb466urqCczt27Ijzzz8/fvGLXxzwWRs2bIhzzjknXn755cy79ejR44DPAwAAAAAAAAAAAAAAACAdokgy3cZ46623ZpptamqK8847L39747Zt21p1zs9+9rNoaGiIF198MdP86NGjM99iCQAAAAAAAAAAAAAAAED6kooiL7/88qiqqjrgx4033pjpnDFjxhzUOffee2+0N7n4cPLkyZlmm5ub49vf/nYMHjw4/vVf/zVWr179B2e3bt0aDzzwQJx++unx53/+5/mbIrM44ogjYvr06fmvNwAAAAAAAAAAAAAAAACHhtpyL0A6fvjDH8bSpUtj+fLlmeZzgePXvva1/KNv375x8sknR8+ePaNDhw6xZcuWWLt2bbz++uv5iLI1cs/PBZFHHnnkAb4TAAAAAAAAAAAAAAAAAFIkiiSzrl27xty5c+OMM86IN954o1XP3bhxY/5xsGpqavJB5FlnnXXQrwUAAAAAAAAAAAAAAABAWqrLvQBp6devX8yfPz9OOOGEkp/dsWPHuP/++2PChAklPxsAAAAAAAAAAAAAAACA8hNF0moDBgyIF198Mc4777ySxpgLFiyIz3zmMyU7EwAAAAAAAAAAAAAAAIDKIorkgHTv3j0ef/zxuO2226Jbt25FPWvixImxePHiOO2004p6DgAAAAAAAAAAAAAAAACVTRTJAauuro7rrrsuVq5cGVdccUV07NixTV9/5MiR8dRTT8XMmTPjyCOPbNPXBgAAAAAAAAAAAAAAACA9okgO2lFHHRU//vGPY926dXHDDTfECSeccMCvVVdXF5MnT47nn38+XnrppfjUpz7VprsCAAAAAAAAAAAAAAAAkK7aSMi9996bfxxKUnrP/fr1ixtvvDH/WLt2bcybNy+WLVsWv/71r/P/vnXr1mhqaoq9e/dG165do1u3btG3b98YOnRonHTSSXHaaaflHzU1NeV+KwAAAAAAAAAAAAAAAABUoKSiSNJRX18fV111VbnXAAAAAAAAAAAAAAAAAKAdqS73AgAAAAAAAAAAAAAAAAAAWYgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCSIIgEAAAAAAAAAAAAAAACAJIgiAQAAAAAAAAAAAAAAAIAkiCIBAAAAAAAAAAAAAAAAgCTUxiHgd7/7Xbz22mv5x8aNG6OxsTH/6NChQ3Tr1i0OP/zwqK+vj2HDhsUJJ5wQnTt3LvfKyduyZUusWLEifvvb38Y777wTmzZtiu3bt8fOnTujpaUlDjvssPzXuXfv3tGvX7845phj4qSTToojjjii3KsDAAAAAAAAAAAAAAAAUKHaZRSZi+6efvrpePzxx+PJJ5+MVatWZX5uLpQ8/fTTY9y4cTFhwoQYOHBgUXdtLzZv3hw/+9nP8l/3Z599Nt58880Dep1cFDlq1KgYM2ZMXHjhhdG/f/823xUAAAAAAAAAAAAAAACANFVHO7Jr16648847Y+jQoTF27NiYNm1aq4LInD179sSCBQviK1/5Shx33HExfvz4eP7554u2c+rmzp0bn/70p/O3PV555ZXx4IMPHnAQ+ftbPWfNmhVf/OIX87dH/umf/mnMnDkz9u3b16Z7AwAAAAAAAAAAAAAAAJCedhNFzpkzJ0466aS4+uqr4/XXX2+T12xubo7Zs2fnby6cNGlSvP32223yuu3BM888E6eeemqcffbZ8cQTT+Rj0mLc+Jm7dfIv//Iv4/jjj4/HHnuszc8AAAAAAAAAAAAAAAAAIB3V7eF2yNwNhePGjYvVq1cX7ZxHHnkkTjzxxPjJT34Sh7KtW7fGZZddFmPGjIlXXnmlZOeuWbMmJk6cmI8wxakAAAAAAAAAAAAAAAAAh6ako8hcHHfGGWfEPffcU5LzGhsbY8KECfEv//Iv+VsMDzXLly+PhoaGePDBB8u2w9y5c+OUU06JBQsWlG0HAAAAAAAAAAAAAAAAAMoj2Shyw4YNMXr06HjppZdKem4uhvzmN78Z1113XRxKFi5cGKNGjcrf2Fhu7777bvzZn/1ZzJ49u9yrAAAAAAAAAAAAAAAAAFBCSUaRmzdvjrFjx8Ybb7xRth1uv/32+Kd/+qc4VG6IPO+882LLli1RKXbt2hWTJk1yYyQAAAAAAAAAAAAAAADAIaQ2EpO7qfHSSy+NFStWZH5OdXV1/lbJ8ePHx8iRI2PgwIFRV1eXD+vee++9ePXVV/M3IU6fPj3efPPNzK970003xSmnnBJ/8Rd/Ee3V1q1b4/zzz48PPvig1c9taGiIM844I0477bQYOnRo/mves2fPqKmpiffffz8ft65duzb/tc89nn/++Whubs78+rt3787/ni5btiwGDBjQ6v0AAAAAAAAAAAAAAAAASEtyUeQtt9wSc+bMyTyfi+ZyzxkyZMiHfq1Dhw7RtWvXOPbYY/PhXy5yfOSRR+KrX/1qPtbL4m/+5m/y8d9HvX57MGXKlFi3bl2rAtRLLrkkvvSlL8WIESP+4Fy/fv3yj2HDhuVvocxZvXp1TJs2Le66667YsWNHpvNyt1deccUVMW/evMw7AgAAAAAAAAAAAAAAAJCm6kjI8uXL44Ybbsg026VLl7j//vtj1qxZmYPFqqqqmDRpUv7mwYkTJ2Z6TmNjY/z1X/91/gbL9ubll1+O++67L/P80UcfnY8TH3zwwT8aRP4hxx13XNx+++35c3M3cGY1f/78+OlPf9rq8wAAAAAAAAAAAAAAAABIS1JR5DXXXBN79+7NFETmbpO87LLLDuic3O2RM2fOjM9+9rOZ5l944YV8gNnefP3rX888e+KJJ8aSJUtizJgxB33u0KFD48UXX/y/GyTbelcAAAAAAAAAAAAAAAAA0pRMFPnoo4/GM888k2l2xowZccYZZxz0mT/84Q/jwgsvzDQ7derUaGpqivZi/fr18eSTT2aa7du3bz5C7d27d5ud36lTp3jkkUdi5MiRmeaXLl0a//3f/91m5wMAAAAAAAAAAAAAAABQeZKJIr/xjW9kmvvSl74UF1xwQZucWVVVFffcc08MGDCg4OzGjRvjrrvuivYid1Nmc3Nzptlp06bFwIED23yHj33sY/HQQw9FbW1tpvmHH364zXcAAAAAAAAAAAAAAAAAoHIkEUXmbix89dVXC871798/vvWtb7Xp2XV1dfHd734302xubs+ePdEezJ8/P9NcQ0NDTJw4sWh7DBkyJK666qo23RkAAAAAAAAAAAAAAACANCURRd52222Z5m666abo0qVLm59/8cUXx6hRowrOvfXWW/kbFtuDl156KdPc1Vdfnb9Rs5iuvfbaTHPLli2LHTt2FHUXAAAAAAAAAAAAAAAAAMqn4qPIXGj49NNPF5w75phj4pJLLinaHlOnTs00d//990fqtmzZEps2bco0e8455xR9nxNOOCGOPfbYgnMtLS2xatWqou8DAAAAAAAAAAAAAAAAQHlUfBQ5ffr0fOyW5cbC2traou0xbty4OP744wvOzZ8/PzZs2BApW79+faa5QYMGRf/+/aMUxowZkzmiBQAAAAAAAAAAAAAAAKB9qvgocsaMGQVnqqurY/LkyUXdo6qqKi699NKCc/v27YuZM2dGypqamjLNHX300UXfpbVnZd0dAAAAAAAAAAAAAAAAgPRUdBT59ttvx9KlSwvOnX766SUJ9C655JJMc3PmzImU5cLOLHr37h2l0qdPn0xze/fuLfouAAAAAAAAAAAAAAAAAJRHRUeR8+bNyzR33nnnRSkMHjw4hgwZUnDu2Wefjd27d0eq6urqMs0ddthhRd+ltWdl3R0AAAAAAAAAAAAAAACA9LSLKHLs2LFF36U1Z23fvj0WLlwYqerZs2emuXfffTdKZdOmTZnmevXqVfRdAAAAAAAAAAAAAAAAACiPio4is4SF3bt3j4aGhiiV0aNHZ5pLOYrs3bt3dOnSpc1CxbaQ9awBAwYUfRcAAAAAAAAAAAAAAAAAyqNio8gPPvgg1q5dW3AuF0RWVVVFqYwYMSLT3CuvvBKpqqmpiU9+8pMF51auXBk7duwoyU6LFi0qOFNfXx9HHnlkSfYBAAAAAAAAAAAAAAAAoPQqNopcvHhxtLS0FJw79dRTo5QGDRoUdXV17TqKzBk1alTBmZ07d8Yvf/nLou+yZcuWePHFF9tkZwAAAAAAAAAAAAAAAADSVbFR5JIlSzLNnXzyyVFqw4YNKziTu+Uyd9tlqiZMmJBpbubMmUXfZdasWbFv376CcxdddFHRdwEAAAAAAAAAAAAAAACgfCo2ily1alWmucGDB0epDRkyJNPc6tWrI1W52PSss84qOPfAAw/Eb37zm6LtkbuN8sYbbyw4V19fHxdccEHR9gAAAAAAAAAAAAAAAACg/Co2iszdtNiWgWJbynpm1vdQqb7yla8UnNm7d29MmTIlmpubi7LDN77xjXjrrbcKzl133XVRXV2xf5wBAAAAAAAAAAAAAAAAaAMVW5FlCQo7duwYffv2jVLr379/prk1a9ZEys4555z4zGc+U3DuP//zP+Paa69t8/PvvvvuuOmmmwrOjRw5Mr7whS+0+fkAAAAAAAAAAAAAAAAAVJaKjSLXrVtXcOaII46IqqqqKLV+/fq12XuodN///vfjyCOPLDh3xx13xN/+7d/Gjh07DvrMlpaW+M53vhOf+9znCs526tQp7rvvvqipqTnocwEAAAAAAAAAAAAAAACobBUZRW7bti1TXJc1TmxrWc/dtGlTpK5nz54xZ86c/I+F/Pu//3uMGDEi5s+ff8DnLVmyJD71qU/F1KlTY+/evX90tra2NmbMmBFDhw494PMAAAAAAAAAAAAAAAAASEdFRpHvvfdeprnevXtHOfTp06dN30elO+WUU+Kpp56KHj16FJx97bXXYuzYsfHxj388f8vksmXLorm5+Y8+Z9WqVXHvvffG6NGjo6GhIVNUWV1dHQ888EBcdNFFrXovAAAAAAAAAAAAAAAAAKSrNirQ5s2bM81169at6LsczLlZ30cKhg8fHosXL47JkyfHCy+8UHB++fLlMWXKlPw/H3744XH88cdHXV1d/lFTUxPvv/9+/rFmzZpW36h59NFHx4MPPpiPKAEAAAAAAAAAAAAAAAA4dCQdReZiu3Lo2rVr/qbCQjcgtqcoMqe+vj6ee+65+Pa3vx3f+c534oMPPsj0vK1bt8aiRYsO+vyqqqqYNGlS/gbKXr16RSXJ/VnYtWtXudcAACBBu3fvzvRzAABwIHzeBACgmHzeBACgmHzeBACgrRVqwUhHVUtLS0tUmCeeeCI+/elPF5y79tpr43vf+16UQ/fu3fOx3x/Tp0+f+N3vfhft0ZYtW/Jf+zvvvLPVNz22Vi5AHT9+fHzta1+Lk08+OUqhqakp9u3b16qvx5IlS4q6EwAAAAAAAAAAAAAAAHBgPvGJT0SPHj0yz9fU1OQv16PyVEcF2rNnT6a5Dh06FH2Xgzm7PX83mtxfAF//+tfjnXfeiQULFsSVV16Zjxfb0ujRo+NHP/pR/oxHH320ZEEkAAAAAAAAAAAAAAAAAJWpNipQ1piwnFFkbW1tm8WdqXr33Xdj1qxZ8fjjj8fTTz/d5lfILlq0KHr16hWHHXZYnH/++dGzZ882fX0AAAAAAAAAAAAAAAAA0lKRUWTWmDBLmFgsh/JNkf/zP/8Tt956a9x1112xffv2op3T1NSUjy5zjy5dusRVV10Vf//3fx/9+/cv2pkAAAAAAAAAAAAAAAAAVK6KjCKz3jhYVVUV5VJdXV1wpq1vTqyEWPWGG26I2267reTBZy6+vP322+MHP/hBfP7zn4+bb745OnfuHJWirq4uzj333HKvAQBAgnKfrXM3r/9/Z555ZnTs2LFsOwEA0H74vAkAQDH5vAkAQDH5vAkAQFvbtWtXtLS0lHsN2msUmeUWxpy9e/dGJd9mmfV9pGDlypUxefLkWLx4cdn/AzcXRz711FPx0EMPRUNDQ1SCXCTbqVOncq8BAEA7kfsfOD5fAgBQLD5vAgBQTD5vAgBQTD5vAgBwsD3Yvn37yr0GbUAUeYCynN1evhPNwoUL87cgNjU1ZX5ObW1tDB8+PEaNGpV/HHPMMdGzZ8/o1atX/tfee++92Lx5c2zYsCFeeOGFeO655+JXv/pVbNu2LdPr//rXv45PfvKT8fDDD8dFF110EO8OAPhf9u48yOryTPj33U2zKDuiAiKyDxGI4hIXNDgILihuKBMRF9QxLglRU4qxjCY1LtG4x1HH0cSoAdeJgoAKLuMuUYwEFwREJbK5sa9C/+qcKt/K+/6SnC/Q5/R5uq+r6ltquM957nPaP7oq9fEBAAAAAAAAAAAAAIBUlGUUmTUmFEUWXy5YPPzwwzMHkc2bN4+zzjorzj///OjYseM/nOvQoUP+6dOnTwwaNCj/v+XOuPvuu+Omm26KTz/9NNOtkf/2b/8Wjz76aBx11FGb8akAAAAAAAAAAAAAAAAASFFllKGs19qvXr06akuWGw1TjyLnzZuXDyJXrFiRaf64446LTz75JK6//vp/GkT+I82aNcvHlHPnzo1f/vKXUVlZmena2hNOOCF/0yQAAAAAAAAAAAAAAAAAdVtZRpEtW7bMNJc11qtpuRsKc08hrVq1ilRVV1fHqFGjYtmyZQVnGzRoELfccks89thj0bp1660+u6qqKi6//PKYOnVqbL/99gXncz+LU089NfNtlgAAAAAAAAAAAAAAAACkqSyjyO222y7T3PLly4u+y9acm/VzlKNbb701/vd//zfz7OjRo2t8h3/913+NiRMnxjbbbJPpVssLL7ywxncAAAAAAAAAAAAAAAAAoHyUZRTZpk2bTHNLly4t+i5bc27Wz1Fu1q5dG1deeWWm2VwMee655xZtl7333jvuv//+TLN33313fPjhh0XbBQAAAAAAAAAAAAAAAIDaVZZRZOvWraOysvBqixYtKsk+W3puqjdFPvDAA/HFF18UnNtpp53i2muvLfo+w4YNi2OOOabgXHV1ddx0001F3wcAAAAAAAAAAAAAAACA2lGWUWQuiGzfvn3BucWLF0c5R5EdO3aMFP3mN7/JNHfZZZdFkyZNohRyN1dmCWXvu++++Prrr0uyEwAAAAAAAAAAAAAAAAClVZZRZE6XLl0KzixfvjxWrVoVpbZw4cIa+wzlJvfZZsyYkek2zzPOOCNKpXfv3nH44YcXnFu9enU8//zzJdkJAAAAAAAAAAAAAAAAgNIq2yiyc+fOmebmzp0bpTZnzpw6G0W+9NJLmeYGDhwYDRs2jFI69NBDM829+OKLRd8FAAAAAAAAAAAAAAAAgNIr2yiya9eumeZmz54dpVaXo8iXX34509whhxwSpTZ48OAaDTsBAAAAAAAAAAAAAAAASEvZRpF9+vTJNDdr1qyi77IlZ7Zo0SI6deoUqfn0008zze2+++5Rar169YomTZoUnPv4449Lsg8AAAAAAAAAAAAAAAAApVW2UeQee+yRaW769OlRSsuWLYuPPvooUzRYUVERqfnyyy8zzbVt27bou2zpuUuXLo1NmzaVZB8AAAAAAAAAAAAAAAAASqdso8iuXbtGy5Ytyy6KfOutt6K6urrGos5Uo8jtt9++6Lts6bm5IPLrr78uyT4AAAAAAAAAAAAAAAAAlE7ZRpG5Wxb32muvgnPz5s2LRYsWRam89tprmeay7F6ONmzYkGmucePGURu23XbbTHNr164t+i4AAAAAAAAAAAAAAAAAlFbZRpE5Bx98cKa5qVOnRqlMmTKlRncvN9tss02muS+++CJqw+rVq2v0cwAAAAAAAAAAAAAAAACQjrKOIgcNGpRp7plnnolSWLlyZaabIvv27Rvt2rWLFDVt2rSso8gFCxbU6OcAAAAAAAAAAAAAAAAAIB1lHUXuueee0aZNm4Jz48ePj3Xr1hV9n8cffzzWr19fcG7w4MGRqp122inT3Mcffxyltnz58liyZEnBubZt20bjxo1LshMAAAAAAAAAAAAAAAAApVPWUWRlZWUce+yxBeeWLVsWkydPLvo+48aNyzR3/PHHR6q6dOmSaW7q1KlRaq+//npUV1cXnOvcuXNJ9gEAAAAAAAAAAAAAAACgtMo6iswZOXJkprnbb7+9qHt89NFH8dRTTxWc69atW+y3336Rqt69e2eamzJlSpRa7kbQLHbdddei7wIAAAAAAAAAAAAAAABA6ZV9FDlgwIDo1KlTpkhvxowZRdvj5ptvjk2bNhWcGzFiRKQsa9D5wQcfxBtvvBGlsnr16njooYcyze6///5F3wcAAAAAAAAAAAAAAACA0iv7KLKioiLOOeecTLOXXHJJ0W6JvOuuuwrONWzYMM4666xIWc+ePaN9+/aZZi+77LIolTvvvDO++OKLzCEtAAAAAAAAAAAAAAAAAHVP2UeRObkosnnz5gXnJk+eHBMmTKjx8y+44IJYt25dplsiO3bsGCnLRajDhg3LNDt16tT8d15s8+fPj1/+8peZZnfdddfo1atX0XcCAAAAAAAAAAAAAAAAoPSSiCJbtmwZZ599dqbZM888MxYuXFijNxSOHz++4FxlZWVcdNFFUdNOO+20fKhY6MnN1ZSRI0dmns2FoB988EEUy5o1a2L48OGxfPnyTPMnnXRS0XYBAAAAAAAAAAAAAAAAoHYlEUXm/OxnP4u2bdsWnFuyZEkcc8wxsWLFiq0+89lnn43zzz8/0+wZZ5wRvXv3jrpgn332if333z/T7NKlS+OII46ITz75pMb3yP0Mjz322Hj99dczzTdt2jRzPAsAAAAAAAAAAAAAAABAepKJIlu3bh3XXHNNptlp06bFYYcdlg8kt9TEiRPjqKOOinXr1mXa7eqrr4665PLLL888+9FHH0W/fv1iwoQJNXb+O++8E3vuuWc8/fTTmV9z3nnnRZs2bWpsBwAAAAAAAAAAAAAAAADKSzJR5Le3MQ4YMCDT7KuvvpoP9Z588snNvp3w4osvjqFDh8bq1aszveaGG27IdItlSg499NAYNmxY5vmvv/46jj766DjllFNi5syZW3zuggULYsyYMbHvvvvG7NmzM79u55133qyQEwAAAAAAAAAAAAAAAID0JBVFVlRUxNixY2P77bfPHNjl4sZcSPmHP/whVq5c+Q9ncwHeL37xi+jevXv8+te/jurq6kxnnHzyyTFq1Kioi2677bZo37595vncd3b//ffHd7/73Tj88MPjv/7rv+L9998v+LpPP/00//PJfZddunSJ6667LtauXZv53MrKyrjnnnuiadOmmV8DAAAAAAAAAAAAAAAAQHqqIjEdOnTIh5FDhgyJDRs2ZHrNiy++mH9y8VyvXr3y4V3Lli1j/fr18dVXX+VvNlyyZMlm79K3b9+44447oq5q165dPPLIIzFw4MD8d7U5ceRTTz2Vf3K222676NSpU7Rp0yb/NGjQIP+9556FCxfGZ599tlV7XnPNNTF48OCteg8AAAAAAAAAAAAAAAAAyl9yUWTOoEGD4oEHHogRI0bExo0bM79u06ZN8d577+WfrdWzZ8+YMmVKnb+dsH///vHYY4/F8ccfH+vWrdui9/jyyy/zTzFccsklcfHFFxflvQEAAAAAAAAAAAAAAAAoL5WRqOHDh8fvf//7aNSoUcnPzt02+eyzz8aOO+4Y9cGRRx4ZEydOzN/yWC5yt37+6le/yt8SCQAAAAAAAAAAAAAAAED9kGwUmXPSSSfFc889V9I4cejQofHGG29Ex44doz45+OCD46233op99923tleJ9u3bx9NPPx1jxoyp7VUAAAAAAAAAAAAAAAAAKKGko8ic/v37x/Tp02PYsGFFPadFixZx8803xxNPPJH/+/qoc+fO8corr8Ttt98e2223XcnPb9iwYYwePTo++OCDGDRoUMnPBwAAAAAAAAAAAAAAAKB2JR9F5nTo0CEeffTR/O2Be+21V42+d6NGjWLUqFH5EO8nP/lJVFRURH1WWVkZ55xzTnz88cdx/fXXR6dOnYp+ZvPmzePHP/5xzJkzJ2655ZZ6G6UCAAAAAAAAAAAAAAAA1Hd1Ior81iGHHBJ/+tOf4qWXXooRI0ZEq1attvi9evXqFVdccUV8+umn8dvf/jbat29fo7umrlmzZvHTn/40H0e+8MIL+VCye/fuNfb+bdu2jeHDh8eDDz4YixcvjltvvbUkASYAAAAAAAAAAAAAAAAA5asq6qADDjgg/2zcuDFeffXV/PPuu+/G+++/H4sWLYqVK1fmn6qqqvwthLmbBzt37hy77rpr9O3bNwYPHpz/53Jw77335p9ylbs5c8CAAfkn569//Ws+TJ05c2b+ds3PPvssFi5cGF9++WWsXbs2/1RXV0fjxo2jSZMm0bJly3xwmnt69OgRvXv3jn79+uX/Wt9v5QQAAAAAAAAAAAAAAACgHkSR32rQoEEceOCB+YfS6NixY/459thja3sVAAAAAAAAAAAAAAAAAOqYytpeAAAAAAAAAAAAAAAAAAAgC1EkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJCEqqgHlixZEu+9917+Wbx4caxYsSL/NGzYMJo3bx4tWrSILl26xK677hr/8i//Ettss01trwwAAAAAAAAAAAAAAAAA1Icosrq6Op577rkYP358TJo0KebMmZP5tblQ8oADDoghQ4bE8ccfH507dy7qrvXFpk2b4q233oo33ngjPvzww5g1a1Z88skn/ydQXb16dTRu3DgfqTZr1ixat24d3bt3zz89evSIvn37xne/+91o0KBBbX8UAAAAAAAAAAAAAAAAAGpJnYoi161bF/fcc0/ceuut+ehuS2zYsCGef/75/DNmzJg4+uij48ILL8yHkmz+z+N//ud/4pFHHsl/n0uXLv2n87kwMvfkbvPMefPNN/+vP2/atGl873vfi/333z8GDx6c/5mIJAEAAAAAAAAAAAAAAADqj8qoIyZPnhy9e/eO8847b4uDyL93u+Ef//jHOPDAA+MHP/hBLFiwoEbet6777LPP4oILLogOHTrEiBEj8t9hoSAyi1WrVuXjyquuuioOOuig2GGHHeLkk0/OR5e520EBAAAAAAAAAAAAAAAAqNsq68JthKeffnoMGTIk5s6dW7RzHnrooejVq1f+5kP+vlz4eMkll0SPHj3i5ptvjq+++qqo5+Xe/4EHHojhw4fn/z0AAAAAAAAAAAAAAAAAoG5LOorM3dz4/e9/P373u9+V5LwVK1bE8ccfHz//+c/dTPj/mDRpUj4avfbaa2PNmjW1vQ4AAAAAAAAAAAAAAAAAdVCyUeSiRYvioIMOimnTppX03FwMeeWVV8YFF1xQ0nPLVe6Gxh/96EdxxBFHxOLFi2t7HQAAAAAAAAAAAAAAAADqsKpI0FdffRWDBg2K2bNn19oOt9xySzRt2jSuuuqqqK+WLVsWxxxzTLzwwgu1vQoAAAAAAAAAAAAAAAAA9UByN0XmbmocOXJkvPvuu5lfU1lZGQMHDozbbrst3njjjfyNhuvXr48VK1bExx9/HBMmTIhLLrkkOnXqtFm7XH311fHwww9HfbRgwYI48MADBZEAAAAAAAAAAAAAAAAAlExyN0X+6le/ismTJ2eeP+644/Kv6dGjx//vzxo2bBjNmjWLXXbZJY488sh85PjQQw/FpZdeGvPmzcv0/meeeWb069fv775/XbV06dI45JBDNitMzamoqIjddtstH1Puvffe0bVr1+jcuXP+Z5C7dXPdunX52ydz7//111/H+++/H++8807MmDEj/9fcnwEAAAAAAAAAAAAAAABQfyUVRc6cOTMuv/zyTLPbbrtt3HnnnXHyySdvVrT3gx/8IB9Inn766fHII48UfE3utslTTz01Xnnllfzr67q1a9fGUUcdtVlB5E477RTnnntunHTSSfkA9R+pqqrKx5EdOnTI/3P//v3/z59t3LgxXn311Zg0aVL+yYWSAAAAAAAAAAAAAAAAANQvlZGQH//4x/HNN99kCiJzt0luThD5t3I3Fz788MNx1llnZZp/7bXX4r777ov6IPedvPTSS5lmW7RoEbfcckvMnTs3f/vmPwsiC2nQoEH+hslrrrkmf2vknDlz4uKLL44ddthhi98TAAAAAAAAAAAAAAAAgLQkE0Xmbm184YUXMs2OGzcuvv/972/1mbmbJo8++uhMs2PGjImVK1dGXXb//ffnnywGDhyYv9lz9OjR0bhx4xrfpVu3bnHttdfGX//613jooYfyt0wCAAAAAAAAAAAAAAAAULclE0X+x3/8R6a5888/P4466qgaObOioiJ+97vfxc4771xwdvHixfHf//3fUVflbns877zzMs3++7//ezz99NOZvret1bBhwxg+fLgoEgAAAAAAAAAAAAAAAKAeSCKKnDRpUvzlL38pONexY8e46qqravTs1q1bx0033ZRpNje3YcOGqItyQeSKFSsKzv3whz+Mu+66S6QIAAAAAAAAAAAAAAAAQP2MIm+88cZMc1dffXVsu+22NX7+sGHD4sADDyw4N3/+/Hj44YejrpkwYUL+5sdCjjjiiLj99ttLshMAAAAAAAAAAAAAAAAA9U/ZR5G50PC5554rONepU6c48cQTi7bHmDFjMs3dd999UZfkbr786U9/WnCuffv2ce+990ZlZdn/KwUAAAAAAAAAAAAAAABAosq+YBs7dmxUV1cXnDvvvPOiqqqqaHsMGTIkevbsWXDu2WefjUWLFkVd8eCDD8bs2bMLzt12223Rtm3bkuwEAAAAAAAAAAAAAAAAQP1U9lHkuHHjCs7kbic86aSTirpHRUVFjBw5suDcxo0b4+GHH4664vrrry84079//zjuuONKsg8AAAAAAAAAAAAAAAAA9VdZR5ELFiyId955p+DcAQccEDvttFPR9znxxBMzzU2ePDnqgmeeeSZmzJhRcO4Xv/hFSfYBAAAAAAAAAAAAAAAAoH4r6yhy6tSpmeaOOOKIKIXu3btHjx49Cs69+OKLsX79+kjdPffcU3CmV69eMWjQoJLsAwAAAAAAAAAAAAAAAED9VieiyFJGeVnOWr16dbzyyiuRspUrV8aECRMKzp1++ukl2QcAAAAAAAAAAAAAAAAAyjqKzBIWtmzZMvr16xelctBBB2WaSz2KfOKJJ2LNmjUF54499tiS7AMAAAAAAAAAAAAAAAAAZRtFLlu2LObNm1dwLhdEVlRURKnstddemebefvvtSNnjjz9ecGbXXXeN7t27l2QfAAAAAAAAAAAAAAAAACjbKHL69OlRXV1dcG6PPfaIUuratWu0bt26TkeRue/9hRdeKDh34IEHlmQfAAAAAAAAAAAAAAAAACjrKPLPf/5zprk+ffpEqeVuSCwkd8tl7rbLFM2YMSO++OKLgnP7779/SfYBAAAAAAAAAAAAAAAAgJyqcv0a5syZk2mue/fuUWo9evSIV155peDc3LlzS36TZU3IcktkzuZ8tvnz58fMmTPjvffei88//zyWL18e69evj2233TaaNm0a7dq1i1122SV69uwZvXr1isrKsu11AQAAAAAAAAAAAAAAAKglZRtF5m5azBoollrWM3OfIcUoMsstnblosVCQ+uabb8bYsWNjwoQJmSPXnBYtWsQ+++wTQ4cOjeOOOy522mmnzK8FAAAAAAAAAAAAAAAAoO6qTDmKbNSoUey4445Rah07dsw099FHH0WKcjc6FrLzzjtHkyZN/u6fTZw4MQ444IDYe++946abbtqsIDInd4vklClTYvTo0flzjjjiiHj++ec36z0AAAAAAAAAAAAAAAAAqHvKNor85JNPCs7ssMMOUVFREaXWrl27GvsM5aa6ujree++9gnN/7/bGXAR65JFH5p9XXnmlxvaZNGlSDBw4MAYPHpxpNwAAAAAAAAAAAAAAAADqprKMIletWhVr1qypsTixpmU99/PPP4/UzJ8/P1avXp0pSP1bjz/+ePTr1y9/S2SxTJ06NXbbbbe49tpr87EkAAAAAAAAAAAAAAAAAPVLWUaRX375Zaa5tm3bRm3Yfvvta/RzlJPPPvtss7+DXKR43HHHxfLly6PYvvnmm7jkkkti6NCh+XgWAAAAAAAAAAAAAAAAgPqjLKPIr776KtNc8+bNi77L1pyb9XOUk4ULF2aaa9q0af6v1113XT5SLPXNjbkbKQcPHhxLly4t6bkAAAAAAAAAAAAAAAAA1J6qKENZY8IWLVpEbWjWrFlUVlbGpk2b6m0U2ahRoxg3blyMGTMmastrr70WQ4YMieeffz4aN24ctSn378K6detqdQcAANK0fv36TP8bAABsCb9vAgBQTH7fBACgmPy+CQBATSvUgpGOsowiV69enTlOrC25s5cvX14jn6OcfP7555nmZs+eHf/5n/+ZabZ///5x+OGHx3777Rfdu3eP7bbbLpo0aZL/fpYsWRIffvhhvPzyy/Hkk0/GjBkzNjuMHDVqVIwdOzZq09dffx1//vOfa3UHAADqjueee662VwAAoA7z+yYAAMXk900AAIrJ75sAAGyN3XffPVq1alXba1BXo8gNGzZkmmvYsGHRd9mas1P8r9GsWbMm09wf//jHf/rnFRUVMXLkyLjsssuiZ8+ef3emefPm+adbt275aPKqq66KadOmxRVXXBFPPfVU5p1zN1YOGjQoTj/99MyvAQAAAAAAAAAAAAAAACA9lVGGssaEtRlFVlVV1VjcWU7Wrl271e+x00475f9LPPfdd98/DCL/ke9973sxefLk/M2PuWAyqwsuuCDmz5+/BdsCAAAAAAAAAAAAAAAAkIqyjCKzxoRZwsRiqas3RW5tFNmnT5/8bY8HHXTQVr3PiSeeGK+88krsuOOOmeaXL18eP//5z7fqTAAAAAAAAAAAAAAAAADKW+1Vhf/Epk2bMs1VVFREbamsrKyxz1FOtuZ2y1122SWmTJkS7dq1q5Fd+vbtm3+//fffP1auXFlw/v77748xY8bEd77znSi11q1bx2GHHVbycwEASF/uP6aSu2n9bw0cODAaNWpUazsBAFB3+H0TAIBi8vsmAADF5PdNAABq2rp166K6urq216CuRpFZbmHM+eabb6Kc48Gsn6OcNGjQYItelwtU77333hoLIv82jLz++uvj7LPPzhSh3nrrrXHHHXdEbUSyjRs3Lvm5AADUTbn/A8fvlwAAFIvfNwEAKCa/bwIAUEx+3wQAYGt7sI0bN9b2GtSAwtcd1oIUosgsZ6f4X6LZ0p1Hjx4dBx10UBTDD3/4wzjkkEMyzT7wwAOxYsWKouwBAAAAAAAAAAAAAAAAQO2qTDnME0XWvC3ZuUWLFnHllVdGMd1yyy2Z5lauXBmTJk0q6i4AAAAAAAAAAAAAAAAA1I6yjCKzXmu/evXqqC2rVq2qk1Fk1u/+b51yyinRrFmzKKZevXrFwIEDM81OnDixqLsAAAAAAAAAAAAAAAAAUDvKMops2bJlprkVK1ZEbVi/fn3+KaRVq1aRmi2JG88999wohfPOOy/T3NSpU4u+CwAAAAAAAAAAAAAAAAClV5ZR5HbbbZdpbvny5UXfZWvOzfo5yknbtm03+wbH73znO1EKRx55ZKabLBcuXBgLFiwoyU4AAAAAAAAAAAAAAAAA1PMosk2bNpnmli5dWvRdtubcrJ+jnGxuyLnvvvtGqTRq1Ch23333TLPTp08v+j4AAAAAAAAAAAAAAAAAlFZZRpGtW7eOysrCqy1atKgk+2zpufXhpshSRpE5++yzT6a5uXPnFn0XAAAAAAAAAAAAAAAAAEqrLKPIXBDZvn37gnOLFy+Oco4iO3bsGKnp0KHDZs1nvbmxpvTr1y/T3Pz584u+CwAAAAAAAAAAAAAAAAClVZZRZE6XLl0KzixfvjxWrVoVpbZw4cIa+wzlpnPnzlFRUVG0myW3VtbbN7P+jAAAAAAAAAAAAAAAAABIR2U5x3lZzJ07N0ptzpw5dTaKbNy48WbdFtmqVasopdatW2eaq41YFgAAAAAAAAAAAAAAAIB6GkV27do109zs2bOj1OpyFJnTrVu3THO5GyXLNYpcs2ZN0XcBAAAAAAAAAAAAAAAAoLTKNors06dPprlZs2YVfZctObNFixbRqVOnSFHv3r0zzVVWVkaDBg2ilBo2bJhpbuPGjUXfBQAAAAAAAAAAAAAAAIDSKtsoco899sg0N3369CilZcuWxUcffVRwbvfdd8/fpJiiPffcM3N4uGLFiiilpUuXZprbdttti74LAAAAAAAAAAAAAAAAAKVVtlFk165do2XLlmUXRb711ltRXV1dY1FnOdprr70yz3799ddF3WVLz9tmm22KvgsAAAAAAAAAAAAAAAAApVW2UWTulsUscd68efNi0aJFUSqvvfZajYeF5aZ3797RtGnTGr25sdRR5I477lj0XQAAAAAAAAAAAAAAAAAorbKNInMOPvjgTHNTp06NUpkyZUqN7l6OqqqqYsCAAZlmZ82aFaX04YcfZprbZZddir4LAAAAAAAAAAAAAAAAAKVV1lHkoEGDMs0988wzUQorV67MdFNk3759o127dpGyww47LNPcG2+8EaX0+uuvZ5rr0qVL0XcBAAAAAAAAAAAAAAAAoLTKOorcc889o02bNgXnxo8fH+vWrSv6Po8//nisX7++4NzgwYMjdVmjyKyRYk2ZNm1aprk99tij6LsAAAAAAAAAAAAAAAAAUFplHUVWVlbGscceW3Bu2bJlMXny5KLvM27cuExzxx9/fNF3KbYePXrkb7ws5M0334ylS5eWZKe33347vvzyy4JzO+ywQ3Tu3LkkOwEAAAAAAAAAAAAAAABQOmUdReaMHDky09ztt99e1D0++uijeOqppwrOdevWLfbbb7+oC0477bSCM7kbOu+9996S7HPHHXdkmjv44IOLvgsAAAAAAAAAAAAAAAAApVf2UeSAAQOiU6dOBeemTJkSM2bMKNoeN998c2zatKng3IgRI6KuyAWpVVVVBefuvPPOqK6uLuouudtAx44dm2n2mGOOKeouAAAAAAAAAAAAAAAAANSOso8iKyoq4pxzzsk0e8kllxTtlsi77rqr4FzDhg3jrLPOirpihx12iOHDhxecmzVrVjz00ENF3eXGG2+MVatWFZxr3rx5DBkypKi7AAAAAAAAAAAAAAAAAFA7yj6KzMlFkbnYrZDJkyfHhAkTavz8Cy64INatW5fplsiOHTtGXXLppZfmw9RCfvSjH8XixYuLssPbb78d11xzTabZU089NZo1a1aUPQAAAAAAAAAAAAAAAACoXUlEkS1btoyzzz470+yZZ54ZCxcurLGz77zzzhg/fnzBucrKyrjooouipp122mn5KLHQk5srht69e8exxx5bcO7LL7/M35JZXV1do+evXbs2Hzpu2LCh4GxVVVWMHj26Rs8HAAAAAAAAAAAAAAAAoHwkEUXm/OxnP4u2bdsWnFuyZEkcc8wxsWLFiq0+89lnn43zzz8/0+wZZ5yRDwjromuvvTaaNGlScC4Xj+Zu1awpuRDyhBNOiL/85S+Z5nNRZo8ePWrsfAAAAAAAAAAAAAAAAADKSzJRZOvWreOaa67JNDtt2rQ47LDD8oHklpo4cWIcddRRsW7duky7XX311VFXde/ePS699NJMs7fcckuccsop+Rset0bu5slDDz00nnzyyUzzbdq0iV/84hdbdSYAAAAAAAAAAAAAAAAA5S2ZKPLb2xgHDBiQafbVV1+Nfv36ZY7qvpW7YfLiiy+OoUOHxurVqzO95oYbbsh0i2XKxowZE7vttlum2fvvvz923333mDp16mafU11dHePGjcvfuvn8889nft1dd90V22+//WafBwAAAAAAAAAAAAAAAEA6kooiKyoqYuzYsZnjtwULFuTjxlxI+Yc//CFWrlz5D2dnz56dv2kwdyvir3/963ycl8XJJ58co0aNirquUaNG8dhjj0WrVq0yzc+aNSsGDx4c+++/f9x99935n8U/M2fOnLjxxhvzMeSIESNi8eLFmXc7++yzY9iwYZnnAQAAAAAAAAAAAAAAAEhTVSSmQ4cO+TByyJAhsWHDhkyvefHFF/NPZWVl9OrVK7p06RItW7aM9evXx1dffRUzZ86MJUuWbPYuffv2jTvuuCPqi27duuXj0qOPPjq++eabTK957bXX8k/OzjvvHD169Mjfqtm4ceNYs2ZNPn7MBZRb8v3nHH744fGb3/xmi14LAAAAAAAAAAAAAAAAQFqSiyJzBg0aFA888ED+RsGNGzdmft2mTZvivffeyz9bq2fPnjFlypRo2rRp1Ce5GDUXpea++6xh5Lfmz5+ff2rKwQcfHI888khUVSX5rzEAAAAAAAAAAAAAAAAAm6kyEjV8+PD4/e9/H40aNSr52bnbJp999tnYcccdoz464YQT4sEHH4xtttmmVneYOHFivYtSAQAAAAAAAAAAAAAAAOqzZKPInJNOOimee+65ksaJQ4cOjTfeeCM6duwY9dmwYcPitddei27dupX03IYNG8YNN9wQDz30UDRu3LikZwMAAAAAAAAAAAAAAABQu5KOInP69+8f06dPz0d6xdSiRYu4+eab44knnsj/PRG77bZbvPXWW3HOOedEgwYNin7eAQccENOmTYsLL7wwKioqin4eAAAAAAAAAAAAAAAAAOUl+Sgyp0OHDvHoo4/G008/HXvttVeNvnejRo1i1KhR8cEHH8RPfvITMd7/o2XLlnH77bfH22+/nb9Fs7Ky5v+Vyv1MH3744XjppZdi9913r/H3BwAAAAAAAAAAAAAAACANdSKK/NYhhxwSf/rTn/Lx3IgRI6JVq1Zb/F69evWKK664Ij799NP47W9/G+3bt6/RXeuavn37xvjx42P27Nlx0UUXRbdu3bbq/dq1a5e/gfLll1/O/0xPOOGEGtsVAAAAAAAAAAAAAAAAgDRVRR10wAEH5J+NGzfGq6++mn/efffdeP/992PRokWxcuXK/FNVVRXNmzePFi1aROfOnWPXXXfNx32DBw/O/3M5uPfee/NPKrp27RrXXXdd/pk7d24899xzMXPmzPxNm/PmzYtly5blv/u1a9dG48aNY9ttt422bdvGLrvskn/tHnvsEfvss0/06dOnKLdOAgAAAAAAAAAAAAAAAJCuOhlFfqtBgwZx4IEH5h9KL3db5NbeGAkAAAAAAAAAAAAAAAAA33IVHwAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAAAAAAAAAAAAkARRJAAAAAAAAAAAAAAAAACQBFEkAAAAAAAAAAAAAAAAAJAEUSQAAAAAAPx/7N17kNV1+cDxZzfAyeRmXhCJwEARpVFzmky8jKHjUIopXUScVBBRxyRLgbCyyUDNzFvmsJOakzJhpkFKhqBZaeZIZuIlBLULAibKNReE/c3ZmWZ+v9/M7n6FPWfPc87rNXPGy3nO+Txn1z/OjPPmAwAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACt2iDqxZsyaef/751sfq1atjw4YNrY/u3btHz549o1evXjF48OAYPnx4HHDAAfH+97+/q1cGAAAAAAAAAAAAAAAAAOohimxpaYnFixfHvHnz4sEHH4yXX3658GtLoeTIkSNj9OjRMXbs2Bg0aFBZdwUAAAAAAAAAAAAAAAAA6jCKbG5ujh//+Mdx4403xksvvbRD77F169Z45JFHWh9Tp06NMWPGxCWXXNIaStL5Sj/n3/72t+/pNVOmTIk+ffqUbScAAAAAAAAAAAAAAAAAqlPNRJELFiyIiy66KJYvX95p77l9+/a47777Wh9f+MIX4rrrrov+/ft32vvXu3//+9+tP9c33njjPb3urLPOEkUCAAAAAAAAAAAAAAAA1KHGqIHbIc8555wYPXp0pwaR/9/PfvazGDZsWPziF78o2xn15stf/vJ7DiIBAAAAAAAAAAAAAAAAqF+po8iVK1fG0UcfHbfffntFztuwYUOMHTs2vvGNb0RLS0tFzqxV8+fPjzlz5nT1GgAAAAAAAAAAAAAAAAAk0i2SWrVqVRx77LGxbNmyip5biiGvvPLK1kDy+uuvr+jZtWLdunVx/vnnd/UaAAAAAAAAAAAAAAAAACST8qbItWvXxqhRoyoeRP5vN9xwQ8yYMaPLzs/s0ksvjX/9619dvQYAAAAAAAAAAAAAAAAAyaSLIks3NY4fPz6WLl1a+DWNjY1x3HHHxc033xxPPvlkrF69OrZs2dJ62+Orr74a8+fPj2nTpsXAgQPf0y4zZ86MuXPn7sCnqF+LFy+Opqamrl4DAAAAAAAAAAAAAAAAgITSRZFXXXVVLFiwoPD8qaeeGi+++GIsWrQoLrzwwvj4xz8ee+21V3Tv3j122223+PCHPxyf+cxnYtasWa2B5Jw5c2Lw4MGF33/ixIldemNlJps3b45zzz23q9cAAAAAAAAAAAAAAAAAIKlUUeRzzz0X3/zmNwvN7rrrrnHnnXfGvffeG0OHDi30moaGhvjiF78Yzz77bHzuc58r9JrSbZNf+tKXWm+wpH0zZsyIFStWdPUaAAAAAAAAAAAAAAAAACSVKoq86KKL4t133y0URJZukzzzzDN36JzSDZJz586NSZMmFZp/4oknWgNM2vbHP/4xbrzxxjaf79OnTxx44IEV3QkAAAAAAAAAAAAAAACAXNJEkffcc088+uijhWbnzJkTRx999E6feeutt8aYMWMKzU6dOjU2bty402fWoubm5jjnnHNi+/btbc5cc801sddee1V0LwAAAAAAAAAAAAAAAABySRNFfuc73yk0N2XKlDj55JM75cyGhoa4/fbb40Mf+lCHs6tXr46mpqZOObfWlH53L7zwQpvPlwLWiRMnVnQnAAAAAAAAAAAAAAAAAPJJEUU++OCD8de//rXDuQEDBsR3v/vdTj27b9++8YMf/KDQbGlu69atnXp+ds8880xcffXVbT6/yy67xOzZs1sDVAAAAAAAAAAAAAAAAABIH0Ved911heZmzpwZu+66a6eff9ppp8VRRx3V4dw//vGPmDt3bqefn9W7774bEyZMaP1rW2bMmBEHHHBARfcCAAAAAAAAAAAAAAAAIKeqjyJLoeHixYs7nBs4cGCcfvrpZdtj6tSphebuvPPOsu2QzbXXXhtLlixp8/mDDjqo8M8VAAAAAAAAAAAAAAAAAKo+irz77rujpaWlw7kLL7wwunXrVrY9Ro8eHfvvv3+Hc4sWLYpVq1ZFvXvppZfi29/+dpvPNzY2RlNTU/To0aOiewEAAAAAAAAAAAAAAACQV9VHkXPmzOlwphTYnXHGGWXdo6GhIcaPH9/h3LZt22Lu3LlRz0oR64QJE+Kdd95pc2by5MlxxBFHVHQvAAAAAAAAAAAAAAAAAHKr6ihy5cqV8Ze//KXDuZEjR8a+++5b9n1OP/30QnMLFiyIenbzzTfHH/7whzafL/2uZs2aVdGdAAAAAAAAAAAAAAAAAMivqqPIhx9+uNDcpz/96aiEIUOGxNChQzuce+yxx2LLli1Rj1599dWYPn16uzM//OEPo1evXhXbCQAAAAAAAAAAAAAAAIDaUBNR5KhRo8q+y3s5a/Pmze3elFjLJk2aFJs2bWrz+dNOOy3GjBlT0Z0AAAAAAAAAAAAAAAAAqA1VHUUWCQt79+4dhx56aFTKscceW2iuHqPI2267LRYuXNju7+qmm26q6E4AAAAAAAAAAAAAAAAA1I6qjSLXrVsXr7zySodzpSCyoaEhKuXwww8vNPfnP/856snrr78eX/3qV9udufrqq2Offfap2E4AAAAAAAAAAAAAAAAA1JaqjSKXLFkSLS0tHc4ddthhUUn77bdf9O3bt8O5eosiL7jggnj77bfbfH7kyJExadKkiu4EAAAAAAAAAAAAAAAAQG2p2ijymWeeKTR38MEHR6UNHz68w5nSLZel2y7rwdy5c+P+++9v8/kePXpEU1NTRW/0BAAAAAAAAAAAAAAAAKD2VG0U+fLLLxeaGzJkSFTa0KFDC80tX748at2bb74ZF110UbszX//612PYsGEV2wkAAAAAAAAAAAAAAACA2lS1UWTppsXODBQ7U9Ezi36GzC6++OJYs2ZNm88feOCBMX369IruBAAAAAAAAAAAAAAAAEBtSh1F9ujRI/bee++otAEDBhSaW7FiRdSyBx54IO666642n29oaIimpqbW3xMAAAAAAAAAAAAAAAAA1GwU+dprr3U4s9dee7WGd5XWr1+/TvsMWa1fvz4mT57c7sx5550XRx55ZMV2AgAAAAAAAAAAAAAAAKC2VWUUuWnTpvjPf/7TaXFiZyt67htvvBG16tJLL41//vOfbT7fv3//uOqqqyq6EwAAAAAAAAAAAAAAAAC1rSqjyDfffLPQ3B577BFdYc899+zUz5HNI488Ek1NTe3O3HTTTdG7d++K7QQAAAAAAAAAAAAAAABA7avKKHLt2rWF5nr27Fn2XXbm3KKfI5PNmzfHueeeGy0tLW3OnHLKKXHqqadWdC8AAAAAAAAAAAAAAAAAal+3qEJFY8JevXpFV9htt92isbExtm/fXndR5OWXXx7Lly9v93dy8803R70p/bfQ3Nzc1WsAAJDQli1bCv07AADYEb5vAgBQTr5vAgBQTr5vAgDQ2TpqwcijW7XeRlg0TuwqpbPXr1/fKZ8jiyeffDJuuOGGdmdmzZoV++67b9Sbt956K5555pmuXgMAgBqxePHirl4BAIAa5vsmAADl5PsmAADl5PsmAAA745BDDok+ffp09Rp0gsaoQlu3bi00171797LvsjNn19KfRlP6LBMmTGi3iP7kJz8Z559/fkX3AgAAAAAAAAAAAAAAAKB+VGUUWTQm7Mooslu3bp0Wd2Zw5ZVXxtKlS9t8vkePHtHU1BQNDQ0V3QsAAAAAAAAAAAAAAACA+lGVUWTRmLBImFgu9XRT5LPPPhtXXXVVuzNTp06N4cOHV2wnAAAAAAAAAAAAAAAAAOpP11WF7di+fXuhua68lbCxsbHTPkc127ZtW5xzzjnthqoHHHBAzJgxI+pZ375948QTT+zqNQAASKj0h6ksXrz4//y74447rvU2dgAA2Fm+bwIAUE6+bwIAUE6+bwIA0Nmam5ujpaWlq9egVqPIIrcwlrz77rtRzbdZFv0c1ezaa6+Np59+ut0wdfbs2bHLLrtEPStFsvX+MwAAoPOU/geO75cAAJSL75sAAJST75sAAJST75sAAOxsD1a6QI78Or7usAtkiCKLnJ39T6L529/+FldccUW7MxMnToyjjz66YjsBAAAAAAAAAAAAAAAAUL+qMoosGhOKIsundBXshAkT4p133mlzpl+/fnHNNddUdC8AAAAAAAAAAAAAAAAA6ldVRpFFr7XfvHlzdJVNmzbVdBR5yy23xO9///t2Z2666abo06dPxXYCAAAAAAAAAAAAAAAAoL5VZRTZu3fvQnMbNmyIrrBly5bWR0eyBoOvvfZaTJs2rd2Zk046KcaOHVuxnQAAAAAAAAAAAAAAAACgKqPID37wg4Xm1q9fX/Zddubcop+j2px33nmxcePGNp/v2bNn602SAAAAAAAAAAAAAAAAABD1HkXuvvvuhebefvvtsu+yM+cW/RzV5I477oiHHnqo3ZmZM2fGgAEDKrYTAAAAAAAAAAAAAAAAAFRtFNm3b99obOx4tVWrVlVknx09N9tNkaXPdckll7Q784lPfCIuuOCCiu0EAAAAAAAAAAAAAAAAAFUdRZaCyH322afDudWrV0c1R5HZblMsxY5vvfVWm8937949Zs+eXShYBQAAAAAAAAAAAAAAAIDOVrV12+DBgzucWb9+fWzatCkq7fXXX++0z1At7rnnnrjvvvvanbnssstixIgRFdsJAAAAAAAAAAAAAAAAAFJEkYMGDSo0t3z58qi0l19+ueaiyLvvvrvd54cOHRqXX355xfYBAAAAAAAAAAAAAAAAgP+vW1Sp/fbbr9DcsmXL4qMf/WhUUi1GkS0tLe0+36dPn5g8eXJZd3jxxRcLzX3ta1+L3XbbrcO5cePGxQknnNAJmwEAAAAAAAAAAAAAAABQDao2ijz44IMLzb300ktl32VHzuzVq1cMHDgwasVTTz3V+qgG9957b6G5Qw45RBQJAAAAAAAAAAAAAAAAUEMao0oddthhheaWLFkSlbRu3bpYsWJFoSCvoaGhIjsBAAAAAAAAAAAAAAAAQD2o2ihyv/32i969e1ddFPn0009HS0tLp0WdAAAAAAAAAAAAAAAAAEDyKLJ0y+Lhhx/e4dwrr7wSq1atikp54oknCs0V2R0AAAAAAAAAAAAAAAAAqIEosuRTn/pUobmHH344KmXhwoWdujsAAAAAAAAAAAAAAAAAUANR5KhRowrN/eY3v4lK2LhxY6GbIkeMGBH9+vWryE4AAAAAAAAAAAAAAAAAUC+qOor82Mc+FrvvvnuHc/PmzYvm5uay73P//ffHli1bOpw7/vjjy74LAAAAAAAAAAAAAAAAANSbqo4iGxsb47Of/WyHc+vWrYsFCxaUfZ85c+YUmhs7dmxkUwo+W1pauvRxzDHHFNr1lVdeKfR+U6ZMKfvPDQAAAAAAAAAAAAAAAIDKqeoosmT8+PGF5m655Zay7rFixYr49a9/3eHcRz7ykTjiiCPKugsAAAAAAAAAAAAAAAAA1KOqjyJLtwcOHDiww7mFCxfGs88+W7Y9rr/++ti+fXuHc+PGjSvbDgAAAAAAAAAAAAAAAABQz6o+imxoaIjzzz+/0Oy0adPKdkvk7NmzO5zr3r17TJo0qSw7AAAAAAAAAAAAAAAAAEC9q/oosqQURfbs2bPDuQULFsT8+fM7/fyvfOUr0dzcXOiWyAEDBnT6+QAAAAAAAAAAAAAAAABAkiiyd+/eMXny5EKzEydOjNdff73Tzr711ltj3rx5Hc41NjbGpZdeGp3trLPOar0ts6NHaQ4AAAAAAAAAAAAAAAAAalmKKLJk+vTpsccee3Q4t2bNmjjllFNiw4YNO33mokWLYsqUKYVmJ0yYEAcddNBOnwkAAAAAAAAAAAAAAAAAJI8i+/btG7NmzSo0+6c//SlOPPHE1kByRz3wwANx8sknR3Nzc6HdZs6cucNnAQAAAAAAAAAAAAAAAAA1FEX+9zbGY445ptDs448/Hoceemj86le/ek9nlG6YvOyyy+Kkk06KzZs3F3rN97///UK3WAIAAAAAAAAAAAAAAAAAdRJFNjQ0xN133x177rlnofmVK1e2xo2lkPKuu+6KjRs3tjm7bNmyuOKKK2LIkCHxve99L1paWgqdceaZZ8bZZ59d+DMAAAAAAAAAAAAAAAAAADumWyTTv3//1jBy9OjRsXXr1kKveeyxx1ofjY2NMWzYsBg8eHD07t07tmzZEmvXro3nnnsu1qxZ8553GTFiRPzoRz/agU8BAAAAAAAAAAAAAAAAANR8FFkyatSo+OlPfxrjxo2Lbdu2FX7d9u3b4/nnn2997Kz9998/Fi5cGB/4wAd2+r0AAAAAAAAAAAAAAAAAgI41RlKf//zn4yc/+Un06NGj4meXbptctGhR7L333hU/GwAAAAAAAAAAAAAAAADqVdoosuSMM86IxYsXVzROPOmkk+LJJ5+MAQMGVOxMAAAAAAAAAAAAAAAAACB5FFly5JFHxpIlS+K0004r6zm9evWK66+/Pn75y1+2/j0AAAAAAAAAAAAAAAAAUFnpo8iS/v37x89//vN46KGH4vDDD+/U9+7Ro0ecffbZ8eKLL8bFF18cDQ0Nnfr+AAAAAAAAAAAAAAAAAEAdRZH/dcIJJ8RTTz0Vv/vd72LcuHHRp0+fHX6vYcOGxbe+9a34+9//Hrfddlvss88+nborAAAAAAAAAAAAAAAAAPDedIsaNHLkyNbHtm3b4vHHH299LF26NF544YVYtWpVbNy4sfXRrVu36NmzZ/Tq1SsGDRoUw4cPjxEjRsTxxx/f+s/V4I477mh91INHH320q1cAAAAAAAAAAAAAAAAAoIrVZBT5X+973/viqKOOan0AAAAAAAAAAAAAAAAAALk1dvUCAAAAAAAAAAAAAAAAAABFiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAMD/sHfvwVbW5cOH7705ZMjRA4qSAgGSioHhH6UIKSJiKCR5AjXNIRt11MbS7GRTaqNTmDFpOB7Hw2iFiQc8AJqmpiaRIqac1AwBReSobIT9zlq/ad6391ftR91rr3XvfV0zz4zCvdZzPwvGWTPOZ38BAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACCF9tEGrFq1KhYuXFi+Vq5cGevXry9fHTp0iC5dukTXrl2jb9++sffee8dee+0Vn/zkJ6u9MgAAAAAAAAAAAAAAAADQFqLIxsbGmDt3bsycOTPuv//+WLx4ceHXlkLJgw46KMaOHRsTJ06MPn36VHTX1mDt2rXx3HPPxYIFC+KVV14pf95vvvlmOUDdsGFDvP/++1FfX1+OTTt16hQ9e/aM3XbbrRyiDh48OIYMGRLDhg0rf/YAAAAAAAAAAAAAAAAA0CaiyM2bN8d1110XV111Vbz88ssf6T22bNkSjzzySPm64IIL4uijj45vfvOb5VCS/7F8+fJydProo4/GY489Vo4gSyHqf7N169byZ7tu3bpYsWJFPP/88//y+9tvv30MHz48JkyYEMcee2x07969wk8BAAAAAAAAAAAAAAAAQDb10UrMmjUr9tlnnzjzzDM/chD5/9u2bVvcdddd5Vjv+OOPL8eAbdWf//zn+N73vhdDhw6N3XffPU466aRygLpo0aImg8giNm7cGA888EB8/etfj1133TVOOeWUWLhwYbPsDgAAAAAAAAAAAAAAAEDrUN8aToc87bTTYuzYsbFkyZKK3eeOO+6IQYMGxYwZM6KtKJ3mWDots1+/fnHAAQfEJZdcEvPnz2+RP9Obb7459t1335g8eXL5ZEkAAAAAAAAAAAAAAAAASB1Flk5uPPjgg+OGG25okfutX78+Jk6cGN///veb5XTEWlUKEksnQn72s5+Nyy+/PJYtW1aVPUqf8a233hp77bVX3HjjjVXZAQAAAAAAAAAAAAAAAIDakTaKLJ0eOHLkyHjmmWdaPNT7yU9+Euedd160VtOnT2+REyGLWrduXZx66qnlq6GhodrrAAAAAAAAAAAAAAAAAFAlKaPId955J0aNGhWLFi2q2g6/+MUv4rvf/W7V7t8WlU6LHDduXGzatKnaqwAAAAAAAAAAAAAAAABQBemiyNJJjZMnT44XX3yx8Gvq6+vjkEMOiWnTpsXTTz8dK1euLJ84uH79+nj11VfjnnvuiQsvvDD22GOPD7XLpZdeGnfeeedHeAo+qoceeqgcRm7ZsqXaqwAAAAAAAAAAAAAAAADQwtpHMj/96U9j1qxZhee//OUvl18zYMCA//V7HTp0iM6dO8eee+4ZX/rSl8qR4x133BEXXXRRLFu2rND7n3766TF06NB/+/5tyXbbbRf7779/DBs2LIYMGRJ9+vQpX927d4/tt98+tm7dGqtXry6f8rl06dL4wx/+UL7mz59fDl0/jLlz58YZZ5wR1113XcWeBwAAAAAAAAAAAAAAAIDakyqKXLBgQfzgBz8oNNupU6e45ppr4qSTTir8/nV1dXH88ceXA8nTTjstfvOb3zT5mtJpk6eccko88cQT5de3JaWTNUvR6ZgxY2LEiBHlMPK/6d27d/nab7/9Yvz48eVfK534efnll8ftt9/+oU5/vP7662P06NFx3HHHfeznAAAAAAAAAAAAAAAAACCH+kjk7LPPjg8++KBQEFk6TfLDBJH/r9LpkXfeeWdMmTKl0PxTTz0VN998c7QFpc+mdErjH//4x3j11Vdj6tSpcfjhhzcZRP4n++yzT9x0003lOLJ00uSHceaZZ8aaNWs+0n0BAAAAAAAAAAAAAAAAyCdNFFk6tfHRRx8tNFs6dfDggw/+2PcsnTR59NFHF5q94IILYsOGDdFa7bXXXjFt2rRYvnx5XH311XHggQc268mYAwYMKMelZ511VuHXrF69Oq644opm2wEAAAAAAAAAAAAAAACA2pYmivzxj39caO7cc8+No446qlnuWYr+brjhhvjUpz7V5OzKlSvj2muvjdZm6NCh5VMzFy5cWD6ZsUuXLhW7V8eOHeOXv/xlOTAt6qqrrop169ZVbCcAAAAAAAAAAAAAAAAAakeKKPL++++PF154ocm53r17xyWXXNKs9+7Ro0dMnTq10GxpbsuWLdEaDBo0KGbMmBHz5s2Lr3zlK1Ff33J/VS677LLCJ3Ru3LixHG0CAAAAAAAAAAAAAAAA0PqliCJ//vOfF5q79NJLo1OnTs1+/2OOOSaGDx/e5Nzf//73VhHo/eQnP4kFCxbEhAkTqnL/0gmd06dPLwepRdxxxx0V3wkAAAAAAAAAAAAAAACA6qv5KLIUGs6dO7fJuT322CNOOOGEiu1xwQUXFJq7+eabI7uRI0dGu3btqrpDz5494/zzzy80+8QTT0RDQ0PFdwIAAAAAAAAAAAAAAACgumo+irztttuisbGxybkzzzwz2rdvX7E9xo4dGwMHDmxybs6cObFixYqK7dGWTJkyJTp06NDk3HvvvRfz5s1rkZ0AAAAAAAAAAAAAAAAAqJ6ajyJvv/32Jmfq6+tj0qRJFd2jrq4uJk+e3OTc1q1b484776zoLm3FTjvtFMOHDy80+8orr1R8HwAAAAAAAAAAAAAAAACqq6ajyOXLl8df//rXJucOOuig2H333Su+zwknnFBobtasWRXfpa048MADC80tWbKk4rsAAAAAAAAAAAAAAAAAUF01HUXOnj270NyRRx4ZLaF///4xYMCAJucee+yxaGhoaJGdWruBAwcWmlu7dm3FdwEAAAAAAAAAAAAAAACgulpFFDlq1KiK7/Jh7rVp06Z44oknWmSf1m7HHXcsNLdx48aK7wIAAAAAAAAAAAAAAABAddV0FFkkLOzWrVsMHTo0WsrIkSMLzYkim0f79u2bdQ4AAAAAAAAAAAAAAACAvGo2ily7dm0sW7asyblSEFlXVxctZdiwYYXm/vKXv1R8l7ZgzZo1heY6d+5c8V0AAAAAAAAAAAAAAAAAqK6ajSLnzZsXjY2NTc7tv//+0ZL69esXPXr0aHJOFNk8Xn311UJzu+66a8V3AQAAAAAAAAAAAAAAAKC6ajaKnD9/fqG5fffdN1ra3nvv3eRM6ZTL0mmXfPw4togBAwZUfBcAAAAAAAAAAAAAAAAAqqtmo8jFixcXmuvfv3+0tKIB3pIlSyq+S2u2devWmDNnTqHZ/fbbr+L7AAAAAAAAAAAAAAAAAFBdNRtFlk5arNUTAoves+gz8O89+uij8fbbbzc5t+eee0afPn1aZCcAAAAAAAAAAAAAAAAAqid1FNmxY8fYZZddoqX17t270NzSpUsrvktrNm3atEJzo0ePrvguAAAAAAAAAAAAAAAAAFRfzUaRr732WpMzPXv2jLq6umhpu+66a7M9A//eK6+8EjNnziw0O2nSpIrvAwAAAAAAAAAAAAAAAED11WQUuXHjxnjvvfeaLU5sbkXv+9Zbb1V8l9bq/PPPj23btjU5179//zj44INbZCcAAAAAAAAAAAAAAAAAqqsmo8jVq1cXmttpp52iGnbeeedmfQ7+1YMPPhj33HNPodkLL7ywKqeFAgAAAAAAAAAAAAAAANDyajKKfOeddwrNdenSpeK7fJz7Fn0O/q+1a9fG6aefXmi2b9++cfLJJ1d8JwAAAAAAAAAAAAAAAABqQ/uoQUVjwq5du0Y1dO7cOerr62Pbtm3/dU4U+eGdddZZ8cYbbxSanTp1anTo0CFqQenvwubNm6u9BgAACTU0NBT6NQAA+Ch83wQAoJJ83wQAoJJ83wQAoLk11YKRR01GkZs2bSocJ1ZL6d7r1q1rlufgf1x77bVxyy23FJo94ogj4uijj45asWbNmpg/f3611wAAoJWYO3dutVcAAKAV830TAIBK8n0TAIBK8n0TAICPY8iQIdG9e/dqr0EzqI8atGXLlkJz1TwlsMi9/TSa4ubNmxdnn312odnSf3ymT59e8Z0AAAAAAAAAAAAAAAAAqC01GUUWjQmrGUW2b9++2eLOtm7FihUxYcKE2Lx5c6H5adOmRe/evSu+FwAAAAAAAAAAAAAAAAC1pSajyKIxYZEwsVKcFNk83nvvvTjqqKPi9ddfLzQ/efLkmDRpUsX3AgAAAAAAAAAAAAAAAKD2VK8q/C+2bdtWaK6uri6qpb6+vtmeo60qfT6lyPHZZ58tND948OD49a9/HbWoR48eMWbMmGqvAQBAQqUfpjJ37tx/+bVDDjkkOnbsWLWdAABoPXzfBACgknzfBACgknzfBACguW3evDkaGxurvQatNYoscgpjyQcffBC1fJpl0edoq84555yYMWNGodmuXbvG7373u+jUqVPUolIk+4lPfKLaawAA0EqU/geO75cAAFSK75sAAFSS75sAAFSS75sAAHzcHmzr1q3VXoNm0PRxh1WQIYoscm8/ieY/+9GPfhTTpk0rNFv6HEvx5IABAyq+FwAAAAAAAAAAAAAAAAC1qyajyKIxoSgyp6uuuiouvvjiQrPt2rWLW2+9NQ499NCK7wUAAAAAAAAAAAAAAABAbavJKLLosfabNm2Katm4cWOTM6LI/+26666Lc889t9BsXV1dTJ8+PSZOnFjxvQAAAAAAAAAAAAAAAACofTUZRXbr1q3Q3Pr166MaGhoayldTunfv3iL7ZHH77bfHlClTorGxsdD81KlT47TTTqv4XgAAAAAAAAAAAAAAAADkUJNR5I477lhobt26dRXf5ePct+hztAV33XVXnHzyybFt27ZC85dcckmcc845Fd8LAAAAAAAAAAAAAAAAgDxqMorcYYcdCs29++67Fd/l49y36HO0dvfdd18cf/zx8cEHHxSav+iii8oXAAAAAAAAAAAAAAAAANR8FNmjR4+or296tRUrVrTIPh/1vk6KjHjooYfimGOOiYaGhkLzpdMhS6dEAgAAAAAAAAAAAAAAAECKKLIURPbq1avJuZUrV0YtR5G9e/eOtuyRRx6J8ePHx+bNmwvNT5kyJa688sqK7wUAAAAAAAAAAAAAAABATjUZRZb07du3yZl169bFxo0bo6W9+eabzfYMrdXjjz8e48aNi/fee6/Q/MknnxxXX311xfcCAAAAAAAAAAAAAAAAIK+ajSL79OlTaG7JkiXR0hYvXlxorq1GkU899VQceeSRhYPV4447Lq6//vryCaEAAAAAAAAAAAAAAAAA8J/UbIXWr1+/QnOLFi2KliaK/M+eeeaZGDNmTKxfv77Q/Pjx4+OWW26Jdu3aVXw3AAAAAAAAAAAAAAAAAHKr2Shy3333LTT38ssvV3yXj3LPrl27xh577BFtyXPPPReHH354rFu3rtD8EUccEXfccUe0b9++4rsBAAAAAAAAAAAAAAAAkF/NRpH7779/obl58+ZFS1q7dm0sXbq0ybkhQ4ZEXV1dtBXz58+Pww47LN59991C86NGjYoZM2ZEx44dK74bAAAAAAAAAAAAAAAAAK1DzUaR/fr1i27dutVcFFk6DbGxsbHZos7W4IUXXigHkWvWrCk0P2LEiLj77rtju+22q/huAAAAAAAAAAAAAAAAALQeNRtFlk5ZHDZsWJNzy5YtixUrVkRLeeqppwrNFdm9NVi4cGH51Me333670PwXvvCFuPfee6NTp04V3w0AAAAAAAAAAAAAAACA1qVmo8iSQw89tNDc7Nmzo6U8/PDDzbp7Zi+//HL5OVetWlVo/oADDohZs2ZF586dK74bAAAAAAAAAAAAAAAAAK1PTUeRpRMIi3jooYeiJWzYsKHQSZGDBw+OXXfdNVqzxYsXxyGHHFL4lM6hQ4fGgw8+GF27dq34bgAAAAAAAAAAAAAAAAC0TjUdRX7uc5+LHXbYocm5mTNnxubNmyu+z+9///toaGhocu6www6L1mzZsmXxxS9+MZYvX15ovhSJlk7Y7NGjR8V3AwAAAAAAAAAAAAAAAKD1qukosr6+PiZMmNDk3Nq1a2PWrFkV3+f2228vNDdx4sRorV5//fVyEPnGG28Umv/MZz4Ts2fPjh133LHiuwEAAAAAAAAAAAAAAADQutV0FFkyefLkQnO/+tWvKrrH0qVL44EHHmhy7tOf/nR8/vOfj9boH//4RxxyyCHx2muvFZofOHBgzJkzJ3r27Fnx3QAAAAAAAAAAAAAAAABo/Wo+ihwxYkTsscceTc49/PDD8fzzz1dsjyuvvDK2bdvW5NyJJ54YrdGKFSvKQeSSJUsKzffr168cRPbq1aviuwEAAAAAAAAAAAAAAADQNtR8FFlXVxff+MY3Cs1eeOGFFTslcvr06U3OdejQIaZMmRKtzVtvvVUOIl955ZVC83vuuWfMnTs3evfuXfHdAAAAAAAAAAAAAAAAAGg7aj6KLClFkV26dGlybtasWXHPPfc0+/3PO++82Lx5c6FTIltbCLh69eoYNWpUvPTSS4XmS89fCiJLYSQAAAAAAAAAAAAAAAAAtLkoslu3bnHGGWcUmj399NPjzTffbLZ7X3PNNTFz5swm5+rr6+Nb3/pWNLevfvWr5dMym7pKc83t3XffjdGjR8fzzz9faL5Xr17lILJfv37NvgsAAAAAAAAAAAAAAAAApIgiS77zne/ETjvt1OTcqlWrYvz48bF+/fqPfc85c+bEueeeW2j2a1/7Wuyzzz7RWpQ+vzFjxsS8efMKze+yyy7lIHLAgAEV3w0AAAAAAAAAAAAAAACAtilNFNmjR4+47LLLCs0+88wz5aCvFEh+VPfdd18cddRRsXnz5kK7XXrppdFabNq0KY488sh4+umnC82XYtVSQDpo0KCK7wYAAAAAAAAAAAAAAABA25UmivznaYwjRowoNPvkk0/G0KFD49577/3QJyR++9vfjnHjxpXjwCJ+9rOfFTrFMoP333+/HIM+/vjjheZ32GGHmD17dqs6JRMAAAAAAAAAAAAAAACA2pQqiqyrq4vbbrstdt5550Lzy5cvL8eNpZDy1ltvjQ0bNvzH2UWLFsXFF18c/fv3jyuuuCIaGxsL3eOkk06KU089NVqLP/3pT+VTH4t65513YsiQIeU/m2pfAAAAAAAAAAAAAAAAALRu7SOZ3XbbrRxGjh07NrZs2VLoNY899lj5qq+vj0GDBkXfvn2jW7du0dDQUI76FixYEKtWrfrQuwwePDiuvvrqj/AUAAAAAAAAAAAAAAAAAECrjyJLRo0aFbfcckuceOKJsXXr1sKv27ZtWyxcuLB8fVwDBw6Mhx9+OLbffvuP/V4AAAAAAAAAAAAAAAAAQNPqI6ljjz02brrppujYsWOL37t02uScOXNil112afF7AwAAAAAAAAAAAAAAAEBblTaKLJk0aVLMnTu3RePEcePGxdNPPx29e/dusXsCAAAAAAAAAAAAAAAAAMmjyJIDDzww5s2bF8ccc0xF79O1a9e48sor4+677y7/MwAAAAAAAAAAAAAAAADQstJHkSW77bZb/Pa3v40HH3wwhg0b1qzv3bFjxzj11FPjb3/7W5xzzjlRV1fXrO8PAAAAAAAAAAAAAAAAALShKPKfRo8eHc8++2w8/vjjceKJJ0b37t0/8nsNGjQofvjDH8brr78e119/ffTq1atZdwUAAAAAAAAAAAAAAAAAPpz20QoddNBB5Wvr1q3x5JNPlq8XX3wxXnrppVixYkVs2LChfLVv3z66dOkSXbt2jT59+sTee+8dgwcPjsMOO6z877XgxhtvLF8tZeTIkdHY2Nhi9wMAAAAAAAAAAAAAAACANh1F/lO7du1i+PDh5QsAAAAAAAAAAAAAAAAAyK2+2gsAAAAAAAAAAAAAAAAAABQhigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJAAAAAAAAAAAAAAAAAKQgigQAAAAAAAAAAAAAAAAAUhBFAgAAAAAAAAAAAAAAAAApiCIBAAAAAAAAAAAAAAAAgBREkQAAAAAAAAAAAAAAAABACqJIAAAAAAAAAAAAAAAAACAFUSQAAAAAAAAAAAAAAAAAkIIoEgAAAAAAAAAAAAAAAABIQRQJ8H/auw9oqarzf9ybS1OkCioggjSlGrFEg9gQG3ZQo6LGFmNibEmMRlM0MbbYUH8aNRpjw14jWChGRWMDRaOIoALS7HQQhP/a57/MMt8E5tx7p525z7PWXSbxnTl79sy9ec+c89kbAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgE4QiAQAAAAAAAAAAAAAAAIBMEIoEAAAAAAAAAAAAAAAAADJBKBIAAAAAAAAAAAAAAAAAyAShSAAAAAAAAAAAAAAAAAAgExqEOuDjjz8Ob7/9dvIzb968sHDhwuSnYcOGoVmzZqF58+ahc+fOoVevXmHzzTcP6667bqmHXBGWLl0aJk+enMz7hx9+GBYsWJDM+4oVK5J5jz9t27YNPXv2TOZ+ww03LPWQAQAAAAAAAAAAAAAAAChjFRmKXL16dRg7dmx49NFHw8iRI8PUqVNTPzYGJQcMGBAGDx4cDj744LDpppsWdKyV5oMPPgj3339/Mu/jx49PApBpde/ePZn3/fffP+y6666hXr16BR0rAAAAAAAAAAAAAAAAANlSFSrI8uXLw3XXXZfsPDho0KBw9dVXVysQGcUQ37hx48KZZ54ZunbtGoYMGRKef/75go25Ujz33HPhoIMOCt26dQu//OUvwzPPPFOtQGT03nvvheHDh4fddtst2Tny+uuvT95TAAAAAAAAAAAAAAAAAKioUOSoUaNC7969w8knnxzefffdvDznqlWrwkMPPRR23HHHcNhhh4XZs2fn5XkryaxZs8Khhx4adtppp/Dwww8nc5YPkydPDj/5yU9Cnz59wpNPPpmX5wQAAAAAAAAAAAAAAAAg2zIfiow7CR533HFh8ODBYdq0aQU7zj333BN69OgRHnzwwYIdI2seeOCBZFfO++67r2DHiDt97rXXXuH444+3ayQAAAAAAAAAAAAAAABAHZfpUGTcuTHuUPjXv/61KMdbuHBhOPjgg8NvfvObsHr16lBXxdce5+CQQw5J5qQYbrnllrDzzjuHOXPmFOV4AAAAAAAAAAAAAAAAAJSfzIYi586dG3bZZZfw8ssvFz0QeMEFF4Qzzjgj1FWnnXZaMgfFDoa+9NJLyXs+b968oh4XAAAAAAAAAAAAAAAAgPKQyVDk559/HgYNGhTee++9ko1h+PDh4dxzzw11zTnnnBOuueaakh1/ypQpyXsfPwMAAAAAAAAAAAAAAAAA1C2ZC0XG3QmPPPLI8K9//Sv1Y6qqqsLAgQPDtddem+w2GHca/Oqrr8LChQvDhx9+GB577LFw9tlnh44dO1ZrLBdeeGG49957Q11x9913h4suuqhaj+ncuXMSpHz88cfD9OnTw6JFi8Ly5cuT9+Cf//xnuPrqq5PdH+vVq5f6Od96661w9NFHF32nSgAAAAAAAAAAAAAAAABKK3OhyIsvvjiMGjUqdf2QIUPC5MmTw5gxY8LJJ58cvvvd74YNN9wwNGzYMDRt2jR06tQp7LvvvknYLwYkR4wYkQT50jrhhBNKumNlMXdoPPHEE1PXd+nSJQmMTps2Lfzxj38MgwcPTkKn6623XmjUqFHyHmy33XbhlFNOCePGjQtvv/12OPDAA1M/fwxZXnrppTV8NQAAAAAAAAAAAAAAAABkUaZCkXGHwN/+9repaps0aRJuu+228MADD4Tu3bunekzcrfCwww4LkyZNCoccckiqx8TdJn/wgx9U9K6F8bUdc8wxyWtN4/DDD//3HKbdAbJHjx7hoYceCn/961/Duuuum+oxv/71r6u1YygAAAAAAAAAAAAAAAAA2ZapUGTcVXDlypWpApFxN8mjjjqqRseJO0jGXQ7T7oz44osvJgHMSvW3v/0teY1p/PSnPw133XVXsiNkTcTw5d///vewzjrr5KyNn4X4mQAAAAAAAAAAAAAAAACgbshMKPK+++4LzzzzTKraESNGhJ122qnWx/zzn/8cDjjggFS1Z511Vli0aFGoNPE1nX322alqhw4dGq6++upaH3PgwIHhzjvvTFU7bty4cP/999f6mAAAAAAAAAAAAAAAAACUv8yEIv/whz+kqjv99NPD/vvvn5dj1qtXL/z1r38Nm2yySc7aefPmhZtuuilUmhtuuCF5bblsuumm4eabb07mLB+GDBmS7DqZxgUXXJCXYwIAAAAAAAAAAAAAAABQ3jIRihw5cmR48803c9Z16NAh/PGPf8zrsVu1ahWuvPLKVLWxbsWKFaFSxNeS9rUPHz48tGjRIq/Hv+iii0K7du1y1r3xxhvhiSeeyOuxAQAAAAAAAAAAAAAAACg/mQhFXnHFFanqLrzwwtCkSZO8H3/o0KFhxx13zFk3c+bMcO+994ZKcc8994RZs2blrBs4cGDeduf8tqZNm6beBfLyyy/P+/EBAAAAAAAAAAAAAAAAKC9lH4qMQcOxY8fmrOvYsWM4/PDDCzaOs846K1XdbbfdFirFrbfemte5qYmjjjoqtG/fPmdd/IykCXACAAAAAAAAAAAAAAAAkF1lH4q86667wurVq3PWnXzyyaFBgwYFG8fgwYPDZpttlrNuzJgxYe7cuSHrZs+eHcaNG5ezrlevXmGPPfYo2DgaNmyYvLe5rFq1KvmsAAAAAAAAAAAAAAAAAFC5yj4UOWLEiJw1VVVVYdiwYQUdR7169cKRRx6Zs+7rr78O9957b8i6+Bpi0DCXNHNSW/EYcf7z8VkBAAAAAAAAAAAAAAAAILuqyn23wjfeeCNn3YABA8LGG29c8PEcfvjhqepGjRoVsi7tazjssMMKPpaOHTuG/v3756ybOHFiRezSCQAAAAAAAAAAAAAAAEAGQ5GjR49OVbfPPvuEYujWrVvo3r17zrpnn302fPXVVyGrli9fHp577rmcdT179gydO3cuypgGDx6c188MAAAAAAAAAAAAAAAAANlTEaHIQYMGFXws1TnWkiVLwvjx40NWxbEvXbo0c/MePf300wUfCwAAAAAAAAAAAAAAAAClUdahyDTBwhYtWoR+/fqFYtlll11S1WU9FJnPuciHbbbZJjRt2rSi5x0AAAAAAAAAAAAAAACAjIYi58+fHz744IOcdTEQWa9evVDMcF4aEydODFk1YcKEVHVbb711KJaqqqpU4df3338/LFiwoChjAgAAAAAAAAAAAAAAAKC4qso5mLd69eqcdVtttVUopi5duoRWrVqFuh6KbN26dejUqVMopjQhzPiZef3114syHgAAAAAAAAAAAAAAAACKq2xDkWmDbX369AnF1qtXr5w1cZfLuNtl1nzxxRdhxowZOet69+5dlPHU5JhCkQAAAAAAAAAAAAAAAACVqWxDkVOnTk1V161bt1Bs3bt3T1U3bdq0kDWVMO9pXwMAAAAAAAAAAAAAAAAA2VK2oci402I+g3L5lPaYaV9DOTHvAAAAAAAAAAAAAAAAAJSrTIciGzVqFDbaaKNQbB06dEhV9/7774esSRso3GSTTUKxtW3bNjRo0KAi5x0AAAAAAAAAAAAAAACADIcip0+fnrNmww03DPXq1QulCOfl6zWUm7RjTjsH+VRVVRU22GCDipx3AAAAAAAAAAAAAAAAAHLLve1eCSxevDgsXbq0LIN51TnuJ598ErIm7ZhLOfdz5sxJ9flZd911a3ycVatWVav+66+/DosWLarx8QAAqLti77nlllv+x/+2fPnysGLFipKNCQCAyqHfBACgkPSbAAAUkn4TAIB8i/mfQuaLqOOhyM8++yxVXZs2bUIppNmtsDqvo5xU0tx36NChxsdZvXp1wf8wAgDAN1q2bPlf/aj+EgCAfNFvAgBQSPpNAAAKSb8JAEAp1SRfRHFUhTL0+eefp6pr1qxZwcdSm+OmfR3lxNwDAAAAAAAAAAAAAAAAUK4yHYps3rx5KIWmTZuGqqqqigzmpRlz/fr1Q5MmTUIppH3Pszj3AAAAAAAAAAAAAAAAAGQwFLlkyZLU4cRSSXPstK+jnKQZcynnPe1OkVmcewAAAAAAAAAAAAAAAAAyGIpcsWJFqrqGDRsWfCy1OfZXX30VsibN3Jf7vGd17gEAAAAAAAAAAAAAAADIYCgybaCtlOG8Bg0a5C3cmbW5L/d5z+rcAwAAAAAAAAAAAAAAAJDBUGTaQFvagFwh1OWdIst93rM69wAAAAAAAAAAAAAAAABkMBS5atWqVHX16tULpVJVVZW311FO0oy53Oc9q3MPAAAAAAAAAAAAAAAAQAZDkWl3A1y5cmUo5x0V076OcpJmzOU+71mdewAAAAAAAAAAAAAAAADWTiiyhtIcu1GjRiFryj0UmfbYWZx7AAAAAAAAAAAAAAAAADIYikwbaCv3cF4Wg3lpxlzu857VuQcAAAAAAAAAAAAAAABg7RqEMtS4ceNUdUuWLAmlsnjx4ooM5qWZ+3Kf93zMfVVVVVi1alXq+nr16iWPAQAAAAAAAAAAAAAAAMpPzAqtXr06db2sUPkqy1BkixYtUtUtXLgwlMJXX32V/OTSsmXLkDVx7ufOnbvWmmXLliU7NjZoUPyPT9r3vLZz36xZs1o9HgAAAAAAAAAAAAAAAID8K8u4auvWrVPVLViwoOBjqc1x076OcmLuAQAAAAAAAAAAAAAAAChXZRmKXH/99VPVffnllwUfS22Om/Z1lBNzDwAAAAAAAAAAAAAAAEC5KstQZKtWrUJVVe6hzZ07tyjjqelxs7hbYdoxl/Pc169fP7Rs2bIo4wEAAAAAAAAAAAAAAACgjociYyCyXbt2OevmzZsXSiFtILBDhw4ha9KOuZznvn379qFevXpFGQ8AAAAAAAAAAAAAAAAAdTwUGXXu3DlnzYIFC8LixYtDsc2ZMydvr6HcpB3z7NmzQ7EtXLgw1fudxXkHAAAAAAAAAAAAAAAAIMOhyE033TRV3bRp00KxTZ06NVVdFsN55h0AAAAAAAAAAAAAAACAclW2ocguXbqkqnvvvfdCsVVyOM+8AwAAAAAAAAAAAAAAAFCuyjYU2adPn1R17777bsHHUpNjNm/ePHTs2DFkcafIpk2bZnbeo759+xZ8LAAAAAAAAAAAAAAAAAAUX9mGIrfaaqtUdRMmTAjFNH/+/PD+++/nrNtyyy1DvXr1QtbEMcexp9m1ceHChaGY0r7X/fr1K/hYAAAAAAAAAAAAAAAAACi+BqFMdenSJbRo0SIJIZZTKPK1114Lq1evzluosxzFsT///PNrrYlzMHHixLDTTjutsebjjz8Ob7/9dvIzb968JEQZfxo2bBiaNWuW7KbZuXPn0KtXr7D55puHddddd63HfPXVV3OOvVWrVslz1mVLly4NkydPTub9ww8/DAsWLEjmfcWKFcm8x5+2bduGnj17JnO/4YYblnrIAAA1ku9+EwAAvk2/CQBAIek3AQAoJP1m8X355ZfhX//6V3Lf5pw5c8Inn3wSlixZEpYtW5bcc7vOOusk89ymTZvkHs6OHTuG3r17u4cTAIBqkRnKQCgy7li4zTbbhDFjxqy17oMPPghz585N3rBiePHFF1PVxbFn1bbbbpuq7oUXXviPUGQ8aRs7dmx49NFHw8iRI5PdJNOKJ9oDBgwIgwcPDgcffHDYdNNN/+Pfz5o1K8ycOTPn82y99dahLoq/B/fff38y7+PHj0/+mKXVvXv3ZN7333//sOuuu2Zyh1MAoG4oZL/Jf4sL1MRFYd56660wZcqUZL7jhZt4wWzRokXJhZuqqqrkok2TJk2SE+f27dsnF8769u2b7EAfz4vi3AMAZIF+EwCAQtJvlp9Vq1Yl34G+9NJLyXeg7777bpg+ffq/AwPxBvbGjRsnNxE1bdo0WaS5W7duyU+8zh6/B91iiy1C/fr1S/1SAAD0myXw+eefh0ceeSSZ92effTbMmDGjRs8Tr7XvuOOOyf2bBxxwQOjQoUPexwoAQLbJDP1v9Van2fawRC666KJwzjnn5Ky7/fbbw5FHHlmUMe2yyy7hH//4R866eLNwsYKa+TZ79uyw8cYb56zbbbfdwujRo8Py5cvDzTffHK6++urkIkFtxRur44ndz372s+REO7r11lvDsccem+ozc/bZZ4e64rnnngtXXHFF8kVGvGBTWz169AinnnpqOO6445KLOwAA5aAY/Sb//3lAvFjzzDPPJBds4kWy2p4urrfeesnFm4MOOigceuihoWXLlnkbLwBAvug3s2fcuHGpvqf/ttNPP10/CgCUhH6z/N6PBx98MNx3331JXxl386ntd6Df/e53Q//+/cPuu++evCdCkgBAMek3i+/pp59O5vvJJ5+s1s3oacQb1OM19pNPPjkMHTpUbwkAlGX/OWnSpPDqq68mP3HRsbhb9sqVK3M+Nn4fFzNZpCczlOFQ5CuvvJJ8eZzLUUcdFW677baCjyfuhtK6devw1VdfrbUurgYYf8mzrHfv3slWqmuzzjrrhLvuuiuceeaZYdq0aQUZx/e///3kFzgeIx4rl/gHdauttgqVLu6cecYZZyQXagohrmx57bXXhj333LMgzw8AkNaoUaPCKaecUvB+M+5wWBfFLyUefvjh8Pjjj4fXX3+9oMeKJ9Bxvs8666zQq1evgh4LACAt/Wb2fPrpp0k/+cknn1R75Uwr3AMAxabfLK9r7Jdddllyb0nc0adQ1l9//X+vuh53WaqkVdcBgPKj3yyuuMBwDItOnDixKMfr0qVLuOSSS5K+EgCgFGJ26s0330xyOt+EIN96660aLwwhFJmezFAFhCJjinWDDTbI+YV0ixYtwrx58wqeUr3jjjuSAGYu8aTn8ssvD1kWf3muuuqqUA6aNm0avv7667B06dK11rVp0yZ8/PHHFX9R4YEHHkh2zVy4cGHBjxXT39ddd11FJMABgOytJvTjH/84/PWvfy34sZo1a5bsTD5kyJBQF8QFXO68887kZDneGF5ssV8/4ogjkhuQ2rZtW/TjAwBE+s3sir3kiBEjqv04oUgAoJj0m+Uj7gR58cUXJzv55LrnIN/i8eJi0wAA+abfLK4FCxYkOzfGe4hLIe5IHt8D4VQAoJDiTo8x8PjN7o/xn/Few1ybylWHUGQ6MkPpVYUyVlVVFQ466KCcdfPnz09WvCm0tDdaVMKqLEOHDg3lIu7QmebiRDzpruRAZMwv/+Y3vwmHHHJIUf64RbfcckvYeeedw5w5c4pyPACAaPbs2WGnnXYqygWcKPZWsYePvVYZrxlTa3EF9H79+oXvfOc74dJLLy1JIDKKcxxDmZtvvnly4QYAoNj0m9n12GOP1SgQCQBQTPrN8jFy5MjQo0ePZHedYgciAQAKRb9ZXDEYEK+zlyoQGT399NPJdf4YIgAAyPdiG3Hxh+233z5ZDCP2PT/84Q/Dn//85yQUmc9AJLnJDFXYTpHfbDe/6667ploJ5amnnirYON5///3QvXv3ZPfKtenatWuYOnVqyLr4sYivpVQ3StfEs88+G3bcccdQqU499dRwzTXXlOTYm222WTK/G220UUmODwDUHXPnzk0u4Lz33nslOf5pp51WNjum59uAAQPC+PHjQ7k55phjwg033BAaNWpU6qEAAHWAfjO74uKIvXv3DrNmzarR4+0UCQAUg36zfG7m+vnPfx7+3//7fyUdh50iAYB8028WV7y+vu+++ya7j5eDuHtPXDQuzWYzAABpxD6nVatWRTuenSLXTmaownaKjGLitGPHjqlWQolbsxZKPJHLFYiMjjjiiFAJ4o6Lw4YNC1nRqVOn5CbvSnXOOeeU7I9bNGXKlDBo0KDw+eefl2wMAEDli71G7DlKdQEnGj58eDj33HNLdvy6KO4Wud9++4UlS5aUeigAQIXTb2bbmWeeWeNAJABAMeg3y2cxjb322qvkgUgAgHzTbxZ/h8h99tmnbAKR3yz+cdhhh9kxEgCgAskMVehOkdHFF18cfvWrX+Ws23vvvcPIkSMLsktkr169khOKtWnYsGFS26FDh1AJZs6cmewWuWLFiho9vqqqKklxDxkyJGy77bbJKtwxRR7n8bPPPgtvvvlmspLOXXfdFWbMmFGrsV5yySXhl7/8ZahEd999dzj88MOr9ZjOnTsnj9lhhx1Cnz59QuvWrZPPZzxBjyuiv/zyy+HBBx8M//jHP5JdQdOKJ/mPPfZYEpoFAMin2JPEXmPUqFFl0W/ec8894dBDDw2VpFx3ivzGwIEDwxNPPJH0rQAA+abfzLaxY8eG3XbbrVbPYadIAKCQ9JvlYfbs2UkgMs5dObBTJACQL/rN4lqwYEHYYostwvTp06v92H79+iW7efbv3z/07NkzmfP1118/1K9fP3zxxRfJTebxu8o49/Hn+eefT7Vhy7e1bNky2URmk002qfb4AAC+zU6R5UFmqMJDkXElv9i8L1y4MGfto48+muwykk8HHHBA8ry5/OAHP0h2OakkRx99dLj99tur/bh4Ih3DrN27d89ZGz+C8SQ5JpvjL191NW/ePAlwxn9Wmpi23mabbVJ99qMuXbok837wwQen+iM0efLkJHD88MMPpx5TfP6zzjordT0AQBoXXXRR0g+WS7/ZrFmz8Nprr6V6/koORcYbdrbaaqukJ91yyy2TC2XxJ15kWW+99cLXX3+dXDCLF27iAjHxBDr+vP7669U6kf7GcccdF26++eZqPw4AIBf9ZnbFHcX79u2b9Ju1IRQJABSSfrP04s0+8TvQf/3rX9V6XLyu/p3vfCfsuOOOSVggXnOPfWPTpk2T70BjaCDesxKfP97E/s4774Q33ngjuQk9/jP+uzURigQA8kW/WVzHHHNM+Nvf/latAGq8If30009Prq1Xx7Rp08LVV18dbrrppqR/TCsuIjd69OhqHQsA4P8Siiw9maE6EIqM4i6Af/rTn3LWbbjhhskNuO3atcvLcf/85z+HH//4x6lOauKX3r179w6lOLkqVCDzrbfeSla8SfsxadKkSTJnRx11VLWPtWjRouQm6Pvuu58xrmQAADejSURBVK9aj4u/bPGXrtLEOY+p7RdffDFVfTypjifG8cJMdcXPzk9+8pNUJ9UNGjRIfsfy/VkHAOqu2HPG1RJXrlxZVv3m9773vSREmJUVb/IViuzYsWNykSyuqL7zzjvX6KadeOPRpZdeGkaMGFHtnefjqkff//73q31MAIA10W9m2xlnnBGuuuqqWj+PUCQAUCj6zdJbtmxZ2GOPPcJzzz2X+jEbb7xxco182LBhoVOnTjU6blw07oUXXggjR45MfuI9I98mFAkA5IN+s7hi2LM6wcbYV8aNR3bddddaHTcuvhHvAY0Lb6T10EMPhQMPPLBWxwUA6jahyNKSGaq9qpARMZnapk2bnHUff/xx0uSnTcmuzZgxY5KVW9I4/vjjM/GGV1fcRnWjjTaq1opENTmhjuJKi/fee28SBE0rrjh09tlnh0oUw7Bp/7j99Kc/DXfddVeN/rhFcc7//ve/p7ogE79cOeWUU2p0HACA/yX2Fmkv4IwaNarW/eaJJ56Yqj72YrfddluoC+LcnHTSSeH5558PH374YbjyyivDnnvuWeMbduK5UexnYzgy7jRZHSeffHKy4joAQL7oN7Prn//8Z7JK+prEHcx79uxZ1DEBAPxf+s3Si3OSNhDZvHnzMHz48GRHnrgbUk0DkVH9+vWTHSbjfRLx5vWpU6cmC37HxbwBAPJFv1lc5513XuraHj16JDeL1zYQGcXvOV966aWwzz77FGSsAAD5EhfFiDuGH3bYYeGyyy5Lgo4///nPSz2sTJIZqkOhyJg+jl8kp/Hyyy8nu5rEgGRNPf7442H//fcPy5cvTzW2Cy+8MFSiuOrP3LlzU9efe+654Yknnqjx8eKx4oo31fmDGlPIlSauupQ27Dl06NC13hiU1sCBA8Odd96Zqjb+H9f9999f62MCAMR+85lnnklVG3cd3GmnnWp9zLgy5gEHHJB6V/LYm1WqzTffPFx77bVh9uzZ4frrr09WHcrnSp7xy4940h5PyNP67LPPwp/+9Ke8jQEAqNv0m9kVv5uPK9OvWrVqjTVxd3I3nAMApaTfLL24K0/8SXtNPO60dOqpp4bGjRvnfSxdu3YNl1xySfjoo4/CPffcU5H3MgAAxaXfLK5Zs2YlO4CnETcbiSHUNJu9pBV71NhHbrvttqnq48Icr7zySt6ODwDwf8V7Cbt16xa+//3vJ/f0jR07NtnwYMqUKUn/GcOQcefHuMAG1SMzVMdCkd/sxrjzzjunqn3hhRdCv379kiRrdcQdJuPKffvtt19YsmRJqsdcfvnleT2xKSd/+MMfqv2LGVeqib+cixcvrtZjH3nkkeQ9i6vdpLVgwYJk+9dKc8MNN4R58+blrNt0003DzTffnLcb14cMGZL6hvULLrggL8cEAOq2tP1m3ME9LlqSD7F3+utf/xo22WSTnLWxJ6vEfjP23XGVz7fffjvZmTHuwF4ojRo1Ctdcc01yQSyteAIfe30AgNrSb2b7vVvbAnrxBq8TTjihqGMCAPi/9JulFXd7jN9vpvHDH/4wPPnkk6nmrbYaNmwYDj30UKFIAKDW9JvFFa+hr22Rtv97TTvev5lvceefeKN62l7y7rvvzvsYAIC6q0uXLsn3WnHhrzFjxoTPP/88vPfee0nP8Ytf/CLZIbtFixalHmZFkBmqg6HI+CbG7T432GCDVPVxt5MYboxByniSsLYVaeIvatxKPqaYY4J59erVqY5x1FFHhWOPPTZUorjizZtvvlntx8WTwvhHMM7l73//++RCxJrEG53jqo0DBgwIBx54YLV2pfzGlVdeGVasWBEqRXwt8TWlMXz48Lz/n0rckbVdu3apVhmqza6gAABp+80OHTqEP/7xj3k9dtztPW3PVUn9Zo8ePcKDDz4YJkyYEA455JBQVVW8U8LYZ6ZdUTQusBIvOAEA1IZ+M7tef/315Dvmta2YfuONN+Z1l3MAgOrSb5ZeDETGha9z+dGPfpT0j0KKAECW6DeLL974n3YR4ni9vVC6d++eLOqRzzEDAKzpuuvFF18cnn766SQAGbM/cefquNFc3FWwZcuWpR5iRZIZqqOhyKh9+/ZJMDKurJfWs88+G4488sjkg9C7d++w7777hmHDhiUnJbvttluyjf1mm20Wzj///PDxxx+nft6+ffuG66+/PlSqK664olaPjwHH3/3ud0k4sm3btmHQoEFJajzOfdxNslevXsnJ89FHHx3Gjx9f4+PMnDmzom6Yjv8nMmvWrJx18f9k8rW607fFrYvTJrrjLqkAAIXuNy+88MLQpEmTvB9/6NChYccdd6wz/Wbs8d56661w0EEHleT48Yb1eONRPAdI2xcDANSGfjObVq5cGY4//vjkn2ty7rnnhs0337yo4wIA+L/0m6X12GOPJTs/5hLvTbjuuuuKMiYAgHzSbxbfyy+/nHpxjkIv2Hbaaaelqps0aVJYunRpQccCAFSuddddN5x11llJ1iftfX3UnsxQHQ5FRvEX7o477gj169ev9g6Gb7/9dnj88ceTYOX9998fxo4dW60g5DdiiDKmoeNW9ZUonqjGucmXuK1rXJHmvvvuS+Y+rmL0zjvvJO9JPtx2222hUtx6662p6uL/+RRK3AE1BpBziZ+RNH+MAQBq2m927NgxHH744QUbR9qeqhL6zV122aXa51D5tuGGG4Zf/OIXqWrjwilfffVVwccEAFQm/WZ2XXbZZcnO5msSFz4s5HejAABp6DdLv5L6z3/+85x1cbXzeP29qiqTt8YAAHWYfrP4vvzyy/DJJ5+kqt1zzz0LPp64KFynTp1y1q1evTpMnTq14OMBACB/ZIbyJ7Pf/MYdB//2t7+FRo0aFf3YPXr0SAJ+cYfJShWDi/FkKSvi+xF3psy62bNnh3HjxuWsi7ts7rHHHgUbR9yJNa5mlEsMtcbPCgBAofrN2JM0aNCgYOMYPHhwsuBJXek3y8GJJ56Y9Ju5xNUs13YzPADA2ug3s+ndd98N559//hr/fbyZ/aabbirJdQEAgG/Tb5bW3XffHd57772cdddee21o06ZNUcYEAJBP+s3iS3ujd5cuXUKHDh1CMey6666pQ7QAAGSDzFB+ZTYUGQ0bNixJnRYznLjffvuFl156qWgnNaUyYsSIkCVff/11uPfee0PWxdeQZvfMI488suBjiceoV69exX1WAIDykKaHiDc8x56/kGK/k6a3qpR+sxzEm5B23HHHVLVTpkwp+HgAgMqk38yeeJPX8ccfH5YtW7bGmpNOOil873vfK+q4AAD+F/1m6XcXz2WHHXYIQ4YMKcp4AADyTb9ZfIsWLUpVt/HGGxd8LNU9VtqxAwBQejJD+ZXpUOQ3X2TH3UOGDh1a0OM0b948XHXVVeGRRx5J/nOlJ4/feOONnHXxRuYrrrgiNGvWrKDj2XvvvVPVjRo1KmRd2tdw2GGHFXwsHTt2DP37989ZN3HixMyv8gQAlGe/OWDAgKJcUDj88MPrTL9ZTudxaUybNq3gYwEAKo9+M5viLj7jx49f47+P79VFF11U1DEBAPwv+s3Seuqpp8KkSZNy1p133nlFGQ8AQL7pN0sjBjvTKOZO5BtssEGqupUrVxZ8LAAA5IfMUH5lPhQZtW/fPtx///3hySefDNtss01en7tRo0bh2GOPDZMnTw6nnXZaqhRs1o0ePTpV3b777hvOOOOMZG7iHMW5yqdtt902uaAxcuTI0L1795z1zz77bPjqq69CVi1fvjw899xzOet69uwZOnfuXJQxDR48OK+fGQCA6vQO++yzTyiGbt261Yl+s5xsttlmqermz59f8LEAAJVHv5k9H374YfjVr3611pr/9//+X8UvWAgAZIN+s7RuvvnmnDU9evQIgwYNKsp4AADyTb9ZGq1atUpVt8466xR8LNU9VtqxAwBQWjJD+VcRochv7LHHHuGVV15JPiRHHHFEaNmyZY2fK35J/rvf/S7MmDEj3HLLLaFdu3ahrkj7Yf3mIkIMpcY5mj59evjtb38bNt988xofO56cDRs2LDz//PPh5ZdfDrvvvvt/HGttlixZstaVxMtdHPvSpUtz1hXz4k3aYz399NMFHwsAUHf7zWKoC/1mOWndunWqusWLFxd8LABA5dFvZs+JJ5641t5v6NCh4YADDijqmAAA1kS/WTqLFi0Kjz32WM664447rijjAQAoBP1maay//vqp6j799NNQLJ988kler78DAFBaMkP5V1GhyG8MGDAg3HnnncnJR1x95uKLLw5HHXVUsotkhw4dkrBkgwYNklVU4vbyXbt2Dbvttls45ZRTwo033hg++OCD8M4774TzzjsvbLTRRiV9LbfeemtYvXp1zp9Yly9pTkxbtGgR+vXr9x//W9u2bcP555+f7Bz5/vvvJ3P505/+NJnbLl26hDZt2iRzHuc+vgebbLJJ8p7E9ya+R/G9iidxd9xxR9hhhx3+47l32WWXvI29XKUde9q5yIf4/jRt2rSi5x0AKL6a9puFVBf6zXISzwnyWQcA8G36zWyJC+6t7QJKfK+uueaaoo4JAGBt9Jul88gjj6S6aeiggw4qyngAAApBv1ka8f7WJk2a5C2omA9pjxXvxQUAoPzJDOVfRd9hWr9+/bDjjjsmP6Qzf/78JBSaSzyhrlev3hr/fdyq9Yc//GFef9HSmDhxYsiqCRMmpKrbeuutQ7FUVVUl73WuLXpjCHbBggWhefPmRRsbAFC3+818qwv9Zjn54osvUtWlOdkGAPg2/Wa2zJkzJ/z85z9fa80ll1wS2rVrV7QxAQCsjX6ztB5++OGcNb169QrdunUryngAAPJNv1na+4233377MHbs2LXWxU1D4kId6667bsHH9Oqrr+asiffq+v4UACAbZIbyryJ3iqR2v2Rx58lcttpqq1BMcafJVq1aVfRJdZo/cK1btw6dOnUKxZTmD2r8zLz++utFGQ8AkG36TaIPP/wwVV3cjR4AoDr0m9nyk5/8JHz55Zdr/PcDBgwIJ554YlHHBACwNvrN0onz/swzz+Sss2g2AJBl+s3SStNLLlu2LPzjH/8o+Fji96YvvfRSzjr9LwBAdsgM5Z9QJP8h7Ye0T58+odjiio65xFWS4mpJWdwpZ8aMGTnrevfuXZTx1OSY5fgHDgAoP/pNqrPiUffu3Qs+FgCgsug3s+Pee+9d604/jRo1CjfddFNRV7wHAMhFv1k6kyZNCp9++mnOuv79+xdlPAAAhaDfLK2DDz449XebhfbAAw+Er7/+OmfdQQcdVPCxAABQezJDhSEUyX+YOnVqqrpu3bqFYkt7Q/S0adNC1lTCvKd9DQBA3VYJfU8W+81yEi/cjBkzJlXtFltsUfDxAACVRb+ZDZ999lk45ZRT1lpzzjnnhB49ehRtTAAAaeg3SyfNLpHV3TVp5syZYdSoUeHyyy8PZ599drKT+QknnBBOPfXU8Ktf/SoMHz48Wcjj7bffDqtWrarF6AEA0tFvllYMm+622245626//fYwZcqUgo0j7kZ5/vnn56zr3Llz2H///Qs2DgAA8qcSev2pZZgZalDqAVBe4ko95bpjS9pjxtdQnQsd5aBS5h0AoK70PVnrN8vt5qU0K7p36tQpbLrppkUZEwBQOfSb2XDaaaeFjz/+eI3/vmfPnslN6AAA5Ua/WTppViGvqqrKedPQq6++Gu66667w2GOPVesmnubNm4ftttsu7LfffmHIkCFh4403Tv1YAIC09Juld+aZZ+Zc5HflypXJQhojR45MetB8+8Mf/pAs4JHLGWecUZDjAwCQf5XS65cb3TDV/pA2atQobLTRRqHYOnTokKru/fffD1mT9o/DJptsEoqtbdu2oUGDBhU57wBA8ek3ufbaa1PV7bHHHgUfCwBQefSb5e/xxx8Pd9555xr/fb169cJNN92UvE8AAOVGv1k6b731Vqrr6euss84a+9ABAwaEbbfdNlx55ZXVXtV8wYIF4emnn05ufo/H2WeffcK4ceOq9RwAALnoN0tvzz33DEcccUTOuieffDJZ/C3fbr755nDhhRfmrIt9bdzpHACAbJAZKgyhSP7D9OnTc9ZsuOGGyY0ppfhFy9drKDdpx5x2DvIpriS0wQYbVOS8AwDFp9+s26ZMmRIeffTRVLXDhg0r+HgAgMqj3yxv8Ubyk046aa01P/rRj8IOO+xQtDEBAFSHfrM0Vq9eHd5+++2cdf9r98Z4o86+++6b/IwfPz5v44m7Ag0cODDsvvvuqcYGAJCGfrM8XHPNNaFdu3apFgSO32cuXbo0Lz3mpZdemvP706hx48bhb3/7W6hfv36tjwsAQHHIDBWGUCT/tnjx4lQnZ6X4JavOcT/55JOQNWnHXM5zn/bzAwDUXfpNfvGLX4RVq1blrOvWrVvYaaedijImAKBy6DfL35lnnhk++uijNf779u3bh4svvrioYwIASEu/WTozZ84MS5YsSRUQ+LaHH3449OvXL9klslBGjx4dvvOd74RLLrkkuZEdAKCm9JvlY/311w+jRo1K/pnLjTfeGLbZZpswZsyYGh/v9ddfTxbbOOuss8LKlSvXWht38BkxYkTo2bNnjY8HAEDxyQwVhlAk//bZZ5+lqmvTpk0ohTTJ4+q8jnJi7gGAukDPU7c9+eST4bHHHktVe/bZZ5dkdVMAINv0m+Vt3Lhx4aabbsq5AnuLFi2KNiYAgOrQb5bOrFmzqj0HMaQ4ZMiQZLfyQos3rsfvNPfbb7/kxiAAgJrQb5aXuPDFU089FVq2bJmzNu4cPmjQoNC3b9/kO85JkyblXCx46tSp4dZbbw277LJLspBHmlBl3MHn9ttvDwcddFC1XgsAAKWn3y+MBgV6XjLo888/T1XXrFmzgo+lNsdN+zrKSSXNfYcOHQo+HgAgmyqp56F65s+fH0444YRUtZ07dw5HH310wccEAFQe/Wb5irv6/PCHP1zrzjkHHnhgctM6AEC50m+Wzpw5c1LVrbfeesk/L7300iSkWGxxR8q4w8/IkSNT3TwPAPBt+s3ys/XWW4cJEyaEYcOGhRdffDFn/VtvvRVOPfXU5D83b948bLbZZqFVq1bJT/369cMXX3yR/Lz//vvV3lFz4403DnfccUcSogQAIHsqqd/vUEaZIaFIqv1LFk/WSqFp06bJSje5VtDJ4kl1mjHHk+ImTZqEUkj7nmdx7gGA4tFv1l0//elPw0cffZSq9sorrwwNGzYs+JgAgMqj3yxfv/71r8O0adPW+p5ce+21RR0TAEB16TfLPxTZqFGjMGLEiHDWWWeFUok3yw8ePDjZKb1x48YlGwcAkD36zfIUF/V97rnnkp3I4+IbcUHgNOKO5a+++mqtj1+vXr1w2GGHJTtQtm7dutbPBwBAacgMFUZVgZ6XjK7WnfbktlTSHDvt6ygnacZcynlPm/rO4twDAMWj36ybbrrppmTFyjT23nvvcMABBxR8TABAZdJvlqeXXnopDB8+fK01F110UbLSOQBAOdNvlk7aXXTee++9ZIfyNHbYYYdwwQUXhDFjxoTp06eHRYsWhZUrVyY3r0+dOjXZ7fGcc84JW2yxRY2Ckccee2y1HwcA1G36zfIVb06PveGHH34Yfve734UNNtig4MeMAdSDDz44TJo0Kdx1110CkQAAGSczVBhCkfzbihUrUtWVcteWNMf+6quvQiXOfbnPe1bnHgAoHv1m3TNhwoRwyimnpKpt2bJluPHGGws+JgCgcuk3y098Lccff/xaV4/v379/+PGPf1zUcQEA1IR+s3SWLl2aqu6hhx4KixcvXusuO0cddVR49913w/PPPx/OPffcMHDgwNCxY8ew3nrrJTe7x5t/unbtmizg9sc//jG88cYbyUIfe+21V7XGHHesvOWWW6r1GACgbtNvlr94Tfu8885LdjKPO4Mfd9xxSXgxn3bZZZdwww03JMe47777Qp8+ffL6/AAAlIbMUGEIRVLtD2cpf9EaNGiQty8Hsjb35T7vWZ17AKB49Jt1y9y5c8NBBx0Uli9fnqr+2muvDR06dCj4uACAyqXfLD9x551//etfa/z3jRo1SnYWjzenAwCUO/1m6SxbtqzWzxF3Jh87dmy47bbbwmabbVatx373u98No0aNSnboSbtienTGGWeEmTNn1mC0AEBdpN/Mhk8//TT85S9/CX/605+S/nBtC8LVxKuvvhqeeuqp8MQTT4TPP/88r88NAEDpyAwVhlAk1f5wpv2wF0KlrjSUZu7Lfd6zOvcAQPHoN+uOuHL7/vvvH2bMmJGq/sgjjwzDhg0r+LgAgMqm3ywvkyZNChdffPFaa84666zQq1evoo0JAKA29JvZDUXG3XVefvnlZNed2jj88MPD+PHjw0YbbZSqfsGCBeE3v/lNrY4JANQd+s3y9tFHH4XTTz89dOrUKZx00klh5MiReVm84/9atGhReOCBB8IPfvCDsMkmmyTHjMcGACDbZIYKQyiSf0u7Yk0pV+2uqsr9kc33yjvFkGbM5T7vWZ17AKB49Jt1Q5yfGHJ85ZVXUtX37ds33HDDDQUfFwBQ+fSb5ePrr78Oxx133Fov7Gy++ebh3HPPLeq4AABqQ79ZOrVZfTzetP7000+H9u3b52Us8fvM+HxNmzZNVX/77beHd955Jy/HBgAqm36zfHvRX/3qV6Fr165h+PDhYcmSJUU7djxWPGY8dgxHxsWJAQDIJpmhwhCKpNrJ3pUrV4ZyvthRyi1jayrNmMt93rM69wBA8eg364bTTjstPPjgg6lqmzdvnqxy2aRJk4KPCwCofPrN8nHZZZeF1157ba0Xc2688cbQuHHjoo4LAKA29JulU79+/Ro9Lvadt956a2jbtm1exxODkbHnTXuT0NVXX53X4wMAlUm/WX4mT54ctt9++3DxxReXdEeceOwYjtx6663DxIkTSzYOAABqTmaoMIQiydRJdZpjN2rUKGRNuf+BS3vsLM49AFA8+s3Kd/7554drr702VW2cxxie7N69e8HHBQDUDfrN8jBlypRw3nnnrbXmhBNOCDvttFPRxgQAkA/6zdKp6ZhPPfXUsMsuu4RC+NGPfhT22GOPVLV33HFHWLhwYUHGAQBUDv1meRk/fnzYdtttw4QJE1I/pkGDBmG77bYLv/jFL8IjjzySBBinT58eFi1aFJYtWxZmzZoV3nzzzWTn8d///vdh9913D+utt17q5487kMeQ5kMPPVTDVwUAQKnIDBVGgwI9LxmU9sNZ7r9o5fZLlkYc8+LFizM971mdewCgePSblS2udp7r5vdvr+x+5513ht12263g4wIA6g79ZumtXr06HH/88ckNPmsSd+m59NJLizouAIB80G+WTk3G3Lx583DBBReEQoq79fTs2TNnXbwJfuTIkeH73/9+QccDAGSbfrN8vPjii2HvvfdO+rg0mjVrFk488cRw+umnhw4dOqyxrn379slPnz59wqBBg5L/LR7jL3/5S7jyyivDjBkzUu0aGfvK+++/P+y///7VeFUAAJSSzFBh2CmSf2vcuHGquiVLloRSyfVHoBx/yfI19+U+71mdewCgePSblevmm29OLvCkUa9evXDjjTeGgw8+uODjAgDqFv1m6V133XXh+eefX2vNNddcE1q2bFm0MQEA5It+s/zn/tuOPvro0LRp01BIPXr0CAMHDkxV+/jjjxd0LABA9uk3y8MHH3yQBCLT7vQ9ZMiQZDfIyy67bK2ByDWJPWu81j5t2rRw/vnnh6qq3Ld1r1ixIhxyyCHhueeeq/bxAAAoDZmhwhCK5N9atGiRqi7tyV6+xRVu4k8uWbyhJs3cx9XVS5X8TvueZ3HuAYDi0W9WphEjRiSrXsZdgdKIK1wed9xxBR8XAFD36DdLK974c/bZZ6+1Zr/99rM4BgCQWfrN0qlJuPEnP/lJKIaTTz45Vd3o0aMLPhYAINv0m6UXr3kfe+yxYf78+Tlr69evn+wc/sADD4RWrVrV+tgNGjQIv/3tb5O+cYMNNshZH9+LH/zgB6l3swQAoLRkhgpDKJJ/a926daq6BQsWFHwstTlu2tdRTsw9AFAX6Hkqz0MPPZSsuL5q1apU9X/84x/DaaedVvBxAQB1k36ztH70ox+t9QacZs2aJTtJAgBklX6zdNq0aVPtHRx79uwZimHfffdNtcr7nDlzwuzZs4syJgAgm/SbpXf11VeHf/zjH6lrTz311LyPYdddd012GV933XVT7Wr5s5/9LO9jAAAg//T7hSEUyb+tv/76qeq+/PLLgo+lNsdN+zrKibkHAOoCPU9liRdiDjvssNQrE51zzjnJDwBAoeg3S+fWW28NTz755FprLrzwwtChQ4eijQkAIN/0m6VT3Rtttt9++1AsjRo1CltuuWWq2gkTJhR8PABAduk3SyvuynPBBRekqo1hyELuTL7tttuG22+/PVXtX/7ylzBlypSCjQUAgPzQ7xeGUCT/1qpVq1BVlfsjMXfu3KKMp6bHLbfkcT7HXM5zX79+/bLbChcAKC/6zcrx1FNPhaFDh4avvvoqVX3cHTLuEgkAUEj6zVCy15VrNfJ4U3ohbxICACgG/WZ2doosZigy2m677VLVTZs2reBjAQCyS79ZWnfccUf49NNPc9ZtvPHG4ZJLLin4eOL1+AMPPDBn3erVq8OVV15Z8PEAAFA7MkOFIRTJv8UT6nbt2uWsmzdvXiiFtL/cWVxtPO2Yy3nu27dvH+rVq1eU8QAA2aTfrAzjxo1LLr4sX748Vf2JJ54YrrrqqoKPCwBAv1kaMez4xRdfrPHfN2zYMNx4442pbugCAChn+s3SideiqyPtzo350q9fv1R1M2fOLPhYAIDs0m+W1jXXXJOq7te//nVYZ511QjHEnSvTfK962223rfU7WgAASk9mqDDchcB/6Ny5c86aBQsWhMWLF4dimzNnTt5eQ7lJO+bZs2eHYlu4cGGq9zuL8w4AFJ9+M9uee+65sN9++4WlS5emqj/66KPD9ddfX/BxAQB8Q79ZXPfdd1946KGH1lrzy1/+MvTt27doYwIAKCT9Zmlsuumm1brZpro7SxZrlfe07xEAUHfpN0sjvrZJkyal2s3z+OOPD8XSu3fvsPfee+esW7JkSbK4MQAA5UtmqDCEIvmviwlpTJs2LRTb1KlTU9WV4y9aLuYdAKgr9D3Z9eKLL4Z99tkn9QW273//++GWW26xIxAAUFT6zeK666671vrvu3fvnqycDgBQKfSbpdG4ceNq7RbZsmXLUEzx5vg0ShFeAACyRb9ZusWB0xg4cGBo2LBhKKY999wzVd2zzz5b8LEAAFBzev3CaFCg5yWjunTpkqruvffeC1tssUUopiz/ouVz3outkucdACg+/WY2vfzyy2GvvfZKVgRK48ADDwx33HFHqF+/fsHHBgDwbfrN4lq9enXOm9FPOumkgo5h8uTJqep+8YtfhKZNm+asO+KII8Iee+yRh5EBAJVIv1k6Xbt2DbNmzcpZF3eULNdQ5NKlSws+FgAg2/SbpfH888+nqivF94a77757XoOdAACUhsxQYQhF8h/69OmTqu7dd98t+FhqcszmzZuHjh07hiymvuMNOYsWLcrkvEd9+/Yt+FgAgOzTb2bPa6+9lqw+uWDBglT1e++9d7jnnntCgwZONwGA4tNvlpdXXnkl+SkHDzzwQKq6LbfcUigSAFgj/Wbp9O7dO9XuN1VVVUVfrC3tbkFff/11wccCAGSbfrM0ZsyYkfq7w2Lr0aNHWGeddcKyZcvWWvfhhx8WbUwAAFSfzFBhVBXoecmorbbaKlXdhAkTQjHNnz8/vP/++6lOOuPKj1kTx5zmhDkmsNPuzpMvad/rfv36FXwsAED26Tez5fXXX09Wnvzyyy9T1Q8aNCg8+OCDoVGjRgUfGwDA/6LfBACgkPSbpbP11lunDh4W+5p62u9PmzRpUvCxAADZpt8sjc8++yxVXZs2bQo+lpoeN/akq1atKsp4AACoPpmhwhCK5L+2ZG3RokXZnVTH3WlWr16dty8FylGascc5mDhxYiimV199NWdNq1atynIrXACg/Og3s+PNN99MApFffPFFqvqdd945PPLII8kqlQAApaLfBACgkPSbpbPNNtukrk37nWa+pD3euuuuW/CxAADZpt8s71DkBhtsUPCx1PS4MRBZ7D4YAIDqkRnKP6FI/it9nOZiwgcffBDmzp0biuXFF1/M+4WQcrPtttumqnvhhRdCscyaNSvMnDkzb6tyAgDoN7Ph7bffTnZ9/PTTT1PV9+/fP/z973+30jkAUHL6TQAACkm/WTq9e/cO6623Xl53bsyXtDefb7TRRgUfCwCQbfrN0lixYkWqusaNG4dSSHsdftmyZQUfCwAANSczlH9CkfyX3XbbLVXd6NGjQ7E8/fTTeR17ORo4cGCqOvMOAGSdfrO8vfvuu8nr/Pjjj1OfqI8aNSo0bdq04GMDAEhDvwkAQCHpN0ujQYMGYeedd079HWcxTZkyJVVdp06dCj4WACD79JvFl3ZH77SLCufbkiVLUtXZmRwAoLzJDOWfUCT/Je4Ik8ZTTz0VimHRokWpVhrq27dvaNu2bciq9u3bh169euWsGz9+fOqT3GL9gdtjjz0KPhYAoHLoN8vX1KlTkxPvtKuK9uvXLzz55JOhefPmBR8bAEBa+k0AAApJv1k6e+21V6q6l156KRTTP//5z1R1nTt3LvhYAIDs028WX9odyUsVipw9e3ZeXwcAAKUhM5R/QpH8z21N119//Zx1jz76aFi+fHnBx/Pwww+Hr776Kmfd7rvvHrIuzR+KZcuWhccee6zgY1m6dGmq47Rp0ya5GR4AIC39Znn64IMPwq677pr6gkq8qBVPiFu1alXwsQEAVId+EwCAQtJvln8oMm1IMV9efvnlVHVbbbVVwccCAGSffrP4Nt5441R1H374YSi2BQsWhI8//jjVfZyNGzcuypgAAKg5maH8Eorkv1RVVYWDDjooZ938+fPDqFGjCj6eESNGpKo7+OCDQ9YNHTo0r3NSG3//+9/DwoULc9YNGTIk1KtXr+DjAQAqh36z/MyYMSMJRH700Uep6nv27BlGjx4dWrduXfCxAQBUl36zeOINUatXry7pz84775x6EZA0z3f66acXfN4AgGzTb5ZO9+7dk8Xacnn11VfDl19+WZQxTZw4MXz22Wc56zbccMOw6aabFmVMAEC26TeLL+2O3vEaebHFBT/i95a56DUBALJBZii/hCL5n4488shUddddd11Bx/H++++HJ554Imdd165dw/e+972QdTvssEOqE+zHH388uXG9kNK+t2k/KwAA36bfLB+zZs0KAwcODNOnT09Vv9lmm4UxY8YkN/EAAJQr/SYAAIWk3yydY445JmdN3DHp1ltvLcp4rr/++lR1u+22W8HHAgBUDv1mcfXu3TtV3dNPPx2KLe4ImkavXr0KPhYAAGpPZii/hCL5n+Lq2h07dkx1kjdp0qSCjeOqq64Kq1atyll3xBFHhEoQ09PDhg3LWbdy5cpkbgrltddeC88880zOuk6dOoUBAwYUbBwAQOXSb5aHuXPnJoHIadOmparv0qVLEohs165dwccGAFAb+k0AAApJv1k68QacBg0a5Kz785//nGpHndqIuzPdddddqWoPPPDAgo4FAKgs+s3iShvonDx5cnjppZdCsSxZsiTcc889qWr79+9f8PEAAFB7MkP5JRTJGn/RfvzjH6eqPfvsswu2ytCNN96Ys65hw4bhxBNPDJUivpb4mtKsOJl2N5/qSvue/uQnPynbbXABgPKm3yy9Tz75JAlETpkyJVV9PLkdO3Zs6NChQ8HHBgBQW/pNAAAKSb9ZOhtuuGE49NBDc9a9++67qW8gr6krrrgiLF68OGdds2bNwuDBgws6FgCgsug3i2uzzTZLvTDwr3/961AscaGPTz/9NHWQFgCAbJAZyh+hSNYonlTHL+dzGTVqVHjsscfyfvwzzjgjLF++PNUqQ5V0Y/Ymm2wSDjvssJx1y5YtCz/72c/yfvyHHnoojB49Omdd8+bNw0knnZT34wMAdYd+s3Q+++yzMGjQoPDOO++kqo+vPwYiYzASACAr9JsAABSSfrN0zjnnnFQ34vz0pz8N8+bNK8gYJk6cGC666KJUtT/4wQ9C06ZNCzIOAKBy6TeLJ/aWQ4cOTVUb762Mc15oM2fODOeff36q2l69eoUePXoUfEwAAOSHzFD+CEWyRi1atEj9AT7hhBPCnDlz8rrCzaOPPpqzrqqqKpx55pkh34455pjkRDfXT6wrhF/+8pepLuI8+OCD4eabb87bcWfNmpV61ab4pUv8IwcAUFP6zdL0m19++WXYY489wqRJk1LVxxUxYyCyS5cueR8LAEAh6TdL9/0mAEBdoN8sXb/Zu3fvcNBBB6VaHC5e/169enVejx9vRopBxxUrVuSsbdCgQTj11FPzenwAoG7Qbxa33zzyyCNT18Yg6OTJk0OhLF26NNkdfcGCBanqhw0bVrCxAABUqlJ/xykzlB9CkazVr371q9CmTZucdR9//HE48MADw8KFC2t9zDFjxoTTTz89Ve3xxx+fXPCoNH369AnHHXdcqtpTTjkl/OMf/6j1MefPnx8OOOCA8Omnn+as3WCDDVJvlwsAsDb6zeKK87fXXnuFCRMmpKrfaKONkkBk9+7dCz42AIBC0G8CAFBI+s3SueSSS8I666yTsy7ezB93OcqXGIQ85JBDwptvvpmqPt5g5PtVAKCm9JvFs91224X+/funXoh4n332CdOnT8/7OOJ7GBcA+ec//5mqfr311iv73XsAAPhvMkP5IRTJWrVq1SpcdNFFqWpffvnl5AbreIJdU48//njYf//9w/Lly1ON7cILLwyVKs57fI1pVgXad999wxNPPFHjY82dOzfsueee4bXXXks9tpYtW9b4eAAA39BvFs+SJUuSCzMvvfRSqvp4cS1e8OrRo0fBxwYAUCj6TQAACkm/WTrdunUL55xzTqra4cOHh6OPPjrZ4bE24s6T8br63//+91T166+/fjjvvPNqdUwAoG7TbxbXb3/729S177//fujXr1947LHH8nb8N954I2y99dbhySefTP2Yk08+Oek7AQDIHpmh2hOKJNVqPjvvvHOq2hdeeCE50Ut7EeDbq9vE7V/322+/5GbtNC6//PJUqyBlVUxWX3bZZalqFy1alNzgHpPYixcvrtZxHnnkkeQ9S3tz/C677JI6kQ4AkIZ+s/DizT7x4tVzzz2Xqj5eNBk9enTFrOoJANRt+k0AAApJv1k6Z511VvjOd76Tqvb2228PW265ZfK9Z3WtXr06jBgxIvm+dNy4cakfd+ONNybX/QEAakO/WTzxJvGhQ4emrv/iiy+SnXbiAhxvvfVWjY87e/bspLfdfvvtw3vvvZf6cZtsskm1gpwAAJQXmaHaE4okp3r16oW77ror9Zf18QQtnhzHE/E777wz+eVbk3gCF1dGjKs4/ulPf0ouJqRx1FFHhWOPPTZUuviHZNiwYalqV61aFS655JJkLn//+9+HadOmrbF2wYIFyUWfAQMGhAMPPDBJfaex4YYbJp+F+JkAAMgX/Wbh/fOf/0x2fUzr888/T24Qiu9NqX8AAGpLvwkAQCHpN0unUaNG4YEHHki9Yvm7774bdt9999C/f//wl7/8JXkv1mbq1KnhiiuuSMKQRxxxRJg3b17qsZ100knVuqEeAGBN9JvFde2114Z27dqlro9zFu/F3GKLLcLee+8dbrjhhvDOO+/kfNyMGTOS9yfOZefOncOll15arZ3Nq6qqws033xzWW2+91I8BAFiTY445plb3+J1//vmpjrPrrrvW6ji33nprqDQyQ7XToJaPp45o37598sEePHhwWLFiRarHPPvss8lPPPnq0aNHcuLWokWL8NVXXyU3WceVcT7++ONqj6Vv377h+uuvD3XFn//85/DGG2+kXkko/rH63e9+l/xstNFGoU+fPslOPw0bNgxffvll+OCDD5KLPfEPYnXEx8fPQHVO+AEA0tJvAgBQSPpNAAAKSb9ZOl27dk1uJo879KxcuTLVY1588cXk55vddbp3757sctS4ceOwdOnSJPwYr6nXZP6jeDP8NddcU6PHAgD8L/rN4mnbtm247777wsCBA5O5qk448oknnkh+otatW4eOHTsm927Gn/r16yfzHn/mzJkTZs2aVatxXnTRRcmCHwAAZJ/MUM0JRZLaoEGDwh133JGsgPj111+nflz8RXr77beTn9rabLPNwtNPP12nVrdp2rRp8pp32mmnZGWm6ogXa6qzWuWaxBPy+Mdtt912q/VzAQCsiX4TAIBC0m8CAFBI+s3SieGAeD07zn3aYOQ3Zs6cmfzkS7ymHm+ib9DA7TgAQH7pN4tnhx12SHYkP/jgg8Py5ctr9ByfffZZ8lMIZ599dvjlL39ZkOcGAKD4ZIZqrqoWj6UOOvTQQ8Pf/va30KhRo6IfO65WNGbMmCTJXNfE1Yfia998882Lfuz4Xt92223JCT4AQKHpNwEAKCT9JgAAhaTfLJ1DDjkk3H333WHdddct6Rgef/zxig8JAAClo98snn333Tfp7eKOO+Ui7vp58cUXJ7tEAgBQWWSGakYokmobNmxYGDt2bFFPbvfbb7/w0ksvhQ4dOoS6apNNNknmYJ999inqH9Zx48Ylq0sBABSLfhMAgELSbwIAUEj6zdIZOnRoePHFF0PXrl2LetyGDRuGyy+/PNxzzz2hcePGRT02AFD36DeLJ+6S89prr4Xtt9++1EMJ7dq1C08++WQ466yzSj0UAAAKRGao+oQiqZEddtghTJgwIbmoUEjNmzcPV111VXjkkUeS/1zXtWjRIjz66KPhiiuuCM2aNSv4KpbxPe7fv39BjwMA8L/oNwEAKCT9JgAAhaTfLJ3vfOc7yY3rP/7xj0P9+vULfrwBAwaEl19+OfzsZz8L9erVK/jxAAAi/WbxbLrppmH8+PHhuuuuC61bty768eMCHKeeemqYPHlyGDRoUNGPDwBAcckMVY9QJDXWvn37cP/99yerz2yzzTZ533712GOPTU7kTjvtNBcPvqWqqiqcccYZydzEOYpzlU/bbrtteOqpp8K9996brC4EAFAq+k0AAApJvwkAQCHpN0t741C8aX3ixInJrkbxGnu+xfc0XlN/7rnnwpZbbpn35wcAyEW/WTyxn4yLbnz44YfhsssuCx07diz4MeMN8KecckqYOnVqGD58eJ0NpQIA1EUyQ+kJRVJre+yxR3jllVeSL/vjlqktW7as8XP16NEj/O53vwszZswIt9xyS+Z/wQr9pUaco+nTp4ff/va3YfPNN6/xc7Vq1SoMGzYsPP/888kqlrvvvntexwoAUBv6TQAACkm/CQBAIek3S6dv377JqurvvfdeOPPMM0PXrl1r9Xxt27ZNboaP19XjexpXUgcAKDX9ZvE0bdo0/PznP0/Ckc8880zSG3br1i1vz9+mTZtw6KGHhrvvvjvMmzcvXH311UUJYAIAUJ5khnKrt3r16tUp6iC1r7/+OrzwwgvJz7/+9a/wzjvvhLlz54ZFixYlPw0aNEhWsYkr12y66aahV69eycWI+EsV/zs198EHH4TRo0eHSZMmJfMe//uCBQuSeV+5cmVyUh7nfqONNgo9e/YMvXv3Tra6jT/169cv9fABAFLRbwIAUEj6TQAACkm/WVrTpk0LY8eODW+99Vay0nq8pj5//vxk7pctWxYaN24cmjRpktyQ3qlTp9ClS5ew1VZbhe222y706dOnILtOAgDkk36z+D766KMkmPpNjzlr1qwwZ86c8NlnnyU9ZvyJt2rHXnOdddZJdjaPgdP407179+Q+zn79+iX/rOu7cgIAsHYyQ/9JKBIAAAAAAAAAAAAAAAAAyARL2AEAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQCYIRQIAAAAAAAAAAAAAAAAAmSAUCQAAAAAAAAAAAAAAAABkglAkAAAAAAAAAAAAAAAAAJAJQpEAAAAAAAAAAAAAAAAAQMiC/w9ct5UTmyiaPQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1)\n", "\n", "values_full.median(axis=1).plot(ax=ax, color=colors[0])\n", "values_full.plot(ax=ax, color=colors[0], lw=.5)\n", "ax.get_legend().remove()\n", "ax.set_xlim(0, 20)\n", "ax.legend(['Median Run', 'Individual Runs'])\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kmean = SI_full.kavg_\n", "print(kmean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can obtain a specific average degree by setting: $$p=\\frac{\\langle k\\rangle}{N}$$ We choose this specific value so that we match the average degree of the BA model below" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "G_small = nx.erdos_renyi_graph(N, p=0.0198)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "SI_small = NetworkEpiModel(G_small)\n", "SI_small.add_interaction('S', 'I', 'I', beta)\n", "SI_small" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "SI_small.kavg_" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "values_small = simulate_runs(SI_small, Nruns)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "\n", "values_small.median(axis=1).plot(ax=ax, color=colors[1])\n", "values_small.plot(ax=ax, color=colors[1], lw=.3)\n", "\n", "ax.get_legend().remove()\n", "ax.legend(['Median Run', 'Individual Runs'])\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "time = np.arange(0, 100)\n", "yt = lambda time, beta: N/(1+(N-1)*np.exp(-beta*N*time))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coef, covariance = curve_fit(yt, time, values_small.median(axis=1).values)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coef" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "\n", "ax.plot(time, yt(time, *coef), color=colors[5])\n", "values_small.median(axis=1).plot(ax=ax, color=colors[1])\n", "values_small.plot(ax=ax, color=colors[1], lw=.3)\n", "\n", "ax.get_legend().remove()\n", "ax.legend(['Fit', 'Median Run', 'Individual Runs'])\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can compare the two scenarios above by plotting the median number of infected node as a function of time. Not surprisingly, the network with the smallest average connectivity is slower" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "values_small.median(axis=1).plot(color=colors[1], ax=ax, label='ER Network')\n", "values_full.median(axis=1).plot(color=colors[0], ax=ax, label='Full Network')\n", "ax.legend()\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(dict(G_small.degree()).values())\n", "\n", "ax = plt.gca()\n", "ax.set_xlabel('Node')\n", "ax.set_ylabel('Degree')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But what about two networks with exactly the same average degree, but different topologies? Let's run a Barabasi albert model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "BA = nx.barabasi_albert_graph(N, m=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "SI_BA = NetworkEpiModel(BA)\n", "SI_BA.add_interaction('S', 'I', 'I', beta)\n", "SI_BA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The average degree is exactly the same" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "SI_BA.kavg_" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "values_BA = simulate_runs(SI_BA, Nruns)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "\n", "values_BA.median(axis=1).plot(color=colors[2], ax=ax)\n", "values_BA.plot(ax=ax, color=colors[2], lw=.1)\n", "\n", "ax.get_legend().remove()\n", "ax.legend(['Median Run', 'Individual Runs'])\n", "\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coef, covariance = curve_fit(yt, time, values_BA.median(axis=1).values)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coef" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "\n", "ax.plot(time, yt(time, *coef), color=colors[5])\n", "values_BA.median(axis=1).plot(ax=ax, color=colors[2])\n", "values_BA.plot(ax=ax, color=colors[2], lw=.3)\n", "\n", "ax.get_legend().remove()\n", "ax.legend(['Fit', 'Median Run', 'Individual Runs'])\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(dict(BA.degree()).values())\n", "ax = plt.gca()\n", "ax.set_xlabel('Node')\n", "ax.set_ylabel('Degree')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Topology comparison" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "values_small.median(axis=1).plot(color=colors[1], ax=ax, label='ER Network')\n", "values_BA.median(axis=1).plot(color=colors[2], ax=ax, label='BA Network')\n", "ax.legend()\n", "\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(1)\n", "values_full.median(axis=1).plot(color=colors[0], ax=ax, label='Full Network')\n", "values_small.median(axis=1).plot(color=colors[1], ax=ax, label='ER Network')\n", "values_BA.median(axis=1).plot(color=colors[2], ax=ax, label='BA Network')\n", "ax.legend()\n", "\n", "ax.set_xlabel('Time')\n", "ax.set_ylabel('Population')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", " \"Data \n", "
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }