
1

Algorithm 10xx: SuiteSparse:GraphBLAS: parallel graph
algorithms in the language of sparse linear algebra

TIMOTHY A. DAVIS, Texas A&M University, USA

SuiteSparse:GraphBLAS is a full parallel implementation of the GraphBLAS standard, which defines a set of
sparsematrix operations on an extended algebra of semirings using an almost unlimited variety of operators and
types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations
on graphs. A description of the parallel implementation of SuiteSparse:GraphBLAS is given, including its
novel parallel algorithms for sparse matrix multiply, addition, element-wise multiply, submatrix extraction
and assignment, and the GraphBLAS mask/accumulator operation. Its performance is illustrated by solving
the graph problems in the GAP Benchmark and by comparing it with other sparse matrix libraries.

CCS Concepts: • Mathematics of computing→ Graph algorithms;Mathematical software.

Additional Key Words and Phrases: Graph algorithms, sparse matrices, GraphBLAS

ACM Reference Format:
Timothy A. Davis. 2022. Algorithm 10xx: SuiteSparse:GraphBLAS: parallel graph algorithms in the language of
sparse linear algebra. ACM Trans. Math. Softw. 1, 1, Article 1 (January 2022), 30 pages. https://doi.org/0000001.
0000001

1 INTRODUCTION
The GraphBLAS standard defines sparse matrix and vector operations on an extended algebra of
semirings. The operations are useful for creating a wide range of graph algorithms. A full and
precise definition of the GraphBLAS specification is provided in The GraphBLAS C API Specification
[5, 8], based on the mathematical foundations discussed in [22, 23]. Here, we describe a particular
OpenMP-based parallel implementation of the GraphBLAS standard, SuiteSparse:GraphBLAS. The
implementation assumes a shared-memory model of computing with a number of computational
cores consistent with a multicore CPU. A GPU-based implementation is in progress.
In addition to its availability as a Collected Algorithm of the ACM, it appears as the core

computational engine of RedisGraph, by Redis Inc, and it is the recommended package for sparse
matrix computations in Julia. It is also the built-in sparse matrix multiply in MATLAB R2021a.
The remainder of this paper is structured as follows. Section 2 provides an overview of the

objects, methods, and operations in the GraphBLAS specification, and gives an example of how
they can be used to write a parallel graph algorithm. Aspects of the parallel implementation of
GraphBLAS are discussed in Section 3, followed by a presentation of the many parallel algorithms
in SuiteSparse:GraphBLAS: matrix multiply (Section 4), element-wise add and multiply (Sections 5
and 6), submatrix extraction and assignment (Section 7 and 8), and the mask/accumulator phase
(Section 9). Section 10 highlights the parallel performance of SuiteSparse:GraphBLAS. Section 11
summarizes related work, followed by future work (Section 12) and final comments and code
availability in Section 13.

Author’s address: Timothy A. Davis, Texas A&M University, 3112 TAMU, College Station, TX, 77845, USA, davis@tamu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0098-3500/2022/1-ART1 $15.00
https://doi.org/0000001.0000001

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/ORCID
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://orcid.org/orcid
https://doi.org/0000001.0000001

1:2 Timothy A. Davis

2 AN OVERVIEW OF GRAPHBLAS AND ITS IMPLEMENTATION IN SUITESPARSE
The idea behind GraphBLAS is to provide the user a collection of objects and their methods and
operations so that a graph algorithm can be expressed using linear algebraic operations with
sparse adjacency matrices on different semirings. The goal is both ease of expression of these
graph algorithms and high performance. Graph Algorithms in the Language on Linear Algebra
[25] provides a framework for understanding how graph algorithms can be expressed as matrix
computations. For additional background on sparse matrix algorithms, see also [10] and a recent
survey paper, [13].

2.1 The GraphBLAS API
AGraphBLAS operation is one that takes an optional maskmatrixM, which is boolean (or typecasted
to boolean), and an optional accumulator operator. If the mask is present, 𝑐𝑖 𝑗 can only be modified
if𝑚𝑖 𝑗 is true. An operation accepts a descriptor which modifies its behavior, such as optionally
complementing the mask, declaring the mask as structural. The set of explicit entries in a sparse
matrix is referred to as its sparsity structure. Entries not in the sparsity structure have no value
(they are not assumed to be numerically zero). When a maskM is used structurally, any entry in
present the structure is treated as true. The descriptor can also transpose the input matrices.

The notation C⟨M⟩ is used when the mask is valued, where 𝑐𝑖 𝑗 can only be modified if the entry
𝑚𝑖 𝑗 is present and nonzero. The notation C⟨s(M)⟩ is used when the mask is structural, where only
the presence or absence of𝑚𝑖 𝑗 controls whether or not 𝑐𝑖 𝑗 can be modified; the value of𝑚𝑖 𝑗 is
ignored when using a structural mask.
All matrix operations can be modified by using different binary and unary operators, monoids,

or semirings. For example, suppose C = max(A,B) is to be computed, where the structure of C is
the set intersection of A and B. This is the element-wise multiply operation, but using the binary
max operator instead of the binary times operator of the Hadamard product.
A monoid is an associative binary operator with an identity element (the zero value of the set).

Monoids can be used alone, to reduce a matrix to a vector or scalar, such as using the plus (+)
monoid to sum each row of a matrix to a scalar. Monoids can also be used in a semiring to redefine
matrix multiplication. The GraphBLAS monoid is the same this standard mathematical definition.
The formal mathematical definition of a semiring is a set with two binary operations, addition and
multiplication [18]:
(1) The additive operator is a commutative monoid,
(2) The multiplicative operator is a monoid with an identity element (the one value of the set).
(3) Multiplication distributes over addition.
(4) The additive identity (the zero) is the same as the multiplicative annihilator.

GraphBLAS includes many semirings that fit this definition, but it allows for a looser definition
which is useful for many graph algorithms. All formal semirings are valid GraphBLAS semirings.
In the GraphBLAS semiring, the first item in the list above is unchanged. The second is revised,
where the multiplicative operator is not a monoid, but merely a binary operator. It need not be
associative and need not have an identity value. The third and fourth items are not required for the
GraphBLAS semiring.

The semiring of conventional linear algebra is (+,×), where C = AB is defined as

𝑐𝑖 𝑗 =
∑︁
𝑘

𝑎𝑖𝑘 × 𝑏𝑘 𝑗 ,

using the plus (+) monoid and the times (×) multiplicative operator. In the sparse case, the ×
operator is applied only to entries in the intersection of the structure of the sparse row A𝑖∗ and

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:3

method computation description
GrB_Matrix_build C=build(I,J,X,dup) build a matrix from tuples
GrB_Vector_build u=build(I,X,dup) build a vector from tuples
GrB_Matrix_dup C = A duplicate a matrix
GrB_Vector_dup u = b duplicate a vector
operation computation description
GrB_mxm C⟨M⟩ ⊙= AB matrix multiply
GrB_mxv w⟨m⟩ ⊙= Au matrix-vector multiply
GrB_vxm wT ⟨mT ⟩ ⊙= uTA vector-matrix multiply
GrB_eWiseAdd C⟨M⟩ ⊙= A ⊕ B element-wise addition (set union)
GrB_eWiseMult C⟨M⟩ ⊙= A ⊗ B element-wise multiply (set intersection)
GrB_select C⟨M⟩ ⊙= select(A) element-wise select
GrB_reduce w⟨m⟩ ⊙= reduce(A) reduce matrix to vector
GrB_reduce 𝜎 ⊙= reduce(A) reduce matrix to scalar
GrB_assign C⟨M⟩ (I, J) ⊙= A assign
GrB_extract C⟨M⟩ ⊙= A(I, J) extract
GrB_transpose C⟨M⟩ ⊙= AT transpose
GrB_kronecker C⟨M⟩ ⊙= kron(A,B) Kronecker product
GrB_apply C⟨M⟩ ⊙= 𝑓 (A) apply a unary operator

Table 1. Key GraphBLAS methods and operations

the sparse column B∗𝑗 . Other semirings are useful in different graph algorithms. For example, in a
shortest-path problem, the (min, +) semiring computes

𝑐𝑖 𝑗 = min
𝑘

(𝑎𝑖𝑘 + 𝑏𝑘 𝑗).

GraphBLAS also provides a collection of methods to create, query, and free each of its different
types of objects: matrices, vectors, scalars, types, binary and unary operators, selection operators,
monoids, semirings, and a descriptor object used for parameter settings.
Table 1 summarizes the key GraphBLAS methods and operations, from the GraphBLAS C API

Specification [5, 8]. The notation ⊙= is used for the optional accumulator operator (applied in a set
union manner), ⊕ refers to any binary operator used in a set union manner, while ⊗ refers to any
binary operator used in a set intersection manner.

2.2 Example GraphBLAS algorithm
This approach is illustrated with an example of a push/pull direction-optimizing breadth-first search
(BFS) [4], and shown in GraphBLAS notation in Algorithm 1. In this algorithm, the sparse matrix A
represents a graph where 𝑎𝑖 𝑗 is the edge (𝑖, 𝑗), and q is a sparse vector whose sparsity structure
represents the list of nodes in the current frontier of a BFS. The vector p is the parent vector, where
𝑝𝑖 = 𝑗 if node 𝑗 is the parent of node 𝑖 in the BFS tree. If node 𝑖 has not yet been seen, then the
entry 𝑝𝑖 does not appear in the sparsity structure of p.

In the BFS, the mask is complemented and used in a structural manner, denoted C⟨¬s(M)⟩ = A,
where the assignment 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 is performed only where the entry𝑚𝑖 𝑗 is not present. The values of
M are ignored if it used as a structural mask.

Multiplying v⟨¬s(p)⟩ = ATq computes a new vector v, where the entry 𝑣 𝑗 appears in the sparsity
structure of v only if there is an edge (𝑖, 𝑗) and 𝑞𝑖 is an entry present in the sparsity structure
of q, and where 𝑗 is previously unvisited. If node 𝑗 does not yet have a parent, 𝑝 𝑗 is not present
in the sparsity structure of the parent vector p, and thus p is used as a complemented structural
mask. The sparsity structure of v gives the list of nodes in the next level of the BFS. The value of
𝑣 𝑗 is also useful, and is determined by the specific semiring. Let the matrix-vector multiplication

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Timothy A. Davis

ALGORITHM 1: Breadth-first search (BFS) using GraphBLAS [39]

input :𝑛-by-𝑛 adjacency matrix A, its transpose T = AT, and source node 𝑠
output :parent vector p where 𝑝𝑖 = 𝑗 if 𝑗 is the parent of 𝑖 , and 𝑝𝑠 = 𝑠 for the source node
p = empty sparse 𝑛-by-1 vector
q = empty sparse 𝑛-by-1 vector
p(𝑠) = 𝑠 // s is the root of the BFS tree
q(𝑠) = 𝑠 // s is only node in the current frontier
while q is not empty do

determine push or pull (details omitted)
if push then

q⟨¬𝑠 (p), replace⟩ = ATq // using the (any,secondi) or (min,secondi) semiring
else

q⟨¬𝑠 (p), replace⟩ = Tq // also the (any,secondi) or (min,secondi) semiring

p⟨𝑠 (q)⟩ = q // assign parents of nodes in current frontier

be redefined where the min operator is used instead of the conventional plus (+), and where the
secondi operator is used instead of the conventional times (×). The secondi operator is positional,
where a positional operator depends not on the values of its operands, but on their position in
the matrix. The value of secondi(𝑎𝑖𝑘 , 𝑏𝑘 𝑗) is 𝑘 , which is the row index of the second input scalar
operand. The replace syntax used in Algorithm 1 means that the result of the operation completely
overwrites the output vector, so that q is replaced with v, in a single statement.
After computing the next frontier of newly-discovered nodes and their parents with a single

call to GrB_vxm to compute q⟨¬𝑠 (p), replace⟩ = ATq, the second step in the BFS is to assign these
newly-found parents to the parent vector, with the masked assignment p⟨s(q)⟩ = q, via GrB_assign.
If A is held in a row-oriented manner, the implicit transpose ATq results in the push-style

algorithm, where outgoing edges from nodes in the current frontier q are searched. Now suppose
that we also have the explicit transpose, T = AT, also in row-oriented format. Then it is simple
to see that the expression v⟨¬s(p)⟩ = Tq computes the same thing as v⟨¬s(p)⟩ = ATq. However,
the matrix T is held in a manner in which the natural algorithm is to compute a sequence of dot-
products, one per entry not in the mask. This is identical to the pull-style algorithm of a direction
optimizing BFS.
The parent tree computed by the (min, secondi) semiring is overly restrictive. In a BFS tree,

any parent will do, but the (min, secondi) semiring picks the least numbered parent amongst all
candidate parents of a node. This requires more work than necessary. A better monoid than min is
based on the any operator, unique to SuiteSparse:GraphBLAS. The any operator is defined via a
nondeterministic choice, any(𝑥,𝑦) = 𝑥 or 𝑦, either one, at the discretion of the operator itself. The
any monoid has special properties, as described in Section 4.2, and is faster to compute than the
min monoid. The details for deciding push versus pull are not shown in Algorithm 1, but they are
the same heuristics as used by [4] and are simple to compute with a few calls to GraphBLAS.
Using its C API, the C version is not as succinct as the pseudo-code in Algorithm 1, but it is

likewise very simple, and its logic is the same. With GraphBLAS interfaces in Python, Julia, Octave,
or MATLAB, the algorithm is almost as simple as the pseudo-code in Algorithm 1. This example
illustrates the expressive power of the GraphBLAS approach. The remainder of this paper illustrates
how SuiteSparse:GraphBLAS obtains high performance when executing graph algorithms such as
this one.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:5

2.3 Key contributions of SuiteSparse:GraphBLAS
SuiteSparse:GraphBLAS introduces many unique and novel algorithms and their parallel imple-
mentations. These include new methods for masked matrix multiply, including an extension of
prior methods (Gustavson’s method [19] and Hashing [15, 29, 30]), by exploiting the mask, using
novel finite-state machines for better fine-grain parallelism (Section 4), and special-case monoids.
Its sparse matrix addition, element-wise multiply, and mask/accumulator phases use novel parallel
meta-algorithms to exploit the properties of each pair of vectors in the input matrices (Sections 5,
6, and 9). Many of the methods for submatrix extraction and assignment are also novel, particu-
larly when the mask and/or accumulator are present (Sections 7 and 8). The key algorithmic and
engineering issues encountered in creating these methods include:

• how to exploit the mask to reduce the time complexity,
• how to exploit the GraphBLAS non-blocking mode,
• creating multiple parallelization techniques for different variants of each problem,
• how to mix arbitrary data structures in a matrix operation (C⟨M⟩ ⊙= AB has four input
matrices, and each one can be in one of 16 formats),

• exploiting important special cases required for particular graph algorithms (such as when
the mask and output matrix are aliased), and

• handling the irregular parallelism inherent in sparse matrix computations.

3 DATA STRUCTURES FOR SUITESPARSE:GRAPHBLAS
All of the objects in the GraphBLAS API are opaque, which provides a significant opportunity for
optimizing the data structures and algorithms when implementing a parallel GraphBLAS library.
This section presents the design of core data structures in SuiteSparse:GraphBLAS and its impact
on the parallelization of the methods that operate on them.

3.1 Matrix and vector data structure
The internal data structure for the GrB_Matrix and GrB_Vector object has changed significantly
since the release of Algorithm 1000 [11], the sequential version of SuiteSparse:GraphBLAS (v2.3.3),
to exploit new parallel algorithms and to reduce memory usage.

The prior sequential version of SuiteSparse:GraphBLAS provided four different formats: compressed-
sparse column (standard CSC), compressed-sparse row (standard CSR), and hypersparse versions of
these two formats. The current parallel version (v7.1.2) provides 16 different formats: four sparsity
formats, listed below, where each can be held by row or by column, and each can exploit the
iso-value property, if applicable (see Section 3.2). SuiteSparse:GraphBLAS selects between these 16
formats automatically, but the user application can also provide hints.

• Compressed-sparse, or simply sparse: If held by column, an 𝑚-by-𝑛 matrix A with 𝑒

entries consists of an integer array A.p of size 𝑛 + 1, and two arrays of size 𝑒: A.i and A.x.
The row indices and values of the jth column are held in A.i[A.p[j]...A.p[j+1]-1] and
A.x[A.p[j]...A.p[j+1]-1], respectively. The total space is 𝑂 (𝑛 + 𝑒), or 𝑂 (𝑚 + 𝑒) if held
by row. A sparse matrix in this format can be viewed as a dense vector of sparse vectors.
MATLAB uses this format exclusively for its sparse matrices, held only by column [17].

• Hypersparse [6]: This format is like the conventional sparse format, except that the A.p
array itself is sparse. If A has 𝑘 non-empty columns and is held in hypersparse format by
column, then A.p has length 𝑘 + 1, and where typically 𝑘 ≪ 𝑛. To keep track of which vectors
are present, another array A.h of length 𝑘 is required, which is always kept in sorted order.
The memory required is 𝑂 (𝑘 + 𝑒) and since 𝑘 < 𝑒 , this is simply 𝑂 (𝑒). A hypersparse matrix
can be viewed as a sparse vector of sparse vectors.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Timothy A. Davis

• Bitmap: In this format, the numerical values A.x are held in a dense array of size𝑚 × 𝑛.
The sparsity structure is held in a boolean array A.b of size𝑚 × 𝑛. If A.b[i,j] is true, then
its value is A.x[i,j]; otherwise A.x[i,j] is undefined. The total space is 𝑂 (𝑚𝑛) which is
costly unless 𝑒 is also 𝑂 (𝑚𝑛). In this case, the bitmap format is very efficient.

• Full: All entries must be present in the matrix in this format, so the sparsity structure is not
held. Only the numerical array A.x is required, of size𝑚 × 𝑛.

The matrix type can be nearly anything: boolean, any built-in integer or unsigned integer, single
and double precision floating-point, and single and double complex types. In addition, the user
application can define its own data types. The only restriction is that the type has a fixed number
of bytes, and no constructor/destructor method is required to manage a single scalar of the type.
The GraphBLAS API allows for a non-blocking mode (the default mode) where work can be

left pending to be done later. ACM Algorithm 1000 (v2.3.3) used two kinds of pending work; ACM
Algorithm 10xx (v7.1.2) introduces another. Algorithm 1000 introduced the idea of zombies and
pending tuples, which still appear. A zombie is an entry in a sparse or hypersparse matrix that is
tagged for deletion, but not yet deleted, by setting its index 𝑖 to flip(𝑖), a where flip(𝑖) = −𝑖 − 2, is a
function that is its own inverse. Since their index can still be retrieved, zombies still allow binary
searches to be performed in a given sparse vector. A pending tuple is an entry that is yet to be
inserted into the sparse or hypersparse matrix. They are kept as a list of tuples (with their row
index, column index, and value), in order of their insertion, in addition to an operator to be used to
assemble duplicate entries. Duplicate pending tuples may appear. New to v7.1.2 is a lazy sort of the
vectors of a sparse or hypersparse matrix. If the matrix or vector is jumbled, then the indices inside
its vectors can appear out of order (but with no duplicates). Some algorithms produce jumbled
matrices naturally, and some do not care if their inputs are sorted or jumbled. If the sort is left
pending, sometimes a matrix can be left in jumbled form for its entire lifetime, saving time and
memory by avoiding the sort entirely. Bitmap and full matrices do not acquire zombies or pending
tuples, nor are they ever jumbled. Bitmap and full formats are typically not used for the adjacency
matrix of a graph, but they are very useful for vectors or tall-and-thin / short-and-fat matrices that
contain information about the properties of the nodes of a graph.
All matrices are held by row, by default, except for the @GrB Octave/MATLAB interface, where

they are held by column since that is the default for sparse matrices in those packages.
Most sparse matrix algorithms in the literature typically assume column-oriented storage, and

so the algorithms in this paper are described as if all matrices are held by column. Internally,
SuiteSparse:GraphBLAS manipulates its inputs so that its internal kernels are agnostic to the
storage format. For example, computing C = AB with A and B in column-oriented format is
identical to computing C = BA if both are in row-oriented format. The internal kernels do not
distinguish between these two cases. The same code is used for both.
All operations can operate on all sixteen matrix formats in any combination. Most of the time,

no format conversion is required, and the algorithms can either handle multiple input formats,
or multiple kernels are used. One major exception is the row/column orientation, where mixing
formats often requires a transpose of one input matrix.

3.2 Iso-valued matrices and vectors
Many graphs are unweighted, with no particular value associated with each edge. The GraphBLAS C
API does not allow for structure-only matrices, however. These two perspectives seem irreconcilable
at first glance, but there is a simple solution that saves time and memory when dealing with
unweighted graphs in GraphBLAS, with no change to the C API. Algorithm 10xx introduces
iso-valued matrices and vectors, where all entries in the sparsity structure have the same value.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:7

For an iso-valuedmatrix or vector (or just iso for short, from here on), the A.x array in all formats
shrinks to hold just a single value, the iso-value of the matrix or vector. For sparse, hypersparse, and
bitmap formats, the sparsity structure must still be held, so these still require 𝑂 (𝑛 + 𝑒), 𝑂 (𝑒), and
𝑂 (𝑚𝑛) memory, respectively. Full matrices are special. Since its sparsity structure is not represented,
an iso full matrix takes 𝑂 (1) memory, regardless of its dimension.

An iso full matrix is useful in conjunction with an operation that typically need not access all its
content. For example, if A is a 𝑛-by-𝑛 hypersparse matrix with 𝑛 = 260 with 𝑒 ≪ 𝑛 entries, the sum
of all rows of A can be computed as y = Axwhere x is an iso full vector of length 𝑛, or x=ones(n,1)
in MATLAB notation. Such a vector is impossible to create with a built-in MATLAB expression, but
x=GrB.ones(n,1) can easily be done in the Octave/MATLAB interface to SuiteSparse:GraphBLAS,
taking only a few hundred bytes to represent. MATLAB cannot represent the matrix A since it
would require 𝑂 (𝑛 + 𝑒) and 𝑛 is enormous, but GraphBLAS uses only 𝑂 (𝑒) space. MATLAB also
cannot represent the iso full vector x.
The iso property of the output matrix is exploited when the operation and its input matrices

imply the output must be iso. The GrB_*_build method also uses a post-processing step where the
matrix or vector is checked after it is constructed. A new GxB_*_build method is included where
the input values are given as a single scalar, and the output is always iso (duplicates are ignored).
Even when the output matrix C is not iso, the inputs of a GraphBLAS operation may still be iso.
Whenever the value of an entry 𝑎𝑖 𝑗 is needed, the single iso value of A is used in its place, resulting
in a substantial reduction in memory transfers. With this technique, all parallel methods described
in the next sections can handle and exploit iso input matrices.

3.3 Parallel matrix operations
SuiteSparse:GraphBLAS assumes an OpenMP shared-memory model of computing with a modest
number of computational cores (say less than O(1000)). The user application itself can be multi-
threaded, however, and GraphBLAS operations can be called in parallel, following the rules governed
by the GraphBLAS v2.0 C API. Any input matrices can be shared between multiple user threads, so
long as GrB_wait is used first, to ensure the work to compute them is finished.

The amount of parallelism to exploit and the size of the tasks are determined automatically. The
maximumnumber of threads SuiteSparse:GraphBLAS uses (𝑝max) is given by omp_get_max_threads,
but this can be reduced via the descriptor or by a global setting. This is essential for composing the
parallelism of GraphBLAS with the parallelism (if any) in the user application.
Suppose a parallel phase will do an amount of work equal to 𝑤 . SuiteSparse:GraphBLAS has

a chunk-size parameter ^, equal to 216 by default. The number of threads actually used for this
parallel region is 𝑝 = max(1,min(⌊𝑤/^⌋, 𝑝max)). Once 𝑝 is found, between 𝑝 and 256𝑝 tasks are
created (typically 8𝑝), and each task is constructed to perform the same amount of work. More
tasks are generated than threads, and a dynamic schedule is typically used. This allows the tasks to
vary in their computational time while maintaining a reasonable load balance. It is often difficult to
predict the time taken by each task even if they are given equal work, since most tasks perform
work with an irregular memory access, which is typical of sparse matrix computations, and the
time can be somewhat unpredictable. Given 𝑝 = nthreads threads and ntasks tasks, the following
is a very common paradigm in SuiteSparse:GraphBLAS:

// (1) construct ntasks tasks for nthreads threads
// (2) do the parallel computation using those threads, as:
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (int tid = 0 ; tid < ntasks ; tid++)
{

// do the work for task tid
}

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Timothy A. Davis

When the work for each task is very regular and the time taken by the tasks is predictable, a
static schedule is instead. Since these tasks are typically balanced, the parallel algorithms described
below have a typical time complexity of 𝑂 (𝑤/𝑝 + 𝑠), where 𝑂 (𝑤) is the time taken by a sequential
algorithm and where the setup and wrapup time for the parallel method is𝑂 (𝑠). When atomics are
used, this time complexity assumes each atomic operation takes 𝑂 (1) time, which is reasonable
since conflicts are uncommon. It also assumes that the hash operations described in Section 4 also
take 𝑂 (1) time, which is true in practice since hash collisions are rare.

The setup includes constructing the set of tasks, and the wrapup may involve a scalar reduction
from all of the tasks. This time 𝑠 is done sequentially in 𝑂 (𝑝), 𝑂 (𝑝 log𝑝), or 𝑂 (𝑝 log𝑘) time,
depending upon the algorithm, where the latter case is described in the next section. Most algorithms
are essentially fully parallel and reasonably work-efficient assuming that 𝑤 is the actual work
required. A few exceptions are noted, such as the dot-product based matrix multiply methods in
Section 4.

