{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Walkthrough\n", "\n", "This notebook contains the code for the [walkthrough in the quickstart guide](http://www.scikit-yb.org/en/latest/quickstart.html#walkthrough). We've purposefully omitted the text of the guide so that you can follow along in code using this notebook as a template! The scikit-yb developers also use this notebook to verify that the quickstart code is correct, so if this code doesn't match what's on the guide, please leave us a note on our [GitHub Issues](https://github.com/DistrictDataLabs/yellowbrick/issues)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib notebook" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from yellowbrick.datasets import load_bikeshare\n", "\n", "X, y = load_bikeshare()\n", "print(X.head())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from yellowbrick.features import Rank2D\n", "\n", "visualizer = Rank2D(algorithm=\"pearson\")\n", "visualizer.fit_transform(X)\n", "visualizer.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from yellowbrick.features import JointPlotVisualizer\n", "\n", "visualizer = JointPlotVisualizer(feature='temp', target='feelslike')\n", "visualizer.fit_transform(X['temp'], X['feelslike'])\n", "visualizer.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from yellowbrick.regressor import ResidualsPlot\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.model_selection import train_test_split\n", "\n", "# Create training and test sets\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, test_size=0.1\n", ")\n", "\n", "visualizer = ResidualsPlot(LinearRegression())\n", "visualizer.fit(X_train, y_train)\n", "visualizer.score(X_test, y_test)\n", "visualizer.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from sklearn.linear_model import RidgeCV\n", "from yellowbrick.regressor import AlphaSelection\n", "\n", "alphas = np.logspace(-10, 1, 200)\n", "visualizer = AlphaSelection(RidgeCV(alphas=alphas))\n", "visualizer.fit(X, y)\n", "visualizer.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import Ridge\n", "from yellowbrick.regressor import PredictionError\n", "\n", "visualizer = PredictionError(Ridge(alpha=3.181))\n", "visualizer.fit(X_train, y_train)\n", "visualizer.score(X_test, y_test)\n", "visualizer.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }