
1

Driving Selenium from Dyalog APL
Version dated April 19th, 2017

Selenium (http://www.seleniumhq.org) is a widely used open-source tool for automating browsers,

with growing support from browser vendors. The GitHub repository Dyalog/Selenium contains code

which allows Dyalog applications to drive browsers via Selenium.

The namespace Selenium contained in this repository contains quite thin cover-functions for some

of the most frequently used features of Selenium. Tool uses two Microsoft.NET assemblies and

depending on the browser used, browser-dependent support executables, need to be installed

separately, see README.md in the GitHub repo for installation instructions.

At this time, bindings for other platforms (than Microsoft.NET) are not easy to produce.

Example: Testing TryAPL
A typical example function is provided in file Samples\TestTryAPL.dyalog in the GitHub

repo:

 ∇ r←Basic;S;result
 ⍝ Verify that TryAPL is working

 S←##.Selenium
 S.InitBrowser''
 S.GoTo'http://tryapl.org'

 'APLedit'S.SendKeys'1 2 3+4 5 6'
 S.('APLedit'SendKeys Keys.Return)
 result←'ClassName'S.Find'result'
 r←result S.WaitFor'5 7 9' '1 2 3+4 5 6 failed'
 ∇

The above code assumes that the Selenium namespace has been loaded into the same location as

the TestTryAPL namespace, so that a reference can be created using S←##.Selenium. For

example, if you cloned the repository to C:\Selenium, you could load both namespaces into the root

(#) as follows:

]load C:\Selenium\Samples\TestTryAPL
]load C:\Selenium\Selenium

The Basic example proceeds to make the following calls:

Expression Discussion
S.InitBrowser '' Ensure the browser engine is up and running
S.GoTo 'http://tryapl.org' Navigate to a URL
'APLedit' S.SendKeys '1 2 3+4 5 6' Simulate typing into input with id=APLedit
S.('APLedit' SendKeys Keys.Return) Send a special keystroke
'ClassName' S.Find 'result' Reference to element with classname=result
result S.WaitFor
 '5 7 9' '1 2 3+4 5 6 failed'

Wait until for the expected result. Return the
specified error message if this doesn’t happen.

http://www.seleniumhq.org/
https://github.com/Dyalog/Selenium

2

Example: MiServer Regression Test Suite
One of the first uses of Selenium for Dyalog has been to create a test framework for MiServer, where

each page in the sample web page has (or will have) a corresponding Selenium test script. This

regression test suite has already proved to be invaluable in catching issues caused by refactoring of

the MiServer core, which is still a very young piece of software. The MiServer documentation

describes how to set up page tests for a MiSite, and the sample site “MS3” contains a large number

of test functions – look for Testing in the documentation section of http://miserver.dyalog.com for

more details.

Option Settings
The Selenium namespace exposes three global variables:

Option and Default Discussion
DEFAULTBROWSER←'Chrome' The browser to use if InitBrowser is called with an

empty right argument. The code has been tested with
FireFox and Chrome.

DLLPATH←'C:\Devt\Selenium\' Pointer to the folder containing the Microsoft.Net
assemblies. You must set this to the correct value before
calling InitBrowser.

RETRYLIMIT←2000 The number of milliseconds that the Retry operator
should retry an operation.

Function Reference

Initialisation
InitBrowser browser
Attempts to creates an instance of OpenQA.Selenium.<browser>Driver, using the current

value of DEFAULTBROWSER if the right argument is empty. If successful, CURRENTBROWSER is set.

If subsequent calls are made to InitBrowser, and the browser would not be changed,

InitBrowser attempts to verify whether the current instance is alive and reuse it rather than

start a new engine.

If successful, the namespace will contain a ref to the new instance in the variable BROWSER., and

also ACTIONS, which is a reference to an instance of Selenium.Interactions.Actions,

used to automate mouse movements.

GoTo url
Calls the Navigate.GoToUrl method and verifies that the Url property subsequently has the

desired value. Signals an error if navigation fails.

Finding Elements
A key step in manipulating the browser DOM is extracting references to the objects that you want to

operate on.

ref←{selector} Find id
Allows searching for DOM elements by Id (the default if no left argument is provided) or one of the

other selectors: ClassName, CssSelector, Id, LinkText, Name, PartialLinkText, TagName or XPath.

Instances of Selenium Driver classed support a number of methods with names in the form:

 FindElement[s]By[selector]

http://miserver.dyalog.com/

3

The left argument is used to define the selector, and if a trailing ‘s’ is provided, as in:

 'ClassNames' Find 'myclass'

… then the corresponding FindElements* function is called (in this example

FindElementsByClassName), returning a collection of element references. Without a trailing

s, the FindElement* function is called, returning a single reference. Examples of use:

Call Discussion
Find 'mytable' Return ref to the element with id mytable
'ClassName' Find 'result' Find all element with class result
'ClassSelectors' Find '#mytable td' All td elements in table with id mytable

Find will retry the search for an element until RETRYLIMIT has elapsed, so if it takes time for a

page to render completely, or an element is created by an earlier action, it will wait for a while.

ref←id FindListItems text
Return refs to all list items found within a list with the id given on the left, which have Text

properties which can be found in the vector of text vectors on the right.

Inspecting the Contents of the Page
The Selenium namespace contains a number of functions which manipulate the browser in various

ways (see the next section for details).

html←PageSource
You can verify whether the page has been correctly loaded by inspecting the PageSource, for

example:

∨/'<link href="/Styles/tryapl.css"'⍷Selenium.BROWSER.PageSource

{ok}←(fn Retry) arg
Following any action, an unknown amount of time may pass before the server responds and a

response is detectable in the browser. The Retry operator is provided to allow waiting for an

expected effect. The time to wait is controlled by the global variable RETRYLIMIT. Retry invokes

fn on arg, and retries until the result is true, or RETRYLIMIT milliseconds have passed. For

example:

 {(Find 'result').Text=⍵} Retry 'You pressed the button!'

Retry returns the result of the final application of the function.

{msg}←element WaitFor text [message]
The left argument can be the id or a reference to an element to be tested. WaitFor will use Retry

to wait until the element in question contains the specified text anywhere within its Text property.

If the element is of type input, (element.GetAttribute⊂'value') is tested instead.

For example:

 'result' WaitFor 'Welcome!'

An optional second character vector can be used to replace the default, which is

Expected output did not appear

4

Browser Automation Functions
The following functions manipulate the browser in various ways. Note that, wherever an <id> is

used, a reference to an IWebElement (returned by Find) can be used instead.

{selector} Click id
Clicks on the selected element. Both arguments are passed directly to the Find function, and the

Click method is invoked on the result. For example:

 Click 'btn1'

fromid DragAndDrop toid
Drag the element <fromid> and drop it on <toid>. Use by ListMgrSelect. For example:

 ('list1' FindListItems 'apples') DragAndDrop 'list2'

{open} ejAccordionTab (tabText ctlId)
Ensure that the Syncfusion ejAccordionTab with the selected tabText has the desired state (open or

closed), verifying the state by checking the visibility of the element with Id <ctlId>.

id ListMgrSelect items
In a ListManager object with Id <id>, select items with Text properties found in <items>, by dragging

them from the list on the left to list on the right.

{action} MoveToElement toid [x y]
Move the mouse to the middle of an element, or optionally to the (x y) coordinates.

If the optional left argument is provided and is a character vector containing one of the strings Click

| ClickAndHold | ContextClick | DoubleClick, that mouse action will be performed after the move.

For example:

 'DoubleClick' MoveToElement 'btn1' 10 10

id Select text
Select the item with a given text in a dropdown. For example:

 'fruits' Select 'apples'

id SendKeys text
Select the item with a given text in a dropdown. For example:

 'firstname' Select 'Morten'

The right argument can be a special key selected from Selenium.Keys. For a list of special keys,

inspect:

 Selenium.Keys.⎕nl -2

Other WebDriver Functionality
Instances of the Selenium WebDriver classes support significant functionality which is not covered

by the existing Selenium namespace. The full set of methods and properties exposed by

WebDriver.dll and WebDriver.Support.dll, which are documented here on the Selenium web site:

http://www.seleniumhq.org/docs/03_webdriver.jsp

http://www.seleniumhq.org/docs/03_webdriver.jsp

5

After InitBrowser has been called, the variable BROWSER is a reference to the current instance.

It exposes the following methods which are not covered by the Selenium namespace, but can be

called from APL after consulting the Selenium documentation:

ExecuteAsyncScript ExecuteScript GetScreenshot Manage Quit SwitchTo

It also exposes a number of properties, some of which look interesting:

AcceptUntrustedCertificates Capabilities CurrentWindowHandle
FileDetector Keyboard Mouse PageSource Title Url WindowHandles

The ACTIONS variable is a reference to an instance of an Actions object, which also exposes

functions not currently supported by any of the functions in the Selenium namespace:

DragAndDropToOffset KeyDown KeyUp Release

There is scope for future extensions to the tool, suggestions and “pull” requests are most welcome!

