{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Class Prediction Error Visualizer\n", "The `ClassPredictionError` visualizer is a ScoreVisualizer that takes a fitted scikit-learn classifier and a set of test X and y values and returns a stacked bar graph showing a color-coded break down of predicted classes compared to their actual classes. This visualizer provides a way to quickly understand how good your classifier is at predicting the right classes.\n", "\n", "Below is an example with the visualizer" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "from yellowbrick.classifier import ClassPredictionError\n", "\n", "from sklearn.datasets import make_classification\n", "from sklearn.model_selection import train_test_split as tts\n", "from sklearn.ensemble import RandomForestClassifier\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XecHVX5x/FPCMkSQg1FuoDCN0JAZYnUAEFAbKBUBREEFFDxh4oFEaQpohQBUUSQRESQgEg1KkjoJSwoBskTQKr0JtI29ffHOdfcLFtmy9zdzXzfr9e+9t5z5848s3N3nnvOnDlnyLx58zAzM6uKRfo7ADMzs0Zy4jMzs0px4jMzs0px4jMzs0px4jMzs0px4jMzs0pZtL8D6G+ShgBfBb4ADAfmAX8CjoiI/0iaADwUESeUGMME4KPAi8CQHMNlwNERMacX610NeCIihkj6MvCOiDiqk+U3Ad6MiPuKLN/NWB4l7dubbV46IiIu74ttdLDdTYBLgb9FxMd7sZ55wMPA7Fy0KHAj8JWIeL3XgbLg8eqj9U1g/ueq3l4RcU9fbKOTbe8J/DEiXs3PRwMnAh8gfQaeB74fEVdLWpP0P9an5yNJvwYmRcRVkn4A7AccCYyvlffl9mzwqHziA34IbANsHxFPSBoJnA5cLWmrBsZxei25SloK+AvwBHB2X6w8In5aYLHPAbcA9xVcvrv2johbSlhvZ3YApkTEPn2wrm0i4kkASU3AxcB3SCfTger0Mr+0deJY4FbgVUmrAjcBRwG7RcQcSZsBV0raG5hRRgAR8dm6p3sC+0TE9cD5ZWzPBo9KJz5Jo4CvAO+PiCcAIuL1XNvZnlRDqV9+M+CnwEhgLunb/nWSFiUlqHHAUOA+0rfLN9orr30L7khEvCppIumkfbakKaSTyC7AAcD9OY5NSMfw+Ig4P8e4P/A94FXgwrrYjwFWi4gDJa0NTABWAV4GDiJ9E/8ssJOkFYGl6pZfA/glsCYwC/hRRPw6f1O/nfRN/vPAKOBrEfG7zvavPblG9Z38d1uPVLv6FbA36VjQSQy3Ab8DNoqIrevWuRvwf8Cikq6NiI9I+gpwMKmZP4ADI+L5XDt6Cdgu/z0ndRZvRLRKmgzslLe1OOmE+j5Sy8FlEXF4fm0KcCXp+K1FSgJ7RcS8To7XIsDxwK656A7gS/nzOQWYDOwMvBs4BlgW+Azpc/nRiHiks/gLrL/o5+0EYHfS/8qTOYYTAAFTJO2X47wuIn5R9/e7XdLO+T3/u+SS4zqTdByGk76I7R8RsyRtDZwGLJa3d3RETOqkfApwLvBhYA3gVznevYFzI