Home Previous year paper Algorithms Notes About us
Sweep line Algorithm

Given n line segments, find if any two segments intersect

We can solve this problem in O(nLogn) time using Sweep Line Algorithm. The algorithm first sorts the end points along the x axis from left to right, then it passes a vertical line through all points from left to right and checks for intersections. Following are detailed steps.
1) Let there be n given lines. There must be 2n end points to represent the n lines. Sort all points according to x coordinates. While sorting maintain a flag to indicate whether this point is left point of its line or right point.
2) Start from the leftmost point. Do following for every point
…..a) If the current point is a left point of its line segment, check for intersection of its line segment with the segments just above and below it. And add its line to active line segments (line segments for which left end point is seen, but right end point is not seen yet). Note that we consider only those neighbors which are still active.
….b) If the current point is a right point, remove its line segment from active list and check whether its two active neighbors (points just above and below) intersect with each other.
The step 2 is like passing a vertical line from all points starting from the leftmost point to the rightmost point. That is why this algorithm is called Sweep Line Algorithm. The Sweep Line technique is useful in many other geometric algorithms like calculating the 2D Voronoi diagram

What data structures should be used for efficient implementation?

In step 2, we need to store all active line segments. We need to do following operations efficiently:
a) Insert a new line segment
b) Delete a line segment
c) Find predecessor and successor according to y coordinate values
The obvious choice for above operations is Self-Balancing Binary Search Tree like AVL Tree, Red Black Tree. With a Self-Balancing BST, we can do all of the above operations in O(Logn) time.
Also, in step 1, instead of sorting, we can use min heap data structure. Building a min heap takes O(n) time and every extract min operation takes O(Logn) time

PseudoCode:

The following pseudocode doesn’t use heap. It simply sort the array.

sweepLineIntersection(Points[0..2n-1]):

1. Sort Points[] from left to right (according to x coordinate)

2. Create an empty Self-Balancing BST T. It will contain

all active line Segments ordered by y coordinate.

// Process all 2n points

3. for i = 0 to 2n-1

// If this point is left end of its line

if (Points[i].isLeft)

T.insert(Points[i].line()) // Insert into the tree

// Check if this points intersects with its predecessor and successor

if ( doIntersect(Points[i].line(), T.pred(Points[i].line()) )

return true

if ( doIntersect(Points[i].line(), T.succ(Points[i].line()) )

return true

else // If it's a right end of its line

// Check if its predecessor and successor intersect with each other

if ( doIntersect(T.pred(Points[i].line(), T.succ(Points[i].line()))

return true

T.delete(Points[i].line()) // Delete from tree

4. return False

Implementation

#include <bits/stdc++.h>

using namespace std;

// A point in 2D plane

struct Point

{

int x, y;

};

// A line segment with left as Point

// with smaller x value and right with

// larger x value.

struct Segment

{

Point left, right;

};

// An event for sweep line algorithm

// An event has a point, the position

// of point (whether left or right) and

// index of point in the original input

// array of segments.

struct Event {

int x, y;

bool isLeft;

int index;

Event(int x, int y, bool l, int i) : x(x), y(y), isLeft(l), index(i) {}

// This is for maintaining the order in set.

bool operator<(const Event& e) const {

if(y==e.y)return x
return y < e.y;

}

};

// Given three collinear points p, q, r, the function checks if

// point q lies on line segment 'pr'

bool onSegment(Point p, Point q, Point r)

{

if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&

q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))

return true;

return false;

}

// To find orientation of ordered triplet (p, q, r).

// The function returns following values

// 0 --> p, q and r are collinear

// 1 --> Clockwise

// 2 --> Counterclockwise

int orientation(Point p, Point q, Point r)

{

// See https://www.geeksforgeeks.org/orientation-3-ordered-points/

// for details of below formula.

int val = (q.y - p.y) * (r.x - q.x) -

(q.x - p.x) * (r.y - q.y);

if (val == 0) return 0; // collinear

return (val > 0)? 1: 2; // clock or counterclock wise

}

// The main function that returns true if line segment 'p1q1'

// and 'p2q2' intersect.

bool doIntersect(Segment s1, Segment s2)

{

Point p1 = s1.left, q1 = s1.right, p2 = s2.left, q2 = s2.right;

// Find the four orientations needed for general and

// special cases

int o1 = orientation(p1, q1, p2);

int o2 = orientation(p1, q1, q2);

int o3 = orientation(p2, q2, p1);

int o4 = orientation(p2, q2, q1);

// General case

if (o1 != o2 && o3 != o4)

return true;

// Special Cases

// p1, q1 and p2 are collinear and p2 lies on segment p1q1

if (o1 == 0 && onSegment(p1, p2, q1)) return true;

// p1, q1 and q2 are collinear and q2 lies on segment p1q1

if (o2 == 0 && onSegment(p1, q2, q1)) return true;

// p2, q2 and p1 are collinear and p1 lies on segment p2q2

if (o3 == 0 && onSegment(p2, p1, q2)) return true;

// p2, q2 and q1 are collinear and q1 lies on segment p2q2

if (o4 == 0 && onSegment(p2, q1, q2)) return true;

return false; // Doesn't fall in any of the above cases

}

// Find predecessor of iterator in s.

set::iterator pred(set &s, set::iterator it) {

return it == s.begin() ? s.end() : --it;

}

// Find successor of iterator in s.

set::iterator succ(set &s, set::iterator it) {

return ++it;

}

// Returns true if any two lines intersect.

int isIntersect(Segment arr[], int n)

{

unordered_map mp; // to note the pair for which intersection is checked already

// Pushing all points to a vector of events

vector e;

for (int i = 0; i < n; ++i) {

e.push_back(Event(arr[i].left.x, arr[i].left.y, true, i));

e.push_back(Event(arr[i].right.x, arr[i].right.y, false, i));

}

// Sorting all events according to x coordinate.

sort(e.begin(), e.end(), [](Event &e1, Event &e2) {return e1.x < e2.x;});

// For storing active segments.

set s;

int ans=0;

// Traversing through sorted points

for (int i=0; i<2*n; i++)

{

Event curr = e[i];

int index = curr.index;

// If current point is left of its segment

if (curr.isLeft)

{

// Get above and below points

auto next = s.lower_bound(curr);

auto prev = pred(s, next);

// Check if current point intersects with

// any of its adjacent

bool flag=false;

if (next != s.end() && doIntersect(arr[next->index], arr[index])){

string s=to_string(next->index+1)+" "+to_string(index+1);

if(mp.count(s)==0){mp[s]++;ans++;} //if not already checked we can increase count in map

}

if (prev != s.end() && doIntersect(arr[prev->index], arr[index])){

string s=to_string(prev->index+1)+" "+to_string(index+1);

if(mp.count(s)==0){mp[s]++;ans++;} //if not already checked we can increase count in map

}

// if same line segment is there then decrease answer as it got increased twice

if(prev != s.end() && next != s.end() && next->index==prev->index)ans--;

// Insert current point (or event)

s.insert(curr);

}

// If current point is right of its segment

else

{

// Find the iterator

auto it=s.find(Event(arr[index].left.x, arr[index].left.y, true, index));

// Find above and below points

auto next = succ(s, it);

auto prev = pred(s, it);

// If above and below point intersect

if (next != s.end() && prev != s.end())

{ string s=to_string(next->index+1)+" "+to_string(prev->index+1);

string s1=to_string(prev->index+1)+" "+to_string(next->index+1);

if (mp.count(s)==0&&mp.count(s1)==0&&doIntersect(arr[prev->index], arr[next->index]))

ans++;

mp[s]++;

}

// Remove current segment

s.erase(it);

}

}

//print pair of lines having intersection

for(auto &pr:mp){

cout<< pr.first<<"\n";

}

return ans;

}

// Driver code

int main() {

Segment arr[] = { {{1, 5}, {4, 5}}, {{2, 5}, {10, 1}},{{3, 2}, {10, 3}},{{6, 4}, {9, 4}},{{7, 1}, {8, 1}}};

int n = sizeof(arr)/sizeof(arr[0]);

cout<< isIntersect(arr, n);

return 0;

}

Output:

0