3.4 Parallel traversal of a single sparse or hypersparse matrix
Many algorithms described below must traverse multiple input matrices in parallel, and the division
of work into parallel tasks must be considered on a case-by-case basis. However, many other
algorithms traverse a just a single sparse or hypersparse matrix in parallel. In that case, the
following method is used. In the rest of this paper, this method is referred to as slicing a matrix.
Suppose the entries of a sparse or hypersparse A matrix must be traversed in parallel, with no

dependencies between the tasks (or with dependencies resolved via atomics). The matrix can be
very tall and thin, or even a single vector, so it is not sufficient to divide up the vectors of the sparse
matrix A. Instead, the entries in A are first divided uniformly into a set of independent tasks. These
entries may span partial vectors of A, so a binary search of A.p is used to determine the starting
and ending vectors of each partition, one per task.

Currently, this preprocessing step is done sequentially in 𝑂 (𝑝 log𝑘) time, where A.p has length
k+1 (where 𝑘 = 𝑛 if A is in compressed-sparse format, or 𝑘 ≪ 𝑛 if A is hypersparse). If 𝑝 were large
this step could easily be done in parallel. The current implementation of SuiteSparse:GraphBLAS
assumes 𝑝 is no more than about 𝑂 (1000), and thus doing this work in parallel is not worth
the overhead. This will be revised in the future for systems with many cores, particularly when
computing on the GPU, where the time would be 𝑂 (log𝑘) if each task does its own search.
This preprocessing step is used in many algorithms in SuiteSparse:GraphBLAS, and it allows a

sparse or hypersparse matrix of dimension𝑚-by-𝑛 with 𝑂 (𝑒) entries to be traversed in parallel in
𝑂 (𝑒/𝑝 + 𝑝 log𝑘) time by 𝑝 threads, where A.p has length k+1, regardless of𝑚 or 𝑛.

This parallel traversal allows both the row and column index of every entry to be known by the
task. Some methods only need the row index of each entry (if A is held by column), or conversely,
the column index if A is held by row. In that case, the entries of a sparse or hypersparse matrix A
can be easily divided into tasks without the need for a binary search, where the entire traversal of
A takes 𝑂 (𝑒/𝑝) time when using 𝑝 threads.

4 PARALLEL MATRIX MULTIPLY
The parallel matrix multiply (GrB_mxm), matrix-vector multiply (GrB_mxv), and vector-matrix multi-
ply (GrB_vxm) methods are key operations in GraphBLAS and are typically the most computationally
intensive within a given graph algorithm. An overview of the strategy and methods is given, fol-
lowed by a deep dive into a few selected kernels.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:9

4.1 Overview
GrB_mxm has a large set of cases to consider, even for a single semiring. It can operate on either
A or its transpose, and on either B or its transpose. In addition, all four matrices can be held in
any mix of sparsity formats (sparse, hypersparse, bitmap, or full, and either held by row or by
column). The mask may be present, and if so can be used in a valued-sense or structural sense,
and it may be complemented. Some methods can exploit the presence of the accumulator, if it
matches the semiring monoid. A GrB_Vector of length 𝑛 is held as an 𝑛-by-1 GrB_Matrix, so vector
computations are not described; they are identical to computations with 𝑛-by-1 matrices.
The first step taken by GrB_mxm is to reduce this large set of cases via a meta-algorithm that

transforms the problem into a canonical form that can be handled by one of four strategies. All
of these strategies are agnostic to the row/column orientation of their input/output matrices. For
simplicity, the remainder of this presentation assumes that all matrices are held by column.
The meta algorithm may need to transpose one or more of its 2 or 3 input matrices, or it may

replace C = AB with C = (BTAT)T via a heuristic rule that attempts to select the fastest method.
For example, when computing C = ATB it can be thousands of times faster to compute C = (BTA)T
instead, if A has many entries but C and B are small or have few entries.

The rules can be modified by user-provided hints. The default meta-rules are as follows, where
⟨♯M⟩ denotes either the mask ⟨M⟩, the complemented mask ⟨¬M⟩, or no mask:

• A saxpy-based strategy for C⟨♯M⟩ = AB, where the term saxpy is an acronym from the dense
BLAS function that computes 𝛼x + y (Section 4.3)

• A dot product-based strategy for C⟨♯M⟩ = ATB (Section 4.4).
• Row-scaling (C = DB) or column-scaling (C = AD) where D is diagonal.
• C⟨♯M⟩ = ABT requires an outer-product-based method, which SuiteSparse:GraphBLAS does
not have, and thus A or B are explicitly transposed first, and the saxpy or dot strategy is used.

• For C⟨♯M⟩ = (...)T, one of the above strategies is used to compute a temporary result, which
is then explicitly transposed to obtain C.

Each of these strategies then subdivides into many methods. These methods rely on host of parallel
algorithms, depending upon the sparsity formats of their input and output matrices, the presence
of the mask matrix, and how many threads are being used.
In a saxpy-based method, the basic computation is the addition of two sparse vectors, C(:,j)

and A(:,k), where the latter is multiplied by a scale factor, C(:,j) ⊕= A(:,k) ⊗ B(k,j), where
the semiring is (⊕, ⊗). This is typically identical to a “push” phase of a graph algorithm such as the
push/pull direction-optimizing breadth-first search [4]. In a dot product-based method, the basic
computation is the dot product of two vectors, C(i,j) = A(:,i)T B(:,j), for example. The dot
product typically corresponds to the “pull” phase of a direction-optimizing graph algorithm.
The next step is to determine the sparsity format of C and its iso property, and to select the

method. For the saxpy-based strategy, ifM is sparse or hypersparse, then C is hypersparse if B is
hypersparse, or sparse otherwise. For the dot-product-based strategy, C has the same format as the
mask M, if it is sparse or hypersparse and not complemented. Otherwise, C is computed as bitmap
or full.

The dot-product methods can require more work than is strictly required, and this is accounted
for in the meta-algorithm that selects saxpy versus dot. Let 𝑎 and 𝑏 denote the number of entries in
A(:,i) and B(:,j), respectively. If all of these entries are traversed when computing the sparse dot
product, the time is 𝑂 (𝑎 + 𝑏). However, the actual work required is to traverse the set intersection,
which is smaller than 𝑎 + 𝑏. In spite of this, the dot-product methods are very important to many
graph algorithms, such as the pull phase of a direction-optimizing breadth-first search.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Timothy A. Davis

4.2 Special case monoids
The algorithms described below are used for nearly all monoids and semirings, but some monoids
and semirings need special consideration, which greatly speed up many key graph algorithms.

SuiteSparse:GraphBLAS includes an unusual binary operator called the any operator. The com-
putation any(𝑥,𝑦) returns either 𝑥 , or 𝑦, solely at the discretion of the operator itself. The selection
is not randomized. Instead, SuiteSparse:GraphBLAS uses the freedom allowed by this operator to
return whichever result is fastest to compute. The any operator can be used to construct a monoid,
since it is both associative and commutative. That is, any(𝑥, any(𝑦, 𝑧)) = any(any(𝑥,𝑦), 𝑧), since in
both cases, SuiteSparse:GraphBLAS can return 𝑥 , 𝑦, or 𝑧, at its sole discretion.

The any monoid is useful in two aspects: (1) given a set of identical values to reduce, the result
is always the same, and thus the any monoid produces a predictable iso-valued result (the same
value that the min and max monoids would compute), and (2) there are cases where 𝑥 and 𝑦 differ,
but the application will be satisfied with either result of any(𝑥,𝑦). Computing the breadth-first
search tree is one such case: if a node found at one level has many possible parent nodes at the
prior level, any one of them can become a valid parent in a BFS tree. There are many valid BFS
trees. The any monoid selects any one of these nodes as the parent. SuiteSparse:GraphBLAS uses
this freedom to increase performance by relaxing the atomics in the fine-grain algorithms below,
and allowing for a benign race condition. Running the method twice can give a different, yet valid,
BFS tree. If a deterministic result is desired, the min or max monoids can be used instead. The GAP
Benchmark BFS by Scott Beamer [4] can also return the same non-deterministic result, by selecting
any valid parent. Indeed, the any monoid was inspired by Beamer’s BFS method, as way to express
this non-deterministic parent selection in the language of linear algebra over semirings, and is also
related to the non-deterministic pivot search in the D2 sparse LU factorization method [14].
GraphBLAS has a simple operator one(𝑥,𝑦) = 1, which is very useful in many graph problems.

Consider a (+, one) semiring. When combined with a dense vector x, the computation y = Ax
with this semiring gives the row degree of the matrix A, where 𝑦𝑖 is the number of entries in the
𝑖th row of A. Computing 𝑦𝑖 can be done in constant time, without the need of traversing all the
entries in the 𝑖th row, if A is stored by row. The column degree can be computed as y = ATx. As a
result, computing the row degree of a matrix held by row (in sparse or hypersparse format) can
be computed in time proportional to the non-empty rows of the matrix. This is asymptotically far
faster than the time for a conventional matrix-vector multiply, which takes at least Ω(𝑒) time for a
matrix A with 𝑒 entries.
Finally, with many monoids, the reduction can be terminated early, when the value they are

computing reaches a known terminal value, which is typically (but need not be) the annihilator
of the operator. With the logical OR monoid, for example, as soon as a true value is seen, the
computation can halt. These monoids are referred to in SuiteSparse:GraphBLAS as terminal, and
they includemin,max, logical OR, logical AND, bitwise OR, bitwise AND, times (×) for integers, and
the any monoid. The any monoid can terminate as soon as any value is found, which is yet another
powerful aspect of this unusual operator. The times monoid for floating-point is not considered
terminal, because its terminal value would not be zero, but floating-point NaN. That condition would
be unusual to find in either a graph algorithm or numerical computation, and testing for it would
slow down the typical case, so it is not exploited.

4.3 Sparse saxpy
The sparse saxpy-based methods are the most complex set of matrix multiplication methods in
SuiteSparse:GraphBLAS. They compute C = AB, C⟨M⟩ = AB, or C⟨¬M⟩ = AB for the cases when
the vectors of A and B lie in the same direction (both held by column or both by row). They are

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:11

described here in column-oriented form, but the same algorithms are used for the row-oriented
case, with A and B swapped. The methods divide into six phases, all of which are parallel.

The most novel aspects of the methods present here are (1) the incorporation of the mask, which
is essential to exploit during the computation of C⟨M⟩ = AB or C⟨¬M⟩ = AB to reduce the amount
of work and memory required, and (2) the use of finite-state machines for fine-grain parallelism.

These methods do not handle the accumulator operator (as in C ⊙= AB). Instead, these methods
compute a new matrix T that is initially empty. If the accumulator appears, this temporary matrix
is accumulated into the final output C matrix in a mask/accumulator step (Section 9).
Some of the methods are coarse-grained if sufficient independent tasks can be constructed for

the threads. Coarse grain tasks do not need to use atomics. Others are fine-grain, where tasks share
workspace and operate on the same set of results with concurrent operations resolved via atomic
operations and the use of novel finite-state machines.

When C is computed as sparse or hypersparse, a mix of up to four different kinds of tasks are used
for different parts of the output matrix. Any given matrix multiplication can use any combination
of the four kinds of tasks for a single matrix C, depending on the sparsity structure of A and B.

(1) coarse Gustavson: an extension of Gustavson’s algorithm [19], adapted to exploit the mask if
present.

(2) fine Gustavson: This method is similar to the coarse Gustavson task, except that a group of
threads cooperates via atomics to compute a single column of C, using a shared workspace,
and finite-state machines.

(3) coarse Hash: an extension of the hash-based method [15, 29, 30], extended to exploit the mask.
In a hash-based method, the Gustavson workspace of size 𝑛 is replaced with a hash table for
each output vector C(:,j), of size equal to the number of operations required to compute it,
rounded up to twice the nearest power of two.

(4) fine Hash: In this method, a group of threads cooperates, sharing a single hash table via
atomics and finite-state machines, to compute a single column of C. The method of [29, 30]
does not exploit the mask and does not use atomics; it is extended in this work.

When the mask M is bitmap or full, either all Hash tasks (fine/coarse) or all Gustavson tasks are
used. For the Hash case, a bitmap mask is not scattered into the hash tables but is used in place.
Otherwise, a heuristic is used to determine if a sparse or hypersparse mask should be discarded
(and applied later), in case the mask is too costly to exploit during the matrix multiply. The heuristic
discards the mask if the work to compute AB is less than 1% of the number of entries in M.
Coarse tasks are allocated to a single thread, and compute a contiguous range of columns,

C(:,j1:j2) = A*B(:,j1:j2) for a unique set of vectors j1:j2. Those vectors are not shared with
any other tasks. A fine task works with a team of other fine tasks to compute C(:,j) for a single
vector j. Each fine task in a team computes A*B(k1:k2,j) for a unique range k1:k2, and sums
its results into C(:,j) via atomic operations (using the monoid of the semiring) and finite-state
machines.
Each of these four kinds of tasks are subdivided into three variants, for C = AB when no mask

is present, C⟨M⟩ = AB with the maskM, and C⟨¬M⟩ = AB with a complemented maskM. This
results in a total of 12 different algorithms, each of which are subdivided into six parallel phases.
Most of these methods are novel, but what is presented here is a deep dive into two of them, both
with a non-complemented mask: C⟨M⟩ = AB with the coarse-grain Gustavson method and the
fine-grain Hash-based method. Fine-grain methods for a complemented mask are similar, but with
different transitions in the finite-state machine.

Fine tasks are used when there would otherwise be toomuchwork for a single task to compute the
single vector C(:,j). Fine tasks share all of their workspace with the team of fine tasks computing

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Timothy A. Davis

C(:,j). Coarse tasks are preferred since they require less synchronization, but fine tasks allow for
better parallelization when B has only a few vectors. If B consists of a single vector (for GrB_mxv if
A is in CSC format and not transposed, or for GrB_vxm if A is in CSR format and not transposed),
then the only way to get parallelism is via fine tasks. If a single thread is used for this case, a
single-vector coarse task is used.

4.3.1 Sparse saxpy, phase 0: work estimates and task creation. To select between the Hash
method or Gustavson’s method for each task, the hash table size is first found. The hash table size
(s) for a hash task depends on the maximum work required for any vector in that task (which is just
one vector for the fine tasks). It is set to twice the smallest power of 2 that is greater than the work
to compute that vector (plus the number of entries in M(:,j) for tasks that compute C⟨M⟩ = AB
or C⟨¬M⟩ = AB). This size ensures the results will fit in the hash table, and with ideally only a
modest number of collisions. If the hash table size exceeds a threshold (m/16 if C is m-by-n), then
Gustavson’s method is used instead, with a gather/scatter workspace of size m.
The workspace allocated depends on the type of task. Let s be the hash table size for the task,

and C is m-by-n and held by column, and where ctype refers to the datatype of C and also the type
of the monoid. Then the workspace is as follows:

• fine Hash task (shared): int64_t Hf[s] ; ctype Hx[s] ;
• coarse Gustavson task: int64_t Hf[m] ; ctype Hx[m] ;

The Hx array holds the numerical values of C(:,j), using Hx[i] for C(i,j) for the Gustavson
method, and Hx[hash(i)] for the hash-based methods, where hash(i) is the hash function used.
For fine Hash tasks, the finite state machine for entry hash(i) is held in the lowest 2 bits of
Hf[hash(i)], with additional space of 62 bits for an integer index. The coarse Gustavson tasks use
Hf[i] as a mark value for set union computations, as a single 64-bit integer.
Once the sparsity format and iso property of C is determined, the work analysis is performed,

which computes the work required to compute each vector C(:,j). The total work for the entire
matrix multiply is then subdivided into tasks, which can be an arbitrary mix of all four types
(fine/coarse × Gustavson/Hash). This step may also decide that the mask is too costly to apply
during the matrix multiplication. If so, the computation C = AB is computed without the mask,
and the mask is applied later. The workspaces are allocated for each task, and then each of the five
phases below are done completely in parallel, with a barrier between each phase.

4.3.2 Sparse saxpy, phase 1: symbolic analysis. In this phase, coarse tasks compute the number
of entries in each of their vectors, C(:,j1:j2). Fine tasks simply scatter the mask M into their
hash tables. This phase does not depend on the semiring.
The hash table for a team of fine tasks is the int64_t array Hf, of size s where s is a power of

two. A very simple hash function is used to index into this hash table (hash = mod(257*i,s)),
with linear probing if the hash location Hf[h] is occupied. Since s is a power of 2, the mod operation
is a bit-mask operation, and multiplying by 257 is computed as (i << 8) + i.
The 64-bit hash entry is packed with two terms: an index h (up to 62 bits) and the state for a

finite-state machine (f, which takes 2 bits), to support atomic access to each hash entry. An empty
hash position contains h=0 and f=0. Initially, if 𝑐𝑖 𝑗 and the mask entry𝑚𝑖 𝑗 are to be hashed into
Hf[hash] = (h,f), then it contains h=i+1 and f=1. Later on, the states f=2 and f=3 will be used
in different ways, depending on the algorithm.
In phase 1, coarse tasks compute the number of entries in each vector of C(:,j1:j2). Two

different methods are used in the innermost loop of a coarse task:
(1) If A(:,k) is sparse enough relative to M(:,j), then Algorithm 2 is used, taking 𝑂 (𝑎) time if

𝑎 is the number of entries in A(:,k).

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:13

ALGORITHM 2: Coarse Gustavson task, phase 1, for C⟨M⟩ = AB

mark = 0
for each column 𝑗 assigned to this task do

mark = mark + 2 // clear Hf, now all Hf(0:m-1) < mark
Cp(j) = 0 // # of entries in C(:,j)
for each entry present in M(:,j) do

Hf(i) = mark

for each entry 𝑏𝑘 𝑗 in B(:,j) do
for each entry 𝑎𝑖𝑘 in A(:,k) do

if Hf(i) == mark then
//𝑚𝑖 𝑗 is 1 and 𝑐𝑖 𝑗 is not yet seen
Hf(i) = mark+1 // 𝑐𝑖 𝑗 has now been seen
Cp(j) ++

(2) For all four kinds of tasks (fine/coarse × Gustavson/Hash), a push/pull optimization is
employed, which is a revised variant of Algorithm 2. If M(:,j) is much much sparser than
A(:,k), then traversing all of A(:,j) just to add few entries to C(:,j) is costly. So instead,
the mask vector M(:,j) is traversed, and for each entry, a binary search is performed to find
the entry A(i,k). If it appears, the same innermost if block is performed. This pull-style
optimization is not shown in Algorithm 2, but the change is simple. The inner loop that
traverses A(:,k) is replaced by a loop that traverses all entries𝑚𝑖 𝑗 in M(:,j), and then 𝑎𝑖𝑘
is found with a binary search. If ` and 𝑎 are the number of entries in M(:,j) and A(:,k),
this takes 𝑂 (` log𝑎) time, which is faster than the linear-time method if ` ≪ 𝑎.

4.3.3 Sparse saxpy, phase 2: symbolic/numeric work for fine tasks. Phase 2 is where the
fine-grain tasks do the bulk of their work, by computing the structure and values of C(:,j) in their
hash tables. Coarse tasks do nothing in this phase. There are seven different kinds of fine tasks
to consider in this phase: two methods (Gustavson/Hash), and the four kinds of mask (no mask,
mask bitmap or full for the Hash method, non-complemented sparse mask, and complemented
sparse mask). Only the fine Hash method with a non-complemented mask sparse or hypersparse
mask M is presented here. The fine Hash tasks use atomics and finite-state machines. All tasks in a
team computing C(:,j) share a single size-s hash table. These tasks can be computed over any
semiring, but to simplify the presentation, the (+,×) semiring is assumed.
Algorithm 3 is the fine-Hash task for phase 2 when the mask is present, sparse, and not com-

plemented. The state is f, which is the lower two bits from (h,f)= Hf[hash]. If (h,f) = (0,0),
then the hash entry is unlocked and unoccupied; 𝑐𝑖 𝑗 cannot appear because the mask will not
allow it, so this state will remain unchanged. A hash collision occurs if h is not equal to i+1. If
(h,f) = (i+1,1) then it is unlocked and occupied by𝑚𝑖 𝑗 = 1, 𝑐𝑖 𝑗 has not been seen, and Hx[hash]
is not initialized. If (h,f) = (i+1,2) then it is unlocked and occupied by𝑚𝑖 𝑗 = 1 and Hx[hash]
holds 𝑐𝑖 𝑗 . The finite-state machine is illustrated in Figure 1, with the following states:

• state 0:𝑚𝑖 𝑗 = 0, and thus 𝑐𝑖 𝑗 cannot be created. This state is permanent.
• state 1:𝑚𝑖 𝑗 = 1, and 𝑐𝑖 𝑗 can be created but it does not yet exist.
• state 2:𝑚𝑖 𝑗 = 1, and 𝑐𝑖 𝑗 has been created and initialized. The state is unlocked. If the monoid
can be implemented in an atomic update, this state does not change and all future updates
are performed atomically.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Timothy A. Davis

ALGORITHM 3: Fine Hash task, phase 2, for C⟨M⟩ = AB

for each entry 𝑏𝑘 𝑗 in B(k1:k2,j) do
for each entry 𝑎𝑖𝑘 in A(:,k) do

hash = (257𝑖) mod 𝑠 // first hash function for entry 𝑐𝑖 𝑗
while true do

hf = Hf(hash) // atomic read
if hf == (i+1,2) and monoid has an OpenMP atomic equivalent then

Hx(i) += 𝑎𝑖𝑘 × 𝑏𝑘 𝑗 // (state 2): atomic update of 𝑐𝑖 𝑗
break

if hf == (0,0) then
break // (state 0):𝑚𝑖 𝑗 =0, ignore 𝑐𝑖 𝑗

h = hf / 4
if h == i+1 then

// hash entry occupied by 𝑐𝑖 𝑗
repeat

hf = Hf(hash), Hf(hash) |= 3 // atomic swap and bitwise OR
until (hf & 3) ≠ 3
if hf == (i+1,1) then

Hx(hash) = 𝑎𝑖𝑘 × 𝑏𝑘 𝑗 // (1 → 3) : 𝑐𝑖 𝑗 is a new entry; atomic write
else if hf == (i+1,2) then

Hx(hash) += 𝑎𝑖𝑘 × 𝑏𝑘 𝑗 // (2 → 3) : atomic update of 𝑐𝑖 𝑗

Hf(hash) = (i+1,2) // (3 → 2): unlock the entry; atomic write
break

hash = (hash+1) mod s // linear probing if hash entry already occupied by another entry

Fig. 1. Finite state machine for C⟨M⟩ = AB for fine-grain tasks

• state 3:𝑚𝑖 𝑗 = 1, and the state is locked. The entry 𝑐𝑖 𝑗 has already been created, and can be
modified with a non-atomic monoid (if the monoid is user-defined, for example), but only by
the thread that owns the lock.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:15

If the mask is complemented, then a similar finite-state machine is used, where states 0 and 1 trade
places.

4.3.4 Sparse saxpy, phases 3 and 4: compute final column counts. In phase 3, fine tasks
examine their workspace (the hash table or Gustavson workspace) and compute the number of
entries they contain. Next, phase 4 constructs the column pointers C.p from the column counts,
via a single parallel cumulative sum, for all tasks.

4.3.5 Sparse saxpy, phase 5: symbolic/numeric phase for coarse tasks, gather for fine
tasks. Teams of fine tasks have already computed their assigned C(:,j) vector in their respective
workspaces; they now gather their results into the final location of C(:,j) in the output matrix C.
Coarse tasks perform their symbolic and numerical work in phase 5, shown in Algorithm 4.

ALGORITHM 4: Coarse Gustavson task, phase 5, for C⟨M⟩ = AB

mark = 0
for each column 𝑗 assigned to this task do

mark = mark + 2 // clear Hf, now all Hf(0:m-1) < mark
pC = Cp(j) // start position of C(:,j)
for each entry present in M(:,j) do

Hf(i) = mark

for each entry 𝑏𝑘 𝑗 in B(:,j) do
for each entry 𝑎𝑖𝑘 in A(:,k) do

if Hf(i) == mark then
//𝑚𝑖 𝑗 is 1 and 𝑐𝑖 𝑗 is not yet seen
Hf(i) = mark+1 // 𝑐𝑖 𝑗 has now been seen
Hx(i) = 𝑎𝑖𝑘 × 𝑏𝑘 𝑗 // initialize 𝑐𝑖 𝑗
Ci(pC++) = i

else if Hf(i) == mark + 1 then
Hx(i) + = 𝑎𝑖𝑘 × 𝑏𝑘 𝑗 // update 𝑐𝑖 𝑗

gather all of C(:,j) from the workspace

4.4 Sparse masked dot-product
The sparse masked dot-product method is very specialized, computing C⟨M⟩ = ATB when the
maskM is sparse or hypersparse, and not complemented. It is only used when the mask matrix is
present. For this case, the matrix C has the same sparsity structure as the mask M. In case the dot
product C(i,j)=A(:,i)'*B(:,j) of the two vectors A(:,i) and B(:,j) is empty, the resulting
entry 𝑐𝑖 𝑗 becomes a zombie, and is deleted later. The work divides cleanly into a set of coarse-grain
tasks, with no atomics required. Each task iterates over its assigned part of C and M, computing a
set of sparse dot products. Unlike the saxpy method, the dot products require the vectors of A and
B to be sorted on input. How the dot products are computed depends on the sparsity format of A
and B. Let 𝑎 and 𝑏 be the number of entries in A(:,i) and B(:,j), respectively. If both vectors are
sparse, a merge is performed, taking 𝑂 (𝑎 + 𝑏) time. If 𝑎 ≪ 𝑏, the vector A(:,i) is scanned and a
binary search is performed on B(:,j) instead, taking 𝑂 (𝑎 log𝑏) time. Additional methods exploit
the case when A and/or B are bitmap or full, which require no binary search.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Timothy A. Davis

5 PARALLEL ELEMENT-WISE ADD (SET UNION)
The element-wise sparse matrix addition C⟨♯M⟩ = A ⊕ B computes a matrix C whose sparsity
structure is the set union of A and B (or a subset of that structure if revised by the mask). A binary
operator is applied to entries in the intersection of A and B, while entries in one but not both input
matrices are copied to the output matrix unchanged except for possible typecasting.

The parallel sparse matrix addition in SuiteSparse:GraphBLAS is split into three parallel phases
when C is sparse or hypersparse (Methods 1 to 20 in the list below):

• Phase 0: The first phase computes the set of vectors in C, if it is hypersparse. This is the set
union of the vectors in A and B, or ifM is present, not complemented, and hypersparse, then
its vectors define the vectors in the hypersparse matrix C.

• Phase 1: The second phase splits C into parallel tasks, using a mixture of coarse and fine-grain
tasks. Coarse grain tasks compute a region C(:,j1:j2); while fine-grain tasks compute a
subvector, C(i1:i2,j), which is computed without the need for atomics. Each task then
counts the entries in its region, using one of 20 internal kernels, depending on the sparsity of
the individual input vectors and the presence of the mask, for each of the cases listed below.
This is followed by a cumulative sum.

• Phase 2: The third phase follows the same workflow as the second pass, but computes the
structure and values of the entries of C.

The first 10 methods listed below are used for C = A ⊕ B when no mask is present. Methods 11
and 13 are used for the special case when the mask is aliased with one or both of the two input
matrices. Let 𝑎, 𝑏, and ` denote the number of entries in A(:,j), B(:,j), and M(:,j), respectively.
If the mask is complemented, C = A ⊕ B is computed without the mask, and it is applied later.
(1) A(:,j) and B(:,j) dense: thus C(:,j) is dense. Phase 1 takes 𝑂 (1) time, while phase 2 is a

dense loop.
(2) A(:,j) dense, B(:,j) sparse: thus C(:,j) is dense. Phase 1 takes 𝑂 (1) time, while phase 2

iterates first over A(:,j), scattering the sparse vector into C(:,j).
(3) A(:,j) sparse, B(:,j) dense: thus C(:,j) is dense, the reverse of Method 2.
(4) A(:,j) is empty, and thus C(:,j)=B(:,j).
(5) B(:,j) is empty, and thus C(:,j)=A(:,j).
(6) the last entry in A(:,j) comes before the first entry in B(:,j), and thus C(:,j) is a simple

concatenation.
(7) the last entry in B(:,j) comes before the first A(:,j), the reverse of Method 6.
(8) A(:,j) is much denser than B(:,j), and thus A(:,j) is traversed to compute the size of the

set union (phase 1 only), with a binary search of B(:,j). This method (and Method 9) are
critical when the sparsity of A and B differ greatly.

(9) B(:,j) is much denser than A(:,j), the reverse of Method 8.
(10) A(:,j) and B(:,j) about the same sparsity, so a merge of the two sorted lists is used, taking

𝑂 (𝑎 + 𝑏) time. This is a very common case.
(11) A(:,j) is dense and B is aliased withM. Only M(:,j) is traversed in 𝑂 (`) time.
(12) B(:,j) is dense and A is aliased withM, the reverse of Method 11.
(13) A,M, B are all aliased to one another.
(14) C and M are sparse or hypersparse: the vector M(:,j) is traversed, and entries in A(:,j)

and B(:,j) are found with a binary search (if sparse) or 𝑂 (1) lookup (if dense). The time
taken is𝑂 (` (log𝑎 + log𝑏)). This method works well ifM is very sparse, and is far faster than
applying the mask later, since in this case, ` ≪ 𝑎 and ` ≪ 𝑏, and applying the mask later
could require Method 10 to be used instead, whose time is 𝑂 (𝑎 + 𝑏).

(15) A(:,j) and B(:,j) dense, M bitmap/full.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:17

(16) A(:,j) is empty, M bitmap/full: the vector B(:,j) is traversed, and entries are copied to
C(:,j) if permitted the the mask using an 𝑂 (1) lookup of the mask.

(17) B(:,j) is empty, M bitmap/full: the reverse of Method 16.
(18) the last entry in A(:,j) comes before the first entry in B(:,j), andM is bitmap/full: a simple

concatenation, where each entry is checked with an 𝑂 (1) lookup of the mask.
(19) the last entry of B(:,j) comes before the first entry in A(:,j), and M is bitmap/full: the

reverse of Method 19.
(20) A(:,j) and B(:,j) arbitrary, but with M bitmap/full. Like Method 10, except with an 𝑂 (1)

lookup of each entry in the mask. This is a very common case.

The matrix C is computed in bitmap form when computing C⟨M⟩ = A ⊕ B or C⟨¬M⟩ = A ⊕ B
when either A or B are bitmap or full, except in the case for C⟨M⟩ = A ⊕ B whenM is sparse or
hypersparse and not complemented. In that case, C is computed as either sparse or hypersparse,
using the 20 methods above. The bitmap method for A ⊕ B is not presented here.

6 PARALLEL ELEMENT-WISE MULTIPLY (SET INTERSECTION)
When using the times (×) operator, the element-wise multiply C = A ⊗ B (C=A.*B in MATLAB
notation) computes the Hadamard product, but in GraphBLAS any binary operator can be used
instead. The structure of C is the set intersection of A and B. The parallel element-wise multiply
first considers the 7 special cases in the list below. These are typically one-pass or two-pass methods.
If none of the first 7 cases hold, a general purpose method (Method 8) is used, which takes three
passes, just like many of the element-wise add techniques described in the prior Section 5.

(1) A and B are both full, with any type of mask: the element-wise multiply (set intersection) is
identical to the element-wise add, and so the latter is used (Section 5).

(2) A is sparse or hypersparse, and B is bitmap or full, and the mask is either not present,
sparse/hypersparse but applied later, or bitmap/full. The matrix C is sparse or hypersparse.
Three different methods are used, all of which slice the matrix A (Section 3.4).

(a) C = A ⊗ B with no mask, and B is bitmap. A first pass traverses A and does an𝑂 (1) lookup
into the bitmap of B to count the entries in each vector of C. A second pass of A constructs
the structure and values of C.

(b) C = A ⊗ B with no mask, and B is full. The structure of C is identical to A, so no symbolic
phase is necessary. A single pass of A is performed.

(c) C⟨M⟩ = A ⊗ B or C⟨¬M⟩ = A ⊗ B where B and M are bitmap or full. This method is
identical to Method 2(a) above, except that the maskM is also checked, using an𝑂 (1)-time
lookup.

(3) This method is the same as Method 2 above, with the roles of A and B reversed. That is, A is
bitmap or full and B is sparse or hypersparse. It also subdivides into the three sub-methods
listed above.

(4) C⟨M⟩ = A ⊗ B where A and B are both bitmap or full (with at least one of them bitmap),
and the mask is sparse or hypersparse and not complemented. The matrix C is sparse or
hypersparse, and its sparsity structure is a subset of M. The sparse matrix M is sliced and
traversed twice (Section 3.4). The first phase counts the entries in each vector of C, and the
second phase computes the structure and values of C.

(5) C = A ⊗ B where A and B are bitmap or full (with at least one of them bitmap) and no mask
is present. C is bitmap. A simple one-pass algorithm computes the structure of values of C.

(6) C⟨¬M⟩ = A ⊗ B where A and B are bitmap or full (with at least one of them bitmap) and the
mask is sparse and complemented. C is bitmap. The mask is sliced (Section 3.4), and scattered

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Timothy A. Davis

into the bitmap of C. The second phase computes the values and structure of C, checking the
bitmap of A and/or B in 𝑂 (1) time per entry.

(7) C⟨¬M⟩ = A ⊗ B where A and B are bitmap or full (with at least one of them bitmap) and
the mask bitmap or full (either complemented or not). C is bitmap. The method is nearly the
same as Method 5 above, except the mask is checked with an 𝑂 (1) lookup, per entry.

(8) Otherwise, a general purpose method is used, described below.
The general purpose element-wise multiply constructs the matrix C as sparse or hypersparse,

and the mask may be present (which may or may not be complemented). Three phases are used,
each of which are parallel.

• Phase 0: the vectors of C to compute are determined, and mappings are constructed from
the vectors of A, B, and M (if present), if any of them are hypersparse. The matrix C is
hypersparse if any of the three input matrices are hypersparse.

• Phase 1 constructs the parallel tasks for this phase and phase 2, using the same algorithm
described in Phase 1 of Section 5, the element-wise add. Phase 1 then counts the number of
entries in each vector of C and performs a cumulative sum.

• Phase 2 computes the structure and values of C. Each vector C(:,j) (or sub-vector, if it is
split across different parallel tasks), is computed using one of eight different methods, listed
below. The goal of each method is to compute the set intersection of A(:,j) and B(:,j),
also under control of the mask M(:,j) if present.
– (a) C(:,j) is empty if A(:,j) or B(:,j) are empty, or if their structures do not overlap
(an 𝑂 (1)-time check).

– (b) If no mask is present and A(:,j) has many more entries than B(:,j), then B(:,j) is
traversed, and a binary search is used to find the corresponding entry in A(:,j), taking
𝑂 (𝑏 log𝑎) time.

– (c) the same as (b) with A and B reversed.
– (d) If A(:,j) and B(:,j) have roughly the same number of entries, they are scanned
together, like the merge of a mergesort, taking 𝑂 (𝑎 + 𝑏) time.

– (e) M is sparse or hypersparse (and not complemented). The entries in M(:,j) are tra-
versed, and entries in A(:,j) and B(:,j) are found via binary searches. The time taken is
𝑂 (` (log𝑎 + log𝑏)). If M is complemented, it is not used during the element-wise multiply,
and applied later after C = A ⊗ B is computed.

– (f), (g), (h) M is bitmap or full. These are the same as methods (b), (c), and (d), except that
the mask is also checked, taking 𝑂 (1) per entry in the intersection of A(:,j) and B(:,j).

7 PARALLEL SUBMATRIX EXTRACTION
The GraphBLAS syntax C⟨M⟩ ⊙= A(I, J) extracts a submatrix of A, or A(I,J) in MATLAB notation,
where I and J are ordered lists of row and column indices. The mask and accumulator are currently
not exploited by SuiteSparse:GraphBLAS during the extraction of A(I, J) so only the parallel
algorithm for C = A(I, J) is described. As an extension the GraphBLAS C API Specification,
SuiteSparse:GraphBLAS allows for a strided range of indices to be provided, as the three integers
in the MATLAB notation lo:stride:hi. If A is sparse or hypersparse, the extraction splits into
four phases, each of which are parallel.

• Phase 0 finds the vectors that will appear in C, and determines the properties of I and J
(whether or not they are sorted or unsorted, if they have duplicates, their minimum and
maximum values, and whether or not they form a contiguous range of indices). If C will be
hypersparse, the C.h component is constructed in this phase (some of these vectors may turn
out to be empty), and their mapping to the vectors of A is found.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:19

• Phase 1 constructs a set of independent tasks for the subsequent phases, as a mix of both
coarse and fine-grain tasks. Coarse tasks operate on a set of one or more whole vectors of C,
while fine-grain tasks construct a subset of a single vector of C. No atomics are needed for
the fine-grain tasks. Assuming all matrices are held by column, this phase also constructs an
inverse of the list I, if needed.

• Phase 2 counts the number of entries that will appear in each vector of C. This phase uses
the same set of methods described below for phase 3, with some simplifications because only
the counts are required, not the actual indices or values of the entries in C. This is followed
by a cumulative sum so that all tasks will know where to place their entries in the output
matrix C.

• Phase 3 constructs the structure and values C=A(I,J). Each vector A(:,j) (or sub-vector
C(i1:i2,j)=A(I(i1:i2),j)) is traversed using one of twelve methods. Eleven of these 12
methods appear in [11], and are used here nearly unmodified, except the iso property is
handled in v7.1.2 of SuiteSparse:GraphBLAS. The 12th method handles the special case where
I has the form hi:(-1):lo, which did not appear in v2.1.3.

8 PARALLEL SUBMATRIX ASSIGNMENT
Submatrix assignment, C⟨M⟩(I, J) ⊙= A is a very complex operation because of the many possible
parameters. Minor variations in the parameters have a large impact on the optimal algorithm to
implement the assignment, and the parallelization of each algorithm is often different. Some of the
key parameters that affect this method include:

• The sparsity format of the input/output matrix, C. Modifying a sparse or hypersparse matrix
is entirely different than modifying a bitmap or full matrix.

• The mask matrix M can be present or not, and if present, it can be complemented. It may be
used in a structural sense or valued sense. Each of these variations leads to entirely different
algorithms required. Other special cases can occur, such as when the mask is C itself.

• The assignment may affect the entire matrix, as C⟨M⟩ = A, or it may affect a submatrix, if I
and J are present.

• The accumulator operator can be present or not. If present, it means that entries in C cannot
be deleted by the assignment.

• The right-hand side can be a matrix A, of size |I|-by-|J|, or it can be a scalar. Scalar assignment
is very different, as it implicitly expands into a dense matrix of the desired size.

• The replace descriptor changes how entries in C are modified if not written to by the assign-
ment. If set, an entry 𝑐𝑖 𝑗 is deleted unless it is modified by the assignment. This is written as
C⟨M, replace⟩. The replace option can be true or false, and it has a subtle interplay on how it
affects the assignment, particularly if the indices I and I are present, and if the mask M is
present. It takes a full page table to describe all the variations; refer to the User Guide for
details.

• The parallelization of all these variants can vary widely, but fortunately many share similar
algorithmic and data access patterns, and can share parallelization techniques.

In ACM Algorithm 1000 (v2.3.5 SuiteSparse:GraphBLAS), its implementation required nearly
4,000 lines of code [11]. In v7.1.2, this has expanded by a factor of 3, not merely because of parallelism.
The scope of these different methods is too broad to fully describe here, so instead an overview is
given, along with a categorization of how the methods are parallelized.

For many of the methods, the assignment is preceded by a symbolic extraction, where the matrix
S = C(I, J) is constructed. The values in S are not the values of the entries in C, but their locations

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Timothy A. Davis

in the data structure for C. This process is described in [11], except that S is constructed in parallel
using all the methods described in Section 7.
In the GraphBLAS C API Specification, the matrix C and its maskM have the same size. Suite-

Sparse:GraphBLAS adds GxB_subassign, whereM has the size of the submatrix C(I,J), written
as C(I, J)⟨M⟩ ⊙= A. The GrB_assign, written as C⟨M⟩(I, J) ⊙= A, is translated into the equivalent
GxB_subassign and so only the latter is described here.

The methods when C is sparse or hypersparse divide into 10 different categories, depending on
how they are parallelized, listed below. The notation C⟨M⟩ denotes either a valued or structural
mask, whereas C⟨s(M)⟩ denotes a purely structural mask.

(1) Parallel traversal of M: The matrixM is sliced (Section 3.4).
• C(:, :)⟨s(M)⟩ = A where C is initially empty and A is full.

(2) Parallel traversal of all entries in the Cartesian product I × J. All of these methods
construct the matrix S.
• C(I, J) = 𝜎

• C(I, J) ⊙= 𝜎

• C(I, J)⟨¬M⟩ = 𝜎

• C(I, J)⟨¬M⟩ ⊙= 𝜎

• C(I, J)⟨¬M, replace⟩ = 𝜎

• C(I, J)⟨¬M, replace⟩ ⊙= 𝜎

(3) Element-wise add of A + S: These methods construct the matrix S, and must traverse all
entries that would appear in the element-wise addition of A+ S. This is not computed, but the
same algorithms used in Section 5 are used to construct the parallel tasks for these methods.
• C(I, J) = A. This is identical to C(I,J)=A in MATLAB, except that SuiteSparse:GraphBLAS
can be 1000x faster than MATLAB (see Section 10.2).

• C(I, J) ⊙= A
• C(I, J)⟨M⟩ = A when A is sparser than M, or if either are bitmap (see Method (5) when
this condition does not hold). This is akin to C(M)=A(M) in MATLAB, except that Suite-
Sparse:GraphBLAS can be 248,000x faster than MATLAB.

• C(I, J)⟨M⟩ ⊙= A where bothM and A are bitmap (see Method (8) when this condition does
not hold).

• C(I, J)⟨M, replace⟩ = A
• C(I, J)⟨M, replace⟩ ⊙= A
• C(I, J)⟨¬M⟩ = A
• C(I, J)⟨¬M⟩ ⊙= A
• C(I, J)⟨¬M, replace⟩ = A
• C(I, J)⟨¬M, replace⟩ ⊙= A

(4) Element-wise add ofM + S: These methods construct the matrix S, and must traverse all
entries that would appear in the element-wise addition of M + S. The term M + S itself is not
computed, but the same parallel techniques of Section 5 are used. IfM is bitmap or full, all
entries in the Cartesian product I × J are traversed.
• C(I, J)⟨M, replace⟩ = 𝜎

• C(I, J)⟨M, replace⟩ ⊙= 𝜎

(5) Fine/Coarse partitioning of M: the matrix M is split into a set of fine and coarse tasks,
where a coarse task operates on a set of whole vectors of M, and a fine task operates on a
subset of a single vector of M.
• C(I, J)⟨M⟩ = 𝜎

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:21

• C(I, J)⟨M⟩ = A (see also Method (3) above). This assignment has two methods that can be
used to implement it. This method is used whenM is sparser than A. This akin to logical
indexing in MATLAB (C(M)=A(M)), except that SuiteSparse:GraphBLAS can be 248,000x
faster than MATLAB (see Section 10.2).

• C(I, J)⟨M⟩ ⊙= 𝜎

(6) Simple copy: the matrixM or A is copied into C
• C(:, :)⟨s(M)⟩ = 𝜎 where the structure ofM is copied into C, and C becomes iso-valued. The
equivalent in MATLAB would be C=s*spones(M), except that MATLAB does not have a
way to represent iso-valued matrices.

• C(:, :) = A
(7) Constant time: these methods take 𝑂 (1) time and thus are not parallelized. The matrix C

becomes iso-valued.
• C(:, :)⟨s(C)⟩ = 𝜎 where C and the mask are aliased to each other. This is analogous to but
far faster than C=spones(C) in MATLAB.

• C(:, :) = 𝜎 where C becomes an iso full matrix. This takes 𝑂 (1) time and memory, and is
like C=s*ones(m,n), except that the latter takes 𝑂 (𝑚𝑛) time and memory in MATLAB.

(8) Element-wise multiply of A ⊗ M: This method is uniquely handled with its own paral-
lelization technique. The matricesM and A are not bitmap. The matrix S is not constructed.
The parallelization is the same as the element-wise multiplication of A ⊗ M and thus the
methods described in Section 6 are used.
• C(I, J)⟨M⟩ ⊙= A

When C is full (and one case when it is either bitmap or full), three parallel methods are used for
five different kinds of assignments:
(1) simple: all entries in C are modified with a simple parallel loop.

• C(:, :) ⊙= 𝜎 where C is full.
(2) parallel traversal of A: The matrix A is sliced (Section 3.4).

• C(:, :)⟨A⟩ = A where C is bitmap or full.
• C(:, :) ⊙= A where C is full.

(3) parallel traversal of M: The matrixM is sliced (Section 3.4).
• C(:, :)⟨M⟩ = 𝜎 where C is full.

Finally, 16 different methods are used when C is bitmap, or becomes so because of the assignment.
A parallel traversal of the bitmap of C is simple and not described here in detail. In some of these
methods, the sparse matrices A or M are sliced (Section 3.4), and used to assign into the bitmap of
C. Other methods traverse the Cartesian product of I × J in the bitmap of C.

9 PARALLEL MASK/ACCUMULATOR PHASE
Finally, all of the GraphBLAS operations described so far compute C⟨M⟩ ⊙= Z for some computed
resultZ, followed by the assignment intoC via an optional maskM and accumulator operator (which
can be any binary operator). Many operations exploit the mask themselves, to reduce the time and
memory to compute Z, but only the GrB_assign and GxB_subassign operations fully implement
the entire mask/accumulator step themselves. For all of the others, a final mask/accumulator step
is performed, described here.

Let C denote the matrix on input to this step, and let R denote the final result. Let T denote the
intermediate result from another operation. If the accumulator operator is present, Z = C ⊕ T is
computed via the element-wise add (Section 5); otherwise, Z is the same as T.
The next step can be written as the (implicit) copy R = C, followed by R⟨M⟩ = Z, which is the

assignment via the mask. The mask may be complemented, and the replace option must also be

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Timothy A. Davis

problem: 𝑁 = 100 𝐶 = 𝐴2 𝐶 = 𝐴4 𝐶 = 𝐴8

work: 0.016 Gflop work: 0.188 Gflop work: 2.466 Gflop
threads time speedup time speedup time speedup
1 0.043 1.0 0.297 1.0 3.087 1.0
8 0.006 7.2 0.049 6.1 0.436 7.1
20 0.007 6.1 0.023 12.9 0.194 15.9
40 0.007 6.1 0.022 13.5 0.171 18.1
problem: 𝑁 = 400 𝐶 = 𝐴2 𝐶 = 𝐴4 𝐶 = 𝐴8

work: 0.264 Gflop work: 3.054 Gflop work: 41.168 Gflop
threads time speedup time speedup time speedup
1 0.553 1.0 4.900 1.0 52.590 1.0
8 0.099 5.6 0.669 7.3 6.862 7.7
20 0.071 7.8 0.356 13.8 2.921 18.0
40 0.054 10.2 0.296 16.6 2.728 19.3
problem: 𝑁 = 1500 𝐶 = 𝐴2 𝐶 = 𝐴4 𝐶 = 𝐴8

work: 3.716 Gflop work: 43.112 Gflop work: 584.862 Gflop
threads time speedup time speedup time speedup
1 7.861 1.0 68.489 1.0 758.972 1.0
8 1.236 6.4 9.422 7.3 97.139 7.8
20 0.819 9.6 4.344 15.8 41.436 18.3
40 0.650 12.1 4.035 17.0 38.540 19.7

Table 2. Wathen matrix results: time in seconds, work in billions of floating point operations (each multiply-
add pair counted as two flops)

handled. The operation is similar to both R = C ⊙ Z via the element-wise add, and R = C ⊗ Z via
the element-wise multiply, depending on the value of the mask.

As a result, the first phase is identical to the Phase 0 of the element-wise add, which determines
the vectors in R. The parallelization in Phase 1 is also identical. The remainder of the method is
much like the element-wise add of C ⊕ Z, except for how the cases are during the merge of the two
vectors C(:,j) and Z(:,j), which is modified by the mask.

10 PERFORMANCE
The performance results below highlight the parallel scaling of GrB_mxm (Section 10.1), and provide
comparisons with MATLAB (Section 10.2) and the Intel MKL sparse library (Section 10.3). Unless
otherwise stated, all results in this section were obtained on an NVIDIA DGX Station (Intel Xeon
CPU E5-2698 v4 @ 2.20GHz, a single socket system with 20 hardware cores, 40 threads in OpenMP).
The gcc compiler (11.2.0 -O3) was used with the GNU OpenMP library, except for the comparison
with the Intel MKL sparse library, where the icx compiler and the Intel OpenMP library were used.
Hyperthreading was left enabled, which is the default.

10.1 Matrix multiply with a regular mesh
This section reports the performance obtained by GrB_mxm to compute C = A2, C = A4, and
C = A8, in the (+,×) semiring, using repeated squaring via three matrix-matrix multiplica-
tions. The A matrix arises from the finite-element discretization of an 𝑁 -by-𝑁 2D mesh [36],
or A=gallery('wathen',N,N) in MATLAB. Table 2 lists the time for a range of threads and the
parallel speedup on three Wathen matrices. The work for each of the nine problems is shown (×109),
where each multiply-add pair is counted as two flops. As the problem size increases, GrB_mxm
obtains nearly linear speedup up to the number of hardware cores, with a peak performance of
15.2 Gflop/sec on the largest problem.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:23

computation MATLAB SuiteSparse speedup
(seconds) (seconds)

y=S*x 22.80 2.40 9.49
y=x*S 16.16 1.16 13.92
C=S*F 30.61 9.71 3.15
C=F*S 26.40 1.52 17.32
C=S' 224.73 22.69 9.91
C=S+B 15.56 1.51 10.31
C=S(p,q) 95.62 15.95 6.00

Table 3. SuiteSparse vs MATLAB R2021a with the GAP-Twitter matrix

10.2 GraphBLAS in MATLAB
SuiteSparse:GraphBLAS has its own interface to Octave and MATLAB, where it provides access to
all of the features of GraphBLAS, such as GrB.mxm for the masked matrix multiply. It also provides
overloads for all MATLAB operators and 167 built-in MATLAB functions, so that C=A*B, C(I,J)=A,
etc., can all be written in MATLAB syntax and yet use GraphBLAS matrices (as @GrB objects in
MATLAB). Matrix multiply is up to 30x faster in GraphBLAS on a 20-core Intel Xeon, as compared
with C=A*B in MATLAB R2020b and earlier (this author wrote both methods). The results in this
section use 20 threads in the @GrB interface in MATLAB, since MATLAB turns off hyperthreading
by default. SuiteSparse:GraphBLAS nearly always benefits from hyperthreading, however.

An older parallel version of SuiteSparse:GraphBLAS (v3.3.3) is built into MATLAB R2021a for its
sparse matrix multiply, but the current version (v7.1.2) is faster still.
Other methods in MATLAB do not yet use GraphBLAS, and thus SuiteSparse:GraphBLAS can

be significantly faster than built-in methods in MATLAB. For example, sparse matrix assignment,
C(I,J)=A can be over 1,000x faster: for a matrix C of size 25 million by 25 million, with 36 million
entries, and a matrix A of size 5000 by 5000 with 50,000 entries, C(I,J)=A takes 270.5 seconds with
MATLAB sparse matrices, but only 0.26 seconds using @GrB sparse matrices.

Logical indexing for sparse matrices is much faster with @GrB matrices as compared to MATLAB,
which is C(M)=A(M) in MATLAB syntax, and the same syntax with using @GrB sparse matrix objects.
This is similar to the GraphBLAS notation C⟨M⟩ = A, a masked assignment. In GraphBLAS, the
statement C(M)=A(M) takes 0.4 seconds on a Dell laptop (a 4-core Intel Core i7), if C is 4.2 million
by 4.2 million with 42 million entries, andM and A(M) have 4.2 million entries, using all 4 cores.
In MATLAB R2021a, the same statement, with the same syntax, takes 28 hours using MATLAB
sparse matrices, using a single core. GraphBLAS provides a speedup of nearly 248,000x for this
computation, most of which is due to the algorithm, not to parallelism. Given enough time to run
MATLAB, problems where SuiteSparse:GraphBLAS would be 1,000,000x faster than MATLAB can
be easily constructed.
Table 3 shows the run time of MATLAB 2021a and SuiteSparse:GraphBLAS for a large matrix:

the GAP-Twitter matrix, of dimension 𝑛 = 61.6 million with about 1.5 billion entries [12]. In the
table, S is the Twitter matrix, x is a dense row or column vector, F is a full matrix of size 𝑛-by-4 or
4-by-𝑛, B is a random sparse matrix with 150 million entries, and p and q are random permutation
vectors. For these experiments, SuiteSparse:GraphBLAS uses the identical MATLAB syntax, just
with GraphBLAS matrices instead of MATLAB built-in matrices.

For the Wathen results in Section 10.1, v7.1.2 is about twice as fast as the v3.3.3 that appears in
MATLAB R2021a. The largest problem (𝑁 = 1500) takes 107.1 seconds to compute A^8 with the
built-in v3.3.3 in the third matrix-matrix multiply, but only 48.4 seconds when using @GrB objects
with v7.1.2, using the same syntax (both results with 20 threads).

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Timothy A. Davis

computation format MKL method MKL time (sec) SuiteSparse speedup
1st 2nd time (sec) 1st 2nd

y+=S*x S by row mkl_sparse_d_mv 2.54 1.27 1.21 2.10 1.05
y+=S*x S by col mkl_sparse_d_mv 7.22 7.22 1.98 3.65 3.65
C+=S*F S by row, F by row mkl_sparse_d_mm 2.95 1.90 1.98 1.49 .96
C+=S*F S by row, F by col mkl_sparse_d_mm 6.12 4.99 1.48 4.13 3.37
C+=S*F S by col, F by row mkl_sparse_d_mm 28.82 28.82 13.78 2.09 2.09
C+=S*F S by col, F by col mkl_sparse_d_mm 78.82 5.17 9.38 8.40 .55
C=S+B S by row mkl_sparse_d_add 30.77 30.77 1.44 21.37 21.37
C=S'+B S by row mkl_sparse_d_add 102.09 27.30 16.29 6.26 1.67
C=S' S by row mkl_sparse_convert_csr 77.27 77.27 14.80 5.22 5.22

Table 4. SuiteSparse vs MKL 2022 with the GAP-Twitter matrix

10.3 SuiteSparse:GraphBLAS versus Intel MKL sparse
SuiteSparse:GraphBLAS obtains very competitive performance as compared to the Intel MKL
sparse library. This benchmark uses the same Twitter matrix as above, and compares Suite-
Sparse:GraphBLAS compiled with icx and using the latest MKL library (2022.0.0) and the rec-
ommended Intel OpenMP libraries, using its 64-bit interface (to match the 64-bit indices used by
GraphBLAS). The MKL also has an interface with 32-bit indices, which is faster but which cannot
be used for the largest problems.
Many of the MKL functions have an optimization phase that is used in a first call with a given

matrix. In this phase, the input matrices are analyzed, and a transpose is made (and kept) if needed.
Thus, the first run of MKL can take more time than the second. SuiteSparse:GraphBLAS saves no
such state. In Table 4, the two MKL runs are called 1st and 2nd. SuiteSparse:GraphBLAS and the
MKL are both parallel, and both use their default number of threads, and the resulting timing when
using all cores is shown in the table. SuiteSparse is typically faster, except for two results in bold.

For the computation C=S'+B, the MKL library transposes S on the first trial, as T=S', and saves
the transpose inside the MKL sparse matrix S. It then computes C=T+B with the saved transpose on
the 2nd trial. SuiteSparse:GraphBLAS performs the transpose each time; in other words, computing
both the transpose and add with GraphBLAS is faster than computing just the add with MKL.
The computation y+=S*x in SuiteSparse:GraphBLAS when S is held by column relies on the

finite-state machine method in a fine-grain Gustavson method. SuiteSparse:GraphBLAS is 3.65x
faster than the best Intel MKL sparse method in this case. For a closely related problem, y=S*x in
SuiteSparse:GraphBLAS is 9.49x faster than MATLAB (see Table 3).

MKL is significantly faster in only one case, C+=S*F where both matrices are held by column. It
transposes S on the first trial, to create a copy held by row, and then uses it in the subsequent trial
(5.17 seconds). Note this time is about the same as the run time when S starts out held by row, when
GraphBLAS takes just 1.48 seconds. SuiteSparse:GraphBLAS cannot perform this optimization,
because the C API Specification requires input matrices to be read-only so that they can be shared
between user threads. LAGraph can hold a copy of the transpose in its graph data structure, so this
optimization can be done at the LAGraph level [1, 27, 35].

10.4 LAGraph and the GAP benchmark
Performance results of individual GraphBLAS operations are described in the previous sections, but
it is essential to consider how all of these methods can be combined into a graph algorithm, and to
illustrate the resulting parallel performance of the graph algorithm. The GAP Benchmark specifies
six different graph algorithms, to be benchmarked on five different matrices [4]. The reference

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:25

graph nodes entries in A kind
Kron 134,217,726 4,223,264,644 undirected
Urand 134,217,728 4,294,966,740 undirected
Twitter 61,578,415 1,468,364,884 directed
Web 50,636,151 1,930,292,948 directed
Road 23,947,347 57,708,624 directed

Table 5. Benchmark matrices

Algorithm : graph, with run times in seconds
package Kron Urand Twitter Web Road
BC : GAP 31.52 46.36 10.82 3.01 1.50
BC : SS 24.06 33.11 9.18 6.82 33.29
BFS : GAP .31 .58 .22 .34 .25
BFS : SS .55 1.27 .40 .75 3.15
PR : GAP 19.81 25.29 15.16 5.13 1.01
PR : SS 21.72 27.53 17.07 9.18 1.72
CC : GAP .53 1.66 .23 .22 .05
CC : SS 2.93 3.76 1.43 2.09 .77
SSSP : GAP 4.91 7.23 2.02 .81 .21
SSSP :SS 15.97 25.36 7.50 8.18 30.80
TC : GAP 374.08 21.82 79.58 22.18 .03
TC : SS 865.43 33.84 225.06 32.36 .26

Table 6. Performance results

codes are highly optimized stand-alone C++ codes, parallelized using OpenMP. These provide an
important reference point with which to compare with SuiteSparse:GraphBLAS.

SuiteSparse:GraphBLAS does not have any of these algorithms, however. Instead, the LAGraph
effort has been initiated to create graph algorithms implemented using the GraphBLAS kernels
[1, 27, 35]. LAGraph is not yet stable as a v1.0 release, but it includes robust implementations of
all of the GAP Benchmarks. The following results were obtained with a draft version of LAGraph
(v0.9.29), along with SuiteSparse:GraphBLAS v7.1.2.

The six algorithms in the benchmark are: (1) breadth-first search, to construct the BFS tree [39],
(2) betweenness-centrality, (3) pagerank, (4) connected components [42], (5) single-source shortest
path [32], and (6) triangle counting [3, 37]. The five graphs are shown in Table 5. Table 6 reports
the parallel performance results of the GAP Benchmark and LAGraph+SuiteSparse:GraphBLAS.

GraphBLAS is faster than the GAP benchmark for the largest problems for betweenness-centrality.
The reason for this is the simplicity of writing the push/pull optimization in GraphBLAS; all that is
required is to multiply by the transpose of the matrix, much like the breadth-first search described
in Section 2. Push/pull optimization is not implemented in Beamer’s BC benchmark algorithm,
where it would be more difficult to write without the support of a library such as GraphBLAS. The
BC algorithm in LAGraph is extremely simple as compared to the GAP Benchmark method, yet it
is significantly faster for the largest problems.
GraphBLAS is somewhat slower that the GAP Benchmark on the breadth-first search. Both

exploit the same parallel strategy and both rely on push/pull optimization. GraphBLAS is about 1.5x
to 2x slower, and the difference can be attributed to two factors. Beamer’s BFS fuses together the
matrix-vector multiply and the assignment, which is not done in LAGraph+SuiteSparse:GraphBLAS.
The GraphBLAS C API allows for this, but it is not yet implemented. In addition, all of the integers
in the GAP Benchmark code are 32-bit, while GraphBLAS uses 64-bit integers for its matrix indices.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Timothy A. Davis

The maximum number entries in the benchmark matrices is almost exactly 232. Any larger, and the
GAP Benchmark codes would need to switch to 64-bit indices instead. In this sense, it is the GAP
Benchmark code that would need to be revised for larger problems, which certainly arise in practice.
Some of the problems that GraphBLAS has solved in practice are much larger than these problems
[26], or have extreme dimensions, and so 64-bit indices are essential. SuiteSparse:GraphBLAS
supports matrices with dimensions up to 260, which can be done even on tiny in-network routers
[21]; this application could make use of matrices as large as 2128 if they were supported.
Triangle counting is about 3x faster in the GAP Benchmark. GraphBLAS computes the result

as an entire matrix, using the masked dot-product method described in Section 4.4, and then
reduces this result to a single scalar. The GAP Benchmark can fuse these two operations, and never
constructs the matrix, which is faster. However, in real applications, the triangle count itself is not
as important as operations on those triangles, such as the K-truss algorithm, Burkhardt’s recent
triangle centrality metric [9], or applying a survey operator to the triangles [33]. In this case, the
matrix may be needed anyway.
The GraphBLAS C API allows the implementation to fuse together calls to GraphBLAS, via

its non-blocking mode, but currently SuiteSparse:GraphBLAS only uses the non-blocking mode
to exploit lazy modifications (zombies, pending tuples, and jumbled matrices). Kernel fusion for
SuiteSparse:GraphBLAS will be considered in the future (Section 12).

The performance for PageRank is almost identical between the two methods. For the other two
graph algorithms, the GAP Benchmark methods are significantly faster in most cases, but even
here, most of the results are not worse than 5x for the largest graphs (except for the Road graph,
for which GraphBLAS is very slow). This must be balanced against the ease of writing these graph
algorithms in the first place, however.
SuiteSparse:GraphBLAS is slow for the Road graph for many problems, mainly because it is a

relatively small graph with a high diameter, and thus there is very little scope for parallelism in each
call to GraphBLAS. Kernel fusion becomes very important for this case, but SuiteSparse:GraphBLAS
does not yet implement this. The overhead of each individual call to GraphBLAS starts to become a
significant factor in the computation.

Overall, these results show that the parallel implementation of SuiteSparse:GraphBLAS provides
competitive performance as compared with highly-tuned, specialized graph kernels, which only
experts can write. By contrast, the ease of use of the GraphBLAS C API, and its interfaces in Python,
Julia, Octave, and MATLAB, allow it to be easily employed by any data scientist to write their own
graph algorithms.

11 RELATEDWORK
SuiteSparse:GraphBLAS is the only complete implementation of the v2.0 GraphBLAS C API Speci-
fication [5, 8]. Other packages implement portions of GraphBLAS, or are based on similar ideas.
These include: the GPI package by IBM [16] (a full implementation of the v1.3 C API Speci-
fication), CombBLAS (https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/ [7]), Graphulo
(http://graphulo.mit.edu/ [20]), D4M (http://d4m.mit.edu/ [24]), GraphPad [2, 34] Gunrock (https:
//github.com/gunrock/gunrock-grb, [38]), the GraphBLAS Template Library (Carnegie Mellon
Univ., Indiana Univ., and PNNL) (https://github.com/cmu-sei/gbtl), ALP/GraphBLAS (C++) [41],
GraphBLAST [40], and an implementation by Lucata (https://lucata.com).
In work done independently of the work reported here, Buluç et al., [28] have developed four

novel parallel algorithms for the masked matrix-matrix multiply, C⟨M⟩ = AB and C⟨¬M⟩ = AB.
These methods include a hash-based method similar to the masked coarse Hash method described
in Section 4.3, and a masked sparse accumulator (MSA) method, similar to the coarse Gustavson
method in Section 4.3. Buluç et al. do not consider the following features of the masked matrix

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/
http://graphulo.mit.edu/
http://d4m.mit.edu/
https://github.com/gunrock/gunrock-grb
https://github.com/gunrock/gunrock-grb
https://github.com/cmu-sei/gbtl
https://lucata.com

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:27

multiplication that appear in SuiteSparse:GraphBLAS: (1) fine-grain methods using atomics and/or
finite-state machines, (2) combinations of sparse/hypersparse/bitmap/full matrix formats, (3) the
exploitation of the iso properties of the four matrices C, M, A, and B, and (4) the ability to use
any mix of four kinds of tasks (coarse/fine Hash/Gustavson). All of these algorithmic features are
unique to the parallel masked matrix multiply methods presented here.

12 FUTUREWORK
There are many aspects of the GraphBLAS C API that SuiteSparse:GraphBLAS does not yet exploit.
Some of the goals for the future are listed below.

• LAGraph v1.0 and more algorithms for LAGraph.
• GPU acceleration: generating CUDA kernels at run time, processed through a JIT. This work
is ongoing, in collaboration with Joe Eaton and Corey Nolet of NVIDIA.

• GPU acceleration: with SYCL, in collaboration with Intel and NVIDIA.
• more AVX-accelerated kernels.
• Julia integration: all core sparse matrix operations will be able to use GraphBLAS (conven-
tional (+,×) semirings) as a recommended sparse linear algebra package. This will also allow
easy Julia-friendly access to any GrB methods (data types, semirings, masks, ...).

• further Python integration.
• RedisGraph: enabling further speedups, more features.
• JIT for the CPU, which will enable user-defined types and operators to become just as fast as
built-in types and operators.

• aggressive non-blocking, kernel fusion (requires the JIT).
• move GxB methods to GrB in the v2.x or v3.0 C API Specification.
• x=A\b over a field.
• more built-in types (16-bit floating point, complex integers, ...).
• variable-sized types (GrB_Matrix of GrB_matrices, GMP integers, ...).
• faster kernels: GrB_mxm for sampled dense-dense matrix product [31]. This can currently be
written in two lines of GraphBLAS, but SuiteSparse:GraphBLAS could be further accelerated
to exploit the unique properties of this problem.

• matrices with shallow components (these exploited internally, but not given to the user).

13 SUMMARY
The C API of GraphBLAS provides a novel and expressive way to create graph algorithms, and its
parallel implementation in SuiteSparse:GraphBLAS can give competitive performance as compared
with highly-tuned parallel C++ codes, which are much more difficult to write.

In addition to being available as a Collected Algorithm of the ACM, SuiteSparse:GraphBLAS is on
github at https://github.com/DrTimothyAldenDavis/GraphBLAS. It appears as the built-in sparse
matrix multiply in MATLAB R2021a, and is the core graph computational engine of RedisGraph,
developed by Roi Lipman, Redis (https://redislabs.com/modules/redis-graph/).

SuiteSparse:GraphBLAS includes its own built-in interfaces to Octave and MATLAB; the former
with assistance from John Eaton. There are two Python interfaces, pygraphblas and grblas, the
first by Michael Pelletier of Graphegon, and the second by Erik Welch and Jim Kitchen of Anaconda;
the two teams collaborate on a common core interface to SuiteSparse:GraphBLAS, and each has their
own Python wrapper (see https://graphegon.github.io/pygraphblas/pygraphblas/index.html and
https://anaconda.org/conda-forge/grblas. A Julia interface is under development, by Will Kimmerer,
Abhinav Mehndiratta, and Viral Shah, at https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/DrTimothyAldenDavis/GraphBLAS
https://redislabs.com/modules/redis-graph/
https://graphegon.github.io/pygraphblas/pygraphblas/index.html
https://anaconda.org/conda-forge/grblas
https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl

1:28 Timothy A. Davis

A CUDA accelerated version of SuiteSparse:GraphBLAS is under development, in collaboration
with Joe Eaton and Corey Nolet at NVIDIA.

ACKNOWLEDGMENTS
GraphBLAS has been a community effort (http://graphblas.org), and this package would not be
possible the efforts of the GraphBLAS Steering Committee (David Bader, Aydın Buluç, John Gilbert,
Jeremy Kepner, Tim Mattson, and Henning Meyerhenke), the GraphBLAS API Committee (Aydın
Buluç, Tim Mattson, Scott McMillan, José Moreira, Benjamin Brock, and Carl Yang), and many
other collaborators on LAGraph and the Python/Julia/Octave/MATLAB interfaces (Ariful Azad,
Mohsen Aznaveh, David Bader, Aydın Buluç, Jinhao Chen, Corey Nolet, Joe Eaton, John Eaton,
Lucas Jarman, Will Kimmerer, Jim Kitchens, Abhinav Mehndiratta, Tze Meng Low, Scott McMillan,
Tim Mattson, Michel Pelletier, Pat Quillen, Viral Shah, Gábor Szárnyas, Erik Welch, and Yongzhe
Zhang). This work is supported by NVIDIA, Intel, MathWorks, MIT Lincoln Laboratory, Redis, Julia
Computing, and the National Science Foundation (NSF CNS-1514406).

REFERENCES
[1] LAGraph. https://github.com/GraphBLAS/LAGraph, Mar 2022.
[2] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and P. Dubey. Graphpad: Optimized graph

primitives for parallel and distributed platforms. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 313–322, May 2016.

[3] A. Azad, A. Buluç, and J. Gilbert. Parallel triangle counting and enumeration using matrix algebra. In 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop, pages 804–811, 2015.

[4] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-first search. In SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1–10, 2012.

[5] B. Brock, A. Buluç, T. Mattson, S. McMillan, and J. E. Moreira. The GraphBLAS C API specification, v2.0. Technical
report, 2021. http://graphblas.org/.

[6] A. Buluç and J. R. Gilbert. On the representation and multiplication of hypersparse matrices. In 2008 IEEE International
Symposium on Parallel and Distributed Processing, pages 1–11, April 2008.

[7] A. Buluç and J. R. Gilbert. The combinatorial BLAS: design, implementation, and applications. The International
Journal of High Performance Computing Applications, 25(4):496–509, 2011.

[8] A. Buluç, T. Mattson, S. McMillan, J. E. Moreira, and C. Yang. Design of the GraphBLAS API for C. In 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2017, Orlando / Buena Vista,
FL, USA, May 29 - June 2, 2017, pages 643–652. IEEE Computer Society, 2017.

[9] P. Burkhardt. Triangle centrality. arXiv/2105.00110, 2021.
[10] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Phila., PA, 2006.
[11] T. A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in the language of sparse linear algebra. ACM

Trans. Math. Softw., 45(4), December 2019.
[12] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Softw., 38(1):1:1–1:25,

December 2011.
[13] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct methods for sparse linear systems. Acta

Numerica, 25:383–566, 2016.
[14] Timothy A. Davis and Pen-Chung Yew. A nondeterministic parallel algorithm for general unsymmetric sparse lu

factorization. SIAM Journal on Matrix Analysis and Applications, 11(3):383–402, 1990.
[15] M. Deveci, C. Trott, and S. Rajamanickam. Multithreaded sparse matrix-matrix multiplication for many-core and GPU

architectures. Parallel Computing, 78:33–46, 2018.
[16] K. Ekanadham,W. Horn, J. Jann,M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, G. Tanase, andH. Yu. Graph programming

interface: Rationale and specification. Technical Report RC25508 (WAT1411-052), IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY, November 2014.

[17] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal.
Appl., 13(1):333–356, 1992.

[18] J. S Golan. Semirings and affine equations over them: theory and applications. Springer, 2003.
[19] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted transposition. ACM Trans.

Math. Softw., 4(3):250–269, 1978.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://graphblas.org
https://github.com/GraphBLAS/LAGraph

SuiteSparse:GraphBLAS, parallel graph algorithms via sparse linear algebra 1:29

[20] D. Hutchison, J. Kepner, V. Gadepally, and B. Howe. From NoSQL Accumulo to NewSQL Graphulo: Design and utility
of graph algorithms inside a BigTable database. In 2016 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–9, Sept 2016.

[21] M. Jones, J. Kepner, D. Andersen, A. Buluc, C. Byun, K Claffy, T. Davis, W. Arcand, J. Bernays, D. Bestor, W. Bergeron,
V. Gadepally, M. Houle, M. Hubbell, H. Jananthan, A. Klein, C. Meiners, L. Milechin, J. Mullen, S. Pisharody, A. Prout,
A. Reuther, A. Rosa, S. Samsi, J. Sreekanth, D. Stetson, C. Yee, and P. Michaleas. Graphblas on the edge: High
performance streaming of network traffic, 2022.

[22] J. Kepner. GraphBLAS mathematics. http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf, 2017.
[23] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison,M. Kumar, A. Lumsdaine, H.Meyerhenke,

S. McMillan, C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira. Mathematical foundations of the GraphBLAS.
In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–9, Sept 2016.

[24] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe,
P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee. Dynamic distributed dimensional data model (D4M) database
and computation system. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5349–5352, March 2012.

[25] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear Algebra. SIAM, Phila., PA, 2011.
[26] J. Kepner, M. Jones, D. Andersen, A. Buluç, C. Byun, K. Claffy, T. Davis, W. Arcand, J. Bernays, D. Bestor, W. Bergeron,

V. Gadepally, M. Houle, M. Hubbell, A. Klein, C. Meiners, L. Milechin, J. Mullen, S. Pisharody, A. Prout, A. Reuther,
A. Rosa, S. Samsi, D. Stetson, A. Tse, C. Yee, and P. Michaleas. Spatial temporal analysis of 40,000,000,000,000 internet
darkspace packets. In 2021 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–8, 2021.

[27] T. Mattson, T. A. Davis, M. Kumar, A. Buluç, S. McMillan, J. Moreira, and C. Yang. LAGraph: A community effort to
collect graph algorithms built on top of the GraphBLAS. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 276–284, 2019.

[28] Srđan Milaković, Oguz Selvitopi, Israt Nisa, Zoran Budimlić, and Aydin Buluç. Parallel algorithms for masked sparse
matrix-matrix products. In Proceedings of the 51st International Conference on Parallel Processing, pages 1–11, 2022.

[29] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç. High-performance sparse matrix-matrix products on Intel KNL and
multicore architectures. In Proceedings of the 47th International Conference on Parallel Processing Companion, ICPP ’18,
New York, NY, USA, 2018. Association for Computing Machinery.

[30] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç. Performance optimization, modeling and analysis of sparse
matrix-matrix products on multi-core and many-core processors. Parallel Computing, 90:102545, 2019.

[31] I. Nisa, A. Sukumaran-Rajam, S. E. Kurt, C. Hong, and P. Sadayappan. Sampled dense matrix multiplication for
high-performance machine learning. In 2018 IEEE 25th International Conference on High Performance Computing (HiPC),
pages 32–41, 2018.

[32] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. Low, and S. McMillan. Delta-stepping SSSP: From vertices
and edges to GraphBLAS implementations. In 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 241–250, Los Alamitos, CA, USA, may 2019. IEEE Computer Society.

[33] T. Steil, T. Reza, K. Iwabuchi, B. W. Priest, G. Sanders, and R. Pearce. TriPoll: Computing surveys of triangles in
massive-scale temporal graphs with metadata. 2021.

[34] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey.
GraphMat: high performance graph analytics made productive. In Proceedings of VLDB 2015, volume 8, pages 1214 –
1225, 2015.

[35] G. Szárnyas, D. A. Bader, T. A. Davis, J. Kitchen, T. G. Mattson, S. McMillan, and E. Welch. LAGraph: linear algebra,
network analysis libraries, and the study of graph algorithms. IPDPS GrAPL’21, 2021.

[36] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal., 7:449–457, 1987.
[37] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajamanickam. Fast linear algebra-based triangle counting

with KokkosKernels. In 2017 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2017.
[38] C. Yang, A. Buluç, and J. D. Owens. Design principles for sparse matrix multiplication on the GPU. In M. Aldin-

ucci, L. Padovani, and M. Torquati, editors, Euro-Par 2018: Parallel Processing, pages 672–687. Springer International
Publishing, 2018.

[39] C. Yang, A. Buluç, and J. D. Owens. Implementing push-pull efficiently in GraphBLAS. In Proceedings of the 47th
International Conference on Parallel Processing, ICPP 2018, New York, NY, USA, 2018. Association for Computing
Machinery.

[40] C. Yang, A. Buluç, and J. D. Owens. GraphBLAST: A high-performance linear algebra-based graph framework on the
GPU. ACM Trans. Math. Softw., 48(1), Mar 2022.

[41] A. N. Yzelman, D. Di Nardo, J. M. Nash, and W. J. Suijlen. A C++ GraphBLAS: specification, implementation, paralleli-
sation, and evaluation. Preprint, 2020.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

1:30 Timothy A. Davis

[42] Y. Zhang, A. Azad, and A. Buluç. Parallel algorithms for finding connected components using linear algebra. Journal
of Parallel and Distributed Computing, 144:14–27, 2020.

Received July 2021; revised Aug 2022

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 An overview of GraphBLAS and its implementation in SuiteSparse
	2.1 The GraphBLAS API
	2.2 Example GraphBLAS algorithm
	2.3 Key contributions of SuiteSparse:GraphBLAS

	3 Data structures for SuiteSparse:GraphBLAS
	3.1 Matrix and vector data structure
	3.2 Iso-valued matrices and vectors
	3.3 Parallel matrix operations
	3.4 Parallel traversal of a single sparse or hypersparse matrix

	4 Parallel matrix multiply
	4.1 Overview
	4.2 Special case monoids
	4.3 Sparse saxpy
	4.4 Sparse masked dot-product

	5 Parallel Element-wise add (set union)
	6 Parallel Element-wise multiply (set intersection)
	7 Parallel submatrix extraction
	8 Parallel submatrix assignment
	9 Parallel mask/accumulator phase
	10 Performance
	10.1 Matrix multiply with a regular mesh
	10.2 GraphBLAS in MATLAB
	10.3 SuiteSparse:GraphBLAS versus Intel MKL sparse
	10.4 LAGraph and the GAP benchmark

	11 Related work
	12 Future work
	13 Summary
	Acknowledgments
	References

