Home Previous year paper Algorithms Notes About us
Find shortest safe route in a path with landmines

Given a path in the form of a rectangular matrix having few landmines arbitrarily placed (marked as 0), calculate length of the shortest safe route possible from any cell in the first column to any cell in the last column of the matrix. We have to avoid landmines and their four adjacent cells (left, right, above and below) as they are also unsafe. We are allowed to move to only adjacent cells which are not landmines. i.e. the route cannot contains any diagonal moves.

Examples:

Input:

A 12 x 10 matrix with landmines marked as 0

[ 1 1 1 1 1 1 1 1 1 1 ]

[ 1 0 1 1 1 1 1 1 1 1 ]

[ 1 1 1 0 1 1 1 1 1 1 ]

[ 1 1 1 1 0 1 1 1 1 1 ]

[ 1 1 1 1 1 1 1 1 1 1 ]

[ 1 1 1 1 1 0 1 1 1 1 ]

[ 1 0 1 1 1 1 1 1 0 1 ]

[ 1 1 1 1 1 1 1 1 1 1 ]

[ 1 1 1 1 1 1 1 1 1 1 ]

[ 0 1 1 1 1 0 1 1 1 1 ]

[ 1 1 1 1 1 1 1 1 1 1 ]

[ 1 1 1 0 1 1 1 1 1 1 ]

Output:

Length of shortest safe route is 13 (Highlighted in Bold)

The idea is to use Backtracking. We first mark all adjacent cells of the landmines as unsafe. Then for each safe cell of first column of the matrix, we move forward in all allowed directions and recursively checks if they leads to the destination or not. If destination is found, we update the value of shortest path else if none of the above solutions work we return false from our function.

Below is the implementation of above idea –

// C++ program to find shortest safe Route in

// the matrix with landmines

#include < bits/stdc++.h >

using namespace std;

#define R 12

#define C 10

// These arrays are used to get row and column

// numbers of 4 neighbours of a given cell

int rowNum[] = { -1, 0, 0, 1 };

int colNum[] = { 0, -1, 1, 0 };

// A function to check if a given cell (x, y)

// can be visited or not

bool isSafe(int mat[R][C], int visited[R][C],

int x, int y)

{

if (mat[x][y] == 0 || visited[x][y])

return false;

return true;

}

// A function to check if a given cell (x, y) is

// a valid cell or not

bool isValid(int x, int y)

{

if (x < R && y < C && x >= 0 && y >= 0)

return true;

return false;

}

// A function to mark all adjacent cells of

// landmines as unsafe. Landmines are shown with

// number 0

void markUnsafeCells(int mat[R][C])

{

for (int i = 0; i < R; i++)

{

for (int j = 0; j < C; j++)

{

// if a landmines is found

if (mat[i][j] == 0)

{

// mark all adjacent cells

for (int k = 0; k < 4; k++)

if (isValid(i + rowNum[k], j + colNum[k]))

mat[i + rowNum[k]][j + colNum[k]] = -1;

}

}

}

// mark all found adjacent cells as unsafe

for (int i = 0; i < R; i++)

{

for (int j = 0; j < C; j++)

{

if (mat[i][j] == -1)

mat[i][j] = 0;

}

}

// Uncomment below lines to print the path

/*for (int i = 0; i < R; i++)

{

for (int j = 0; j < C; j++)

{

cout << std::setw(3) << mat[i][j];

}

cout << endl;

}*/

}

// Function to find shortest safe Route in the

// matrix with landmines

// mat[][] - binary input matrix with safe cells marked as 1

// visited[][] - store info about cells already visited in

// current route

// (i, j) are coordinates of the current cell

// min_dist --> stores minimum cost of shortest path so far

// dist --> stores current path cost

void findShortestPathUtil(int mat[R][C], int visited[R][C],

int i, int j, int &min_dist, int dist)

{

// if destination is reached

if (j == C-1)

{

// update shortest path found so far

min_dist = min(dist, min_dist);

return;

}

// if current path cost exceeds minimum so far

if (dist > min_dist)

return;

// include (i, j) in current path

visited[i][j] = 1;

// Recurse for all safe adjacent neighbours

for (int k = 0; k < 4; k++)

{

if (isValid(i + rowNum[k], j + colNum[k]) &&

isSafe(mat, visited, i + rowNum[k], j + colNum[k]))

{

findShortestPathUtil(mat, visited, i + rowNum[k],

j + colNum[k], min_dist, dist + 1);

}

}

// Backtrack

visited[i][j] = 0;

}

// A wrapper function over findshortestPathUtil()

void findShortestPath(int mat[R][C])

{

// stores minimum cost of shortest path so far

int min_dist = INT_MAX;

// create a boolean matrix to store info about

// cells already visited in current route

int visited[R][C];

// mark adjacent cells of landmines as unsafe

markUnsafeCells(mat);

// start from first column and take minimum

for (int i = 0; i < R; i++)

{

// if path is safe from current cell

if (mat[i][0] == 1)

{

// initialize visited to false

memset(visited, 0, sizeof visited);

// find shortest route from (i, 0) to any

// cell of last column (x, C - 1) where

// 0 <= x < R

findShortestPathUtil(mat, visited, i, 0,

min_dist, 0);

// if min distance is already found

if(min_dist == C - 1)

break;

}

}

// if destination can be reached

if (min_dist != INT_MAX)

cout << "Length of shortest safe route is "

<< min_dist;

else // if the destination is not reachable

cout << "Destination not reachable from "

<< "given source";

}

// Driver code

int main()

{

// input matrix with landmines shown with number 0

int mat[R][C] =

{

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 1, 1, 0, 1, 1, 1, 1 },

{ 1, 0, 1, 1, 1, 1, 1, 1, 0, 1 },

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 0, 1, 1, 1, 1, 0, 1, 1, 1, 1 },

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },

{ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 }

};

// find shortest path

findShortestPath(mat);

return 0;

}

Output:

Length of shortest safe route is 13