+I3krYAfpL/fi/k4/KvHPdOwNJAS0R8s7O/pw0uVb/GtynwZERMry+MiLci4qqImNtm+XOAH0fEaFJNsVYb+xDphDYaWId0otisk/IihgGtdc+bgfUj4jbg+6QT3GjSyehYSWMkLQucAewYERuQElt7zgEuioh353VdEBFnA3cB34yIU9tZfkpEiNR0dkZOOADLA3Pz9g4jnfR6akhEqK55d7X8/PECMfytPukBRMSlpBP2pTnpbQp8g1RzGw08TkraNR8EPtBV0gPIf+u9SEkX4BBgSdIx2QjYT9KWdW/5OCmBrwtsC2zexfHag3TCbgbWB5YhNcnXbEX6QvU54Eekz/Fo4J/A/l3FX2D9RT5v6+f1jImIdYHLge0iorb9bXINf2vgmrYBRMRt+djW+2TerzHAe3Ice+bXTga+GhHrkZLSJ7sor21nb+DfpBaHX9bKJS1Bagb/Tv5fOB24pO6tOwAHO+ktfCpd4yN9m3u2G8u/j3T9DeBmYO38+HlSLeWTwJ9q18UkfaC98q7kGtf+LJhErq1LxHsAO+fnz0v6Penb+V3AgxHxQF5uInBom3UvRrrGsVsuugK4rpNYhpFO2HsCRMRjkm4gnbz/SvoM1ZqO7iF9s+7IhZLaXuPbMCJm5sdXt3nt6oIxDCOddLvyUVISfC4/Pxeov85zfUS81cn7p0iaTaqJjAJOBU7KMZ0i6YyImAe8LOl+0uej1rR7aUS8mfdnBunvtCQdH6+PAhNr1w8lnQ98nfmfiasiYrakfwCLk07gAP9gwWPwf5I+02Y/tiyw/iKft/OAFYC9JV0REWd28Hcr/H8WEZdJuioiZgGzJE1l/v/Zc8BnJT2bv6zu1UV5V7YCXo2Iv+RtXyTp57mFA2BGRDxYcF02iFQ98T0BrNqN5fcGviJpSVLT5RCAiLhL0qGkk9ZESVcBX+yk/JV21l1/gnqD1BRTX/N4qe7xMsAF+SQMMAKYRDoZ/6duuZfb2c4oUk3/Pzn2ecBrnezzcqSaWNv1rpgfz6nr3DGH9HfpSFfX+F7q4HmRGDptPs5WAJ7qYB3tbb+tbSLiSUnLk65L/S4iZgNIWgc4NXfimAOszoLXkupjr/2dOjteK7R53jbW/9ati4h4re55/TFo9xqfpK7W3+XnLSL+LWkX4HDgTEk3kWpIT7TZXOH/sxzXmZI2ItUyVyI1RUL6Mvhd4Lr8BeqIXKvvqLwrywCrSapv8Wkl/e2h68+DDVJVT3z3ActK2ijqernlGsYxpCaeWtmqpGtMm0TE3/KJ7n8X5fM/2qX5uuGvSE1qR3ZU3k4s3emE8BTwiYiYVl8o6cOkb9c1K/B2L5JqrcsBL+Rere8iXVNrzwvAXEnLRkTtRLkc3asp91ZfxfBsfl9Nj/YjIl6QdAapiXHnXHwW0EI6LnMk3VpgVS/T8fHqk1g70Z31t/t5A4iIG4Abcqewk0mXAPZus9hNpGuJE+sLJe0EvMWCnVu+T7qGu0G+jvq/654R8SzpS+ShknYAfi9pckflne79/P16ICI2bvuCpA0KvN8GqUpf48u1hBOBX0t6N/yvk8I5pA4vb9QtvgLwOhC5M8sX8vJLSvqcpKPyOl8CpgPzOirvg9CvIHXQQNKikk7L35DvTkVaJy+3bzv73Ar8mdSJBNJ1yGtzzW8W6Vtw/fKzSbd3HJS39y5SE1GHzaN9rQ9juAbYRVLthH8Q7Vx7KugU0nW62nXFFUnXGedI2p50TXfJLtbR2fG6GviMpMXz5+2AXsTanu6sv93Pm6QdJJ0laZFc6/878z/fs5n/WTodGCvpW7nzCrlTyS94++0tKwLTctJ7L7AFsKSkYZKmSFo5L9dC+rwO7aC87fX59twJrKx0ywuS1pZ0Qf4yaAuxSic+gIg4iZTorpQUpH+cZ0nXMOr9HbgWeJTUk/EqUk+4W0gnhmZJD0p6gHRd79ROynvrKGDpHO/95B6jEfE86TrNdZKmkXottudA4OOS/kW6plO7JnI5cJKktjEeDGyTm4QuJ/WEbNucVcSFkqa3+Tmx67f1TQwRcRepRnJzXs8y9PBWhIj4b17XyflEeQLwE0n/JHXmOBY4IZ/gO1pHZ8frUtLnrQWYRmouPKMnsXagO+tv9/NGqsktDszI1zT3BI7O77kEuE3SHrmJehypM9nD+X/heGD3iLi5zbZOAQ6R9CDwJdLf5yDgE6Rrstfnv/GNwKF53e2Vv0EX8jXX3UhNqw+QPleT8pdAW4gN8Xx8ZmZWJZWv8ZmZWbU48ZmZWaU48ZmZWaUM2NsZWlpamoCxwNPke5XMzBYyQ4GVganNzc2tXS1sfWPAJj5S0mvb48vMbGE0jvmj/FjJBnLiexpg3XXXZfjw4f0dywKmTZvGmDFj+juMhqnS/npfF14DcX9nzpzJjBkzIJ/vrDEGcuKbAzB8+HCampr6O5a3GYgxlWmg7O/0O8r9yI4EHrm3vPWP3nR21ws10EA5ro0ygPfXl3MayJ1bzMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUpz4zMysUgby7AxmlVfmbBQjgel3lLb6ATcThVmNa3xmZlYpTnxmZlYpTnxmZlYpvsZng8o9W+ze3yH0ymjPs23W71zjMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSnHiMzOzSil1yDJJI4BpwPHA9cAFwFDgaWCfiGgtc/tmZmZtlV3j+y7wUn58HHBWRIwDHgX2L3nbZmZmb1Na4pM0GlgPuCYXbQNcmR9fAWxX1rbNzMw6UmZT5ynAl4F98/ORdU2bzwArF1nJtGnTSgit91paWvo7hIYaKPu7zohJ/R1Cr7S0HN6t5UeWFEcjDJTPTL2BGJM1XimJT9Jngdsj4hFJ7S0ypOi6xowZQ1NTU5/F1hdaWlpobm7u7zAaZiDt79T+DqCXuvt3nH5HSYE0wED5zNQMpM9xTWtr64D9cr8wK6vG91FgbUkfA1YDWoHXJI2IiDeBVYGnStq2mZlZh0pJfBGxZ+2xpGNInVk2B3YFfpN/Ty5j22ZmZp1p5H183wP2lXQzMAqY2MBtm5mZASXfxwcQEcfUPd2+7O2ZmZl1xiO3mJlZpTjxmZlZpTjxmZlZpTjxmZlZpZTeuaW/TF2i3F0r80bqsa/NLnHtZmbV5hqfmZlVihOfmZlVihOfmZlVykJ7je/+yd0bBX8gGdvfAZj1g+l3lHs6Gkm5g36P3tTX5gcL1/jMzKxSukx8kj4s6TP58YWSHpS0S/mhmZmZ9b0iNb6jgcmSPgwMBd4PfKXUqMzMzEpSJPG9EREvkObYuyAiXgPmlBuWmZlZOYpcTV5M0jeAHYHDJa0DLF1uWL13wOXr93cIPbbflv0dgZnZwqtIje8LpBnTPxcRbwEfAr5dalRmZmYlKVLjmwGcEhFPSNoQ+A9wW7lhmZmZlaNIjW8isImkVYHfAxsAE8oMyszMrCxFEt+qEXEpsCfws4j4JjCq3LDMzMzKUSTxNUkaAnwSuDqXLVleSGZmZuUpkvimkK7rPR0RMyQdBkwvNSozM7OSdJn4IuLbwBoRsUcuugL4ZalRmZmZlaTLXp2SlgL2krR8LmoCPgesUmZgZmZmZShyO8PvgMdI9+9dCuwAHFJmUNY9HtXezKy4Itf4FouIg4HHIuIbwHhgjy7eY2ZmNiAV7dU5ElhE0nIR8RLwrpLjMjMzK0WRNrJfA58HzgUekPRfYFqpUZmZmZWky8QXEWfXHku6HlgxIu4tNSozM7OSdJj4JB3XyWufjIijywnJuuueLXbv7xB6ZbQnuTKzBuqsxufTkZmZLXQ6THwRcSyApKHA5hFxc37+ceCaxoRnZmbWt4r06jwb2KXu+TbAeaVEY2ZmVrIiiW/diPhq7UlEfB1Yq7yQzMzMylPkdoYRkkbl+/eQtAqwWLlhmRkM7o5L7rRkA1WRxHcccL+kx4GhpDE6Dyg1KjMzs5IUuY/vaklrA+sB84DpEfFG6ZGZmZmVoNDoxhHxJtBScixmZmalK9K5xczMrFSSHpW0RCO2Ve58NmZm1nBDv37BvL5c35xT9hnSl+vrb50NWdbpkGQR0eGQZvn9iwMTgHeQeoEeD/wduIDUSeZpYJ+IaO1eyGZmNtDkSct/S5rCc3HgUOASYCKwLTAT2BX4BLAjsBSwGnBaRJxft55VSPeKDyeNIHZgRDzel7F21tQ5LP+sB+wMLAssnwNfu8C6Pw7cHRFbk+bvO5XUQ/SsiBgHPArs3+PIzcxsIFkJODcixgNHAN/K5Q/kc/7fgH1z2frATqSEeIKk+lx0PHBKRHwQ+AlwVF8H2tmQZUcBSPod8IGImJOfDyPNyt6piKhfZnXgSdKoLwfnsiuArwE/70ngZmY2oDwLHCXpcKAJeD2XX5d/305KdHcBN0bEbOAFSS+TKlU1mwOS9F1S6+DzfR1okWt86wD17bvzgHcW3YCk20jV2Y8B19U1bT4DrNzV+6dNq97Ufy0t1epAW6X99b52bGRJcTRKlY5tBw4D/h0R+0jaGDg5l9dqc0NI+aO+rG05pCbR3SPi6bICLZL4/gjMkNQCzAU2Av5QdAMRsbmk9wG/YcEEWuhi6ZgxY2hqaiq6ufl++8/uv2eAaG5u7tbyUVIcjdKd/Z1aYhyNUKVj2919nX5HSYE0SHf3F6C1tXVh+nK/PHBffvxJ0jU6gHHAZcBmQO3EvFmeAGFZYEngxbr13Em6DvhzSdsCK0XEb/sy0C5vZ4iII4EPAReRLlTuHBHf6Op9kpolrZ7X8TdSkv2vpBF5kVWBp3oauJmZDSi/Br4m6c+k5LUSqYLTnCcx3zAvA6mPxyTgr8CRETG3bj3HAJ+QdBPwPVITaZ/qssYnqQnYAVg9Ir4taRNJi0XEW128dStSk+hhkt4BLAFMJnWO+U3+PblX0ZuZ2dv0x+0HETEVeE9d0ZWSHgV+EBGv1QolATwcEYe3ef+a+eFrpMpWaYrcwH4W8C5gfH6+Eek2ha6cDawo6WbS/H1fImXvfXPZKFI3VzMzs4Ypco1vzYjYTtINABHxc0mf7upNeZizvdp5aftuxmhmZoNQXS2uvmxC4yNZUJEa37D8ex6ApJHAiI4XNzMzG7iKJL5J+cLk2pLOIN2E2Kc9bMzMzBqlyLREP5V0J+nm81bgUxFR+RtWzMxscCrSq3NCROxH3S1Ukv4UEaX2ujEzMytDZ4NU700aXmxMvp+iZnFgubIDMzOzwUPSfsCY2m0KknYE1oqIToellHQx8LncIbIhOhur80JJU4ALSbch1MwF7i85LjMz66EJt3y7T6cl2m/LH3b7vsCIKHSfdkR8qvsR9U6nTZ0R8W9JHwM+EhGXAEg6GLi3EcGZmdngI+lE0iDVy5BGcDkzIu6UNJk0ZvPJko4gjd51LKmm+FrHa+xbRXp1TgTWqnu+OGlOPTMzswVI2p35M/IA3AhsmsfmnAOMzeVbADc0PsJiiW9URJxUexIRp5KyuJmZWb31gZOAA+vKbgQ2BTYgtRaOkDSENPh0n04wW1SRxNck6X/jr0lqZv6o22ZmZjVrkvqA7FYriIgZwBqkGt5twOPAh4G/90N8QLEhy74KXCFpaeZPCvjZUqMyM7PB6BpSje8W4Fd15Y+TphrakzRO82HMn6mh4YpMS3RnRKwLrAesGxHvyaNwm5mZLSAinifdCfCtuuIbgdUi4iXgDmA7YErjo0s6u4/viIg4UdIF1M2Om6eUICJc6zMzG4B6cvtBb9UPPh0RFwMX1z0/mzRjDxHxEHWVrvYGsi5bZ02d9+Tf1zUiEDMzs0boLPE9IGkN+qm7qZmZWRk6S3y3kpo4hwCrAP/Jy48E/gWsU3p0ZmZmfazDzi0RsXpErAFcAmwcEaMiYilgc+CPjQrQzMysLxW5nWHDiPjfEGV52JnvlxiTddM6Iyb1dwi9dFF/B2BmFVIk8Q3L467dQhqgenNgsVKjMjMzK0mRkVv2ICW8g4AvkkZt2aPMoMzMzMpSZAb25ySdSppX6W5Ji0TE3AbEZmZmPTB1iUX7dFqisa/Nbvh9gWUqMgP7p4HjgFZgDHCmpHsi4ryygzMzs8EhT0S7I7AUsBpwGvAQ8ANgFvAE8HlSC+LEvMxI4JiIuDrP/zoNICK+XGasRZo6DwHeSxqjE+Bw4AulRWRmZoPV+sBOwLbACcAZwM4RsS3wLLA7aazOP0fE1qTLZsfWvX9a2UkPiiW+1oh4o/YkTw8/s7yQzMxskLoxImZHxAvAq4CA3+fa3HhgVeBlYKykW0k1v+Xq3n9XI4Is0qvzRUn7kuZQ2og0uvbzXbzHzMyqp74yNRd4OiK2qV8g55NRwLj8++66lxtSqSpS4zuYNGPuksC5pFsZDuz0HWZmVkWbSRoqaXlSzpgraT0ASYdK2hBYHngkd5LchX6Y37VIjW+zRrS5mpnZoPcoMAl4N3Ak8AhwvqSZwFPAOaQm0CslbUqas+9JSUc3Msgiie9rkv4SEbNLj8Z65P7Jh/d3CL0ytr8DMFvI9OPtBw9HRNsT0iZtnj8KbFj3/ML8+7iygmqrSOJ7BfinpHuoa3/1fHxmZjYYFUl8V+cfMzOzdtVPRDvQddm5JSImAi3Am8AbwB25zMzMbNDpMvFJ+jFwOfAJYFfgWknHlx2YmZlZGYo0dW4LrBcRswAkNQG3AUeVGZiZmVkZitzH9wxQ36NzJqlXjpmZ2aBTpMb3AjBV0l9JiXIr4F+SjgOIiIbef2FmZgNPHqR6TDu3Mww4RRLfv/JPzTUlxWJmZn3gt0M/3afTEu0156JqTUsUEcd2tYyZmRmwlqTLgHWAn5CmszsUmAPcHxFfyDXDLYEVSINY/zgizpO0d2+W7U6QRWp8PSbpR6SBSBcFTgSmAhcAQ4GngX0iorXMGMzMrGHWBTYizcn3d+B4YMeIeEXSTZI2yMttAGxOSpAXA+eR5ubr8bIR8Y+iQRbp3NIjksaT2ns3I01O+BPSkDRnRcQ4UgeZ/cvavpmZNdwtETErIl4kjcn5InCFpBuB9zB/CqLbI2IO8CSwdC57qQ+WLaTDxCfpp/W/e+Am0qSDkIY9GwlsA1yZy64Atuvhus3MbOBpe23xImDPPOnsnXXl9XcKDJE0HDirD5YtpLOmzh0kXQRsI2mpti92NVZnztCv56cHANcCH6pr2nwGWLm7AZuZ2YC1maShpHn2Vgeei4hnJK0ObEzHUxAtCcwuYdl2dZb4PkxqV30fcH13VlpP0s6kxLcD8GDdS4V6CU2bNq2nmx60Wlpa+juEhqrS/npfOzaypDgapUrHthPTmT8t0SHAdpKmkq73/Qg4jXTZawER8aKkv/RmWUnvqw200pUh8+Z13utV0rsi4mFJo4B5EfFykRXn936I+Rc3X5L0L2D9iHhT0tbAoRGxW3vvbWlpWRN4ZMyYMTQ1NRXd5P8M/foF3X7PQDHnlH26tfyEW75dUiSNsd+WPyy87NQlSu2PVbqxr3Vvdq/fDv10SZGUb685F3Vr+el3DO5jO3rT7s/c1traWvtyv1Zzc/OjfR2Tta9I55aVJD1MyuQPSpouaeOu3iRpaeDHwMci4qVcfB1pvE/y78k9iNnMzKzHinzFOhHYOSKmAUh6P3A6aQSXzuxJmmL+Ekm1sn2BcyUdBDwGeJYHMzNrqCKJb04t6QFExL2SuqzTR8Q5pGnm29q+G/GZmZn1qSKJb66kXUjNlJDuyZtTXkhmZmblKXKN72DgC6SmyUdIzZUHlxmUmZlZWYqM1fkgqZZnZmY26JU2ZJmZmdlANLhvnDEzs7eZfseifTot0ehNZ1drWiJJ74+IexsRjJmZDU6ShpF68q8NNAFHk8bUvBZ4Drg6P58FzCWN5bwU6ba2h4H3AvdGxIGSNszlr5DGfX5nROwn6UvAXvn9f4iIU3oSa5Gmzh6t2MzMKuXTwFt54OhdSEluGPDHiPg+sCJptK7xwK3A3vl9zcB3gLHARyQtA3wPOC4v+x4ASWsBu5Hm59sK2FXSGj0JtEhT5+OSpgB3ADNrhRFxdE82aGZmC6WNgSkAEfFUvt/7HcBd+fVngZMkLQ6sAlyYyx+KiGcAJD1FmnroPaTkCGlGn+2AD5Dm5Lshly8JrAk83t1AiyS+R/KPmZlZR+ax4OQDi5CaJGsVptOBkyJisqTDgSVyedsBUYbkn7l16yWv55qIOKi3gRa5neFYScsBa0XE3ZIWiYi5Xb3PzMwqZSowHrg4Txc0l3SNrmZ54GFJTcBHSK2IHXmYVIOcTJopaDbQwvwa45ukmRu+HRFvdjfQLq/xSfpUDnBCLjpTkmdONzOzehcDQyXdkB+3rZmdCfyBNG3RmaTBUJamfScAJ0v6E6ljzJyIeJyU7G4i5aRnepL0oFhT5xdJvW2uyc8PJ7Xj/qonGzQzs3L1x+0HETEbOLBN8Zp1r7cdv/ny/HvjumU2BpC0ErBXRNwn6Qjghfz6z4Cf9TbWIr06WyPijbrA3qSuk4uZmVkfawXOk3QTsDVwdl+uvEiN70VJ+wIjJG1Emm7o+b4MwszMrCbfOz62rPUXHaR6LKnr6LnACN5enTUzMxsUivTqfAX4sqQVgHkR8UL5YZmZmZWjyJBle5Luv5gHDMk3JR4aEZd3/k4zM7OBp8g1vu8CW0TEwwCS1gUuY36PHDMzs0GjyDW+h2pJDyAiZpBuLjQzMxt0OqzxSdo2P3xM0pnAX0h34n8QeLABsZmZmfW5zpo6j2rzfEzd4z6d68nMzKxROkx8eToIMzOzhUqRXp3bkYYtW5q6kbcjYtsO32RmZjZAFenV+XPSgKFPlhyLmZlZ6YokvhkRMbH0SMzMzBqgSOL7paRzgduomzAwIn5dWlRmZmYlKZL4vgO8DjTVlc0DnPjMzGzQKZL4ZrqHp5mZLSyKJL4rJY0HbmXBps65pUVlZmZWkiKJ7yhgZJuyecDQvg/HzMysXEWmJVqyEYGYmZk1QpEb2I9rrzwiju77cMzMzMpVpKlzTt3j4cBWwD3lhGNmVXXPFrv3dwi9MnpO18vYwFCkqfPY+ueShpLm4zMzMxt0iszH19Yw4N19HYiZmVkjFLnG9wTzpyEaAiwLTCgxJjMzs9IUuca3Zd3jecCrEfFKSfGYmZmVqkjiexb4EDCKPC2RJCLiV2UGZmZmVoYiiW8yMBd4rK5sHtBl4pM0BrgCOC0ifippdeAC0s3vTwP7RERrt6M2MzProSKJb3hEbN7dFUsaCZwJXF9XfBxwVkRMkvQjYH/SfH9mZmYNUaRX5/2SluvBuluBjwBP1ZVtA1yZH18BbNeD9ZqZmfVYkRrfasBDkh5gwUGqt+rsTRExG5gtqb54ZF3T5jPAyl1tfNq0aQVCXLi0tLT0dwgNVaX99b4uvKq2v4NZkcT3w5K2PaTIQmPGjKGpqanrBdv67T+7/54Borm5uVvL/+OWSSVF0hjd2d+pJcbRCN09tlFSHI1QpX2F7u8vQGtrayW/3Pe3IiO33NiH23tN0oiIeBNYlQWbQc3MzErXk5FbeuM6YNf8eFdSj1EzM7OGKdLU2SOSmoFTgDWBWZJ2A/YGJkg6iHR7xMSytm9mZtae0hJfRLSQenG2tX1Z2zQzM+tKo5s6zczM+pUTn5mZVYoTn5mZVYoTn5mZVUppnVvMrPfWGTGYBye4qFtLD+59he7ur/Uf1/jMzKxSnPjMzKxzppVnAAAJ0klEQVRSnPjMzKxSfI3PbAC7f/Lh/R1Cj43t7wDMOuAan5mZVYoTn5mZVYoTn5mZVYoTn5mZVYoTn5mZVYoTn5mZVYoTn5mZVYoTn5mZVYoTn5mZVYpHbjGzAWEwj1IDHqlmMHGNz8zMKsWJz8zMKsWJz8zMKsXX+GxQ2fSg8/s7hF6Z098BmJlrfGZmVi1OfGZmVilOfGZmVilOfGZmVilOfGZmVilOfGZmVilOfGZmVilOfGZmVim+gd3MBoQDLl+/v0Polf227O8IrCjX+MzMrFKc+MzMrFKc+MzMrFKc+MzMrFLcuWUh4E4BZmbFucZnZmaV0vAan6TTgE2BecD/RcTURsdgZmbV1dAan6StgXUiYjPgQOCnjdy+mZlZo2t8HwT+ABAR/5S0rKSlIuLVdpYdCjBz5swebWjlkcN6HGR/a21t7dbyg3lfoXv7W6V9BRg2ZPGSIimfP8ddqzu/De3TYKxTQ+bNm9ewjUk6B7gmIq7Iz28GDoiIGW2XbWlp2RK4uWHBmZn1n3HNzc239HcQVdHfvTqHdPLaVGAc8DQwpzHhmJk11FBgZdL5zhqk0YnvKWCluuerkBLb2zQ3N7cC/gZkZgu7h/s7gKpp9O0MfwZ2A5C0EfBURPy3wTGYmVmFNfQaH4CkHwJbAXOBL0XE3xsagJmZVVrDE5+ZmVl/8sgtZmZWKU58ZmZWKU58fUTSo5KW6O84ekLSfpJOrnu+o6RDCrzvYkkjyo3OOtP22JlZ1/r7Pj4bgCJicsHlPlV2LGZmfc2JL5O0FPBbYCSwOHAocAkwEdgWmAnsCnwC2BFYClgNOC0izq9bzyrAecBw0o33B0bE443bk96RdCLwOrAM6Z7LMyPiTkmTgesi4mRJR5DuyTwWGBMRr/VfxMVJ2o82xw54CPgBMAt4Avg8qcfxxLzMSOCYiLha0hRgGkBEfLnB4XdmLUmXAesAPwFaSZ/fOcD9EfGFvO9bAisAAn4cEedJ2rs3yzZyJwEkDQPOAdYGmoCjgbOAa4HngKvz81mk47g76XhPJN0v917g3og4UNKGufwV4CbgnRGxn6QvAXvl9/8hIk5p3B5aI7ipc76VgHMjYjxwBPCtXP5ARIwD/gbsm8vWB3YiJcQTJNX/HY8HTomID5JOQkc1Ivi+IGl3YHXgyVx0I7CppKGkk93YXL4FcEPjI+wTCxw74Axg54jYFniWdKIcBfw5IrYG9iAl+JppAyzpAawLfAoYDxwHLAHsGBFbAKMlbZCX2wDYhfTl7dBcNrIPlm2kTwNv5WOzCynJDQP+GBHfB1YEDs3/x7cCe+f3NQPfIX2GPyJpGeB7wHF52fcASFqLdK/xlqTbrnaVtEajds4aw4lvvmdJH/JbgJOA5XL5dfn37aRvvwA3RsTsiHgBeBlYvm49mwPH5NrBEXXrGejWJ+33gXVlN5KmkNoAuBcYIWkIsNJgqsW2UX/sXiUd09/n4zUeWJV0TMdKupVUI6g/hnc1ON4ibomIWRHxImmfXgSukHQj6YRei//2iJhD+mKzdC57qQ+WbaSNgSkAEfEUMJv0RaV2XJ4FfpBj/HRdjA9FxDMRMZfUWrE0aR9uza9fmX9/gFRzviH/LAmsWd7uWH9wU+d8hwH/joh9JG0M1DoM1L4cDCHNIVhf1rYcUpPo7hHR7lBsA9iawP3kkXUAImJG/ra7BXAbqfnzw8BgHnSg/tjNBZ6OiG3qF5C0L+lkOi7/vrvu5Z5NF1KutjfjXgSsHhHPSLq6rnx23eMhkoaTakzv7eWyjTSPBcf4XYR0HGvH5XTgpIiYLOlwUu0XFtwf8jqG5PfW1ktezzURcVBfB24Dh2t88y3P/DHzPkm6Rgfp5AewGfDP2mNJQyUtT/pG+GLdeu4kNQ8haVtJe5Uadd+5Btif1DT7jrryx0n7c0f+OYzB28wJbz92cyWtByDp0HzdZ3ngkVw72IX5n4WBqrZPK5Caqp/LyWl1Ug2po/iXBGaXsGyZppJq5uQ45pKu0dUsDzwsqQn4CJ3H+DBpPyB9oQNoAcZLWlzSEEmnu+fywseJb75fA1+T9GdS8lqJ9I2wWdL1wIZ5GYBHgUnAX4Ej8wmy5hjgE5JuIl1DuL0h0feBiHieFPO36opvBFaLiJdIiW87clPTIPUodccO+Bxwfp4ia0sggMuAj+fj/jrwpKSj+yfcQqaT9ul64BDgL5Kmko7lj0ideN422V1uGu3VsrmzSSNdDAyVdEN+3LZmdiZpzs9J+fG+zG+qbesE4GRJfyJ1jJmTm/B/QurscgfwTES82ed7Yf3KQ5Z1QtKjtOm1mHu8jYmIw/spLOshHzurJ2lT4I2IuC/3VB4SET/o77isfL7GZ2ZV1QqcJ+lN4A3SLQxWAa7xmZlZpfgan5mZVYoTn5mZVYoTn5mZVYoTny00JK0iadsevnebPGpPny5rZgOPE58tTMaTxuA0M+uQb2ewASsP/n02MJo0Ev+dEfGV/NoBpJu1Z5FGkvkl8H3S8FovkUbkXzQivpuXf5R08/3TpIEIRpFGI5kUESd1EsM6ed2LAG+Rbnivf31L0hinraRZPb4YEfdI2hM4nHQD/JD8vudIM4AsS7pJ/Ko8sLKZNZBrfDaQLQvcFxFbRcQmwA6Sxkh6J2nUlXERsRlpiprhwATggog4tZN1rkiaamY8aQzS7+QpqTpyNmlanq1ISWv3Nq8vDxySZ3c4nTQDAPn3l/M4oN8kDX69PTAsz/axOfBam5k9zKwBXOOzgewVYHVJt5NqVCuTEs1ooKU2lFRtQlxJHa2n3nPAuDzD/ExgMVLtryObMH82gAl5O9vUvf4MadirxUhDY72cyycAE/I8eb/PcxquCBwn6RLS/HHnthnuzswawN82bSD7FGn+tHG55vRgLp9H15/dtiMz1AYrPozUbLpFXud/C6yns21dAPww1wiPrBVGxGlALeZfSDooIp4jTYR6OrAecLcHQDZrPCc+G8jeATwWEbMlNQPvJiWtqcAHak2Uki7Jr88FaonkVdJMBUhan9TEWVvnvyJinqSdSNflmjqJ4TbSrO1I2lNS27Ec30GaDWAoqRm0Kc+U8EPgPxExkTRw+aaSdgA+GhG3RsQ3gdfq4jKzBvGQZTZg5WlnrgL+Q5ow9A1gH9LkuLuQRuafTZqI9ZuSxgO/A36Rf67N772b1NtzV9L8bBeROrlcAYwB3k/qiHJCRGzZJoZ1gHNIHVRmkaZueldtWUlHksZ4fAz4MakGeDLpMsJezG/6/Aop0U0EajPa3xoRR2JmDeXEZ2ZmleKmTjMzqxQnPjMzqxQnPjMzqxQnPjMzqxQnPjMzqxQnPjMzqxQnPjMzq5T/B7XHKADfXJhWAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We create our own classification dataset\n", "# The data set contains 5 classess and 1000 samples\n", "# We use RandomForest for modeling the data\n", "# I came up with arbitrary names for the classes\n", "\n", "X, y = make_classification(n_samples=1000, n_classes=5,\n", " n_informative=3, n_clusters_per_class=1)\n", "\n", "# Perform 80/20 training/test split\n", "X_train, X_test, y_train, y_test = tts(X, y, test_size=0.20,\n", " random_state=42)\n", "\n", "# Pass in model and classes to ClassPredictionError\n", "visualizer = ClassPredictionError(RandomForestClassifier(),\n", " classes=['apple', 'kiwi', 'pear',\n", " 'banana', 'orange'])\n", "# Fit the model\n", "visualizer.fit(X_train, y_train)\n", "\n", "# Use test data to create visualization\n", "visualizer.score(X_test, y_test)\n", "\n", "# Display visualization\n", "visualizer.show()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }