{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 使用sklearn 模块 " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#-*- coding: utf-8 -*-\n", "import numpy as np\n", "from sklearn import linear_model\n", "from matplotlib import pyplot as plt\n", "from sklearn.preprocessing import StandardScaler #引入归一化的包\n", "% matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "加载数据...\n", "\n" ] }, { "data": { "text/plain": [ "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAFsJJREFUeJzt3X2MXXWdx/HPx2HEcVUG4arttLW4\nkrIiLsW7iOlmg6zZQmWhURJr4uNqmvUh4urWtWoUyRofmt0lhg2kiguIIoi1qSxsFxeMmkjJlBYK\nlq71kU7RjuIUCRO2Hb77xz1tb2/vw7l3zn2YX9+v5GbO/Z3fOed7fsx8euecM/wcEQIApOVZ/S4A\nAFA8wh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQoBP6deBTTz01Fi9e3K/DA8Cc\ntHXr1t9FRKlVv76F++LFizU+Pt6vwwPAnGT7V3n6cVkGABJEuANAggh3AEgQ4Q4ACSLcASBBucLd\n9i9t77C93fYxj7i44ku2d9t+0PY5xZcKAMirnUchXxcRv2uw7iJJp2ev10i6JvsKAMhs3DahdZt3\nae/UtOaPjmjN8iVauXSsK8cq6jn3SyXdGJU5++61PWp7XkQ8VtD+AWBO27htQms37ND0gRlJ0sTU\ntNZu2CFJXQn4vNfcQ9J/295qe3Wd9WOSHq16vydrAwBIWrd51+FgP2T6wIzWbd7VlePl/eS+LCL2\n2n6RpLtsPxIRP6ha7zrbHDPzdvYPw2pJWrRoUdvFAsBctXdquq322cr1yT0i9mZf90n6jqRza7rs\nkbSw6v0CSXvr7Gd9RJQjolwqtfxfIwBAMuaPjrTVPlstw932n9h+/qFlSX8j6aGabpskvT17auY8\nSfu53g4AR6xZvkQjw0NHtY0MD2nN8iVdOV6eyzIvlvQd24f6fyMi/sv230tSRFwr6Q5JKyTtlvSU\npHd1pVoAmKMO3TTt1dMyrjzg0nvlcjn4v0ICQHtsb42Icqt+/IUqACSIcAeABBHuAJAgwh0AEkS4\nA0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBucPd\n9pDtbbZvr7PunbYnbW/PXu8ptkwAQDvyTLN3yOWSdkp6QYP1t0TEB2ZfEgBgtnJ9cre9QNIbJH2l\nu+UAAIqQ97LMVZI+KumZJn3eZPtB27fZXlivg+3Vtsdtj09OTrZbKwAgp5bhbvtiSfsiYmuTbt+V\ntDgiXiXpe5JuqNcpItZHRDkiyqVSqaOCAQCt5fnkvkzSJbZ/Kembki6wfVN1h4j4fUQ8nb39sqRX\nF1olAKAtLcM9ItZGxIKIWCxplaS7I+Kt1X1sz6t6e4kqN14BAH3SztMyR7F9paTxiNgk6YO2L5F0\nUNLjkt5ZTHkAgE44Ivpy4HK5HOPj4305NgDMVba3RkS5VT/+QhUAEkS4A0CCCHcASBDhDgAJItwB\nIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AE5Q5320O2t9m+\nvc66E23fYnu37S22FxdZJACgPe3MxHS5KtPnvaDOundL+kNEvNz2KklfkPTmAupDwTZum9C6zbu0\nd2paJ40My5amnjqg+aMjWrN8iVYuHTum78TUtIZszUQc/jo2OqLXnVHSPY9Mau/UdO7tx+r0a1Zj\nvf0Wce7zc9TfC52OEbqrW9+DvZRrJibbCyTdIOmzkj4cERfXrN8s6YqI+LHtEyT9RlIpmuycmZh6\nb+O2Ca3dsEPTB2bqrh8ZHtLn3niWVi4da9l3NttX98tTY7P+eeU5nyKOU1RNva4FR3Tre7AoRc/E\ndJWkj0p6psH6MUmPSlJEHJS0X9IpOfeNHlm3eVfTcJs+MKN1m3fl6jub7av75amxWf+88pxPEcdp\nR6djhO7q1vdgr7UMd9sXS9oXEVubdavTdsyndturbY/bHp+cnGyjTBRh79R07j55+s5m+0br221v\nt66i+hWh0zFCd3Xre7DX8nxyXybpEtu/lPRNSRfYvqmmzx5JCyUpuyxzkqTHa3cUEesjohwR5VKp\nNKvC0b75oyO5++TpO5vtG61vt73duorqV4ROxwjd1a3vwV5rGe4RsTYiFkTEYkmrJN0dEW+t6bZJ\n0juy5cuyPq0v5qOn1ixfopHhoYbrR4aHtGb5klx9Z7N9db88NTbrn1ee8yniOO3odIzQXd36Huy1\ndp6WOYrtKyWNR8QmSddJ+prt3ap8Yl9VUH0o0KGbQXmelqnu28nTMo22b/UkSG2NRT2pUG+//X5a\nptMxQnd163uw13I9LdMNPC0DAO0r+mkZAMAcQrgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHu\nAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQoDwTZD/H9n22H7D9sO3P1Onz\nTtuTtrdnr/d0p1wAQB55ptl7WtIFEfGk7WFJP7J9Z0TcW9Pvloj4QPElAgDa1TLcs4mun8zeDmcv\nJr8GgAGW65q77SHb2yXtk3RXRGyp0+1Nth+0fZvthYVWCQBoS65wj4iZiDhb0gJJ59p+ZU2X70pa\nHBGvkvQ9STfU24/t1bbHbY9PTk7Opm4AQBNtPS0TEVOSvi/pwpr230fE09nbL0t6dYPt10dEOSLK\npVKpg3IBAHnkeVqmZHs0Wx6R9HpJj9T0mVf19hJJO4ssEgDQnjxPy8yTdIPtIVX+Mbg1Im63faWk\n8YjYJOmDti+RdFDS45Le2a2CAQCtufIwTO+Vy+UYHx/vy7EBYK6yvTUiyq368ReqAJAgwh0AEkS4\nA0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsA\nJCjPTEzPsX2f7QdsP2z7M3X6nGj7Ftu7bW+xvbgbxQIA8skzE9PTki6IiCdtD0v6ke07I+Leqj7v\nlvSHiHi57VWSviDpzV2ot3Abt01o3eZd2js1rfmjI1qzfIlWLh07qs8nN+7QzVse1UyELKl2epOx\nBtvV2//rzijp9gce09T0gcN9njv8LD37hCHtnz5wuM89j0weVZMkXbHp4cPbnfzcYX36b8+se8x2\nz6+dvkX0qV5/0siwbGnqqQMt6+vnOQ2CuVJnNxzP596ptmZisv1cST+S9N6I2FLVvlnSFRHxY9sn\nSPqNpFI02fkgzMS0cduE1m7YoekDM4fbRoaH9Lk3nnX4G+eTG3fopnt/3XJftds12n8nhoesmZnQ\nM3Xa1132502DrdX5tdO3iD6txqRRff08p0EwV+rshuP53OspdCYm20O2t0vaJ+mu6mDPjEl6VJIi\n4qCk/ZJOaa/k3lu3edcxITN9YEbrNu86/P7mLY/m2lftdo3234kDdYL9UHvtMVsdv16defsW0afV\nmDSqr5/nNAjmSp3dcDyf+2zkCveImImIsyUtkHSu7VfWdHG9zWobbK+2PW57fHJysv1qC7Z3arpl\n+0wbv9nU7q/R/ovU7Bh5zq+dvkX0yTMmg3ZOg2Cu1NkNx/O5z0ZbT8tExJSk70u6sGbVHkkLJSm7\nLHOSpMfrbL8+IsoRUS6VSh0VXKT5oyMt24dc79+tfPtrtP8iNTtGnvNrp28RffKMyaCd0yCYK3V2\nw/F87rOR52mZku3RbHlE0uslPVLTbZOkd2TLl0m6u9n19kGxZvkSjQwPHdU2Mjx0+AamJL3lNQtz\n7at2u0b778TwkOv+hxoe8jHHbHX8enXm7VtEn1Zj0qi+fp7TIJgrdXbD8Xzus5HnaZl5km6wPaTK\nPwa3RsTttq+UNB4RmyRdJ+lrtner8ol9VdcqLtChmzHN7sL/88qzJKmjp2Xq7b+XT8vkOb92+hbR\np3Z9u0/L9OOcBsFcqbMbjudzn422npYp0iA8LQMAc02hT8sAAOYWwh0AEkS4A0CCCHcASBDhDgAJ\nItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AE5Zlmb6Ht\ne2zvtP2w7cvr9Dnf9n7b27PXp7pTLgAgjzzT7B2U9JGIuN/28yVttX1XRPykpt8PI+Li4ksEALSr\n5Sf3iHgsIu7Plv8oaackJi8EgAHW1jV324slLZW0pc7q19p+wPadts8soDYAQIfyXJaRJNl+nqRv\nS/pQRDxRs/p+SS+NiCdtr5C0UdLpdfaxWtJqSVq0aFHHRQMAmsv1yd32sCrB/vWI2FC7PiKeiIgn\ns+U7JA3bPrVOv/URUY6IcqlUmmXpAIBG8jwtY0nXSdoZEf/aoM9Lsn6yfW62398XWSgAIL88l2WW\nSXqbpB22t2dtH5e0SJIi4lpJl0l6r+2DkqYlrYqI6EK9AIAcWoZ7RPxIklv0uVrS1UUVBQCYHf5C\nFQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwB\nIEGEOwAkiHAHgATlmYlpoe17bO+0/bDty+v0se0v2d5t+0Hb53SnXABAHnlmYjoo6SMRcb/t50va\navuuiPhJVZ+LVJkQ+3RJr5F0Tfa1UBu3TWjd5l3aOzWt+aMjWrN8iVYuHSv6MB1rVV836u90n7Xb\nve6Mku55ZHJgxxZAe/LMxPSYpMey5T/a3ilpTFJ1uF8q6cZsar17bY/anpdtW4iN2ya0dsMOTR+Y\nkSRNTE1r7YYdkjQQIdSqvm7U3+k+6213072/Prx+0MYWQPvauuZue7GkpZK21Kwak/Ro1fs9WVth\n1m3edTiMDpk+MKN1m3cVeZiOtaqvG/V3us9629UapLEF0L7c4W77eZK+LelDEfFE7eo6mxwzQbbt\n1bbHbY9PTk62Vejeqem22nutVX3dqL/TfeY95qCMLYD25Qp328OqBPvXI2JDnS57JC2ser9A0t7a\nThGxPiLKEVEulUptFTp/dKSt9l5rVV836u90n3mPOShjC6B9eZ6WsaTrJO2MiH9t0G2TpLdnT82c\nJ2l/kdfbJWnN8iUaGR46qm1keEhrli8p8jAda1VfN+rvdJ/1tqs1SGMLoH15npZZJultknbY3p61\nfVzSIkmKiGsl3SFphaTdkp6S9K6iCz10Y29Qn5ZpVV836u90n/W242kZIC2uPODSe+VyOcbHx/ty\nbACYq2xvjYhyq378hSoAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeA\nBBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEF5ptn7qu19th9qsP582/ttb89enyq+TABAO/JM\ns3e9pKsl3dikzw8j4uJCKgIAzFrLT+4R8QNJj/egFgBAQYq65v5a2w/YvtP2mQXtEwDQoTyXZVq5\nX9JLI+JJ2yskbZR0er2OtldLWi1JixYtKuDQAIB6Zv3JPSKeiIgns+U7JA3bPrVB3/URUY6IcqlU\nmu2hAQANzDrcbb/EtrPlc7N9/n62+wUAdK7lZRnbN0s6X9KptvdI+rSkYUmKiGslXSbpvbYPSpqW\ntCoiomsVAwBaahnuEfGWFuuvVuVRSQDAgOAvVAEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcA\nSBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACWoZ7ra/anuf7YcarLft\nL9nebftB2+cUX2bnNm6b0LLP363TPvafWvb5u7Vx20S/SwKArsvzyf16SRc2WX+RpNOz12pJ18y+\nrGJs3DahtRt2aGJqWiFpYmpaazfsIOABJK9luEfEDyQ93qTLpZJujIp7JY3anldUgbOxbvMuTR+Y\nOapt+sCM1m3e1aeKAKA3irjmPibp0ar3e7K2Y9hebXvc9vjk5GQBh25u79R0W+0AkIoiwt112qJe\nx4hYHxHliCiXSqUCDt3c/NGRttoBIBVFhPseSQur3i+QtLeA/c7amuVLNDI8dFTbyPCQ1ixf0qeK\nAKA3igj3TZLenj01c56k/RHxWAH7nbWVS8f0uTeepbHREVnS2OiIPvfGs7Ryad2rRgCQjBNadbB9\ns6TzJZ1qe4+kT0salqSIuFbSHZJWSNot6SlJ7+pWsZ1YuXSMMAdw3GkZ7hHxlhbrQ9L7C6sIADBr\n/IUqACSIcAeABBHuAJAgwh0AEkS4A0CCXHnYpQ8Hticl/aqHhzxV0u96eLxOUWexqLNY1FmsTup8\naUS0/BP/voV7r9kej4hyv+tohTqLRZ3Fos5idbNOLssAQIIIdwBI0PEU7uv7XUBO1Fks6iwWdRar\na3UeN9fcAeB4cjx9cgeA48acDfd6E3fbfqHtu2z/NPt6ctbecBJv2+/I+v/U9jt6VOcVtidsb89e\nK6rWrc3q3GV7eVX7hVnbbtsf60KdC23fY3un7YdtX561D9SYNqlzoMbU9nNs32f7gazOz2Ttp9ne\nko3NLbafnbWfmL3fna1f3Kr+Ltd5ve1fVI3n2Vl7336WsmMM2d5m+/bs/UCNZ5M6ez+eETEnX5L+\nStI5kh6qavuipI9lyx+T9IVseYWkO1WZNeo8SVuy9hdK+nn29eRs+eQe1HmFpH+s0/cVkh6QdKKk\n0yT9TNJQ9vqZpJdJenbW5xUF1zlP0jnZ8vMl/W9Wz0CNaZM6B2pMs3F5XrY8LGlLNk63SlqVtV8r\n6b3Z8vskXZstr5J0S7P6e1Dn9ZIuq9O/bz9L2XE+LOkbkm7P3g/UeDaps+fjOWc/uUf9ibsvlXRD\ntnyDpJVV7fUm8V4u6a6IeDwi/iDpLkkX9qDORi6V9M2IeDoifqHK/yP/3Oy1OyJ+HhH/J+mbWd8i\n63wsIu7Plv8oaacqc+EO1Jg2qbORvoxpNi5PZm+Hs1dIukDSbVl77XgeGufbJP21bTepv9t1NtK3\nnyXbCyS9QdJXsvfWgI1nvTpb6Np4ztlwb+DFkc0ClX19UdbeaBLv3JN7d8EHsl/DvnroUkeTenpa\nZ/Yr7FJVPsUN7JjW1CkN2Jhmv5pvl7RPlR/On0maioiDdY55uJ5s/X5Jp/Sjzog4NJ6fzcbz32yf\nWFtnTT29+O9+laSPSnome3+KBnA869R5SE/HM7Vwb6TRJN65J/cu2DWS/lTS2ZIek/QvWXvf67T9\nPEnflvShiHiiWdcGNfWk1jp1DtyYRsRMRJytyrzC50r6sybHHJg6bb9S0lpJZ0j6C1UuDfxTP+u0\nfbGkfRGxtbq5yTEHqU6pD+OZWrj/NvuVRtnXfVl7o0m8+zK5d0T8NvuBekbSl3Xk18K+1ml7WJXA\n/HpEbMiaB25M69U5qGOa1TYl6fuqXFMdtX1oBrTqYx6uJ1t/kiqX8/pR54XZ5a+IiKcl/Yf6P57L\nJF1i+5eqXEK7QJVPyIM2nsfUafumvoxnpzcMBuElabGOvlG5Tkff/PtitvwGHX3T4r44ctPiF6rc\nsDg5W35hD+qcV7X8D6pcA5SkM3X0zZ6fq3Lj74Rs+TQdufl3ZsE1WtKNkq6qaR+oMW1S50CNqaSS\npNFseUTSDyVdLOlbOvoG4Puy5ffr6BuAtzarvwd1zqsa76skfX4QfpayY52vIzcqB2o8m9TZ8/Es\n/IR69ZJ0syq/fh9Q5V+5d6tyTe1/JP00+/rCqgH9d1Wuee6QVK7az9+pclNlt6R39ajOr2V1PChp\nk44Opk9kde6SdFFV+wpVngz5maRPdKHOv1Tl174HJW3PXisGbUyb1DlQYyrpVZK2ZfU8JOlTWfvL\nJN2Xjc23JJ2YtT8ne787W/+yVvV3uc67s/F8SNJNOvJETd9+lqqOc76OhOZAjWeTOns+nvyFKgAk\nKLVr7gAAEe4AkCTCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACTo/wG1tceIpEQISgAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print u\"加载数据...\\n\"\n", "data = np.loadtxt(\"../data/1-linear_regression/data.txt\",delimiter=\",\",dtype=np.float64) #读取数据\n", "X = np.array(data[:,0:-1],dtype=np.float64) # X对应0到倒数第2列 \n", "y = np.array(data[:,-1],dtype=np.float64) # y对应最后一列 \n", "\n", "plt.scatter(X[:,0],X[:,1])\n", "\n", "# 归一化操作\n", "scaler = StandardScaler() \n", "scaler.fit(X)\n", "\n", "\n", "x_train = scaler.transform(X)\n", "x_test = scaler.transform(np.array([1650.0,3.0]).reshape(1,-1))\n", "\n", "# 线性模型拟合\n", "model = linear_model.LinearRegression()\n", "model.fit(x_train, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 预测结果" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 109447.79646964 -6578.35485416]\n", "340412.659574\n", "[ 293081.4643349]\n" ] } ], "source": [ "#预测结果\n", "result = model.predict(x_test)\n", "print model.coef_ # Coefficient of the features 决策函数中的特征系数\n", "print model.intercept_ # 又名bias偏置,若设置为False,则为0\n", "print result # 预测结果" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }