{ "cells": [ { "cell_type": "markdown", "id": "6c7e849a", "metadata": { "ExecuteTime": { "end_time": "2021-06-11T09:24:53.643384Z", "start_time": "2021-06-11T09:24:53.622385Z" } }, "source": [ "# CO2 Emission Analysis and Prediction\n", "\n", "## PART 3 : Modelling Notebook\n", "\n", "### AiGlass \n", "`Seeing Through Data`\n", "\n", "© Explore AI\n", "\n", "---\n", "\n" ] }, { "cell_type": "markdown", "id": "a5c28b72", "metadata": {}, "source": [ "**Warning:** We are not climate scientists, some things may be inaccurate. This is simply just a study on a subject we are interested in, allowing us to go deeper into the subject while at the same time improving our graphing and prediction skills. All my sources are at the bottom of the notebook." ] }, { "cell_type": "markdown", "id": "05600c92", "metadata": {}, "source": [ "\n", "\n", "## Table of Contents\n", "\n", "1. Importing Packages\n", "\n", "2. Loading & Data Preparation\n", "\n", "3. Modelling\n", "\n", "4. Model Performance\n", "\n", "5. Model Explanations & Interrogation\n", "\n", "6. Conclusion\n", "\n", "Reference" ] }, { "cell_type": "markdown", "id": "997462e2", "metadata": {}, "source": [ " \n", "## 1. Importing Packages\n", "Back to Table of Contents\n", "\n", "---\n", " \n", "| ⚡ Description: Importing Packages ⚡ |\n", "| :--------------------------- |\n", "| In this section, we will be importing libraries used throughout our analysis and modelling, allowing us to call functions that are not part of our main python program.\n", "\n", "---" ] }, { "cell_type": "code", "execution_count": 1, "id": "475dbe93", "metadata": { "ExecuteTime": { "end_time": "2021-06-23T10:30:53.800892Z", "start_time": "2021-06-23T10:30:50.215449Z" } }, "outputs": [], "source": [ "# Libraries for Anaysis\n", "import numpy as np\n", "import pandas as pd\n", "from scipy import stats\n", "from scipy.stats import norm\n", "import math\n", "\n", "# Libraries for Plotting Analysis\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import plotly.express as px\n", "import plotly.graph_objects as go\n", "from plotly.subplots import make_subplots\n", "\n", "# Setting Plot Design \n", "sns.set_style(\"darkgrid\", {\"axes.facecolor\": \"#eff2f5\", 'grid.color': '#c0ccd8', \n", " 'patch.edgecolor': '#B0B0B0', 'font.sans-serif': 'Verdana'})\n", "sns.set_palette('Dark2_r')\n", "plt.rc('font', size=19)\n", "plt.rc('axes', titlesize=25)\n", "plt.rc('axes', labelsize=20)\n", "plt.rc('xtick', labelsize=17)\n", "plt.rc('ytick', labelsize=17)\n", "plt.rc('figure', titlesize=24)\n", "\n", "# Extra Plotting Tools Required for Bar Chart Race\n", "import matplotlib.ticker as ticker\n", "import matplotlib.animation as animation\n", "from IPython.display import HTML\n", "\n", "\n", "# Libraries for data preparation and model building\n", "from sklearn.model_selection import train_test_split # To split the data into training and testing data\n", "from sklearn.preprocessing import StandardScaler # For standardizing features\n", "from sklearn.linear_model import LinearRegression # For the LINEAR Model from Sklearn\n", "from sklearn.linear_model import Ridge # For the RIDGE Regression module from sklearn\n", "from sklearn.linear_model import Lasso # For the LASSO Model from Sklearn\n", "from sklearn.model_selection import GridSearchCV # To sort out our Hyper_Parameters\n", "from sklearn.tree import DecisionTreeRegressor # For the Decision-Tree Model\n", "from sklearn.ensemble import RandomForestRegressor # For the RandomForest Model\n", "import xgboost as xgb # For the xgBoost Model\n", "from sklearn.svm import SVR\n", "\n", "# Libraries for calculating performance metrics\n", "from sklearn.metrics import mean_squared_error # Apply np.sqrt MSE to get RMSE\n", "import time # For Calulating ALgo Time Run\n", "\n", "# Libraries to Save/Restore Models\n", "import pickle\n", "\n", "# Mute warnings\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "id": "f22a6718", "metadata": {}, "source": [ "\n", "## 2. Loading & Data Preparation\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n", "| ⚡ Description: Loading the data ⚡ |\n", "| :--------------------------- |\n", "| In this section, we will be loading the data from the CSV and EXCEL files into Pandas DataFrames, which is a 2-dimensional data structure, like a 2-dimensional array, or a table with rows and columns. |\n", "\n", "---" ] }, { "cell_type": "code", "execution_count": 2, "id": "fbbb6c18", "metadata": { "ExecuteTime": { "end_time": "2021-06-28T08:49:35.311495Z", "start_time": "2021-06-28T08:49:35.295494Z" } }, "outputs": [], "source": [ "# Load Base Data\n", "df = pd.read_csv(\"data/Our_CO2emission_Modelling_Data.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "eb99056f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0e_typee_cone_prodGDPPopulationei_capitaei_gdppop_growthpop_densityManuf_GDPAgric_GDPDeforestationemission_per_capCO2_emission
0195140.000.00.9862.5395.456.070.845142.120.0246760.017454101.09880.0000000.0
1195220.000.00.9862.5395.456.070.845142.120.0246760.017454101.09880.0000000.0
2195330.010.00.9862.5395.456.070.845142.120.0246760.017454101.09880.0063970.4
3195410.000.00.9862.5395.456.070.845142.120.0246760.017454101.09880.0000000.0
4195500.000.00.9862.5395.456.070.845142.120.0246760.017454101.09880.0000000.0
\n", "
" ], "text/plain": [ " Unnamed: 0 e_type e_con e_prod GDP Population ei_capita ei_gdp \\\n", "0 1951 4 0.00 0.0 0.98 62.53 95.45 6.07 \n", "1 1952 2 0.00 0.0 0.98 62.53 95.45 6.07 \n", "2 1953 3 0.01 0.0 0.98 62.53 95.45 6.07 \n", "3 1954 1 0.00 0.0 0.98 62.53 95.45 6.07 \n", "4 1955 0 0.00 0.0 0.98 62.53 95.45 6.07 \n", "\n", " pop_growth pop_density Manuf_GDP Agric_GDP Deforestation \\\n", "0 0.845 142.12 0.024676 0.017454 101.0988 \n", "1 0.845 142.12 0.024676 0.017454 101.0988 \n", "2 0.845 142.12 0.024676 0.017454 101.0988 \n", "3 0.845 142.12 0.024676 0.017454 101.0988 \n", "4 0.845 142.12 0.024676 0.017454 101.0988 \n", "\n", " emission_per_cap CO2_emission \n", "0 0.000000 0.0 \n", "1 0.000000 0.0 \n", "2 0.006397 0.4 \n", "3 0.000000 0.0 \n", "4 0.000000 0.0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# View first 5 rows of Loaded Base Data\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "id": "0fd7b630", "metadata": {}, "outputs": [], "source": [ "# Drop Unamed Column\n", "df = df.drop('Unnamed: 0', axis=1)" ] }, { "cell_type": "code", "execution_count": 5, "id": "298b0e4e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(22779, 14)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check shape\n", "df.shape" ] }, { "cell_type": "code", "execution_count": 6, "id": "a85d27f9", "metadata": {}, "outputs": [], "source": [ "# Extracting features and label; Readying for Split \n", "X = df.drop(['CO2_emission'], axis=1)\n", "y = df['CO2_emission']" ] }, { "cell_type": "code", "execution_count": 7, "id": "bf425a85", "metadata": {}, "outputs": [], "source": [ "# Standardize/Scale our Dataset\n", "scaler = StandardScaler() # create scaler object\n", "\n", "# convert the scaled predictor values into a dataframe\n", "X_scaled = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)" ] }, { "cell_type": "markdown", "id": "81132ab3", "metadata": {}, "source": [ "\n", "## 3. Modelling\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n", " \n", "| ⚡ Description: Modelling ⚡ |\n", "| :--------------------------- |\n", "| In this section, we will be applying several machine learning models, trained over a set of data to recognize certain types of patterns, reasoning over and learning from those data. The aim is to have a Model which is able to accurately predict CO2 Emissions based on some relevant features. |\n", "\n", "---\n", "We will be Modelling with the Following;\n", "1. Base Models (linear regressions);\n", " * Linear Regression (It targets predicting value based on independent variables)\n", " * Ridge Regression (A regressional model tuning method that is used to analyse any data that suffers from multicollinearity)\n", " * Lasso Regression (A type of linear regression that uses the shrinkage method, where data values are shrunk towards a central point, like the mean)\n", "\n", "2. Tree-Based Models;\n", " * Decision Tree (The data is continuously split according to a certain parameter. The tree can be explained by two entities, namely decision nodes and leaves.)\n", " * Random Forest (It builds decision trees on different samples and takes their majority vote for classification and average in case of regression)\n", " * XGBoost (Extreme Gradient Boosting machine is a scalable and highly accurate implementation of gradient boosting that pushes the limits of computing power for boosted tree algorithms, being built largely for energizing machine learning model performance and computational speed.)\n", "\n", "3. Glass Box Modelling Approach (all the features and the model parameters are known as means of Model check.)\n", "\n", "4. Bias Model (Used to Interrogate our model/Training process for Bias, describing how well our model matches the training set)\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "ef88d664", "metadata": {}, "outputs": [], "source": [ "# splitting data\n", "x_train, x_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.15, shuffle=False, random_state=42)" ] }, { "cell_type": "code", "execution_count": 9, "id": "d180d23c", "metadata": {}, "outputs": [], "source": [ "# creating one or more ML models\n", "\n", "# Creating linear model\n", "lm = LinearRegression()\n", "\n", "# Creating ridge model\n", "ridge = Ridge()\n", "\n", "# Creating LASSO model object, setting alpha to 0.01\n", "# Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equivalent to an ordinary least square\n", "lasso = Lasso(alpha=0.01) \n", "\n", "# Creating Decision Tree model with a max depth of 5 \n", "DT = DecisionTreeRegressor(max_depth=5)\n", "\n", "# Our forest consists of 100 trees with a max depth of 5 \n", "RF = RandomForestRegressor(n_estimators=100, max_depth=5)\n", "\n", "#create Xgboost\n", "xgb_reg = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.6, learning_rate = 0.1,\n", " max_depth = 5, alpha = 6, n_estimators = 100, subsample = 0.7) " ] }, { "cell_type": "code", "execution_count": 10, "id": "a4d232e7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "XGBRegressor(alpha=6, base_score=0.5, booster='gbtree', callbacks=None,\n", " colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6,\n", " early_stopping_rounds=None, enable_categorical=False,\n", " eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',\n", " importance_type=None, interaction_constraints='',\n", " learning_rate=0.1, max_bin=256, max_cat_to_onehot=4,\n", " max_delta_step=0, max_depth=5, max_leaves=0, min_child_weight=1,\n", " missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0,\n", " num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=6, ...)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Fit the Ml model\n", "lm.fit(x_train, y_train) # Linear Regression\n", "ridge.fit(x_train, y_train) # Ridge Regression\n", "lasso.fit(x_train, y_train) # Lasso Regression\n", "DT.fit(x_train, y_train) # Decission Tree\n", "RF.fit(x_train, y_train) # Random Forest\n", "xgb_reg.fit(x_train, y_train) # XGBoost gbtree" ] }, { "cell_type": "code", "execution_count": 11, "id": "0e40fa8e", "metadata": {}, "outputs": [], "source": [ "# evaluate one or more ML models [Getting Predictions]\n", "y_pred_lm = lm.predict(x_test)\n", "y_pred_ridge = ridge.predict(x_test)\n", "y_pred_lasso = lasso.predict(x_test)\n", "y_pred_DT = DT.predict(x_test)\n", "y_pred_RF = RF.predict(x_test)\n", "y_pred_xgb = xgb_reg.predict(x_test)" ] }, { "cell_type": "markdown", "id": "3fa93ec6", "metadata": {}, "source": [ "\n", "## 4. Model Performance\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n", "| ⚡ Description: Model performance ⚡ |\n", "| :--------------------------- |\n", "| In this section we will be comparing the relative performance of the various trained ML models on a holdout dataset and comment on what model is the best and why. The Root mean square error or root mean square deviation, which is one of the most commonly used measures for evaluating the quality of predictions will be adopted to reach this decision. RMSE shows how far predictions fall from measured true values using Euclidean distance. |\n", "\n", "---" ] }, { "cell_type": "code", "execution_count": 12, "id": "37003ff5", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAWmCAYAAAC4PJNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1xT1/sH8E/CRpaIdeBWBDcuFLV177391W3VOqvW2qqttt9qtWrrqCiOqriKoy7EhVtR3ANEXICLOlCBQBgJSX5/0NwSgQBhXMbn/Xr1Vc/NvTdPwiWc8+Tc50g0Go0GRERERERERERERETFlFTsAIiIiIiIiIiIiIiIxMREOREREREREREREREVa0yUExEREREREREREVGxxkQ5ERERERERERERERVrTJQTERERERERERERUbHGRDkRERERERERERERFWtMlBMRUb7asGEDnJ2dUadOHRw7dkzscIgKrKNHj6JOnTpwdnbG0aNHxQ6HiKjIGz58OJydnTF79myxQyEq8I4ePQpnZ2c4OzvDy8tL7HCICqzr16+jYcOGcHZ2xsaNG8UOhzJhLHYARFmxevVqeHh4wNHREWfOnMnyce3atUNERATc3Nywffv2PIywcNK+rx8zMzNDyZIlUaNGDXTs2BH9+vWDqampCBEWDy9fvkT79u0BAFOmTMHUqVNFjijv3LlzB6tWrQIA/PTTT+jatWuafZydndNsMzY2hoWFBcqXL49GjRrh//7v/9LdT2v27Nk4cOAAAMDR0RF+fn4wNs74T96HDx/Qtm1bJCYmAtD/c3jy5An27t2La9eu4cWLF4iPj4e5uTlKliyJ6tWro379+mjRogUaNmwIiUSic2xGv3MZycvrIfV1l1WLFy9Gv379hLZCocDFixdx6dIlBAUF4fnz54iNjYWZmRnKlSuHJk2aYNiwYahZs2Zuh4+EhAQMHToUwcHBmf5tUKlUOHz4MHx8fBAcHAy5XA5bW1vUq1cP/fr1Q6dOnfQ+V3JyMg4ePIgjR44gJCQEsbGxsLCwQNWqVdGmTRsMGzYMtra2aY5LfR1mxcevo1u3bpDJZPjxxx8xb9481KtXDxUrVszy+YiICpPc6JemPsfp06dRoUKFPI25oNi/fz/mzJmTZrupqSlsbW2Fv1eDBw+GlZWVCBEWH9r+ad++ffHrr7+KHE3eefHiBebNmwcAmDRpEkaNGpVmH+1YPDUjIyOYm5ujbNmyaNCgAQYMGIDGjRtn+Dypf6ctLS1x9uxZ2NnZZbi/QqFA+/bt8fbtWwD6fw4RERHYs2cPrly5gvDwcMjlcpiamsLOzg5Vq1ZFnTp14O7uDjc3tzTjiIx+5zKS19eDvnFRej4eY6jValy5cgUXLlzA3bt3ER4ejtjYWBgbG6NMmTJwdXXF4MGD9f6scjvOhw8fprs9NDQUW7ZsQUBAACIjI2FmZoZKlSqhc+fOGDFiBMzNzTM9t0ajwZkzZ3Dq1CncuXMH79+/F8YH3377Lfr06aP3eKVSiePHj+PMmTMIDg7G+/fvkZSUhJIlS2Lp0qVwd3fX2b9p06ZYuXIlJkyYgJUrV6Jp06ZwdXXN6ltB+YyJcirSTExMYGpqChMTE7FDKfBSDziSkpLw+vVrvH79Gv7+/ti1axc2bNiATz75RMQIiy6JRCK8/0ZGRiJHk3fkcjm+/vprJCcnY9CgQRg4cKDe/Y2NjSGVptz4pFKpEBsbi4cPH+Lhw4fYs2cP5s6di2HDhmX6vBERETh06BD69++f4T5bt24VkuQZUavV+P3337FlyxaoVCphu1QqhVwuh1wux8uXL3H+/HmsXr0abdq0wfr16zM8X1a+fMrL6yH1dZeZ5ORkqNXqNNs9PDzSvEYjIyPEx8cjNDQUoaGh2LdvH+bPn4/BgwfnStxAys/i66+/RnBwcKb7vnv3DlOmTMHt27eFbRKJBO/evcPZs2dx9uxZtG3bFn/88Ue670dkZCS+/PJLneeSSqWIjY1FYGAgAgMDsXPnTqxbtw7169fXOdbY2DhL77FGo4FSqUz3sSFDhuDGjRs4fPgwZsyYgT179gi/F0RERZWh/VIjIyPh2I+/rC4uUr93CoUCkZGRiIyMxLVr17Bz505s3LgR1atXFzHCok37/uuboFHYqdVqzJgxA3FxcWjVqhW++uorvfsbGRkJfVq1Wg25XC70E/fv34+xY8di1qxZmT5vfHw8tm3bpvf5Dh06JCTJ9fHy8sLy5cuRlJQkbJNKpYiPj0d8fDz++ecfXLp0CRs2bICTkxN8fX0zPFdW+np5fT1ktU+vUql0xjFae/fuxfz583W2GRkZITExEc+ePcOzZ89w6NAhTJo0CdOmTctxvKnHedlx9OhRfPvtt0K/WSqVIikpCffu3cO9e/dw4MAB7NixA6VKlcrwHA8fPsTcuXNx7949YZtUKoVarcb79+8zvX6uXbuGefPm4enTp2mOf/v2LT58+JDuca1bt8b48eOxbt06fP311/D19YWlpWU2Xj3ll6L76U0E4MSJE2KHUCh8PIsxKSkJz58/x969e7Ft2zaEhIRg1qxZ2Lp1q4hRFl2Ojo4ICgoSO4w8t2PHDkRERKBMmTL47rvvMt1/wYIFwuxljUaD6OhoBAQEYM2aNXjy5AkWLlyImjVrws3NLcNzWFtbIzY2Fhs2bEDfvn3T7ZDJ5XJ4e3sLSc34+Ph0z7Vs2TJs3rwZANCxY0cMGzYMzs7OKFmyJOLi4vD8+XNcu3YNvr6+CAoKgkwmyzCu7N4dkxeyet1FR0ejY8eOkMlksLa21nlMrVbD0dERffv2RatWreDs7AxLS0vExsbi0qVLWLx4MV6/fo3//e9/cHNzQ9WqVXMl9kWLFuHMmTOQSCTQaDQZ7qdUKjFu3Djcv38fNjY2mDZtGjp06AAHBwdERERg//79+PPPP3H27Fn8/PPPWLhwYZpzTJ06FcHBwTA1NcW0adPQs2dPlC5dGlFRUTh37hyWL1+Od+/eYeLEiTh+/LjOe7Rw4cJ0z/mxlStXwtPTM8NZfvPmzcPFixcRFBSEY8eOoXv37ll4l4iICqec9EsnTZqESZMm5We4BU7qv+0KhQKvX7+Gj48P1q9fj4iICEyePBm+vr5FOpErpuLQpz969CiCgoJgaWmJX375JdMvpSZOnKgzezkmJgZ37tyBp6cnbt++jT///BNOTk56Z/Fq+/Q7duzAmDFj0u0zqdVq/PnnnwAAGxubDPviO3bswOLFiwEAzZo1w+jRo1G/fn3Y29sLSfLr16/jxIkTuHLlit4+PVAwfuZZiUGpVKJbt254/vx5un16BwcH9OrVC23btkWtWrVgbW0NuVyOGzdu4LfffsOjR4+wdu1auLm5pZkxnV2px3lZ9fTpUyFJ3qxZM3z33XdwcXFBUlISTp48iYULFyIsLAwzZ87MsBRQYGAgvvjiC8hkMtSoUQNffPEFWrZsidKlS0OpVOLly5fpTg7SOnv2LL766isoFAo0bNgQI0eOhJubG+zt7ZGYmIinT5/qvWtnypQp8PPzQ1hYGHbs2IHx48dn6z2g/MEpSUSUhpmZGZycnDB37lyMHTsWAHDlyhU8efJE5MiosIqLixOSzF999VW2b/uVSCQoWbIkunXrhm3btqFEiRLQaDTYuXOn3uPatGkDR0dHPH36NMN66Lt370ZMTAy6deuGkiVLprvPmzdvhAH5mDFj4OHhgebNmwv7W1lZoXbt2hg1ahT+/vtv7NixA05OTtl6jQXV2rVrIZPJUKVKFbRt21bnsYEDB8LPzw9Tp05Fw4YNhVkR1tbW6NKlizDbXKVS4cKFC7kSz9atW7F9+3ZUqFABQ4YM0bvv33//jfv370MikWDDhg0YNmwYypYtC2NjY1SuXBkzZswQvrT5+++/8ejRI53jAwMDhZno2s/DMmXKQCqVolSpUujfvz88PT0BpMxcP336dLZfz5s3b4TO/JgxY9Ldx9bWFpMnTwaQMotfXweeiKioYb/UcKampqhUqRKmTJmCuXPnAgDCw8Nx6dIlkSOjwkqtVmPNmjUAgFGjRqFs2bLZPoetrS1at26NrVu3wtHREUBK8lqfWrVqoVGjRoiJicFff/2V7j4nT57E06dP0bhxY7i4uKS7T1JSklAGsnPnzti6dSvatm2LUqVKQSKRoESJEnBycsLnn3+OrVu34tChQzkuN1JQ/PXXX3j+/Dns7OzS3Gn72Wef4fTp0/juu+/g5uYmJNJLlCiB1q1bw8vLS7hL/+zZs/keO5AyJlEqlahQoQLWr1+POnXqwMjICJaWlujduzeWLl0KAAgICMD169fTHC+XyzF9+nTIZDJ069YNBw4cQL9+/YS+vZmZGapXr57hGO7NmzeYNWsWFAoFRo8ejb/++gtdu3YVrh0LCwvUqlVLb5lEExMTfPPNNwCATZs2IS4uLhfeGcptTJRTkaZvQZ527drB2dkZq1evFpJ4gwcPRqNGjdCgQQP06dMH3t7emT7HhQsXMHXqVLRq1Qp169aFm5sbhg4dir/++ivDW+l37tyJqVOnolevXsJxDRs2RNeuXTF37twMvxF++fKlsGDK1atX8f79e6xYsQLdunVD3bp1Ua9evVxf8K1bt27Cv0NDQzPcz5D3AUiZKXz48GEMHz4cjRs3Rt26dfHZZ59hxowZWLBggfB6P7Z69Wo4OzujXbt2AICbN29i+vTpaNmyJWrVqoWmTZumOebu3buYNWsW2rZti7p166Jx48YYMGAANmzYkOEsYo1GA19fX4wdOxYtWrRAnTp10LhxY/Tr1w8LFy7EtWvXcuUY7evcv39/unEkJiZi06ZNGDhwIJo0aYL69eujY8eOmD9/vs5tX/rO+/79e6xevRp9+vSBq6srGjZsiCFDhuD48eMZHp9bdu3ahejoaJQpUybTmm+ZKVWqFJo1awYACAsL07uvsbExvvjiCwDAunXr0sw+VigU8PLygkQiwZdffpnhee7evSvcpqivhItW06ZN8fPPP2e6n6G0n1/ZrUeYXS9evBAGIzNmzEgz+6xy5cp6Z6RVqVJF+Le+md9Zdfr0afz666+wsbHBhg0b9N5WCQCnTp0CADRo0AANGzZMd5+hQ4eiTJky0Gg0aeqJv3jxQvh3RoOk+vXrC7Uy3717l9WXIvjjjz+QkJCAmjVrolevXhnuN3DgQNja2iIsLAx+fn7Zfh4ioqIgs37p/v37M/37+P79eyxZsgSdO3dGvXr10KpVKwwfPhze3t4Z9gdTu337NqZNmwZ3d3fUrl1bmJG6ceNGnX56epRKJXbt2oXhw4ejWbNmqFu3Llq1aoWJEyfm2hfKGclqn96Q/rLW+fPnMX78eLi5uaFOnTpo2bIlJkyYgBUrVgjvzcuXL3WO+fhnpi2L0Lp1a9SuXRuNGjXC69evdY4JDQ3F/Pnz0bFjR9SvXx8NGzZEr169sGLFigzLHmjjmzJlCj799FNh/NWzZ0/88MMPOHv2bLpfRGf3mNRjzPQkJydjz549OtdAmzZtMGvWLJ1SEB/LrbFrTp04cQJhYWEwNzfHyJEjc3QuMzMzYSyn75rU0vbVvby8kJCQkOZx7SKJ+vr0T548EWaI9+/fP9PZ8C4uLlixYkWmsRlKm69I73cjN8XGxmLt2rUAgPHjx6eZUe7o6Ki3tnepUqVgY2MDIHf69NmlVCqFCSmDBw+GhYVFmn3atm0rjD3SG99u3LgRERERqF69OpYsWZLtNdh+++03xMbGokWLFpg9e7bBpRDbt2+PatWqITo6Grt37zboHJS3eL8VFXvXrl3Drl27hASHtr5USEgIfvrpJzx//jzdMhEKhQJz5szRqVcmkUgQExODGzdu4MaNGzhy5Aj+/PPPNB/kXl5eeP78udCWSqVQKpUICwtDWFgY9u/fjwULFuit4Xzw4EH4+fkJ30IaGRlBpVJlWmc5u1L/wUzvj0lO3of4+HhMmzZNZ2AglUrx5s2bLCf8ExMTMXPmTOH5tT+/1LfIaTQaLF26VJjRrI1RqVQiKCgIQUFBOHToELZu3QoHBwed1zZlyhScP39eJ764uDgEBwcjODgY27dvx759+1C3bl2Dj8nMixcvMG7cOISHh+uc8/nz53j+/Dn279+PRYsW6U2yHTt2DAsXLoRcLtd5n27fvo3bt29j3rx5War3bajDhw8DSEn25catvtprKSvrDwwYMABr167Fo0ePcPr0aXTo0EF4zMfHB2/evEHHjh1Ro0aNDM+RupZfZGSk3n2LkuXLl0OpVKJevXro0qVLto/Xlr8yMTHJ9sKhHwsKCsLMmTNhZGQEDw+PLNVX1S4gpW8xNyMjI7i5ueHw4cO4ceOGzmPlypUT/n3lypV0FyVNSkoSfq+yexfB48ePheT8zJkz9Xa4LSws0KtXL2zfvh0+Pj4G/TyIiAq7zPqlmbl16xYmTpyI6OhoAP+tWaGt4Z0ZbaksLalUiujoaFy+fBmXL1/We+zr168xYcIEhISECNskEgkiIyNx5swZnDlzBmPGjMlSeTpDpO6Hp/feGdpfBlL6ST/88IPOhA+pVKqzHkhWLFy4EDt37oRarRYSmHK5HMnJycI+W7duxZIlS4S+mbYMm3YdmwMHDmDLli06/QSNRoN58+Zh7969OvEplUo8evQIjx49wt69e/HHH3+gc+fOBh+TmaioKEycOFFn3RSpVIpXr17Bx8cHhw8fxsyZMzFu3LgMz2Ho2DW3aPv0Xbt21buoZlZpr8us/D63adMGLi4uePDgAfbs2aOTqA8ICEBQUBBq166N1q1bCyVYPvZxn764WL9+PaKjo1G2bFmDxnw3btzA+/fvASDL13tuevjwoZD3yGjyC5AyseXp06dp+vRKpVL4Xf7yyy+z/ffjw4cPQvJde5dnTgwaNAi//vorfHx8hEldVHBwRjkVe9euXYNEIsHcuXNx4cIFhISE4NSpU/jss88AAFu2bNFJUGr99NNP8PX1RZkyZbBw4UJcuHAB9+/fh7+/PxYuXAh7e3vcuHEDy5YtS3NsrVq1MGnSJOzcuRP+/v64f/++sCBckyZNoNFosHDhQuGPUXr279+P8uXLY9WqVbh16xbu37+PgICANKURcir1jN3KlSuneTwn78P8+fNx4cIFmJmZYc6cOQgICEBwcDAuXLiApUuXokGDBpnG9/79exw5cgR9+/bFgQMHEBQUhPv37+vUp1+7di02b94MW1tbfPfddzh9+jSCg4MREBCAVatWoUKFCnjy5Am+//57nXP/+eefOH/+PExNTTFv3jwEBAQgJCQE165dw4YNG9CrVy+YmJjofKtuyDH6JCUlYeLEiQgPD0f58uWxevVq3LlzB8HBwTh06BDatm0LpVKJ2bNnp+kQpHbhwgU4ODhg0aJFuHLlCu7fv4/Dhw+jXr16AIDff/8dsbGxWYopuyIjI/HgwQMAQKdOnXLlnNrrMvWM5YyYmZkJHel169YJ2zUaDTZt2gRA/8wTADpfaqxYsaJYdKwDAwOFcjUzZ87M8nFxcXEICQnBkiVL8P3338PCwgJLlizRextiZiIiIjBx4kQkJCRg4cKFwh0FmdGWgomJidG7X+nSpQEAr1690tnesGFD4Xdk6dKl2LBhg86iTwDg7e0NpVKJWrVqCX83smrZsmVQqVRo0qQJ2rRpk+n+2i8bAgIC0l2IiYioqMusX6rPmzdvhCR5zZo1sXnzZmFR5hMnTuC7776Dvb19hsfv3btXSJIPHjwYfn5+uH//Pq5cuYJNmzbpzNj+WEJCAsaNG4eQkBDUr18fGzduxJUrVxAcHIxTp05hwoQJMDIywubNm/PsTr/M3jtD+8tAyt1R+/fvh1QqxcSJE3H+/Hncv38fly5dwpo1a9CqVassxbh9+3a0bt0af/31FwIDA3H//n2cPn1aWLj10KFDWLRoEUxMTDBhwgT4+fkhKCgI169fx6ZNm+Di4oI3b95g+vTpOn1tHx8f7N27F1KpFFOnThXGKzdv3oSXlxc+//xzWFpa5vgYfTQaDb7++mvcvn0btra2WLRoEW7cuIH79+/Dz88P/fv3h0ajwW+//YYjR45keB5Dx665QaVSISAgAIA4fXoAQk3nTZs2QaFQCNuzMpscSJnUYGZmBgDYsGGD3jtzi4pXr15h27ZtAFLW3tG+/szEx8cjNDQUa9aswYQJE2BsbIw5c+agSZMmOY7pl19+gaurK1xdXdGiRQsMGjQIS5cu1ZlMmFrqa1rfBBhtKZ+nT5/q/G7eu3dP+HKpfv368PT0xODBg9G8eXM0bNgQ7dq1w7Rp0zIcT1++fBkKhQI2NjYoV64cfv/9d/Tr1w/NmjVDo0aN0KlTJ8yZM0cY82ZG26d/8OCBQXekUt7ijHIq9lq0aIE//vhD5/ajihUrYsmSJWjVqhVUKhXOnTunswjd7du3sW/fPpQsWRI7d+7USQCVLl0aAwcORJkyZTBu3Djs3bsXM2fORIkSJYR9/vjjjzRxmJmZoUmTJli/fj3atm0LmUyGixcvZlimYvDgwZg/f77O7Fx9nXtDKJVK4dv4Ro0aoVq1ajqP5+R9uHXrljAjYdmyZTrfTJcpUwa9e/eGSqXC3bt39cZobm4ODw8PfPrppzrbtZ2tf/75B56enjAzM8Off/6J+vXrC/vY29ujS5cuqFatGvr06YNz587h6dOnwrEnT54EAPTt21fnm3dtXb3WrVtjypQpOj9bQ47RZ8+ePXj8+DEsLCywdetWVKpUSXjMxcUFa9euxdixY3Hp0iX8+uuv+Pvvv9M9T69evfDLL7/ofHtes2ZN/Pzzz+jbty/i4+MREBCQa53e1LQ/QwcHh1wpFXLu3DlhNtaAAQOydMznn3+ODRs2ICgoCP7+/mjVqhVOnjyJsLAwtGzZUkiGZqRixYro0aMHfH19cffuXbRv3x4tWrRAo0aN4OTkBCcnJzg6OmZ6+6ZWREREps8JpCx+lN6iZPmxEOiyZcug0WjQqlWrLC/Y06xZM2GWnomJCYYNG4YhQ4ZkefCTntjYWHz55ZeIjIzE1KlTs1W6p06dOggODsb169fx4sWLDJP12gHDxwl1bW3zadOm4dq1a/j999+xefNm9O7dG507d8b9+/exbNkyVKlSBZ6enln++QMpM9S1d55k9YuIxo0bw9jYGPHx8Xj8+HGG9TeJiIqizPqlmfHw8BBmVG7fvl1nNmyVKlUwZswYnD17Nt2Z5XK5HL/99hsAYNiwYZg3b57wWMmSJdGqVStUqVIlwzsit23bhkePHqFhw4bYtm2bTn+sYsWKmDFjBlQqFTZu3AgvL688uWtIm+R3dHRE8+bNdR7LSX85IiJCmHgwa9YsnfU2HBwc0KFDB1hbW8Pf3z/TGJcsWZLm77w2KRYfH49FixZBIpFgxYoVQskOIKXPoV1UvGvXrnj06BEuX76Mli1bAvivf96iRQtMmTJFOM7Kygru7u5wd3fHpEmTdMp5GHKMPmfPnsXly5chkUjg6empU9KtcuXKWLRoEQBg3759WLJkCTp16pTunZOGjF1zy6NHjxAfHw+pVJrmGjJESEgIzp07ByDrffouXbpg1apVePbsGQ4cOIDBgwcjODgYly5dQtWqVTMdy1hYWGDUqFFYv349nj17hu7du6Np06Zo0qQJnJ2d4eTkhEqVKmWrrEZW+vS9e/dOd4H37du3Z/l5DLVy5UokJSWhevXq6Nu3b5aO6devH4KDg4X2oEGDMGTIENSpUydXYkpdmzshIQHv37/H3bt3sW3bNsybNw+DBw/W2T91SSV9dzJoH0tMTIRcLhfWxdK+FiMjI/Tv31+4G1QrPj4eEREROH78OL788kt8/fXXOo9rj1cqlejSpYvOlzRAyt+IZ8+e4dChQ/j+++8xdOhQva+/UqVKKFeuHF69eoU7d+7o3PFM4uOMcir2GjVqlKZGF5DSKdR2zD7+ZnPPnj0AUv6AZJR4adWqFSwsLKBQKLK1EraVlZVwq+DH9fhS6969e56sVq9WqxEVFYWLFy9i5MiRuH37NqytrfHDDz+k2Tcn74P21qc6derk6PatUqVKpUmSp7Z//34olUq0bdtWp9OfWs2aNYUE9M2bN9M8rk38pady5cppbj819Jj0+Pj4AEj5eadOkmtpZ+4AKaUpMqrv5+7unu4tZrVq1RI64Rl9g59T2pkaOUnqJSUlITw8HJ6enpg2bRqAlA5nixYtsnS8lZWV0GHRDhSzOvNEa+HChcLgLSkpCWfPnsXvv/+OCRMmoH379mjatCnGjh2LvXv3ppl1nB6FQpHpf2LNGj59+rQwY+njjqI+ZmZmwsBCqVTi2LFjOHjwYJrOaFYplUpMnToVjx8/Rp8+fXQGqlkxdOhQmJiYIDExEcOHD8fBgweFZLh25vuqVauwb98+AEg30W1vb4+1a9cKA4OoqCh4eXnh//7v/7BgwQJUrVoVe/bs0SnTkhnt7e1AyoySRo0aZek4U1NTITFUHGZAERFlp1+qj0KhEPpUY8eOzXbJiJMnTyI6OhomJibZ/lsE/NdnnjhxYoa3/GsTJUFBQWmSMIbQaDSIjY3FjRs3MHHiRBw/fhwmJib48ccf0yRgc9JfPnDgAJRKJRwcHDBixIgcxazvy3A/Pz9ER0ejbt26Okny1EqXLi3ckZpenz4mJibDGeClS5dOt69tyDHp0V5/zZs3z3DdE21Jhzdv3ggztz9myNg1t2j7HpUrVxbu2ssuhUKBly9fYufOnRg5ciSSk5PRvHnzLE+EMDIyEhb13bBhA5KTk4U+/fjx47OU4J42bRrGjBkDY2NjJCcnIyAgAKtXr8aUKVPQuXNnNGrUCMOHD8fWrVuzdMdtVvr0qcsH5acHDx4I197XX38NIyOjLB1namqqs+/Jkyexf/9+vWsAZMWSJUuwf/9+XLx4EUFBQbhy5QoOHTqEOXPmwMHBAUqlEvPnz09z/af+Qkpf2ZTUj6Uef2jvGlWpVGjUqBFWrlyJ48ePIzAwEFeuXMHWrVvh6uoKIKVMTeqSS6mPT0pKQocOHeDp6YlTp04hKCgIly9fhqenJ6pWrQqVSoWff/4501JcwH9j42fPnmW6L+Uvzign0kO7YMXHdb+1Ha+tW7fq/RZY28lN73aaN2/ewM/PD3fu3EF4eDhiY2Mhl8shl8uF59O3CGZuioiIyHCmr4uLC3755Zd0vz3Oyftw69YtABBmeuQVbYwnT57U+22/9r1OHaO7u7tQxmXatGno2bMnGjVqpHfmviHH6Ivp/v37AJDu4qRarq6uMDExgVKpRGBgYJZqN2tJJBJYW1vjw4cPuV7fXuvt27cAkO3SG3PmzMGcOXPSbDc1NcW4ceMwY8aMbJ1v5MiR8PLywo0bN+Dh4YHAwEA0bNgwy2U8tCVExo4dK9Szfvz4sVAPPzY2FhcvXsTFixfh6ekJDw8P1K5dO91zOTo65suscEOoVCr8/vvvAFIW/srOzJELFy5ArVYjOjoa/v7+WLduHTw9PXH8+HHs3bs33YGdPtqOcrNmzdKdhZMZFxcXLF68GHPnzsWrV6+Emp3aep5a2js8tJ/5qd28eROTJ09GUlISVqxYgQYNGuDYsWPw8fHBw4cP8fjxY3Tv3h2//vprlm8t9/X1RXBwMIyMjLL1RQSQUjf90aNHePPmTbaOIyIqLAztl+pz7949oZ9jSN9T25+sU6cOSpYsma1j37x5IyzSN3ny5AzvPtImY5OTkxEdHS2UG8mujN67ihUr4qeffkr3b1VO+svaPn2zZs3yZBKPlrYkQnBwsN4YtQnJj/v0J0+eRFBQEMaMGYMBAwagSZMmKFOmTIbnMeQYfQIDAwFAb9kKR0dHODo6IiIiAoGBgdku6ZbR2DW3GNqn9/DwgIeHR5rtUqkU/fv3x/z587O07pBWnz594OHhgZcvX2Lt2rXw8/ODo6MjevbsmaXjjYyM8N1332Ho0KHw8fHB1atX8fDhQ0RFRQFIScpeu3YN165dw7p167Bs2TK9fbyHDx9mOfb8tnTpUqjVari6umZr1vKuXbug0WiEdcc2btyIHTt2CH368uXLGxTPx1+ImJqaomTJknBxcUGnTp3Qu3dvyGQyrF27VueO1tRfVmV1tn/qz1rtFx7ly5dPU7/ezMwMzZs3x9atW9G3b1+EhYVh3bp1OuvFaY9v3LhxmsVdS5UqhXbt2qFBgwbo3r07oqKi4OnpmemELu0kG/bpCx4myon00C4u8vEsAm0nIavfDH88K+SPP/7Ahg0b0k2EGxkZCYvS5KfU374mJydDrVajZMmS2Lp1a4azbnLyPmiPzc4sTENon0elUmVpdm7qGCdOnIhbt27h9u3bOH78uFAz0tHREQ0aNEDXrl3RsWNHnT/ChhyTkZiYGOG91TcD3cTEBHZ2doiMjDSoxllG13luiY+PB4BsJ0mNjY2FjpBGoxF+XyZMmGDQIir29vYYOHAgtm/fjtWrVwvnyi4nJyed5OabN29w//59BAUF4fjx4wgNDUVERATGjx+PEydOZLnMTkGxd+9ehIaGwsTEBNOnT8/28VKpFPb29ujVqxfc3d3RqVMnhIeHY9OmTdk638OHD7F//35Ur14dHh4e2RpApdazZ0/UrVsXW7ZswY0bN/D27VskJiaiXLlycHNzw6BBg+Dl5YUTJ04IdQ21Xrx4gbFjxyI+Ph5r1qwRBhhjx47F2LFjcf36dfzyyy8ICQnBl19+ia1bt2Zat1GhUAgd7N69e2d7YVjt71FWb/UmIiqMDOmX6qPtDwJI81mfneMN6bemToJkdRJMTmaUp37vtP1fU1NTbNq0KcO67jnpL+d3n16tVmfp/Um9z6BBg3Dp0iWcPn1aZ+HV0qVLo169eujcuTO6d++u09cw5Bh9tH107booGSldujQiIiKKVJ/eyMhIZ3ay9mfTt29foeRMdpiammL06NH49ddfsWbNGgDAF198ke2+YoUKFTBp0iShzOGHDx9w//59BAcHw8/PD/fu3cOHDx8wdepUHDlyxODksFguXryIS5cuAQC++eabbB8vkUhgZ2eHDh06oGXLlujatStevXqFFStWpLv+WE6VL18e/fv3F/rsSqVS+JmmvoNBqVRmOKs89e99enc96MtbmJub4/PPP8fChQvx8uXLdMs26ju+VKlS6NOnD7Zs2YKbN28iOTlZ75eH7NMXXEyUExlA24H88ccf8fnnn2fr2HXr1gl/0GvWrIn+/fujfv36cHR0hK2tLczNzTF8+PB06yPmlY9nt16+fBnjx49HVFQUpk6dik2bNqX7xygn74P2j5ihya+s0sY4duxYzJo1K1vHWltb46+//sLZs2dx6tQp3Lx5E8+ePUNERAQiIiJw9OhRtGrVCp6ensL7Y8gxuUHbIc7vL1iyIzv1mwFgwYIF6NevH4CUTsn48eNx6dIlrF27FnXr1kXr1q2zHcMXX3yBXbt2QalUwsXFJUsLKGamTJkyKFOmDNq2bYspU6Zg0aJF2L59OyIjI3H27Fn06NEjx8+RX+Lj44UZPwMHDszy7cQZKV26NNzc3HDu3Dn4+/tnK1GunfEdGhqq944KQHf24YgRI9IsNFa1alX8/PPPGR7/7bffAkhbY3LDhg2Ij4+Hs7NzurNwmjZtCm9vb/Tu3RvPnj3DypUrsWPHDr2x7tixAxERETA1NcVXX32ld9/0pJ4JT0RUFBnaL9UndYI6q6UHUstJvzX15/bRo0ezdeefIVKXOnz48CE+//xzxMXFYdKkSfD29k737qmc9Jfzu0/ftWtXrFy5MlvHmpiYYO3atbhy5QqOHz+OGzduIDQ0FJGRkThz5gzOnDmDbdu2YfPmzcIXMYYckxuKYp9+4sSJmDp1qtCeM2cO9u/fj3379qFBgwZp6lFnxeDBg7Fu3TpER0fDwcEhyzXO9bG3t0erVq3QqlUrfPnll9i8eTOWLFmC+Ph4HD58OMvlGgsCtVotrKvQunXrTPvSmbGwsEC7du2wc+fOLK03YChtbX3tHaraL5ZS350dGxuLUqVKpXu8tvypmZmZTqLc1tYWgG5t9PSkXlfp/fv3QqJce3xm5SS1x6tUKkRFRen9Yox9+oKLNcqJDKD9YH7x4kW2j92yZQsAoG3btjhw4ABGjRqFRo0aoUyZMjA3N8/VOA3VokUL/PTTTwBSVlafM2dOup21nLwP2m9QP148L7flJEYgZXZs+/btsXjxYvj5+Qm3nmmTn/7+/mkSY4Yckx5bW1thMJd6JtTHFAqF8D5mtfZ5ftJ2UjLrmOhjbGyMP/74AzVr1kRycjKmT5+Oe/fuZfs85cqVE27LzIvObuqa8UBKArcw2bRpEyIjI2FpaZnuIqKG0C6ik5Uaj6lJJBKYmprq/S91skO7Lbu3fd+/f1/4fPj4FmftbdL6khoWFhZo27YtAAiLzGYkJiYG69atA5CyGJwhs++0v0faWWNEREVdVvul+qRODmvLK2RHTvqtqRM6eVU7OiPOzs5YtWoVjI2N8eTJE0yePDnd2diFqU+fk/ewefPm+Omnn+Dr64tbt25h+/bt+L//+z9IpVIEBwcLdxzm9Bh98evr0wNAZGQkgKLbpweAn3/+WVgM9H//+5+woGd2Yxk+fDgAYNSoUcLC7Llp9OjRwmsubH36gwcP4sGDB5BKpdku85cRQ/v02ZF6dnXqRHfqxZv1/Sy0Za4qV66sU6JFO/knPj5eb6mT1F+qps7NaBPmz58/1zurPPXxmfXV2acvuJgoJzKAdpGbU6dOZWuxvQ8fPgjfcg4cODBP6/jl1IABA4SyFL6+vsI30qkZ+j4A/yWeMkss5ZQ2xkuXLuXKH3Vra2t89tln+P3334Vv5tNbLCinxwApM1lq1aoFALh69WqG+928eVP4o5zRAkxi0tbYzGn9NSsrK6xfvx6lS5dGfHw8vvzyS6EzlB0LFizArVu30LVr1ywfox20ZEXqGVWG1KYXS2RkJDZv3gwgpZ57ZrcGZ1VYWBgAoGzZstk6zsXFBUFBQXr/034p4ejoKGzT1iHPqj/++EM4x8f1J7UzprQL+GRE22HO7DN93bp1iImJgbW1NcaPH5+tOLW017yhNVKJiAqjrPRL9XFychL+rV3/JTu0/dYHDx5k+9gKFSoISdITJ05k+/icatWqFX788UcAKV80zJ49O80XDTnpL+dXn167SGdISEiufOFgYWEBNzc3/PTTT+jVqxeAzPvnhhyjpb1rTV+f/sWLF/jnn38AFO0+vYmJCVavXo0aNWpApVJhxowZOndCZNWkSZNw69YtfPHFF1k+5sOHD9kat2r7dtldm0BMiYmJQv+2R48ewqKROWVonz47tL9PVapU0Slf6eTkJCTqr1+/nuHx2jUTGjVqpLM9dWnEs2fPZni89u+DmZmZzuxy7Rg+MTExw4V2Ux/v6OgoxJsR9ukLLibKiQygLQfx/PnzTGcRXLhwQZi5kfo20YxWjH779m2mMw3yy/Tp09G9e3cAwJ9//omdO3fqPG7o+wAAn376KYCUP1QZvRe5sQJ03759IZFIEBcXh4ULF+qdgRQYGKjT8fPy8tJbA1HbcUqdHDPkGH20s5+PHj2KJ0+epHlcpVJh7dq1AFIWmMpuveP8oO1k5MZCN+XLl8e6detgYWGBd+/eYdy4ccKXT1llbGyMEiVKZOu20V27dmHs2LEIDw/PdN+tW7cCSBkEGFIeRiyrV69GfHw87OzsMHbs2Ez3j4mJwenTp/Xuc+rUKaHD2L59+1yJMzetXr1a6Cz/8MMPaRYHaty4MQDg9u3bQo3Hj8lkMiHxoZ0dlZ6IiAjhTpKxY8caNOBKSEgQPhdTd96JiIqDzPql+pQvX15Ilv/999/p7vPmzRu8fv063ce0/dY3b97g4sWL6e6TUb9VIpGgd+/eAAAfH58MjwdSbsXPi8W+Bw0aJPxtP3LkSJr6wjnpL2vfm7t37yI0NDTdY3KjT9+lSxdYWFhArVZj3rx5evvb4eHhOv3mv/76S+8s6PT654Yco482sX79+vUME23a8VTp0qV1FjIsKLR9j9DQ0CyvUZURGxsbrF+/Hg4ODoiPj8eECROyfUeDVCpFiRIlsry4IwCcO3cOQ4YMyVJi/sCBA5DJZACQrYUwxbZ161a8evUKJiYmWS7zd/DgQb2lQIKCgoQ+s6F9el9fX72/U3fu3BHGFh8vzGpqaop27doBSBmXJSUlpTn+woULePr0KYCUz4vUqlatKiTLPT09080/xMbGYs+ePQCAjh076swob968OSpUqAAA+P3339N9/oiICGF9sqwsLKv94jWjtSNIPEyUU6GSnJyMZ8+eZfpfXmvTpo3wB8LT0xPTpk3D7du3oVAooFar8ebNGxw8eBDDhw/HuHHjhNm+VlZWQuJl9erVuHjxIhISEqBSqfD06VN4eHigc+fOwge82CQSCX799VfhG9lffvlFJzFm6PsApMwMsrGxgVwux4QJExAcHAy1Wo2EhAT4+/tj3LhxQomCnKhZs6ZwW97BgwcxevRoBAQEICEhARqNBu/fv8fx48cxceJEDBo0SOe2UQ8PD3To0AFr1qzB/fv3hdf16tUrrF69GleuXAEAnZnJhhyjz+DBg1G9enUoFAqMGjUKR48eRUJCAtRqNR48eIAJEybg2rVrkEql2Z5Jm1+0M4BevHiRK7ct1q1bF7///jukUinCwsIwadKkdDsrue3ixYvo2rUrxo0bhz179iAsLAyJiYlQq9V49+4d/P39MXXqVKHG9+TJk4WZN7mtXbt2cHZ2Fupy51RoaKiQOJg4cWKmMyCAlM7kpEmT0KdPH3h5eeHhw4dQKBRQKBR48uQJ/vjjD8yYMQNAymyzIUOGpDnHy5cvhdeh/T3NbXK5HKdOnRI6xHFxcTh//jy++OIL4Wc1YcIEofOd2hdffCHMZpk0aRJWrVqF58+fQ6VS4cOHDzh27BgGDx6MyMhIWFhY6B2MLF++HAqFAqVLl8bIkSMNei0BAQFQqVSwtLTUmR1JRFQcZNYvzYw2Uezn54fFixfj7du30Gg0ePXqFTZs2IAuXbpkOFO5UaNGaNiwIQBg9uzZOH36NBQKBZKTkxEcHIz//e9/eku6ffnll6hQoQJUKhUmTpyI5cuXIzQ0VFiYMjQ0FJs3b0aXLl2Ev0257ZtvvhGSR5s2bdL5oiEn/eVOnTqhQoUKUKvVmDRpEq5duwaVSgWFQoEbN25g5syZmD9/fo7jL1WqlLDWyZUrVzBkyBCcPn1aSLxFR0fj3LlzmDVrFnr06KGTdN29ezfat2+PZcuW4datW8LrevfuHbZv345Dhw4B0O2fG3KMPu3atYObmxsAYMqUKdizZw9iY2Oh0Wjw9OlTfPfdd8I5v/nmm1xdyyi31KxZE5aWllAoFMLM3ZyoUKECPD09YW5uLkyAMaQ0UnYFBgZiwIAB+Pzzz7F9+3Y8ePAA8fHx0Gg0+PDhA27cuIE5c+YIa94MHDgwzTo2uWX48OFCX9iQO2U/9uHDB2zcuBEAMGTIkDSLUWbku+++Q9euXbFu3ToEBQXp5Ci8vLwwevRoJCcnw8HBIcPPOu3rSK9PDaT8TrVr1w6//vorrl+/DrlcDrVajRcvXmDnzp344osvoFKpUKFChXT7yhMmTICJiQmeP3+OiRMn4sGDB1CpVIiPj8fRo0eF9RXc3NzS/aJp1qxZMDExwevXrzFs2DBcuHABcXFxUCqVuHr1KkaMGIE3b96gZMmSacrVGBsbC2sahYSEYOTIkbhx4wYSExORlJSEM2fOYMSIEYiPj0flypUznXT08OFD4Y5lV1dXvftS/iu4dR+I0vHmzRt06tQp0/1yY+ZqZn777TfMmTMHx48fF/4DUr7ZTv1trLGxsc633PPnz8ewYcPw5s0b4QM09THOzs6Ij483uKZ2bjM1NcWaNWswZMgQPHv2DDNnzsTWrVuF5Keh74ODgwMWL16MadOm4e7du+jXr5/OMVKpFHXq1EFwcHCOFwfS3mK6fft2BAQECLM4jIyMdG69k0gkOrNCzMzM8ObNG/zxxx/C7Wsfv66RI0fqfGNtyDH6WFhYYN26dRg7diyePXsmJB5Tn9PExAQLFixAs2bNsvW+5JfSpUvDxcUFDx48gJ+fH0aPHp3jc7Zv3x6zZ8/GokWLcPPmTcyaNQurVq3K9uJCWVWpUiVYWloiPj4eFy5cwIULF4THPv75mpmZYerUqRg3blyG54uIiMhSh3vixIm5Vitcn2XLlkGlUqF8+fJZXphX+/scEhKic7v1x+9HrVq1sGbNGtEGfPHx8Zg8eXK6sdnY2GDmzJnpJvGBlBmIGzduxLRp0xAZGYm1a9di7dq1kEgkOrPtSpcujRUrVmRYyzw4OBhHjhwBkPIFiqG1CE+ePAkAcHd3N2gxOiKiwi6zfqk+ffr0wZUrV3DgwAF4eXnBy8tL5+9C+fLlYWdnJ5S++NiSJUswdOhQREZGYtKkSUKfQ/v3oF69esIs1Y/7rnZ2dtiyZQumTJmChw8fYv369Vi/fn2acwAQEvK5TSKRYOnSpXjz5g1u376NhQsXokyZMsJM2Zz0l3///XeMGTMGT58+xfDhw9P8ndT33mTHqFGjoFAosHLlSgQHBwt9pI//vn/8PGZmZoiOjsaff/6JP//8M91junTpopOcM+QYfaRSKVatWoUvv/wSgYGBmDdvHubNm6dzTolEgunTp6NPnz7ZeFfyj5GREdzd3XH69Gn4+fkJif+cqF+/Pn777Td89dVXCA8Px6RJk+Dl5ZUnNceBlPWK7OzsEB0djZs3b+qUzvn452tkZITRo0dnusBtVvr0vXv3xsKFCw0PPIvWrl2L2NjYbK83JJFI8PTpU6xYsQIrVqwAkPb9qFChAtasWZOj0pIxMTHYsmWLsG7bx89RtWpVeHp6CmsfpFa9enUsXrwYc+bMwaVLl9C7d+80x1epUgXLly9P97ldXV2xdOlSzJkzB6GhocJYLfXnVZkyZbB27Vo4OjqmOb5z586YM2cOli5ditu3b2Po0KFpPutq1KiBdevWpRt/ato+vYuLS4Fcj6C4Y6KcyECWlpZYtWoVrl69iv379+P27dt4+/YtkpOTUapUKbi4uKBdu3bCbYJaLi4u2L9/P1atWoVLly5BJpPB2toa9evXR8+ePdGjRw+MHDmywCTKgZQ6yxs2bMDgwYMRHR2NCRMmYNeuXahcubLB7wOQcgvb7t27sXbtWty8eRNyuRwODg5o2rQpxowZgwcPHuD777/P0uxWfYyMjPDDDz+gX79+2LVrF27cuIFXr15BoVDA3t4eTk5OaN26Nbp166azuN6RI0dw9OhRnD9/HiEhIYiKioJGo0G5cuXg6uqKwYMHp0lOG3JMZipVqoRDhw5hx44dOHHiBMLDw6FQKPDJJ5+gRYsWGD16tM4CJwVRz5498eDBA+zatQujRo3KlYS29vdk+/btOHHiBBYvXoy5c+fmQrRp9e7dGx06dMCFCxcQEBCAkJAQvHz5EnFxcVCr1bC1tUXVqlXRokULDBw4MEu1+/TdMqyV3dr/hrhx44ZwK+XUqVOznNAuX748jh49itOnT+PmzZt4/Pgx3r9/j+TkZNjb28PFxQVdu3ZFr169RJ0VZWpqiipVquCff/6BRCKBvb09qlatitatW6N3796ZlkBp3Lgxjhw5gt27d+Ps2bMIDQ2FXC6HpaUlqlevjnbt2mHIkCE6C8V9bOnSpdBoNKhcuTIGDhxo0OuQyWQ4duwYgP9u3yYiKo709Uszs3jxYjRu3Bje3t4IDQ2FVCpFjRo10K1bNwwePBhffvllhonyypUr48CBA/Dw8MC5c+fw/v17lChRArVr18bgwYNRu3ZtdOzYEQDSTZJUqlQJ+/btw5EjR3D8+HEEBwcjKioKUqkUn3zyCerXr4/OnTujTZs2OXp/9DEzM8PatWsxaNAgvHjxQviiwdXV1eD+MpCSgDpw4ABWr16NgIAAxMTEwMbGBg0aNMCIESMApCS5M3pvsmP8+PHo1KkTvL29cfXqVbx8+RIJCQmwsbFB1apV0apVK3Tv3h1Vq1YVjvHy8oKfnx/OnDmDe/fu4d27d1Cr1XBwcEC9evXQr1+/NKU1DDkmM/b29vD29sbff/8NX19fPHz4EAkJCfjkk0/QpEkTjBw5skDWJk+tZ8+eOH36NA4dOoSvv/5aZ8FFQ3Xs2BHffvstfv31V9y6dQuzZs3CypUrs1VSJavc3d1x8eJFXLp0CZcuXUJwcDBevHiB2NhYKJVK2NraomLFinBzc8PAgQOzNMbKSp8+p6VqsuL58+fYtWsXAGDMmDHZSmifOXMGp06dwrVr1/D48WO8ffsWCoUCNjY2qFmzJjp06IABAwbo1A3PrmXLluH48eO4du0anjx5IjyHnZ0datasiU6dOmHQoEF6vyTp2bMnnJ2dsWXLFly9ehWRkZEwNTVF5cqV0blzZ4wYMULvhJRu3bqhbt262LJlCy5fvoxXr17ByMgIlStXRseOHTFixAi9n1GjRo1C8+bN4eXlhWvXruHt27cwNTWFk5MTunXrhiFDhmT6JY9KpRLu5GWfvmCSaLK7ZDgRUT7x8PDA6tWr0bhxY/z1119ih0M5EBcXh/bt2yM6OhoeHh7CQJKIskb7eVi9enX4+vrmyeCRiIgMd/36dQwbNgzGxsa4detWns2ILYwOHjyI7777DmXLlsX58+fFDodyQK1Wo3v37ggLC8OcOXOEL0CIKGu0n4d2dnY4ffp0jicFUu7jKIuICiSVSiUskNeiRQuRo6GcsrKyElakX7FihU69eiLS782bN9i8eTOAlLqmTJITERU8vr6+AFLqmTNJrkv73rBPX/hJpVJMmTIFALBu3TphsUsiylx8fDxWrVoFIGUtJCbJCyaOtIhINN7e3li3bh1u3ryJ2NhYABAWRfrqq6/w6NEjWFtbY/DgwSJHSrlh2LBhcHR0RGhoKNasWSN2OESFgkajwdy5cyGXy1G/fv0sLxpGRES56/r161iyZAnOnz+PyMhIaDQaaDQavHjxAsuXL8eePXsAINNF3Iqi48ePY+XKlQgICBAWY1Sr1QgNDcUPP/yAixcvwsTExODFrKlg6dq1K+rXr4+oqCgsWLBA7HCICo1ff/0V//zzDxwdHTFs2DCxw6EMsEY5EYnm8ePH2Llzp9D+eLGgEiVKYMWKFShdurQY4VEus7S0xPLlyzF06FCsX78eDRo0QNu2bcUOi6hAW7lyJfz9/WFlZYXly5fn2YK1RESk3/v377F582bhDh/t3T0fL8TYunVr0WIUS0REBDw9PeHp6QkgpU+vVquFRe5MTEzw888/w8XFRcwwKZdIpVIsX74cffr0gY+PDxo2bJjlxeCJiqu9e/di9+7dMDY2xvLly3Olvj/lDc4oJyLRtG7dGl27dkWVKlVga2sLiUQCa2tr1K5dG2PHjsWRI0fw6aefih0m5SJXV1dMnz4darUaX3/9Na5fvy52SEQFlpeXF9atWwcAWLBgASpWrChyRERExVfNmjUxYMAA1KpVC6VKlYKRkRHMzMxQpUoV9OvXD3v27MHEiRPFDlMUjRs3Ru/eveHk5AQ7OztIJBJYWlqiRo0a+Pzzz3Ho0CH069dP7DApF1WsWFGYTb5w4UIcPXpU5IiICq5jx47hxx9/BABMnz4drq6u4gZEenExTyIiIiIiIiIiIiIq1lh6JYfUag3UGnW+PqdCqYKpiVG+PicVbLwmKD28LuhjvCboY7wm9DM24ntTXLGPTwUBrwlKD68L+hivCfoYrwn99PXxmSjPIbVGjbj4pHx9zkfPXqNm5bL5+pxUsPGaoPTwuqCP8Zqgj/Ga0M/OmvUjiyv28akg4DVB6eF1QR/jNUEf4zWhn74+PmuUExEREREREREREVGxxkQ5ERERERERERERERVrTJQTERERERERERERUbHGRDkRERERERERERERFWtMlBMRERERERERERFRscZEOREREREREREREREVa0yUExEREREREREREVGxxkQ5ERERERERERERERVrTJQTERERERERERERUbHGRDkRERERERERERERFWtMlBMRERERERERERFRscZEOREREREREREREREVa0yUExEREREREREREVGxxkQ5ERERERERERERERVrTJQTERERERERERERUbHGRDkRERERERERERERFWtMlBMRERERERERERFRscZEOREREREREREREREVa0yUExEREREREREREVGxxkQ5ERERERERERERERVrTJQTERERERERERERUbHGRDkRERERERERERERFWtMlBMRERERERERERFRscZEOREREREREREREREVa0yUExEREREREREREVGxxkQ5ERERERVsyckwvnhB7CiIiIiIiCi3JCTAKOCy2FHoYKKciIiIiAos040bYGdvC6vuXSF9ECJ2OERERERElEPmCxfArowDrDt3BGJixA5HYCx2AEREREREH5M+fACbpo2FtrJzF6hdaokYERERERER5YTR1auw7thOaCd9MRawtRUxIl1MlBMRERFRwaFQwLpVCxilmj0eE/IIGkdHEYMiIiIiIiKDxcbCtrYzJP/OHtdIJJCFP4fG3l7kwHSx9AoRERERFQhmK5fDzqGkkCSXb9uBaJmcSXIiIiIiokLKfPa3sHMsKyTJ43yPIiYmrsAlyQHOKCciIiIikRkF3oV1qxZCW9G3H+K9tgESiYhRERERERGRoYwvXoBV965CO2niJCQsWSZiRJljopyIiIiIxJGQAJvGrpC+fClsinkSBs0nZUQMioiIiIiIDCWJioJNtcqQqFQAAI2NDWJCHgHW1iJHljmWXiEiIiKifGf+y0LYlXEQkuRxe/allFlhkpyIiIiIqPDRaGAxZRJsK1cQkuSxJ08j5uWrQpEkBzijnIiIiIjykdH167Bu30ZoJw0fgQSPtSyzQkRERERUSBn7nYDVgH5CO/Gbb5E4/0cRIzIME+VERERElPdiY2FTpxak0VHCppinLwrkIj5ERERERJQ5SeRb2FavKrTV5ctDdusuYGkpYlSGY+kVIiIiIspT5nO+g51jWSFJHufjm1JmhUlyIiIiIqLCR6OB5agROkny2Av+kD14XGiT5AAT5URERESUR4z8L8LOpgTM13gAAJImTES0TI7kNm1FjoyIiIiIiAxh4nMIdrZWMN2/DwCQ8NP/EC2TQ+XaUOTIco6lV4iIiIgoV0mio1NWuk9OBgBorK1TVrq3sRE5MiIiIiIiMoTk1SvYOtcQ2ipnF8T6XwbMzESMKndxRjkRERER5Q6NBhZfTYFtJUchSR7rdwoxEa+ZJCciIiIiKozUapTo31cnSS67eh2x128WqSQ5wEQ5EREREeUC45N+sLO1gpnXFgBA4sxvUm7BbO4ucmRERERERGQIk13esLOzhslJPwBA/NLfEC2TQ12rtsiR5Q2WXiEiIiIig0neRcK2WhWhrS5XDrLbgYV6ER8iIiIiouJM+uwZbOr9lwxPbtQYcSdPAyYmIkaV9zijnIiIiIiyT6OB5aiROkny2Av+kD18wiQ5EREREVFhpFLBqksnnSS57HYg4s5dKPJJcoCJciIiIiLKJpPDPv+udP83ACBh/k9FZqV7IiIiIqLiyHTzJtiVtIHx5UsAgHiPtSllVqpXFzmy/MPSK0RERESUJWlWuneqidjLV4rcIj5ERERERMWF9PFj2DR2FdrKNm0gP+ADGBmJF5RImCgnIiIiIv3UapQYPBAmJ44Lm2RXrxfZRXyIiIiIiIo8hQLWbT+DUVCQsCkm+AE0FSuKGJS4WHqFiIiIiDJksntXykr3/ybJ45csK9Ir3RMRERERFXVmHqth51BSSJLLN21BtExerJPkAGeUExEREVE6JM+fw7ZuLaGd3LAh4k6dLRaL+BARERERFUXS4HuwcW8mtJXde0D+1y5AIhExqoJD9ER5ZGQk1q5dC39/f7x9+xZlypRB69atMXHiRNjb2+vs++zZMyxduhTXrl2DUqmEi4sLpkyZglatWqU5r7+/Pzw8PPDgwQOYmJjAzc0N3377LSpXrqyzn0ajwbZt2+Dt7Y2XL1+iZMmS6Ny5M6ZPnw4rK6s8fe1EREREBY5KBase3WB8yV/YJLt1F+oaNfQcREREREREBVZiIqybNYVReJiwKeZxKDRlyooYVMEjaumVd+/eoV+/fjhy5Ajat2+PGTNmoHHjxvD29sagQYMQFxcn7PvhwwcMHToUd+/exYgRIzB16lQoFAqMHz8e165d0znv1atXMX78eCgUCkydOhUjRozA3bt3MXToUHz48EFnX09PTyxatAhOTk745ptv0LlzZ+zatQtfffVVvrwHRERERAWFqdeWlJXu/02Sx69ek1JmhUlyIiIiIqJCyWzJr7D7pJSQJI/z3p1SZoVJ8jREnVG+a9cuvH37Fnv37kX9+vWF7Q0bNsS8efNw4sQJ9O/fHwCwdetWREVFwcfHB9WrVwcADBs2DD169MCqVauwc+dO4fgVK1agQoUK8Pb2hpmZGQCgW7du6NmzJ7Zv345p06YBAGJjY7Fhwwb06tULy5YtE453dnbGDz/8gICAALi7u+f5+0BEREQkpjQr3X/2GeSHfIvlSvdEREREREWB0a1bsG7zqdBWDPk/xK/fyDIreog+oxwAqlWrprO9UaNGAID4+Hhh25kzZ9CoUSMhSQ4AZmZm6NWrF27evImoqCgAKTPP79y5g549ewpJcgCoXr06GjdujNOnTwvbAgICkJCQgAEDBug8f69evWBqaqqzLxEREVFRI1EqYfVpC50keUzwA8h9jzFJTkRERERUCEnj42FTvYpOkjwm/BniN/zJJHkmRE2Uu7m5AQB+/PFHnTIrly9fhrGxMVq3bg0ASE5ORnh4eJqEOgDUqFEDGo0GoaGhAIAnT55Ao9HoJNRT7xsWFgaVSgUAePToEQCk2dfMzAyVKlXC48ePc+FVEhERERU8pmvXoGkjFxjfvQuAK90TERERERV25vN/QJNm9SCNjAQAxB30Senjl3IQObLCQdTSK926dUNoaCg8PT3h7++P3r17o2LFivD09MSvv/6KSpUqAQBiYmKgVCphbW2d5hx2dnYA/pudrv1/egtx2tnZQalUIiYmBvb29sK+GZ33/fv3mb4GhVKFR89eZ+0F55JERXK+PycVbLwmKD28LuhjvCYIACweP0S9ft2EdlSb9ni8ah0glQK8PnS41U07SYOKB/bxqSDgNUHp4XVBH+M1QQBgdesGao8cLLTfDPocz+YtSGnw+tChr48vaqIcAEqVKoUyZcqgTZs2OHXqFCIiIlC9enVUTDWbSaFQAADMzc3THG9iYgIASExM1NnXwsIizb7GxikvNykpSdhXKpXqlGhJva/2nPqYmhihZuX8LX7/6NnrfH9OKth4TVB6eF3Qx3hNFHOJibBu7gajsFBh0+0zAajapD5qihgWUUHEPj4VBLwmKD28LuhjvCaKuZgY2NasDklCAgBAY26OW2euoHpdJ/bxDSBq6ZU9e/Zg0aJF8PT0xI8//ojTp09j/fr1SExMxIgRIxAUFAQAMDU1BQCo1eo051AqlQD+S6Jr99WWV0ktOTkZAITEuKmpKdRqNTQaTbr7ppeYJyIiIipszJYtTVnp/t8kufyvXYiWyaEs/YnIkRERERERkSEsvp4Bu4rlhSR57HE/xLx9D1U6lTMoa0RNlG/cuBEtW7aEi4sLAEAikaBNmzbw9PREUlISduzYAQCwtbWFsbExZDJZmnNoF/EsVaqUzv8z2tfExAQ2NjY6+8bExKS7r729fU5fIhEREZFojG7fhp1NCVgs+B8AQDFoMKJj4qDs0VPkyIiIiIiIyBDGZ07DzqYEzP7cAABI/GoaomVyqFq0FDmywk/U0iuvX7+Gk5NTmu2Ojo4AINQINzY2RtWqVREYGJhm36CgIEgkEmFBTicnJ0gkEgQGBqJTp046+wYGBqJq1apCCRbtcwcGBuKzzz4T9ouNjcXTp0/h7u6eC6+SiIiIKJ/J5bBpUBfSt2+FTTHhz7iIDxERERFRISV5/x62VSsJbbWDA2SBwUA66zSSYUSdUV6rVi0EBAQgPDxcZ/vx48cBAPXr1xe2tW3bFvfu3cPTp0+FbQqFAqdOnYKrq6sw+9ve3h4NGjSAn5+fUK8cAMLDwxESEoJ27doJ29zd3WFubg5fX980z69SqXT2JSIiIioMzH+aD7tynwhJ8rj9B7nSPRERERFRYaXRwHL8WJ0keezZC5CFPWOSPJeJOqN81qxZGD16NAYOHIj+/fujXLlyuH//Pnx9fVG9enWMHj1a2HfkyJHYt28fRo4ciYEDB8LS0hJHjhxBREQEFixYoHPe6dOnY8yYMRg2bBi6dOmC+Ph47N69G6VKlcLIkSOF/WxtbTF27Fh4eHhAqVTC1dUVERER8Pb2hru7O1q25C0LREREVDgYXQmAdacOQjtpzBdIWPmHiBEREREREVFOGB89Aqshg4R2wtwfkDR7jogRFW2iJsqbNm0Kb29vrF27FgcPHkRcXBzKlCmDESNGYPLkybBOVXzewcEBO3bswLJly+Dl5QWlUgkXFxesX78ezZs31zmvu7s71q1bhzVr1mDVqlUwMTGBm5sbvv322zR1x6dMmQJra2t4e3vj5MmTsLOzw+DBgzF9+vT8eAuIiIiIckYmg61zDUjkcgCAxswMssdh0NjZiRsXEREREREZRPLmNWydqgttVZUqiL16A7CwEDGqok/URDkA1KtXD56enlnat1q1alnet3Xr1mjdunWm+0kkEowaNQqjRo3K0nmJiIiICgqLmV/DbON6oR177ARULVuJGBERERERERlMo4Hl0P+Dqe9hYZPs8hWo69YTMajiQ9Qa5URERESUfcbnzqasdP9vklxY6Z5JciIiIiKiQslk39+ws7USkuQJvyxCtEzOJHk+En1GORERERFlTZqV7u1LQXbvPhfxISIiIiIqpCQvX8K2trPQVtWrh9izFwBTUxGjKp44o5yIiIiooNNoYDlhvO5K92fOQ/b0OZPkRERERESFkUqFEr266yTJZTduIfbSFSbJRcJEOREREVEBZnzsWMotmH/tBAAkzp6bUmalSRORIyMiIiIiIkOY7twOu5I2MDl3DgAQv2JVSpmVms76D6Q8xdIrRERERAWQ5O0b2NaoJrRVlSsj9tpNrnRPRERERFRIScPCYOP6X83x5ObuiDt6HDBmirYg4E+BiIiIqCDRaGA57HOYHvYRNskuBUBdr76IQRERERERkcGSk2HVsT2Mb94QNskCg6GuUkW8mCgNll4hIiIiKiBM9u9LKbPyb5JcWOmeSXIiIiIiokLJdMN62NnbCkly+fqNKX18JskLHM4oJyIiIhKZJCICtrVqCm1VnTqIPe9frBbxibh3GI/OrkBizCuY25ZDzbYz4Fi3p9hhEREREREZRPrwAWyaNhbayo6dIN+7D5AWn3nLha2Pz0Q5ERERkVjUapTo2xsmZ88Im2Q3bhW7RXwi7h3GvSPzoFYmAgASY/7BvSPzAKBAd6SJiIiIiNJISoJ1qxYwevhA2BTz4DE05cuLGFT+K4x9fCbKiYiIiERgunM7LCdOENrxy1dCMXaciBHlj/RmlTw6u0LoQGuplYl4dHZFge1EExERERF9zGzlcljMnye05dt3Qtm7j3gB5ZOi0sdnopyIiIgoH0nDw2HToK7QTm7WHHHHThSLle4zmlXycQdaKzHmVX6GR0RERERkEKO7d2D9aUuhrejXH/FbtgISiYhR5Y+i1Mcv+iMyIiIiooIgORlWnTrA+MZ1YZPs7j2oq1YVMaj8ldGsEkiMAI0qzf7mtuUKXV1DIiIiIipGEhJg09gV0pcvhU0xoeHQlP5ExKDyV1Hq4xef6vFEREREIjHduCFlpft/k+TydRtSVrovRknyiHuHkRjzT/oPalSQmpjrbJKamKN0jda4d2Tev8dphNkpEfcO533ARERERER6mC9cALsyDkKSPG7PPkTL5MUqSV7U+vhMlBMRERHlEemjh7CzKQHLmTMAAMr2HRAdHQvl50NFjix/aW/HzIi5bXnU7b4A5rblAUiEduST8xnWNSQiIiIiEoPRtWuwsykB86W/AgCSRoxEdEwckrt0ETmy/FUU+/gsvUJERESU2xQKWH/aAkYhIcKmmJBH0Dg6ihiUeNK7HVNLamIu3Gr58e2WgQe/TfeYglzXkIiIiIiKqNhY2NZ2hiQmBgCgkUggC38Ojb29yIGJoyj28TmjnIiIiCgXma1cDjuHkkKSXL51e8otmMU0SQ7o7/TW7b4gw3qE5rblsrWdiIiIiCgvmM/+FnaOZYUkeZzvUcTExBXbJDlQNPv4TJQTERER5QKjwLuwsykBi/kptx8q+vZDdEwclH37iRyZ+DLuDJfXu2hPzbYz0q1rWLPtjFyNj4iIiIgoPcYXL6SUWVm7BgCQNHESomVyJH/WWuTIxFcU+/gsvUJERESUEwkJsGnSENIXL4RNMU/CoPmkjIhBFSw1287AvSPzdG7NzEpnWNvBfnR2BRJjXsHctpxwCycRERERUV6RREXBplplSFQqAIDGxgYxIY8Aa2uRIys4imIfn4lyIiIiIgOZ/7IQ5ksWC+243X8juWtXESMqmHLSGU6vriERERERUZ7QaGAxdTLMtm0VNsWePA1Vs+YiBlUwFcU+PhPlRERERNlkdP06rNu3EdpJw4YjYY0nIJGIF1QBV1A7w0REREREAGDsdwJWA/4rm5j4zbdInP+jiBEVfEWtj89EOREREVFWxcXBprYLpNFRwqaYpy+K9SI+RERERESFmeRdJGyrVRHa6vLlIbt1F7C0FC8oEgUX8yQiIiLKAvPv58CufBkhSR7n44tomZxJciIiIiKiwkijgeWokTpJ8tgL/pA9eMwkeTHFRDkRERGRHkb+F1NWul/9BwAgafyElJXu27QVOTIiIiIiIjKEic8h2NlawXT/3wCAhB9/QrRMDpVrQ5EjIzGx9AoRERFROiTR0Skr3ScnAwA01tYpK93b2IgcGRERERERGULy6hVsnWsIbZWzC2L9LwNmZiJGRQUFZ5QTERERfcRi2lTYVnIUkuSxfqcQE/GaSXIiIiIiosJIrUaJAf10kuSyq9cRe/0mk+QkYKKciIiI6F/GJ/1gZ1MCZls2AwASZ36Tcgtmc3eRIyMiIiIiIkOY7PKGnZ01TPxOAADilyxDtEwOda3aIkdGBQ1LrxAREVGxl2al+7JlIbsdCJQoIV5QRERERERkMOmzZ7Cp918yPLlRY8SdPA2YmIgYFRVknFFORERExZdGA8sxo9KudP8olElyIiIiIqLCSKWCVZdOOkly2e1AxJ27wCQ56cVEORERERVLJod9Ula6/3svACBhPle6JyIiIiIqzEw3b4JdSRsYX74EAIj3WJtSZqV6dZEjo8KApVeIiIioWEmz0r1TTcRevsJFfIiIiIiICinp48ewaewqtJWffQb5IV/AyEi8oKjQYaKciIiIige1GiUGD4TJiePCJtnV61zEh4iIiIiosFIqYdX2MxgHBgqbYoIfQFOxoohBUWHF0itERERU5Jns2Z2y0v2/SXKudE9EREREVLiZeayGXSk7IUku37QF0TI5k+RkMM4oJyIioiJL8vw5bOvWEtrJDRsi7tRZLuJDRERERFRISYPvwca9mdBWdu8B+V+7AIlExKioKGCinIiIiIoelQpWPbrB+JK/sEl26y7UNWroOYiIiIiIiAqsxERYN2sKo/AwYVPM41BoypQVMSgqSlh6hYiIiIoUU68tKSvd/5skj1+9JqXMCpPkRERERESFktnSJbD7pJSQJI/z3p1SZoVJcspFnFFORERERYL0yRPYNGogtJWffga5D1e6JyIiIiIqrIxu3YJ1m0+FtmLwEMRv+JNlVihPMFFOREREhZtSCat2rWF8966wKeZeCDSVKokYFBERERERGUwuh039OpBGRgqbYsKfQVPKQcSgqKhj6RUiIiIqtEzXrklZ6f7fJLmw0j2T5EREREREhZL5j/NgV+4TIUked9AnpY/PJDnlMc4oJyIiokJHej8YNs3dhLayazfIvXcDUs4BICIiIiIqjIwCLsO6c0ehnfTFWCSsWCViRFTcMFFOREREhUdiIqzdm8Eo9ImwKebRE2jKlhMxKCIiIiIiMlhMDGxrVockIQEAoDEzg+xxGDR2duLGRcUOp10RERFRoWC2bGnKSvf/Jsnlf+1KuQWTSXIiIiIiokLJ4usZsKtYXkiSxx73Q0zkBybJSRScUU5EREQFmtHt27Bu3UpoKwYNRvzGTVzpnoiIiIiokDI+ewZWvXsK7cSvpiFx4SIRIyJiopyIiIgKqvh42DSoC+mbN8ImrnRPRERERFR4Sd6/h23VSkJbXcoBsqBgwMpKxKiIUrD0ChERERU45j/Nh13Z0kKSPG7/Qa50T0RERERUWGk0sBw/VidJHnvmPGThz5gkpwKDM8qJiIiowDC6EgDrTh2EdtKYL5Cw8g8RIyIiIiIiopwwPnYUVoMHCu2EuT8gafYcESMiSh8T5URERCQ+mQy2zjUgkcsBABpTU8iehHMRHyIiIiKiQkry5jVsnaoLbVWVKoi9egOwsBAxKqKMsfQKERERicpi5tewq1BOSJLHHj2OmHdRTJITERERERVGGg0sPx+ikySXXb6C2MBgJsmpQGOinIiIiERhfO4s7GxKwGzjegApK91Hy+RQtfpU5MiIiIiIiMgQJvv+hp2tFUx9DwMAEn5ZhGiZHOq69USOjChzLL1CRERE+Ury4QNsq1QU2mr7UpDdu89FfIiIiIiICinJy5ewre0stFX16iH27AXA1FTEqIiyhzPKiYiIKH9oNLCY+KVOkjz29DnInj5nkpyIiIiIqDBSqVCiV3edJLnsxi3EXrrCJDkVOkyUExERUZ4zPnYMdrZWMNu5AwCQOHtuSpmVpk1FjoyIiIiIiAxhunM77ErawOTcOQBA/IpVKWVWajrrP5CogGLpFSIiIsozkrdvYFujmtBWVa6M2Gs3uYgPEREREVEhJQ0Lg43rfzXHk5u7I+7occCYaUYq3HgFExERUe7TaGA5YhhMDx0UNskuBUBdr754MRERERERkeGSk2HVqQOMb1wXNskCg6GuUkW8mIhyEUuvEBERUa4y2b8vZaX7f5PkCQsWptyCySQ5EREREVGhZLphPezsbYUkuXzdhpQ+PpPkVIRwRjkRERHlCklEBGxr1RTaqjp1EHven4v4EBEREREVUtKHD2DTtLHQVnbsBPnefYCUc2+p6GGinIiIiHJGrUaJvr1hcvaMsEl24xYX8SEiIiIiKqwUCli3agGjByHCppgHj6EpX17EoIjyFr/+ISIiIoOZ7NwBOztrIUkev3wlV7onIiIiIirEzFYuh51DSSFJLt+2A9EyOZPkVORxRjkRERFlmzQ8HDYN6grt5GbNEXfsBFe6JyIiIiIqpIzu3oH1py2FtqJff8Rv2QpIJCJGRZR/OJolIiKirEtOhlXnjjC+fk3YJLt7D+qqVUUMioiIiIiIDJaQAJvGrpC+fClsigkNh6b0JyIGRZT/WHqFiIiIssR044aUle7/TZLLPdenlFlhkpyIiIiIqFAyX7gAdmUchCR53J59KWVWmCSnYogzyomIiEgv6aOHsGnSSGgr23eAfN8BrnRPRERERFRIGV27BusObYV20vARSPBYyzIrVKwxUU5ERETpUyhg/WkLGIWkWuk+5BE0jo4iBkVERERERAaLjYVNHRdIo6MBABqJBLLw59DY24sbF1EBwKlgRERElIbZHytTVrr/N0ku37o95RZMJsmJiIiIiAol8znfwc6xrJAkjzt8BDExcUySE/2LM8qJiIhIIA0KhE1Ld6Gt6N0H8dt28BZMIiIiIqJCyvjiBVh17yq0kyZMRMLS30SMiKhgYqKciIiIUla6b9oI0ufPhU0xT8Kg+aSMiEEREREREZGhJFFRsKlWGRKVCgCgsbFBTMgjwNpa5MiICqYCUXpFqVRi27ZtGDJkCJo2bYq6deti1qxZOvs8e/YMkydPRtOmTeHq6oohQ4bA398/3fP5+/tjyJAhcHV1RdOmTTF58mQ8e/YszX4ajQZbt25Fly5dULduXXz66adYuHAh4uLi8uR1EhERFUTmi35JWen+3yR53O6/U8qsMElORERERFT4aDSwmDoZtpUrCEny2JOnEfPyFZPkRHqIPqM8OjoaY8aMwcOHD9GpUyd06dIFCQkJUP37iwwAHz58wNChQwEAI0aMgKWlJY4cOYLx48fDy8sLbm5uwr5Xr17F+PHj4eLigqlTpyI+Ph67d+/G0KFD4ePjA/tUdZc8PT2xatUqdOrUCUOGDMHLly+xa9cuhIWFYfPmzfn3JhAREYnA6Pp1WLdvI7SThg1HwhpPllkhIiIiIiqkjP1OwGpAP6Gd+M0sJM7/SbyAiAoR0RPlc+fORVhYGHbu3AlXV9d099m6dSuioqLg4+OD6tWrAwCGDRuGHj16YNWqVdi5c6ew74oVK1ChQgV4e3vDzMwMANCtWzf07NkT27dvx7Rp0wAAsbGx2LBhA3r16oVly5YJxzs7O+OHH35AQEAA3N3dQUREVOTExcGmtguk0VHCppinL7iIDxERERFRISV5FwnbalWEtrp8echu3QUsLcULiqiQEbX0SlBQEE6fPo1JkyZlmCQHgDNnzqBRo0ZCkhwAzMzM0KtXL9y8eRNRUSkD/Q8fPuDOnTvo2bOnkCQHgOrVq6Nx48Y4ffq0sC0gIAAJCQkYMGCAznP16tULpqamOvsSEREVFebfz4Fd+TJCkjzOxzelzAqT5EREREREhY9GA8tRI3WS5LEX/CF78JhJcqJsEjVRfvToUUgkEgwZMgQAIJPJkJSUpLNPcnIywsPDUa1atTTH16hRAxqNBqGhoQCAJ0+eQKPR6CTUU+8bFhYmlHR59OgRAKTZ18zMDJUqVcLjx49z/gKJiIgKCCP/i3CrVx3mq/8AACSNn4BomRzJbdqKHBkRERERERnC5LAP3OrXgOn+vwEACT/+hGiZHCrXhiJHRlQ4iVp6JTg4GKVLl8bq1avh4+OD6OhoAClJ7blz56Jly5aIiYmBUqmEdTqLDdjZ2QEA3r17p/N/KyurdPdVKpWIiYmBvb29sG9G533//n2WXoNCqcKjZ6+ztG9uSVQk5/tzUsHGa4LSw+uCAMBIJkPD1m6QJisBAKoSVrh9yh9qK2uA10exx88J/dzqpp2oQcUD+/hUEPCaoPTwuiAAMHn7Bg3btxDaCVWq4d4+X2hMzdjHJ35OZEJfH1/URPn79+8RFRWFV69eYdq0aXBwcEBERAS2b9+OcePGYdu2bXB0dAQAmJubpznexMQEAJCYmAgAUCgUAAALC4s0+xobp7xU7Yx1hUIBqVSqU6Il9b7ac2bG1MQINSuXzdK+ueXRs9f5/pxUsPGaoPTwuiCLaVNhtuW/xanvb9uN8n16oIaIMVHBws8JovSxj08FAa8JSg+vi2JOrUaJQQNg4ndC2BR04Bgqtv8MTiKGRQULPycMJ2rpFaVSicaNG8PDwwOff/45OnXqhNGjR8Pb2xvGxsbYunUrTE1NAQBqtTrd44H/kujafbXlVVJLTk4GACExbmpqCrVaDY1Gk+6+6SXmiYiICgPjUydhZ1NCSJInzvwG0TI54ho2ETkyIiIiIiIyhMnuXbCzsxaS5PFLliFaJkdCjZoiR0ZUdIg6o9za2hoJCQlptpcpUwYuLi4IDw+Hra0tjI2NIZPJ0uynXcSzVKlSOv/PaF8TExPY2Njo7BsTEyOUcEm9r4ODg+EvjIiISASS9+9gW7Wy0FaXLQvZ7UCgRAkRoyIiIiIiIkNJnz2DTb3aQju5YSPEnToD/FtlgYhyj6gzymvWrInQ0FBhZnhqMTExsLS0hLGxMapWrYrAwMA0+wQFBUEikQgLcjo5OUEikaS7b2BgIKpWrSqUYHFychK2pxYbG4unT58KjxMRERV4Gg0sx4zSSZLHnveH7FEok+RERERERIWRSgWrLp10kuSyW3cRd/4ik+REeUTURHmXLl0QFxeHbdu26Wy/desWnj17hk8//RQA0LZtW9y7dw9Pnz4V9lEoFDh16hRcXV1hb28PALC3t0eDBg3g5+cn1CsHgPDwcISEhKBdu3bCNnd3d5ibm8PX11fnuY8fPw6VSqWzLxERUUFlctgHdrZWMP17LwAgYf6/K9035Er3RERERESFkanXFtiVtIHx5UsAgHiPtYiWyaGuwdWGiPKSqKVXWrdujc6dO2Pp0qW4e/cuGjZsiH/++Qd///03nJycMHr0aADAyJEjsW/fPowcORIDBw6EpaUljhw5goiICCxYsEDnnNOnT8eYMWMwbNgwdOnSBfHx8di9ezdKlSqFkSNHCvvZ2tpi7Nix8PDwgFKphKurKyIiIuDt7Q13d3e0bNkyX98LIiKi7JC8fgXbmv91lFU1nBAbcBVIZ5FqIiIiIiIq+KSPH8OmsavQVn72GeSHfAEjI/GCIipGRE2UA8CKFSuwbds27Ny5E2fOnIG9vT0GDBiAr776ClZWVgAABwcH7NixA8uWLYOXlxeUSiVcXFywfv16NG/eXOd87u7uWLduHdasWYNVq1bBxMQEbm5u+Pbbb4WZ51pTpkyBtbU1vL29cfLkSdjZ2WHw4MGYPn16fr18IiKi7FGrUeL/BsPk2FFhk+zKNahr1xExKCIiIiIiMphSCat2rWF8966wKSb4ATQVK4oYFFHxI3qi3MjICKNHjxZmj2ekWrVq8PT0zNI5W7dujdatW2e6n0QiwahRozBq1KgsnZeIiEhMJnt2o8TYMUI7fskyKCZOEjEiIiIiIiLKCTOP1bCYO1toyzdtgXLgIBEjIiq+RE+UExERkX6S589hW7eW0E5u2BBxp85yER8iIiIiokJKej8YNs3dhLayew/I/9oFSCQiRkVUvDFRTkREVFCpVLDq2R3G/heFTbJbd7mIDxERERFRYZWYCOtmTWEUHiZsinn0BJqy5UQMiogAQCp2AERERJSW6VavlJXu/02Sx69ew5XuiYiIiIgKMbOlS2D3SSkhSR7nvRvRMjmT5EQFBGeUExERFSDSJ09g06iB0FZ++hnkPlzpnoiIiIiosDK6dQvWbT4V2orBQxC/4U+WWSEqYJgoJyIiKgiUSli1bwPjO3eETTH3QqCpVEm8mIiIiIiIyHByOWwa1IX07VthU0z4M2hKOYgYFBFlhKVXiIiIRGa6dg3sStkJSXL5xk0pt2AySU5EREREVCiZ/zgPduU+EZLkcfsPpvTxmSQnKrA4o5yIiEgkaVa679oNcu/dgJTfYxMRERERFUZGAZdh3bmj0E76YiwSVqwSMSIiyiomyomIiPJbUhKsm7vBKPSJsIkr3RMRERERFWIyGWxrVockPh4AoDEzg+xxGDR2duLGRURZxilrRERE+cjst2WwK20vJMnlf+3iSvdERERERIWYxcyvYVehnJAkjz12AjGRH5gkJypkOKOciIgoHxjdvg3r1q2EtmLQYMRv3MSV7omIiIiICinjs2dg1bun0E78ahoSFy4SMSIiygkmyomIiPJSfHzKSvdv3gibuNI9EREREVHhJXn/HrZVKwltdSkHyIKCASsrEaMiopxi6RUiIqI8Yv6/H2FXtrSQJI/bd4Ar3RMRERERFVYaDSzHj9VJkseeOQ9Z+DMmyYmKAM4oJyIiymVGV6/AumN7oZ005gskrPxDxIiIiIiIiCgnjI8dhdXggUI7Yc73SJozV8SIiCi3MVFORESUW2Qy2DrXgEQuBwBoTE0hexLORXyIiIiIiAopyds3sK1RTWirqlRB7NUbgIWFiFERUV5g6RUiIqJcYDHrm5SV7v9NkscePY6Yd1FMkhMRERERFUYaDSyH/p9Oklx2+QpiA4OZJCcqopgoJyIiygHjc2dhZ1MCZus9AQCJU6YiWiaHqtWnIkdGRERERESGMNn3N+xsrWB62AcAkPDLIkTL5FDXrSdyZESUlzItvXL9+nWDT960aVODjyUiIirIJB8+wLZKRaGtti8F2b37XMSHiCgfcaxCRES5SfLyJWxrOwttVb16iD17ATA1FTEqIsovmSbKhw8fDolEYtDJQ0JCDDqOiIiowNJoYDFpAsx27hA2xZ4+BxUTLkRE+Y5jFSIiyhVqNUr07QWTs2eFTbIbt6Cu6aznICIqajJNlPfo0UOn8/nixQvcuXMHXbt2hbFx2sNv3ryJqKgodOjQIXcjJSIiEpnx8eOwGtRfaCfOnovEud+LGBERUfHGsQoREeWU6c7tsJw4QWjHL18JxdhxIkZERGLJNFH+22+/6bRnz54NuVyOFStWpLv/1atXMXLkSAwaNCh3IiQiIhKZJPItbKtXFdrqSpUgu36Li/gQEYmMYxUiIjKUNCwMNq7/1RxPbu6OuKPHgXS+aCWi4iHbi3leu3YN9eplvHhBs2bN0KRJE6xfvz5HgREREYlOo4Hl8KE6SXLZpQDI7oUwSU5EVABxrEJERJlKToZVuzY6SXJZYDDi/E4xSU5UzGU7Uf7u3TtYWlrq3cfZ2Rl37twxNCYiIiLRmRzYn7LS/aGDAICEBQtTVrqvV1/cwIiIKEMcqxARkT6mGzfAzt4WxjdSFoOWr9uQ0sevUkXcwIioQMj2V2WffPIJbt++rXefiIgIqFQqg4MiIiISiyQiAra1agptVZ06iD3vz5XuiYgKAY5ViIgoPdKHD2DTtLHQVrbvAPm+A4A02/NHiagIy/YnQrdu3XD//n2sWLECSqUyzeMXLlyAv78/ateunSsBEhER5Qu1GiV699RJkstu3EJswDUmyYmICgmOVYiISIdCAWu3JjpJ8pgHjyE/cIhJciJKI9szysePH49Tp05hw4YNOHToEJo0aYIyZcogNjYWDx48QFBQEIyMjDB9+vQ8CJeIiCj3mezcgRITvxTaXOmeiKhw4liFiIi0zFYuh8X8eUJbvm0HlH36ihgRERV02U6UW1lZwdvbG4sXL4avry98fX11Hq9RowZ++OEHNG3aNNeCJCIiygvS8HDYNKgrtJPdmiHuuB8X8SEiKqQ4ViEiIqPAu7Bu1UJoK/r2Q7zXNkAiETEqIioMDMoE2Nra4tdff8XcuXMRGBiIqKgoWFhYoFq1aqhWrVpux0hERJS7kpNh1aUTjK9dFTbJ7t6DumpVEYMiIqLcwLEKEVExlZAAm8aukL58KWyKCQ2HpvQnIgZFRIVJjqbM2djYoFWrVrkVCxERUZ4z/XMjLL+eLrTlnuuhHDpMvICIiChPcKxCRFR8mP+yEOZLFgvtuD37kNyli4gREVFhZHCi/NatW/D390dkZCRatGiBrl27AgAuXbqEyMhIdOjQAVZWVrkWKBERUU5IHz2ETZNGQlvZrj3k+w9yER8ioiKIYxUiouLB6Pp1WLdvI7STho9AgsdallkhIoNkO1Gu0Wjw3Xff4fDhw9BoNJBIJLC2thY6n3K5HHPmzIFCocCgQYNyPWAiIqJsUShg3boVjIKDhU0xIY+gcXQUMSgiIsoLHKsQERUTsbGwqVML0ugoAIBGIoEs/Dk09vYiB0ZEhVm2p9Ft27YNPj4+6N69O/bs2QONRqPzeMeOHeHg4ICTJ0/mWpBERESGMPtjJewcSgpJcvnW7YiWyZkkJyIqojhWISIq+sznfAc7x7JCkjzu8BHExMQxSU5EOZbtGeX79+9HtWrVsGzZMkjSuZVFIpHAzc0Nd+7cyY34iIiIsk0aFAiblu5CW9G7D+K37eAtmERERRzHKkRERZeR/0VYd/uv7njShIlIWPqbiBERUVGT7UT5s2fP0KNHj3Q7nlp2dnaIjIzMUWBERETZlpAAm6aNIH3+XNgU8yQMmk/KiBgUERHlF45ViIiKHklUFGyqVYZEpQIAaKytERPyCLCxETkyIipqsl16RSqV6u14AkBERAQsLCwMDoqIiCi7zBf9ArsyDkKSPG733yllVpgkJyIqNjhWISIqQjQaWEydDNvKFYQkeezJ04iJeM0kORHliWzPKK9Rowbu3r2b4eORkZG4evUq6tWrl6PAiIiIsiLNSvfDhiNhjSfLrBARFUMcqxARFQ3GJ/1g1b+v0E78ZhYS5/8kXkBEVCxke0Z5nz598OjRI3h5eaV57MOHD5g5cyYSExPRq1ev3IiPiIgofXFxsKlcUSdJHvP0BRLWrmOSnIiomOJYhYiocJO8i4SdTQkhSa4uVw7RryOZJCeifJHtGeVDhgzB2bNnsWTJEhw+fBgSiQTnzp1DSEgIbt++jcTERLi7u6N///55ES8RERHMv58D89V/CO04H18kt2krYkRERFQQcKxCRFRIaTSwHD0Kpvv/FjbFXvCHyrWhiEERUXFjUI3ydevWYfLkyfjnn3+g0WgQFhaGgIAASKVSjB49GuvXr8+0NiAREVF2GV3yh51NCSFJnjR+AqJlcibJiYgIAMcqRESFkclhH9jZWglJ8oQff0K0TM4kORHlu2zPKAcAIyMjTJkyBZMnT0Z4eDiio6NhZWWFatWqwdjYoFMSERFlSBIdDZvqVSBRKgEAGisrxDx4zEV8iIgoDY5ViIgKB8mrV7B1riG0VU41EXv5CmBmJmJURFScZbunePDgQTg5OaFOnTqQSCSoVq1amn38/f1haWmJRo0a5UqQRERUfFlM/wpmmzcJ7Vi/U1A1dxcxIiIiKqg4ViEiKgTUapQYPBAmJ44Lm2RXr0Ndq7aIQRERGVB6Zfbs2Thy5IjefXbu3IkffvjB4KCIiIiMT52EnU0JIUmeOPOblFswmSQnIqIMcKxCRFSwmezeBTs7ayFJHr9kGaJlcibJiahAyJN7D0uXLo2AgIC8ODURERVxkvfvYFu1stBWly0L2e1AoEQJEaMiIqKigmMVIqL8J3n+HLZ1awnt5IaNEHfqDGBiImJURES6sj2jPDMKhQJ3796FlZVVbp+aiIiKMo0Gll+M1kmSx573h+xRKJPkRESUKzhWISLKZyoVrLp00kmSy27dRdz5i0ySE1GBk6UZ5XPmzNFpX7x4EVFRUWn2UyqVuHXrFl69eoVu3brlToRERFTkmfgeRonPhwjthPk/IembWSJGREREhQXHKkREBZOp1xZYfjVFaMd7rIVixEgRIyIi0i9LifIDBw4I/5ZIJHj8+DEeP36c4f61a9fGd999l/PoiIioSJO8fgXbmqlWuq/hhNiAq1zpnoiIsoxjFSKigkX6+DFsGrsKbeVnn0F+yBcwMhIvKCKiLMhSonzLli0AAI1GgzFjxqBr164YNGhQmv2MjIxQpkwZVK5cOc1jREREArUaJf5vMEyOHRU2ya5cg7p2HRGDIiKiwohjFSKiAkKphFW71jC+e1fYFBP8AJqKFUUMiogo67KUKHd3dxf+PWXKFDRq1EhnGxERUVaZ7NmNEmPHCO2ExUuQNHmKniOIiIgyxrEKEZH4zDxWw2LubKEt37QFyoFpv7QkIirIsr2Y5/Dhw/H27VucP38+3cdv3bqF06dPIyEhIcfBERFR0SF5/hx2NiWEJHlyw4aIfh/NJDkREeUajlWIiPKX9H4w7GxKCElyZfceiI6JY5KciAqlbCfK9+3bhzlz5qS7QA4AvH79GlOmTIGPj0+OgyMioiJApYJVty7prHTvz5XuiYgoV3GsQkSUTxITYe1aHzbN3YRNMY+eQO69G5BIRAyMiMhw2U6Unzp1CmXLlkXv3r3Tfbxbt24oV64cfH19cxwcEREVbqbbtsKupA2M/S8CAOJXr0G0TA51jRqZHElERJR9HKsQEeU9s6VLYPdJKRiFhQIA4rx3I1omh6ZsOZEjIyLKmSzVKE/t2bNn+OyzzyDR8w1h06ZNcenSpRwFRkREhZc0NBQ2DesLbeWnn0Huw5XuiYgob3GsQkSUd4xu3YJ1m0+FtmLwEMRv+JMzyImoyMh2ojwuLg4lSpTQu4+1tTVkMpnBQRERUSGlVMKqQ1sY374tbIq5FwJNpUoiBkVERMUFxypERHlALodNg7qQvn0rbIoJfwZNKQcRgyIiyn3ZLr1SoUIFBAUF6d3n3r17KFu2rMFBERFR4WO6dg3sStkJSXL5xk0pt2AySU5ERPmEYxUiotxl/tN82JX7REiSx+0/mNLHZ5KciIqgbCfK27dvj8DAQOzcuTPdx729vXH37l18+umn6T5ORERFizTkPuxsSsBy9rcAAGXXboiOjoVy8BCRIyMiouKGYxUiotxhFHAZdjYlYL78dwBA0pgvEC2TI7lDR5EjIyLKO9kuvfLFF1/A19cXCxcuxOHDh9GsWTN88sknePfuHQICAnD37l3Y2Nhg3LhxeREvEREVFElJsG7uBqPQJ8KmmEdPuIgPERGJhmMVIqIckslgW7M6JPHxAACNmRlkj8OgsbMTNy4ionyQ7US5ra0ttm3bhm+++QZ37tzBnTt3IJFIoNFoAABOTk5YtmwZb2ckIirCzH5bBouffxLa8r92Qdmjp2jxEBERARyrEBHlhMXMr2G2cb3Qjj12AqqWrUSMiIgof2U7UQ6k1P7btWsXgoODcefOHcTGxsLa2hq1a9eGq6ur3lXmiYio8DK6cxvWn/3XWVYMGIj4TVu40j0RERUYHKsQEWWP8dkzsOr936SXxK+mIXHhIhEjIiISh0GJcq06deqgTp06uRULEREVVPHxsHGtB+nr18ImrnRPREQFGccqRET6Sd6/h23VSkJbXcoBsqBgwMpKxKiIiMST7cU8iYioeDH/+SfYlS0tJMnj9h3gSvdERERERIWVRgPLCeN1kuSxZ85DFv6MSXIiKtayNKN8xIgR6N69OwYPHow5c+Zk6cQSiQSLFvFWHSKiwsro6hVYd2wvtJNGj0HCqtUiRkRERJQWxypERFlnfOwYrAYPENqJs+cice73IkZERFRwZClRfu3aNdStWxcAcODAgSydmJ1PIqJCSiaDrYsTJHFxAACNiQlkoU+50j0RERVIHKsQEWVO8vYNbGtUE9qqKlUQe/UGYGEhYlRERAVLlhLlixcvhpOTEwBgy5YteRoQERGJx2LWNzBb7ym0Y48eh6rVpyJGREREpB/HKkREemg0sBz2OUwP+wibZJevQF23nohBEREVTFlKlPft21f4t7u7e54FQ0RE4jA+dxZWvXoI7cQpU5G46FcRIyIiIsoajlWIiNJnsn8fSowaIbQTflmEpKnTRIyIiKhgy1KinIiIiibJhw+wrVJRaKvtS0F27z4X8SEiIiIiKqQkL1/Ctraz0FbVqYPY8/6AqamIURERFXyZJsr/+ecfg09evnx5g48lIqI8pNHAYvJEmO3YLmyKPX0OqqZNRQyKiIgoezhWISJKRa1Gib69YHL2rLBJduMW1DWd9RxERERamSbK27VrB4lEku0TSyQS3L9/P9vHqdVqfPnll7hw4QJ27tyJJk2aCI89e/YMS5cuxbVr16BUKuHi4oIpU6agVatWac7j7+8PDw8PPHjwACYmJnBzc8O3336LypUr6+yn0Wiwbds2eHt74+XLlyhZsiQ6d+6M6dOnw4ozKomoCDI+fhxWg/oLba50T0REhVV+j1WIiAoq053bYTlxgtCOX74SirHjRIyIiKjwyTRR3rBhQ53O54cPH/D06VPUr18fxsZpDw8NDUVSUhJq165tUEDLli3DhQsX0mz/8OEDhg4dCgAYMWIELC0tceTIEYwfPx5eXl5wc3MT9r169SrGjx8PFxcXTJ06FfHx8di9ezeGDh0KHx8f2NvbC/t6enpi1apV6NSpE4YMGYKXL19i165dCAsLw+bNmw16DUREBZEk8i1sq1cV2upKlSC7fosr3RMRUaGV32MVIqKCRhoWBhvX/xbmTG7ujrijx4F0PgOJiEi/TD85vb29ddo///wzkpOTsWfPnnT39/Pzw/Tp0zF//vxsB3PgwAFs3boVPXr0gK+vr85jW7duRVRUFHx8fFC9enUAwLBhw9CjRw+sWrUKO3fuFPZdsWIFKlSoAG9vb5iZmQEAunXrhp49e2L79u2YNi1l8YrY2Fhs2LABvXr1wrJly4TjnZ2d8cMPPyAgIIALAhFR4afRwHLkcJgePCBskl0KgLpefRGDIiIiyrn8HKsQERUoycmw6tQBxjeuC5tkgcFQV6kiXkxERIWcNLsH+Pv765RD+VinTp3g4uKCtWvXZuu8t2/fxvz58/Htt9+iZcuWaR4/c+YMGjVqJCTJAcDMzAy9evXCzZs3ERUVBSBlFsmdO3fQs2dPIUkOANWrV0fjxo1x+vRpYVtAQAASEhIwYMAAnefq1asXTE1NdfYlIiqMTA4egJ2tlZAkT1iwENEyOZPkRERUJOXVWIWIqCAx3bgBdva2QpJcvm5DSh+fSXIiohzJdqL8zZs3sLa21ruPq6srrl69muVzvnr1ClOmTEGPHj0watSoNI8nJycjPDwc1apVS/NYjRo1oNFoEBoaCgB48uQJNBqNTkI99b5hYWFQqVQAgEePHgFAmn3NzMxQqVIlPH78OMuvgYioIJFERMCtXnWUGDEMAKCqXRvR76KQNG2GyJERERHlnbwYqxARFRTSRw/hVq86LGem9OmV7TsgOjoWys+HihwZEVHRkO2iVba2tnjw4IHefd69e4fExMQsnS8hIQGTJ09GxYoV8b///S/dfWJiYqBUKtPt9NrZ2QnPmfr/6S3EaWdnB6VSiZiYGNjb2wv7ZnTe9+/fZ+k1EBEVGGo1SvTvC5PTp4RNsus3oXZ2ETEoIiKi/JHbYxUiogJBoYD1py1gFBIibIoJeQSNo6OIQRERFT3ZTpR36NAB3t7e2Lt3LwYOHJjm8ZCQEFy8eDHdGd0f02g0mD17NqKiovD333/D1NQ03f0UCgUAwNzcPM1jJiYmACB0drX7WqSzOJ12QZ+kpCRhX6lUqlOiJfW+WelAK5QqPHr2OtP9clOiIjnfn5MKNl4TBAClfPaj+vezhPbj2T8iauiIlAavDwI/KygtXhP6udVNezcjFWy5NVZhH58KAl4TBABlN69HpRVLhfb9JasQ160HkAz28QkAPysoLV4T+unr42c7UT5p0iT4+flh/vz52LNnD1q0aIEyZcogLi4OISEhOH36NJRKJSZMmJDpufz9/XHq1Cl4eHhAqVTi9euUH6JMJgMAREVF4fXr10IyXK1WpzmHUqkE8F8SXZts15ZXSS05ORkAhMS4qakp1Go1NBoNJBJJmn3TS8x/zNTECDUrl810v9z06NnrfH9OKth4TRRv0vBw2DSoK7ST3Zoh7rgfoiLe8bogHfysoI/xmqCiJrfGKuzjU0HAa6J4Mwq8C+tWLYS2om8/xHttQ9zzN7wuSAc/K+hjvCYMl+1EuYODA7y9vTF37lxcv34dQUFBkEgk0Gg0AFJud/z555/RqVOnTM+VlJSE5OTkDDuqU6ZMAZCy6KaxsbGQQE9Nu4hnqVKldP6f0b4mJiawsbHR2TcmJkYo4ZJ6XwcHh0xfAxGRaJKTYdWlE4yv/VdnVXb3HtRVq4oYFBERkXhyc6xCRCSKhATYNHaF9OVLYVPMkzBoPikjYlBERMVDthPlAFCxYkVs374djx8/xq1btxAVFQVzc3NUr14dzZo1y7CEysdcXV2xbt26NNsDAgKwdetWfPPNN6hRowZsbGxQtWpVBAYGptlX2/nV3j7p5OQEiUSCwMDANB3gwMBAVK1aVSjB4uTkJGz/7LPPhP1iY2Px9OlTuLu7Z+0NISLKZ6ab/oTljGlCW+65Hsqhw0SMiIiIqGDIrbEKEVF+M/9lIcyXLBbacXv2IblLFxEjIiIqXgxKlGs5OTkJyWZDODg4oG3btmm2a2eJN2zYEE2aNAEAtG3bFps2bcLTp09RpUoVACk1xk+dOgVXV1fY29sDAOzt7dGgQQP4+fnhq6++EjrC4eHhCAkJwfjx44XncXd3h7m5OXx9fXUS5cePH4dKpUK7du0Mfm1ERHlB+ughbJo0EtrKdu0h338QkErFC4qIiKgAyulYhYgovxhdvw7r9m2EdtLwEUjwWAt8VCKWiIjylsGJ8levXuHy5cuIjIxE/fr10aJFSu2sBw8eIDY2Fg0aNMjV2RojR47Evn37MHLkSAwcOBCWlpY4cuQIIiIisGDBAp19p0+fjjFjxmDYsGHo0qUL4uPjsXv3bpQqVQojR44U9rO1tcXYsWOFGumurq6IiIiAt7c33N3d0bJly1yLn4goRxQKWLduBaPgYGETV7onIiJKX36PVYiIDBIXB5vaLpBGRwmbYp6+gObfiYBERJS/DJqCuGrVKnTs2BHff/89Vq1aBX9/f+Gxe/fuYcSIEThx4kSuBQmkzD7fsWMHateuDS8vL6xatQrGxsZYv349mjdvrrOvu7u7UNJl1apV8PLyQr169bBjxw5h5rnWlClTMGfOHNy/fx/Lli3D0aNHMXjwYHh4eORq/EREhjL7YyXsHEoKSXK51zZEy+RMkhMREaVDjLEKEVF2mc/5DnblywhJ8jgf35Q+PpPkRESiyfaM8oMHD8LT0xNNmzbF559/jhkzZug83rt3byxbtgwnTpxAz549DQqqX79+6NevX5rt1apVg6enZ5bO0bp1a7Ru3TrT/SQSCUaNGoVRo0ZlN0wiojwlvRcEmxb/fRGo6N0H8dt28BZMIiKiDOTHWIWIKCeM/C/Cutt/dceTJkxEwtLfRIyIiIi0sp0o9/b2Rvny5bFp0yaYmpqm6XyamJigWbNmePjwYa4FSURUrCQkwKZpI0ifPxc2caV7IiKizHGsQkQFlSQ6GjbVKkOSnAwA0FhbIybkEWBjI3JkRESkle3SK48ePcp0tfhPPvkEr1+/zlFgRETFkdniRbAr4yAkyeN2/51yCyaT5ERERJniWIWIChyNBhZfTYFtJUchSR578jRiIl4zSU5EVMBke0a5RqPJdOGbN2/ecHEcIqJsMLpxA9bt/isXlTRsOBLWeLLMChERUTZwrEJEBYnxST9Y9e8rtBO/mYXE+T+JFxAREemV7UR55cqV9d6qGBsbi+vXr6N69eo5CoyIqFiIi4NN3dqQfngvbOJK90RERIbhWIWICgLJu0jYVqsitNXlykF2OxCwtBQvKCIiylS2S69069YNd+/exbFjx9I8plAoMH/+fMTExKBLly7pHE1ERFrm389JWen+3yR53KHDXOmeiIgoBzhWISJRaTSwHDNKJ0kee8EfsodPmCQnIioEsj2jfNSoUThx4gS++eYboQN68+ZN/PDDD7hw4QLevn0LZ2dnfP7557keLBFRUWB0yR/WXTsL7aTxE5Dw2+8iRkRERFQ0cKxCRGIxOeyDEkP/T2gnzP8JSd/MEjEiIiLKrmwnys3MzLBt2zb88ssvOHz4MADg7t27uHv3LiQSCTp16oT//e9/rPtHRPSxmBjYVq8CiUIBANBYWSHmwWMu4kNERJRLOFYhovwmefUKts41hLbKqSZiL18BzMxEjIqIiAyR7UQ5AFhZWWHx4sWYPXs2AgMDER0dDSsrK9SpUweffPJJbsdIRFToWUz/CmabNwntWL9TUDV3FzEiIiKiooljFSLKF2o1SgweCJMTx4VNsqvXoa5VW8SgiIgoJ7KdKJ81axacnJwwfvx42Nra4tNPP82LuIiIigTj06dg1be30E78eiYSf/pZxIiIiIiKLo5ViCg/mOzehRLjvhDa8UuWQTFxkogRERFRbsh2ovzo0aMYMmRIXsRCRFRkSN6/g23VykJbXbZsykr3JUqIGBUREVHRxrEKEeUlyfPnsK1bS2gnN2yEuFNnABMTEaMiIqLcIs3uAaVKlUJycnJexEJEVPhpNLAcO0YnSR573h+yR6FMkhMREeUxjlWIKE+oVLDq2lknSS67dRdx5y8ySU5EVIRkO1Hetm1bBAQEQKPR5EU8RESFlonvYdjZWsF0z24AQMK8HxEtk0PVsKHIkRERERUPHKsQUW4z9doCu5I2ML7kDwCI91iLaJkc6ho1MjmSiIgKm2wnyr/88ktERkZi06ZNme9MRFQMSF6/gp1NCZT4POVWb1UNJ0RHfkDSrG9FjoyIiKh44ViFiHKL9MkT2NmU+H/27js8ivJr4/i96YSEhNA7UgJSFBBQVEBAqgICKogKiiJ2QUVRX6yIBRQVFEVBmgaUJr0HEKT30CIdQie9b7L7/pHfjgnpdRP2+7kuLp1nZ2bPZiebM2efIs9XX5Ykmdu1U3hYpBIHDbZzZACAwpKnxTzd3d01ceJEBQYGZrqfyWTS7Nmz8xUcABRrVqtKP9ZfrsuXGU2R23bI0qixHYMCAMBxca8CIN/MZnl1bC+X/fuNpohDR2WtUcOOQQEAikKuC+W7d+/O8P9vZDKZ8hYRAJQArn/+odLPPG1sx332hRJeetmOEQEAAO5VAOSH2w/fy3PUf6NCY6b+KvMjj9oxIgBAUcp1oXzdunWFEQcAlAjpV7pvrui1gSziAwBAMcC9CoC8cDp8SGXuam1sm7v3UEzAXMkp17PVAgBKsFwXyqtVq1YYcQBA8ZacrNK9H5Trpk1GU+Se/SziAwBAMcK9CoBciY+X912t5XzyhNEUEXxc1spV7BgUAMBeclUoDw4O1vbt22U2m3XbbbepZcuWhRUXABQbbjNnyPPlF43t2InfK3HwU/YLCAAApMO9CoDccB/3pUp98pGxHfP7HJkf7GnHiAAA9pbjQvmkSZP0/fffp2m7++679d1336l06dIFHhgA2JvTiRMq0/w2Yzvp3raKXrJMcna2Y1QAAOBG3KsAyCnnvXvl3f5eYzvx0f6K/XmqxNoFAODwclQo37VrlyZNmqTSpUvrgQcekIeHh/755x9t2bJF77//vr766qvCjhMAio7ZLK/7O8hl716jKSLoiKw1a9oxKAAAkBHuVQDkSEyMytzeRE5XrhhNEafOyFquvB2DAgAUJzkqlAcEBMjZ2Vm//fabGjZsKElKSkrSsGHDtHz5cr3yyiuqXbt2YcYJAEXC7cfJ8nzrTWM75uepMvcfYMeIAABAVrhXAZAdjw/fl8fX/31pFr1gkZLu72zHiAAAxVGOlnDeuXOnWrVqZSSekuTi4qKXXnpJVqtVO3bsKLQAAaAoOB05LN8ypY0iublbd4WHR1EkBwCgmONeBUBmnLdtlW+Z0kaRPGHIMwqPjKFIDgDIUI56lIeFhalevXrp2hs0aCBJunz5csFGBQBFJSFB3nffJed/g42miGPHZa3CSvcAAJQE3KsASCcyUj4N6skUEyNJsrq7K/Lfk7L6+to3LgBAsZajHuVms1lubm7p2m0L48THxxdsVABQBNy/GiffCn5GkTzm9zkKj4yhSA4AQAnCvQqA1Eq98bp8q1cxiuRRK1Yp4mooRXIAQLZy1KM8O1artSBOAwBFwnnfXnm3S7XS/cOPKHbqr6x0DwDATYh7FcAxuGwIlFevB43t+FdfU/yYsXaMCABQ0uS4UD537lwtX748XbvJZMrwMZPJpMDAwPxHCAAFJTZWZZo1ldOlS0ZTxMnTspavYMegAABAfnGvAjgu0/Xr8rmlprFt8SunyKDDkpeXHaMCAJREOS6Ux8TEKOZ/Q5dy8xgAFAceH38oj/HjjO3o+QuV1LmL/QICAAAFhnsVwAFZrfJ8YZjcfv/NaIpav1HJLVvaMSgAQEmWo0L50aNHCzsOACgUztu3y7tzR2M74ekhivt2oh0jAgAABYl7FcDxuKxYIa/+Dxvb8aPeVfy779kxIgDAzaBA5igHgGInMlI+t/rLFBUlSbK6uiryxGkW8QEAAABKKNOVy/KpV8fYTq5VS1E7dkulStkxKgDAzcLJ3gEAQEEr9dabKSvd/69IHr1shSKuh1MkBwAAAEoiq1Wejz+WpkgeuWWrog4epkgOACgwFMoB3DRcNm6Qb5nScv9xsiQp/uVXFB4Zo6S27ewcGQAAAIC8cF0wX74+XnJbsliSFPfpWIVHxsjS9DY7RwYAuNkw9QqAEs8UGiqf2jWMbUtZP0UeOsJK9wAAAEAJZQoJkc+t/sZ2cuPGitq4WXJzs2NUAICbGT3KAZRcVqtKvfh8miJ51LoNijxzjiI5AAAAUBJZLCrdu2eaInnkrj2K2rqDIjkAoFBRKAdQIrmsWilfHy+5z54lKWWl+/DIGCW3amXnyAAAAADkhdtvs+Tr6y3XwPWSpNivv0mZZsW/gZ0jAwA4AqZeAVCimK5ekU/dW4xtS82aity5h0V8AAAAgBLK6dQplbm9ibGddOddil6xSnKhZAEAKDr81QFQMlit8nxqkNwWLjCaIrdsZREfAAAAoKRKSpJX185y2bnDaIrcHyTLLbdkcRAAAIWDqVcAFHuuixamrHT/vyJ53CdjWOkeAAAAKMHcfp4iXz8fo0ge8+OUlByfIjkAwE7oUQ6g2DJduCCfhvWN7eRGjRS1aQuL+AAAAAAllFPwMZVp2cLYNne6XzHzF0pO9OMDANgXhXIAxY/FotL9+sh13VqjKXLnblkaNLRjUAAAAADyLDFR3m3vlvORI0ZTxJFgWatVs2NQAAD8h69sARQrrr//lrLS/f+K5LHjv04ZgkmRHAAAACiR3L/5Wr7lyxpF8pgZsxQeGUORHABQrNCjHECx4HT6tMrc1tjYTmp9p6JXrmalewAAAKCEcj6wX9733m1sJ/bpq9jpMyWTyY5RAQCQMSpQAOwrKUlePbrJZdtWoyly30FZ6tSxY1AAAAAA8iwuTmVaNpfTuXNGU8Txk7JWrGTHoAAAyBqFcgAZCglaouDACYqPuCiXUj4ySTLHRcjDp4r8O4xQtSY98/0cblN/keeI14zt2Mk/KvHxJ/N9XgAAAADpFUWO7zH2U3l8PtbYjv5jvpK6dcv3eQEAKGwUygGkExK0REHLRstijpckJcWFG4/FR1xQ0LLRkpTnRNrp32CVuaO5sW3u2EkxCxax0j0AAABQSAo7x3feuVPene4zthOeHKS4ST8wzQoAoMSgUA4gneDACUYCnRGLOV7BgRNyn0QnJsr7vrZyDgoymljpHgAAACh8hZbjR0erTKOGcgoPM5oiTp+T1c8vr6ECAGAXdN8EkE58xIUc7HMxV+d0n/htykr3/yuSx0yfyUr3AAAAQBEpjBzf47135Fu1klEkj168NCXHp0gOACiB6FEOwBAStESHV32ao309fKrkaD+noIMqc/ddxnZi74cUO3M2QzABAACAIlAYOb7z5r/l3eO/eccTnnteceO/ylN8AAAUFxTKARjJc+p5CrPi5Ooh/w4jst4pPl7ere+Q8+nTRhMr3QMAAABFozByfFN4uMrUqSVTUpIkyertrYgjwVKZMvkNFwAAu2PqFcDB2Rb1yVkCbZKHT1U1eeCTLOcudP/8M/lWLGcUyaPnzksZgkmRHAAAACh0hZHjl3rtFfnUrGYUyaNWr1VEyCWK5ACAmwY9ygEHl92iPjYePlXV4ZX1We7jvGuXvDu2N7YTBz6u2Mk/Mc0KAAAAUIQKMsd3WbtGXn0fMrbj33hT8R98lN8QAQAodiiUAw4uJwv2ZDsMMzpaZZo0klPodaOJle4BAAAA+yiIHN907ap86tQ2ti1Vqihy7wHJ07MgQgQAoNhh6hXAwWW3YI9rKd8sh2F6jH4vZaX7/xXJo/9awkr3AAAAgB3lK8e3WuU55Kk0RfKoTZsVeew4RXIAwE2NQjng4Pw7jJCTq0e6dtdSvrrtoXG6/41tGSbQzls2y7dMaXl8+40kKWHoMIVHxiipQ8fCDhkAAABAFvKa47suWSxfHy+5zftTkhT3/ocKj4xRcrPmhR4zAAD2xtQrgIOzJcjBgRMUH3FRHj5V5N9hROYL+UREyKdubZkSEyVJ1tKlFXH0X8nHp6hCBgAAAJCF3Ob4posX5dOgnrGdXN9fUf9sk9zdiyReAACKAwrlAFStSc8sV7i3KTXiNblP/cXYjlq9Vsl3tSnM0AAAAADkQY5yfItFpfs/ItdVK42myO07Zbm1USFHBwBA8cPUKwCy5bJurXzLlDaK5PGvv5EyBJMiOQAAAFAiuf4xV76+3kaRPPaLcQqPjKFIDgBwWPQoB5Ap0/Vr8rmllrFtqVw5ZaX70qXtGBUAAACAvDKdPSufJrca20nNmyt6baDk6mrHqAAAsD96lANIz2qV57ND0hTJozZuVmTwCYrkAAAAQEmUnCyv7l3TFMkj9+xX9MbNFMkBABCFcgA3cFm+LGWl+z/mSpLiRn+QMs1Kc1a6BwAAAEoit+m/yrdsGbls2SxJip34fco0K/XqZXMkAACOg6lXAEiSTJcuysc/1Ur3despaut2ycPDjlEBAAAAyCun48dVpsXtxra5XTvF/LVUcna2Y1QAABRPFMoBR2e1qvRj/eW6fJnRFLlthyyNGtsxKAAAAAB5ZjbLq2N7uezfbzRFHDoqa40adgwKAIDijalXAAfmOu9P+fp4GUXyuM++SBmCSZEcAAAAKJHcfvhevuV8jSJ5zNRfFR4ZQ5EcAIBs0KMcKCQhQUsUHDhB8REX5eFTRf4dRqhak572DktSBivdN2um6HUbWMQHAAAAyEJxzvGdDh9SmbtaG9vm7j0UEzBXcqJ/HAAAOUGhHCgEIUFLFLRstCzmeElSfMQFBS0bLUn2TaSTk1W694Ny3bTJaIrcvU+W+vXtFxMAAABQAhTbHD8+Xt5t7pTzieNGU0TwcVkrV7FfTAAAlEB8tQwUguDACUYCbWMxxys4cIKdIpLcZs6Qb9kyRpHcWOmeIjkAAACQreKY47uP+1K+FcsZRfKY3+ekTLNCkRwAgFyjRzlQCOIjLuaqvTA5nTihMs1vM7aT7m2r6CXLWOkeAAAAyIXilOM7790r7/b3GtuJj/ZX7M9TJZOpyGMBAOBmYfdCeWhoqKZNm6YdO3bo/PnziouLU82aNfXoo4+qf//+cnH5L8QzZ87oyy+/1I4dO2Q2m9WwYUO9/PLLuvfee9Odd/PmzZo0aZKOHj0qV1dXtW7dWm+99ZZq1aqVZj+r1aqZM2cqICBA58+fV9myZdW1a1cNHz5cXl5ehf76UfLkZF5CD58qio+4kO5YD58i7NlhNsvr/o5y2bvHaIoIOiJrzZpFFwMAAABQApSYHD82VmVubyKny5eNpohTZ2QtV77oYgAA4CZl96lXgoKCNH36dJUvX15PPfWUXnjhBXl4eOjjjz/W6NGjjf1CQ0P1+OOPa//+/Ro0aJBeeeUVJSYm6rnnntOOHTvSnHP79u167rnnlJiYqFdeeUWDBg3S/v379fjjjys0NDTNvpMnT9bYsWNVv359vfnmm+ratavmzJmjV199tUheP0oW27yEKQmy1ZiXMCRoSZr9/DuMkJOrR5o2J1cP+XcYUSRxuv04OWWl+/8VyWN+npoyBJMiOQAAAJBGScnxPT58X76VKxhF8ugFi1JyfIrkAAAUCLv3KK9Tp45Wr16tqlWrGm3PPPOM+vfvrwULFmj48OGqVKmSZsyYobCwMC1evFh169aVJD3xxBN68MEH9e233+q3334zjp8wYYKqV6+ugIAAubu7S5J69Oihnj17atasWXrttdckSVFRUZoyZYp69eqlcePGGcc3aNBA//d//6etW7eqTZs2RfFjQAmR1byEqXuc2P4/u14pBc3p6BGVad3S2DZ3666YOX+w0j0AAACQieKe4ztv2yrvLvcb2wlDnlHcN98V6nMCAOCI7F4or169ero2Z2dntW7dWgcPHtTFixdVqVIlrV+/Xi1atDCK5JLk7u6uXr166fvvv1dYWJjKli2r0NBQ7du3Ty+99JJRJJekunXr6o477tC6deuMQvnWrVsVFxenhx9+OM3z9+rVSx9//LHWrVtHoRxp5GZewmpNehZ60mxjSkyQ9x3N5fxvsNEWcey4rFVYxAcAAADISnHN8Z2io+RT5TaZYmIkSVY3N0UePyWrr2+RPD8AAI6m2HYzvXTpkiSpUqVKSkpK0qlTp1SnTp10+9WrV09Wq1UnTpyQJB0/flxWqzVNQT31vidPnlRycrIkKTg4pah4477u7u6qWbOm/v333wJ9TSj5Mpt/sEjnJbyB+1fj1OqORkaRPGb27ylDMCmSAwAAANkqjjl+qTdeV8s2zYwiedTylYq4FkaRHACAQmT3HuUZuXLlitatW6cmTZqoSpUqun79usxms7y9vdPt6/u/ROHatWtp/pvRQpy+vr4ym82KiIiQn5+fsW9m571+/Xq2sSaakxV85lKOX1tBiE9MKvLnRIoyTZ5WwrbxsiYnGG0mZ3eVafJ0kb8nnoeD1KR/b2P7eveeOvHFhJSV7rk+ID4rkB7XBG7ENZG11k3Sd9KAYyDHdyzFKccvs22LGg4dZGxffOpZnXvjnZQNrg+IzwqkxzWBG3FNZC2rHL/YFcqTkpI0cuRIJSYm6u2335YkJSYmSpI8PDzS7e/q6ipJio+PT7NvqVKl0u3r4pLychMSEox9nZyc0kzRknpf2zmz4ubqLP9albPdryAFn7lU5M+J/6n1pEIq+Bb5vIRpxMaqTIvb5XThgtG0Z+MO1WneWP5FFwVKAD4rcCOuCdyIawLIGDm+gykGOb4pNFQ+tWsY2xa/ctqzIlD1bq1Ljo80+KzAjbgmcCOuibwrVoVyi8WiUaNGadu2bXr33XfVunVrSZKbm5vx+I3MZrOk/4rotn1t06uklpSUJElGYdzNzU0Wi0VWq1UmkyndvhkV5oGinJfwRh4ffyiP8f8tPBs9f6GSOndREt8UAgAAAHlmtxzfalWpF5+X+2+zjaao9RuV3LKlLOT4AAAUqWJTKE9OTtZ7772nJUuWaPjw4Ro8eLDxmI+Pj1xcXBQZGZnuuLCwMElSuXLl0vw3s31dXV1VpkyZNPtGREQYU7ik3rd8+fL5f2G4aYQELTF6mbiU8pFJkjkuXDI5S9ZkefhULbSeJ87bt8u7c0djO+HpIYr7dmKBPw8AAADgSOyZ47usWCGv/g8b2/Gj3lX8u+8V+PMAAICcKRaFcrPZrJEjR2rlypV67733NGjQoDSPu7i46JZbbtGBAwfSHXvw4EGZTCZjQc769evLZDLpwIED6tKlS5p9Dxw4oFtuucWYgqV+/fpGe7t27Yz9oqKidPr0abVp06ZAXydKrpCgJQpaNloWc8p0PElx4f89aE0ZvRAfcUFBy0ZLUsEl0pGR8rnVX6aoqJSncnVV5InTLOIDAAAA5JO9cnzTlcvyqfff/KjJtWopasduKYPpQwEAQNFxsncAMTExGjZsmNauXatx48alK5LbdOjQQUFBQTp9+rTRlpiYqLVr16pZs2by8/OTJPn5+en222/X6tWrjfnKJenUqVM6cuSIOnb8r1dumzZt5OHhoaVLl6Z5rpUrVyo5OTnNvnBsh1d9aiTQWbGY4xUcOKFAnrPU2yPlW72KUSSPXrZCEdfDKZIDAAAABaDIc3yrVZ5PPp6mSB65ZauiDh6mSA4AQDFg9x7l48aN05YtW9S9e3dFR0crICAgzeMVK1ZUp06dNHjwYM2fP1+DBw/WI488Ik9PTy1btkwhISH65JNP0hwzfPhwDRkyRE888YS6deum2NhYzZ07V+XKlUs3pcuzzz6rSZMmyWw2q1mzZgoJCVFAQIDatGmje+65p0h+BijeQoKWpO1dko34iIv5ej6XjRvk1fOB/8738iuKH/t5vs4JAAAA4D9FneO7Lpiv0k/91yks7tOxSnjltXydEwAAFCy7F8rj41O+wV+xYoVWrFiR7vHWrVurU6dOKl++vGbPnq1x48Zp+vTpMpvNatiwoX766SfdddddaY5p06aNfvzxR33//ff69ttv5erqqtatW+utt94yep7bvPzyy/L29lZAQIDWrFkjX19f9e/fX8OHDy+014ySJbe9Rzx8quTpeUxhYfKpVd3YtpT1U+ShI5KXV57OBwAAACBjRZbjh4TI51Z/Yzu5cWNFbdwsubnl6XwAAKDw2L1Q/vnnn+vzz3PWW7ZOnTqaPHlyjvZt37692rdvn+1+JpNJTz31lJ566qkcnReOJz7iQo73dXL1kH+HEbl7AqtVpV5+Ue6zZhpNUes2KLlVq9ydBwAAAECOFHqOb7GodJ/ecg1cbzRF7toji3+D3J0HAAAUGbvPUQ4UZyFBS3K+s8mkJg98kqtFflxWrZSvj5dRJI9/a5TCI2MokgMAAACFpLBzfNffZsvX19soksd+/Y3CI2MokgMAUMzZvUc5UJzleEimk4tu6/VZjhNo09Ur8ql7i7FtqVlTkTv3sIgPAAAAUMgKK8d3OnVKZW5vYmwn3XmXoleskly47QYAoCSgRzmQhawW7fHwqSrJJA+fqjlPoK1WeQ5+Mk2RPGrzP4oMOkKRHAAAACgCBZ7jJyXJq1OHNEXyyP1Bil6zjiI5AAAlCH+1gSx4+FTJcP5CD5+q6vDK+gyOyJzrooUqPegJYzvukzFKeC2Xcx0CAAAAyJeCzPHdfp4izzf+y+ljfpwi88DH8x0jAAAoehTKgSz4dxihoGWjZTHHG225XczHdOGCfBrWN7aTGzVS1KYtrHQPAAAA2EFB5PhOwcdUpmULY9vc6X7FzF8oOTFoGwCAkopCOZAF21DL4MAJio+4KA+fKvLvMCJnQzAtFpV+uK9c164xmiJ37palQcPCChcAAABANvKV4ycmyrvt3XI+csRoijgSLGu1aoUVLgAAKCIUyoFsVGvSM1er3EuSa8DvKj1sqLEdO/5rJT43rKBDAwAAAJAHecnx3b/7RqX+7z1jO2bGLJn79C3o0AAAgJ1QKAcKkNPp0ypzW2NjO6n1nYpeuZpFfAAAAIASyvnAfnnfe7exndj7IcXOnC2ZTHaMCgAAFDSqd0BBSEqSV49uctm21WiK3HdQljp17BgUAAAAgDyLi1OZls3ldO6c0RRx/KSsFSvZMSgAAFBYWGkEyCe3qb/I18/HKJLHTv5R4ZExFMkBAACAEspj7KfyrVTeKJJHz52n8MgYiuQAANzE6FEO5JHTv8Eqc0dzY9vcoaNiFv7FSvcAAABACeW8c6e8O91nbCc88aTivp/MNCsAADgACuVAbiUmyvu+tnIOCjKaWOkeAAAAKMGio1WmUUM5hYcZTRGnz8nq52fHoAAAQFGiUI5iKyRoiYIDJyg+4qI8fKrIv8OIXK9MX9DcJ32nUu++Y2zHTJ8pc99+dowIAAAAKDmKY47v8d478pj4nbEdvXipku7rYMeIAACAPVAoR7EUErREQctGy2KOlyTFR1xQ0LLRkmSXRNop6KDK3H2XsZ3Yq7diZ/3GEEwAAAAgh4pbju+8+W959+hmbCc897zixn9V5HEAAIDigUI5iqXgwAlGAm1jMcfrwKKRCg6cUHQ9T+Lj5d36DjmfPm00Rfx7QtZKlQv/uQEAAICbSHHJ8U3h4SpTt7ZMZrMkyertrYgjwVKZMoX+3AAAoPiiUI5iI/UwTMma6X5F1fPE/fPPVGrsGGM7eu48JXXvXmjPBwAAANxsiluOX+q1V+T+6zRjO2r1WiXf1abQng8AAJQcTvYOAJD+G4YZH3FBWSXQNhZzvIIDJxRKLM67d8u3TGmjSJ448HGFR0RTJAcAAAByoTjl+C5r18i3TGmjSB7/xpsKj4yhSA4AAAz0KEexkNEwzOyk9EopQNHRKtO0sZyuXzOaIk6dlbVcuQx3z2whouK4QBEAAABQ1IpDjm+6fk0+t9Qyti2VKyty7wGpdOkM9yfHBwDAcVEoR7GQl4TYw6dKgT2/x+j35PHtN8Z29F9LlNShY6b7Z7YQUdi5PQo5sLDYLFAEAAAA2Itdc3yrVZ7PPC23eX8aTVGbNiu5WfNMDyHHBwDAsVEoR7Hg4VPlf0Myb2yvKv8OI9IkrJLk5Ooh/w4j8v28zv9skXe3LsZ2wtBhivvq6wz3TTO/oslJsianedxijte5PX9k2B4cOIEkGgAAAA7FXjm+65LFKv34Y8Z23PsfKuHNken2u7GXeHJibIaLjZLjAwDgGCiUo1ioUK+9zu0OyLDdlnwW6FDHiAj51LtFpoQESZK1dGlFHP1X8vHJcPcbe5fcmCgbMmkv8GliAAAAgGKuqHN806WL8vGvZ2wn1/dX1D/bJHf3dPtm1Hs8U+T4AAA4BArlKBauHt+YZXu1Jj0LrLdGqRHD5T71Z2M7Jyvd53h+RZNzhol0QU4TAwAAAJQERZbjWywq3f8Rua5aaTRFbt8py62NMj0kV/Onk+MDAOAQnOwdACBl3hujIHtpuKxbm7LS/f+K5PGvv5Hjle5zEoeTq4dqtHhUTq4e6doLYggpAAAAUJIURY7v+sdc+fp6G0Xy2C/GKTwyJssieW5iIMcHAMBx0KMcxULm8xfmv5eG6fp1+dxS09i2VKqkyH0HM13pPjfx/fd4VWOoaNkaLQp2mhgAAACgBCrUHP/sWfk0udXYTmreXNFrAyVX13zFlnYfcnwAABwJhXIUC4WymI/VKs+hz8jtj7lGU9SGv5XcokWe4juw6C1J1nSPefhUVYdX1hvbBTlNDAAAAFBSFUqOn5wsr54PyGXz30ZT5J79stSrl8VBOYstNXJ8AAAcD1OvoFio1qSnmjzwiTx8qkoyycOnqpo88Emek1GX5cvk6+NlFMnjRn+QMs1KHorktvgyKpJLLOIDAAAAZKSgc3y3GdPlW7aMUSSPnfh9yjQruSySp44tM+T4AAA4HnqUo9goiF4a6Va6r1tPUVu3Sx4eWRyVMx4+VQtt6CgAAABwMyqIHN/p+HGVaXG7sW1u204xi5dKzs75ji1lOhVyfAAAQI/yEiUkaIkCJ3bUiVkdFDixo0KCltg7pOLDalXpx/qnKZJHbtuhqL37C6RILqUMz2QRHwAAABQkcvwsmM3yandPmiJ5RNARxSxbke8iuQ05PgAAsKFQXkKEBC1R0LLR/+vtYFV8xAUFLRtNIi3Jdd6f8vXxkuuypZKkuM++SBmC2ahxgT5PQQ8dBQAAgGMjx8+c2w/fy7ecr1z27ZMkxUz9VeGRMbLWrFmgz0OODwAAbJh6pYQIDpyQbqEZizlewYETHDaJM507J5/GDY3tpGbNFL1uQ45Xus8LFvEBAABAQSHHT8/p8CGVuau1sW3u3kMxAXMlp8Lr40WODwAAJArlJUZmi8k45CIzyckq/VBPuW7caDRF7t4nS/36dgwKAAAAyB1y/FQSEuR9V2s5nzhuNEUEH5e1MnOFAwCAosHUKyWEaymfXLXfrNxmzZBv2TJGkTz224kp06xQJAcAAEAJQ46fwn38OPlW8DOK5DG/z0mZZoUiOQAAKEL0KC8hrLlsv9k4nTihMs1vM7aT7m2r6CXLCmwRHwAAAKCoOXqO77x3r7zb32tsJz7aX7E/T5VMJjtGBQAAHBWF8hIiKS4iV+03DbNZXp07yWXPbqMp8uBhWWrVsmNQAAAAQP45bI4fG6sytzeR0+XLRlPEqTOylitvx6AAAICjY+qVEsIRh2W6/fRjykr3/yuSx/w8NWWaFYrkAAAAuAk4Yo7v8dEH8q1cwSiSRy9YlDLNCkVyAABgZ/QoLyEcaVim09EjKtO6pbFt7tZdMXP+KNSV7gEAAICi5kg5vvO2rfLucr+xnTDkGcV9850dIwIAAEiLQnkJkRQXnqv2EikhQd73tJFz8DGjKeLYcVmrsIgPAAAAbj4OkeNHRsqnQT2ZYmIkSVY3N0UePyWrr6994wIAALgBXXRLClMmi1Zm1l7CuH89PmWl+/8VyWNm/54yBJMiOQAAAG5WN3mOX2rkm/KtXsUokkctX6mIa2EUyQEAQLFEj/KSwpqcu/YSwnnfXnm3S7XS/cOPKHbqrzf1SvchQUsUHDhB8REX5eFTRf4dRqhak572DgsAAABF7SbN8V02BMqr14PGdvzLryh+7Od2jKjwkeMDAFDyUSgvITx8qio+4kKG7SVSbKzKtLhdThf+e00RJ0/LWr6CHYMqfCFBSxS0bLQs5nhJUnzEBQUtGy1JJNIAAAAO5mbL8U2hofKpXcPYtviVU2TQYcnLy45RFT5yfAAAbg4UyksI/w4j0iRfkuTk6iH/DiMK5fn+6xFxIWXopzVZHj5VC6RnhMfHH8lj/JfGdvT8hUrq3CW/IZcIwYET0ryHkmQxxys4cAJJNAAAgIO5aXJ8q1WlXnxe7r/NNpqi1m1QcqtWBRB18UeODwDAzYFCeQlhS7CKYjjfjT0ibEM/s+sZkd1wQ+ft2+XduaOxnfDU04r7duJNPc3KjeIjLuaqHQAAADevmyHHd1m5Ul6P9jO240e9q/h33yvw+IszcnwAAG4OFMpLkGpNeqpak54KPnNJ/rUqF9rzHFn1aboeETaZ9YwIWvGRzu2eI8kq6YaEu9Z98rnVX6bISEmS1dVVkSdOO+QiPh4+VTIZXsuipQAAAI6opOb41Su2lk+9Osa+ybVqKWrHbqlUqcJ5AcUYOT4AADcHCuVIY/vsp2WOC89yn/iICwqc2NHoVeJZtpZCT29Nt5/FHC/3N4fL959LRlv0shVKatuuoMMucnldrKeoh9cCAADAsYUELdHBZe/Lao7Lcr8c5/iJcfId+oJ8DoUZbZFbtsrS9LYCj72okeMDAODYKJTDELTiowyT4YzYekzER1zIsPdExTPx6jT36n/730Qr3ednsZ6iHF4LAAAAxxYStEQHFr8jWZJytH92OX6No7G6d/F1YzvukzFKeO3mKAaT4wMAAArlMJzb80e+z+Eab1G/70Jkm3U8sZSLYk+ElKiV7rPrSZLfxXpsw2sBAACAwhQcOCHHRfKslIpK0kOT/5tvO6JSKVkPXZDc3PJ97qJCjg8AALJDoRySUhJH24I+eWK1qvXKMNU9GGM0rX6ikqq9+K2qlbAieXY9SVisBwAAACVBRr3Cc8Vq1X1/XlWV0wlG09JnquiWZyaoWgkrkpPjAwCA7FAoh5E45lWVE3G6b/41YzuoTRkdbOujGnc8VuJ6VeSkJwmL9QAAAKC4CwlaIskk20KcuXVLUIzuWh5qbO/sXFbHm3uR4wMAgJsWhXJkmDjmhHtMsvp+/18yGV3GWcufqaxkVyfVuOMxNen+QUGGWehCgpZk2usmdU8SFusBAABAcRccOEF5KZKXDk9Sryn/5b5Xq7pp3cCKsjqZyPEBAMBNjUI5cj+c0GrVPYuvq+axOKNpxVNVFF7RVR4+VdS4BC5ck12v+tQ9SVisBwAAAMVdbnN8k8WqTr9fUYULiUbb4mHVFOPjXGLzXXJ8AACQGxTKkekww4xUPxartn/9t9L93vY+OnpnGeM8JTWZzKpXfUY9SVisBwAAAMVZbnL8enuj1GpNuLG9rYefTjUpbZyHHB8AADgCCuXIcJjhjW5c6T68vItWDa4si7PJaMtoUZySIqseN00e+KTEvR4AAAA4tpzk+N7XzXpw6iVj++ItHtrwcHnJRI4PAAAcD4VySJKcXDyMJNrZzVPJibEpD1itaj//mqqe/C/BXvZMZUWWc83wPDcuilNSZL54T9US91oAAAAAKfMc3ynZqq4zLsn3WpKx76IXqijOO+PbQ3J8AADgCCiUO7Dts59W6Omt6dptCXTtQzFqs+y/le533e+rf1t4Z3veXM95XgyweA8AAABKupQ5ud+XxRyX7jFbjt9wR6Sab4gw2jf3KqdzDT2zPTc5PgAAuNlRKHdQmRXJJal0RJJ6/fRfInytqpvW/m+l+7RMkqzpjk+9KE5JweI9AAAAKMlCgpbowF9vS1ZLho/7XklU9+mXje2z/qW0pXe5NNOspCDHBwAAjolCeQmSurh9QpJf7Ta684lfszwmaMVHOrfnD8ma/F+jyTnttq3ZYlXHOVdU8fx/K90vGVpF0WUzu0yscnL1KLE9NEKClqRLmju8st7eYQEAAMCB5DnH3z1HaQvaGRe4nc0W9Zh6SV6R/+X/C1+qqvjSzpmcnRwfAAA4Jid7B4CcyagHeOjprdo+++lMj0lJoAPSF8UzKJLX3RetAePPG0Xybd39FPBWjSyK5Clz+zV54BN5+FSVZDK2S0IPjZRhqaP/N2eh1VikKCRoib1DAwAAgIPIV46friievkjeZHOEHp0QYhTJN/Ytr4C3amRRJCfHBwAAjose5SVEZtOkZNYuSef2zMn2vOlWuq/trg2PVMhgCGZatl4l1Zr0LBFJ842CAyek6SUjldxFigAAAFAyFVaOX+5CgrrMvmJsn2xaWtu7lSXHBwAAyAKF8puZNX2vEhunZKu6zLqsslfMRttfz1dRbJmcXRKlfKqX6GQzs8WISuIiRQAAAHAgWeT4LokW9frxotzj/5unfP4rVZVYKvMe5KlVu60POT4AAHBYFMpvQsa85JlosDNKLQLDje2crnSfWsy149o+++ls508srjx8qvxvSGb6dgAAAKA4CQlaosOrPlVSXHim+zQLDNetO6OM7fX9K+hyLY9cPc+53QEqW6NFiS2Wk+MDAID8oFB+E8lojsPUblzp/px/KW3OcKX7nMnquYo7/w4jFLRsdIldpAgAAACOYdOPDyrm2vFMH69wNl73z7lqbAe38NLu+8vm+flK8jQl5PgAACA/KJTfBP5b0CdjTklW9Zh2Ud7hqVa6f7Gq4r1yNgTzZmRL/oMDJyg+4qI8fKoY8zECAAAA9pZdju8ab1GfSSFy/t8sK2ZXkxa9WFVJ7k75et6SPE0JOT4AAMgPCuU3gawS6Mb/ROi2zZHG9sa+5XWhXqmiCKvYK6mLFAEAAODml1WO33JVqOrvjzG21wysqGvV3QvkeUv6NCXk+AAAIK8olN+k/C4mqOusVCvdN/HU9u5+eZ5mJcPnqN2mwM4FAAAAIGuVT8Wpw5/XjO1Dd3nrQDvfAn0OpikBAACOikJ5CXHbQ+N0YNHIbPdzTrSo15SL8ojN20r3OeVXu02JXcgTAAAAKA5ymuO7xSar36T/FqmMLe2kpUOrKNktf9OsZBQPvbEBAICjolAuKTo6Wt98841WrVqlsLAwVa9eXY899pgGDRokUwH2wM6Pg0v+L9t9mm0I1607Uq10/2gFXa6du5XuJcnDp6o6vLJeIUFLdGTVpzLHhUuSXEr5qlHX90ieAQAAgAKQbY5vtarN0lDVPhJrNK0cVElhld1y/Vzk+AAAAFmjUC7plVde0c6dOzVgwADVqFFDu3bt0tixYxUbG6sXXnjB3uFJkqzJCZk+VuFcgu4P+G+aleDmXtrdOe8r3duGWzK/HwAAAFB4ssrxq/0bq3YLrxvb+9v66HCbMnl+LnJ8AACArDl8oXzLli36559/NGbMGD3yyCOSpMGDB+uNN97QlClT9OSTT8rLy8vOUWbMNeF/K90np2ybXU3668WqMme10r3JWR5lKik+4kKGD/vVbkPiDAAAANiJR3Sy+vzwX64eWdZFK56uLItL5iNd3bwqysnZhRwfAAAgHwp2UrsSKDAwUG5uburdu3ea9kcffVSxsbHaunWrnSLLWsvVoXr42/+K5GsGVtS8EdWzLJLXuOMxdX/vkOIjLma6D/OOAwAAAHZgtart/KtpiuTLn66kZUOrZFkkv+2hceo0fBM5PgAAQD45fI/yY8eOqXr16nJzSzvPX/369SVJwcHB6ty5sz1Cy1D58wnq/Pt/06wcvtNb+9v7ZnnMjYvyePhUybC3iYdP1QKLEwAAAEDO3DjNyu5Ovgq+wzvLY8jxAQAACpbDF8qvX78ub+/0Saivr6/xeFYSzckKPnOpMELLkK1IHlfaSUtyuNJ9jHerNDGWafK0EraNTzMnosnZXWWaPF2krwUFJz4xifcO6XBd4EZcE7gR10TWWjepY+8QYCdFnePbiuTXK7lqzROVZHXOvAd5ChM5vgPgMxoZ4brAjbgmcCOuiaxlleM7fKE8MTFRHh4e6dqdnJzk5OSk+Pj4LI93c3WWf63KhRWe4cT//rvgpapyslgV553zty5dfLWeVEgFXwUHTlB8xEV5+FSRf4cRzFtYggWfuVQk1yFKFq4L3IhrAjfimgAyVtQ5/qIXqsjiZFJCaeccHmklx3cAfEYjI1wXuBHXBG7ENZF3Dl8od3Nzk8ViSddusVhksVgyLKLbU86T5xSZDbVktXsAAACgeMhNJxiJHB8AAKAwOPxinuXKlVNERES69rCwMEmSn59fUYdUYJxcPeTfYYS9wwAAAABQQMjxAQAACofDF8rr16+vkydPKjo6Ok37gQMHjMdLIpdSvmrywCf0KAEAAABuEuT4AAAAhcfhC+UdOnRQUlKSVq5cmaZ92bJlKlWqlO6++247RZY/nd/YRgINAAAA3CxMJnJ8AACAQuTwc5Tfe++9at26tT7++GP9+++/qlq1qvbs2aOVK1fq1Vdflbe3t71DzDW/2m3sHQIAAACAAlSjxQB7hwAAAHBTc/hCuclk0g8//KAJEyZo2bJlCg8PV/Xq1fXOO+9o8ODB9g4v1/xqt9GdT/xq7zAAAAAAFJAadzymJt0/sHcYAAAANzWHL5RLkre3t95//329//779g4lT7r/31F7hwAAAACgAJHjAwAAFC2Hn6McAAAAAAAAAODYKJQDAAAAAAAAABwahXIAAAAAAAAAgEOjUF5ClC5fL1ftAAAAAIo3cnwAAIDig0J5CdHu+aXpEubS5eup3fNL7RQRAAAAgPwgxwcAACg+XOwdAHLOljAHn7kk/1qV7RwNAAAAgPwixwcAACge6FEOAAAAAAAAAHBoFMoBAAAAAAAAAA6NQjkAAAAAAAAAwKFRKAcAAAAAAAAAODQK5QAAAAAAAAAAh0ahHAAAAAAAAADg0CiUAwAAAAAAAAAcGoVyAAAAAAAAAIBDo1AOAAAAAAAAAHBoFMoBAAAAAAAAAA6NQjkAAAAAAAAAwKFRKAcAAAAAAAAAODQK5QAAAAAAAAAAh0ahHAAAAAAAAADg0ExWq9Vq7yAAAAAAAAAAALAXepQDAAAAAAAAABwahXIAAAAAAAAAgEOjUA4AAAAAAAAAcGgUygEAAAAAAAAADo1COQAAAAAAAADAoVEoBwAAAAAAAAA4NArlAAAAAAAAAACHRqG8hIiOjtaYMWPUtm1bNWnSRN26ddOMGTNktVrtHRryIDQ0VOPHj9ejjz6qu+++W82bN1fv3r3122+/KSkpKc2+Z86c0UsvvaRWrVqpWbNmGjBggDZv3pzheTdv3qwBAwaoWbNmatWqlV566SWdOXMm3X5Wq1UzZsxQt27d1KRJE7Vt21ZjxoxRdHR0obxe5I3FYtHQoUPVoEED7dq1K81jXBeOxWw2a+bMmRowYIBatWqlJk2aaOTIkWn24ZpwHFevXtVHH32kzp076/bbb1eXLl306aefKjQ0NN2+XBdA8UaOf3Mhx0dOkOPDhhwfqZHjFw8mK1lYifD0009r586dGjBggGrUqKFdu3Zp9erVGj58uF544QV7h4dc2rRpk1588UW1a9dOzZo1kyStW7dO+/btU9++ffXZZ59JSkm2e/XqJUnq37+/PD09tWzZMh09elTTp09X69atjXNu375dTz/9tBo2bKgHHnhAsbGxmjt3riRp8eLF8vPzM/b94Ycf9O2336pLly664447dP78ec2ZM0etW7fWtGnTiuingOx88cUXxvvx22+/qWXLlpK4LhxNeHi4hgwZomPHjqlLly66/fbbFRcXp+TkZL388suSuCYcybVr19SnTx8lJCSob9++qly5so4dO6YlS5aocuXKWrRokby8vCRxXQAlATn+zYUcHzlBjg+JHB9pkeMXI1YUe5s3b7b6+/tb//jjjzTtr7/+urVZs2bWqKgoO0WGvDp37pw1JCQkTVtSUpK1X79+Vn9/f+ulS5esVqvV+vXXX1sbNWpkPX78uLFffHy89f7777cOHDgwzfH9+/e3du7c2RofH2+0HT9+3Hrrrbdav/nmG6MtMjLSevvtt1vffPPNNMf/8ccfVn9/f+s///xTYK8TebdgwQLrrbfean399det/v7+1p07dxqPcV04lhdeeMF6++23W/fu3ZvpPlwTjmPixIlWf39/6/79+9O0z5071+rv72+dN2+e0cZ1ARRv5Pg3H3J8ZIccHzbk+EiNHL/4YOqVEiAwMFBubm7q3bt3mvZHH31UsbGx2rp1q50iQ15Vr15dVatWTdPm7OxsfPN38eJFSdL69evVokUL1a1b19jP3d1dvXr10u7duxUWFiYp5RvFffv2qWfPnnJ3dzf2rVu3ru644w6tW7fOaNu6davi4uL08MMPp3n+Xr16yc3NLc2+sI+9e/fq/fff11tvvaV77rkn3eNcF47j4MGDWrdunV588UWjZ1pGuCYcx7Vr1yRJderUSdPeokULSVJsbKzRxnUBFG/k+DcfcnxkhRwfNuT4uBE5fvFBobwEOHbsmKpXry43N7c07fXr15ckBQcH2yMsFIJLly5JkipVqqSkpCSdOnUq3QelJNWrV09Wq1UnTpyQJB0/flxWqzXNB2XqfU+ePKnk5GRJ/10vN+7r7u6umjVr6t9//y3Q14TcuXjxol5++WU9+OCDeuqpp9I9znXhWJYvXy6TyaQBAwZIkiIjI5WQkJBmH64Jx2IrtnzwwQdp5gv8559/5OLiovbt20viugBKAnJ8x0GOD3J8pEaOjxuR4xcfLvYOANm7fv26vL2907X7+voaj6Pku3LlitatW6cmTZqoSpUqun79usxmc5bvve1bR9t/bXNW3biv2WxWRESE/Pz8jH0zOy/Xk/3ExcXppZdeUo0aNfTRRx9luE9ERATXhQM5dOiQKlSooIkTJ2rx4sUKDw+XlJLYvPvuu7rnnnu4JhxMjx49dOLECU2ePFmbN29W7969VaNGDU2ePFmff/65atasKYnPCqAkIMd3DOT4IMfHjcjxcSNy/OKDQnkJkJiYKA8Pj3TtTk5OcnJyUnx8vB2iQkFKSkrSyJEjlZiYqLfffltSyvsuKcP33tXVVZKM9962b6lSpdLt6+KS8mtu+4Y6MTFRTk5OaYbepN6X68k+rFarRo0apbCwMM2bNy9d7zIbrgvHcv36dYWFhenixYt67bXXVL58eYWEhGjWrFkaOnSoZs6cqWrVqknimnAk5cqVU6VKlXTfffdp7dq1CgkJUd26dVWjRg1jHz4rgOKPHP/mR44PcnxkhBwfGSHHLx4olJcAbm5uslgs6dotFossFkuGvyAoOSwWi0aNGqVt27bp3XffNYbc2JKojN57s9ks6b8PR9u+tmEzqSUlJUmS8YFnu56sVqtMJlO6fbme7GPz5s1au3atJk2aJLPZbAzRjYyMlCSFhYXp0qVLxh8/rgvHYDabdccdd2jSpElp2nv06KHOnTtrxowZ+vDDDyVxTTiKP/74Q2PHjtW8efPUsGFDWa1Wbdy4UR9//LEGDRqk3377TU2bNuVvCFACkOPf3MjxIZHjI2Pk+LgROX7xQaG8BChXrpwxFCc12wT9fn5+RRwRCkpycrLee+89LVmyRMOHD9fgwYONx3x8fOTi4mIkUanZ3vty5cql+W9m+7q6uqpMmTJp9o2IiDCG5qTet3z58vl/Yci1hIQEJSUl6fnnn8/w8ZdffllSyiIbXBeOw9vbW3FxcenaK1WqpIYNG+rUqVN8VjiYn3/+Wffcc48aNmwoSTKZTLrvvvtUpUoV9erVS7Nnz9YXX3zBdQGUAOT4Ny9yfNiQ4yMj5Pi4ETl+8cFiniVA/fr1dfLkyTQT+kvSgQMHjMdR8pjNZr3xxhtatGiR3nvvPb3wwgtpHndxcdEtt9xivM+pHTx4UCaTyVhooX79+jKZTBnue+DAAd1yyy3G0Brb9XLjvlFRUTp9+jTXk500a9ZMP/74Y7p/thurN998Uz/++KPKlCnDdeFA/P39deLECaN3QGoRERHy9PTks8LBXLp0Sc7OzunabcNzbfMHcl0AxR85/s2JHB+pkeMjI+T4uBE5fvFBobwE6NChg5KSkrRy5co07cuWLVOpUqV099132yky5FVMTIyGDRumtWvXaty4cRo0aFCG+3Xo0EFBQUE6ffq00ZaYmKi1a9eqWbNmRk8jPz8/3X777Vq9erUxD5UknTp1SkeOHFHHjh2NtjZt2sjDw0NLly5N81wrV65UcnJymn1RdMqXL68OHTqk+2f7Rrl58+bq0KGDXFxcuC4cSLdu3RQdHa2ZM2emad+zZ4/OnDmjtm3bSuKzwpHceuut2rp1q06dOpWm3ZYj3HbbbUYb1wVQvJHj33zI8XEjcnxkhBwfNyLHLz5MVqvVau8gkDWr1apBgwZp//79euyxx1S1alXt2bNHK1eu1KuvvqqXXnrJ3iEilz788EMFBASoe/fuuvPOO9M9XrFiRXXq1EnXrl1Tr1695OrqqkceeUSenp5atmyZjhw5omnTpumuu+4yjtm6dauGDBmipk2bqlu3boqNjdXcuXNltVq1ePHiNMN3J06cqEmTJqlHjx5q1qyZQkJCFBAQoDvuuEPTp08vih8BcmjBggV655139Ntvv6lly5aSxHXhYF599VWtWrVKXbt2VfPmzXXhwgXNmzdP1atXV0BAgLy8vLgmHMjOnTv19NNPy8PDQ/369VOVKlV0+PBhLV26VLVr19bcuXON1eq5LoDijRz/5kOOj5wixwc5PlIjxy8+KJSXEFFRUZowYYJWr16t8PBwVa9eXQMGDNDgwYPTTbSP4m/UqFFauHBhpo+3bt1as2bNkiSdPHlS48aN086dO2U2m9WwYUO9/PLLxrfMqW3cuFHff/+9jh07JldXV7Vu3VpvvfWWateunWY/q9WqGTNmKCAgQCEhIfL19VW3bt00fPhweXl5FehrRf5klERLXBeOJDk5WTNnztRvv/2mS5cuyc/PT127dtWrr75qJEsS14QjOXjwoH744Qft2bNH0dHRqlSpkrp06aKXXnopzTUhcV0AxR05/s2FHB85RY4PcnzciBy/eKBQDgAAAAAAAABwaMxRDgAAAAAAAABwaBTKAQAAAAAAAAAOjUI5AAAAAAAAAMChUSgHAAAAAAAAADg0CuUAAAAAAAAAAIdGoRwAAAAAAAAA4NAolAMAAAAAAAAAHBqFcgBAsTNx4kQ1aNBAf/75p71DAQAAAFAAyPEBFHcUygHgJvDGG2+oQYMGatCggdauXZuvc505c0YNGjTQk08+WUDRAQAAAMgtcnwAKFoUygGghIuOjtbatWvl5eUlSVqwYIGdIwIAAACQH+T4AFD0KJQDQAm3bNkyxcfH66WXXlK1atW0ceNGXb9+3d5hAQAAAMgjcnwAKHoUygGghFuwYIFcXFzUu3dvPfTQQ0pKStLixYsz3DcuLk5TpkzRQw89pGbNmql169Z6+OGHNXHiRF26dEkLFixQly5dJEk7duwwhno2aNBAEydONJ6vQYMGmjBhQrrznz9/Xg0aNNBjjz2Wpv3gwYN67rnn1LVrV91xxx1q3Lix7rnnHj3//PPavXt3Af9EAAAAgJKNHB8Aip6LvQMAAOTdiRMntG/fPnXs2FHlypVTnz599MMPP2jBggV6+umn0+wbERGhQYMG6ejRo6pfv74eeughmc1m7dq1S5MmTZIk3XfffXr44Yc1b948Va5cWT169DCOb968eZ7jPHnypPbv36+mTZuqdevWcnd3V0hIiLZs2aK///5bU6dO1V133ZXn8wMAAAA3C3J8ALAPCuUAUILZ5irs16+fJKlGjRpq1aqVduzYoYMHD6pp06bGvh9//LGOHj2qIUOG6K233pLJZDIeW79+vcLDw9W0aVOVKVNG8+bNU82aNfX2228XSJzdunVTr1690jynJG3evFnPPPOMfv31V5JoAAAAQOT4AGAvFMoBoIRKTk7WX3/9pbJly6p9+/ZGe79+/bRjxw4tWLDASKKvX7+u5cuXq0qVKhoxYkS6ZLZjx46FGqu7u7skKTQ0VPv379eFCxcUExOjyMhISdLp06cL9fkBAACAkoAcHwDsh0I5AJRQf//9t65evapBgwbJ1dXVaO/atas+/vhjLVu2TO+8847c3Nx08OBBWSwW3XHHHXJzcyvyWK9cuaIxY8Zo7dq1Sk5OTve42Wwu8pgAAACA4oYcHwDsh0I5AJRQtiGZwcHBGjVqVJrHSpcurStXrmjt2rXq0aOH0aujYsWKRR5ncnKynnnmGQUHB+uOO+5Q//79deutt6pixYry9PRMM3QUAAAAcGTk+ABgPxTKAaAECgsL0/r16yVJ27Zty3S/BQsWqEePHvL29pYkXb16Nd/PbRvSmVGvkYzs3r1bwcHBatasmWbPni0nJyfjsaSkpHzHAwAAANwMyPEBwL4olANACbR06VKZzWaNHDlSzz77bLrHrVarOnbsqC1btujy5ctq1KiRpJSENjExMcuhmc7OzpIyHyrp4+MjSQoPD89RrJcvX5YkNWvWLE0CDQAAAOA/5PgAYF98mgFACbRgwQKZTCY9+OCDGT5uMpn0wAMPyGKxaNGiRapUqZLatWunCxcu6Lvvvku3/5YtW7R27VpJUvny5eXi4qIjR44oLCws3b516tQxjomNjTXaQ0ND9e2336bbv3r16pJSEniLxWK0x8bG6ssvv8zFqwYAAABuXuT4AGBf9CgHgBLm6NGjOnz4sFq3bq3KlStnul/Pnj31888/a8GCBRo2bJg++eQTPfbYY/r555+1ceNGtWzZUvHx8dq7d69OnTqld955R5Lk4eGhDh06aM2aNXrkkUfUpk0bRUREqH379urXr59q166t+++/X2vXrtWjjz6qu+66S6Ghodq4caNcXNL/WWnevLlat26tHTt2qHfv3rrjjjsUFxenzZs3KzExsdB+TgAAAEBJQY4PAPZHj3IAKGHmz58vKSVJzkqDBg3k7++v06dPa/fu3apcubIWLFigoUOHKjk5WfPnz9e6detUpkwZjRw5Ur169TKOHTt2rPr376/ExEQtWrRIhw4dUunSpY3HP/vsM/Xt21dXr17VnDlzdPToUT377LOaNWtWhrH8+OOPevLJJxUZGamFCxdq//796tOnj5YtW1YAPxEAAACgZCPHBwD7M1mtVqu9gwAAAAAAAAAAwF7oUQ4AAAAAAAAAcGgUygEAAAAAAAAADo1COQAAAAAAAADAoVEoBwAAAAAAAAA4NArlAAAAAAAAAACHRqEcAAAAAAAAAODQKJQDAAAAAAAAABwahXIAAAAAAAAAgEOjUA4AAAAAAAAAcGgUygEAAAAAAAAADo1COQCgUH3wwQdq0KCBmjdvrl27dtk7HKDY+vXXX9WgQQM1btxYe/bssXc4AACgBDpz5oxatGihBg0a6JVXXlFycrK9QwKKpcuXL6t79+5q0KCBnnvuOVmtVnuHhGLAZOVKQAkzceJETZo0SdWqVdP69evtHU6JMmrUKC1cuDBNm8lkkoeHh/z8/NSgQQM98MAD6tGjh5yc+B6tsGzfvl2DBg2SJH322Wfq27evnSMqPCtXrtRrr70mZ2dn/fTTT2rbtm2ax8+fP69OnTqlO87V1VWlS5dWtWrVdOedd+rxxx9X9erVM32eJ598Ujt27JAkNW/eXHPmzMkyruDgYPXq1ctIhrJ6H/bv36/58+drz549unDhghISElSqVCmVK1dOdevWVbNmzdS2bVvdeuut6Y7N6HcuK4V5PaS+7nJq5syZuvPOO43t2NhYBQYG6p9//tGhQ4d0/vx5xcbGysPDQzVq1FCbNm30xBNPZPleFWScrVu31qxZs7LcJykpSffdd5+uXr2qdevW5Sq22NhYLVu2TOvXr1dwcLBCQ0NlNptVsWJFTZkyRfXq1Ut3zPHjx7Vu3Trt2rXLOMZkMqlSpUpq2bKlBg4cqKZNm2b6nOPHj9fPP/+sqlWratGiRfLx8clxvACA7NnuJVJzcnKSu7u7fHx8VKNGDd1+++3q1KmTWrRoYacoM5Y6rzh27Fi+z2fLn0rifVWDBg0k3fy5dG4lJiZqwIABOnTokO68805NnTpVrq6uafYpiHvCG/O1adOm6Z577skytldffVWrVq2SpCyvuejoaC1atMjIv8LDw+Xk5CRvb2/VqFFDDRs2VOvWrdWuXTt5eXmlOTaze4vMFMW1n5v7gYyu56NHj2r9+vXavXu3jh8/rtDQUFmtVpUtW1aNGjVSz549833/fuDAAQUGBmrv3r06fvy4wsPD5eLioqpVq+rOO+/Uk08+qTp16uToXCdOnNCyZcu0efNmXbhwQeHh4XJ1dVWbNm30ww8/pNs/KSlJmzdv1t9//62DBw/qzJkzio6OVqlSpXTLLbfovvvu0xNPPJFhTlwQ9zcXLlzQww8/rOvXr+vtt9/WkCFDcnU+3Hxc7B0AgKJnMpmMhMlqtSouLk4hISEKCQnR+vXrNW/ePH3//fcqXbq0nSO9OTk5OcnNzc34/5vVpUuX9H//93+SUhLjG4vkN3J1dZXJZJKUkjCFh4crPDxchw4d0u+//64vv/xSXbt2zfZ59+7dq23btumuu+7KdJ8pU6Zk22MgISFBH3zwQbrE1snJSVFRUYqKitLp06e1bt06ffXVV3r88cf1/vvvZ3iu1L9zWSnM6yH1dZcds9mc4c9n9OjRWrp0abrzxsTE6OjRozp69KjmzJmjr7/+Wh07dsx3zKmvicwez4jValV0dLSOHTumSZMm6erVq7l+7lWrVmnMmDG6cuWK0ebk5CSLxaKQkBBFR0enO+by5ct64IEH0rTZjjl79qzOnj2rRYsW6Y033tCzzz6b4fO+/vrr2rdvn3bu3KnRo0fru+++y3XsAICcsf1dtFgsiouLU1xcnC5duqSdO3fql19+0W233aaxY8eqfv36do40hYuLS47/lueEq6ur3NzccpSjoGSYMGGCDh06pAoVKujbb7/N8r0tyHvCyZMnZ1koP3XqlNasWZPtebZu3aqRI0emyd2cnJxkNpuVkJCga9euae/evQoICJC7u7tWrVqlKlWqZHiu7PJI2z5FJSf3AzfeC5w6dUq9e/dOt4/FYtGVK1d05coVbdiwQQsWLNDkyZPl7u6e67j27Nmjxx57LN1zmM1mnThxQidOnNC8efM0duxY9ezZM9PzJCYm6vPPP9ecOXPSjGKwnevkyZMZHvfLL79owoQJ6Z4/KipKBw4c0IEDBxQQEKCpU6caX5Cl3i+/9zdVq1bVuHHj9Mwzz+jrr7/WXXfdpUaNGuXonLg5USgHHFCrVq3S9MKMjY3ViRMnNGvWLP3111/aunWrPv30U40dO9aOUd68WrVqpYMHD9o7jEL3ww8/KCoqSo0bN9bQoUOz3X/q1KnGt/vJyckKCwtTYGCgJk2apEuXLmnkyJFq0KCBateunek5vL29FRUVpR9//DHTQnlISIhWrFihMmXKKDIyMtNzjRw5UqtWrZLJZFLfvn3Vv39/1alTR15eXoqMjNTJkye1Y8cO/fXXXzpx4kSW57rxd84ecnrdnTx5Uj179lRSUpK8vb3TPGaxWFS/fn099NBDatOmjerVqyc3NzeFhYVp/fr1+vzzzxUVFaU333xTGzZsUJkyZfIV88qVK/PUO71Ro0ayWCx5ft45c+boww8/lNVqVbt27fTEE0+oWbNm8vHxUXR0tI4fP64aNWqkO85qtcpkMql9+/Z68MEH1bJlS1WqVEkxMTHat2+fxo0bp2PHjmncuHFq3Lix2rRpk+4cTk5OGjt2rHr06KFVq1Zp3759atasWZ5fCwAgYzf2JDWbzbp06ZKOHDmiVatWaeXKlTpw4ID69++vr776Sh06dLBjtCnGjBmjMWPGFNj5pk2bVmDngv1duHDByDc/+OADlS1bNsv9C+qe0NvbWzt37tSuXbvUsmXLDPeZOnWqLBZLlvl3UFCQhg4dKrPZrFq1aumZZ55Ru3btVLFiRSUnJ+vq1avau3evNmzYoFWrVikhIUGJiYmZxpX63qI4yMv9gMVikbu7u7p166YuXbro9ttvV/ny5WU2mxUcHKwff/xRa9as0ZYtWzR58mQNHz4813FZLBa5urqqc+fO6tGjh5o3b65y5copPDxc27Zt07hx4xQSEqJ33nlHjRo1Ut26ddOdIz4+Xs8//7y2bt0qT09PPfHEE+revbvq1asnFxcXXbt2LdNCucVika+vr3r16qX7779fjRs3VunSpXXlyhUtWbLE6PTy8ssva9myZWkK4wVxfyNJ99xzj/r27av58+frq6++0tSpU3PxE8TN5ubtygggxzw9PdW0aVN9+eWX6tGjhyRp8eLFWRb+gKycP39eCxYskJRScHZ2ds7V8c7OzipfvrweeeQRTZ06VU5OTkpISNAff/yR5XEPPfSQPD09tXXrVu3bty/DfaZNm6akpCQ9/vjjmZ5n//79xtDQ//u//9PYsWN1++23y9vbWyaTST4+PmrevLmGDRum5cuX6/vvv1e1atVy9RqLq6+++kpJSUkZ9qZ4+eWXtWTJEj377LNq3Lix3N3dZTKZ5Ofnp4cffliff/65JCkmJsaYCsce8lMkP3z4sD755BNZrVa98847+vnnn9W+fXtjuKeXl5eaNWumcuXKpTvWy8tLCxcu1E8//aSePXuqSpUqxlDhtm3baurUqcZ5AgICMo2hZs2axvVJj3IAKBqurq6qUaOGunTpoq+++krz589XrVq1FBMToxEjRujEiRP2DhHI0g8//CCz2ayWLVuqc+fOuT4+r/eEtpxl8uTJGT5+5coV/fXXXypdunS63tGpffPNNzKbzapRo4YWLFig/v37q0qVKnJ2dpabm5uqVaumBx98UOPHj9fGjRvVt2/fm3p0riRVqlRJa9as0Zdffqn7779fFSpUkMlkkpubm5o0aaLvvvtOjRs3liRt2LAhT89Ro0YNLV++XBMmTFDnzp1Vvnx5mUwmlS1bVt27d9eUKVPk7Owss9msefPmZXiOb775Rlu3blWFChU0b948vfHGG2rUqJHc3Nzk5OSkihUrZtqJqWPHjlq3bp3ee+893XnnnfLy8jKmLXz22Wf1zjvvSJLOnj2rLVu25Ok1ZnV/YzN8+HCVKlVKmzdvZq0gB0ePcjiM/fv3688//9Tx48d15coVhYaGKikpSWXLllWDBg3UvXt3PfTQQ5kW9Pbs2aPff/9de/bs0ZUrV+Ti4qJKlSrptttuU4cOHXT//fenG/aTl2MkacuWLQoICNC+ffsUHh4ub29vNWnSRP369VO3bt0K5edj06NHDy1fvlxms1lnz55VkyZN0u1jtVq1fPlyLVq0SIcOHVJkZKS8vLzUqFEj9e3bVw888ECmw9zMZrP+/PNPLVy4UP/++6+SkpJUsWJF3XnnnTKbzVqyZEmGc8XZ5nazzUm8YcMGzZkzR3v37lVkZKT8/f31119/pTlm06ZN+vPPP7V3716Fh4fL09NT9evX1wMPPKBHHnkkw6FvtgRg+fLlCg4OVnR0tEqXLq1bbrlFLVu2VPfu3dP9THJ7TOq5826cI80mIiJC06dP1/r163X27FlZrVZVrVpV7dq105AhQ1SxYsV0x9x43mrVqum3337Txo0bdf78ebm6uqpp06Z6/vnns5yWpCBMnTpVZrNZt912W4a9ZnOjXr16ql+/vo4dO5ZpTwQbHx8fDRgwQNOmTdPkyZP1008/pXk8NDRU8+fPV6lSpTRo0KBME/rUyVG/fv2yjfH+++/X/fffn4NXkze2YYaFPY/i7t27tXbtWknSG2+8ke7xjHqQpHbLLbcUSly5lXre1tzOXThmzBglJSXp4Ycf1lNPPZWr5/Xy8spwrnqbChUqqHnz5tqwYYOOHz+e5bmefvppzZo1S1u2bNHBgweznNccAFDwGjZsqICAAPXs2VPXr1/XyJEjNX/+/Axz3NjYWP3+++9as2aNTp48qbi4OJUrV04tWrTQ4MGDsxwZFBoaqpkzZ2rjxo06e/asEhISVLFiRTVv3ly9e/fWvffeaxQDs1urKTg4WLNmzdKOHTt06dIlWa1WVahQQY0bN1a7du3Uo0cPeXp6GvvfmF9nJC/3JanPO336dK1atUoLFy7UwYMHFR0drcqVK6tLly566aWXcj3V441zzL/zzjtGIc3GtibJjblxvXr1NHPmTK1Zs0Znz56VyWTSF198YRSFJSksLEwzZ85UYGCgzp49a6xNcuedd2rIkCEZrk9ic/HiRU2fPl1///23Ll68KIvFoipVqujee+/VkCFDVLVq1Vy91ty4fPmyFi1aJEl67rnn8n2+nNwT2gwePFjTp0/X5s2bM8xZfv31VyUmJmrQoEHy8PDI9Dy2/LtLly7p5h6/kZ+fnz777LNcvKLcSX2d2XMefC8vryx/Fk5OTqpZs6YOHTqU54UoK1WqlOXj9erVU506dfTvv/9mmL+eOnVKM2bMkJRSMM/ufuFGDRs2zPLxzp07G9NbHj9+PNeje7K7v7GpWLGievXqpblz5+qnn35Kdx8Jx0GhHA5jy5Yt+vPPP41tW5Jrm9vr77//1pIlS/Tzzz+nK6B+//33mjhxovHHxzbP1unTp3X69GktXrw43cIPeTnGYrHoo48+SrMQoZOTk0JDQ7Vp0yZt2rRJXbp00fjx4/M0/1hOpE5eMiriR0ZG6tVXX9XWrVuNNpPJpLCwMG3ZskVbtmzRmjVrNGHChHTf8F+/fl3PPfecgoKCjDYnJyeFhIQYvY+zExoaqiFDhhjfJtvmaIuKijL2SUxM1DvvvJNmLmWTyaSIiAjt2rVLu3bt0rJly/TLL7+oVKlSxj4RERF65pln0gzfcnJyUkREhPbt26d9+/bpl19+0bZt24yhjHk5JjuHDh3SsGHD0szNZzKZjDni/vzzT02cOFF33313puew3XCZzWYjpoSEBG3dulU7duzQd999V2iF3aSkJK1YsUKS0s13l1e29yknc9A9/fTTmj17tjZs2KAjR46kKVzOmjVLcXFxeuqpp+Tn55fpOVLPq3ft2rUMp9m4GX355ZeSpK5du+q2227L9fG2Xvi+vr7FaqhrTh07dky7d++WyWTSSy+9VCjPYevtnl0PqMqVK6tdu3YKDAzU4sWLKZQDgB2UK1dOo0aN0siRI3Xo0CH9888/6eZhDg4O1vPPP6+QkBCjzWQy6dKlS1q+fLlWrlypd955J8MvbTdv3qwRI0ak6bFrMpmMeaKXLl2qZ555Rm+99Va2sc6fP1/vv/++kpKSJP2XI58/f17nz5/XqlWrdOTIEY0ePTpHr70g7ksuX76shx9+WIcPH04T07lz5zR16lTt3r1bs2fPztU80bbexbYpN1xcXNL9Tc3oy4xFixZp9erVxhojzs7OSk5OVnx8vLHPjh079Morryg8PDzNuWw/wyVLlmjcuHEZfkGwYsUKjRo1yjifyWSS1WrVqVOndOrUKS1atEg//vhjplOT5NeKFStkNptVvXp1tWvXLt/ny+6eMDU/Pz898sgjmjVrln788Ud9//33xmNRUVGaO3eu3N3d9fTTT2c5os6WI127di2f0TuO8PBwbd++XZJytJZTXmWVv86dO1cWi0Vt2rQplOs79RcAeRlBkJv7m/79+2vu3LnavHmzQkNDs7xfxM3r5h6nAqTi5+envn37auLEiVq9erUOHDigQ4cOae3atXrhhRckpSweMnfu3DTH7dq1S999952sVqsef/xxrVmzRocOHdL+/fsVEBCgZ599VmXLlk3zAZ6XYyTpxx9/1Jw5c+Tk5KTnn39eGzdu1JEjR/TPP//o7bfflqurq1avXq1PP/200H5Oth67zs7O6YqDFotFw4cP19atW1WnTh1988032rJliw4fPqyNGzfqrbfekqenp1auXKlff/013bGvvfaagoKC5Ovrq7Fjx2rXrl0KCgrS+vXr9eGHH+bo2+fjx49rx44dGjx4sJYvX65Dhw4pKChI06dPN/b58MMPtXTpUlWqVEljxozRpk2bdPjwYW3evFljxoyRn5+fdu3apXHjxqU595dffqmDBw/Kx8dH48aN065du3T48GH9888/RmHZyckpzfuWl2OyEhoaahTJ/f39NW3aNB08eFBBQUGaM2eOmjdvrujoaL300ks6ffp0pudZu3at/P399c0332j37t06dOiQ5syZo5o1ayo5OVmffvppmmJwQQoKClJYWJhcXFwKZEFHi8VivNZatWplu3/FihXVp08fSWmHgMbExOj333+Xq6trtquZ24YwStKnn36a4cKNN5sVK1Zo3759cnFx0YgRI3J8XHh4uPbt26f/+7//03fffSdfX199++23Gc7/l1t9+/bVbbfdpubNm6tdu3YaPHiwpk6dWmjvh23IaoMGDRQbG6sxY8aoZ8+eatWqlTE65KOPPtL58+fzdP6kpCQdOXJEknK0MJytF9zmzZvz9HwAgPzr0qWL0Qt73bp1aR67du2ahgwZopCQEN1777367bfftHv3bh04cEDLly9X//79ZbFY9Nlnn+nAgQNpjj18+LBefPFFRUZGqmnTppo+fbqR8y1ZskQvvviifH19jU4PWTl37pw++OADJSUlqXv37lq6dKkOHjyogwcPauHChXr11VdVpUqVXPU4LYj7kjNnzujEiRMaMmSIli1bpkOHDmn79u0aNmyYJGnfvn1GL+icevHFF9N0UPnkk0+M12r7l9F0eAsWLFDVqlX17bffas+ePTp8+LC2bt1q9E49ceKEhg0bpvDwcD344IOaP3++0ell0aJF6tKlixITEzVq1ChduHAhzbm3b9+uN954Q2azWQMHDtTSpUt14MAB7dmzRwEBAWrdurWioqL02muvKTY2NlevN6f+/vtvSSm9b7NbwDInsronzMgzzzwjV1dXrVu3TsHBwUb7b7/9ppiYGD388MMqX758luew5d8rVqzQpk2b8hF98bR3717dcccduu2229SqVSt169ZNb7zxhgIDA3N1nsTERIWEhOjPP/9U//79FRoaqh49euRoTai8iIiI0NmzZyVlnL/a4m/fvr1WrlypF198Uffdd5+aN2+uNm3aaODAgZo1a1aW88lnJfXve24XVs7t/U3jxo1VpUoVJSUladu2bbmOFTcHepTDYQwYMEADBgxI116jRg0NHz5cV69e1bx587RmzRo98cQTxuO21blvueUWY8iPlPIte4sWLdSiRQu98MILaRKmvBwTGhqqH3/8UVLK/Fi2BFJK6c0yZMgQ+fn56e2339bcuXP15JNP5voPRXaio6M1e/ZsSSnD7VL3tpak5cuXa8uWLapdu7YCAgLk6+trPFa5cmU988wz8vT01IcffqgZM2bomWeeMR5funSpdu7cKWdnZ02ZMkW333678Vi1atX02GOP6dq1a2mGUmakXLlymjJlSprhf7YhZ1JKAjJ//nyVLVtWv/32W5rErkKFCnrkkUdUqVIlDR06VH/++afeeOMNY8in7X179tln1atXrzTP2bVrV3Xt2lWHDh1KM2Q1L8dkZcqUKbp69aoqVKigWbNmpfkZN2/eXDNmzFC/fv3077//asKECfr2228zPM/QoUP1+uuvp/nWvXnz5nrrrbf08ssv68KFCzp69GiagnBBsc0N3rhx4zTx51VAQIDCw8Pl5ORkFMCzM3ToUOP3+cSJE6pbt67++OMPhYeH69FHH812iOFdd92l5s2ba+/evQoMDFS7du3Url073Xbbbapfv778/f2zPUdqO3fuzFGP4E8++UQPPfRQuvbUU4kUBrPZbKw2369fvxxNoRITE6MWLVoY215eXnrxxRc1YMCADKcGyouIiAjj/2NjY3X58mVt27ZN06ZN0w8//JDmc6QgHDp0SFLKNEY9e/ZMN9d5VFSUTp48qQULFmj8+PG5nv9z8eLFxkiRBx54INv9bVMknTx5UpGRkfleHBUAkHseHh5q2LCh9uzZo6NHj6Z57LvvvtPVq1fVtWtXffvtt2kKlHXr1tXHH3+sqKgoLV++XDNmzNBXX31lPP7pp58qISFBDRs21OzZs9P04PX395e/v7+efPLJHC1UFxgYKLPZLE9PT40fP14uLv/d5jdq1EiNGjXS0KFD0xQws1JQ9yWVK1fWr7/+qjp16hhtvr6+ev3117VhwwYdO3ZM69at0yOPPJKjuPKjf//+ev/999P8bFL3Fh07dqxiY2M1ZMgQvf3222mOvfXWW/Xtt99q4MCB2rt3r+bOnWsU3axWqz788EMlJydr9OjRae4j3dzc1KJFC02ZMkUPPvigzp8/r6VLl+rRRx8t8Ndn+yImqxGnOZXdPWFGqlSpop49e2rBggX66aef9NVXXykhIUGzZs2Si4tLmvvCzDz//PMaOnSoEhMTNXToUDVs2FB33323GjZsqPr166tu3bq5GlX9zDPPZPulQdWqVY0Rkam98soreuWVV3L8XDlhNpuNL74SEhIUGRmpU6dOaenSpbrvvvs0YcKEbO8Zv/jiizSL8LZp00YjR44s1CkgZ86cacSdepoiKeVaOXPmjKSUDkqpc3cpJX8PDQ3V7t27jWsjt/cJtoU1y5Url6vpQ/NyfyNJrVu31l9//aV9+/ale71wDPQoB/7HVnC5dOlSho/HxsZm+i2ol5eX/P3983XMypUrlZCQIE9PTw0ePDjDY3r37m0Ufm+cjzuvkpOTde3aNa1Zs0YDBgzQ2bNnVbly5Qy/cbUtpDho0KBMC6C2P9KXL1/WuXPnjHbbwh/3339/vopbdevWzXKOPFuMffv2zbT3w7333qtSpUopMTExw5uPsLCwTM/fuHHjDOfWy8sxGVm8eLEkaeDAgRn+jN3d3fXss89KSuk1HhMTk+F52rZtm+HQtNTDzWw9AwqaLVnKbr65rMTFxenYsWP64osvjJ5Kzz//fJobrazUqFFD3bt3l8Vi0U8//SSz2azp06fL2dk5R70tTCaTfvjhB2PoakxMjFasWKEvvvhCzz77rNq1a6c2bdro5Zdf1vLly7PtnW+1WpWYmJjtv/wsQpkfAQEBOnPmjDw8PHI85YhtISHbDUh0dLSWLVumZcuW5bnHiJQyauC7777TsmXLtHXrVgUFBWnTpk0KCAjQ008/LVdXV127dk3PPfecrl+/nufnycjFixclpfTU6devn6ZNm6bAwEAdPHhQmzZt0vjx41WhQgXFx8drxIgR2c4zntr58+f1xRdfSEpJwG29xbNSvXp1Y15K2+8VAKDoVahQQVJKAdkmMTHRyMdfffXVTAtyttw49fonZ86c0a5duySlFKIzyxP9/PzUvn37HMdpNpszHXVlW/wvJwrqvqRmzZqZ5m62nDT1/UJheuCBB9IUyVMLCQnR5s2b5erqaow0vpGTk5MxUnL37t1G+65du3Ty5EmVL19eAwcOzPDYUqVKGVP2pD62oISGhhrT92S1VkpWcnNPmJmhQ4fKyclJK1as0OnTpzV//nxdu3ZNPXv2zNGi923bttWXX35pLHx+9OhRTZs2TW+99Zb69Omj5s2b66GHHtLXX3+do+vGbDZnm3vnZMRGfj300EOaPn261q1bp927d2v//v1atWqVvv/+e2Oqwg0bNuiDDz7I9lwuLi5ppiras2ePFi5cWGidag4ePKgpU6ZIkvr06ZNuIczLly8bI1W8vLyMtRy2b9+uvXv3avny5cZI3sOHD2vEiBG5GtliW3NBkt58880cTcNpk5f7G+m/e1hyb8dFj3I4lMTERG3atElbtmzR8ePHde3aNcXExCgmJsYYBnfjH8u7775b06dP1+XLlzVw4EA99thjat26dZZD0PJyjK0XQNOmTTNNlk0mk1q2bKlz585p//79uX35hh07dhiLA96oVatWGjt2bLpkJjk52egp/Nlnn+nzzz/P9nlscztbLBbt3btXUsH0csiKLfmcMWNGposSSTIKeannwGvTpo1WrlypGTNmKDIyUt27d1ezZs2yXEAlL8dk5vz580bhr1WrVpnuZ5v7LSkpSYcOHVLr1q1z/Bype6SmnpOxIF25ckWScj2vd2YLLnp5eenll1/W008/navzDRs2zCjcVq1aVZcuXdKDDz5ojD7Ijp+fn37++Wft27dPK1as0O7du3XixAnjsyI0NFRr1qzRmjVr1LBhQ33//feqXr16hufKapEse4uOjtYPP/wgKeU9yGlPeU9PTx08eNC4sVq/fr0mT56szz//XGvWrNHMmTMzvSHNSuXKlVW5cuU0bZUqVVKlSpXUokULtW7dWi+88ILCw8P1+++/F2hvH9taBz169NCYMWPSxdCzZ081atRIDz30kBITEzV16tQcLSQVGhqq5557TuHh4apQoYK+/vrrHA2LNplMqly5so4fP67Lly8zTzkAFCMHDx40cqmsRrzZikKp156x5cUuLi75XvRcShmBZFsPacCAAXryySd11113qU6dOnmahqMo7ktsOWlcXFyujy1otvsHs9mcbg761GwdGlK/l7YvPK5fv55lZyBbp4rCmH/blnt7eHgYX+rkRF7uCbNSp04dde7cWatWrdLkyZO1e/duOTk55WpKkF69eqlDhw5aunSpNm/erCNHjujChQuyWq1KTk7WkSNHdOTIEU2bNk2vvfZalueeOXNmsVgzJ6Ne0LVr11bt2rXVqVMnvfbaa1q1apUWL16s1157LdP7CSllMco33nhD0dHROn78uGbPnq0lS5YoMDBQP/zwg+67774Ci/vs2bN64YUXlJiYKH9//zQj5W1SrxM2duzYdK+1bt26evvtt1WqVCl9//332rVrl3bu3Jmj+9e1a9caeXbfvn1ztaBqXu9vpJTREVLKlwBwTBTK4TB27dqlt99+O8O5ZU0mU6YLQ7Rv316PPfaYAgICjHnvpJRhg02aNFGnTp3Uu3fvNCu25+UYW9KUXXJjezw/PSlNJlOab6LNZrOsVqvq1q2radOmZfhNbUREhBISEoz9c8JWjA4PDzf+3/aHp7DYEkXbQkbZSd3zddSoUTp27JhOnTqlefPmad68eTKZTKpVq5ZatGihnj17piv05+WYzKR+T7Oawy/1cLXcJtuph07mdWX07NgKybmdo9rV1dW4mbNarcZ1Nnr06AynI8mOv7+/7rvvPgUGBmry5MkymUxphg7nVLNmzdSsWTMjrvPnz+vw4cPav3+/VqxYYUxj8+KLL2rRokV5WmTGnn766SeFhYXJx8cnT3MbOjs7q1KlSnrsscfUokUL9e7dW7t379bChQsLZSh1x44d1bhxYx06dEjbtm0r8GGxUtafH3Xr1tV9992n1atX52juwrCwMA0ZMkQnTpyQr6+vfvnll1zdxNp+j4pDIQEAHJUtR0v9+W3LOSXlaCRV6vzZVmgtW7ZsjkcdZsXf318jRozQhAkTdOrUKX388ceSUjob3HrrrerQoYP69OmT44XpiuK+JCfTeRSV/LyXtmNtowezk59Rd5mxjTDNbe6dl3vC7AwbNkyrVq0y5p7v2rVrjtahSs3b21uPPfaYHnvsMUkpry84OFiHDx/W33//rU2bNslsNmv8+PGqWbNmoS5iWdhsC8jbpn/Ztm2bHn744WyP8/LyMu5REhMTtWrVKn300Udq3759gcxRf+7cOT311FO6evWqqlWrpilTpmQ7LUxWI2wHDx6sH3/8UcnJydq2bVu2hfINGzZoxIgRSk5OVrt27fTRRx/lKv783N+Qe4NCORzC6dOn9eyzzyouLk6lS5fWww8/rHvuuUc1a9ZUhQoVVLp0aS1cuFDvvPNOhsd/+OGH6tevn5YtW6YdO3bo2LFjCg8P1+bNm7V582b9+uuvmjZtWpoetHk5Jidsxc38FDlbtWqVpnfrwoULNWrUKJ04cULvvvuuxo0bl+4PbOo/fFOmTMn1MFCbvCRcuWGL84MPPsh0+GNmqlSposWLF2vVqlUKDAzUnj17dPHiRZ0+fVqnT5/WggUL1Ldv3zQ9SPNyjKPIbZI2depUo9dHdHS0Bg4cqGPHjumjjz5S/fr18zSf+vPPP28sMNOhQ4cMp0jKDZPJpBo1aqhGjRrq2rWrhg8frjfffFOrVq3SsWPHtH//fjVv3jxfz1GULl26pJkzZ0qSnnvuuXzPgd2gQQPVq1dP//77rzZv3lxoc47ecsstOnToUIFPvWIb6pvZlEY2tWvXlpT9F1WXL1/Ws88+q+DgYJUvX15Tp07N9ZRE9pqOBwCQIjEx0ViIOXUukvrzef/+/bkqeBdGZ4XnnntOnTp10uLFi7V9+3YdOnRI0dHR2rlzp3bu3KmpU6fqxx9/TDMNX34VxH1JcWB7L8uVK6d//vknV8fa7j1uu+02/fnnnwUeW2HKyz1hdho3bqx7773XWIj8+eefz3ecpUuXVvPmzdW8eXM9/vjj2rNnjwYNGiSz2aw//vijRBfKJaWZOzv19E451aNHD61atUoXLlzQiRMnVK9evXzFc/z4cQ0ZMkSXL19W7dq19euvv2ba2S31vUNm0z5JKTm2n5+frl69mm3+vGLFCo0cOVJms1mdOnXSN998k6saQn7vb8i9UbK6vQF5FBAQoLi4OHl5eWnBggV699131b59e91yyy3y8vLKUQLQtGlTjRo1SgsWLNDevXv1xx9/aOjQoXJ3d9fZs2czXPE9N8eUK1dOUtoeDRmx9UDJbtXw3OjTp49efPFFSdKSJUv09ddfp9vH19dXzs7OknI/l2Dq3g3h4eF5DzQHbD/HvM536Obmpp49e+rrr7/Whg0btHXrVk2aNElt27aVJC1YsCDdgi95OSYjqXv5ZHUdpB4GZnu9xYmtt0FWyVJ2vLy8NGXKFFWsWFGxsbEaNmyYQkJCcn2eZs2aGT0WCiJRv5Gbm5sxZ7ykPMVoT998843i4+NVuXJlPfnkkwVyTtu0Q/l5/7NjG7WQ00Vyc8r2xeXJkyez3M/25V9WveFOnDihAQMGKDg4WLVq1dKcOXPyNG+/7edYnHreAYAjWbdunfEFauqCXOq8Lbfrvtjyt7CwMGPEZkGoW7euRowYoTlz5mjv3r3666+/NHz4cPn4+Oj69et67733chWfPe5L7MH2XoaFhaWZSiInUt972OsLA9so5ey+6M9OTu4Jc8I2grNdu3bp5rQuCC1atDCmLMpotHhJk7rncl5y29RTfub2+r3R7t27NXDgQF2+fFm33XabAgICVLVq1Uz3r1q1qjEqoSDy59mzZ+v111+X2WzWo48+qokTJ+a6o11+72/IvUGhHA7h1KlTklLmk7b1BMwPNzc33X777XrzzTeNIll2C7Nkd4ytd8fBgwczTXKsVqt27twpSQU+V+1rr72mnj17SkrpMf7777+nedzV1dVYHCYnRd/UPD09jW+hjx49WgDRZs72c1y7dm22CyzmhJ+fnzp37qwpU6YY88Vl917n5RgppUhnS9S3b9+e6X62x5ydnfPUy7qw2aaGye+8bpUrV9ZPP/0kT09PXb16Vc8++2y6ldRzYtq0adq7d2+uFpHN7sYwtdRDVnM6pLk4OHr0qLH41ssvvyx3d/d8nzM5OVmnT5+WpFzNBZgbSUlJxtypBX3929YGOHPmjE6cOJHpfocPH5akTOf13LVrlwYOHKgLFy6oSZMmCggIyPXoISmlR8uFCxckFd7PEwCQuYiICGNdntatW6cZNda0aVOjE0luc2NbHp+UlJSjabzywsXFRQ0bNtQLL7ygt99+W5IUHBxsLPqYFXvfl+SE7WdfEFOZ2HJEi8WiNWvW5OnYsLAwY9HBombLvWNjY/NdKM3unjAnWrdurb179xpzROdEQkJCjq5NG1v+XZJy78ykvk/MyxcLqQvUN67zkxurV6/WkCFDFBERoXbt2mnGjBnZ/nw9PDyMRYI3bNiQ6X4XLlwwOsxllD9brVZ99dVX+uSTT2SxWPTiiy/qk08+MX7Pc6og7m9sX76QezsuCuVwCLYPyMyG6dsWBsnIwoULsxweZFusLvWidXk5pmvXrnJzc1NcXJx++eWXDI+bN2+e0WO1V69emZ4/r8aOHWssFDlmzBitX78+zeO2BTR27NiR7dDCtWvXptm29a5esmRJhgmt1WrNdW+cjNhiPHv2rCZOnJjlvps2bTJiiY2N1W+//ZbpUCsnJyfjD7XtfcvLMdl58MEHJUm///57htdQ6uujU6dOeVo0tLDVqlVLkgpk9fVGjRrp66+/lrOzs06ePKkXX3wx1zdErq6uue6dMWHCBI0cOTJHxX7b0D5fX1/j96ckGDdunCwWi+rUqZOjxXHOnTtnLFiVmdmzZyssLExSyvWZF3/88UeWQx5nzJhh/G4U9Odgt27djN+pzz//PMOeYQcOHDBuhG03kqktXLhQTz31lMLDw9WlSxfNnj07zyM/Tp8+bfQysv1eAQCKxunTpzVw4EBdunRJ3t7e6Ray9/Ly0v333y8p5Uv5rDqDJCYmatOmTca2v7+/MR3cN998k2mv8qioKGPhz6ysWrUqyzzaloeaTKYcFZ6Kw31JdmwFPNuX1/lRv359o9j39ddf6+LFi5nuGxUVlebLjbvvvtsoqH3yySdZFqqvXLmSp4VPs+Pn52dML1EQ+Xd294Q54enpmaYzSXauXr2qHj16aMWKFdlOfXHixAlt2bJFktS5c+dcx1aUDhw4oEOHDmX6eGJioiZNmiRJqlmzprEuks3q1auzHKUZERGhGTNmSEq5b8rremBTpkzRq6++qvj4eA0cOFCTJ0/O8f1Tv379JEn79u3TsmXLMtzH9jlSunRpdejQIc1jcXFxevXVVzVlyhS5urrq888/12uvvZan15Hb+5uM2D7Lyb0dF4VylFhJSUk6c+ZMtv+klGFfkrRnzx5NmjTJKJhHRERo+fLleuihh4xi143WrFmjzp0768MPP9TWrVuNP1Th4eH666+/NG3aNElS9+7d83VM+fLl9dxzz0mSJk+erC+//NJI0q5fv64pU6YYi1j069cvT0P4s+Pm5qbvv/9etWvXVnJysl5//XWj56YkPfLII0YPk9GjR+uDDz7QkSNHlJSUpKSkJJ07d04BAQHq06dPuqGdgwYNkouLi0JCQvTKK6/o5MmTslqtioqK0po1azRgwAAtXrw436/hvvvuMwp0kydP1muvvaa9e/cqMTFRFotFly9f1qJFi/Tkk09q6NChxhCwpKQkffzxx+revbt+/fVXHT9+XGaz2egh++GHH+rMmTMymUzq1q1bno/JzrBhw1SuXDmFhYXpiSeeMIr5SUlJ2r17twYPHqxTp07J09NTw4cPz/fPqzDYErz9+/crPj4+3+fr0KGD3n33XUkpPXXfeuutQh/aarVatXjxYnXs2FHDhw/XX3/9pXPnzikxMVHJycm6fPmy1qxZo8GDB2vBggWSpHfffbfQ5uBv0KCBGjRooI4dOxbI+bZs2WLMHfn666/n6Kb5woULevzxx/X4449r7ty5OnXqlMxms+Lj43X48GGNGTPGKCLcddddGRbKt2/fbryWUaNGZfg8o0ePVrdu3fTzzz/r2LFjSkxMVGJiov7991999tlnGjdunCSpS5cuRg/wguLj46OXX35ZUsoXaS+88IKCgoKUmJiomJgYLV68WM8995ysVquaN2+eLgGfNWuWRo0aJbPZrGHDhum7777L17BN201gnTp18j1/PAAga2azWSEhIQoMDNR7772nBx98UMePH1eZMmU0ceJEVatWLd0xI0eOlK+vr2JjYzVw4ED9/PPPOn/+vKxWqxISEnTkyBFNmjRJHTt21Lx589IcO2rUKDk5Oenw4cMaNGiQtm3bpsTERJnNZp04cUKTJ09Wly5djL/XWdm1a5d69OihkSNHasOGDUbPzejoaK1fv96YQqN9+/bGNB1ZKQ73Jdlp0aKFpJROOBs2bFBMTIxCQ0O1ZcuWPPUyHz16tNzc3HT16lU9/PDDmjNnjjHCMDY2Vvv27dOXX36pjh07auPGjcZxbm5uGj16tEwmk/7991/169dPixcvNuaajo6O1rZt2/Thhx+qc+fOOnjwYAG8+vRs92gFMUIhu3vCwnL16lUNHz5cXbt21aRJk7Rr1y5jNGl0dLSOHTumCRMmaMCAAYqPj5e/v78ef/zxQoll4sSJRs5qy/Xz4vjx4+rXr5+ee+45LV++XFeuXJHValVYWJj++ecfPfHEEzp06JBMJpPxmZDarFmz1KlTJ40ZM0b//POPIiMjZbVadfnyZS1fvlz9+/fX+fPn5ezsrLfeeivDGJ588knjtWQ0Vc3nn3+ur776Ss7Oznr//ff1wQcf5LiTlyQ99NBDxijPUaNG6ZdfftGFCxdktVp1/vx5ffLJJ/rtt98kSW+88YbKli2b5vjHH39cq1evlp+fn6ZPn64+ffrk+LlTy8v9zY0sFou2bt0qSem+tIDjYDFPlFiXL19Wly5dst3v2LFj6tOnj5YvX65//vlHEydO1MSJE+Xk5GR8W+3p6al77rnHKEqk5u7urtjYWAUEBCggIECS0hwrpQzXf/311/N1jCS9+OKLunz5sv78809NnTpVU6dOTXdcp06d9P777+fkR5Qnvr6++vnnn/Xoo48qLCxMw4YN09y5c1WzZk25ubnpxx9/1PDhw7Vjxw7NmTNHc+bMkZTSQyV18bJChQppzlu/fn29++67+vjjj7VhwwZt2LAhzWtzc3NTgwYNdOzYsVz1PsjI+PHj9c4772jlypXGPyn9e+Di4mIkI05OTnJxcdHp06f1+eef6/PPPzfmrre9LicnJ7399ttGIpqXY7JTvnx5/fTTTxo2bJhOnTqloUOHpjtn6dKl9e233+Z6Bfmi0qRJE/n6+io8PFybNm3K0e9pdp544gmdPXtWM2bM0IoVK1S5cuVMC60FoW7dunJ1dZXZbNaKFSu0YsUK47EbryNvb2/93//9n3r37p3p+Xbu3JmjYcmffPKJHnrooXzFnh2r1WoUm2+//fYc98Sx/a7s2rUrTc/yG3/377rrLn333Xf5ivHMmTMaP368xo8fn+FzdOjQIV3PvtRSv6bUX9YMGjTISJorV66cZgErm6efflqXLl3S9OnTFRgYqMDAwHTv+R133KFJkyalu4lI3WPo119/1a+//prl6+zdu7fGjBmT6eO24d/33ntvlucBAOReSEiI8bfZYrEoKSkp3T4tWrTQ2LFj0yy2l1qNGjX0yy+/6LXXXlNISIjxt+vGvxuS0uW399xzj8aOHav3339f+/bt0+DBgyWl/5uXky/h3d3dZTabtXjxYqPjyY0x1KtXTx9//HG257IpDvclWXnuuee0fv16Yy2b1Hbu3JnrzgvNmjXT999/r5EjR+ratWv64IMP9MEHH8jZ2TnddI43vpedO3fWZ599ZnSSGTlypKT070FGxxaUtm3bavPmzVq1apXxpX9+ZHVPWBg8PT1Vq1YtnTlzxhgZbBsdnNHP8d5779W4ceOynFrjmWeeyXYtsqpVq+Z66qTcslqt2rhxo/EFy42vx9XVVe+//36GnUxMJpPCw8M1a9YsI2+98XhPT0998sknxrztuWXLX5OTk4172qy88MILxlz2tvgnT55sLGA/btw4jRs3Lk2cTk5Oeu211zL8YsP2/BEREXr66aezjXfatGnpOsvk9f7mRrt371ZoaKhcXFx01113mIsy2AABAABJREFU5ekcKPkolMMhuLi4aMqUKZo2bZoWLFig8+fPy9XVVbVr11bHjh31+OOPa+PGjRkWyr/88kt169ZNa9as0cGDB3X58mWZzWaVLVtWt956qx588EH17t07zbe/eTlGSplrb8yYMeratasCAgK0f/9+RUREyMfHR40bN1a/fv3UvXv3XK8+nls1a9bUDz/8oKeeekqhoaEaOnSoAgIC5Ofnp3LlymnmzJlat26dli5dqgMHDujatWuyWCwqX768GjdurM6dOxtDUVN7/PHHdcstt+iXX37R/v37lZCQoCpVqujuu+/Ws88+q7/++kvHjh3L93Qinp6e+vbbb7V9+3ZjIdUrV64oKSlJ5cqVU8OGDdWxY0d169bN6O3p5eWl9evXa+nSpdqyZYuOHTumiIgIOTk5qXLlymrZsqWeeOKJNPPG5eWYnGjatKmWL1+u6dOna/369Tp37pwsFouqVKmi9u3ba8iQIcV6zjQXFxf16NFDv//+u+bMmVMghXIppYdCSEiI1q5da6y+brupLGhDhw7VI488og0bNmjbtm06duyYLly4YMzT6efnp3r16qlt27bq169fup4RN7JarTnq3VQUq6z/9ddfxlRTb7zxRo6Pa9WqlebPn6/AwEDt3btXJ06cUGhoqKxWq/z8/NSkSRP16tVLXbp0SffZlhsLFizQ2rVrtWfPHp06dUphYWGyWq0qW7asmjZtqr59+2b4+ZJaZsPPUy+2mtUaBu+8847uv/9+zZ49W3v27FFYWJi8vb3VoEED9enTR7179862l0pO3u+MijI2J0+eNKZ4sceQdgBwBLbPamdnZ3l6esrHx0c1atRQkyZN1KVLlzRzkmemadOmWrZsmRYsWKB169bp6NGjioyMlLu7u6pUqaLmzZurW7duuvvuu9Md26dPH7Vs2VIzZszQtm3bFBISIrPZrIoVK6p169bq06eP7rzzzmxjeP3119W6dWutXr1a+/btU0hIiBISEuTr6yt/f3916dJF/fv3z1XxuLjcl2SmSZMm+v333zVx4kTt27dPcXFxKlu2rPz9/fM8wq9du3ZavXq15s6dq02bNun48eOKioqSp6enqlevrlatWqlHjx6644470h3bp08f3X333QoICNA///yj06dPKyYmRqVLl1bNmjXVpk0b9ejRo9DWF+revbvGjx+v4OBg7dmzx+hxnx9Z3RMWND8/P+P63bRpk/bv32/kgfHx8SpdurQqVaqkZs2aqXfv3jkqYtpGDud3n/x44IEHVLp0aW3evFmHDh1SSEiIoqOj5eHhYdwHDxo0KNMvIH744QetW7dOW7du1ZEjRxQSEqLY2Fh5eXmpVq1auvvuu/X444/necqV1HJ6v5JRDl2pUiXNmzdPf/zxh5YtW6bjx48rPj5elSpV0p133qnBgwdne0+cnJycozXGMrpfyuv9zY1snQDvvffem2L+e+SNyWqvpZkB4AbvvPOOFixYoF69ehnfCKNkOn/+vLp16yaz2awFCxYUy0VHgeLM9nl47733aurUqfYOBwAAFHP/93//pz///FMdO3bU5MmT7R0OUKKcPXtWPXr0kNlsVkBAQIF82YSSiTnKARQL0dHRxnC0jHrcoGSpXr26MX+zbfoMADlz9OhRLVq0SJL0yiuv2DcYAABQIrz44otydXXV+vXrs12AHUBa48ePl9lsVtu2bSmSOzgK5QCKzA8//KDp06frwIEDio2NlZQy5HXXrl0aNmyYrl+/rmrVqqlHjx52jhQF4aWXXpK3t7f++ecf/fnnn/YOBygREhMTNXLkSFksFnXt2pWFhAAAQI5UrVpVTz75pCTpvffeS7NOC4DMLV26VKtWrZKrq2u+pm7BzYGpVwAUmWHDhmnDhg3GtouLS5o5eitUqKCffvqJaTpuIqtWrdKrr76qUqVKafbs2WrSpIm9QwKKtZEjR2rx4sWqWrWqFi1aJB8fH3uHBAAASojExEQNGDBAhw4dUo8ePfT111/bbR55oCQ4cuSIBg4cqNjYWI0aNSpHC4ri5kaPcgBFpkePHurUqZNq1qwpb29vSZKPj4+aNWumV199VUuWLKFIfpPp2rWrHnvsMcXFxWnYsGE6fvy4vUMCiq0xY8Zo8eLFcnFx0VdffUWRHAAA5Iqbm5smTJig0qVLa/ny5fr000/tHRJQbJ04cULPPPOMYmNj1b59ez311FP2DgnFAD3K88liscpiTb/qbmFKNCfLzdW5SJ8TxRvXBDLCdYEbcU3gRlwTWXNx5mfjqMjxURxwTSAjXBe4EdcEbsQ1kbWscnyXIozjpmSxWhQdm1Ckzxl85pL8a1Uu0udE8cY1gYxwXeBGXBO4EddE1ny9Pe0dAuyEHB/FAdcEMsJ1gRtxTeBGXBNZyyrHZ+oVAAAAAAAAAIBDo1AOAAAAAAAAAHBoFMoBAAAAAAAAAA6NQjkAAAAAAAAAwKFRKAcAAAAAAAAAODQK5QAAAAAAAAAAh0ahHAAAAAAAAADg0CiUAwAAAAAAAAAcGoVyAAAAAAAAAIBDo1AOAAAAAAAAAHBoFMoBAAAAAAAAAA6NQjkAAAAAAAAAwKFRKAcAAAAAAAAAODQK5QAAAAAAAAAAh0ahHAAAAAAAAADg0CiUAwAAAAAAAAAcGoVyAAAAAAAAAIBDo1AOAAAAAAAAAHBoFMoBAAAAAAAAAA6NQjkAAAAAAAAAwKFRKAcAAAAAAAAAODQK5QAAAAAAAAAAh0ahHAAAAAAAAADg0CiUAwAAAAAAAAAcGoVyAAAAAAAAAIBDo1AOAAAAAAAAAHBoFMoBAABQrLkuWiifapWl+Hh7hwIAAACgALj9PEVlGtaXrFZ7h2JwsXcAAAAAQEZMISHyudXf2Ha6cEGWOnXsGBEAAACA/HA6dlRlWt3xX0NUlFSmjP0CSoUe5QAAACheLBaV7t0zTZE8ctceiuQAAABASZWYKO/WLdMUySOO/ltsiuQShXIAAAAUI66/zZavr7dcA9dLkmK//kbhkTGy+Dewc2QAAAAA8sL9m6/lW76snI8ekSTFzPpN4ZExslataufI0mLqFQAAANid06lTKnN7E2M76a42il6+UnIhXQUAAABKIucD++V9793GdmLfhxX763TJZLJfUFngzgMAAAD2k5Qkr25d5LJju9EUeeCQLLVr2y8mAAAAANkKCVqi4MAJio+4IJmcJWuyPHyqqsHdL6nhk+/K6fx5Y99l77RQ7Z4Pq5rJlOq4i/LwqSL/DiNUrUlPO76SFBTKAQAAYBduP0+R5xsjjO2YH6fIPPBxO0YEAAAAICdCgpYoaNloWczxKQ3WZElSvWVH1Oi9QcZ+G/qV18W6paTkqwpaNlph5/Yo5MBC47j4iAsKWjZakuxeLKdQDgAAgCLlFHxMZVq2MLbNne5XzPyFkhPL5wAAAAAlQXDghP+K5JLKXUhQl9lXjO0Tt3lpR1ffNNOsWMzxOrfnD6Oonro9OHAChXIAAAA4iMREebe9W85HjhhNEUf/LXaL+AAAAADIWnzERUmSS4JFvX66KPd4iyTJYpIWvFJNZo9MOsHcUCS/8Xz2RKEcAAAAhc79u29U6v/eM7ZjZs6W+aE+dowIAAAAQF55+FTRrQsPqeGuaKNtXf8KulLLI2Xjf3OWp5NJu4dPlcIKNccolAMAAKDQOB08oDL3tDG2E/v0Vez0mcV2pXsAAAAAWXPe/Lf6vLfd2D56h5f2diprbDu5eqjabX3SzEWeXbt/h//WLrIXCuUAAAAoeHFxKtOqhZzOnjWaIk6ckrVCRTsGBQAAACCvTGFhKlOnlkzJKT3Ck708tfz1RoqOv2z0FPfwqSr/DiNUrUlPla3RQsGBExQfcVEePlWybbc3CuUAAAAoUB5jP5XH52ON7eg/5iupWzc7RgQAAAAgz6xWlXr1ZbnPmG40Ra1Zr+Q771TbLA6r1qRnhgXwzNrtjUI5AAAACoTzzp3y7nSfsZ3w5CDFTfqBaVYAAACAEsplzWp59ftvbaH4N99S/Psf2DGiwkOhHAAAAPkTHa0yjW+VU1ioJMlqMiny1FlZ/fzsHBgAAACAvDBduyqfOrWNbUvVqorcs1/y9LRfUIXMyd4BAAAAoOTyeO8d+VatZBTJo5csU0RENEVyAAAAoCSyWuX51OA0RfKov7co8ui/N3WRXKJQDgAAgDxw3vy3fMuUlsfE7yRJCc+/oPDIGCW1v8++gQEAAADIE9cli+Xr4yW3BfMkSXEffqTwyBgl397MvoEVEaZeAQAAQI6ZwsNVpm5tmcxmSZLV21sRR4KlMmXsHBkAAACAvDBdvCifBvWM7eQGDRW1+R/J3d2OURU9epQDAAAgR0q99op8alYziuRRa9YpIuQSRXIAAACgJLJYVPqRfmmK5JE7dilq526HK5JLFMoBAACQDZe1a+RbprTcf50mSYp/c2TKEMw777JzZAAAAADywnXuHPn6est11UpJUuy4rxQeGSNLw1vtHJn9MPUKAAAAMmS6fk0+t9Qyti1Vqihy74GbfhEfAAAA4GZlOntWPk3+K4YntbhD0WvWSa6udoyqeLB7j/KrV6/qo48+UufOnXX77berS5cu+vTTTxUaGppu3zNnzuill15Sq1at1KxZMw0YMECbN2/O8LybN2/WgAED1KxZM7Vq1UovvfSSzpw5k24/q9WqGTNmqFu3bmrSpInatm2rMWPGKDo6usBfKwAAQIlgtcrzmaf/n737Do+qyv84/pn0PmNA6dIDauiIgAWx0KTYwVUBy7IWUFzL2rvuKvtbRFAsqwLKRlCQpQgiiLIgAtJCEAhdDSA1M+mZZO7vj5ALQwIkIcmdybxfz7MPe86cmXwDd7PnfnLuOV4hecbSZXJt3U5IDgAAAPijwkLF9O3tFZK71iUr8/ulhOTHWBqUHzp0SDfeeKPmzZunq6++Wo888og6deqkpKQk3XrrrV5h9ZEjR3T77bdrw4YNGjp0qEaNGqX8/HyNGDFCq1at8vrclStXasSIEcrPz9eoUaM0dOhQbdiwQbfffnuJAH7ixIl6/fXX1bJlSz322GPq3bu3Pv/8cz300EPV8ncAAADgS0Lnzik66f6L6ZKknBdeLNpmpX0HiysDAAAAUBFhkz6R45w4hSwvWnCc/c67RdusNG9ucWW+xdKtVz7//HMdOHBAX3zxhdq2bWv2d+jQQc8995y++eYb3XTTTZKkyZMn6+jRo5o9e7aaH/tHvOOOO9S/f3+NGzdOU6dONd8/duxYNWzYUElJSQo/tvF8v379NGDAAH366ad6+OGHJUkZGRn64IMPNHDgQI0ZM8Z8f6tWrfTss89qxYoV6tatW5X/PQAAAFjNtn+f7AknnHTfMkEZP/4UkIf4AAAAADVB0LZtiuvU3my7r7xSWV/NloKDrSvKh1m+olySmjVr5tXfsWNHSVJ2drbZ991336ljx45mSC5J4eHhGjhwoNasWaOjR49KKlp5vn79eg0YMMAMySWpefPm6tSpkxYvXmz2rVixQjk5Obr55pu9vv7AgQMVFhbmNRYAAKBG8ngUPfgWr5DctXK1MtasIyQHAAAA/JHbrZjLu3uF5M5NW5Q1ex4h+WlYGpR36dJFkvTCCy94bbPy448/KiQkRD169JAkFRQUaNeuXSUCdUlq0aKFDMPQjh07JEnbt2+XYRhegfqJY3fu3KnCwkJJUmpqqiSVGBseHq7zzz9f27Ztq4TvEgAAwDfVmje76KT7+V9LkrLfGFP0COYFF1pcGQAAAICKqDPlYzlqORSyYYMkKevjSUp3Zclo1MjiynyfpVuv9OvXTzt27NDEiRO1bNkyDRo0SI0aNdLEiRP1j3/8Q+eff74kyel0yu12KzY2tsRnOBwOScdXpxf/GRMTU+pYt9stp9Op+Ph4c+ypPvfw4cOV8n0CAAD4kuKT7h3H2gUdOipz0Xcc4gMAAAD4qaBfNimuaxdzjp/ff4CypyZJNpuVZfkVS4NySapVq5bq1KmjK6+8UosWLVJaWpqaN2+uRif8liM/P1+SFBERUeL9ocdu6HJzc73GRkZGlhgbElL07ebl5Zljg4KCvLZoOXFs8WeeTr67UKl79p9xXGXKzS+o9q8J38Y1gdJwXeBkXBNQYaFa33un4n5eaXZtmLtIeY2bSntZIHCyLokln2ZEYGCOD1/ANYHScF3gZFwTsOXlqc2NfRXx6x6zb92Sn+Sufa706x8WVuabTjfHtzQonz59ul5//XV9+eWXat26tQzD0A8//KCXX35ZQ4cO1dSpU9WmTRuFhYVJkjweT4nPcLvdko6H6MVji7dXOVFBQYEkmcF4WFiYPB6PDMOQ7aTfrhQUFJQazJ8sLDRYCY3rlvVbrhSpe/ZX+9eEb+OaQGm4LnAyronAFjZlsqJGPmC2sye8q5QevbkmgFIwx4cv4JpAabgucDKuicAW/uYbinz1ZbOdmTRNvyR25pqoIEv3KP/www916aWXqnXr1pIkm82mK6+8UhMnTlReXp4+++wzSZLdbldISIhcLleJzyg+xLNWrVpef55qbGhoqOLi4rzGOp3OUsfGx8ef7bcIAABgqaDt2+WIizZDcvcVVyj9qEv5Q4dZXBkAAACAigheu1aOuGgzJM8fcpvSnZkquK6/xZX5N0uD8v379yu4lJNWGzRoIEnmHuEhISFq2rSpkpOTS4zduHGjbDabeSBny5YtZbPZSh2bnJyspk2bmluwtGzZ0uw/UUZGhnbv3m2+DgAA4HfcbsVccaniOrYzu5ybtihr7nxOugcAAAD8UVaW4lo0VeyVl5tdzl17lP3Bv9mLvBJYGpRfcMEFWrFihXbt2uXVv2DBAklS27Ztzb6ePXsqJSVFu3fvNvvy8/O1aNEitW/f3lz9HR8fr3bt2mnhwoXmfuWStGvXLm3evFlXXXWV2detWzdFRERo7ty5Jb5+YWGh11gAAAB/EfbuO0Un3a9fL0nK+ugTTroHAAAA/FjEi8/LUe88BR04IEnKnDW7aI5fq7bFldUclu5R/vjjj+uuu+7SLbfcoptuukn16tXTL7/8orlz56p58+a66667zLHDhg3TjBkzNGzYMN1yyy2KiorSvHnzlJaWpldeecXrc0ePHq27775bd9xxh/r06aPs7GxNmzZNtWrV0rBhxx8zttvtuvfeezVhwgS53W61b99eaWlpSkpKUrdu3XTppZdW298FAADA2So+6b6Y+7r+yvrP56wuAQAAAPxU8IofFdv7WrOdd8+flTP2LesKqsEsDcovvvhiJSUl6d1339WsWbOUmZmpOnXqaOjQoXrwwQcVGxtrjq1du7Y+++wzjRkzRpMmTZLb7Vbr1q31/vvvq2vXrl6f261bN7333nt65513NG7cOIWGhqpLly564oknSuw7PnLkSMXGxiopKUnffvutHA6HBg8erNGjR1fHXwEAAMDZy8tTbNcuCt6x3exypm6XUbeehUUBAAAAqDCXS/aE5rJlZ0uSjIgIObftlOx2iwuruSwNyiWpTZs2mjhxYpnGNmvWrMxje/TooR49epxxnM1m0/DhwzV8+PAyfS4AAIAvCf/nGEW+/KLZzkyaxiE+AAAAgB+LfPSvCv/wfbOdsWChCruz80VVszwoBwAAQPkFr1un2B6Xme38wUM4xAcAAADwYyFLvlPMoAFmO3f0I8p9+VULKwosBOUAAAD+JDtbce0SFfTHH2aXc9ceDvEBAAAA/JTt8GHZm55vtj21a8uVvEmKibGwqsATZHUBAAAAKJuIl16Qo+65ZkieOXMWJ90DAAAA/sowFHXfCK+QPGPJUrl27iEktwArygEAAHxc8MqfFHvt1WY77+57lPPW2xZWBAAAAOBshMyfr5jBN5vtnKefVd6TT1lYEQjKAQAAfJXLJXurFrJlZUmSjPBwubbtlOFwWFsXAAAAgAqxHfhD9hbNzHZh02bKWLlaioiwsCpIbL0CAADgkyIff0yOhvXMkDxj/jdyHjxCSA4AAAD4I8NQ1O23eYXkrh9/UsaGjYTkPoKgHAAAwIeEfL9Ejrhohb8/UZKU+9DDSndlqfDSyyyuDAAAAEBFhM6cIYc9RmFzZkuScl7/u9JdWfIktrG4MpyIrVcAAAB8gO3IEdmbNDLbnlq15doYOCfdp6XMUeqSscp17lOEvZ4Sej6iBokDrC4LAAAAqDDb77/LfmErs13Qtq0ylyyVQkMtrAqnwopyAAAAKxmGIu//i1dInvHdD3LtCpyT7tNS5ihl3nPKde6VZCjXuVcp855TWsocq0sDAAAAys/jUfSg/l4huWvNOmUuW0FI7sMIygEAACwSsmCBHPYYhU/9TJKU++TTRdusdO5scWXVK3XJWHncuV59HneuUpeMtagiAAAAoGLCpn4qhyNWoUuWSJKyx44r2malZYLFleFM2HoFAACgmtkOHpC9eVOzXdikiTJW/ixFRlpYVfUobYuVXOe+Useeqh8AAADwNUE7dyqu/fE9xwu6dVfmvPlSCPGrv+BfCgAAoLoYhqKG3qGw/84yu1w//hQwh/gUb7FSvHq8eIuV0Ei73DnpJcZH2OtVc4UAAABAORUUKKbXNQr5ebXZ5UreJE+TJtbVhAph6xUAAIBqEPrVzKKT7o+F5DmvvR5QJ92npcxR8n+fLHWLFUNSUGiEV39QaIQSej6itJQ5WjL+Ks1/9QItGX8V+5YDAADAZ4R9+IEc8XYzJM96/8OiOT4huV9iRTkAAEAVsqWlyX7B8f0ICy+6SBk/LJPCwiysqnoVrySXUVjq6wU5TrW9/s0SW7JIKnUFuiQ1SBxQPcUDAAAAJwlK3aq4zh3NtvvaXsr6YoYUxJpkf0ZQDgAAUBU8HkXfMEihS74zu1w/r5UnoZWFRVmjtMM6TxRhr6cGiQNKhN9Lxl91ykM+CcoBAABQ7fLzFXt5dwVv3mx2Obdsk1G/voVFobLwaw4AAIBKFjr1s2Mn3ReF5Nn/eqvoEcwADMml0x/KWbzFSnnexyGfAAAAqG7hb/1LjtrnmCF51qdTle7KIiSvQVhRDgAAUEmCdu1SXLtEs13QtZsyv14Q8CfdR9jrKde5t+QLtmAlXvfKKVeHn+p9HPIJAACA6hKcvEGxl3U32/k33qzsTyZJNpt1RaFKsKIcAADgbBUUKOaaq7xCclfyJmUuXBTwIbkkJfR8pNTDOtsO+sdpt1A51ftOtQIdAAAAqDQ5OYq7sJVXSO7csUvZkyYTktdQBOUAAABnIezfHxaddL9qpSQp670POOn+JA0SByjxulcUYa8vyaYIe/3TriQ/2/cBAAAAZyPitVflqFNbQb//LknK/GJG0TYr555ncWWoSixxAgAAqIASJ91ffY2yZnzFSfenUNphnVX5PgAAAKC8glevVuzVV5rtvKHDlDP+HVaQBwiCcgAAgPLIz1dsj8sUvGmT2eXcnCqjQQMLiwIAAABQYRkZirvoAgWlH5UkGTabXLt+lREfb3FhqE4seQIAACij8LffKjrp/lhInjXls6JHMAnJAQAAAL8U8dTf5GhQ1wzJM+d+Laczk5A8ALGiHAAA4AyCNiYr7tJuZjv/hhuVPWkKj2ACAAAAfip42f8U26+P2c67/wHlvDHGwopgNYJyAACAU8nJUdzFHRX0669ml3P7Thnn1bGwKAAAAAAVZUtPV1yzxrIVFEiSDLtdzl+2SrGxFlcGq7H1CgAAQCkiXn+t6KT7YyF55vRjJ90TkgMAAAD+xzAU+dBI2c9vYIbkGd9+J+dvewnJIYkV5QAAAF5KnHR/51DlTHiXbVYAAAAAPxXy7ULF3HSD2c597AnlPv+ChRXBFxGUAwAASFJmZtFJ90ePmF3O3b9xiA8AAADgp2yHDsrerInZ9tSvL9faDVJUlHVFwWex9QoAAAh4Ec88JUf9OmZInjl7btE2K4TkAAAAgP8xDEUNH+YVkmcsXSbXlm2E5DglgnIAABCwgpcvkyMuWhHj35Yk5d13v9JdWSq4sqfFlQEAAACoiNA5s+Wwxyhs5peSpJwXX1K6K0uF7TtYXBl8HVuvAACAgGNLT1dc8yayud2SJCM2Vs7NqVJcnMWVAQAAAKgI2759srdqYbYLW7VWxrIfpfBwC6uCP2FFOQAACCiRox8qOun+WEie8e1iOdP2E5IDAAAA/sjjUfQtN3mF5K6Vq5Wxeg0hOcqFoBwAAASEkEXfyhEXrfCPP5Ik5T72eNEjmJd0tbgyAAAAABUROu1zORyxCv1mgSQpe8z/Kd2VJc8FF1pcGfwRW68AAIAazXb4kOxNG5ttT716cq1L5hAfAAAAwE/Zfv1V9sQLzHZBx07K/HaxFBpqYVXwd6woBwAANZNhKOqeu7xC8oyly+Taup2QHAAAAPBHhYWK6dvbKyR3rUtW5vdLCclx1gjKAQBAjRM6d07RSfdfTJck5Tz/IifdAwAAAH4sbNIncpwTp5DlyyRJ2RPeLdpmpXlziytDTcHWKwAAoMaw7d8ne8IJJ923TFDGjz9xiA8AAADgp4K2bVNcp/Zm233llcr6arYUHGxdUaiRCMoBAID/83gUfdtghc7/2uxyrVzNIT4AAACAv3K7FXNVD4Vs2GB2OTdtkdGokYVFoSZj6xUAAODXQqdPKzrp/lhInv3GGE66BwAAAPxY+ITxctRymCF51seTlO7KIiRHlWJFOQAA8EslTrrv0FGZi77jEB8AAADATwX9sklxXbuY7fz+A5Q9NUmy2SysCoGCoBwAAPiXwkLFDLhOIcv+Z3a51m6Qp0WL07wJAAAAgM/KzVVs1y4K3rnD7HJu2yGjTl0Li0KgYesVAADgN8KmTC466f5YSG6edE9IDgAAAPil8DFvynFeLTMkz0yaVrTNCiE5qhkrygEAgM8L2rFDcR3amm33FVco679zOekeAAAA8FPB69YptsdlZjt/yG3Kfv9DtlmBZQjKAQCA73K7FXNNT4WsW2d2cdI9AAAA4MeyshTXLlFBBw6YXc5de2TUqm1hUQBbrwAAAB8V9u47RSfdHwvJsz76hJPuAQAAAD8W8eLzctQ7zwzJM2fNLprjE5LDB7CiHAAA+JSgzb8o7pKLzba7bz9lJU2Tgvj9PgAAAOCPglf8qNje15rtvHvuVc7YcRZWBJREUA4AAHxDXl7RSfc7tptdztTtMurWs7AoAAAAABXmcsme0Fy27GxJkhERIee2nZLdbnFhQEkszQIAAJYL/+cYOc6NN0PyrP98XvQIJiE5AAAA4JciH/2rHA3rmSF5xoKFch44TEgOn8WKcgAAYJng9esUe8UJJ93fOljZH37ESfcAAACAnwr5foliBvY327kPj1buK69ZWBFQNgTlAACg+mVnK659GwXt3292cdI9AAAA4L9shw/L3vR8s+2pXVuu5E1STIyFVQFlx9YrAACgWkW89IIcdc81Q/LMmbM46R4AAADwV4ahqPtGeIXkGUuWyrVzDyE5/AorygEAQLUIXvmTYq+92mzn3X2Pct5628KKAAAAAJyNkPnzFTP4ZrOd8/SzynvyKQsrAiqOoBwAAFQtl0v21i1ly8yUJBnh4XJt2ynD4bC2LgAAAAAVYjvwh+wtmpntwiZNlLHyZyky0sKqgLPD1isAAKDKRD7+WNFJ98dC8oz538h58AghOQAAAOCPDENRt9/mFZK7fvxJGcmbCMnh9wjKAQBApQv5fokccdEKf3+iJCn3oYeV7spS4aWXWVwZAAAAgIoInTlDDnuMwubMliTlvPa60l1Z8iS2sbgyoHKw9QoAAKg0tiNHZG/SyGx74mvJlfILh/gAAAAAfsr2+++yX9jKbBe2aaOMJUulsDALqwIqHyvKAQDA2TMMRd7/F6+QPOO7H+Ta/SshOQAAAOCPPB5FD+rvFZK71qxTxvKfCMlRIxGUAwCAsxKyYIEc9hiFT/1MkpT75NNF26x07mxxZQAAAAAqImzqp3I4YhW6ZIkkKXvsuKJtVlomWFwZUHXYegUAAFSI7eAB2Zs3NduFjRsrY9UaDvEBAAAA/FTQrl2Ka5dotgu6dlPm1wukECJE1Hxc5QAAoHwMQ1HD7lTYrK/MLtfyFfK0aWthUQAAAAAqrKBAMb2uUcjPq80uV/ImeZo0sa4moJqx9QoAACiz0FlfFZ10fywkN0+6JyQHAAAA/FLYhx/IEW83Q/Ks9z8smuMTkiPAsKIcAACckS0tTfYLju9HWHjRRcr4YRmH+AAAAAB+Kih1q+I6dzTb7mt7KeuLGVIQ62oRmAjKAQDAqXk8ir7pBoUuXmR2uX5eK09Cq9O8CQAAAIDPys9X7OXdFbx5s9nl3LJNRv36FhYFWI9fEQEAgFKFTv2s6KT7YyF59r/eKnoEk5AcAAAA8Evhb/1LjtrnmCF51qdTle7KIiQHxIpyAABwkhIn3V/SVZnzv+GkewAAAMBPBSdvUOxl3c12/o03KfuTyZLNZmFVgG/hjhcAABQpKFBMn14KWbXS7HJtSJGnaVMLiwIAAABQYTk5iuvcQUG//WZ2OXfsknHueRYWBfgmtl4BAAAK++jfRSfdHwvJs977oGibFUJyAAAAwC9FvPaqHHVqmyF55hczirZZISQHSuUTK8rdbreSkpL09ddfa8eOHcrJyVHfvn01ZswYc8yePXv05ptvatWqVXK73WrdurVGjhypyy67rMTnLVu2TBMmTNCWLVsUGhqqLl266IknnlDjxo29xhmGoSlTpigpKUm///67zjnnHPXu3VujR49WTExMlX/fAABYrcRJ91dfo6wZX3HSPQAAAOCnglevVuzVV5rtvKHDlDP+HbZZAc7A8qA8PT1dd999t7Zu3apevXqpT58+ysnJUWFhoTnmyJEjuv322yVJQ4cOVVRUlObNm6cRI0Zo0qRJ6tKlizl25cqVGjFihFq3bq1Ro0YpOztb06ZN0+23367Zs2crPj7eHDtx4kSNGzdOvXr10pAhQ/T777/r888/186dO/Xxxx9X318CAADVLT9fsT0uU/CmTWaXc3OqjAYNLCwKAAAAQIVlZiruwtYKSj8qSTJsNrl2/SrjhCwMwKlZHpQ//fTT2rlzp6ZOnar27duXOmby5Mk6evSoZs+erebNm0uS7rjjDvXv31/jxo3T1KlTzbFjx45Vw4YNlZSUpPDwcElSv379NGDAAH366ad6+OGHJUkZGRn64IMPNHDgQK+V661atdKzzz6rFStWqFu3blX0XQMAYJ3wt99S5LPPmO2syZ/KfcONFlYEAAAA4GxEPPU3RbwzwWxnzv1aBVf0sLAiwP9Y+lz1xo0btXjxYj3wwAOnDMkl6bvvvlPHjh3NkFySwsPDNXDgQK1Zs0ZHjxb9puzIkSNav369BgwYYIbkktS8eXN16tRJixcvNvtWrFihnJwc3XzzzV5fa+DAgQoLC/MaCwBATRC5dbMccdFmSJ5/w41Kd2YSkgMAAAB+Knb1Sjnios2QPO/+B5TuyiIkByrA0hXlX3/9tWw2m4YMGSJJcrlcCg8P9wq5CwoKtGvXLt10000l3t+iRQsZhqEdO3aoc+fO2r59uwzD8ArUTxz7xRdfqLCwUMHBwUpNTZWkEmPDw8N1/vnna9u2bZX5rQIAYJ2cHMVd3FFtfv3V7HJu3ynjvDoWFgUAAACgomzp6Ypr1liOggJJkhEXJ+fmVCk21uLKAP9laVC+adMmnXvuuRo/frxmz56t9PR0SUWh9tNPP61LL71UTqdTbrdbsaX8D93hcEiSDh065PVnaQdxOhwOud1uOZ1OxcfHm2NP9bmHDx8u0/eQ7y5U6p79ZRpbWXLzC6r9a8K3cU2gNFwXkKT6E99Ww3fHme2t7/xbzit6SjmGxPUR8Pg5cXpdEptZXQIswhwfvoBrAqXhuoAMQ01eekbnzZhmdv3y6XRltu8kHckq+g8CGj8nTu90c3xLg/LDhw/r6NGj2rdvnx5++GHVrl1baWlp+vTTT/XnP/9ZU6ZMUYNjh4pFRESUeH9oaKgkKTc3V5KUn58vSYqMjCwxNiSk6FvNy8szxwYFBXmtXj9xbPFnnklYaLASGtct09jKkrpnf7V/Tfg2rgmUhusisJU46f7Oodrw+PNKaFJPrCNHMX5OAKVjjg9fwDWB0nBdBLaQbxcq5qYbzHbuY08oedhfuCbghZ8TFWdpUO52u9WpUydNmDDBq79fv3669tprNXnyZL344ouSJI/HU+r7peMhelhYmCSpsLCwxNiCY4+iFAfjYWFh8ng8MgxDNputxNjSgnkAAHxeZqbiLrpAQUePmF3O3b8VnXTPqgIAAADA79gOHZS9WROz7alfX661G6SoKOb4QCWy9DDP2NhY5eTklOivU6eOWrdurV27dslutyskJEQul6vEuOJDPGvVquX156nGhoaGKi4uzmus0+ksdWx8fHwFvysAAKwR8cxTctSvY4bkmbPnKt2VVRSSAwAAAPAvhqGou4d7heQZS5fJtWVbUUgOoFJZGpQnJCRox44d5srwEzmdTkVFRSkkJERNmzZVcnJyiTEbN26UzWYzD+Rs2bKlbDZbqWOTk5PVtGlTcwuWli1bmv0nysjI0O7du83XAQDwdcHLlxWddD/+bUlS3oj7ik66v7KnxZUBAAAAqIjQObPlsMco7MsvJEk5L7yodFeWCtt3sLgyoOayNCjv06ePMjMzNWXKFK/+tWvXas+ePbr88sslST179lRKSop2795tjsnPz9eiRYvUvn17c/V3fHy82rVrp4ULF5r7lUvSrl27tHnzZl111VVmX7du3RQREaG5c+d6fe0FCxaosLDQaywAAL7Ilp4uey2HYvv2liQZsbFK/32fcv75fxZXBgAAAKAibPv2yREXrejbb5MkFbZqrfSDR5T36OMWVwbUfJbuUd6jRw/17t1bb775pjZs2KAOHTpo7969+vLLL9WyZUvdddddkqRhw4ZpxowZGjZsmG655RZFRUVp3rx5SktL0yuvvOL1maNHj9bdd9+tO+64Q3369FF2dramTZumWrVqadiwYeY4u92ue++9VxMmTJDb7Vb79u2VlpampKQkdevWTZdeemm1/l0AAFAekaMfUvjHH5ntjIWLVNi1m4UVAQAAAKgwj0fRg29R6DcLzC7XytXyXHChhUUBgcXSoFySxo4dqylTpmjq1Kn67rvvFB8fr5tvvlkPPfSQYmJiJEm1a9fWZ599pjFjxmjSpElyu91q3bq13n//fXXt2tXr87p166b33ntP77zzjsaNG6fQ0FB16dJFTzzxRIl9x0eOHKnY2FglJSXp22+/lcPh0ODBgzV69Ojq+vYBACiXkMWLFHPDILOd++hjyn3hJQsrAgAAAHA2Qqd9rug/32O2s9/8p/Lvu9/CioDAZHlQHhwcrLvuustcPX4qzZo108SJE8v0mT169FCPHj3OOM5ms2n48OEaPnx4mT4XAACr2A4fkr1pY7PtqVdPrnXJHOIDAAAA+Cnbr7/KnniB2S7o2EmZ3y6WQkMtrAoIXJbuUQ4AAM7AMBR1z11eIXnG0mVybd1OSA4AAAD4o8JCxfTt7RWSu9YlK/P7pYTkgIUIygEA8FGhc+cUnXT/xXRJUs7znHQPAAAA+LOwSZ/IcU6cQpYvkyRlT3hX6a4seZo3t7gyAJZvvQIAALzZ9u+TPaGF2S5smaCMH3+SwsMtrAoAAABARQVt26a4Tu3NtvuKK5T137lScLB1RQHwQlAOAICv8HgUfdtghc7/2uzipHsAAADAj7ndirmqh0I2bDC7nJu2yGjUyMKiAJSGrVcAAPABodOnyeGINUPy7DfGFD2CSUgOAAAA+KWwd9+Ro5bDDMmzPvpE6a4sQnLAR7GiHAAAC5U46b5DB2UuWsIhPgAAAICfCvplk+K6djHb7uv6K+s/n0s2m4VVATgTgnIAAKxQWKiYAdcpZNn/zC7X2g3ytGhxmjcBAAAA8Fm5uYrt2kXBO3eYXc5tO2TUqWthUQDKiq1XAACoZmFTJheddH8sJM8e/07RNiuE5AAAAIBfCh/zphzn1TJD8sykaUXbrBCSA36DFeUAAFSToB07FNehrdnmpHsAAADAvwWvW6fYHpeZ7fwhtyn7/Q/ZZgXwQwTlAABUNbdbMdf0VMi6dWYXJ90DAAAAfiwrS3HtEhV04IDZ5dy1R0at2hYWBeBssPUKAABVKGziu0Un3R8LyTnpHgAAAPBvES8+L0e988yQPHPW7KI5PiE54NdYUQ4AQBUI2vyL4i652Gy7+/ZTVtI0KYjfUQMAAAD+KPinFYrtdY3ZzrvnXuWMHWdhRQAqE0E5AACVKS9Psd27KnhbqtnlTN0uo249C4sCAAAAUGEul+ytWsiWlSVJMsLD5dq2U4bDYW1dACoVy9oAAKgk4f8cI8e58WZInvWfz4sewSQkBwAAAPxS5KN/laNhPTMkz1iwUM6DRwjJgRqIFeUAAJyl4PXrFHvFCSfd3zpY2R9+xEn3AAAAgJ8K+X6JYgb2N9u5Dz2s3Fdft7AiAFXtjEH56tWrK/zhF1988ZkHAQDgr7KzFde+jYL27ze7OOkeAKoP9yoAgMpmO3xY9qbnm21P7dpyJW+SYmIsrApAdThjUH7nnXfKVsEVcZs3b67Q+wAA8HURL7+oiH+OMduZM2ep4JprrSsIAAIQ9yoAgEpjGIq6/y8K+89UsytjyVIVdupkYVEAqtMZg/L+/ft7TT5/++03rV+/Xn379lVISMm3r1mzRkePHtU111xT4jUAAPxd8MqfFHvt1WY77+57lPPW2xZWBACBi3sVAEBlCJk/XzGDbzbbOU8/q7wnn7KwIgBWOGNQ/s9//tOr/eSTTyorK0tjx44tdfzKlSs1bNgw3XrrrZVTIQAAvsDlkr11S9kyMyVJRliYXNt3cYgPAFiIexUAwNmwHfhD9hbNzHZhkybKWPmzFBlpYVUArBJU3jesWrVKbdq0OeXrl1xyiTp37qz333//rAoDAMBXRD7xWNFJ98dC8oyvF8h56CghOQD4GO5VAABlYhiKuv02r5Dc9eNPykjeREgOBLByB+WHDh1SVFTUace0atVK69evr2hNAAD4hJAfvpcjLlrh702UVHTSfborS4WXXW5xZQCA0nCvAgA4k9CZM+SwxyhszmxJUs5rryvdlSVP4ql/0QogMJxx65WTnXfeeVq3bt1px6SlpamwsLDCRQEAYCXbkSOyN2lktj3xteRK+YWT7gHAx3GvAgA4FVtamuwXJJjtwjZtlLFkqRQWZmFVAHxJuVeU9+vXT7/88ovGjh0rt9td4vWlS5dq2bJluvDCCyulQAAAqo1hKPKB+7xC8ozvfpBr96+E5ADgB7hXAQCU4PEoetAAr5Dc9fNaZSz/iZAcgJdyrygfMWKEFi1apA8++ED//e9/1blzZ9WpU0cZGRnasmWLNm7cqODgYI0ePboKygUAoGqELFigmFtvMtu5Tz6t3KefsbAiAEB5ca8CADhR2NRPFXX/fWY7e+w45d9zr4UVAfBl5Q7KY2JilJSUpL///e+aO3eu5s6d6/V6ixYt9Oyzz+riiy+utCIBAKgqtoMHZG/e1GwXNm6sjFVrOMQHAPwQ9yoAAEkK2rVLce0SzXZB127K/HqBFFLuGAxAAKnQTwi73a5//OMfevrpp5WcnKyjR48qMjJSzZo1U7Nmzc78AQAAWM0wFDXsToXN+srsci1fIU+bthYWBQA4W9yrAEAAKyhQTK9rFPLzarPLlbxJniZNrKsJgN84q1+lxcXF6bLLLqusWgAAqBahs75S9NA7zHbOK68q7+FHLKwIAFDZuFcBgMAS9uEHinr0+Jw+670P5P7T7RZWBMDfVDgoX7t2rZYtW6aDBw+qe/fu6tu3ryRp+fLlOnjwoK655hrFcPAZAMCHlDjp/qKLlPHDMg7xAYAahnsVAAgcQalbFde5o9l2X9tLWV/MkIKCLKwKgD8qd1BuGIb+9re/ac6cOTIMQzabTbGxsebkMysrS0899ZTy8/N16623VnrBAACUm8ej6JtuUOjiRWaX6+e18iS0srAoAEBl414FAAJIfr5iL++u4M2bzS7nlm0y6te3sCgA/qzcv16bMmWKZs+ereuuu07Tp0+XYRher1977bWqXbu2vv3220orEgCAigr9z1Q5HLFmSJ79r7eU7soiJAeAGoh7FQAIDOFv/UuO2ueYIXnWlM+U7soiJAdwVsq9onzmzJlq1qyZxowZI5vNVuJ1m82mLl26aP369ZVRHwAAFVLipPtLuipz/jecdA8ANRj3KgBQswUnb1DsZd3Ndv6NNyn7k8lSKT/zAaC8yp0W7NmzR/379y914lnM4XDo4MGDZ1UYAAAVUlCgmD69FLJqpdnl2pAiT9OmFhYFAKgO3KsAQA2Vk6O4zh0U9NtvZpdzxy4Z555nYVEAappyb70SFBR02omnJKWlpSkyMrLCRQEAUBFhH/1bjni7GZJnvfdB0TYrhOQAEBC4VwGAmifitVflqFPbDMkzp88o2maFkBxAJSv3ivIWLVpow4YNp3z94MGDWrlypdq0aXNWhQEAUFYlTrq/+hplzfiKk+4BIMBwrwIANUfw6tWKvfpKs503dJhyxr/DNisAqky5E4Trr79eqampmjRpUonXjhw5okcffVS5ubkaOHBgZdQHAMCp5ecrtlsXr5DcuTlVWV/9l5AcAAIQ9yoAUANkZiru/IZmSG7YbHLu/k05E94lJAdQpcq9onzIkCFasmSJ3njjDc2ZM0c2m03ff/+9Nm/erHXr1ik3N1fdunXTTTfdVBX1AgAgSQp/+y1FPvuM2c6a/KncN9xoYUUAAKtxrwIA/i3iqb8p4p0JZjtzzjwV9LjSuoIABJQK7VH+3nvv6cEHH9TevXtlGIZ27typFStWKCgoSHfddZfef//9M+4NCABARQSlbJQjLtoMyfMHXa90ZyYhOQCAexUA8FPBy/4nR1y0GZLn3Xe/0l1ZhOQAqlW5V5RLUnBwsEaOHKkHH3xQu3btUnp6umJiYtSsWTOFhFToIwEAOL2cHMVd3FFBv/5qdjm375RxXh0LiwIA+BruVQDAf9jS0xXXrLFsBQWSJCMuTs7NqVJsrMWVAQhE5V5RPmvWLG3atEmSZLPZ1KxZM3Xs2FEJCQnmxHPZsmVau3Zt5VYKAAhY4X9/veik+2Mheea0L4tOuickBwCcgHsVAPAfkQ+Pkv38BmZInvHtYjl/30dIDsAy5Q7Kn3zySc2bN++0Y6ZOnapnn322wkUBACBJwT//XLTNyt9fkyTl3XGn0p2ZKujb1+LKAAC+iHsVAPB9Id8ulCMuWuGffCxJyn3sCaW7slR4SVeLKwMQ6Krk2cNzzz1XK1asqIqPBgAEgsxMxSVeqKAjh80u5+7fZMTHW1gUAKAm4F4FAKxhO3RQ9mZNzLanfn251m6QoqKsKwoATlDuFeVnkp+frw0bNigmJqayPxoAEAAinnlKjvp1zJA8c/bcom1WCMkBAGeJexUAsIBhKOru4V4hecbSZXJt2UZIDsCnlGlF+VNPPeXV/t///qejR4+WGOd2u7V27Vrt27dP/fr1q5wKAQABIXj5MsX27W2280bcp5x//p+FFQEA/AH3KgDgu0LnzFb07beZ7ZwXXlTeo49bWBEAnFqZgvKvvvrK/O82m03btm3Ttm3bTjn+wgsv1N/+9rezrw4AUPM5nbI3byJbfr4kyYiNLTrpPi7O4sIAAP6AexUA8D22fftkb9XCbBe2TFDGjz9J4eEWVgUAp1emoPyTTz6RJBmGobvvvlt9+/bVrbfeWmJccHCw6tSpo8aNG1dulQCAGily9EMK//gjs52xcJEKu3azsCIAgL/hXgUAfIjHo+jBtyj0mwVml2vlankuuNDCogCgbMoUlHfrdjy0GDlypDp27OjVBwBAeYQsXqSYGwaZ7dxHH1PuCy9ZWBEAwF9xrwIAviF0+jRF33u32c5+Y4zy73/AwooAoHzKfZjnnXfeqQMHDuiHH34o9fW1a9dq8eLFysnJOeviAAA1i+3wITnios2Q3FO3rtL3HSAkBwBUCu5VAKD62X79VY64aDMkL+jYSemH0wnJAfidcgflM2bM0FNPPVXqATmStH//fo0cOVKzZ88+6+IAADWEYSjq3rtlb3r8cfeMpcvkSt0hRUdbWBgAoCbhXgUAqlFhoWL69pY98QKzy7UuWZnfL5VCQy0sDAAqptxB+aJFi1S3bl0NGjSo1Nf79eunevXqae7cuWddHADA/4XOnSOHPUZh06dJknKef1HpriwVtu9gcWUAgJqGexUAqB5hkz6R45w4hSxfJknKnvCu0l1Z8jRvbnFlAFBxZdqj/ER79uzRFVdcIZvNdsoxF198sZYvX35WhQEA/Jtt/z7ZEzjpHgBQfbhXAYCqFbR9u+I6tjPb7iuuUNZ/50rBwRZWBQCVo9xBeWZmpqLP8Jh8bGysXC5XhYsCAPgxw1D0bYMV+vU8s4uT7gEA1YF7FQCoIm63Yq7qoZANG8wu56YtMho1srAoAKhc5d56pWHDhtq4ceNpx6SkpKhu3boVLgoA4J9Cv5guhz3GDMmz3xhT9AgmITkAoBpwrwIAlS/s3XfkqOUwQ/Ksjz5RuiuLkBxAjVPuoPzqq69WcnKypk6dWurrSUlJ2rBhgy6//PKzLg4A4B/Mk+7vuUuSVNChAyfdAwCqHfcqAFB5gn7ZJEdctKKefEKS5L6uv9KdmXLfcqvFlQFA1Sj31iv33HOP5s6dq1dffVVz5szRJZdcovPOO0+HDh3SihUrtGHDBsXFxenPf/5zVdQLAPAlhYWKHtRfoUuXml2utRvkadHiNG8CAKBqcK8CAJUgN1exXbsoeOcOs8uZul1G3XoWFgUAVa/cQbndbteUKVP02GOPaf369Vq/fr1sNpsMw5AktWzZUmPGjOFxRgCo4cKmTFbUyOMrxrPHv6P8YcOtKwgAEPC4VwGAsxM+5k1FvvKS2c5MmqaC6/pbWBEAVJ9yB+VS0d5/n3/+uTZt2qT169crIyNDsbGxuvDCC9W+ffvTnjIPAPBvQTt2KK5DW7PtvvwKZc3mpHsAgG/gXgUAyi943TrF9rjMbOcPHqLsD/4t8TMTQACpUFBe7KKLLtJFF11UWbUAAHyZ262Ya3oqZN06s8uZslnG+edbWBQAAKXjXgUAyiArS3HtEhV04IDZ5dy1R0at2hYWBQDWKPdhngCAwBM28d2ik+6PheTmSfeE5AAAAIBfinjxeTnqnWeG5JmzZhfN8QnJAQSoMq0oHzp0qK677joNHjxYTz31VJk+2Gaz6fXXXz+r4gAA1gra/IviLrnYbLv79lNW0jQpiN+zAgB8A/cqAFA+wT+tUGyva8x23j33KmfsOAsrAgDfUKagfNWqVUpMTJQkffXVV2X6YCafAODH8vIU272rgrelml2cdA8A8EXcqwBAGblcsrdqIVtWliTJCA+Xa9tOGQ6HtXUBgI8oU1D+97//XS1btpQkffLJJ1VaEADAWuH/N0aRL71otrP+87nc/QdYVxAAAKfBvQoAnFnko39V+Ifvm+2M+d+o8NLLTvMOAAg8ZQrKb7jhBvO/d+vWrcqKAQBYJ3j9OsVeccJJ97cOVvaHH3HSPQDAp3GvAgCnFvL9EsUM7G+2cx96WLmv8kQNAJSmTEE5AKAGy85WXPs2Ctq/3+zipHsAAADAf9mOHJG9SSOz7alVW66Nm6SYGAurAgDfdsagfO/evRX+8Pr161f4vQCAqhfx8ouK+OcYs505c5YKrrnWuoIAACgH7lUA4CSGoaj7/6Kw/0w1uzK++0GFnTtbWBQA+IczBuVXXXWVbBV47N5ms+mXX36pUFEAgKoVvPInxV57tdnOu/se5bz1toUVAQBQftyrAMBxIfPnK2bwzWY75+lnlffkUxZWBAD+5YxBeYcOHbwmn0eOHNHu3bvVtm1bhYSUfPuOHTuUl5enCy+8sEIFeTwe/eUvf9HSpUs1depUdT7ht5579uzRm2++qVWrVsntdqt169YaOXKkLrus5AEUy5Yt04QJE7RlyxaFhoaqS5cueuKJJ9S4cWOvcYZhaMqUKUpKStLvv/+uc845R71799bo0aMVwyNJAGoal0v21i1ly8yUJBlhYXJt38VJ9wAAv1Td9yoA4ItsB/6QvUUzs13YpIkyVv4sRUZaWBUA+J8zBuVJSUle7ZdfflkFBQWaPn16qeMXLlyo0aNH6/nnn69QQWPGjNHSpUtL9B85ckS33367JGno0KGKiorSvHnzNGLECE2aNEldunQxx65cuVIjRoxQ69atNWrUKGVnZ2vatGm6/fbbNXv2bMXHx5tjJ06cqHHjxqlXr14aMmSIfv/9d33++efauXOnPv744wp9DwDgiyKfeEzh70002xlfL1DhZZdbWBEAAGenuu9VAMCnGIai7viTwubMNrtcP/4kT2IbC4sCAP8VVN43LFu2zGuV98l69eql1q1b69133y13MV999ZUmT56s/v37l3ht8uTJOnr0qCZPnqxRo0bpnnvuUVJSkho0aKBx48Z5jR07dqwaNmyopKQk3XPPPRo1apQmT56sI0eO6NNPPzXHZWRk6IMPPtDAgQM1fvx4DR8+XM8++6xeeOEFLV++XCtWrCj39wAAvibkh+/liIs2Q/LckaOU7soiJAcA1DhVea8CAL4kdOYMOewxZkie89rrSndlEZIDwFkod1D+xx9/KDY29rRj2rdvr5UrV5brc9etW6fnn39eTzzxhC699NISr3/33Xfq2LGjmjdvbvaFh4dr4MCBWrNmjY4ePSqpaOX5+vXrNWDAAIWHh5tjmzdvrk6dOmnx4sVm34oVK5STk6Obbz6+h5ckDRw4UGFhYV5jAcDfBDvT5YiLVsyA6yRJnvhaSt/7h3Jf/4fFlQEAUDWq6l4FAHxF6P59csRFK3r4UElSYZs2Sj90VHmjHra4MgDwf+UOyu12u7Zs2XLaMYcOHVJubm6ZP3Pfvn0aOXKk+vfvr+HDh5d4vaCgQLt27VKzZs1KvNaiRQsZhqEdO3ZIkrZv3y7DMLwC9RPH7ty5U4WFhZKk1NRUSSoxNjw8XOeff762bdtW5u8BAHyGYSjygfvU6bJOZlfG4u/l2v2rxNkLAIAarCruVQDAJ3g8ih40QB2uPX5Gm+vntcpY/pMUFmZhYQBQc5xxj/KTXXPNNUpKStIXX3yhW265pcTrmzdv1v/+979Sg+rS5OTk6MEHH1SjRo300ksvlTrG6XTK7XaXujrEcewAukOHDnn9WdpBnA6HQ263W06nU/Hx8ebYU33u4cOHz1h/vrtQqXv2n3FcZcrNL6j2rwnfxjWBYvalS9TqwXvNdtr9DyntgWOrS7hGAh4/K3AyronT65JYcpEGfFtl3aswx4cv4JpAsdqzvlSz5/5mtnc994oO3vqnogbXSMDjZwVOxjVxeqeb45c7KH/ggQe0cOFCPf/885o+fbq6d++uOnXqKDMzU5s3b9bixYvldrt13333nfGzDMPQk08+qaNHj+rLL79U2Cl+C5qfny9JioiIKPFaaGioJJmrQorHRpZyunPxyfd5eXnm2KCgIK8tWk4cW5aVJmGhwUpoXPeM4ypT6p791f414du4JmA7eED25k3NdmHjxlr75ddq2aqJEiysC76FnxU4GdcEaprKuldhjg9fwDWBoF27FNcu0WwXdO2mtRMnKaF5Q51jYV3wLfyswMm4Jiqu3EF57dq1lZSUpKefflqrV6/Wxo0bZbPZZBiGpKLHHV9++WX16tXrjJ+1bNkyLVq0SBMmTJDb7db+/UW/7XC5XJKko0ePav/+/WYY7vF4SnyG2+2WdDxELw7bi7dXOVFBQYEkmcF4WFiYPB6PDMOQzWYrMba0YB4AfIphKGrYnQqb9ZXZ5Vq+Qp42bWXwG2QAQICpzHsVALBMQYFiel+rkNWrzC5X8iZ5mjRhBTkAVKFyB+WS1KhRI3366afatm2b1q5dq6NHjyoiIkLNmzfXJZdccsqV4SfLy8tTQUHBKVd0jBw5UlLRoZshISFmgH6i4kM8a9Wq5fXnqcaGhoYqLi7Oa6zT6TS3cDlxbO3atcv0fQCAFUJnfaXooXeY7ZxXXlXew49YWBEAANarrHsVALBC2IcfKOrR43P6rPc+kPtPt1tYEQAEjgoF5cVatmypli1bVvj97du313vvvVeif8WKFZo8ebIee+wxtWjRQnFxcWratKmSk5NLjC1eJVK8z2DLli1ls9mUnJxcYqVIcnKymjZtam7BUlx7cnKyrrjiCnNcRkaGdu/erW7dulX4ewOAqmLbu1f21sd/9hZedJEyfljGIT4AAJzgbO9VAKA6BaVuVVznjmbbfW0vZX0xQwoKsrAqAAgsFQ7K9+3bpx9//FEHDx5U27Zt1b17d0nSli1blJGRoXbt2p1xtUbt2rXVs2fPEv3Fq8Q7dOigzp07S5J69uypjz76SLt371aTJk0kFe0xvmjRIrVv317x8fGSpPj4eLVr104LFy7UQw89ZNawa9cubd68WSNGjDC/Trdu3RQREaG5c+d6BeULFixQYWGhrrrqqgr+7QBAFfB4FH3TDQpdvMjscv28Vp6EVhYWBQCA76mMexUAqBb5+Yq9vLuCN282u5xbtsmoX9/CogAgMFUoKB83bpw+/PBDFRQUyGaz6a677jInnykpKXruuef05ptvasCAAZVW6LBhwzRjxgwNGzZMt9xyi6KiojRv3jylpaXplVde8Ro7evRo3X333brjjjvUp08fZWdna9q0aapVq5aGDRtmjrPb7br33nvNPdLbt2+vtLQ0JSUlqVu3brr00ksrrX4AOBuh/5mq6PuO/6Iv+19vKf/eP1tYEQAAvsmKexUAqIjwt/6lyOefM9tZUz6T+/obLKwIAAJbuZ/hmTVrliZOnKgOHTpo7Nix5sE4xQYNGqS4uDh98803lVakVLT6/LPPPtOFF16oSZMmady4cQoJCdH777+vrl27eo3t1q2buaXLuHHjNGnSJLVp00afffaZufK82MiRI/XUU0/pl19+0ZgxY/T1119r8ODBmjBhQqXWDwAVEbR7txxx0WZIXtDlEqUfcRKSAwBQCqvuVQCgPIKTN8gRF22G5Pk33Kh0ZyYhOQBYrNwrypOSklS/fn199NFHCgsL0yOPeB8cFxoaqksuuURbt26tcFE33nijbrzxxhL9zZo108SJE8v0GT169FCPHj3OOM5ms2n48OEaPnx4ecsEgKpTUKCYvr0VsvIns8u1IUWepk0tLAoAAN9WHfcqAFBhOTmK69xBQb/9ZnY5d+ySce55FhYFAChW7hXlqampZzwt/rzzztP+/fvPqjAACFRhH/1bjni7GZJnTXxf6a4sQnIAAM6AexUAviritVflqFPbDMkzp89QuiuLkBwAfEi5V5QbhnHGg2/++OMPDscBgHIK2paquE4dzLb76muUNeMrTroHAKCMuFcB4GuCV69W7NVXmu28O4cqZ8K7ks1mXVEAgFKVOyhv3LjxaR9VzMjI0OrVq9W8efOzKgwAAkZ+vmJ7XKbgTZvMLufmVBkNGlhYFAAA/od7FQA+IzNTcRe2VlD6UUmSYbPJtetXGSedmwYA8B3lXqbYr18/bdiwQfPnzy/xWn5+vp5//nk5nU716dOnUgoEgJos/O235Kh9jhmSZ03+tOgRTEJyAADKjXsVAL4g4pmn5KhfxwzJM+fMk9OZSUgOAD6u3CvKhw8frm+++UaPPfaYOQFds2aNnn32WS1dulQHDhxQq1at9Kc//anSiwWAmiIoZaPiunc12/mDrlf2lM94BBMAgLPAvQoAKwUv+59i+x3/RVzeffcr581/WlgRAKA8yh2Uh4eHa8qUKXrttdc0Z84cSdKGDRu0YcMG2Ww29erVSy+99BL7/gFAaXJzFdulk4J37za7nNt3yjivjnU1AQBQQ3CvAsAKtvR0xTVrLFtBgSTJiI2Vc3OqFBdncWUAgPIod1AuSTExMfr73/+uJ598UsnJyUpPT1dMTIwuuuginXceJzYDQGnC//66Iv/+mtnOnPalCvr2tbAiAABqHu5VAFSnyIdHKfyTj812xreLVXhJ19O8AwDgq8odlD/++ONq2bKlRowYIbvdrssvv7wq6gKAGiP4558Ve1UPs513x53KeWci26wAAFDJuFcBUF1Cvl2omJtuMNu5jz2u3OdftK4gAMBZK3dQ/vXXX2vIkCFVUQsA1CyZmYpLvFBBRw6bXc7dv3GIDwAAVYR7FQBVzXbooOzNmphtT/36cq3dIEVFWVcUAKBSBJX3DbVq1VLBsX23AACli3j26aKT7o+F5Jmz5yrdlUVIDgBAFeJeBUCVMQxF3T3cKyTPWLpMri3bCMkBoIYod1Des2dPrVixQoZhVEU9AODXgpcvkyMuWhFvj5Mk5Y24T+muLBVc2dPiygAAqPm4VwFQFULnzJbDHqOwL7+QJOW88KLSXVkqbN/B4soAAJWp3EH5X/7yFx08eFAfffRRVdQDAP7J6ZS99jmK7dtbkmTExCj9933K+ef/WVwYAACBg3sVAJXJtm+fHHHRir79NklSYcsEpR88orxHH7e4MgBAVajQYZ7h4eEaP368lixZcspxNptNn3322VkVBwD+IPKRhxX+0b/NdsbCRSrs2s3CigAACEzcqwCoFB6PogffotBvFphdrpWr5bngQguLAgBUtXIH5WvWrCn1v5/MZrNVrCIA8BMhixcp5oZBZjv30ceU+8JLFlYEAEBg414FwNkKnT5N0ffebbaz3xij/PsfsLAiAEB1KXdQvnjx4qqoAwD8hu3wIdmbNjbbnrp15VqXLEVHW1gVAADgXgVARdl+/VX2xAvMdkGHjspc9J0UGmphVQCA6lTuoLxBgwZVUQcA+D7DUNSf71HY9GlmV8YPy1TYgUN8AADwBdyrACi3wkLF9O+nkOXLzC7X2g3ytGhhYVEAACuUKyhPTU3VypUr5Xa71bZtW3Xu3Lmq6gIAnxI6d46i/zTEbOc8/6LyHuMQHwAAfAX3KgDKK2zSJ4p6aKTZzp7wrvKHDrOwIgCAlcoclE+YMEHvvPOOV1/37t319ttvK5rtBgDUULb9+2RPOL6apLBFS2WsWCmFh1tYFQAAOBH3KgDKI2j7dsV1bGe23Vdcoaz/zpWCgy2sCgBgtaCyDPr55581YcIERUVF6ZZbbtGdd96p5s2ba/ny5Xr++eerukYAqH6Goeght3qF5K6fVilj7XpCcgAAfAj3KgDKzO1WzOXdvUJy56Ytypo7n5AcAFC2FeVJSUkKDg7W1KlT1bp1a0lSQUGB/vKXv+jrr7/WqFGj1KRJk6qsEwCqTeiXXyj67uFmm5PuAQDwXdyrACiLsHffUdSTT5jtrI8+kfuWWy2sCADga8q0onz16tW6+OKLzYmnJIWEhOjBBx+UYRhatWpVlRUIANXF9uuvcsRFmyF5QYcOSj+cTkgOAIAP414FwOkE/bJJjrhoMyR3X9df6c5MQnIAQAllWlF+9OhRtSjlxOdWrVpJkv7444/KrQoAqlNhoaIH9Vfo0qVmFyfdAwDgH7hXAVCq3FzFdrtEwTu2m13O1O0y6tazsCgAgC8r04pyt9utsLCwEv3FB+Pk5uZWblUAUE3CpkyW45w4MyTPHv+O0l1ZhOQAAPgJ7lUAnCx8zJtynFfLDMkzk6Yp3ZVFSA4AOK0yrSg/E8MwKuNjAKDaBO3YobgObc22+/IrlDWbk+4BAKhpuFcBAkfwunWK7XGZ2c4fPETZH/xbstksrAoA4C/KHJRPmzZNX3/9dYl+m81W6ms2m01Lliw5+woBoDK53Yq5pqdC1q0zu5wpm2Wcf76FRQEAgLPBvQoQ4LKyFNcuUUEHDphdzl17ZNSqbWFRAAB/U+agPCsrS1lZWeV+DQB8Rdh7ExX1xGNmO+vDj+QePMTCigAAQGXgXgUIXBEvPq+If/2f2c6cOUsF11xrYUUAAH9VpqB8y5YtVV0HAFSZoM2/KO6Si822u28/ZSVNk4LKdEwDAADwYdyrAIEp+KcViu11jdnOu+de5YwdZ2FFAAB/Vyl7lAOAT8rLU2z3rgrelmp2cdI9AAAA4MdcLtlbtZDt2JMiRni4XNt2ynA4rK0LAOD3WE4JoEYK/78xcpwbb4bkWf/5nJPuAQAAAD8W+ehf5WhYzwzJM+Z/I+fBI4TkAIBKwYpyADVK8Pp1ir3ihJPub75F2R99wkn3AAAAgJ8K+X6JYgb2N9u5Dz2s3Fdft7AiAEBNRFAOoGbIzlZc+zYK2r/f7OKkewAAAMB/2Y4ckb1JI7PtqVVbro2bpJgYC6sCANRUbL0CwO9FvPyiHHXPNUPyzBlfFW2zQkgOAAAA+B/DUNR9I7xC8ozvfpBr1x5CcgBAlWFFOQC/FbxypWKvvcps5919j3LeetvCigAAAACcjZD58xUz+GaznfPUM8p76mkLKwIABAqCcgD+x+WS/YIE2TIyJElGWJhc23dxiA8AAADgp2wH/pC9RTOzXdikiTJW/ixFRlpYFQAgkLD1CgC/EvnEY0Un3R8LyTO+XiDnoaOE5AAAAIA/MgxF3X6bV0ju+vEnZSRvIiQHAFQrgnIAfiHkh+/liItW+HsTJUm5I0cp3ZWlwssut7gyAAAAABUROnOGHPYYhc2ZLUnKee11pbuy5ElsY3FlAIBAxNYrAHya7ehR2Rs3NNue+FpypfzCIT4AAACAn7Klpcl+QYLZLrzoImX8sEwKC7OwKgBAoGNFOQDfZBiKfOA+r5A8Y/H3cu3+lZAcAAAA8Ecej6IHDfAKyV0/r1XGilWE5AAAyxGUA/A5Id8skMMeo/DPPpUk5T75dNE2KxdfbHFlAAAAACoidOpncjhiFbrkO0lS9r/eKtpmJaGVxZUBAFCErVcA+AzbwQOyN29qtj3nny/X6rUc4gMAAAD4qaBduxTXLtFsF3TtpsyvF0ghxBEAAN/C/zMBsJ5hKGr4UIV9NdPsci1fIU+bthYWBQAAAKDCCgoU0/tahaxeZXa5kjfJ06SJdTUBAHAabL0CwFKhs74qOun+WEie88qrRY9gEpIDAAAAfinsww/kiLebIXnWex8UzfEJyQEAPowV5QBKlZYyR6lLxirXuU8hkXbZJLlznIqw11NCz0fUIHHAWX2+be9e2Vu3NNucdA8AAAD4t6DUrYrr3NFsu6++RlkzvpKCWKMHAPB9BOUASkhLmaOUec/J486VJBXkpJuv5Tr3KmXec5JUsbDc41H0zTcqdNG3Zpfr57Uc4gMAAAD4q/x8xV7eXcGbN5tdzi3bZNSvb2FRAACUD7/WBVBC6pKxZkheGo87V6lLxpb7c0OT/lN00v2xkJyT7gEAAAD/Fv72W3LUPscMybOmfKZ0VxYhOQDA77CiHIDp+HYre884Nte5r8yfG7R7t+LaXmS2C7pcoswFCznpHgAAAPBTwckbFHtZd7Odf8ONyp40RbLZLKwKAICKI6UCoLSUOfrlm9e8tlg5kwh7vTMPKihQTL8+Cvlphdnl2pAiT9OmFagSAAAAgOVychTXuYOCfvvN7HJu3ynjvDoWFgUAwNlj6xUgwBXvR16ekDwoNEIJPR857Ziwj/5ddNL9sZA8a+L7RdusEJIDAAAAfini9dfkqFPbDMkzp88o2maFkBwAUAOwohwIcGfaj9ybTRH2ekro+cgpD/IM2paquE4dzLb7qquVNXMWJ90DAAAAfip49WrFXn2l2c67c6hyJrzLNisAgBqFoBwIcGXdazzCXl89R3136gH5+Yq98nIFp6SYXc7NqTIaNDjbEgEAAABYITNTcRe2VlD6UUmSYbPJtetXGfHxFhcGAEDlY4knEODKstf4mbZaCR8/ruik+2MhedbkT4sewSQkBwAAAPxSxDNPyVG/jhmSZ86ZJ6czk5AcAFBjEZQDAS6h5yMKCo0o+cKxxygj7PWVeN0rpW61EpSyUY64aEU+87QkKX/Q9Up3Zsp9w41VWjMAAACAqhG87H9yxEUrYvzbkqS8++5XuitLBT2utLYwAACqGFuvAAGuOABPXTJWuc59Z9yDXJKUm6vYLp0UvHu32cVJ9wAAAID/sqWnK65ZY9kKCiRJRmysnJtTpbg4iysDAKB6EJQDUIPEAacPxk8Q/o+/K/L1V8125rQvVdC3b1WVBgAAAKCKRT48SuGffGy2M75drMJLulpYEQAA1Y+gHECZBP/8s2Kv6mG28+64UznvTOSkewAAAMBPhSz6VjE3Xm+2cx97XLnPv2hZPQAAWImgHMDpZWYqLvFCBR05bHY5d//GIT4AAACAn7IdOih7syZm21OvnlzrkqWoKOuKAgDAYhzmCeCUIp57puik+2MheebsuUp3ZRGSAwAAAP7IMBR193CvkDxj6TK5tm4nJAcABDxWlAMoIXj5MsX27W2280bcp5x//p+FFQEAAAAoj7SUOUpdMla5zr2SLVgNt2bo8lnHnxJNvrK2UnvUk3vunxTxv3pK6PlImc8tAgCgJiIoB3Cc0yl78yay5edLkoyYGDm3bOOkewAAAMCPpKXMUcq85+Rx5yoyo1DXT/zNfM0VH6L5w+vKE2KTctIlSbnOvUqZ95wkEZYDAAIWQTkASVLkIw8r/KN/m+2MhYtU2LWbhRUBAAAAqIjUJWPlyc/RFTMOqcHOXLN/3t115aodWup7PO5cpS4ZS1AOAAhYBOVAgAtZvEgxNwwy27l/fVS5L75sYUUAAAAAzkadFdvVfe7xbVbWXO1QaqfYM74v17mvKssCAMCnEZQDAcp2+JDsTRubbU/dukUn3UdHW1gVAAAAgIqy/fqr7IkXqPux9uG6ofr29joygm1len+EvV7VFQcAgI8jKAeqyPHDc/Ypwu5Dh+MYhqL+fI/Cpk8zuzJ+WKbCDh0sLAoAAABAhRUWKmbAdQpZ9j+za979jeWK9ZT5I4JCI5TQ85GqqA4AAL8QZHUBQE1UfHhOrnOvJMM8HCctZY6ldYV8PU8Oe4wZkuc894LSXVmE5AAAAICfCpv0iRznxJkhefaEd5XuylKTO99QhL1+0SBb8LHRx1eWB4VGKjTSIcmmCHt9JV73im8s7AEAwCKsKAeqQOqSsfK4c736rDwcx7Z/n+wJLcx2YYuWylixUgoPr/ZaAAAAAJy9oO3bFdexndl2X3GFsv47VwouCsUbJA4g+AYAoBwsD8qPHDmijz/+WKtWrdLvv/+unJwcnX/++br11ls1ePBghYQcL3HPnj168803tWrVKrndbrVu3VojR47UZZddVuJzly1bpgkTJmjLli0KDQ1Vly5d9MQTT6hx48Ze4wzD0JQpU5SUlKTff/9d55xzjnr37q3Ro0crJiamyr9/+J+ybKlyqkNwqv1wHMNQ9G2DFfr1PLPL9dMqeS68qHrrAAAAAFA53G7FXNVDIRs2mF3OTVtkNGpkYVEAAPg/y7deSUlJ0aRJk1S7dm0NHz5c999/vyIiIvTyyy/rueeeM8cdOXJEt99+uzZs2KChQ4dq1KhRys/P14gRI7Rq1Sqvz1y5cqVGjBih/Px8jRo1SkOHDtWGDRt0++2368iRI15jJ06cqNdff10tW7bUY489pt69e+vzzz/XQw89VC3fP/xLWbdUOdUhONV5OE7ol1/IYY8xQ/Kcv7+hdFcWITkAAADgp8LefUeOWg4zJM/66BOlu7IIyQEAqASWryhv1qyZFi5cqPr165t999xzjwYPHqyZM2dq9OjRqlOnjiZPnqyjR49q9uzZat68uSTpjjvuUP/+/TVu3DhNnTrVfP/YsWPVsGFDJSUlKfzY1hL9+vXTgAED9Omnn+rhhx+WJGVkZOiDDz7QwIEDNWbMGPP9rVq10rPPPqsVK1aoW7du1fHXAD9R1i1VEno+opR5z3mNra7DcYpPui9W0KGDMhctkUJDq/xrAwAAAKh8Qb9sUlzXLmbbfV1/Zf3nc8lmO827AABAeVi+orxhw4ZeIbkkBQcHq0uXoknAvn1FW1V899136tixoxmSS1J4eLgGDhyoNWvW6OjRo5KKVp6vX79eAwYMMENySWrevLk6deqkxYsXm30rVqxQTk6Obr75Zq+vP3DgQIWFhXmNBaSyb6nSIHGAEq975djhOdV0OE5hoaL79/UKyV1rNyjzh2WE5AAAAIA/ys1VbId2XiG5M3W7spKmEZIDAFDJLA/KT2X//v2SpDp16qigoEC7du1Ss2bNSoxr0aKFDMPQjh07JEnbt2+XYRhegfqJY3fu3KnCwkJJUmpqqiSVGBseHq7zzz9f27Ztq9TvCf6vPFuqNEgcoJ6jvlPfZzer56jvqjQkrz1zuhznxCl06VJJUvb4d4q2WWnR4gzvBAAAAOCL6n3wjhzn1VLwju2SpKz/fF60zUrd6tvOEQCAQGL51iulOXDggBYvXqzExETVq1dPhw8fltvtVmxsbImxDodDknTo0CGvP0s7iNPhcMjtdsvpdCo+Pt4ce6rPPXz4cGV9S6ghrNxSpTRBO3YorkNbOY61Cy67XJlz5pkn3QMAAADwL8Hr1im2x2XmHD//1sHK/vAjVpADAFDFfC4oLygo0OOPP678/Hz97W9/kyTl5+dLkiIiIkqMDz22pURubq7X2MjIyBJjQ0KKvt28vDxzbFBQkNcWLSeOLf7M08l3Fyp1z/4zjqtMufkF1f41cUzsxard5VEdWf9vFWQdUEj0eYpvf6+yYi+u1n8Tm9utC+68RTGbNpp9679Zqvz6DaTfD1ZbHfBt/KzAybgmcDKuidPrkljyaUYEBub4sEJQTo7a9uupsEPH5/Nrl65WwTnx0q9/WFgZfAk/K3AyrgmcjGvi9E43x/epoNzj8ejJJ5/UTz/9pKefftrcpzwsLMx8/WRut1vS8RC9eGzx9ionKigokCQzGA8LC5PH45FhGLKd9Nv5goKCUoP5k4WFBiuhcd0yfX+VJXXP/mr/mjhB4zulnnda9uXD3puoqCceM9tZH36kTV2v5JpACfyswMm4JnAyrgmgdMzxUd0iXnxeEf/6P7OdOXOWfmnZhmsCJfCzAifjmsDJuCYqzmeC8sLCQj3zzDOaM2eORo8erWHDhpmv2e12hYSEyOVylXhf8SGetWrV8vrzVGNDQ0MVFxfnNdbpdJpbuJw4tnbt2mf/jQGVJGjLZsV16Wy23X37FR3iExQk8ZtCAAAAwO8E/7RCsb2uMdt5d9+jnLfeLmowxwcAoFr5RFDudrv1+OOPa8GCBXrmmWc0dOhQr9dDQkLUtGlTJScnl3jvxo0bZbPZzAM5W7ZsKZvNpuTkZPXq1ctrbHJyspo2bWpuwdKyZUuz/4orrjDHZWRkaPfu3erWrVulfp/wb2kpc5S6ZKxynfsUEmmXTZI7J12yBUtGoSLs9ZXQ85HKP7QzL0+x3bsqeFuq2eVM3c4hPgAAAIC/crlkb9VCtqwsSZIRHi7Xtp0yTlrABQAAqk+Q1QVkZWXpL3/5ixYtWqQxY8aUCMmL9ezZUykpKdq9e7fZl5+fr0WLFql9+/aKj4+XJMXHx6tdu3ZauHChuV+5JO3atUubN2/WVVddZfZ169ZNERERmjt3rtfXWrBggQoLC73GIrClpcxRyrznlOvcK8lQQU56UUguSUbRNj+5zr1Kmfec0lLmVNrXDf+/MXKcG2+G5Jx0DwAAAFgnLWWOloy/SvNfvUBLxl9lzv1P1V+ayEf/KkfDemZInjH/GzkPHiEkBwDAYpavKB8zZoyWL1+uvn37KjMzU0lJSV6vn3feebr66qs1bNgwzZgxQ8OGDdMtt9yiqKgozZs3T2lpaXrllVe83jN69GjdfffduuOOO9SnTx9lZ2dr2rRpqlWrVoktXe69915NmDBBbrdb7du3V1pampKSktStWzddeuml1fJ3AN/3yzevyeM+8+GuHneuUpeMPetV5cHr1yn2isvMdv7Ntyj7o0846R4AAACwSPHimeL7guKFMkd/W6u05K9K9Evyui8I+X6JYgb2N9u5Dz2s3Fdfr8bvAAAAnI7lQXlubtFkYv78+Zo/f36J17t06aKrr75atWvX1meffaYxY8Zo0qRJcrvdat26td5//3117drV6z3dunXTe++9p3feeUfjxo1TaGiounTpoieeeMJceV5s5MiRio2NVVJSkr799ls5HA4NHjxYo0ePrrLvGf4lLWWOCopXj5dBrnNfxb9YdrbiOrZT0N69Zpdz524Ztc+t+GcCAAAAOGupS8aWWDzjcefqt7XTzadMT+wvXkBjO3JE9iaNjr8WX0uulF+kmJhqqRsAAJSN5UH5P/7xD/3jH/8o09hmzZpp4sSJZRrbo0cP9ejR44zjbDabhg8fruHDh5fpcxF4UpeMLdf4CHvFtkWJePlFRfxzjNnOnPGVCq7tdeo3AAAAAKg2p1wQc1JIbo5P36uo+0Yo7D9Tzb6M735QYefOVVEeAAA4S5YH5YCvK9qXvGyCQiOU0PORcn1+8MqVir32+H74eXfdrZxx48v1GQAAAACqVoS9Xun3BrbgEmF5/e056jHzkKSikDz3yaeV+/Qz1VAlAACoKIJy4DTKczBncFiULur3Utn3J3e5ZL8gQbaMDEmSERoq147dHOIDAAAA+KCEno947VEuFS2UadD2BnOP8oisQt3wzvEwvbBJE2Ws/FmKjLSiZAAAUA4E5cBpnHbbFZtNMgzJFqxGHW9VYt8Xyvy5kX97XOET3zXbGV8vUOFll59NqQAAAACqUPGCmNQlY5Xr3KcIez0l9HxEDRIH6JyGHeQY8YAabDpqjnf9+JM8iW2sKhcAAJQTQTlwGqc7mLPvM5vL/XkhP3yvmAHXHf/8kaOU+3rZ9ugHAAAAYK0GiQNKPEEaOnOGLho+1GznvPa68kY9XN2lAQCAs0RQDpzGqfYhjLDXL9fn2I4elb1xQ7PNSfcAAACAf7Olpcl+QYLZLrzoImX8sEwKC7OwKgAAUFFBVhcA+LKEno8oKDTCq69cB3YahiIfvN8rJM9Y/L1cu38lJAcAAAD8kcej6EEDvEJy189rlbFiFSE5AAB+jKAcOI0GiQOUeN0rx1aQ2xRhr6/E614p04GdId8skMMeo/BPp0gqOuk+3ZWlwosvruKqAQAAAFSF0KmfyeGIVeiS7yRJ2f96S+muLHkSWllcGQAAOFtsvQKcQWn7EJ6O7eAB2Zs3Ndue88+Xa/VaTroHAAAA/FTQrl2Ka5dotgsu6arM+d9IIdxSAwBQU/D/6kBlMQxFDR+qsK9mml2u5SvkadPWwqIAAAAAVFhBgWJ6X6uQ1avMLteGFHmaNj3NmwAAgD9i6xWgEoTO+koOe4wZkue88mrRI5iE5AAAAIBfCvvwAzni7WZInvXeB0VzfEJyAABqJFaUA2fBtnev7K1bmu3CCy9UxtLlHOIDAAAA+Kmg1K2K69zRbLuvvkZZM76SglhnBgBATUZQDlSEx6Pom29U6KJvzS7X6jXytGptYVEAAAAAKiw/X7GXd1fw5s1ml3NzqowGDSwsCgAAVBd+JQ6UU2jSf4pOuj8Wkpsn3ROSAwAAAH4p/O235Kh9jhmSZ035TOmuLEJyAAACCCvK4bPSUuYodclY5Tr3KcJeTwk9H1GDxAGW1RO0e7fi2l5ktgu6XKLMBQs56R4AAADwU8HJGxR7WXeznX/DjcqeNEWy2SysCgAAWIGEDz4pLWWOUuY9J487V5KU69yr5FmPK3nW44qw16/e0LygQDH9+ijkpxVml2v9RnmaNauerw8AAACgcuXkKK5zBwX99pvZ5dy+U8Z5dSwsCgAAWImtV+CTUpeMNUPyk+U69ypl3nNKS5lT5XWEffTvopPuj4Xk2RPfK9pmhZAcAAAA8EsRr78mR53aZkieOX1G0TYrhOQAAAQ0VpTDZ5y41YpknHasx52r1CVjq2xVedC2VMV16mC23VddrayZszjpHgAAAPBTwatXK/bqK8123p1DlTPhXbZZAQAAkgjK4SNO3mqlLIoC9UqWn6/YKy9XcEqK2cVJ9wAAAIAfy8xU3IWtFZR+1Oxy7v5NRny8hUUBAABfQ1AOn3C6rVZOJcJer1JrCJ/wtiKffspsZ02aIveNN51y/KkOG/W1Q0gBAADgu5a+119Zh7ZLknZIiq7dQlfcN9faomqQgr/cqtpJ88z2d4PPlbNtM527crx+T54lw51z2veHRjp0Qe9nJIk5PgAANRxBOXzCmVeH23TidixBoRFK6PlIpXztoJSNiuve1WznD7pe2VM+O+0jmKUdNpoy7zkd/W2t0pK/KtEviYk0AAAAvJwYkhfLOrRdS9/rT1h+loKX/U+x/fqY7a2dYrT26nOKGs69+m1NUpk+x52TruT//k22oGAZhW5JzPEBAKipCMrhEyLs9ZTr3FtKf331HPVd1azSzs1VbJdOCt692+w63Un3Xnuo24Iko9DrdY87V7+tnV5qf1Xupw4AAAD/dHJIfqZ+nJktPV1xzZvI5i4Ktd1hNs26v74Kws/irCHDI6PQ49XFHB8AgJqHoBw+4dwWPUpd1XFuix6SilZqVOYkNPwff1fk66+a7cxpX6qgb99Tji+xh/pJYbjpFP1Vsp86AAAAAFPkw6MU/snHZvvbP9XRoYZhVfb1mOMDAFCznMWv1YHKc3D7D+Xqr6jgNWvkiIs2Q/L8P92udGfmaUNyqRx7qNuCS+2u7P3UAQAAABQJWfStHHHRZkie++hjSndlKfOiJlX6dZnjAwBQs7CiHD7hVKsxKm2VRmam4tpcpKDDh8yu8px0X5Y6gkIj1KDtDV57lBf3V9Z+6gAAAKg5omu3KHWblejaLSyoxv/YDh2UvVkTs+2pV0+udclSVJQkKaHnI95PhVb4CwV57VEuMccHAKAmYkU5fMKpVmNUxiqNiOeekaN+HTMkz/zvHKW7ssockpeljgh7fSVe94oS+76gxOteUYS9viSb2c/ehQAAADjZFffNLRGKR9duwUGeZ2IYirp7uFdInrF0mVxbt5shuVS0fePxubnMpz8j7PXVqNNtsoVGnvFLhUY61HbQG2oz4HXm+AAA1HCsKIdPKG21x9mu0gj+cbli+/Qy23kj7lPOP/+vwvUlz3r8FK/a1HPUd2arsvdTBwAAQM1VHIqn7tmvhMZ1La7G94XOma3o228z2znPv6i8x041Tz/93Dyx7wvl+trM8QEAqNkIyuETiiedqUvGKte5TxH2ekro+UjFJqNOp+wtmsqWlydJMmJi5NyyTYqLO6v6fvnmNRXkpJd4jb0JAQAAgKpl279P9oTjq+8LWyYo48efpPBwC6sCAAA1CUG5H0lLmWMGyWlnEyT7qMpYiR35yMMK/+jfZjtj4SIVdu12tqVJki7s/Uylr3oHAAAAcBoej6IH36LQbxaYXa6Vq+W54EILiwIAADURe5T7ibSUOUqZ95xynXslGcp17lXKvOeUljLH6tJ8QsjiRUUn3R8LyXP/+qjSXVmVFpJLJ+9xyN6EAAAAQFUKnT5NDkesGZJnvzFG6a4sQnIAAFAlWFHuJ1KXjC1xWrvHnavUJWMDOqi1HT4se9Pzzbanbt2ik+6jo6vk67H/OAAAAFC1bL/+KnviBWa7oENHZS76TgoNtbAqAABQ07Gi3E/kOveVq7/GMwxF3Xu3V0ie8cMyuVJ3VFlIDgAAAKAKFRYqpl8fr5DctXaDMn/4HyE5AACocgTlfiI00l6u/pos5Ot5cthjFDZ9miQp57kXirZZ6dDB4soAAAAAVETYpE/kOCdOIcv+J0nKHv9O0TYrLVqc4Z0AAACVg61X/IRRzv6aqMRJ981bKGPFSikiwsKqAAAAAFRU0PbtiuvYzmy7r7hCWf+dKwUHW1gVAAAIRATlfqIgx1mu/hrFMBT9pyEKnTfX7HL9tEqeCy+ysCgAAAAAFeZ2K+aqHgrZsMHscm7aIqNRIwuLAgAAgYytV/xEoG69EvrlF3LYY8yQPOfvbxQ9gklIDgAAAPilsHffkaOWwwzJsz76ROmuLEJyAABgKVaU+4lA23rF9ttvsl/U2mwXdOigzEVLOMQHAAAA8CMp81/Sb2unS0ah7IcK1e/jveZrexNi9eOQxnJvfUER499TQs9H1CBxgIXVAgCAQEZQ7icCZuuVwkJFD+qv0KVLzS7X2g0c4gMAAAD4mZT5L+m3NUkKKjDU95P9ijtaYL721QP1lRsTLOUW3c/kOvcqZd5zkkRYDgAALEFQ7idCI+1y56SX2l9ThE2ZrKiRD5jt7PHvKH/YcOsKAgAAAFBhv62drgtXuNTuf8cX9yy9oZbSWkaVOt7jzlXqkrEE5QAAwBIE5X6iJm+9ErRjh+I6tDXbBZddrsw582rsSfdpKXOUumSscp37FGGvxyOmAAAAqHGC163TbW/sNtu7L4zSiuviJZvttO/Lde6r4soAAABKR1DuJ2rk1itut2KuvVoha9eYXc6UzTLOP9/CoqpWWsocpcx7Th53riQeMQUAAEANk52tuHaJCvrjD7Nrxsj6yo8q2yKYCHu9qqoMAADgtAjK/USEvZ5ynXtL7a9KVbX6Oey9iYp64jGznfXhR3IPHnLWn+vrUpeMNUPyYjxiCgAAACuceNCmN5vim3SV64/NKjhh+8fQSIcu6P3MKeetES8+r4h//d/xz3/qFm0s/KnM9QSFRiih5yPl+RZK4OlNAABQUQTlfiKh5yNeK5GlyplInkpayhz98s1rXhPjylj9HLRls+K6dDbb7j59lfX5dCko6Kzq9RenepSUR0wBAABQnYoP2iydoSO7V5Todeeka+OcpyV53w8E/7RCsb2uMdt5d9+jnLfeVkNJ6SeG8bZgxTfuouyje5Tr3KeQSLtsktw5zkoJtXl6EwAAnA2Ccj9RPLGrjtURJ08wT3Sq1c8nB+slVpvk5Sn20m4KTt1qvse5dbuMeoH1aKVVTwYAAAAAJ/pt7fQKvc8odB+/H3C5ZG/VQrasrKLXwsPl2rZThsNhjk/s+4IS+75QGSWfEU9vAgCAs0FQ7kcaJA5Qg8QBSt2zXwmN61bJ10hLmaPk/z4hGac+JvTk1c+lrUY5cbVJs4VbFfni8clx1n8+l7t/YE5Uq/vJAAAAAKBUJbZbKbtc5z5FPv6Ywt+faPZlzP9GhZdeVhmVVRhPbwIAgLNBUA5TWsocbfzvk6cNySUpNNKuJeOvMh+XPHF7lhM50rJ0Uffj+47n33yLsj/65Iwn3fuDiu59WJ1PBgAAAACnZAuuUFheZ0+urpp2UFJRSJ770MPKffX1Si6uYnh6EwAAnA2Ccpg2f/OajDNMlm22YLnzMuU+Fo6XFpIHuz3q/+F+RWUe/yznzt0yap9bmeVa5mz3Pix+MgAAAACwSqOOt55mj/KSwnIKddP44yG0J76WXCm/SDExVVFehfD0JgAAOBsE5ZBUFP66T7Ey/ESG4TntivM2/3MqcYXLbC8f1koXjV9bGSVWmzOtFmfvQwAAAPi74n3DzYM2vdgU36SrXH9sVkH2UV0y/4iapWSbr2Z894MKO3euxmrLhqc3AQDA2SAoh7lCumxKD8lrpeWp19QDZnt7u2j93K+O2gx4qRIqrD5lWS3O3ocAAACoCc500GbI/PmKGXyz2c598mnlPv1MdZRWYTy9CQAAKoqgHKWukC6rkDyPrp+4V6H5RQF6YZD01cgG8sTFqE2/l/xqklp0kOmTJVbUnLxanL0PAQAAUJPZDvwhe4tmZruwcWNlrFojRUZaWBUAAEDVIihHhVdCd1x8VK3WZJrtxUPOk6tNU13gh483mqvqT7FH+4l/R+x9CAAAgBrJMBQ19A6F/XeW2eVavkKeNm2tqwkAAKCaEJTjlCukT+X4SfdFtnSO0bqrzlGEvb7f7gF4plX1J64WZ+9DAAAA1DShM2coevhQs53z2uvKG/WwhRUBAABUL4JylLpCujShuR7d/Haa2c6LCNLs++qpICxIUun7efuL062qL221OHsfAgAAoCawpaXJfkGC2S686CJl/LBMCguzsCoAAIDqR1COk1ZIl7Ky3DDUZcFRNd+YZXYtvOM8Ha4fXmLoyft5+4tTrqq3BSvxulf87vsBAAAATsvjUfQNgxS65Duzy/XzWnkSWllYFAAAgHUIygNYWsoc/fLNayrISffqt4VGynDnSJLq7cjRlTMOma9t7B6nlMvsp/3ciu55bqVT7TtOSA4AAICaJnTqZ4q+/y9mO/tfbyn/3j9bWBEAAID1CMoDVFrKHCXPekKSUeI1w52j8KxC3fjO8RXWmXHB+vqeuioMDTrjZ5+4n7e/YN9xAAAA1HRBu3Yprl2i2S64pKsy538jhXBbCAAAwIwoQG36+gWVFpLLMHTp7MM6f2uO2TV/WB2l1yl9j8Kg0IgSq7BP3s/bX7DvOAAAAGqkggLF9L5WIatXmV2uDSnyNG1qYVEAAAC+haDcj6z87C4d2b1CkrRDUnyTbrrkjk9O+56U+S/ptzVJZfr8hluzdfl/D5vtdT3s2nJJ3CnHR9jrK6HnI367CjstZY7f1g4AAACURdiHHyjq0eMLWbLe+0DuP91uYUUAAAC+iaDcT5wYkhc7snuFVn521ynD8rKG5JEZBbp+4vF9xdNrh+qbYXXkCbad8j3FK8f9dRV2Wsocrz3Jc517lTLvOUnyy+8HAAAAOFFQ6lbFde5ott1XX6OsGV9JQWfeShEAACAQEZT7iZND8jP1S9Jvaz8//Ycahnp8eUj1dx3fOmXePXXlqhV6xnocDTr4daCcumSs15YxkuRx5yp1yVi//r4AAABQcxSdK/R4ud4TVGio9+T9ijtUYPbNur+ecmK3Sq9feLp3qu31bzAXBgAAAYugvCYzStmD/Jgmm7LUbd4Rs/3zNQ5t6xhb5o8+snuFUua/pMS+L5xViVbJde4rVz8AAABQnSoSkrde5VKH751me9nAWvqtdVQZ3+0xvx5hOQAACEQE5TVIWsocpcx5Rp7C/FOOiU4v0MAPjofBB+uHafGfzpMRdOptVk7ltzWf+21QHmGvp1zn3lL7AQAAAKulLhlb5rGOP/LVd/IfZvvXVpFaPrCWZCv/HJ8nLAEAQKAiKK8B0lLm6JdvXlNBTvopx9g8hq5OOqBz046H6HP+XE+Z55zNJXDqFeu+LqHnI157lEvH910HAAAArFaWJx2D3R5d99F+RbsKzb6vHqyv3OjgKv26AAAANRFBeQ1wpkcyW6zL1MXfHjXbP/WN16420VVdlk8rXiWTumSscp37FGGvZx5OCgAAAFjv9ItSEpc51eZHl9n+4cba2tsi8qy/aoS9ntJS5jBPBgAAAYegvAaLPexW/4/2m+19TcL1/S3nVugRzNIEh5V1v0Pf1CBxABN+AAAA+Jz5r7Y+5Wu19uap12cHzPbONtFa2eecSpvjR53T2OvJy1znXqXMe04Se5cDAICajaC8BgoqNNTr0z90zgG32Vd00n0Z/7ltwZJReKZBuqjfSxUvEgAAAECZheR7NPC9fQrP9Zh9M0bVV35kxbdZKc2RPatK3At43LnsXQ4AAGo8gnI/ERZznvIzD5xxXKvVGeq4JN1sl++k+2MMj/o+u0UrP7tLR3avKPFyUGikEq97mYkyAAAAUA3aL0nXBaszzPZ3g8/VH40jzvCu4hXm5TxX6BQLZti7HAAA1HQE5ZIyMzP11ltv6ZtvvtHRo0fVsGFD3XbbbRo6dKhslfQI49k6U0juOJCvvpNOOOk+IVLLB1XspPsIez1J0iV3fML+hAAAAEAVK16gsuOk/nN/zdU1nx8026kdY7TmmnPK9JnFc/pc597yFXOKp0uLPw8AAKCmIiiXNGrUKK1evVpDhgxRo0aN9PPPP+v1119Xdna27r//fqvLO62gAkPXfbRPMc7KO+k+oecj5n9nH28AAACg6pT2FGdorkc3TEhT8LFdVtxhNs26v74KwoPK9qG2IHNOv3HO0zIK3Wd4Q5Gg0Ag1aHuD0pK/MvcoL+4/8R4BAACgJgr4oHz58uX68ccf9eqrr+qWW26RJA0bNkyPPvqoPvjgA915552KiYmxuMrSXbTcqbbLy3fSfXyTbjqy+yed6hHMRp1uIxgHAAAAqsnJIfnF3xxRiw1ZZvvbP52nQw3Dy/x5pW2TuPmb1+TOSS/9DcdWkEfY65tPj57TqCNPlQIAgIAT8EH5kiVLFBYWpkGDBnn133rrrZo7d65WrFiha6+91qLqShe/L0+9Pz3hpPvEKK3sG3/abVYadbpNiX1fkCQtGX9VqY9ghkY6zDEAAAAAqtb8V1ub/73urhz1/OKQ2d7UNVbJVzjK+Ek29X12c6mvVOQJUZ4qBQAAgSjgg/KtW7eqYcOGCgsL8+pv2bKlJCk1NdWngvKu8w6r6aZss12Wk+77PrvFq53Q8xGlzHuuxOOUF/R+pnKLBQAAAHBG1372h2rvzZckZUcHae6f66kwrIzbrIj9wwEAACpDwAflhw8fVmxsbIl+h8Nhvn46+e5Cpe7ZXxWllarWsQn0d7eeqz+anOmk+yIl6ou9WLW7PKoj6/+tgqwDCok+T/Ht71VW7MXV+r2g8uTmF/BvhxK4LnAyrgmcjGvi9LokNrO6BFjEqjn+gqF1dLRu2BlGn8ymuMS7+N9yDcTPaJSG6wIn45rAybgmTu90c/yAD8rz8/MVEVEycA4KClJQUJByc3NLeddxYaHBSmhct6rKM+049ue8P5dvtYgtNLL0+hrfKfW88+wLg09I3bO/Wq5D+BeuC5yMawIn45oASlfdc/zPn2hUoffbQiPV5qT9yFFz8DMapeG6wMm4JnAyromKC/igPCwsTB6Pp0S/x+ORx+MpNUT3Hza1ue5lq4sAAAAAUEG24HD1eWqD1WUAAADUeGXf+K6GqlWrlpxOZ4n+o0ePSpLi4+Oru6TKYQtW2+vfZHUJAAAA4KNOPkvoZITkAAAA1SfgV5S3bNlS06ZNU2ZmpmJiYsz+5ORk83V/1HbQPwjJAQAAAB9XHJbzmDQAAIC1An5Fec+ePVVQUKAFCxZ49c+bN0+RkZHq3r27RZWdDRshOQAAAAAAAACUUcCvKL/sssvUpUsXvfzyy9q2bZvq16+vtWvXasGCBXrooYcUGxtrdYnl1qjTEKtLAAAAAAAAAAC/EfBBuc1m07vvvquxY8dq3rx5Sk9PV8OGDfXUU09p2LBhVpdXNrZgySiUbMFq1PFWJfZ9weqKAAAAAAAAAMBvBHxQLkmxsbF6/vnn9fzzz1tdSoX0fWaT1SUAAAAAAAAAgN8K+D3KAQAAAAAAAACBjaAcAAAAAAAAABDQCMoBAAAAAAAAAAGNoNxPxDfpVq5+AAAAAAAAAEDZEJT7iUvu+KREKB7fpJsuueMTiyoCAAAAAAAAgJohxOoCUHbFoXjqnv1KaFzX4moAAAAAAAAAoGZgRTkAAAAAAAAAIKARlAMAAAAAAAAAAhpBOQAAAAAAAAAgoBGUAwAAAAAAAAACGkE5AAAAAAAAACCgEZQDAAAAAAAAAAIaQTkAAAAAAAAAIKARlAMAAAAAAAAAAhpBOQAAAAAAAAAgoBGUAwAAAAAAAAACGkE5AAAAAAAAACCgEZQDAAAAAAAAAAIaQTkAAAAAAAAAIKDZDMMwrC4CAAAAAAAAAACrsKIcAAAAAAAAABDQCMoBAAAAAAAAAAGNoBwAAAAAAAAAENAIygEAAAAAAAAAAY2gHAAAAAAAAAAQ0AjKAQAAAAAAAAABjaAcAAAAAAAAABDQCMoBAAAAAAAAAAGNoNxPZGZm6tVXX9Xll1+uxMRE9enTR5MnT5ZhGFaXhgo4cuSI/vnPf+rWW29V9+7d1aFDBw0aNEhTp05VQUGB19g9e/bowQcf1MUXX6z27dtryJAhWrZsWamfu2zZMg0ZMkTt27fXxRdfrAcffFB79uwpMc4wDE2ePFl9+vRRYmKiLr/8cr366qvKzMysku8XFePxePTnP/9ZrVq10s8//+z1GtdFYHG73ZoyZYqGDBmiiy++WImJiXr88ce9xnBNBI6DBw/qpZde0rXXXqt27dqpV69eeu2113TkyJESY7kuAN/GHL9mYY6PsmCOj2LM8XEi5vi+wWYwC/MLd911l1avXq0hQ4aoUaNG+vnnn7Vw4UKNHj1a999/v9XloZyWLl2qBx54QFdccYXat28vSVq8eLHWr1+vG2+8UX//+98lFU22Bw4cKEkaPHiwoqKiNG/ePG3ZskWTJk1Sly5dzM9cuXKl7rrrLrVu3VrXXXedsrOzNW3aNEnS7NmzFR8fb4599913NW7cOPXq1UudOnXS77//rs8//1xdunTRxx9/XE1/CziTN954w/z3mDp1qjp37iyJ6yLQpKen6+6779bWrVvVq1cvtWvXTjk5OSosLNTIkSMlcU0EkkOHDumGG25QXl6ebrzxRtWtW1dbt27VnDlzVLduXc2aNUsxMTGSuC4Af8Acv2Zhjo+yYI4PiTk+vDHH9yEGfN6yZcuMhIQEY/r06V79f/3rX4327dsbGRkZFlWGivrtt9+MtLQ0r76CggLjpptuMhISEoz9+/cbhmEY//rXv4wLL7zQ2L59uzkuNzfXuOaaa4w//elPXu8fPHiwce211xq5ublm3/bt240LLrjAeOutt8w+l8tltGvXznjssce83j99+nQjISHB+PHHHyvt+0TFzZw507jggguMv/71r0ZCQoKxevVq8zWui8By//33G+3atTPWrVt3yjFcE4Fj/PjxRkJCgrFhwwav/mnTphkJCQnGl19+afZxXQC+jTl+zcMcH2fCHB/FmOPjRMzxfQdbr/iBJUuWKCwsTIMGDfLqv/XWW5Wdna0VK1ZYVBkqqmHDhqpfv75XX3BwsPmbv3379kmSvvvuO3Xs2FHNmzc3x4WHh2vgwIFas2aNjh49KqnoN4rr16/XgAEDFB4ebo5t3ry5OnXqpMWLF5t9K1asUE5Ojm6++Wavrz9w4ECFhYV5jYU11q1bp+eff15PPPGELr300hKvc10Ejo0bN2rx4sV64IEHzJVppeGaCByHDh2SJDVr1syrv2PHjpKk7Oxss4/rAvBtzPFrHub4OB3m+CjGHB8nY47vOwjK/cDWrVvVsGFDhYWFefW3bNlSkpSammpFWagC+/fvlyTVqVNHBQUF2rVrV4kflJLUokULGYahHTt2SJK2b98uwzC8flCeOHbnzp0qLCyUdPx6OXlseHi4zj//fG3btq1SvyeUz759+zRy5Ej1799fw4cPL/E610Vg+frrr2Wz2TRkyBBJksvlUl5entcYronAUhy2vPDCC177Bf74448KCQlRjx49JHFdAP6AOX7gYI4P5vg4EXN8nIw5vu8IsboAnNnhw4cVGxtbot/hcJivw/8dOHBAixcvVmJiourVq6fDhw/L7Xaf9t+++LeOxX8W71l18li32y2n06n4+Hhz7Kk+l+vJOjk5OXrwwQfVqFEjvfTSS6WOcTqdXBcBZNOmTTr33HM1fvx4zZ49W+np6ZKKJjZPP/20Lr30Uq6JANOvXz/t2LFDEydO1LJlyzRo0CA1atRIEydO1D/+8Q+df/75kvhZAfgD5viBgTk+mOPjZMzxcTLm+L6DoNwP5OfnKyIiokR/UFCQgoKClJuba0FVqEwFBQV6/PHHlZ+fr7/97W+Siv7dJZX6bx8aGipJ5r998djIyMgSY0NCiv5nXvwb6vz8fAUFBXk9enPiWK4naxiGoSeffFJHjx7Vl19+WWJ1WTGui8By+PBhHT16VPv27dPDDz+s2rVrKy0tTZ9++qn+/Oc/a8qUKWrQoIEkrolAUqtWLdWpU0dXXnmlFi1apLS0NDVv3lyNGjUyx/CzAvB9zPFrPub4YI6P0jDHR2mY4/sGgnI/EBYWJo/HU6Lf4/HI4/GU+j8Q+A+Px6Mnn3xSP/30k55++mnzkZviSVRp//Zut1vS8R+OxWOLH5s5UUFBgSSZP/CKryfDMGSz2UqM5XqyxrJly7Ro0SJNmDBBbrfbfETX5XJJko4ePar9+/eb/+fHdREY3G63OnXqpAkTJnj19+vXT9dee60mT56sF198URLXRKCYPn26Xn/9dX355Zdq3bq1DMPQDz/8oJdffllDhw7V1KlT1aZNG/4/BPADzPFrNub4kJjjo3TM8XEy5vi+g6DcD9SqVct8FOdExRv0x8fHV3NFqCyFhYV65plnNGfOHI0ePVrDhg0zX7Pb7QoJCTEnUScq/revVauW15+nGhsaGqq4uDivsU6n03w058SxtWvXPvtvDOWWl5engoIC3XfffaW+PnLkSElFh2xwXQSO2NhY5eTklOivU6eOWrdurV27dvGzIsB8+OGHuvTSS9W6dWtJks1m05VXXql69epp4MCB+uyzz/TGG29wXQB+gDl+zcUcH8WY46M0zPFxMub4voPDPP1Ay5YttXPnTq8N/SUpOTnZfB3+x+1269FHH9WsWbP0zDPP6P777/d6PSQkRE2bNjX/nU+0ceNG2Ww286CFli1bymazlTo2OTlZTZs2NR+tKb5eTh6bkZGh3bt3cz1ZpH379nrvvfdK/Kf4xuqxxx7Te++9p7i4OK6LAJKQkKAdO3aYqwNO5HQ6FRUVxc+KALN//34FBweX6C9+PLd4/0CuC8D3McevmZjj40TM8VEa5vg4GXN830FQ7gd69uypgoICLViwwKt/3rx5ioyMVPfu3S2qDBWVlZWlv/zlL1q0aJHGjBmjoUOHljquZ8+eSklJ0e7du82+/Px8LVq0SO3btzdXGsXHx6tdu3ZauHChuQ+VJO3atUubN2/WVVddZfZ169ZNERERmjt3rtfXWrBggQoLC73GovrUrl1bPXv2LPGf4t8od+jQQT179lRISAjXRQDp06ePMjMzNWXKFK/+tWvXas+ePbr88ssl8bMikFxwwQVasWKFdu3a5dVfPEdo27at2cd1Afg25vg1D3N8nIw5PkrDHB8nY47vO2yGYRhWF4HTMwxDQ4cO1YYNG3Tbbbepfv36Wrt2rRYsWKCHHnpIDz74oNUlopxefPFFJSUlqW/fvrrkkktKvH7eeefp6quv1qFDhzRw4ECFhobqlltuUVRUlObNm6fNmzfr448/VteuXc33rFixQnfffbfatGmjPn36KDs7W9OmTZNhGJo9e7bX47vjx4/XhAkT1K9fP7Vv315paWlKSkpSp06dNGnSpOr4K0AZzZw5U0899ZSmTp2qzp07SxLXRYB56KGH9M0336h3797q0KGD9u7dqy+//FINGzZUUlKSYmJiuCYCyOrVq3XXXXcpIiJCN910k+rVq6dffvlFc+fOVZMmTTRt2jTztHquC8C3MceveZjjo6yY44M5Pk7EHN93EJT7iYyMDI0dO1YLFy5Uenq6GjZsqCFDhmjYsGElNtqH73vyySf11VdfnfL1Ll266NNPP5Uk7dy5U2PGjNHq1avldrvVunVrjRw50vwt84l++OEHvfPOO9q6datCQ0PVpUsXPfHEE2rSpInXOMMwNHnyZCUlJSktLU0Oh0N9+vTR6NGjFRMTU6nfK85OaZNoiesikBQWFmrKlCmaOnWq9u/fr/j4ePXu3VsPPfSQOVmSuCYCycaNG/Xuu+9q7dq1yszMVJ06ddSrVy89+OCDXteExHUB+Drm+DULc3yUFXN8MMfHyZjj+waCcgAAAAAAAABAQGOPcgAAAAAAAABAQCMoBwAAAAAAAAAENIJyAAAAAAAAAEBAIygHAAAAAAAAAAQ0gnIAAAAAAAAAQEAjKAcAAAAAAAAABDSCcgAAAAAAAABAQCMoBwD4nPHjx6tVq1b64osvrC4FAAAAQCVgjg/A1xGUA0AN8Oijj6pVq1Zq1aqVFi1adFaftWfPHrVq1Up33nlnJVUHAAAAoLyY4wNA9SIoBwA/l5mZqUWLFikmJkaSNHPmTIsrAgAAAHA2mOMDQPUjKAcAPzdv3jzl5ubqwQcfVIMGDfTDDz/o8OHDVpcFAAAAoIKY4wNA9SMoBwA/N3PmTIWEhGjQoEG6/vrrVVBQoNmzZ5c6NicnRx988IGuv/56tW/fXl26dNHNN9+s8ePHa//+/Zo5c6Z69eolSVq1apX5qGerVq00fvx48+u1atVKY8eOLfH5v//+u1q1aqXbbrvNq3/jxo0aMWKEevfurU6dOumiiy7SpZdeqvvuu09r1qyp5L8RAAAAwL8xxweA6hdidQEAgIrbsWOH1q9fr6uuukq1atXSDTfcoHfffVczZ87UXXfd5TXW6XRq6NCh2rJli1q2bKnrr79ebrdbP//8syZMmCBJuvLKK3XzzTfryy+/VN26ddWvXz/z/R06dKhwnTt37tSGDRvUpk0bdenSReHh4UpLS9Py5cv1v//9Tx999JG6du1a4c8HAAAAagrm+ABgDYJyAPBjxXsV3nTTTZKkRo0a6eKLL9aqVau0ceNGtWnTxhz78ssva8v/s3ffYU1dbxzAvwmETYi4dxVBVFRcKNa9tY6qdfzqts6qVds6WzvUOqrWXffWItYt4kKtilscgKKogAMXCCRsAsnvD5pbwt4h8P08T596Tk5u3sAFzn1z7nseP8bo0aMxc+ZMiEQi4bELFy4gIiIC9evXh1QqxcGDB1GtWjXMmjUrX+Ls1q0bevfurfWaAODp6YmvvvoKO3bs4CSaiIiIiAic4xMR6QoT5UREeiopKQnHjh1DqVKl0LZtW6G/f//+uHXrFg4fPixMoj9+/Ah3d3dUrFgR06dPTzOZ7dChQ4HGamxsDAAICwvDgwcP8ObNG0RHR0OhUAAAgoKCCvT1iYiIiIj0Aef4RES6w0Q5EZGeunLlCkJCQjB8+HBIJBKhv2vXrpg/fz5OnjyJOXPmwMjICD4+PlCpVGjSpAmMjIwKPdYPHz5g4cKF8PDwQFJSUprHlUplocdERERERFTUcI5PRKQ7TJQTEekpzS2Z/v7+mD17ttZj5ubm+PDhAzw8PNCjRw9hVUe5cuUKPc6kpCR89dVX8Pf3R5MmTTBo0CDUqVMH5cqVg5mZmdato0REREREJRnn+EREusNEORGRHgoPD8eFCxcAADdu3Mhw3OHDh9GjRw9YWloCAEJCQvL82ppbOtNbNZIeLy8v+Pv7w9HREXv37oVYLBYeS0xMzHM8RERERETFAef4RES6xUQ5EZEecnNzg1KpxIwZMzBmzJg0j6vVanTo0AFXr17F+/fvUbduXQDJE9qEhIRMb800MDAAkPGtklZWVgCAiIiIbMX6/v17AICjo6PWBJqIiIiIiP7DOT4RkW7xtxkRkR46fPgwRCIRevbsme7jIpEIn332GVQqFY4ePYry5cujTZs2ePPmDdasWZNm/NWrV+Hh4QEAKFOmDAwNDeHn54fw8PA0Y2vWrCk8JyYmRugPCwvD6tWr04yvUqUKgOQJvEqlEvpjYmLw+++/5+BdExEREREVX5zjExHpFleUExHpmcePH+PRo0dwcnJChQoVMhzXq1cvbNmyBYcPH8b48eOxYMEC/O9//8OWLVtw6dIlNG3aFHFxcbh37x4CAwMxZ84cAICJiQnat2+Pc+fOYcCAAXB2doZcLkfbtm3Rv39/fPLJJ+jUqRM8PDwwcOBAtGjRAmFhYbh06RIMDdP+WWnUqBGcnJxw69Yt9OnTB02aNEFsbCw8PT2RkJBQYF8nIiIiIiJ9wTk+EZHucUU5EZGeOXToEIDkSXJmateuDTs7OwQFBcHLywsVKlTA4cOHMXbsWCQlJeHQoUM4f/48pFIpZsyYgd69ewvPXbRoEQYNGoSEhAQcPXoUDx8+hLm5ufD44sWL0a9fP4SEhGD//v14/PgxxowZgz179qQby8aNGzFs2DAoFAocOXIEDx48QN++fXHy5Ml8+IoQEREREek3zvGJiHRPpFar1boOgoiIiIiIiIiIiIhIV7iinIiIiIiIiIiIiIhKNCbKiYiIiIiIiIiIiKhEY6KciIiIiIiIiIiIiEo0JsqJiIiIiIiIiIiIqERjopyIiIiIiIiIiIiISjQmyomIiIiIiIiIiIioRGOinIiIiIiIiIiIiIhKNCbKiYiIiIiIiIiIiKhEY6KciIiIiIiIiIiIiEo0JsqJiombN2+idu3aqF27Nl6/fq3rcKiYCg8PR9u2bVG7dm0MHjwYMTExug6JqEiKiorC//73P9SuXRt9+/ZFQkKCrkMiIiIiHdi8eTNq166NevXq4dSpU7oOh6jIcnd3R7169VC7dm24u7vrOhwqoQx1HQBRYVm7di3WrVuXpt/Y2BilSpVCrVq10LlzZ/Tr1w9GRkY6iJAyM2zYMNy6dStbYytXrowLFy4UcES6ozmXdfE+58yZg3fv3sHW1hZbt26FmZlZurGllpOfs9evX6Njx45Ce8GCBRg4cGCmcS1duhTbt28X2k+ePEl3XEJCAk6ePIkzZ87Az88PYWFhAABzc3NUqVIFdnZ2cHJyQps2bWBtbZ3m+bVr1840jtQyiqOg3blzByNHjoRSqcTkyZMxZcqUDMcmJSXB1dUVJ0+exLNnzxATE4PSpUujSZMmGDZsGBwdHfM1tqdPn6Jnz545On9fvnyJ3bt3w9PTE2/evIGBgQGqVKmCNm3aYPjw4ShfvnyGz7137x7++ecf3Lt3DwEBAYiIiIBYLEaZMmXg4OCAfv36oV27djl6D0lJSZg0aRIuXrwIIP3vs4WFBTZv3oyBAwfi0aNHWLp0KebNm5ej1yEiIv33zTff4MyZMzA1NcXx48dRrVq1TMdPmjQJHh4eqFChAo4fPw4rK6t0x/n6+uLUqVPw8vLC69evIZfLIRaLIZPJYGNjA0dHR7Rr1w4NGjRI89ybN29i+PDhafrFYjEMDQ0hlUpRrVo1tG/fHl9++SUsLCxy9+aLEM0cbvHixejXr1+hve79+/exevVqAMAvv/yC7t27ZxhbSoaGhjA1NUWlSpXQuHFj4cP3jMyePRtHjhwBkHwtdPbsWRgaZpzuCQsLQ/v27REXFwcAmc4Xnz17hr///hu3bt3Cq1evEBMTAxMTE5QqVQo2NjZo0KABWrZsiUaNGkEkEmk9N6Nrg4xkNW/Nq8TERHh6euLKlSvw8fHBixcvEBUVBVNTU9SoUQPt2rXD0KFDM/y50zh//jwOHjwIb29vyOVymJubo27duujZsyf69OmT6dc+u54/f44dO3bg+vXrCAkJgbGxMapVq4auXbti+PDhMDExyfax+vfvD19fX+zevRvNmzfPcFxOv19A+vPgyMhI/PXXXzh37hwCAwORkJCAcuXKwcnJCUOGDIGDg0O6x+rRowcUCgV+/vlnzJs3D/Xr10fVqlVzFA9RXjFRTiVSygRdfHw83r17h3fv3sHT0xP79+/H5s2bUa5cOR1GSBnRTOAzI5FICimakmXv3r24ePEiTE1NsW7duiwvmvLr52zz5s3o378/DAwM0n1coVDA1dU1y+M8fvwYU6dORVBQkNAnEomgVquRkJCA8PBw+Pj44NChQzA0NMTevXvRqFGjdI9laGgIsbho3pQVGBiISZMmQalUZjk2JiYGX331Fe7evSv0icVivH37Fm5ubnB3d8esWbMwcuTIPMWUlJSEiIgIeHl5YenSpTl67t9//4358+cLK7I13zN/f3/4+/vD1dUVf/zxB9q0aZPmuZ6envjqq6+0+gwMDKBUKhEcHIzg4GCcOXMGffv2xeLFi9Nc3GXkt99+E5LkmbG0tMSaNWvQr18/7N27F61atUL79u2z9RpERFQ8/PLLL/Dy8kJoaCjmzJmDvXv3Zvj35siRI/Dw8IBIJMKSJUvSTda9ffsWP/74Izw9PbX6DQ0NkZCQIMy3rl69ivXr18PGxgY//vgjWrZsme5rSiQSIR7NnCg0NBShoaG4e/cuDhw4ABcXF5QtWzaPX4mSJzo6Gt9++y0SExMxcOBADBgwINPxKeeXSUlJiIyMxJMnT/DkyRMcOHAAc+fOxdChQ7N83eDgYBw7dgz9+/fPcMyuXbuEJHlGVCoVVqxYgR07diApKUnoF4vFiI6ORnR0NF6/fo1Lly5h7dq1aNeuHTZt2pTh8bKzGC2j+X5+2bp1K1auXKnVJxaLERkZCW9vb3h7e8PFxQXbtm1L94OJmJgYfPfdd1qLPUQiESIiInDt2jVcu3YNBw4cwKZNmyCTyXIdp7u7O2bOnCnM58ViMeLj4+Hr6wtfX18cOXIEe/fuRenSpTM8RnR0NAICArB9+3b4+vpm63UNDAyyvWgwo7sl79+/j2+++Qbv378X+kQiEV6/fo3Xr1/j6NGj+OabbzBx4sR0nz948GDcuXMHJ06cwPTp03HgwIEie91FxRMT5VTipF7FGB8fj5cvX+Lvv//G7t274efnhxkzZmDXrl06jJIy0qdPHyxZskTXYZQ40dHRwuqCadOm4ZNPPsl0fH79nFlaWuLVq1dwc3NDnz590h2zb98+REdHQyqVQqFQpDvmzZs3GD58OORyOcqWLYvRo0ejc+fOKF++PEQiEcLCwuDt7Y0rV67Azc0N0dHRiI2NzTCuBQsWFOpqpOwKCwvDuHHjEBERISSUM7NgwQLcvXsXxsbGmDlzJnr16gVLS0sEBgZi9erVOHPmDJYsWYJ69eqhWbNmuYrp9u3b2bqoS8+pU6cwb948qNVqtGrVClOnToWdnR0SEhLw4MEDLF++XPgA5ODBg7CxsdF6vkqlgqWlJT777DN06tQJDg4OKFWqFOLi4uDr64tVq1bh9u3bOHLkCJo0aZLlBSwA7NixA/v27cvW1xcAbG1tMWHCBKxZswbLly9H27ZtOdknIipBrK2tsWDBAkycOBF37tzB7t27MWLEiDTj3r59i99++w0AMGrUKDg7O6cZ4+3tjbFjxyIiIgJGRkYYNGgQunfvDnt7e5ibmyMhIQGvXr3CjRs34OHhgWvXruH58+fw8vLKMFF++vRpVKlSRWgnJibi7du3OHjwIDZu3IhXr15hzZo1WLBgQT59RUqOvXv3Ijg4GOXLl8esWbOyHJ9yfqlWqxEREYHr169j/fr1ePbsGRYuXCjc/ZgRS0tLREZGYvPmzejbt2+6c47o6Gi4uLjA0NAQRkZGGZZSXLZsmXDHZufOnTF06FDUrl0bpUqVQlRUFF6+fIlbt27Bzc0NPj4+Gc7DgaJzx69KpYJMJkPv3r3RqVMn1KtXD+bm5vjw4QNOnDiBdevWISQkBJMnT8bJkyfTJI2//fZbXLx4EcbGxhg3bhz69OmDSpUq4f379zhz5gxWr16N+/fvY/r06dixY0euYgwKChKS5M2bN8esWbNgb2+P+Ph4nDt3DgsXLkRAQAC+++477Ny5M91jdOrUCa9evcrxa3/99df4+uuvsxz3999/48cff0yzcOrly5cYM2YMIiMj8cknn2DWrFlo3LgxTE1N4e/vjy1btuDMmTNYtWoVKleujN69e6d7/Hnz5gmr/k+dOoXPPvssx++FKLd4pUYlnrGxMWxtbTF37lyMGTMGAHDjxg08e/ZMx5ERFR27d+9GeHg4qlatiiFDhuT4+bn9OdO81qZNm9JNSsbFxWHPnj0Qi8X43//+l+FxNm3aBLlcDqlUir///hujR49G1apVYWRkBIlEgvLly6Nz586YP38+Ll++jNGjR+tdCab4+Hh8/fXXePnyJb788ktUqlQp0/EvXrzA0aNHASSX1NHcZioWi2FjY4NVq1ahQYMGUKvVWLt2ba7jUqlUuXpeUlISFi1aBLVajTZt2mDr1q1o0KABTExMIJVK0bp1a+zZswdVqlRBTEyMcFtzSnXq1MH58+fx66+/onXr1ihVqhQAwMTEBE2bNsW2bduEFXL//PNPljGdO3cOv//+O2QyGcaOHZvt9/LVV1+hXLlyePbsGU6ePJnt5xERUfHQoUMHYXXvypUr8eLFC63H1Wo15s6di8jISNjb22P69OlpjvH+/Xt8/fXXiIiIQKVKlXDo0CH8+OOPaNKkCczNzQEkr9i1sbHBkCFDsGPHDhw4cCDd0iuZMTQ0RNWqVTF9+nThzrr79+/n4l2XbFFRUUKS+Ztvvslx+RqRSIRSpUqhR48e2L17N8zNzaFWq7Fv375Mn9euXTtUrlwZQUFBGdZDd3V1hVwuR48ePYS5UWrv378XFrSMHj0a69atQ4sWLYTxFhYWqFu3LkaOHImDBw9i7969sLW1zdF71IUOHTrg/Pnz+OGHH9C8eXNYWFhAJBKhfPnyGDNmDObMmQMgOeF79epVredevnxZuKNwyZIlmDx5MqpWrQoDAwNUqlQJo0aNwooVKwAA165dy9bcMj1//vknlEolqlSpgk2bNqFevXowMDCAmZkZ+vTpg99//x0AcP36ddy+fTvdY+R2/p0dsbGxwrXB6NGjtR5buXIlIiMjUbZsWRw4cAAdOnSATCaDsbEx6tevjzVr1qBLly4AgOXLl2e4Kt3KygqTJk0CAKxbt65A3w9RakyUE6XQo0cP4d/Pnz9P8/iVK1cwa9YsfPHFF0LNvwYNGqB9+/aYNGkSzp49m+GxO3TogNq1a2Pt2rXCxGnQoEFo3LgxGjZsiM8//xwuLi5Zxujh4YGvvvoKTk5OaNSoEbp3746ffvoJDx8+zPK579+/x+LFi9G9e3c4OjqicePG+Pzzz7F27VpERkam+5zUm4Q+evQIs2bNQtu2beHg4IA2bdrghx9+wIcPHwAkT/TPnj2LCRMmwNnZGQ4ODmjXrh3mz5+PiIiILGMsCHFxcdi2bRsGDBiApk2bokGDBujcuTN++uknrTIcqWne9+HDhxEVFSWszGjQoAEcHBywbds2rfExMTHYunUrBg0ahGbNmsHBwQFt27bF9OnTM73ACA4OxuLFi9GzZ080atRIeN6ECROwZ88ehIeHa8WkWdkdHBwsxKj5b/bs2Xn6WqUnISFBWK0wevToPJe2yernLKXPP/8c5cuXx/Pnz3HmzJk0jx86dAgfP35E165dM13lrikt0rJlS1SsWDHT17SwsMCsWbPQtGnTTMfl1uHDh4XvV14S0Cmp1WrMnDkT9+7dQ7t27fDjjz9m+ZwzZ85ApVLBwsIi3VtzxWKxUL/09u3b+PjxY65ia968uXDb8JMnTzB58uRsPc/b21v4vTJ8+PB0b1OXSqXCBy/nzp1DVFSU1uNly5bNtMaksbGxcD5ktTrc29sbM2bMgIGBAdatW4caNWpk630AyYl5zar6zG5JJiKi4mvu3LmoXLkyYmNjMWfOHK3Ez759+3Dt2jUYGxtjxYoV6X5Yv2bNGqFO8caNG2FnZ5flazZs2BD79+/H559/nquYNfu1GBsbZzhGLpdj9erV6NOnDxo1agRHR0f06NEDS5YsEf6OZyS3c3S1Wg03NzeMGTMGLVu2RL169dCkSRP069cPCxcu1NrXaO3atVolNObMmZNm/vz69etsfkWyb//+/YiIiED58uVz/fXXKF26tFBXOiAgINOxhoaGQtm5jRs3ppnfaOb1IpEI48ePz/A4Dx48EMqtZFbCRaNZs2aYP39+luNyS3MtndP9glKzt7fP9EOLzp07C/9OvaDHw8MDQPL8MuX1TEodO3ZEw4YNASTP+XNKqVTi/PnzAIBBgwbB1NQ0zZj27dsL1z2nT59O9zgXLlwQ5t6a4+WXHTt24P379yhTpgxGjRol9CclJQkfJPTt2zfDOfi0adMAJOcmrl27luHrDBgwAFZWVggICMg0z0KU35goJ0oh5YYY6U1QT58+jaNHj8LHxwdv376FUqlEfHw83rx5Aw8PD0yZMgUzZ87M9DVu3bqFrl27YunSpbh//z5iY2MRFxcHPz8//PLLLxnW701MTMTMmTMxadIkeHp6Qi6XIy4uDgEBAXB1dc2y7u+VK1fQrVs37Ny5EwEBAYiLi0N0dDT8/Pywbt069OjRA48fP870GL///jv69euHo0eP4v3791AqlXj//j0OHjyIAQMG4N69e/jf//6HKVOm4OLFi4iIiIBSqcTbt2+xb98+jBgxIsNPjQvKq1ev8Pnnn+P333+Ht7c3IiMjoVQq8fLlS7i6uqJnz544fvx4psfw9PREt27dsGLFCjx69AiJiYlQKpVatyn6+/ujZ8+eWLZsGe7fvw+FQoHExES8e/cO7u7u+N///ofdu3enOfaVK1fQs2dP7Ny5E0+fPkVsbKzwvIsXL2LhwoXCygYg+bxMWbvPyMhI67/82DgmtcuXLyMiIkJYxZBXWf2cpSSRSIQJ2MaNG7UeS0pKElbqTJgwIdPjaC5GQ0NDcxyvPli2bBlOnz6NunXr4o8//shWfUfNhwf16tXL8Pug+bBApVLh3r17+RdwNrx580b4d2ab+GhuJVepVPDy8srRa7x69Qp+fn4AgK5du2Y47vXr15g4cSJiY2OxaNGiXJWhGTBgAAwMDPD06VPhNYmIqOSwsLDA0qVLIRaL4eXlJcwLg4KCsHz5cgDAzJkzUatWrTTPjYiIEO4CGzhwYI6ShQYGBrnaDE+pVAp1jTPaX+Phw4f47LPP8Oeff+Lx48eIiYlBXFycsAlh9+7dM0yE5XaOnpCQgPHjx+O7777DlStX8PHjR6hUKkRFReHhw4fYs2cPhg0bJsSeuuayptxIyv+yu0dJTpw4cQJA8t///JifaxKm2Vmw8sUXX6BMmTLw9/dPkyQ9fvw43r9/j06dOqV7rmmkrEkeEhKSy6j1T8oPFlKXrQkODgYArVJF6dGUTbpz506OX//JkyfCwo+M9koCgCZNmuT6NfIiLCwMW7duBZBcpsXMzEzrMU3pysx+59jY2KB8+fIAkOGKeCD5nNeUZsnqep0oPzFRTpRCyk/oq1evnubxihUrYsiQIdi8eTPOnz8PHx8fPHz4EO7u7hg0aBAA4NixY5lu8nbr1i2IRCLMnTsXly9fhp+fHzw8PISN6Hbs2IHAwMA0z1u9ejWOHTsGsViMCRMm4NKlS3j06BFu3LiBrVu3an36nd77mjJlCmJiYtC0aVO4urri4cOH8PHxwbZt21CrVi18+PABY8eO1Vq9nNqZM2fw6aefYvfu3fD29oaPjw9WrFgBiUSCd+/eYfDgwXjw4AG++OILHD16FL6+vrh7965Qk+/x48c4dOhQhsfPb/Hx8Zg4cSICAwNRqVIlrF27Fvfv38fDhw9x7NgxtG/fHkqlErNnz850kqGpT7do0SLcvHkTjx49wu3btzF48GAAycnX0aNHIzg4GK1atcK+ffvg5eUFb29v4dxQqVRYvHgxvL29heNGRUXh+++/R0xMDJo3b46///5b+Lq6u7tj9uzZqFmzptaEzcfHR9j4pHLlyvDx8dH6b+HChfn+dbx8+TIAoFWrVsKtvXmR1c9ZaoMGDYJMJoOfn5/WLYzu7u54/fo12rVrB3t7+0yPUa9ePQDJk8nCPAcLg6urK7Zt24aKFSti48aN2f4eaX7PZDbZr1ChgnBxl9UKpvyWcgWNXC7PcFzKzcXevn2b5XHj4+Px4sUL7Ny5E//73/+gVCoxcuTIDD8EUigUGDduHEJDQzF16tQMaylmxdraGo6OjgCSPyAjIqKSp1mzZkJ98pUrV+L58+eYPXs2YmNj0bp16wz39Lh+/ToSExMBIM+rk7OSkJCAO3fuYNKkSXj//j1atWol3L2VUlhYGMaPH4+QkBDY2dlh+/bt8PHxga+vL/bv349GjRohKioKkyZNSrM6PC9z9K1bt+LSpUswMjLCvHnzcP36dfj5+eHWrVvYvHkzevfuDYlEIsyfv/76a/j4+AjPX7BgQZr5c+XKlfP1axgSEiIsQNKUmcgrzTwsq32CgOQ7ADTnWcqFJmq1WrgjNrPV5ADg4OAg/HvlypUlJlme8lxJXUpGkxTObF4KAOXKlQMAfPz4MceLxFLmATKbo2vO2aCgoGztmZNf1q5di+joaFStWhUDBw7Ueizl3D2rO8k18/es5u4dO3YEkPw7MOWHN0QFiZt5Ev1LqVQKn442btwYNWvWTDMmo5IBNjY2mD9/Pl6+fInr16/j3LlzGa68aNmyJdasWQNLS0uhr2rVqli6dClatWqFpKQk/PPPP1q39b9580ZYOfvdd99pTVZLlSqF1q1bw8jICOfOnUv3NVeuXInY2FjY2dlhx44dwqoKAwMDtGrVCnv27EGvXr3w4cMHbNmyJcNV8T///DO+/PJLrb6ePXvi0qVLOH78OKRSKTZt2oTGjRsLj5ubm2P06NE4d+4c7t69i0uXLmVaSzorx44dy7TG79ChQ4XE/IEDB/D06VOYmppi165dqFatmjDO3t4ef/75J8aMGYOrV69iyZIlOHjwYLrH7NChA5YvX66VgJRKpcK/NbfCdu3aFatXr9ZalaI5NyIjI+Hu7o5du3YJtetu3rwpTCJWrFihlfCzsbGBjY0NRowYoZVc14UHDx4AQIabQOVEdn7OUjMzM8OwYcOwdu1abNy4Ee3atQMA4ThZTfSB5JIxp06dQkJCAubOnYvNmzejdevWsLe3h52dHWrVqqW1IiIr8+bNw88//5zluJSTbY1+/frl20agly9fxvz582FhYYFNmzYJqzOyIywsDAAgk8kyHCMSiSCVShEWFpbr0iu5VbduXWHDzMOHDwu3saaW8nbwzDaRApJrhKYs4dO1a1cMGTJEuJ05NaVSicmTJ+P58+fo169ftjY3ykzz5s3h5eUl/EwREVHJ8+2338LT0xNPnz7F4MGDoVAoUKpUKSxevDjD5zx58gRA8mriOnXq5Gs83bp1E+auarUaSqVSeKx27dpYsGBBuqVXNm/ejJCQEJQtWxZ79uzRmk80atQIu3btQv/+/fH06VOsXLlSay+RvMzRNdc7ffv21fpgwcrKCm3btkXbtm0xefLkfFnckVuav/NlypTJc6kQIHkfFc3daF988UW2nvPll19i8+bN8PHxgaenJ1q1aoVz584hICAAn376KerXr5/p86tWrYqePXvCzc0NDx48QMeOHdGyZUs0btwYtra2sLW1ReXKlbO9Gj84ODjL1wSAiRMnpjvfKqyNQDUfJJQuXRotWrTQeqxevXo4e/YsAgICcP/+fWEBRGop72CQy+Va13hZ0czPgczn6JrHNHeJ57QGfm4EBgbiwIEDAJLLp6S+u8HCwgKffPIJgoKC4ObmhpEjR2Z416rmd0pWHzo0adIEhoaGiImJwdOnT7NcHEWUH7iinEo0lUqF8PBwXLlyBSNGjMC9e/dgaWmZrfq+6dEkct69e5fhmMaNG2slyTWsra2FT41fvnyp9diRI0eQmJiIMmXKYOTIkTmKKSoqSrjlbsyYMen+sbK2thaS18eOHcvwWJpV76lp/mBJpVKtJHl6Y3Kz+3ZKKpUKCQkJGf6nWW0D/HeL1meffaY1AdcQi8XC6mwfH58M62V37tw5w8l2QkKC8DX75ptvMpwsdurUCcB/5S5Sy+hTd7FYnOEkrLBozsfcXpjlx8/ZsGHDYGZmhnv37uH69eu4dOkSHj9+DCcnpwzPuZTs7e2xceNGIZEcFBSEPXv24IcffsCAAQPQuHFj9OjRAwsXLhQuRjOTmJiY6Xmo+a8gPX78WKjxt3r16hxfiGlujcyq/I3m8ZSlhgpDhQoV0K1bNwDJdT7nzJmDx48fIyEhAUlJSXj79i3OnDkjbPSTHRKJROv256tXr+Lw4cMZ1iadN28ebt68CWdn53ypu6n5PZh6EzciIio5jIyMsHTpUkgkEuED3oULF2aaTNPME2UyWbbKq+WEUqkU5i0pk+RAcoK+Y8eOWLBggdYcG/hvnv3ll1+mm9AzNjYWFvd4eHggOjo6zXPzMkfPbMVq9erVUaZMmQwfL2iaFfR5SerFx8cjMDAQGzZswNSpUwEAffr0yfbCFQsLCwwZMgQAsGHDBgDAli1bAGRvkQmQfF5q7mCIj4/HxYsXsWLFCkyYMAEdO3ZEs2bNMGbMGPz999+Ij4/P8njZmTvrctXwnj17hPr233//fZo5cr9+/YTFUuPGjcO+ffsQGhoKtVqNmJgYPHv2DFu2bBG+zgByXNZHMz8HMp+jp3ws5c9WQVqxYgUSExNRp04dfPbZZ+mO0dzJ8OTJE4wcORJXr14V3lNYWBhu3bqltb9aVl8fIyMjYWFVZvsWEOUnriinEkezAWJ67O3t8dtvvwllGtITHR2Nixcv4saNG3j27BnCw8MRHR2NmJgYIZGUepKZXZo/vHFxcVr9mrq7zZs3z3GNu4cPHwoTjszq6moeCw0NRXBwcI5uQdQkkTO77UvzKXfKP/650bdvXyxZsiTLcUqlEo8ePQKQ+ft2dHSERCKBUqmEt7c3bGxschSPj4+P8P3q27dvhuM0X5uUty02atQIZmZmiImJwVdffYVhw4ahdevWsLW1zfeLoNyKjIwUzuuc1LfM689ZalZWVhg8eDC2b9+ODRs2CDXHs6pNntKnn36Ks2fP4vTp07h8+TJ8fX3x6tUrqFQqqNVqPH/+HM+fP8fevXsxbNgwzJkzJ01tQo3Fixfn26rw3Hj//j3Gjx+P6OhoLFy4EK1atcr1sTJ6jxqac7cg6ndm5ddff0VISAju3LmDw4cPC5siicVi4RxIuYIms407geQJ/ooVKxAZGQlfX19s374dR48exdmzZ7Fnzx6t24zXrVuHI0eOwNbWFmvXrs3zJrYAhI1D379/n+djERGR/ko9Z069SCYjmSURJ0yYgKtXr6b7WEardAHg/PnzWiUekpKSEBsbiydPnuDkyZNwcXHB3r17oVAosGzZMgDJe3do7jTLbJ6t2eskMTERDx8+hJOTU57n6M7Oznj06BHOnDmDqVOnolevXmjcuLGw8WhRoNnENKe14efMmaO1N5GGkZERxo4di+nTp+foeCNGjMDOnTtx584drFu3Dt7e3mjUqFGGd9KlZmpqiqVLl2LMmDE4ceIE7ty5g6dPnwof8ERGRuLKlSu4cuUKNmzYgHXr1qFu3brpHqty5cqFtio8Nzw8PIS7OjK6+7NcuXJYs2YNpkyZArlcjvnz52P+/Pla81JAe26a8i7k7MisRnpGCmOOfvfuXeFuju+++y7D1/zyyy8REBCAPXv2wMvLC6NHjwagPXeXSCTCe8tq7g4kz5/9/f05f6ZCw0Q5lUgpP4FNTEyESqVCqVKlsGvXrkxvcTp79ix++eWXdEsQiEQioUxAbmnqeqU+hmayValSpRwfM2Wsma2sSLmK5ePHjzlKlGe1IjW7Y/KTXC4XVr5k9r4lEglkMhlCQkJytdGj5nsDIFsriFN+iGJtbY2ff/4Z8+bNw/v377F8+XIsX74cpqamsLOzQ5s2bdCvX79cfd/zS8pVxOndCZGZ3P6cZWTUqFHYu3cvbt68CSC5duKnn36ao2OYmJjg888/11od8/TpUzx8+BA3b96Eh4cH4uPjsXv3blSsWFGY3BU1O3bswLt37zB+/HgMGDAgV8cwNTWFUqnM8oM9zeMp6w4WFisrK+zatQtHjhzB8ePH8eLFC4SFhcHExAS2trbo0qULHB0dhf0CsvuzYmlpCWdnZzRv3hwDBw6Ej48PFi1ahL/++gtA8p04a9euRdmyZbFp06Ycn/uZvS6Q9w8MiYhIf8XGxuL777+HUqlEhQoV8O7dO6xcuVJYLJEeTRJYoVAgISEh3Xm1ZmV4enKyStfAwAAWFhZo0qQJmjRpgrJly2LVqlU4fvw4xo0bB1tb22xfX2hqNQP/baie1zn6xIkTcffuXdy7dw+nT5/G6dOnASQnYhs2bIju3bujc+fOOvmAX0Mzf87p/MHQ0FBIIKYsgzNhwoQc3UGnYW1tjQEDBmDPnj1Yu3atcKycsrW1xbfffiu0379/j0ePHsHHxwenT5/G8+fPERwcjHHjxuHMmTM6LXuTG//88w+mT5+OpKQktGnTBr/++muGY52dnXHy5Ens2LEDV69exYcPHxAdHY2yZcuiUaNG6NevH27cuIHt27ejbNmyOb4GTlkKUqlUZvj8lD/rOSkfmVu///47gOSFe61bt8507I8//ogOHTrgr7/+wuPHj4WFYtWqVUPr1q3x5Zdfon///oiPj8/W3J3zZypsTJRTiZP60+xr165h3LhxCA8Px5QpU7Bt27Z0/yDduXMH06ZNQ1JSEkqXLo0BAwagefPmqFKlCkqXLg1zc3OsXbsW69aty/eYNZOkglxlnDI5X5gbghQFmvebm/edcvXAgwcPYGJikqPnf/7552jevDmOHj2K69evw8fHBzExMXjw4AEePHiAbdu2YeXKlUJdbn2R25+zzJQrVw59+/aFq6srgNxN9FMzNjaGg4MDHBwcMGjQIAQGBmLw4MGIiIiAq6trkU2Uay54N23ahE2bNmU6dt26dcLvpaNHjwoldKytraFQKBAZGZnhc9VqtbBqSFcrtQwNDTFgwIAMPxA4evSo8O+UK8KzQywWo3v37vDx8cHdu3cRExMDMzMz4ec6JCQEHTp0yPI4mrsnOnbsiD///DPDcSl/XxARUcm0ZMkSBAYGonLlyjh06BCGDx8Of39/zJo1C66urunewaRZTZ2YmAgfHx80adIkzRhNbeWUOnTogODg4DzF269fP6xatQoAcOvWrQyT+QUhvTm6paUl/vrrL1y8eBEeHh7w8vLCixcvEBwcjODgYLi7u6NVq1bYsGFDoS/USS2nyfoFCxYIK5kTExMxbtw4XL16FX/++SccHBzQtm3bHMfw1VdfYf/+/VAqlbC3t8+Xa4ry5cujfPnyaN++PSZPnoxFixZhz549CAkJwcWLF9GzZ888v0ZhOXXqFGbMmAGlUomOHTti1apVWZ435cuXx+zZszN8XLO3WE7npYD2fDsyMhKlS5dOd5ym9JCxsXGBJ8rPnDmDe/fuAUguSZMdLVu2zLBM0Nu3b4X4s1O3nvNnKmysUU4lXsuWLfHLL78ASJ78zZkzJ92E6c6dO5GUlIRKlSrBzc0N06dPR8uWLVGtWrUC/9Rcc8tWeHh4jp+b8o9tytXPqaUsCZLRH2R9YmVlJXywkNn7TkhIEDYRyU0tw5Rf3+zeNptaxYoVMXHiROzevRteXl44deoU5s6di/LlyyMmJgazZ8/OVt2/gpBy4hUVFZXr42T35ywrY8eOhYGBAWxtbYW67/mpRo0a6N69OwDk+cKyIBkaGsLIyCjT/zQMDAyEvpQXbJoNgzN7n2/fvhVWfaXcYLgo0WzO2bBhQ5QqVSrHz9fcHqtWq4VzXCQSZfn1TVkGS9OXVXkWTQ1JXazOJyIi3bt48SL2798PsViMJUuWoFSpUliyZAkMDQ3x8OFDrF+/Pt3nOTs7CyuNjxw5Upgha/1t1fydzO71RcpSCZrri/yYo4vFYnTs2BGLFy/G2bNncefOHWzZskVI0Hp6emLv3r3Zen8FQTN/zsvc2dDQEGvWrIGdnR0SExMxbdo0+Pr65vg4FStWRK9evQBkvzZ5TqSsJw8U7flzanv37sW3334LpVKJgQMHYu3atXn+cCU0NFQom5qbDzY09biBzL+Wmv11qlevnu0SLbmhVCrxxx9/AAC6du2KBg0a5PmYmrm7sbFxtsoAaX6OOH+mwsJEORGSdw/XrE51c3PD8uXL04wJDAwEAHTp0qXQV1bWqlULAITdznPCwcFBmIxqSlakR/NY6dKlteoU6iuJRCKsnM3sfXt5eQkr9nPzh79+/frC11fzRz8vxGIxatasiREjRgi3uIWHhwvnH/DfnQUFvVkkkLxqRzPZz+xiJjuy83OWlapVq8LLywuHDx/O0SqdnMSuSXYWpVqXqc2aNQs+Pj6Z/qcpnzRx4kShL+WmUppNUB88eJDhuaSZ6ItEIp1vKpseb29vXLx4EQAwcODAXB0jICAAQHKyW5MMsLS0zPLru2DBAuEYmr7Vq1dn+lqaixrNprJERFRyfPz4ET/88AOA5NrRTk5OAIB69eph7NixAIDNmzfjwYMHaZ5rbW0tfJB/9OjRdMcUlLdv3wr/1vz9qlq1qjBPys71hYGBgbA3TUHM0S0tLdGmTRusWLFCqHuumcNoFOb8WVNyJq81lS0sLLBp0yaULVsWMTExGD9+fIYbkGdmwYIFuHv3rnAOZUfKRVRZSblQoCjPnzXUajVWrFiBBQsWQKVS4euvv8aCBQvy5e7tDRs2QKlUwszMTPiAIidsbW2FRRy3b9/OcNzdu3cB/DefLyiurq4ICgqCgYEBpk2blufjRUZGCivuu3Xrlq0a5Zw/U2FjopzoX9OmTRN2b966dSv27dun9bixsTEApFufHPiv1nFBaNOmDYDkZMzjx4/THePt7Z1uv4WFhXCL3ZYtW9Kt7RUaGgoXFxcAQO/evfMh4qJBMzlxd3fHs2fP0jyelJQklEmoV6+e8IFETlhYWAgrm7dv357h9wdInphfvnxZaF+9elXY8Ts9KVespvy3ZgIaGhpaKJuaVKtWDQAyfW/ZldXPWXaYmprmeLVHjx49hNtOMxMSEgJ3d3cAQOfOnXMcmz7p0qULRCIR5HK5VvkSDbVaLXx/mjRpolVntCh49eoVpk+fDrVajfr166e7ma6bm1umF8TBwcE4dOgQgORVP/mxYWdmNB92Vq9evUBfh4iIip4ffvgBHz9+RK1atdJsyjhp0iTUrl0bSUlJmDlzprBRfErTp0+HhYUFlEolvv76a6EUQkHbvHkzgORkaMraxJrV23/99Ve6+/zExsZi69atAJJLk6Xc4DAvc/SdO3dm+rddM2dOOXcG/ps/azYSLUiffPIJAODJkyd5PlalSpWwceNGmJqaIjQ0FGPHjhXKVmSXoaEhzM3Nc7TIZP/+/RgzZozWYp2M7Nq1C0DyOZKbVdSFKTY2Ft988w02b94MiUSCJUuWYOrUqfly7EOHDglz52+//VbrnM8uIyMjoezf/v37072r+PLlywgKCgKQnGwuKFFRUcJdLv3799da7Z4bcXFx+Pbbb/H+/XtYWlpq1b3PSGxsLF68eAHgv58rooLGRDnRv0QiEZYsWSJ8Kvvbb7/h/PnzwuOaZLW7uzv++usv4VbA0NBQHDx4EN27d8+XFcXp6dixI2rUqAG1Wo1Jkybh2rVrSExMRHx8PK5fv45hw4Zlujr322+/hYmJCQIDAzFy5Eh4eXkhKSlJSNwOHToU4eHhKFu2rLCipTgYNGgQbGxskJCQgJEjR8Ld3R2xsbFQqVR4/PgxJkyYgFu3bkEsFmPWrFm5fp0ZM2ZAJpMhJiYGX375JbZs2YLXr19DrVYjPj4efn5+WLduHTp06ICDBw8Kz3v69Cm++OILTJw4EWfOnEFoaCjUajViY2Nx48YNYSMZOzs7rQsEzTmqVquxePFivHnzBrGxsXj+/HmubsnMSsOGDQFkvuonu7L6OSsokZGR+Pnnn9G+fXssX74c165dQ1hYmPD1DgwMxObNm9GvXz+EhoaiXLlyudo0KTsOHz6M2rVro3bt2sLGSrrwySefCB+M/fbbb3B1dUVkZCTUajWCgoLw/fffCxfhU6ZMSfcYs2fPFt5Lfpwf6bl16xaePn2KhIQEJCYmIjAwEJs2bUL//v3x+vVrVKpUCX/88Ue6q4D++OMPdOrUCStXrsSdO3cQFRUFlUqF169f4++//8bgwYMRGRkJU1PTNEmLgnD16lUA//1MERFRyaCpqW1oaIilS5cKC3A0NAk7Q0NDBAUFYdmyZWmOUbVqVaxduxbGxsYIDQ3FkCFDMHPmTFy5cgVyuRxqtRpxcXF49eoVLl++jCVLluRqo3q1Wo2PHz/C09MTEyZMEOauY8eO1SrPOH78eJQuXRrh4eEYOnQoLl++LPyt9vLywogRIxAYGAgzM7M0K1HzMkdft24dOnXqhPXr1+PRo0dISEiASqXC27dvsXbtWty4cQMA0qye1sw9T5w4gX/++QfR0dEICwvD1atX832Vuebv/KtXr/KlFImDgwNWrFgBsViMgIAAfP3114VSlvHKlSvo3r07xo4diwMHDiAgIABxcXFQqVQIDQ2Fp6cnpkyZIuyFM2nSpAJbWNGhQwdhzpkXQ4YMwdmzZ2FtbY2dO3emu9AiK+7u7vjw4QPUajViYmJw69YtfPvtt5g7dy7UajX69OmDoUOHpvvc169fC+9j2LBh6Y6ZMGECJBIJXr58iYkTJ+Lx48dISkpCTEwM3N3dMWPGDACAk5MTnJ2dcxx/dm3ZsgVhYWEwMTHB5MmTs/2858+fw8vLC1FRUVCr1QgJCcGRI0fw+eef4/LlyzAyMsKyZctQoUKFLI91/fp1JCUlwczMrFD3R6CSjZt5EqVgZGSE9evXY/DgwXjx4gW+++477Nq1Cw0bNsSYMWNw4cIFPHnyBL/++it+/fVXiMViYXMJa2trNGnSJM1tfvkV1x9//IHhw4fj9evXGDVqFEQikVaN58xeu1atWlizZg2mTZuG+/fv48svv0zz/LJly2LTpk3Foj65hqmpKTZu3IgxY8bgxYsXQiIs5fdNIpFgwYIF2aqPlpGqVati69atmDp1KoKDg7F8+XIsX75c63U0Uq5YNTY2hkqlwoULF4SNL1M/p3z58li5cqXWMezs7NC1a1ecOXMGp06dwqlTp4THhg8fnquNYzLTpk0buLq64sKFC1AqlXledZvZz1lBsbe3F3Zd37JlC7Zs2QIg7dcbSC6ns2LFikxvHZ03bx5+/vnnLF/Xx8cnb4EXsJ9++glBQUF48OABfvrpJ/z0009aXxORSISZM2eiRYsWuX6NBw8eaG38o/mQ8f3791qr9rt06SJM/FNyc3ODq6ursAoq5e+tVq1a4bfffstwoi0SifD+/Xts3LgRGzduBJD2e16qVCmsXLlS2CitoAQHBwur2FKuyCMiouItICBAKKc3ceLEDOdpdevWxfjx47F+/Xrs27cPHTt2TLMZXsuWLXH48GH88MMPuH//Po4dO4Zjx44BSH9OAyQnWTVlXtLTrVs3rb+xqe++E4vFGDVqFL755hut/jJlymDTpk0YP348AgMDMXbs2DR/q83NzbF69eo0f2PzMkc3NjbG+/fvsWbNGqxZsybd9z5ixIg0K23HjRuHCxcuCCVMUrp9+3a+bvxZtmxZYe559uxZjBo1Ks/H7NixI2bPno1FixbBy8sLM2bMwOrVq3O8YWh2VatWDWZmZoiJicHly5e17opN/fU2NjbGlClTMl1wFRwcnK2NGydOnIivv/46b8FnQnM3r1wuz9b3Zfv27UI5H41Zs2YhISEhzdfBxMQEY8eOxaRJk/L0fbGxscHixYsxZ84cXL16FX369EnzWp988olQOzw9w4YNw7t37wAk36Gh8f3338PExERonzt3Lt3nv3//Hjt37hSOlZOyJ48fPxZWi6eOu0aNGli4cCGaNm2arWNp4nN2ds6X0jhE2cFEOVEq1tbW2Lx5MwYNGoSIiAhMmDAB+/fvR/Xq1fHXX39hw4YNOHXqFN69ewdjY2PY2dmhc+fOGDx4MHbs2FEgiXIgefJ85MgRrFu3Dp6enpDL5bC2toaTkxOGDx+O2NhYDB8+PMPnt23bFqdOncK2bdtw5coVvH37FmKxGFWrVkXHjh0xcuTIbNUI0zfVqlXDsWPHsHfvXpw5cwaBgYFISEhAuXLl0LJlS4waNSrPt5EBycnVkydP4vDhwzh//jweP34MhUIBY2NjVKxYEY0aNUK3bt20Lnj+97//wc7ODqdOncKdO3fw+vVrxMTEwNLSEjVr1kSHDh0wZMgQWFpapnm95cuXw9bWFm5ubggODoaRkREqV66MunXr5vm9pNamTRvIZDJERETg9OnTuaq3l1pmP2cF4dixY3jy5AkuXboELy8vBAQE4OPHj4iLi4OZmRnKlCmD+vXro0ePHujQoUOWm+JoNrjUdxYWFvjrr7+wf/9+uLm5ISAgADExMShbtiyaNm2KYcOGoVGjRnl6jbi4uHQ3uk1MTNTqz6isVZUqVWBlZYWoqChYWlqibNmyaNKkCbp165blKpoDBw7g/PnzuHHjBp48eYJ3794hNjYWVlZWqFGjBtq2bYvBgwcXSj1NV1dXqNVq2NraCrVZiYioeFMqlfj+++8RGxsLBwcHYa+WjEycOFGYR86ZMwcnTpyAVCrVGlOrVi24urri7t27OHPmDO7du4fg4GDI5XIYGxujdOnSqF27Npo2bYoOHTpkWa4gdWLcwMAAZmZmqFy5Mho3boxBgwZp7XGSUv369eHu7o6dO3fiwoULePXqFVQqFSpWrIi2bdti9OjRGSbYcjtHP3nyJNzd3XHp0iX4+fkhPDwcarUaFStWhKOjIwYNGpTuAhgHBwf89ddfWLt2Le7fv4/Y2FiUKlUKdnZ2+Zok1+jVqxceP36M/fv3Y+TIkfmS0B4xYgRevXqFPXv24MyZM1i8eDHmzp2bD9Gm1adPH3Tq1AmXL1/G9evX4efnh9evXwt352nmUi1btsSAAQOytTo4Oyv3UyZ1C1JSUlK2Xiu9D59q1aqFgIAAJCUloUyZMqhWrRpat26NPn36oGLFivkSX69evVC7dm3s2LEDN2/eREhICIyMjFC9enV07doVw4cPz3Rzy+Dg4HTvZsjuvk2rVq1CXFwcpFJpju84t7a2Rrly5RAWFib8Tqpbty46duyI7t27Z3vRlUKhEBaEFafysFT0idQpl2YRERGlY8OGDVi1ahXq1KmDI0eOFNjqFaLiSKFQoHPnzoiIiMCKFSuEuq5ERERUPEVFRaFjx46IiIjAunXriv3eN0T5bd26dVi7di1sbGzg5uaW5UImovzCM42IiLI0fPhwlCpVCn5+fjh+/LiuwyHSK3/++SciIiJQq1Yt9OjRQ9fhEBERUQGzsLDAV199BQBYuXJllhvKE9F/3r9/j+3btwMAJk+ezCQ5FSqebURElCVzc3NhQ8fFixfnanMoopLozp072LVrF4DkjX850SciIioZhg4disqVK+P58+dYv369rsMh0gtqtRpz585FdHQ0GjRokGZjXqKCxqs1IiLKliFDhqB9+/YIDw/H1KlTs1VnkKgke/v2LaZNmwaVSoVhw4ahXbt2ug6JiIiIComZmRn++OMPGBoaYtOmTbh48aKuQyIq8latWgVPT09YWFjgjz/+YMlPKnRMlBMRUbYtXrwYFSpUwJ07d/Ddd9/xNlKiDISEhGDkyJEICQlBnTp1MHPmTF2HRERERIXM0dFR+ND822+/xe3bt3UdElGRtXPnTmzcuBEAsGDBAlStWlXHEVFJxM08iYiIiIiIiIiIiKhEM9R1APpOpVJDpVYV6msmKJNgJDEo1Nekoo3nBKWH5wWlxnOCUuM5kTlDA35tSirO8ako4DlB6eF5QanxnKDUeE5kLrM5PhPleaRSqxAVE1+or+n/4h3sqlco1Nekoo3nBKWH5wWlxnOCUuM5kTmZpZmuQyAd4RyfigKeE5QenheUGs8JSo3nROYym+OzRjkRERERERERERERlWhMlBMRERERERERERFRicZEORERERERERERERGVaEyUExEREREREREREVGJxkQ5EREREREREREREZVoTJQTERERERERERERUYnGRDkRERERERERERERlWhMlBMRERERERERERFRicZEORERERERERERERGVaEyUExEREREREREREVGJxkQ5EREREREREREREZVoTJQTERERERERERERUYnGRDkRERERERERERERlWiGug6AiIiIiIiIiIiIiIqXYN8T8L+4EnHytzCxqgi79tNR2aGXrsPKEBPlRERERERERERERJRvgn1PwPfkPKiUcQCAOPkb+J6cBwBFNlnO0itERERERERERERElG/8L64UkuQaKmUc/C+u1FFEWWOinIiIiIiIiIiIiIjyTZz8bY76iwImyomIiIiIiIiIiIgo35hYVcxRf1HARDkRERERERERERER5Ru79tMhlpho9YklJrBrP11HEWWNm3kSERERERERERERUb7RbNjpf3El4uRvYWJVEXbtpxfZjTwBJsqJiIiIiIiIiIiIKJ9VduhVpBPjqbH0ChERERERERERERGVaFxRTkREREQ6F+x7Qq9uyyQiIiIiouKFiXIiIiIiKnCZJcKDfU/A9+Q8qJRxAIA4+Rv4npwHAEyWExERERFRoWDpFSIiIiIqUJpEeJz8DQC1kAgP9j0BIHmDH02SXEOljIP/xZU6iJaIiIiIiEoirignIiIiogKVUSLc+9hsAECc/G26z8uon4iIiIiIKL9xRTkRERERFagME97qJPienAeJqVW6D5tYVYQoLAwyqTlkUnOInz4twCiJiIiIiKgwiIKDhTk+5HJdhyNgopyIiIiICpSJVcUMH1Mp46AGIJaYaPWLDY3R7poprD6pKvRdODlWKNdCRERERER6RqWCeZ9esKpj91+fVKq7eFJhopyIiIiICpRd++lpEuEpJcbK4fDZAphYVQIgQvV3Zhi06BlKnfwHAODTUgqXmVURG/VOq7Y5ERERERHpB8m+vZDJLCG5eAEAEPPHKkQoogGRSMeR/Yc1yomIiIioQFV26AUAyTXJ1UlpHjexqojKDr1QpXxzWNnUEPqjZUY4OaoskiT/re3QbPKpOSYRERERERVd4sBASBs6CO3EFs6Icj8NGBa9tDRXlBMRERFRgavs0AsN+ixJW2JFYgK7dtNgNmKYVpJccfU6jo+roJUk1+Amn0RERERERVxiIiw6ddBKkiu8HyLqrEeRTJIDTJQTERERUSGp7NBLq8SKiVUltDT9DPU+/R+MjhwGAMQuWIgIRTRU9RtkWNs8s5rnRERERESkW0ZbNkNmbQXDWzcBANEbNyfP8T/5RLeBZaFopu+JiIiIqFiq7NALlR16QfTmDazsbQEkT56T6tVD5CVPwMhIGGvXfjp8T86DShkn9IklJrBrP72wwyYiIiIioiyI/Z9A2rSx0FZ27IToQ0cAsX6s1WainIiIiIgKj0oF8/59ITnvIXQp7tyFyq52mqGaOuT+F1ciTv4WJlYVYdd+OuuTExEREREVJQkJsGzdEgZ+fkKX/PFTqCtV0mFQOcdEOREREREVCslf+2A+YZzQjvljFRLGjM30OZoV6EREREREVPQYr1kF0x9/ENrRu/dC+XlfHUaUe0yUExEREVGBEgcFQdqgntBOdGqOqNNni+wmPkRERERElDmxjzeknzoL7YS+/RCzczcgEukwqrzh1QkRERERFYzERFj06AbDG9eFLsUDX6hq1NBhUERERERElGuxsZA2awzxy5dCl/x5INRly+kwqPyhH5XUiYiIiEivGG3bmrzT/b9J8ugNm5J3umeSnIiIiIhIL5ks+g2y8mWEJHnUgUOIUEQXiyQ5wBXlRERERJSPxE/9IW3SSGgrO3RE9OGjerPTPRERERERaTO4fRuWHdsJ7fhhwxG77k+9LrOSHibKiYiIiCjvEhJg2a41DHx9hS65nz/UlSvrMCgiIiIiIsq1qChI69WBODwMAKAWiaAIfAm1tbWOAysYXNpDRERERHlivHY1ZGVKCUny6F17km/BZJKciIiIiEgvmfwwB7JK5YUkedSJk5DLo4ptkhzginIiIiIiyiWxrw+kLVsI7YQ+nyNm995idwsmEREREVFJYeB5BZY9ugnt+AkTEfv7ch1GVHiYKCciIiKinImLg6VTExgEBQld8mcBUJcrr7uYiIiIiIgo10QREZDafAKRUgkAUFtaQu7nD0ilOo6s8LD0ChERERFlm/HiRZCVKy0kyaNcDyaXWWGSnIiIiIhIL5lOnQKrapWFJHnkufOQB78rUUlygCvKiYiIiCgbDO7cgWWHtkI7fugwxK7fwDIrRERERER6ytDjHCz6fS60476fgbifftFZPLrGRDkRERERZSwqClKHuhCHfRS65EGvivUmPkRERERExZnoYyisalQX2qqKFaG45w2YmeXqeMG+J+B/cSXi5G9hYlURdu2no7JDr/wKt9Cw9AoRERERpctk3g/JO93/mySPOu6WXGaFSXIiIiIiIv2jVsPsq1FaSfLIy55QPHmWpyS578l5iJO/AaBGnPwNfE/OQ7DviXwKuvDoPFEeEhKCX3/9FZ07d0bDhg3RpUsX/PbbbwgLC0sz9sWLF5g0aRKaNWsGR0dHDB48GJ6enuke19PTE4MHD4ajoyOaNWuGSZMm4cWLF2nGqdVq7Nq1C926dYODgwNat26NhQsXIioqKt/fKxEREZE+MLjqCZnUHCarVwEA4sdNQIQiGont2us2MCIiIiIiyhWJ2wnIrCxg9PcBAEDsz78gQhGNJMdGeTqu/8WVUCnjtPpUyjj4X1yZp+Pqgk5Lr4SGhqJfv36Ij49Hv379UKFCBTx58gQuLi64ePEijh49CgsLCwBAWFgYhgwZAgAYPnw4zMzMcPLkSYwbNw47d+6Ek5OTcNybN29i3LhxsLe3x5QpUxATEwNXV1cMGTIEx48fh3WKVVAbNmzA6tWr0aVLFwwePBivX7/G/v37ERAQgO3btxfuF4SIiIhIl+RyWNl8AlFCAgBAbWEB+eOnJW4THyIiIiKi4kL07i2s7GoJ7SRbO0ReuwEYG+fL8ePkb3PUX5TpNFG+f/9+fPjwAX///TcaNGgg9Ddq1Ajz5s3DmTNn0L9/fwDArl27EB4ejuPHj8PGxgYAMHToUPTs2ROrV6/Gvn37hOevXLkSVapUgYuLC4z//ab36NEDvXr1wp49ezB16lQAQGRkJDZv3ozevXtj2bJlwvNr166NH3/8EdevX4ezs3OBfx2IiIiIdM10+lQYb9sqtCPPeiCpBedBRERERER6SaWC+f8GQXLKXehS3LwNVZ26+foyJlYV/y27krZf3+i09EpoaCgAoGbNmlr9jRs3BgDExMQIfRcuXEDjxo2FJDkAGBsbo3fv3vDy8kJ4eDiA5JXn9+/fR69evYQkOQDY2NigSZMmOH/+vNB3/fp1xMbG4osvvtB6/d69e8PIyEhrLBEREVFxZHjeAzKpuZAkj/vu++RbMJkkJyIiIiLSS5IDrpDJLIUkeczSZYhQROd7khwA7NpPh1hiotUnlpjArv30fH+tgqbTRLmmXMrPP/+sVRP82rVrMDQ0RNu2bQEAiYmJCAwMTJNQB4BatWpBrVbj+fPnAIBnz55BrVZrJdRTjg0ICEBSUhIAwN/fHwDSjDU2Nka1atXw9OnTfHiXREREREWP6GMonOrbwKJvHwCAqkIFRLz9gLiff9VxZERERERElBuily/hVN8G5mNGAwASGzVGxMcIJEz8usBes7JDLzh8tgAmVpUAiGBiVQkOny1AZYdeBfaaBUWnpVd69OiB58+fY8OGDfD09ESfPn1QtWpVbNiwAUuWLEG1atUAAHK5HEqlEpaWlmmOIZPJAPy3Ol3zf01t89RjlUol5HI5rK2thbEZHffjx49ZvocEZRL8X7zL3hvOJ3EJiYX+mlS08Zyg9PC8oNR4ThAAQK1GzTnfoczJY0KX7/6jiKlXHwiNTP6PAABODmkXaVDJwDk+FQU8Jyg9PC8oNZ4TBABISoL9mGGQ3rkpdD1w80B89RrAm6zzm3lm2QyVe/8lNKOBInteZjbH12miHABKly6N8uXLo127dvDw8EBwcDBsbGxQtWpVYUzCvxtKmZiYpHm+RCIBAMTFxWmNNTU1TTPW0DD57cbHxwtjxWKxVomWlGM1x8yMkcQAdtUrZDkuP/m/eFfor0lFG88JSg/PC0qN5wQZup+ExeCBQvvVlG9h+dsCVNFhTERFEef4VBTwnKD08Lyg1HhOkNGunTCbMkloB/y6GNbTv0H1QnjtYN8T8L+4EnHytzCxqgi79tP1ciW5hk4T5QcOHMCiRYtw8OBB2NvbQ61W49KlS5g/fz6GDx+Offv2oX79+jAyMgIAqFSqNMdQKpUA/kuia8ZqyquklJiYCABCYtzIyAgqlQpqtRoikSjN2PQS80RERET6Js1O97VsEXn9Jt6+C0fa++qIiIiIiKioEz97BmnjhkJb2aYNoo+5IfR1CKwL4fWDfU/A9+Q8qJTJC43j5G/ge3IeAOhtslynNcq3bNmCTz/9FPb29gAAkUiEdu3aYcOGDYiPj8fevXsBAFZWVjA0NIRCoUhzDM0mnqVLl9b6f0ZjJRIJpFKp1li5XJ7uWGvrwjitiIiIiAqIWg3zwQO1kuSKG7cQefc+kM4ddUREREREVMQplbBo86lWklz+8DGi3U4BBgaFFob/xZVCklxDpYyD/8WVhRZDftNpovzdu3cwSOcbWLlyZQAQaoQbGhqiRo0a8Pb2TjPWx8cHIpFI2JDT1tYWIpEo3bHe3t6oUaOGUILF1tZW6E8pMjISQUFBwuNERERE+kZy8G/IrCwgcT8JAIhdvDR5p/u69XQcGRERERER5YbRn+shKy2D4f37AIDobTsQoYiGOkUJ68ISJ3+bo359oNNEeZ06dXD9+nUEBgZq9Z8+fRoA0KBBA6Gvffv28PX1RVBQkNCXkJAADw8PODo6Cqu/ra2t0bBhQ5w9e1aoVw4AgYGB8PPzQ4cOHYQ+Z2dnmJiYwM3NLc3rJyUlaY0lIiIi0geily8hk5rDfPRIAEBio0aI+BiB+EmTdRsYERERERHlivjRQ8ik5jCbPRMAoPysJyLkUVAOGJjFMwuOiVXFHPXrA53WKJ8xYwZGjRqFAQMGoH///qhYsSIePXoENzc32NjYYNSoUcLYESNG4NChQxgxYgQGDBgAMzMznDx5EsHBwViwYIHWcadNm4bRo0dj6NCh6NatG2JiYuDq6orSpUtjxIgRwjgrKyuMGTMG69atg1KphKOjI4KDg+Hi4gJnZ2d8+umnhfa1ICIiIsqTpCSY9+kJyeXLQpfi7gOoatXK5ElERERERFRkxcfDsoUTDJ4/E7rk/s+grqD7ZLRd++laNcoBQCwxgV376Vk+t6huAqrTRHmzZs3g4uKCP//8E0ePHkVUVBTKly+P4cOHY9KkSbC0/G97qTJlymDv3r1YtmwZdu7cCaVSCXt7e2zatAktWrTQOq6zszM2btyI9evXY/Xq1ZBIJHBycsLMmTPT1B2fPHkyLC0t4eLignPnzkEmk2HQoEGYNm1aYXwJiIiIiPLMaPcumE3+WmjHrF2PhBEjdRcQERERERHlifHyZTCd/4vQjnJxReJnPXUWT2qaxHZOE95FeRNQkVqtVus0Aj2XmJSEqJj4Qn1N/xfvYFe9QqG+JhVtPCcoPTwvKDWeE8WP+PlzSBv9V6pO2boNoo+7ZXsTH54TmZNZmuk6BNIRzvGpKOA5QenheUGp8Zwofgzu3YNl21ZCO2HQYMRs3gqIRNl6flE/Jy6u7YA4+Zs0/SZWldB+yoUCf/3M5vg6XVFORERERLmgVMKiUwcY3rsrdMl9/aCuVk2HQRERERERUa7FxEDa0AHi9++FLnngC6hLl9FhUPmvKG8CqtPNPImIiIgoZ4w2bkje6f7fJHn0lm3JO90zSU5EREREpJdMfv0ZsgplhSR51OGjyXP8YpYkB4r2JqBcUU5ERESkB8SP/SB1aiq0ld17INrFFRBz3QMRERERkT4yuHkDlp07Cu340V8hdtUaHUZU8PKyCWhBY6KciIiIqCiLj4dlyxYweOovdBWVne6JiIiIiCgXFApY1a4FUXQ0AEBtbAzF0wCoZTLdxlUIcrsJaGFgopyIiIioiDJesQymv/4itKP/2g9lT91PIImIiIiIKHdMZ3wP400bhHbkqTNI+rRVJs8ofio79CoSifHUmCgnIiIiKmIM7t+DZZsUO91/MQAx23Zke6d7IiIiIiIqWgz/uQiL3j2Fdtw3UxG3cJEOI6LUmCgnIiIiKipiYiB1rA/xu3dCV3Hc6Z6IiIiIqKQQhYXB6pOqQltVugwUPg8BCwsdRkXp4e5PREREREWAyfxfkne6/zdJHnXoSLHd6Z6IiIiIqNhTq2E6cbxWkjzywiUoAl8wSV5EcUU5ERERkQ4Z3LwJy84dhHb8qNGIXb1WhxEREREREVFeGJ4+DYuB/YV23Oy5iJv7gw4jouxgopyIiIhIFxQKWNWxgygyEgCglkigeB5UIna6JyIiIiIqjkQf3sOqVk2hnfTJJ4i8eQcwNdVhVJRdLL1CREREVMhMZ82ArEpFIUke6X4a8o8RTJITEREREekjtRpmw4ZoJckV124g0vshk+R6hIlyIiIiokJieOkfyKTmMN7wJwAgbvIURCiikdSqtY4jIyIiIiKi3JAcOQyZlQWMjh0FAMT+tggRimioHOrrNjDKMZZeISIiIipgovBwWFWvIrRV1qWh8H3ETXyIiIiIiPSUKDgYVnXshHZSvXqIvOQJGBnpMCrKC64oJyIiIiooajVMv56glSSPPP8PFEEvmSQnIiIiItJHKhXM+/TSSpIr7txF5PVbTJLrOSbKiYiIiAqA4ZnTkFlZwHjvHgDJO91HKKKR1KyZjiMjIiIiIqLckOzbC5nMEpKLFwAAMX+sSi6zYldbx5FRfmDpFSIiIqJ8JAr5ACubGkJbVa0aFLfvchMfIiIiIiI9JQ4MhLShg9BObN4CUafOAIZMrRYn/G4SERER5Qe1GmYjh8PoyGGhS3H1OlT1G+gwKCIiIiIiyrXERFh06wLDWzeFLsUDX6hq1MjkSaSvWHqFiIiIKI8kR48k73T/b5I8dsHC5FswmSQnIiIiItJLRls2Q2ZtJSTJozduTp7jM0lebHFFOREREVEuid68gZW9rdBOqlsXkZevchMfIiIiIiI9JfZ/AmnTxkJb2bETog8dAcRcb1zcMVFORERElFMqFcy/6AeJxzmhS3HbC6ra9joMioiIiIiIci0hAZZtW8Hg4UOhS+7nD3XlyjoMigoTPwohIiIiygGJy1/JO93/myQXdrpnkpyIiIiISC8Zr1kFWZlSQpI8evdeRCiimSQvYbiinIiIiCgbxEFBkDaoJ7QTnZoj6vRZ7nRPRERERKSnxD7ekH7qLLQT+vZDzM7dgEikw6hIV3hlR0RERJSZxERY9OgGwxvXhS7udE9EREREpMdiYyFt1hjily+FLvmzAKjLlddhUKRrLL1CRERElAGjbVuTd7r/N0kevWETd7onIiIiItJjJot+g6x8GSFJHnXgUHKZFSbJSzyuKCciIiJKRfzUH9ImjYS2skNHRB8+yp3uiYiIiIj0lMHt27Ds2E5oxw8bjth1f7LMCgmYKCciIiLSSEiAZbvWMPD1Fbq40z0RERERkR6LioK0Xh2Iw8OELnnQK6itrXUYFBVFXBZFREREBMB43Zrkne7/TZJH79zNne6JiIiIiPSYyQ9zIKtUXkiSRx13S57jM0lO6eCKciIiIirRxL4+kLZsIbQT+nyOmN17eQsmEREREZGeMvC8Asse3YR2/ISJiP19uQ4jIn3ARDkRERGVTHFxsHRqAoOgIKGLO90TEREREekvUUQEpDafQKRUAgDUlpaQ+/kDUqmOIyN9wNIrREREVOIYL1kMWbnSQpI8yvUgd7onIiIiItJjptO+gVW1ykKSPPLceciD3zFJTtnGFeVERERUYhjcuQPLDm2FdvzQYYhdv4FlVoiIiIiI9JShxzlY9PtcaMd9PwNxP/2is3hIfzFRTkRERMVfVBSkDnUhDvsodHGneyIiIiIi/SX6GAqrGtWFtqpiRSjueQNmZjqMivQZS68QERFRsWYy74fkne7/TZJHHTvBne6JiIiIiPSVWg2zr0ZpJckjL3tC8eQZk+SUJ0yUExERUbFkcO0qZFJzmKxeBQCIHzcBEYpoJLbvoNvAiIiIiIgoVyRuJyCzsoDR3wcAALE//YIIRTSSHBvpODIqDlh6hYiIiIoXuRxWtWpAFB8PAFBbWED++Ck38SEiIiIi0lOid29hZVdLaCfZ2iHy2g3A2FiHUVFxwxXlREREVGyYTp8KWdVKQpI88qwH5G/eM0lORERERKSPVCqYDxqglSRX3LyNSK97TJJTvmOinIiIiPSe4XkPyKTmMN62FQAQ9+13ybdgtnDWcWRERERERJQbkgOukMksITnlDgCIWboMEYpoqOrU1XFkVFyx9AoRERHprTQ73VeokLzTvbm5DqMiIiIiIqLcEr18CSuHOkI7sVFjRHlcACQSHUZFJQFXlBMREZH+UathNma09k73lzyh8H/OJDkRERERkT5KSoJFj25aSXLF3QeIunSFSXIqFEyUExERkV4xdD+ZvNP9AVcAQOy8n5PLrDTiTvdERERERPrIaPcuyEpJYeh5BQAQs3Z9cpmVWrWyeCZR/mHpFSIiItILaXa6t6mFyOs3ARMTHUZFRERERES5JX72DNLGDYW2sk0bRB9zAwwMdBgVlVRMlBMREVHRplbD/MvBkJx0E7oUN25BVbeeDoMiIiIiIqJcUyph0bEdDO/fF7rkDx9DXbWq7mKiEo+lV4iIiKjIkhz8GzIrCyFJHrt4afItmEySExERERHpJaM/10NWWiYkyaO37UCEIppJctI5rignIiKiIkf06hWs6tkL7cRGjRDlcZGb+BARERER6Snxo4eQtnAS2sruPRDt4gqIuY6XigYmyomIiKjoSEqCeZ+ekFy+LHQp7j7gJj5ERERERPoqPh6WLZxg8PyZ0CX3fwZ1hYo6DIooLX5kQ0REREWCZqd7TZKcO90TEREREek34+XLICtrLSTJo//an1xmhUlyKoK4opyIiIh0Svz8OaSNGgjtxFatEXXiJHe6JyIiIiLSUwb378GyTSuhnTBwEGK2bANEIh1GRZQ5JsqJiIhIN5RKWHTqAMN7d4Uuua8f1NWq6TAoIiIiIiLKtZgYSB3rQ/zundAlD3wBdekyOgyKKHtYeoWIiIgKndHGDck73f+bJI/esi35FkwmyYmIiIiI9JLJrz9DVqGskCSPOnw0eY7PJDnpCa4oJyIiokIjfuwHqVNToa3s1h3R+w9wp3siIiIiIj1lcPMGLDt3FNrxo79C7Ko1OoyIKHeYKCciIqKCFx8Py0+dYeD/ROiSP3kGdUVu4kNEREREpJcUCljVrgVRdDQAQG1sDMXTAKhlMt3GRZRLXL5FREREBcr4j+XJO93/myQXdrpnkpyIiIiISC+ZzvgesioVhSR55KkzkIeEMUlOeo0ryomIiKhApNnp/osBiNm2gzvdExERERHpKcN/LsKid0+hHffNVMQtXKTDiIjyDxPlRERElL9iYiBt3BDiN2+ELnlAENRlyuowKCIiIiIiyi1RWBisPqkqtFXWpaHwfQRYWOgwKqL8xdIrRERElG9M5v+SvNP9v0nyqENHksusMElORERERKR/1GqYThyvlSSPvHAJiqCXTJJTscMV5URERJRnBjdvwrJzB6EdP2o0Ylev1WFERERERESUF4anT8NiYH+hHTd7LuLm/qDDiIgKFhPlRERElHsKBazq2EEUGQkAUEskUDwP4iY+RERERER6ShTyAVY2NYR2UvXqiLzlBZia6jAqooLH0itERESUK6azZiTvdP9vkjzq5CnIP0YwSU5EREREpI/UapgNG6KVJFdcvY5In0dMklOJwEQ5ERER5YjhpX8gk5rDeMOfAIC4yVMQoYhGYus2Oo6MiIiIiIhyQ3LkMGRWFjA6dhQAEPvbIkQooqGq30C3gREVIpZeISIiomwRhYfDqnoVoa0qZQ3FQz9u4kNEREREpKdEwcGwqmMntJPq1UPkJU/AyEiHURHpBleUExERUebUaphOmqiVJI88/w8UL14xSU5EREREpI9UKpj36aWVJFfcuYvI67eYJKcSi4lyIiIiypDhmdOQWVnAeM9uAMk73UcoopHUrJmOIyMiIiIiotyQ7NsLmcwSkosXAAAxf6xKLrNiV1vHkRHpFkuvEBERURqpd7pXVasGxe273MSHiIiIiEhPiQMDIW3oILQTm7dA1KkzgCHTg0QAE+VERESUkloNs5HDYXTksNCluHqdm/gQEREREemrxERYdOsCw1s3hS7FA1+oatTI5ElEJQ9LrxAREREAQHLsaPJO9/8myWMXLORO90REREREesxo6xbIrK2EJHn0xs3Jc3wmyYnSKBIrypVKJVxcXODu7o7nz58jNjYW3bt3x7Jly4QxL168wO+//45bt25BqVTC3t4ekydPRqtWrdIcz9PTE+vWrcPjx48hkUjg5OSEmTNnonr16lrj1Go1du/eDRcXF7x+/RqlSpVC165dMW3aNFhwczIiIiohRG/ewMreVmgn1a2LyMtXuYkPEREREZGeEvs/gbRpY6Gt7NgJ0YeOAGKumSXKiM4T5RERERg9ejSePHmCLl26oFu3boiNjUVSUpIwJiwsDEOGDAEADB8+HGZmZjh58iTGjRuHnTt3wsnJSRh78+ZNjBs3Dvb29pgyZQpiYmLg6uqKIUOG4Pjx47C2thbGbtiwAatXr0aXLl0wePBgvH79Gvv370dAQAC2b99eeF8EIiIiXVCpYP5FP0g8zglditteUNW212FQRERERESUawkJsGzbCgYPHwpdcj9/qCtX1mFQRPpB54nyuXPnIiAgAPv27YOjo2O6Y3bt2oXw8HAcP34cNjY2AIChQ4eiZ8+eWL16Nfbt2yeMXblyJapUqQIXFxcYGxsDAHr06IFevXphz549mDp1KgAgMjISmzdvRu/evbVWrteuXRs//vgjrl+/Dmdn5wJ610RERLolcfkL5uPHCu2Y5X8gYdx4HUZERERERER5YbxmFUx//EFoR+/aA2XffjqMiEi/6PR+Cx8fH5w/fx5ff/11hklyALhw4QIaN24sJMkBwNjYGL1794aXlxfCw8MBJK88v3//Pnr16iUkyQHAxsYGTZo0wfnz54W+69evIzY2Fl988YXWa/Xu3RtGRkZaY4mIiIoLcVAQZFJzIUme6NQcEWFyJsmJiIiIiPSU2McbMqm5kCRP6NsPEfIoJsmJckiniXJ3d3eIRCIMHjwYAKBQKBAfH681JjExEYGBgahZs2aa59eqVQtqtRrPnz8HADx79gxqtVoroZ5ybEBAgFDSxd/fHwDSjDU2Nka1atXw9OnTvL9BIiKioiIxEXWGD4S0QT2hS3HfB1EeFwBDnd9gRkREREREORUbi4Zd20D66X8VEeTPAhCzaw8gEukwMCL9pNNE+cOHD1G2bFmsXbsWzZs3R7NmzdCgQQN89tlnuHr1KgBALpdDqVTC0tIyzfNlMhkAIDQ0VOv/6W3EKZPJoFQqIZfLtcZmdNyPHz/m/Q0SEREVAUbbtkJmbQXLe14AgJgNG5N3uk/nQ2giIiIiIir6TBb9Bln5MjB+EwwAiDpwCBGKaKjLlddxZET6S6dLyD5+/Ijw8HC8ffsWU6dORZkyZRAcHIw9e/Zg7Nix2L17Nyr/u9mAiYlJmudLJBIAQFxcHAAgISEBAGBqappmrOG/q+U0K9YTEhIgFou1SrSkHKs5ZlYSlEnwf/EuW2PzS1xCYqG/JhVtPCcoPTwvyCQwAA16dxbaYS1a4dmmHck73fPcIPD3RFacHPhhUknFOT4VBTwnKD08L8jc+z7qDekvtN/16Y+XC5YmryDnuUHg74msZDbH12miXKlUokmTJli3bp1Wf48ePdC5c2fs2rULv/zyCwBApVKl+3zgvyS6kZERAAjlVVJKTEwEACExbmRkBJVKBbVaDVGq21ESExPTTcynx0hiALvqFbI1Nr/4v3hX6K9JRRvPCUoPz4sSLCEBlu1aw8DXV+iS+/njWWLh/82ioo2/J4jSxzk+FQU8Jyg9PC9KsKgoSOvVgTg8TOiSB73Cy8gEnhOkhb8nck+npVcsLS0RGxubpr98+fKwt7dHYGAgrKysYGhoCIVCkWacZhPP0qVLa/0/o7ESiQRSqVRrrKYUS+qx1tbWuXxXREREumO8bg1kZUoJSfLonbuTb8H89w4tIiIiIiLSLyY/zIGsUnkhSR513C15js/cFVG+0mmi3M7ODs+fPxdWhqckl8thZmYGQ0ND1KhRA97e3mnG+Pj4QCQSCRty2traQiQSpTvW29sbNWrUEEqw2NraCv0pRUZGIigoSHiciIhIH4h9fZJ3up87BwCQ0Ofz5J3u+/XP4plERERERFQUGVz1hExqDpO1awAA8eMmIEIRjcR27XUcGVHxpNNEebdu3RAVFYXdu3dr9d+9excvXrxA69atAQDt27eHr68vgoKChDEJCQnw8PCAo6OjsPrb2toaDRs2xNmzZ4V65QAQGBgIPz8/dOjQQehzdnaGiYkJ3NzctF779OnTSEpK0hpLRERUZMXFwbJBPUhbthC65M8CELNnH3e6JyIiIiLSQ6KICFiVlsGye1cAgNrSEhGv3yJ2+QodR0ZUvOm0Rnnbtm3RtWtX/P7773jw4AEaNWqEN2/e4ODBg7C1tcWoUaMAACNGjMChQ4cwYsQIDBgwAGZmZjh58iSCg4OxYMECrWNOmzYNo0ePxtChQ9GtWzfExMTA1dUVpUuXxogRI4RxVlZWGDNmDNatWwelUglHR0cEBwfDxcUFzs7O+PTTTwv1a0FERJRTxksWw3TRQqEd5XoQid276zAiIiIiIiLKC9Np38B4+zahHXnWA0ktnHUYEVHJodNEOQCsXLkSu3fvxr59+3DhwgVYW1vjiy++wDfffAMLCwsAQJkyZbB3714sW7YMO3fuhFKphL29PTZt2oQWLVpoHc/Z2RkbN27E+vXrsXr1akgkEjg5OWHmzJlp6o5PnjwZlpaWcHFxwblz5yCTyTBo0CBMmzatsN4+ERFRjhl4ecGyfRuhnfDlEMRs2MQV5EREREREesrQ4xws+n0utOO++x5xP/+qu4CISiCdJ8oNDAwwatQoYfV4RmrWrIkNGzZk65ht27ZF27ZtsxwnEokwcuRIjBw5MlvHJSIi0qmoKEjr14P4Y6jQJQ96xU18iIiIiIj0lOhjKKxqVBfaqooVobjnDZiZ6TAqopJJpzXKiYiIKHtM5v2QvNP9v0nyqGMnuNM9EREREZG+Uqth9tUorSR55GVPKJ48Y5KcSEeYKCciIirCDK5dTd7pfvUqAED82PHJO92356bTRERERET6SOJ2AjIrCxj9fQAAEPvTL4hQRCPJsZGOIyMq2XReeoWIiIjSIZfDqlYNiOLjAQBqc3PIHz8FrKx0HBgREREREeWG6N1bWNnVEtpJtnaIvHYDMDbWYVREpMEV5UREREWM6fRpkFWtJCTJI896QP72A5PkRERERET6SKWC+aABWklyxc3biPS6xyQ5URHCRDkREVERYXjeAzKpOYy3bQEAxH37XfItmC2cdRwZERERERHlhuSAK2QyS0hOuQMAYpYuQ4QiGqo6dXUcGRGlxtIrREREOib6+BFWNaoJbVWFCsk73Zub6zAqIiIiIiLKLdHLl7ByqCO0Exs1QpTHRUAi0WFURJQZrignIiLSFbUaZmNGayXJIy95QuH/nElyIiIiIiJ9lJQEix7dtJLkirsPEHXJk0lyoiKOiXIiIiIdMHQ/mbzT/QFXAEDsvJ+Ty6w04k73RERERET6yGj3LshKSWHoeQUAELN2fXKZlVq1sngmERUFLL1CRERUiNLsdG9TC5HXbwImJjqMioiIiIiIckv87BmkjRsKbWWbNog+5gYYGOgwKiLKKSbKiYiICoNaDfMvB0Ny0k3oUty4BVXdejoMioiIiIiIck2phEXHdjC8f1/okj98DHXVqrqLiYhyjaVXiIiICpjk4N+QWVkISfLYxUuTb8FkkpyIiIiISC8Z/bkestIyIUkevW0HIhTRTJIT6TGuKCciIiogolevYFXPXmgnOjoi6vw/3MSHiIiIiEhPif0eQdq8mdBWdu+BaBdXQMy1qET6jolyIiKi/JaUBPPPe0Fy6ZLQpfC6D5WtrQ6DIiIiIiKiXIuPh2ULJxg8fyZ0yf2fQV2hog6DIqL8xI+7iIiI8pHRnuSd7jVJcmGneybJiYiIiIj0kvHyZZCVtRaS5NF/7U8us8IkOVGxwhXlRERE+UD8/DmkjRoI7cRWrRF14iR3uiciIiIi0lMG9+/Bsk0roZ0wcBBitmwDRCIdRkVEBYWJciIiorxQKmHRuSMM73oJXXJfP6irVdNhUERERERElGsxMZA61of43TuhSx74AurSZXQYFBEVtCwT5bdv3871wZs1a5b1ICIiIj1ltHEDzGZ+L7Sjt2yDctBgHUZERFSy8FqFiIjym8mvP8NkxXKhHXX4KBI7ddZhRERUWLJMlA8bNgyiXN5S4ufnl6vnERERFWXix36QOjUV2spu3RG9/wB3uiciKmS8ViEiovxicPMGLDt3FNrxo79C7Ko1OoyIiApblonynj17ak0+X716hfv376N79+4wNEz7dC8vL4SHh6NTp075GykREZGuxcfD8lNnGPg/EbrkT55BXZGb+BAR6QKvVYiIKM8UCljZ20IUFQUAUBsZQfEsEGqZTLdxEVGhyzJRvnz5cq327NmzER0djZUrV6Y7/ubNmxgxYgQGDhyYPxESEREVAcZ/LIfpLz8L7ei9f0HZu48OIyIiIl6rEBFRXpjO+B7GmzYI7Uj300hq1VqHERGRLuX4HvFbt26hfv36GT7evHlzNG3aFJs2bcpTYEREREWBwf17kEnNhSR5whcDECGPYpKciKgI4rUKERFlh+E/FyGTmgtJ8rhvpiJCEc0kOVEJl+WK8tRCQ0NhZmaW6ZjatWvj2LFjuQ6KiIhI52JiIG3cEOI3b4QueUAQ1GXK6jAoIiLKDK9ViIgoM6KwMFh9UlVoq6xLQ+H7CLCw0GFURFRU5HhFebly5XDv3r1MxwQHByMpKSnXQREREemSyfxfIatQVkiSRx06gghFNJPkRERFHK9ViIgoXWo1TCeO10qSR164BEXQSybJiUiQ40R5jx498OjRI6xcuRJKpTLN45cvX4anpyfq1q2bLwESEREVFoObNyGTmsNk+e8AgPhRoxGhiEZi5y46joyIiLKD1ypERJSa4enTkFlZwHjfXgBA3Oy5yWVWmjbVcWREVNTkuPTKuHHj4OHhgc2bN+PYsWNo2rQpypcvj8jISDx+/Bg+Pj4wMDDAtGnTCiBcIiKiAqBQwKqOHUSRkQAAtUQCxfMg7nRPRKRneK1CREQaopAPsLKpIbSTqldH5C0vwNRUh1ERUVGW40S5hYUFXFxcsHjxYri5ucHNzU3r8Vq1auHHH39Es2bN8i1IIiKigmI6awaMN/wptKNOnkJi6zY6jIiIiHKL1ypERAS1GmbDh8Lo2FGhS3H1OlT1G+guJiLSCzlOlAOAlZUVlixZgrlz58Lb2xvh4eEwNTVFzZo1UbNmzfyOkYiIKN8ZXr4Ei549hHbc5CmIW7REhxEREVF+4LUKEVHJJTlyGOYjhgnt2AULET91ug4jIiJ9kqtEuYZUKkWrVq3yKxYiIqICJwoPh/STqhCp1QAAVSlrKB76cRMfIqJihtcqREQlhyg4GFZ17IR2Ur16iLzkCRgZ6TAqItI3uU6U3717F56enggJCUHLli3RvXt3AMDVq1cREhKCTp06wYJJByIiKirUaphO/hrGe3YLXZHn/0ESb78nIip2eK1CRFRCqFQw798XkvMeQpfizl2o7GrrMCgi0lc5TpSr1WrMmjULJ06cgFqthkgkgqWlpTD5jI6Oxpw5c5CQkICBAwfme8BEREQ5ZXjmNCwG9BfacTNnI+7HeTqMiIiICgKvVYiISg7Jvr0wnzheaMf8sQoJY8bqMCIi0nfinD5h9+7dOH78OD777DMcOHAA6n9vXdfo3LkzypQpg3PnzuVbkERERLkhCvkAmdRcSJKrqlVDxPtQJsmJiIopXqsQERV/4sBAyKTmQpI8sXkLRITJmSQnojzL8Yryw4cPo2bNmli2bBlEIlGax0UiEZycnHD//v38iI+IiCjn1GqYjRwOoyOHha5Iz2tIatBQh0EREVFB47UKEVExlpgIi25dYHjrptCleOALVY0aOgyKiIqTHK8of/HiBRo3bpzuxFNDJpMhJCQkT4ERERHlhuTYUcisLIQkeeyChYhQRDNJTkRUAvBahYioeDLaugUyayshSR69cTMiFNFMkhNRvsrxinKxWJzpxBMAgoODYWpqmuugiIiIckr05g2s7G2FdlLduoi8fJU73RMRlSC8ViEiKl7E/k8gbdpYaCs7dkL0oSOAOMfrPomIspTjRHmtWrXw4MGDDB8PCQnBzZs3Ub9+/TwFRkRElC0qFcwH9Ifk3FmhS3HbC6ra9joMioiIdIHXKkRExURCAizbtoLBw4dCl9zPH+rKlXUYFBEVdzn+CO7zzz+Hv78/du7cmeaxsLAwfPfdd4iLi0Pv3r3zIz4iIqIMSVz+gkxmKSTJY5b/kXwLJpPkREQlEq9ViIj0n/GaVZCVKSUkyaN37UGEIppJciIqcDleUT548GBcvHgRS5cuxYkTJyASifDPP//Az88P9+7dQ1xcHJydndG/f/+CiJeIiAjiFy8grV9XaCc6NUfU6bOAYY7/rBERUTHCaxUiIv0l9vGG9FNnoZ3Q53PE7N4LZFFSi4gov+R4RblYLMbGjRsxadIkvHnzBmq1GgEBAbh+/TrEYjFGjRqFTZs2ZVkbkIiIKMcSE2HRpZNWklxx3wdRHheYJCciIl6rEBHpo9hYSB3qaCXJ5c8CELNnH5PkRFSocpVVMDAwwOTJkzFp0iQEBgYiIiICFhYWqFmzJgyZqCAiogJgtG0rzKZPFdoxGzYiYcgwHUZERERFEa9ViIj0h/HiRTBd/JvQjnI9iMTu3XUYERGVZDmeKR49ehS2traoV68eRCIRatasmWaMp6cnzMzM0Lhx43SOQERElH3ip/6QNmkktJXtOyD6yDHudE9ERGnwWoWISD8Y3L4Ny47thHb80GGIXb+BK8iJSKdynCifPXs2Ro8ejXr16mU4Zt++fXjx4gXc3d3zFBwREZVgCQmwbN8GBj4+Qhd3uicioszwWoWIqIiLioK0Xh2Iw8OELnnQK6itrXUYFBFRsgJZjle2bFm8efOmIA5NREQlgPG6Nck73f+bJI/euZs73RMRUb7gtQoRkW6Y/DAHskrlhSR51HG35Dk+k+REVETke5G+hIQEPHjwABYWFvl9aCIiKubEvj6QtmwhtBN69+EmPkRElG94rUJEVPgMrnrCsntXoR0/bgJil6/QYUREROnLVqJ8zpw5Wu0rV64gPDw8zTilUom7d+/i7du36NGjR/5ESERExV9cHCydmsIgKFDokj99DnX5CjoMioiI9AGvVYiIiiZRRASkNp9ApFQCANSWlpD7+QNSqY4jIyJKX7YS5UeOHBH+LRKJ8PTpUzx9+jTD8XXr1sWsWbPyHh0RERV7xksWw3TRQqHNne6JiCgneK1CRFT0mE77BsbbtwntyLMeSGrhrMOIiIiylq1E+Y4dOwAAarUao0ePRvfu3TFw4MA04wwMDFC+fHlUr149f6MkIqJix8DLC5bt2wjthC+HIGbDJpZZISKiHOG1ChFR0WF43gMWffsI7bjvvkfcz7/qMCIiouzLVqLc2fm/T/0mT56Mxo0ba/UREXbyOVcAAFd2SURBVBFlW3Q0pPXrQhwaKnTJA19CXbq0DoMiIiJ9xWsVIiLdE30MhVWN/z6IVFWoAMU9b8DcXIdRERHljDinTxg2bBg+fPiAS5cupfv43bt3cf78ecTGxuY5OCIiKl5M5v0AWcVyQpI86tiJ5J3umSQnIqJ8wGsVIqJCplbD7KtRWknyyMueUPg/Z5KciPROjhPlhw4dwpw5c9LdIAcA3r17h8mTJ+P48eN5Do6IiIoHg2tXIZOaw2T1KgBA/NjxiFBEI7F9B90GRkRExQqvVYiICo/E7QRkVhYw+vsAACD2p18QoYhGkmMjHUdGRJQ7OU6Ue3h4oEKFCujTp0+6j/fo0QMVK1aEm5tbnoMjIiI9J5fDqqw1LLt1AQCozc0R8eoNYlf8oePAiIioOOK1ChFRwRO9ewuZ1BzmXw4GACTVskVESBjiv5+h48iIiPImx4nyFy9eoEWLFhBlstlas2bNEBgYmKfAiIhIv5lOnwZZ1UoQxccDACLPnIP87QfAykrHkRERUXHFaxUiogKkUsF80ABY2dUSuhQ3biHy7n3A2Fh3cRER5ZMcJ8qjoqJgnkWdKUtLSygUilwHRURE+svwvAdkUnMYb9sCAIj79rvkWzCdW+o4MiIiKu54rUJEVDAkB1whk1lCcsodABCzdBkiFNFQ1a2n48iIiPKPYU6fUKVKFfj4+GQ6xtfXFxUqVMh1UEREpH9EHz/CqkY1oa0qXx6K+z7cxIeIiAoNr1WIiPKX6OVLWDnUEdqJjRohyuMiIJHoMCoiooKR4xXlHTt2hLe3N/bt25fu4y4uLnjw4AFat26d5+CIiEgPqNUwG/uVVpI88p8rUDwNYJKciIgKFa9ViIjySVISLHp000qSK+4+QNQlTybJiajYyvGK8q+++gpubm5YuHAhTpw4gebNm6NcuXIIDQ3F9evX8eDBA0ilUowdO7Yg4iUioiLE0P0kLAYPFNqx835G/IyZOoyIiIhKMl6rEBHlndHuXTCb/LXQjlm7HgkjRuouICKiQpLjRLmVlRV2796N77//Hvfv38f9+/chEomgVqsBALa2tli2bBlvZyQiKsZE795qbeKTZFMLkddvAiYmOoyKiIhKOl6rEBHlnvj5c0gbNRDaytZtEH3cDTAw0GFURESFJ8eJciC59t/+/fvx8OFD3L9/H5GRkbC0tETdunXh6OiY6S7zRESkx9RqmH85GJKTbkKX4sYtbuJDRERFBq9ViIhySKmERaf2MLx3T+iS+/pBXa1aJk8iIip+cpUo16hXrx7q1WNyhIioJJAcOgjzUSOEduzipYifNFmHEREREWWM1ypERFkz+nM9zGb/VzoxetsOKAcMzOQZRETFV54S5UREVPyJXr2CVT17oZ3o6Iio8/9wEx8iIiIiIj0l9nsEafNmQlvZvQeiXVwBsViHURER6Va2EuXDhw/HZ599hkGDBmHOnDnZOrBIJMKiRYvyFBwREelQUhLMP+8FyaVLQpfC6z5UtrY6DIqIiEgbr1WIiHIgPh6WLZxg8PyZ0CX3fwZ1hYo6DIqIqGjIVqL81q1bcHBwAAAcOXIkWwfm5JOISH8Z7dkFs0kpdrpfvRYJo0brMCIiIqL08VqFiCh7jJcvg+n8X4R29F/7oezZS2fxEBEVNdlKlC9evBi2/64g3LFjR4EGREREupN6p/vEVq0RdeIkd7onIqIii9cqRESZM7h/D5ZtWgnthIGDELNlG8DNjYmItGQrUd63b1/h387OzgUWDBER6YhSCYvOHWF410voUvg8gqp6dR0GRURElDVeqxARZSAmBlLH+hC/eyd0yQNfQF26jA6DIiIqurhLAxFRCWe0aSNkpWVCkjx6yzZEKKKZJCciIiIi0lMm83+BrEJZIUkedfgoIhTRTJITEWUiyxXlb968yfXBK1WqlOvnEhFRwRI/9oPUqanQVnbrjuj9B7jTPRER6Q1eqxARaTO4eQOWnTsK7fjRXyF21RodRkREpD+yTJR36NABolzUrRKJRHj06FGOn6dSqTB+/HhcvnwZ+/btQ9Om/yVxXrx4gd9//x23bt2CUqmEvb09Jk+ejFatWqU5jqenJ9atW4fHjx9DIpHAyckJM2fORPVUKyTVajV2794NFxcXvH79GqVKlULXrl0xbdo0WFhY5Dh+IqIiLz4elp86w8D/idAlf/IM6orc6Z6IiPRLYV+rEBEVWQoFrOxtIYqKAgCojYygeBYItUym27iIiPRIlonyRo0aaU0+w8LCEBQUhAYNGsDQMO3Tnz9/jvj4eNStWzdXAS1btgyXL19O0x8WFoYhQ4YAAIYPHw4zMzOcPHkS48aNw86dO+Hk5CSMvXnzJsaNGwd7e3tMmTIFMTExcHV1xZAhQ3D8+HFYW1sLYzds2IDVq1ejS5cuGDx4MF6/fo39+/cjICAA27dvz9V7ICIqqoz/WA7TX34W2tF7/4Kydx8dRkRERJR7hX2tQkRUFJnO+B7GmzYI7Uj300hq1VqHERER6acsE+UuLi5a7fnz5yMxMREHDhxId/zZs2cxbdo0/PTTTzkO5siRI9i1axd69uwJNzc3rcd27dqF8PBwHD9+HDY2NgCAoUOHomfPnli9ejX27dsnjF25ciWqVKkCFxcXGBsbAwB69OiBXr16Yc+ePZg6dSoAIDIyEps3b0bv3r2xbNky4fm1a9fGjz/+iOvXr3NDICIqFgwe3Idl60+FdsIXAxCzbQd3uiciIr1WmNcqRERFjeE/F2HRu6fQjps8BXGLlugwIiIi/ZbjQrSenp5a5VBS69KlC+zt7fHnn3/m6Lj37t3DTz/9hJkzZ+LTTz9N8/iFCxfQuHFjIUkOAMbGxujduze8vLwQHh4OIHkVyf3799GrVy8hSQ4ANjY2aNKkCc6fPy/0Xb9+HbGxsfjiiy+0Xqt3794wMjLSGktEpJdiYiC1t9VKkssDghCzfSeT5EREVOwU1LUKEVFRIgoLg0xqLiTJVdalEfHmPZPkRER5lONE+fv372FpaZnpGEdHR9y8eTPbx3z79i0mT56Mnj17YuTIkWkeT0xMRGBgIGrWrJnmsVq1akGtVuP58+cAgGfPnkGtVmsl1FOODQgIQFJSEgDA398fANKMNTY2RrVq1fD06dNsvwcioqKm8poVyTvd/7vRWdShI8k73Zcpq+PIiIiICkZBXKsQERUZajVq/DgTVp9UFboiz/8DRdBLgHusERHlWY4T5VZWVnj8+HGmY0JDQxEXF5et48XGxmLSpEmoWrUqfv3113THyOVyKJXKdCe9sn83pggNDdX6f3obccpkMiiVSsjlcq2xGR3348eP2XoPRERFicHNm5BJzVF5S/JqufiRoxAhj0Ji5y46joyIiKhg5fe1ChFRUWF4+jRkVhYoe+wQACBu9lxEKKKR1KyZjiMjIio+sqxRnlqnTp3g4uKCv//+GwMGDEjzuJ+fH65cuZLuiu7U1Go1Zs+ejfDwcBw8eBBGRkbpjktISAAAmJiYpHlMIpEAgDDZ1Yw1NTVNM1azoU98fLwwViwWa5VoSTk2OxPoBGUS/F+8y3JcfopLSCz016SijecEAYA4OgqOnT6F4b873asMJbh36RaSpFLg5XsdR0dFAX9XUGo8JzLn5JD2bkYq2vLrWoVzfCoKeE4QABh+DEXjds2FdlylyvA5dhZqExOA5weBvysoLZ4Tmctsjp/jRPnXX3+Ns2fP4qeffsKBAwfQsmVLlC9fHlFRUfDz88P58+ehVCoxYcKELI/l6ekJDw8PrFu3DkqlEu/eJX8TFQoFACA8PBzv3r0TkuEqlSrNMZRKJYD/kuiaZLumvEpKiYmJACAkxo2MjKBSqaBWqyFKVas3MTEx3cR8akYSA9hVr5DluPzk/+Jdob8mFW08J8h01gwYb/iv3mrUyVN4VM2O5wVp4e8KSo3nBBU3+XWtwjk+FQU8J0o4tRpmI4bB6OgRoUtx9ToeS8vxvCAt/F1BqfGcyL0cJ8rLlCkDFxcXzJ07F7dv34aPjw9EIhHUajWA5Nsd58+fjy5dsr7FPz4+HomJiRlOVCdPngwgedNNQ0NDIYGekmYTz9KlS2v9P6OxEokEUqlUa6xcLhdKuKQcW6ZMmSzfAxGRLhlevgSLnj2EdtykyYhbvDS5wU+QiYiohMnPaxUiIl2RHD0C8+FDhXbsgoWInzo9ucE5PhFRgclxohwAqlatij179uDp06e4e/cuwsPDYWJiAhsbGzRv3jzDEiqpOTo6YuPGjWn6r1+/jl27duH7779HrVq1IJVKUaNGDXh7e6cZq5n8am6ftLW1hUgkgre3d5oJsLe3N2rUqCGUYLG1tRX627RpI4yLjIxEUFAQnJ2ds/cFISIqZKLwcEg/qQrRvxf+KlkpKB76AVlsYEZERFTc5de1ChFRYRMFB8Oqjp3QTqpXD5GXPAH+3iIiKhS5SpRr2NraCsnm3ChTpgzat2+fpl+zSrxRo0Zo2rQpAKB9+/bYtm0bgoKC8MknnwBIrjHu4eEBR0dHWFtbAwCsra3RsGFDnD17Ft98840wEQ4MDISfnx/GjRsnvI6zszNMTEzg5uamlSg/ffo0kpKS0KFDh1y/NyKiAqFWw3TKJBjv3iV0RZ7/h5v4EBERpZLXaxUiokKjUsG8f19IznsIXYo7d6Gyq63DoIiISp5cJ8rfvn2La9euISQkBA0aNEDLli0BAI8fP0ZkZCQaNmyYr6s1RowYgUOHDmHEiBEYMGAAzMzMcPLkSQQHB2PBggVaY6dNm4bRo0dj6NCh6NatG2JiYuDq6orSpUtjxIgRwjgrKyuMGTNGqJHu6OiI4OBguLi4wNnZGZ9++mm+xU9ElFeGZ07DYkB/oR03czbifpynw4iIiIiKpsK+ViEiyi3Jvr0wnzheaMf8sQoJY8bqMCIiopIrV4ny1atXY8uWLUhMTIRIJMKoUaOEyaevry/mzZuH33//Hb169cq3QMuUKYO9e/di2bJl2LlzJ5RKJezt7bFp0ya0aNFCa6yzszM2btyI9evXY/Xq1ZBIJHBycsLMmTOFlecakydPhqWlJVxcXHDu3DnIZDIMGjQI06ZNy7fYiYjyQhTyAVY2NYS2qlo1KG7fBUxNdRgVERFR0aSLaxUiopwSBwZC2tBBaCc6NUfU6bOAYZ5u/CciojzI8W/go0ePYsOGDWjWrBm+/PJLTJ8+XevxPn36YNmyZThz5kyuJ5/9+vVDv3790vTXrFkTGzZsyNYx2rZti7Zt22Y5TiQSYeTIkRg5cmROwyQiKlhqNcxGDofRkcNCV6TnNSQ1aKjDoIiIiIquwrhWISLKk8REWHTrAsNbN4UuxQNfqGrUyORJRERUGMQ5fYKLiwsqVaqEbdu2oXv37mkel0gkaN68OZ4+fZovARIRlUSSY0chs7IQkuSxCxYiQhHNJDkREVEmeK1CREWZ0batkFlbCUny6A2bEKGIZpKciKiIyPGKcn9/f3Tr1i3Tmn7lypXDpUuX8hQYEVFJJHrzBlb2/208llSnDiKvXONO90RERNnAaxUiKorE/k8gbdpYaCs7dkL0oSOAOMdrF4mIqADlOFGuVquz3Pjm/fv33ByHiCgnVCqYD+gPybmzQpfithdUte11GBQREZF+4bUKERUpCQmwbNsKBg8fCl1yP3+oK1fWYVBERJSRHH98Wb16dTx58iTDxyMjI3H79m3Y2NjkKTAiopJC4vIXZDJLIUkes/yP5FswmSQnIiLKEV6rEFFRYbxmFWRlSglJ8uhdexChiGaSnIioCMtxorxHjx548OABTp06leaxhIQE/PTTT5DL5ejWrVu+BEhEVFyJX7yATGoO8/FjAQCJzZwQESZHwrjxOo6MiIhIP/FahYh0TezjDZnUHKY//gAASOjzOSLkUVD27afjyIiIKCs5Lr0ycuRInDlzBt9//70wAfXy8sKPP/6Iy5cv48OHD6hduza+/PLLfA+WiKhYSEqCRY9uMLx+TehS3PeBqmZNHQZFRESk/3itQkQ6ExsLabPGEL98KXTJnwVAXa68DoMiIqKcyPGKcmNjY+zevRu9e/fGhQsXAAAPHjzAwYMHERISgi5dumDnzp2s+0dElA6j7dsgKyUVkuQxGzYml1lhkpyIiCjPeK1CRLpgvHgRZOXLCEnyKNeDyWVWmCQnItIrOV5RDgAWFhZYvHgxZs+eDW9vb0RERMDCwgL16tVDuXLl8jtGIiK9J37qD2mTRkJb2b4Doo8c4073RERE+YzXKkRUWAxu34Zlx3ZCO37oMMSu3wCIRLoLioiIci3HifIZM2bA1tYW48aNg5WVFVq3bl0QcdH/27vv8Kiq/I/jn5l0UgkIhCYIBNTQJYo9KFIUUFFBV2HtBXRhFSxYsa2LK7pgWf3pKsoiioiEIGIAURDpCFEgdDEUKcmkJ5OZ+/sj5oZJJiEJIZPJvF/Ps4+ec89MviHX7JkP554DoGEoLFR4wqXy27LF7LL9ul1G69YeLAoAgIaJzyoA6kR2tiLOPVvW9ONml23vfhnR0R4sCgBwqqq9lHHhwoU6fPjw6agFABqUoOn/Lj7p/s+QPOfDGcWPYBKSAwBwWvBZBcDpFjzpcUW1bG6G5NnzFxTP8QnJAcDrVXtFeZMmTVRUVHQ6agGABsGaskURF15gtguHDlPuxzN5BBMAgNOMzyoAThe/lSsUPmiA2S645z7lvfovD1YEAKht1Q7KExIStGrVKhmGIQuhDwCUys9XePx58tu7x+yy7dglo3kLDxYFAIDv4LMKgNpmychQRId2stjtkiQjLEy2bTukiAgPVwYAqG3V3nrl3nvv1ZEjR/T++++fjnoAwCsFvfIPRTVrYobk2bM/L34Ek5AcAIA6w2cVALUpZNxDimzbygzJsxYny3bgMCE5ADRQNTrMMygoSNOmTdOyZcsqHGexWPTJJ5+cUnEAUN/5rV+v8IRLzXbhLX9R7tv/YZsVAAA8gM8qAGqD/5JkhV03zGznP/yI8p95zoMVAQDqQrWD8vXr17v997J41BFAg5aTo4iu58h69KjZZdvzm4wmTTxYFAAAvo3PKgBOheXYUUW2P9NsO1u0UObGzVJoqAerAgDUlWoH5UuWLDkddQCA1wh+apKC33jdbGd/laiihH6eKwgAAEjiswqAGjIMNbrrDgV+/pnZlbV8hRw9e3qwKABAXat2UN6qVavTUQcA1Ht+P65U+MCrzHbB3fcq71+vebAiAABwIj6rAKiugAWJCr1lpNnOe/pZFTwywYMVAQA8pVpBeWpqqlavXi273a5u3brpvPPOO111AUD9YbMpsmN7WQoKJElGaGjxSfeRkR4uDAAAlOCzCoDqsBw6qMjYjmbb0bGTslatloKCPFgVAMCTqhyUT58+XW+++aZL34UXXqh///vfCmW/LgANVMj4cQp6/z2znfXNt3L0vdCDFQEAgLL4rAKgypxOhd48QgFfLzS7Mn9aI+c553qwKABAfWCtyqB169Zp+vTpatSokW688Ubddttt6tChg1auXKmnn376dNcIAHXOf+kSRUWEmiF5/t8fVkZmDiE5AAD1DJ9VAFRVwGezFRUVbobkua9MUUZmDiE5AEBSFVeUz5o1S35+fpo5c6a6dOkiSSoqKtK9996rhQsX6sEHH1S7du1OZ50AUCcsx44psn1bs+1s3lyZm7Zw0j0AAPUUn1UAnIzlt98UGXe22S7q2VPZycukgAAPVgUAqG+qtKJ87dq16tOnjznxlCR/f3+NGTNGhmFozZo1p61AAKgThqFGd9/pEpJnffeDMnfsJiQHAKAe47MKgAo5HAobPNAlJM/c8LOyl68gJAcAlFOloDw9PV0dO3Ys19+5c2dJ0uHDh2u3KgCoQ/4LkxQVGabA2Z9KkvKefLp4m5VevTxcGQAAOBk+qwBwJ3DGR4pqHCH/FT9IknKnvVm8zYqb3xcAAEhV3HrFbrcrMDCwXH/JwTj5+fm1WxUA1AHL4UOK7NTBbDs6dCw+6T442INVAQCA6uCzCoATWXftUkTPbmbbfsmlypm/QPLz82BVAABvUKWg/GQMw6iNtwGAumEYCr1lpAKSFphdmatWy3lunAeLAgAApwOfVQAfYbcr7MoE+W/caHbZUrbKaNu2khcBAFCqykH57NmztXDhwnL9FovF7TWLxaJly5adeoUAUIsCvpij0NtHm+28l19RwZixHqwIAACcKj6rAL4t8K031eixiWY75733ZR8x0oMVAQC8UZWD8pycHOXk5FT7GgDUB5b9+xV5bukhX0U9eih7yXcc4gMAQAPAZxXAN1m3/qqI8/uYbfugwcqZNVuyVuk4NgAAXFQpKN+2bdvprgMATg+HQ6HXDlHA8uVmV+b6TXJ26uTBogAAQG3hswrggwoKFH7hBfLbkWp22VJ3ymgR48GiAADejr9mBdBgBX5cfNJ9SUie+8a04pPuCckBAAAArxT06hRFnRFthuQ5//tUGZk5hOQAgFNWK4d5AkB9Yt29WxE9uprtoosvUXZiEifdAwAAAF7Kb9NGhV96sdkuvOFG5b7/X8li8WBVAICGhKAcQMNhtyus/xXy37De7Mrc8qucZ57pwaIAAAAA1FhuriJ6dJX10CGzy7Znn4wmTT1YFACgIWLrFQANQuB/3lFUkygzJM957/3ibVYIyQEAAACvFDz5WUW1OMMMybO/+LJ4mxVCcgDAacCKcgBezbptqyLizzPb9gEDlTP7c066BwAAALyU3+qfFN7/CrNdcMedynv93x6sCADgCwjKAXinggKFX3yh/LZvM7ts23fKiOEQHwAAAMArZWYqsksnWbKzJUlGYKAyd+6RERXl2boAAD6BJZcAvE7Qa68Wn3T/Z0ie88n/ih/BJCQHAAAAvFLIhEcU1TrGDMmzFi6S7Wg6ITkAoM6wohyA1/D7eZPCL7nIbBcOv0G5H3zISfcAAACAl/L/bpnChl5jtvPHPqj8l/7hwYoAAL6KoBxA/ZeXp4he3WVNSzO7bLv3ymh6hgeLAgAAAFBTluPHFdmujdl2RjdRZsqvUliYB6sCAPgytl4BUK8FPz9ZUc2bmiG5edI9ITkAAADgfQxDIQ/c5xKSZy35Tpl7fyMkBwB4FCvKAdRLfqtXK7x/P7Nd8NfblffGNLZZAQAAALyU/6JFCrtpuNnOf+wJ5T8xyYMVAQBQiqAcQP2SlaXIczrLYrNJkoyAgOKT7hs39nBhAAAAAGrCcuQPRXZob7adbdsqc+0GKSTEg1UBAOCKrVcA1Bshj05QVKsWZkienfS1bMcyCMkBAAAAb2QYajTqVpeQPHPlKmWmbCUkBwDUOwTlADzO//vliooIVdDbb0mS8seMVUZmjoouudTDlQEAAACoiYB5XyoqMkyB876UJOU9/4IyMnPk7NrNw5UBAOAeW68A8BhLeroi2rWRxTAkSc6oxsr8ZasUHu7hygAAAADUhCUtTZFnx5ptx7nnKmv5Cikw0INVAQBwcqwoB1D3DEMhYx9Q5JmtzZA8a8l3yvztd0JyAAAAwBs5nQq9bphLSJ65boOyVq0hJAcAeAWCcgB1yv+bRYqKDFPQjI8kSfkTH1NGZo4cffp4uDIAAAAANRHwv5mKigpXwJJkSVLua68Xb7MS29nDlQEAUHVsvQKgTpQ76b5NG2Wu28ghPgAAAICXsu7Zo4jucWa7KP58ZS9aLPkTNQAAvA8rygGcXoahRn8d5RKSZ634UZm/bCMkBwAAALxRUZHCruznEpJn/pyi7OSlhOQAAK9FUA7gtAn4al7xSfdzv5BUetK9o1t3D1cGAAAAoCYC3/8/RUVHyn/NaklSztv/Kd5mpX37k7wSAID6jb/qBVDrLAcOKLJLJ7PtOPtsZf3wI4f4AAAAAF7KmrpdEef1Mtv2flcoZ+48ycr6OwBAw0BQDqD2OJ0KvXG4Ar5dbHZlrl0vZ+cuHiwKAAAAQI0VFir8sovl98svZpdta6qMVq08WBQAALWPv/oFUCsCZv2v+KT7P0Py3FdfK34Ek5AcAAAA8EpB/35dUU0bmyF5zkcfKyMzh5AcANAgsaIcwCmx7tuniK7nmO2iPvHK/uZbDvEBAAAAvJR1y2ZFXNTXbBcOu1a5Mz6RLBYPVgUAwOlFkgWgZhwOhQ0eKP9VP5pdmZu2yHnWWR4sCgAAAECN5eUpok8vWX/7zeyy7dwto1lzDxYFAEDdYOsVANUW+MH7imocYYbkuW+9XbzNCiE5AAAA4JWCXn5JUc2bmiF59uw5xdusEJIDAHwEK8oBVJl1R6oievc02/aEfsr58itOugcAAAC8lN+6dQrvd5nZLrj1NuW9+TbbrAAAfA5BOYCTKyxUeMKl8tuyxeyy/bpdRuvWHiwKAAAAQI1lZysi7hxZjx8zu2x798uIjvZgUQAAeA5BOYBy0lIS9es3L6ooL0Od12ap17IM89qakR0V+tALakVIDgAAAHil4EmPK3jav8129vwFKro8wYMVAQDgeQTlAFykpSRq8/zHFXUoV4M+PGz2748N0YphTSRLgaxJT0mSWsUN8VSZAAAAAKrJb+UKhQ8aYLYL7rlPea/+y4MVAQBQfxCUA3Cxc/G/dM07vyk8w2H2fflAS+WH+Zltpz1fqcumEpQDAAAAXsCSkaGIDu1ksdslSUZYmGzbdkgRER6uDACA+oOgHIDSUhKVumyqOny9VcNWZJr9y69vqgMdQ9y+Jt92sK7KAwAAAFBDIeMeUtAH75vtrMXJclzQ14MVAQBQPxGUAz4uLSVRae9N0HX/3W/27Y5rpNWDois96T44MqYuygMAAABQA/5LkhV23TCznf/3h7Xrhj5KXTZJ+ckH5R8SKYske55NwZExik0YzxOjAACfRlAO+LKcHHXsf6vOzSkyu754sKUKQ/wqeZFkDQhWbML4010dAAAAgGqyHDuqyPZnmm1nixbK3LhZaXuWKiXpKTnt+ZKkorwMc0y+7YBSOIcIAODjrJ4uAIBnBD81SVExzRT0Z0i+9KYzNGtiG7chuTUgRAEhUZIsCo5sqbirn2cCDQAAANQnhqFGd93hEpJnLV+hzNRdUmiotn7zohmSu1NyDhEAAL6KFeWAj/Fb9aPCB/Q327vPb6bVlwVVOD44sqUSHlxaF6UBAAAAqIGABYkKvWWk2c576hkVTJhottNSEmU/YQV5RTiHCADgywjKAV9hsykytoMseXmSJCM0VLZtO5S3/3tZT3gE80RssQIAAADUX5ZDBxUZ29FsOzp2Utaq1VKQ60KYqq4U5xwiAIAvY+sVwAeEjB+nqDYtzZA865tvZTv4hxQZqVZxQxR39fMKjmxZPNhSvPUKW6wAAAAA9ZTTqdARN7qE5Jk/rVHWhk3lQvK0lETl2w6c9C1ZJAMA8HUeX1F+/PhxffDBB1qzZo1+//135eXlqW3btrrppps0YsQI+fuXlrhv3z7985//1Jo1a2S329WlSxeNHTtWF198cbn3XbFihaZPn65t27YpICBA8fHxmjhxos4880yXcYZhaMaMGZo1a5Z+//13NW7cWAMGDNC4ceMUFhZ22r9/4HTyX7pEYdcONdv54/+u/OeeLzeuVdwQAnEAAADACwR8Nluhd91htvNefkUFY8a6HZuWkmge0umWxSIZxSvJYxPG85kAAODTPB6Up6Sk6MMPP9Sll16qK6+8UpK0ZMkSTZ48WSkpKXr55ZclFQfqf/nLXyRJo0aNUqNGjZSUlKR77rlHH374oeLj4833XL16te655x516dJFDz74oHJzczV79mz95S9/0fz58xUdHW2Offvtt/XGG2/oqquu0siRI/X777/r008/1e7du/XBBx/U4Z8EUHssx44psn1bs+1s3lyZm7ZIoaEerAoAAABATVl++02RcWeb7aKePZWdvEwKCHA7Pi0lUZu/ekwyHG6vWwOCeYIUAIATeDwoP+uss7R48WK1bNnS7Lvzzjs1YsQIzZ07V+PGjVPz5s310UcfKT09XfPnz1eHDh0kSbfeequuueYavfHGG5o5c6b5+qlTp6p169aaNWuWgv587Gzw4MEaMmSIPv74Y/3tb3+TJGVlZendd9/V0KFDNWXKFPP1nTt31pNPPqlVq1apb9++dfHHANQOw1Cje+9W4KezzK6s736Qo1cvDxYFAAAAoMYcDoUNuVr+K34wuzI3/Cxnx44VvsRcSV5BSC6JkBwAgDI8vkd569atXUJySfLz8zNXiB88WHzq9tKlS9WrVy8zJJekoKAgDR06VOvXr1d6erqk4pXnmzZt0pAhQ8yQXJI6dOig3r17a8mSJWbfqlWrlJeXpxtuuMHl6w8dOlSBgYEuY4H6zn9hkqIiw8yQPO/Jp5WRmUNIDgAAAHipwBkfKapxhBmS5057UxmZOZWG5FLx4Z1Oe36F14MjWxKSAwBQhsdXlFfk0KFDkqTmzZurqKhIe/bs0fDhw8uN69ixowzD0K5du3Teeedp586dMgzDJVA/ceznn38uh8MhPz8/paamSlK5sUFBQWrbtq127NhxGr4zoHZZDh9SfNfSe9jRoWPxSffBwR6sCgAAAEBNWXftUnzPbma76OJLlJ2YJPn5Ven1+baDFb83h3YCAOBWvQzK//jjDy1ZskRxcXGKiYnRsWPHZLfbFR4eXm5sVFSUJOno0aMu/3R3EGdUVJTsdrtsNpuio6PNsRW977Fjx05aa6HdodR9h6r8vdWG/MKiOv+aqIcMQ53+dp+iliWbXVu+WKi82M7S4QzP1YV6g98VKIt7AmVxT1QuPu4sT5cAD2GOD0+x2O0659YbFPpritm36ZvvVdiylfT7kSq/j39oMxXlHHbzBaxqGv+wcsL7cL95KX5XoCzuCZTFPVG5yub49S4oLyoq0oQJE1RYWKhHH31UklRYWChJCnazQjbgz4NL8vPzXcaGhISUG+vvX/ztFhQUmGOtVqvLFi0nji15z8oEBvgp9swWJx1Xm1L3Harzr4n6JeCLOQq9fbTZ3jfxSUU++bjaeLAm1D/8rkBZ3BMoi3sCcI85Pjwh8O231OjRCWZ718uvqcmYe9WuBu8V2v8RpSQ95bL9Cod3Ngz8rkBZ3BMoi3ui5upVUO50OvXYY4/pp59+0hNPPGHuUx4YGGheL8tut0sqDdFLxjoc5Q8tKSoqkiQzGA8MDJTT6ZRhGLJYLOXGugvmAU+y7N+vyHO7mO2i7t2VvXS5Dh84pkgP1gUAAACgZqxbf1XE+X3Mtn3QYOXMmq1j+/9Qkxq+Z0kYnrpsqvJtBxUcGaPYhPGE5AAAVKLeBOUOh0OTJk1SYmKixo0bp9GjS1fLRkZGyt/fX5mZmeVeV3KIZ5MmTVz+WdHYgIAARUREuIy12WzmFi4njm3atOmpf2NAbXA4FHrdUAV8953Zlbl+k5ydOnmuJgAAAAA1V1Cg8AsvkN+OVLPLlrpTRouYWnn7VnFDCMYBAKgGq6cLkIpXhT/88MOaN2+eJk2apPvvv9/lur+/v9q3b6/NmzeXe+2WLVtksVjMAzk7deoki8XiduzmzZvVvn17cwuWTn+GjGXHZmVlae/eveZ1wJMCPy4+6b4kJM99Y1rxSffcnwAAAIBXCnp1iqLOiDZD8pz/faqMzJxaC8kBAED1eTwoz8nJ0b333qvk5GRNmTJFo0aNcjsuISFBKSkp2rt3r9lXWFio5ORk9ejRQ9HR0ZKk6Ohode/eXYsXLzb3K5ekPXv2aOvWrerXr5/Z17dvXwUHB2vBggUuX2vRokVyOBwuY4G6Zt29W1ERoWo05gFJUtFFFysjPVOFt9/h4coAAAAA1ITfpo2KighVyORnJUmFN9yoDFu27New8hsAAE/z+NYrU6ZM0cqVKzVo0CBlZ2dr1qxZLtebNWumK664QqNHj9YXX3yh0aNH68Ybb1SjRo2UlJSktLQ0Pf/88y6vGTdunO644w7deuutGjhwoHJzczV79mw1adKk3JYud911l6ZPny673a4ePXooLS1Ns2bNUt++fXXRRRfVyZ8B4KKoSGH9r5D/+nVmV+aWX+U880wPFgUAAACgxnJzFdGjq6yHDpldtt17ZTQ9w4NFAQCAE3k8KM/PLz6F++uvv9bXX39d7np8fLyuuOIKNW3aVJ988ommTJmiDz/8UHa7XV26dNF//vMfXXDBBS6v6du3r9555x29+eabeuONNxQQEKD4+HhNnDjRXHleYuzYsQoPD9esWbP07bffKioqSiNGjNC4ceNO2/cMVCTwP++o0YSHzXbOe+/LPmKkBysCAAAAcCqCJz+r4FenmO3sL75UUf+rPFcQAABwy2IYhuHpIrxZkcOh7NyCOv2aqfsOKfbMFnX6NXF6WbdtVUT8eWbbPmCgcmZ/LlmrtjsS9wTc4b5AWdwTKIt7onJR4Y08XQI8hDk+aoPf6p8U3v8Ks11w+x3Ke2NalV/PPQF3uC9QFvcEyuKeqFxlc3yPrygHfFpBgcIvvlB+27eZXbbtO2XEcIgPAAAA4JUyMxXZpZMs2dmSJCMgQJm79sqIivJsXQAAoFIeP8wT8FVBr71afNL9nyF5zif/Kz7pnpAcAAAA8EohEx9RVOsYMyTPWrhItmMZhOQAAHgBVpQDdczv500Kv6T0oNjC4Tco94MPJYvFc0UBAAAAqDH/5d8pbMjVZjt/7IPKf+kfHqwIAABUF0E5UFfy8hTRq7usaWlmFyfdAwAAAN7Lcvy4Itu1MdvOxtHK/GWrFBbmwaoAAEBNsPUKUAeCX3heUc2bmiF59py5xdusEJIDAAAA3scwFPLAfS4hedaS75S5bz8hOQAAXooV5cBp5Ld6tcL79zPbBX+9vfike7ZZAQAAALyS/6JFCrtpuNnOf+wJ5T8xyYMVAQCA2kBQDpwOWVmKPKezLDabJMnw81Pm7n0yGjf2cGEAAAAAasJy5A9Fdmhvtp1t2ypz7QYpJMSDVQEAgNrC1itALQt+bKKiWrUwQ/LspK9lS88kJAcAAAC8kWGo0ahbXULyzJWrlJmylZAcAIAGhBXlQC3x/365wq4ZbLaPjhisH7odU/7yexW8KUaxCePVKm6IBysEAAAAUB0B875U6KhbzXbe8y+o4G/jPVgRAAA4XQjKgVNkSU9XRLs2shiGJMkZ1VjbP39Nm797SU5bviQp33ZAKUlPSRJhOQAAAFDPWdLSFHl2rNl2nHOOsr5fqbTUb5Q6rZ/ybQcVHFm6GCYtJVGpy6aW6wcAAN6DoByoKcNQyINjFDTjI7MrK3mZHPHx2jatn5z2fJfhTnu+UpdNZcIMAAAA1LEqB9lOp0KHX6eAJclmV+ba9dpv36Ffp12qorwMs79kMUz6/g1K2/ylOf9nkQwAAN6JPcqBGvBf/I2iIsPMkDx/4mPKyMyRIz6+uG076PZ1FfUDAAAAOD3SUhKVkvSU8m0HJBlmkJ2WkugyLnvKBEVFhZsh+YFH7lBGZo7223coJekpl5C8hNOer/0bPqtwkQwAAPAerCgHqqHcSfdt2ihz3cZyh/gER8b8ORFXuX4AAAAAdSd12dRKn/a07tmjiO5xivrz2pGWgVpySzMZ1m/V5uvndGTn8nKvd2E43HazSAYAAO9CUA5UhWGo0e2jFTj3C7Mra8WPcnTr7nZ4bMJ4pSQ95TKhtgYEKzZhPPsXAgAAAHWoosC6IP2Awq7sJ/81q82+xLtjlN249GPy/vWfSjIq/wIWP7dhOYtkAADwLgTlwEkEzP9KobfeYrbznpusgvEPV/qakuC7bCAuySVAZ/9CAAAA4PRy97Rnx43Z6vNtuqT9kqSfBkVrT9dQN682KgzCpeLFMK26XeeyR3lJf8n8HwAAeAeCcqAClgMHFNmlk9l2nH22sn74UQoMrNLrW8UNKRd+L+OQTwAAAKBOnfi0Z/gxu655/5B57XDHSC29LlyyWCp+A8Mha0BwuXl8QEiUzh4wSa3ihqhxm148NQoAgJcjKAfKcjoVeuNwBXy72OzKXLNOzi5nn/Jbc8gnAAAAULdaxQ2RxV6kVjfdrcjDeWb//AfbKSfE/UrxEwVHtlRswvhKg3B3i2QAAIB3ISiHV6irfb0DPp2l0HvuMtu5r76mwnvuLVeDf0ikLJLsebZq1cMhnwAAAEDdCvr36zrnyUlmO+fDGVqc9qbbeXlZJVuoEIQDANDwEZSj3ktLSTzt+3pb9+1TRNdzzHZRn3hlf/Ot5O/vtoaivAxzbL7tgDbPf7xK9VR2yCcAAACA2mNN2aKICy8w22nnNlbGu2+pVdehyn/hyZO+vmQlOQE5AAC+gaAc9VbpCu7yKz1qbV9vh0NhgwfKf9WPZlfmpi1ynnWWSx2b501UpafdO4v06zcvnrSeig75ZPINAAAA1JK8PEX06SXrb7+ZXV+Oaan8UD9ZFz4tWSwVPulZIjiypRIeXFoX1QIAgHqCoBz1UtkV3O6c6r7egR+8r0bjHjLbuW+9rcJbR5Wro3i1eCUh+Z+K8jKUlpJYpbCcYBwAAACofUEvv6SQl18028uvb6oDHUPMdsmCmzM6Xqb962dV+D75mQf19QtdWFUOAIAPIShHvZS6bGqlIblU8329rTt2KKJ3D7NtT+innC+/kqxWt3XIWVTl905Jekrp+zfoyM7lrBgHAAAAKlGb5xD5rVun8H6Xme3CW/6iL1p9L1nKj823HdD+jZ9X/oaGYY6t7W0fAQBA/URQjnrpZKvFa7Svd2GhwhMuld+WLWaX7dftMlq3rnEdZTnt+dq//lOVrEBnYg0AAACUV2vnEGVnKyLuHFmPHzO7bHv3y4iOVvC0fu63V7H4VWsxTK1t+wgAAOq18ktogXqgstXiwZEtFXf189WaqAZNn6aopo3NkDznwxnKyMypNCQ/WR0Vc92mpWRiDQAAAKCYuydIqztvDp70uKJaNjdD8uyvEovn+NHRkqTYhPGyBgS7vMYaECwZjmrXe6rbPgIAgPqPFeWol2ITxpfbo9waEFztgNz6S4oi+p5vtguHDFXuJ/+TLG6ewaygjs3zH6/WihN3mFgDAAAApSqaH1dl3uy3coXCBw0w2wX33Ke8V/8lqfx2Lq26XVduW8Ti6xUf5OlOTbd9BAAA3oOgHPVSSRhe4z0L8/MVfn4f+e3ZbXbZduyS0bxFjerY/NVEc5/CmmBiDQAAAJQKjoxxG1ZXOm+22RTZoZ0shYWSJCMsTLZtO6SICEnut3NJ2/yl28U21VkMU6NtHwEAgNdh6xXUW63ihijhwaUa9ORWJTy4tMohedAr/1BUsyZmSJ49+/PiRzCrGZKfWEe3Yf+U25OAyohu19ft451MrAEAAIBSFW2LUtG8OWTcQ4pq09IMybMWJ8t24LAZkktV386lVdwQdRv6sqoyv/cLbFTtp1oBAIB3YkW5FznxMcK0UzwVviHy27BB4ZdfYrYLb75Fue+8W+VtVirTKm6I0vdv0P71s9xeDwiJ0tkDJqlV3JByj3vycwIAAACKnThX9g+JlJ9/sOx5tgrnzf5LkhV23TCznf/3h5X/7GS3712d7VxKvk7Z7R5PFN2ur86/9b9V+r4AAID3Iyj3ErV2KnxDlJOjiG7nynrkiNll2/ObjCZNavXLxA16Ro3b9NKv37yoorwMl2uOotLJdau4IfxMAAAAgDLKfqYpysuQNSBY3a79Z7n5s+XYUUW2P9NsO1u0UObGzVJoaIXvX93tXFy3ezwgWfwkw6HgyJYsdgEAwAcRlHuJyh4j9OUJXPDTTyr49dJHKbO/SlRRQr9Tes/KVoS3ihui1GVTywXl/CwAAACAylXpM41hqNHddyrws9nmmKzlK+To2fOk7x+bML7cCvGTbYPIIhcAAFCCoNxLnMqp8A2R36ofFT6gv9kuuOse5b02tZJXVE1VVu7zswAAAACq72Tz6IAFiQq9ZaTZn/fUMyqYMLHK7++6QpxtEAEAQPUQlHuJGp0K3xDZbIqM7SBLXp4kyQgNLT7pPjKyVt6+Kqtc+FkAAAAA1VfRPDrS0kRREaVbqjg6dFTWqtVScHC5sSfDCnEAAFBTVk8XgKqp7qnwDVHI+HHFJ93/GZJnffOtbAf/qLWQPC0l0e3EXXJd/cLPAgAAAKi+cvNow9ClXx7X4Fc2ml2ZP61R1safaxSSAwAAnApWlHsJX36M0H/pEoVdO9Rs548br/zJL9Tq1yjZcqUiJ64W9+WfBQAAAFBTJ86jm6/aqQsXHDOv5b38igrGjPVUaQAAAATl3qTkMcLUfYcUe2YLT5dT61K+fk77N3wmGQ7J4qf2nYbogrummdedzZop8+eUSk+6ryl3W66UcLdanEc6AQAAgOprHdFd505abbaLevZUdvIyKSDAg1UBAAAQlKOeSPn6Oe1fP6u4YRi6IOkPtf+lNCTP+u4HOXr1Om1fv7KDOOOufp5QHAAAADgVDodCh12jgO+/N7syN/wsZ8eOHiwKAACgFEE56oX9Gz6TJLXakadLvzxq9m++JEptk9JO+9ev+IDOloTkAAAAQA2lfP2cAv77vs5fVLrNSu60N1U4+q+eKwoAAMANgnLUC8FZhbrurdKgOivKXwvvaCGnv0Vt6+DrxyaMV0rSUy7br3BAJwAAAFBzO/87Thf/7T2zfbhNkJaNOEOtm+1TnAfrAgAAcIegHJ5lGGr0l5t13YLSkHzh7c1lOyOwuGHxq5MyOKATAAAAqCV2u8KuTNB5GzeaXV/dG6PcyOKPn/s3fKa4Qc94qjoAAAC3CMq9SFpKohnkpjWAIDfgizkKvX202d7QL0rbzwt3GdOm1011Vg8HdAIAAACnJvDtt9To0Qlm+8ero7Xv3FDXQYajjqsCAAA4OYJyL5GWkuiyNUi+7YBSkp6SJK8Ldy379yvy3C5mu6h7d2UvXa7c5JekDZ8VT5wtfmrT6yZWmgAAAABewLr1V0Wc38ds2wcO0pxuv0pylh9cR0+NAgAAVAdBuZdIXTbVZf9sSXLa85W6bKr3BOUOh0KvG6qA774zuzLXb5KzUydJUtygZ+o0GD9xhT5brQAAAAA1UFCg8AsvkN+OVLPLtn2njJgYtfn6Oe1fP6vcS+ryqVEAAICqsnq6AFRNvu1Atfrrm8CPP1JU4wgzJM99Y5oyMnPMkLyulazQL/7zM8wV+mkpiR6pBwAAAPA2Qf+aoqgzos2QPOd/nyojM0dGTIyk4oUwbXrfXLqC3OKnNr1v5qlRAABQL7Gi3FtY/Nzv5VfPH1u07t6tiB5dzXbRRRcre8FCyc+zdTeIFfoAAACAB/ht2qjwSy8224U33Kjc9/8rWSzlxtb1U6MAAAA1RVDuLSo68Ka+HoRTVKSw/lfIf/06sytzy69ynnmmB4sqlW87WK1+AAAAwOfl5iqiR1dZDx0yu2y798poeoYHiwIAAKgdbL3iJYIjW1ar3xPSUhK1bFo/7by+taKiI82QPOfd/yveZqWehOSSFBwZU61+AAAAwJcFT35WUS3OMEPy7C++LN5mhZAcAAA0EKwo9xJndLzM7UE4Z3S8zAPVlJfy9XOyffOxrvugdEX2gY6NlP7h/6lVt2EerMy92ITxSkl6ymX7FWtAsGITxnuwKgAAAMDzTjz0vmVGmC5791fzWsHtdyjvjWkerA4AAOD0ICj3Ekd2Lq9Wf106sGGuuj7wmiKPFZl98+6PUV64v4KXv1Evg/KSfchLPgAER8YoNmE8+5MDAADAZ6R8/Zz2b/jM7XaO/gVO3fDWAQXYDUmS099PWbt/kxEVVcdVAgAA1A2Cci9RX/fUDnr9NZ3z9FNm+4drm+j32EZm29P1VaZV3BCCcQAAAPiklK+fc/vEqiT1WpKuzuuzzfaSkWfoj7bBCv74ehaXAACABoug3EsER8Yo33bAbX9dS/n6OWV//bEGflgagu/r0kg/Dokud9I9e34DAAAA9c/+DZ+V62u+L1/9Zh8x29vOC9PGfo3Ndr7tgFKSihfJEJYDAICGhqDcS3h6T+2SxzL9Cu26+v8OKTSr9PHMuWNbqqCRn5tXWdjzGwAAAKgn0lIStfWbF2XPy3DpD8xzaPi00kU5BcFWzb8vRkWB1nLv4bTnK3XZVIJyAADQ4BCUewlP7qld8lhm1x9siluVafZ/d0NTHTwrpMLXtek9kgk0AAAAUA+kpSRqS+ITMhz20k7D0PmL0nXWlhyza/GtzXSsZVCl71Wft1cEAACoKYJyL1Kyp3bqvkOKPbNFnX3d3MQZuvmTQ2Z7Z7dQrR3QuNw2KyfyD4lS3KBn6qI8AAAAAJVIS0nU5q8eczm0M2ZXni7/4qjZ3nJhhFIujqzS+7G9IgAAaIgIyuFWWkqidsyfrMFTt+qqgj9PurdIcx9sJXtw+UcwT2QNCNY5AybVRZkAAAAAKpCWkqhfFj4jR2Gu2ReU49D1b5Zus5Id4aeFd7aQI6DyOf6J2F4RAAA0RATlKCctJVH+f7tH164t3Wal5KT7k7OoVbfr2HIFAAAA8JDv37lGOUd3unYahi6af0xtt+eZXV+Pbq6M5oHVem//kCjm+gAAoEEiKPdhqz+5Xcf3rnLpa/Zbvq749IST7nuHaeMVjcu+tBKGjuxcXksVAgAAAA1bWkqieQ5RWi2cQ7Tk9UtVmP2HS1+b7bm6+KtjZnvjZZHadn5EDd7dwpOjAACgwSIo91FlQ/KAfKeun5Yma/EuK8Un3d8bo6Kgqj+CWYLDfQAAAICTS0tJVErSU3La8yVJ+bYDSkl6SpJqFJanfP2cS0geklWka98unZtnNA3QN6Oby+lX8VlDlWnTeySryQEAQINFUO4D0lIS9es3L6ooL6P8RcNQ/KJ0dajmSfeV4XAfAAAA4ORSl001Q/ISTnu+UpdNrVIg7W71uCTJMHT5nKOK2VP63kl3tlBmk4BK388/JEpFeTYFR8bojI6X6cjO5cq3HVRwLax0BwAAqO8Iyr1ITR7LdLs/4Z9idufp8jmlJ92n9I3QlkuqdtJ9CWtAsMvk3hoQzOE+AAAAQBVU9CTmyZ7QTEtJ1OZ5E9xea5eSo74Lj5vtdVdGaUev8Erfzy+wkc4d/BxBOAAA8GkE5V6ieDI8UVLx3ij5tgN/tl0fy0z5+jntXz+r0vcqe9J9ToSfkqp50n2JuKufN8N7VpoAAAAAVRccGaN82wG3/RWpaL4fmlGkoe+WBuxHWgZqyS3NZFgr3malTe+bFTfomWpWDQAA0DARlHuJLUlPqyQkL2VoS9LTahU3pNJVJaXDDV04/5jOPMWT7ktY/ALUKm4IwTgAAABQA05HUbX63YXkFqehK2b9oTPSCs2+xLtjlN244o96Foufug77B/N4AACAExCUewnDnldhf1VC8tapubpkXulJ95sui9TWGp10X8KirkNeOoXXAwAAAL7N7f7iFfSv/uR2Hd+7yqWv48Zs9fk23Wz/NChae7qGVvo1gyNb8hQoAACAGwTlDUDqsqkVXgvJcujat0sf58xo6q9vRrWQ078GJ91b/CTDweQaAAAAqANpKYnakvR0uUUz4cfsuub9Q2b7YLsgfXfjGZLF3Rzfqm7XvsLcHQAA4CQIyr2GReW3Xinud7evoQxDl31xVC13n3DS/R0tlNm08pPu3bH6BWrA45ur/ToAAAAANeNuBbnVYWjAjMOKOmI3++bdH6O8cPcf66wBIRrw6MbTWicAAEBDQVDuJSwBwRVsv1I+PG/3S476JlXvpHtJkjVAcha5vqfFqrghL1a/YAAAAAA1VjYk77ImUz2/s5ntFUObaH+XRhW/gcWquKsnn67yAAAAGhyCcknZ2dl6/fXX9c033yg9PV2tW7fWzTffrFGjRsni9vHFulfRHuUnCrUVaeh/Sk+6PxoTqOS/VHDSvTVA3Ya+VO4RzLSURKUum6p820EFR8awxQoAAABwuvy5tWFlov4o1KAPD5vt32JDtHJYkwq2WSnmHxKlcwZMYh4PAABQDQTlkh588EGtXbtWI0eOVJs2bbRu3Tq99NJLys3N1f333+/p8opVMom2OA31+/SImv1eYPZVeNK9NUCDnthS4ZdpFTeECTUAAABQB6LPjC+3cryEn92pwe8fUlhm6WeAL8e0VH6oXwXvZtGgJ7eehioBAAB8g88H5StXrtSPP/6oF154QTfeeKMkafTo0Xr44Yf17rvv6rbbblNYWJiHq1SFIXmHTdmKX3ziSfeNtadrxfUGBIXWemkAAAAAqu/4b+vc9settKnrykyzvfz6pjrQMaTC92nT+2bFDXqm1usDAADwJT4flC9btkyBgYEaNmyYS/9NN92kBQsWaNWqVerfv7+HqqtY+HG7rvm/0pPuD50ZpGU3VXTSfSl7nq3S6wAAAADqiNPu0ow+WKABH/9htnfHNdLqQdEVzvEtFj91HfYPnggFAACoBT4flG/fvl2tW7dWYGCgS3+nTp0kSampqfUqKLc4DA34+LAa/1E6qf7qvhjlRlTtRxkcGXO6SgMAAABQA/6FTg39z0EF5TnNvi8ebKnCkIq2WZGsfoGKG/IiITkAAEAt8fmg/NixYwoPDy/XHxUVZV6vT0b+63fz30960n05FsUmjK/9ogAAAADU2I2vp5n/vvSmM3S4XXCl49lqBQAAoPb5fFBeWFio4ODyE1Gr1Sqr1ar8/PzKX293KHXfoUrH1KbVAxsr+lCh1vVvfNJtVlz4BavZBQ8rJ7xPndaLupFfWMTPFeVwX6As7gmUxT1Rufi4szxdAjykruf4Gy+LVGCBU5svjap0XIfbvjP/nf92Gz5+R8Md7guUxT2BsrgnKlfZHN/ng/LAwEA5nc5y/U6nU06n022I7vL6AD/FntnidJVn2vXnP3d3C9PubpWP7XbtFB7B9DGp+w7VyX0I78J9gbK4J1AW9wTgXl3P8bedH1HpuOh2fXX+rf897fWgfuF3NNzhvkBZ3BMoi3ui5nw+KG/SpIkyMjLK9aenp0uSoqOj67iimiMgBwAAABqOQU9u83QJAAAAPsPq6QI8rVOnTtq9e7eys7Nd+jdv3mxerw8qmyQPenKbBj25jZAcAAAA8CJtet9c4TVCcgAAgLrl8yvKExISNHPmTC1atEg33HCD2Z+UlKSQkBBdeOGFHqzOVclkmUcoAAAAAO9XciDn/g2fSYZDsvipTa+bOKgTAADAA3w+KL/44osVHx+vyZMna8eOHWrZsqU2bNigRYsW6aGHHlJ4eLinSwQAAADQQMUNekZxg55hMQwAAICH+XxQbrFY9NZbb2nq1KlKSkpSRkaGWrdurccff1yjR4/2dHkAAAAAAAAAgNPM54NySQoPD9fTTz+tp59+2tOlAAAAAAAAAADqmM8f5gkAAAAAAAAA8G0E5QAAAAAAAAAAn0ZQDgAAAAAAAADwaQTlAAAAAAAAAACfRlAOAAAAAAAAAPBpBOUAAAAAAAAAAJ9GUA4AAAAAAAAA8GkE5QAAAAAAAAAAn0ZQDgAAAAAAAADwaQTlAAAAAAAAAACfRlAOAAAAAAAAAPBpBOUAAAAAAAAAAJ9GUA4AAAAAAAAA8GkE5QAAAAAAAAAAn0ZQDgAAAAAAAADwaQTlAAAAAAAAAACfRlAOAAAAAAAAAPBpBOUAAAAAAAAAAJ9GUA4AAAAAAAAA8GkE5QAAAAAAAAAAn2YxDMPwdBEAAAAAAAAAAHgKK8oBAAAAAAAAAD6NoBwAAAAAAAAA4NMIygEAAAAAAAAAPo2gHAAAAAAAAADg0wjKAQAAAAAAAAA+jaAcAAAAAAAAAODTCMoBAAAAAAAAAD6NoNxLZGdn64UXXtAll1yiuLg4DRw4UB999JEMw/B0aaiB48eP69VXX9VNN92kCy+8UD179tSwYcM0c+ZMFRUVuYzdt2+fxowZoz59+qhHjx4aOXKkVqxY4fZ9V6xYoZEjR6pHjx7q06ePxowZo3379pUbZxiGPvroIw0cOFBxcXG65JJL9MILLyg7O/u0fL+oGafTqbvvvludO3fWunXrXK5xX/gWu92uGTNmaOTIkerTp4/i4uI0YcIElzHcE77jyJEjeu6559S/f391795dV111lV588UUdP3683FjuC6B+Y47fsDDHR1Uwx0cJ5vg4EXP8+sFiMAvzCrfffrvWrl2rkSNHqk2bNlq3bp0WL16scePG6f777/d0eaim77//Xg888IAuvfRS9ejRQ5K0ZMkSbdq0Sddff71efvllScWT7aFDh0qSRowYoUaNGikpKUnbtm3Thx9+qPj4ePM9V69erdtvv11dunTR1VdfrdzcXM2ePVuSNH/+fEVHR5tj33rrLb3xxhu66qqr1Lt3b/3+++/69NNPFR8frw8++KCO/hRwMq+88or585g5c6bOO+88SdwXviYjI0N33HGHtm/frquuukrdu3dXXl6eHA6Hxo4dK4l7wpccPXpU1113nQoKCnT99derRYsW2r59uxITE9WiRQvNmzdPYWFhkrgvAG/AHL9hYY6PqmCOD4k5Plwxx69HDNR7K1asMGJjY43PPvvMpf/vf/+70aNHDyMrK8tDlaGm9u/fb6Slpbn0FRUVGcOHDzdiY2ONQ4cOGYZhGK+99ppxzjnnGDt37jTH5efnG1deeaVxyy23uLx+xIgRRv/+/Y38/Hyzb+fOncbZZ59tvP7662ZfZmam0b17d+ORRx5xef1nn31mxMbGGj/++GOtfZ+oublz5xpnn3228fe//92IjY011q5da17jvvAt999/v9G9e3dj48aNFY7hnvAd06ZNM2JjY42ff/7ZpX/27NlGbGysMWfOHLOP+wKo35jjNzzM8XEyzPFRgjk+TsQcv/5g6xUvsGzZMgUGBmrYsGEu/TfddJNyc3O1atUqD1WGmmrdurVatmzp0ufn52f+zd/BgwclSUuXLlWvXr3UoUMHc1xQUJCGDh2q9evXKz09XVLx3yhu2rRJQ4YMUVBQkDm2Q4cO6t27t5YsWWL2rVq1Snl5ebrhhhtcvv7QoUMVGBjoMhaesXHjRj399NOaOHGiLrroonLXuS98x5YtW7RkyRI98MAD5so0d7gnfMfRo0clSWeddZZLf69evSRJubm5Zh/3BVC/McdveJjjozLM8VGCOT7KYo5ffxCUe4Ht27erdevWCgwMdOnv1KmTJCk1NdUTZeE0OHTokCSpefPmKioq0p49e8r9opSkjh07yjAM7dq1S5K0c+dOGYbh8ovyxLG7d++Ww+GQVHq/lB0bFBSktm3baseOHbX6PaF6Dh48qLFjx+qaa67RX//613LXuS98y8KFC2WxWDRy5EhJUmZmpgoKClzGcE/4lpKw5ZlnnnHZL/DHH3+Uv7+/LrvsMkncF4A3YI7vO5jjgzk+TsQcH2Uxx68//D1dAE7u2LFjCg8PL9cfFRVlXof3++OPP7RkyRLFxcUpJiZGx44dk91ur/RnX/K3jiX/LNmzquxYu90um82m6Ohoc2xF78v95Dl5eXkaM2aM2rRpo+eee87tGJvNxn3hQ3755RedccYZmjZtmubPn6+MjAxJxRObJ554QhdddBH3hI8ZPHiwdu3apbffflsrVqzQsGHD1KZNG7399tv6xz/+obZt20ridwXgDZjj+wbm+GCOj7KY46Ms5vj1B0G5FygsLFRwcHC5fqvVKqvVqvz8fA9UhdpUVFSkCRMmqLCwUI8++qik4p+7JLc/+4CAAEkyf/YlY0NCQsqN9fcv/s+85G+oCwsLZbVaXR69OXEs95NnGIahxx57TOnp6ZozZ0651WUluC98y7Fjx5Senq6DBw/qb3/7m5o2baq0tDR9/PHHuvvuuzVjxgy1atVKEveEL2nSpImaN2+uyy+/XMnJyUpLS1OHDh3Upk0bcwy/K4D6jzl+w8ccH8zx4Q5zfLjDHL9+ICj3AoGBgXI6neX6nU6nnE6n2/9A4D2cTqcee+wx/fTTT3riiSfMR25KJlHufvZ2u11S6S/HkrElj82cqKioSJLMX3gl95NhGLJYLOXGcj95xooVK5ScnKzp06fLbrebj+hmZmZKktLT03Xo0CHz//y4L3yD3W5X7969NX36dJf+wYMHq3///vroo4/07LPPSuKe8BWfffaZXnrpJc2ZM0ddunSRYRhavny5Jk+erFGjRmnmzJnq2rUr/x8CeAHm+A0bc3xIzPHhHnN8lMUcv/4gKPcCTZo0MR/FOVHJBv3R0dF1XBFqi8Ph0KRJk5SYmKhx48Zp9OjR5rXIyEj5+/ubk6gTlfzsmzRp4vLPisYGBAQoIiLCZazNZjMfzTlxbNOmTU/9G0O1FRQUqKioSPfdd5/b62PHjpVUfMgG94XvCA8PV15eXrn+5s2bq0uXLtqzZw+/K3zMe++9p4suukhdunSRJFksFl1++eWKiYnR0KFD9cknn+iVV17hvgC8AHP8hos5Pkowx4c7zPFRFnP8+oPDPL1Ap06dtHv3bpcN/SVp8+bN5nV4H7vdrocffljz5s3TpEmTdP/997tc9/f3V/v27c2f84m2bNkii8ViHrTQqVMnWSwWt2M3b96s9u3bm4/WlNwvZcdmZWVp79693E8e0qNHD73zzjvl/lfyweqRRx7RO++8o4iICO4LHxIbG6tdu3aZqwNOZLPZ1KhRI35X+JhDhw7Jz8+vXH/J47kl+wdyXwD1H3P8hok5Pk7EHB/uMMdHWczx6w+Cci+QkJCgoqIiLVq0yKU/KSlJISEhuvDCCz1UGWoqJydH9957r5KTkzVlyhSNGjXK7biEhASlpKRo7969Zl9hYaGSk5PVo0cPc6VRdHS0unfvrsWLF5v7UEnSnj17tHXrVvXr18/s69u3r4KDg7VgwQKXr7Vo0SI5HA6Xsag7TZs2VUJCQrn/lfyNcs+ePZWQkCB/f3/uCx8ycOBAZWdna8aMGS79GzZs0L59+3TJJZdI4neFLzn77LO1atUq7dmzx6W/ZI7QrVs3s4/7AqjfmOM3PMzxURZzfLjDHB9lMcevPyyGYRieLgKVMwxDo0aN0s8//6ybb75ZLVu21IYNG7Ro0SI99NBDGjNmjKdLRDU9++yzmjVrlgYNGqTzzz+/3PVmzZrpiiuu0NGjRzV06FAFBAToxhtvVKNGjZSUlKStW7fqgw8+0AUXXGC+ZtWqVbrjjjvUtWtXDRw4ULm5uZo9e7YMw9D8+fNdHt+dNm2apk+frsGDB6tHjx5KS0vTrFmz1Lt3b3344Yd18UeAKpo7d64ef/xxzZw5U+edd54kcV/4mIceekjffPONBgwYoJ49e+rAgQOaM2eOWrdurVmzZiksLIx7woesXbtWt99+u4KDgzV8+HDFxMTo119/1YIFC9SuXTvNnj3bPK2e+wKo35jjNzzM8VFVzPHBHB8nYo5ffxCUe4msrCxNnTpVixcvVkZGhlq3bq2RI0dq9OjR5TbaR/332GOP6csvv6zwenx8vD7++GNJ0u7duzVlyhStXbtWdrtdXbp00dixY82/ZT7R8uXL9eabb2r79u0KCAhQfHy8Jk6cqHbt2rmMMwxDH330kWbNmqW0tDRFRUVp4MCBGjdunMLCwmr1e8WpcTeJlrgvfInD4dCMGTM0c+ZMHTp0SNHR0RowYIAeeughc7IkcU/4ki1btuitt97Shg0blJ2drebNm+uqq67SmDFjXO4JifsCqO+Y4zcszPFRVczxwRwfZTHHrx8IygEAAAAAAAAAPo09ygEAAAAAAAAAPo2gHAAAAAAAAADg0wjKAQAAAAAAAAA+jaAcAAAAAAAAAODTCMoBAAAAAAAAAD6NoBwAAAAAAAAA4NMIygEAAAAAAAAAPo2gHABQ70ybNk2dO3fW559/7ulSAAAAANQC5vgA6juCcgBoAB5++GF17txZnTt3VnJy8im91759+9S5c2fddttttVQdAAAAgOpijg8AdYugHAC8XHZ2tpKTkxUWFiZJmjt3rocrAgAAAHAqmOMDQN0jKAcAL5eUlKT8/HyNGTNGrVq10vLly3Xs2DFPlwUAAACghpjjA0DdIygHAC83d+5c+fv7a9iwYbr22mtVVFSk+fPnux2bl5end999V9dee6169Oih+Ph43XDDDZo2bZoOHTqkuXPn6qqrrpIkrVmzxnzUs3Pnzpo2bZr59Tp37qypU6eWe//ff/9dnTt31s033+zSv2XLFt1zzz0aMGCAevfurXPPPVcXXXSR7rvvPq1fv76W/0QAAAAA78YcHwDqnr+nCwAA1NyuXbu0adMm9evXT02aNNF1112nt956S3PnztXtt9/uMtZms2nUqFHatm2bOnXqpGuvvVZ2u13r1q3T9OnTJUmXX365brjhBs2ZM0ctWrTQ4MGDzdf37NmzxnXu3r1bP//8s7p27ar4+HgFBQUpLS1NK1eu1A8//KD3339fF1xwQY3fHwAAAGgomOMDgGcQlAOAFyvZq3D48OGSpDZt2qhPnz5as2aNtmzZoq5du5pjJ0+erG3btumOO+7QxIkTZbFYzGtLly5VRkaGunbtqoiICM2ZM0dt27bVo48+Wit1Dhw4UEOHDnX5mpK0YsUK3Xnnnfrvf//LJBoAAAAQc3wA8BSCcgDwUg6HQ1999ZUaN26syy67zOwfPny41qxZo7lz55qT6GPHjmnhwoWKiYnR+PHjy01m+/Xrd1prDQoKkiQdP35cP//8sw4cOKCcnBxlZmZKkvbu3Xtavz4AAADgDZjjA4DnEJQDgJf64YcfdOTIEY0aNUoBAQFm/4ABAzR58mQlJSXp8ccfV2BgoLZs2SKn06nevXsrMDCwzmv9448/9MILLyg5OVkOh6PcdbvdXuc1AQAAAPUNc3wA8ByCcgDwUiWPZKampuqxxx5zuRYaGqo//vhDycnJGjx4sLmqo1mzZnVep8Ph0J133qnU1FT17t1bI0aM0Nlnn61mzZqpUaNGLo+OAgAAAL6MOT4AeA5BOQB4ofT0dC1dulSS9NNPP1U4bu7cuRo8eLDCw8MlSUeOHDnlr13ySKe7VSPurF+/XqmpqerRo4c++eQTWa1W81pRUdEp1wMAAAA0BMzxAcCzCMoBwAstWLBAdrtdEyZM0F133VXuumEY6tevn1auXKnDhw/rnHPOkVQ8oS0sLKz00Uw/Pz9JFT8qGRkZKUnKyMioUq2HDx+WJPXo0cNlAg0AAACgFHN8APAsfpsBgBeaO3euLBaLrrnmGrfXLRaLrr76ajmdTs2bN0/NmzfXpZdeqgMHDujf//53ufErV65UcnKyJKlp06by9/fX1q1blZ6eXm7sWWedZb4mNzfX7D9+/LjeeOONcuNbt24tqXgC73Q6zf7c3Fz985//rMZ3DQAAADRczPEBwLNYUQ4AXmbbtm369ddfFR8frxYtWlQ4bsiQIXrvvfc0d+5c3XvvvXr++ed1880367333tPy5ct13nnnKT8/Xxs3btSePXv0+OOPS5KCg4OVkJCgb7/9VjfeeKP69u0rm82myy67TMOHD1e7du105ZVXKjk5WTfddJMuuOACHT9+XMuXL5e/f/n/W+nZs6fi4+O1Zs0aDRs2TL1791ZeXp5WrFihwsLC0/bnBAAAAHgL5vgA4HmsKAcAL/PFF19IKp4kV6Zz586KjY3V3r17tX79erVo0UJz587V3XffLYfDoS+++EJLlixRRESEJkyYoKFDh5qvfemllzRixAgVFhZq3rx5+uWXXxQaGmpef/nll3X99dfryJEj+vTTT7Vt2zbddddd+vjjj93W8s477+i2225TZmamvvzyS/3888+67rrrlJSUVAt/IgAAAIB3Y44PAJ5nMQzD8HQRAAAAAAAAAAB4CivKAQAAAAAAAAA+jaAcAAAAAAAAAODTCMoBAAAAAAAAAD6NoBwAAAAAAAAA4NMIygEAAAAAAAAAPo2gHAAAAAAAAADg0wjKAQAAAAAAAAA+jaAcAAAAAAAAAODTCMoBAAAAAAAAAD6NoBwAAAAAAAAA4NP+H/qZoqi2VH8GAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compare model performance\n", "\n", "# Create figure and axes\n", "f, ax = plt.subplots(figsize=(25,25), nrows=3, ncols=2, sharey=True)\n", "\n", "# Create list of titles and predictions to use in for loop\n", "pred = [y_pred_lm, y_pred_ridge, y_pred_lasso, y_pred_DT, y_pred_RF, y_pred_xgb]\n", "title = ['Linear Regression', 'Ridge Regression', 'Lasso Regression', \n", " 'Decision tree', 'Random Forest', 'XGBoost']\n", "ax = ax.flatten()\n", "# Loop through all axes to plot each model's results \n", "for i in range(6):\n", " rmse = round(np.sqrt(mean_squared_error(pred[i], y_test)), 4)\n", " ax[i].set_title(title[i]+\" (RMSE: \"+str(rmse)+ \")\")\n", " ax[i].set_xlabel('Actual')\n", " ax[i].set_ylabel('Predicted')\n", " ax[i].plot(y_test, y_test,'r')\n", " ax[i].scatter(y_test, pred[i]) " ] }, { "cell_type": "code", "execution_count": 13, "id": "23496cb2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.304" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Understanding the Impact of RMSE in comparison to the Range of our Target Variable\n", "Target_range = df['CO2_emission'].max() - df['CO2_emission'].min() \n", "Absolute_RMSE_XGB = (np.sqrt(mean_squared_error(y_pred_xgb, y_test)/ Target_range))\n", "# Divided MSE by Range to get MSE @ 0 to 1, Then got RMSE by sqrt(MSE)\n", "# 9113.56\n", "round(Absolute_RMSE_XGB, 3)" ] }, { "cell_type": "markdown", "id": "0c80bffb", "metadata": {}, "source": [ "### Observation:\n", "**Based on Model Accuracy** We can confidently say;\n", " 1. Tree-Based Modelling is best suited for this dataset\n", " 2. That the Tree-Based Model (XGBoost) has outdone the other models with a Root Mean Square Error of `29.018`. Our CO2 Emission has a range of `0 to 9113`, hence For this datum, an RMSE of 29 is Very small and Well Acceptable. Meaning, scaling it in the range of 0 to 1, the RMSE is at `0.304`, which is close to Zero, which is a good result.\n", "\n", "Root mean square error or root mean square deviation is one of the most commonly used measures for evaluating the quality of predictions. `It shows how far predictions fall from measured true values using Euclidean distance.` Hence our Close to Zero Value is a Very Good Result.\n" ] }, { "cell_type": "markdown", "id": "43b2d523", "metadata": {}, "source": [ "\n", "## 5. Model Explaination & Interrogation\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n", "| ⚡ Description: Model Explaination & Interrogation⚡ |\n", "| :--------------------------- |\n", "| In this section, haven obtained our best Model based on Accuracy (RMSE), it is very essential we also determine the Interpretability of our model. The development of ML/AI is creating new opportunities & possibilities, improving lives around the globe but on the other hand, it's raising concerns/questions on the best way to build` Fairness, Explainability, Privacy, and Security` into the systems, \n", " * Fairness: Speaks of understanding the reasons behind the WHY of predictions, treating all users fairly\n", " * Explainability: Which is the HOW of the WHY\n", "\n", "All in the bid to answer questions such as;\n", "\n", " 1. What features are most important\n", " 2. Which is influencing what\n", " 3. Which Feature is important for class A or Class B. \n", "\n", "The choice of Explainer is greatly dependent on the `Data Type`, Hence, We will be adopting the `Glass Box Modelling Technique` in the bid to understand the criteria used by the model to reach its prediction results and conclusion.\n", "\n", "`We also will be interrogating for any inconsistencies or contradictions from what our ExExplanationays.`\n", "|\n", "\n", "---\n", "\n", "\n", "Sometimes knowing exactly how a model comes to its decisions is very important, and `sometimes favoring explainability, is far appreciated than accuracy`. Hence, Selecting the appropriate technique is very dependent on the kind of problem you want to solve. Some problems require more explainability than others regarding which features it finds important or even what it looks at. In some cases, it is not terribly important for humans to fully understand how the model works or how it reaches its decisions. But where this need exists, we look at several techniques to help humans better understand how the model comes to its predictions.\n" ] }, { "cell_type": "code", "execution_count": 14, "id": "a70c15d7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAFpCAYAAADQsrrqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABzQUlEQVR4nO3dd1hT598G8Dts2SKKAuJEsYqiKM6qCG5RFBGc1Lr3auv6WUettrUtVtx748KFClpwb9SqaN2I4EKQLSIr7x+8pMaE4UgOSe7PdfW6ynlOyJ0InHzPs0RisVgMIiIiIiIiUllaQgcgIiIiIiKiz8PCjoiIiIiISMWxsCMiIiIiIlJxLOyIiIiIiIhUHAs7IiIiIiIiFacjdICSyssTI0+cJ9jzZ2XnQk9XW7DnLw00/T3g69fs1w/wPeDr1+zXD/A90PTXD/A94OvX7NcPCP8e6GgX/tyqU9iJ85Ce8U6w57//5CVqVako2POXBpr+HvD1a/brB/ge8PVr9usH+B5o+usH+B7w9Wv26weEfw/MTQwLbeNQTCIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFqcx2B/R5zp8OQ3aO+LO/z4tHkZ/8WF0dEVq0dv/sDEREREREJI2FnYbIzhEj4/w4QTMYtggQ9PmJiIiIiNQVCzsiIiIiUmnZ2VlIS01B5tu3yMvNVdjz6Obk4umTxwr7/qWdpr9+4Mu/Bzq6ujA1M4ehkfHnf68vkIeIiIiISBDZ2VmIj3sJYxNTVKhoDm1tHYhEIoU8V+a7bBjo6yrke6sCTX/9wJd9D8RiMbLeZeJ1Qjx0dPWgp6f3Wd+Pi6cQERERkcpKS02BsYkpTM3MoaOjq7CijuhLE4lE0DcoA1Mzc6QmJ37292NhR0REREQqK/PtWxgaGQkdg+iTGZQxRFZW1md/HxZ2RERERKSy8nJzoa3N2UWkurS1tb/I3FAWdkRERESk0jj8klTZl/r5ZWFHRERERESk4ljYERERERERqTgWdkRERERERCqOM02JiIiISG2dPx2G7Byx0DFk6OqI0KK1+yc/ftTwobh27arUsUaNnLFi9drPjVZqHAo+iJ/mzsZ330+Ft4+v0HFKPRZ2RERERKS2snPEyDg/TugYMgxbBHzW4907dIDDV18haPdu6OjooEfPnrC1tf1C6UgVsbAjIiIiIlIxXr37AAAOBwfD0LAMJkycLHAiEhoLOyIiIiIiNXL1yhWMHjkM/QYMRMuWrbBuzWr8++9tGBgYoJ2bO8ZPnIy3b99i88b1OHE8HK9fv4aNrS1GjxmHNm1dpb6Xp0cXZGS8xcYt27Bm9UpcvHAe6WlpqF6jBkaPGY+mzZrJPP/pUyexbetm3L93D2KxGDXt7dGv/0C0c5Meerpm1UqsXbMKv/+5GMnJydi9cweioh7BzMwMnj29sHbNKgDA74t+xe+LfpU87tKVfwAA+/YG4cihYLx4+QLJSUnQ0dFBlapV0a1bd/Tu4yO1jUDBcy36wx+pqanYvWsHHkdFwdDQEO07dsK48ROhp6cnlS83Nxd79+xGcPBBRD9+DC0tEWra10Knzl3QtZsHypQpAwB49+4dtm/dgtDQI3j+7Bn09fXhWL8Bhg0fia/q1v2Mf8mPw8KOiIiIiEgNHQ4Oxs7A7WjarDm69/DE5cuXsDdoD6KjoxH16CFEWlpo3boNcnJycOxoKGZM+wFB+w+iYsVKUt8nPT0NPr17wsqqItq0aYukpCScP3cWkyeOw4pVa1C/gZPk3B2B2+H/xyKYm5ujZauvoa2tjUuXLmL61O8xZux4DPpmsEzOXxf+jJSUFLRo2QoNGjbEmzdv4NigAZq3aIEL58+jiYsL7GvVlnnc1SsRSE5ORoMGTrCwsMDbt29x9eoV/L7oV7x+/RojR4+ReczPP83F27dv0bxFS9Su7YDLly9h145AGBgYYMzY8ZLz8vLyMO2H73D61ElUqVIV3Tw8kPnuHS5fvIhFvy5EtWrV4dy4MTIzMzF29AhE3ryJRo2c4ezcGMnJyTh75gyuRHyL5avWwNGx/mf8K5YcCzsiIiIiIjVkbGyMPxb/JSks0tLS0MvTA9euXkFXj+6Y8t0PMDIyAgDU+aoufv/tFxw6eBBDh4+Q+j4ikQgTJk1Bl249YFhGHwBw/txZTJowDiuWLZUs2PL82TME/OWPqtWqYdmKVbC0LA8ASExMxLgxI7FyxTK0btsWVatWk/r+luXLY/nKNbCrUkXqeEJ8PC6cP482bVzlLp7yvx/nwMDAQOrY27dv4evdCzt3BmLo8BHQ0ZEud2rUtMf/Zs2GtY0NACAlJQV9vDyxZ/cujB4zTtLLt2fXTpw+dRKdOnfBj3PmQVtbGwCQ/uYtQo/kD38FgHVrVuH2rVv47fc/pXo7Hz+Ogt+A/lgW8BdWrl5X+D/SF8TtDoiIiIiI1FAbV1ep3iITExPY29cCAIwYMUpS1AGAc+PGAIDY2FiZ72NkZIze3n2gpfVf6dCiZSvUru2Af/65hvT0dABAaMgR5OTkYOiwEZKiDgAsLCwwctQY5Obm4sjhQzLff+iwETJFXUkUFHX379/DkUPBCNy2FVs3b4Kunh4y3rxBUlKizGP69R8gKeoAwMzMDF/VrYeMN2/w+nWC5HhQ0G7o6xtgwqQpkqIOAHR0dNDbuw/qfFUXeXl52Lc3CC1btpIZwlrQo3fzxg28e/fuo1/bp2CPHRERERGRhjA2NgYA5OblfXDcBED+sMuSql6jBu7du4unT2Ph4FAH9+7dBQA41pcdeli/fgMAwL27dz8ptzzXrl7BrwsXIDr6sdz27OycEn0fU1NTAEBqSiosLcsjIyMD0Y8fw6FOHVhYWBT6uCdPopGWloYzZ06jaeOGhZ6XnJwMKyurEmX5HCzsiIiIiIg0xPu9bu/T/v/jYnHJ9/wrKBLfZeb3SL15k99zZ2hoJHOukXH+sY8pHIsSE/MEE8ePQ25uDvoNGIhWrVrD1tYW5mXLYvasmThxPLzE36ugR67gtRf0QL7f6yhPakoqAKC2Qx1Jj6c8BYusKBoLOyIiIiIi+mjx8fEAAFOz/B4vI6P8Qi8x8bWkF6xAQkL+MMeCnsHPdTQkBO/eZWLKdz+gj2/fL/I9CxgaGgKA1NBMuecZ5Z9XrVq1UrHdBOfYERERERHRR8nOzsbt27dgYmKCKlWqAgBq1c5fufLmjRsy50fevCl1TkkU9KRlZ2fLtCUmvgYA1FPAipPGxsaoVKkSHkdFITk5qdDzqlatBgMDA1y+fElp8+iKwsKOiIiIiIgKJRbnISdHer7ati2bEf/qFTy695AM7+zUqQu0tXWwacN6vHr1SnJuYmIi1q5ZBS0tLXTp2q3Ez1u+fP5QyGtXr8i0Va5sBwC4ceO61PHTp07in2tXS/wchenarTsyMzOxZLE/8t6bjygWixEacgT37t6Frq4uunbzQOLr11gwfx4yMjKkvsfr16+xfu2az85SUhyKSURERESkYoL27MLTp0+RmZmJnJwc/LX4T9ja2sKrd58v/lypqanw6NoJzs5NULasOe7fv4fr//yDmjXtMWzEKMl5Nra2GDNuHJYs9seAvj5o2qwZtLS0cfnyRSS+fo1Ro8eiWrXqJX5ex/oNYFGuHM6cOY1xY0ahUqVKePH8OQKWr0TXbh7YtHE9Av7yx/V/rsHSsjzu37+HyJs35M7x+1iDvhmMy5cu4vChYNy+dQvOTZogMzMT165ewYvnz7F8ZX7BNmbcBNy+fQuhIUcQcfkyGjZqBHPzsoh5Eo1//rkGS0tLfDt02GfnKQkWdkRERESktnR1RDBsESB0DBm6OqLPenzYsWO49v89U+/eAdu3bkGjRs4KKeyMjIzh0b0HjoeF4dWrOJiYmMCnbz8MGz5SMh+tQP8Bg2BrWxnbtm7B6VMnAQA17e3x3fdT4ebe/qOeV19fHwHLVmDxn7/j9q1buH3rFmr//1BOM3NzrFi9Fn/+/hsuX7oIPT09ODrWx4rVa7EzcPtHLZ5S2HMvXbEK27duwd/HjuLQwQMwMCiDKlWrwu+bb1G3Xr3/f2+MsHrtBuzauQNhfx/FubNnAACVKlmja7fuH9VD+blE4o9Z+kZAObm5SM8Qbuzq/ScvUatKRcGe/3OdOv43Ms6PEzSDYYsAtGn3cb/QpYmq/wx8Lk1//QDfA75+zX79AN8DTX/9QOl8D54+eQzbKtWKP/ELyHyXDQN9XaU8V2nh6dEFGRlvcSz8hEa+/g8p6j0o6c+xuYlhoW2cY0dERERERKTiWNgRERERERGpOBZ2REREREREKo6LpxARERERkVz7g48IHYFKiD12REREREREKq5EhV16ejrmz5+Pr7/+GvXq1UOnTp2wadMmfMqCmnl5eRg2bBhq166NK1dkNxskIiIiIiKij1OioZjjxo1DREQEfH19UblyZVy5cgULFixARkYGRo0aVfw3eM+iRYtw+vTpTwpLRERERPQhsVgMkejz9oUjEsqX2n2u2B67c+fO4fz585g9ezb+97//wc/PDwEBAejWrRtWr16N9PT0Ej/Zvn37sGnTJnTrpryN+oiIiIhIfWlpayM3N0foGESfLDc3F1ra2p/9fYot7E6cOAE9PT306NFD6nifPn2QkZGBCxculOiJ/vnnH/z444/44Ycf0LJly09LS0RERET0HoMyZZDx5o3QMYg+WebbDOjp6X329ym2sLt37x5sbW1lnsze3h4AcP/+/WKf5MWLFxg7diy6deuGb7755tOSEhERERF9wMTUDOlpqUhNSUZOTvYXG9ZGpGhisRjvMt8iNSUZpuYWn/39ip1j9/r1a5iYmMgcNzc3l7QX5e3btxgzZgwqV66MuXPnflpKAFnZubj/5OUnP/5zZWblCPr86kKV30NN/xnQ9NcP8D3g69fs1w/wPdD01w+U4vdArI2M18nQfv0aUGBhJ4YYImjuXD5Nf/2AAt4DkRayRbpIf5FYotNd6lUvtK3Ywi4rKwsGBgYyx7W0tKClpYXMzMxCHysWizFt2jQkJSVhz549n9XFqKerjVpVKn7y4z/X/ScvBX3+z/XiUaTQEQBApd9DVf8Z+Fya/voBvgd8/Zr9+gG+B5r++gG+B3z9mv36gdL9HhRb2Onp6SEvL0/meF5eHvLy8uQWfQXOnj2LsLAwLF26FNnZ2Xj5Mv8OT2pqKgAgKSkJL1++hJWVFVcyIiIiIiIi+kTFFnblypVDcnKyzPGkpCQAgIVF4eNB3717h5ycHIwcOVJu+9ixYwEAERERMDU1LUleIiIiIiIi+kCxhZ29vT127tyJ9PR0GBsbS47fvHlT0l4YJycnrFy5Uub4hQsXsGnTJnz33XeoWbMmDA0NPyU7ERERERERoQSFnaurK7Zt24bQ0FD07t1bcvzw4cMoU6YMWrRoAQDIzs5GTEwMdHV1YWdnBwCwtLSEq6urzPcs6O1r2LAhGjdu/EVeCBERERERkaYqtrBr1aoVXFxcMG/ePDx48ADW1ta4du0aQkNDMX78eMmKmXFxcejSpQtsbGxw/PhxhQcnIiIiIiKifMUWdiKRCMuXL4e/vz8OHz6M5ORk2NraYvr06fDz81NGRiIiIiIiIipCsYUdAJiYmODHH3/Ejz/+WOg5tra2uHfvXometFevXujVq1fJEhIREREREVGRtIQOQERERERERJ+HhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGKY2FHRERERESk4ljYERERERERqTgWdkRERERERCqOhR0REREREZGK0xE6AJGynD8dhuwc8Wd9jxePIj/5sbo6IrRo7f5Zz09EREREJA8LO9IY2TliZJwfJ9jzG7YIEOy5iYiIiEi9cSgmERERERGRiitRj116ejoWL16Mo0ePIikpCba2tujbty8GDRoEkUhU5GMTExOxfv16XL58GU+fPsXbt29hZ2eHPn36wMfHBzo67DQkIiIiIiL6HCWqqsaNG4eIiAj4+vqicuXKuHLlChYsWICMjAyMGjWqyMfeunULGzduROvWreHunj+/KDw8HPPmzcOtW7ewcOHCz38VREREREREGqzYwu7cuXM4f/485s+fD29vbwCAn58fpkyZgtWrV2PgwIEwNjYu9PHVq1fHsWPHYG1tLTk2ZMgQ+Pj4YO/evZg4cSKsrKy+wEshIiIiIiLSTMXOsTtx4gT09PTQo0cPqeN9+vRBRkYGLly4UOTjbW1tpYo6ANDW1oaLiwsA4MWLFx+bmYiIiIiIiN5TbGF379492NraQk9PT+q4vb09AOD+/fuf9MQvX74EAPbWERERERERfaZiC7vXr1/DxMRE5ri5ubmk/WO9evUK4eHhqFevHipVqvTRjyciIiIiIqL/FDvHLisrCwYGBjLHtbS0oKWlhczMzI96wpycHHz//ffIysrC1KlTS/y4rOxc3H/y8qOe60vKzMoR9PnVhaa/h6r8+vk7wPeAr1+zXz/A90DTXz/A94CvX7NfPyD8e+BSr3qhbcUWdnp6esjLy5M5npeXh7y8PLlFX2Hy8vIwbdo0XLx4ETNmzJDMsysJPV1t1KpSscTnf2n3n7wU9Pk/14tHkUJHAABB38PS8B6o8s+Qqv8OfAma/h7w9Wv26wf4Hmj66wf4HvD1a/brB0r3e1DsUMxy5cohJSVF5nhSUhIAwMLCokRPlJubixkzZiA4OBgTJ06En5/fR0YlIiIiIiIieYot7Ozt7REVFYX09HSp4zdv3pS0Fyc7OxtTpkzB/v37MXPmzGL3viMiIiIiIqKSK7awc3V1RU5ODkJDQ6WOHz58GGXKlEGLFi0A5Bdvjx49QkxMjNR5b968wYgRIxAWFoZFixZh0KBBXzA+ERERERERFTvHrlWrVnBxccG8efPw4MEDWFtb49q1awgNDcX48eMlK2bGxcWhS5cusLGxwfHjxyWPX7RoEc6dO4fOnTsjPT0dgYGBUt+/QoUKcHNz+8Ivi4iIiIiISHMUW9iJRCIsX74c/v7+OHz4MJKTk2Fra4vp06eXaJ5cwaqZISEhCAkJkWl3cXFhYUdERERERPQZii3sAMDExAQ//vgjfvzxx0LPsbW1xb1792SO//LLL/jll18+PSEREREREREVqdg5dkRERERERFS6sbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjFsbAjIiIiIiJScSzsiIiIiIiIVBwLOyIiIiIiIhXHwo6IiIiIiEjF6QgdQFnOnw5Ddo74s77Hi0eRn/xYXR0RWrR2/6znJ/oc/B0gIiJeC4jUl8YUdtk5YmScHyfY8xu2CBDsuYkA/g4QERGvBUTqjEMxiYiIiIiIVBwLOyIiIiIiIhWnMUMxiYg0HefWEBERqS8WdkREGoJza4iISNOp801OFnZERERERKQR1PkmJws7ItIY6nyXjoiIiDQbCzsi0hjqfJeOiIiINFuJVsVMT0/H/Pnz8fXXX6NevXro1KkTNm3aBLG4ZHe+P/fxREREREREVLgS9diNGzcOERER8PX1ReXKlXHlyhUsWLAAGRkZGDVqlMIfT0RERERERIUrtrA7d+4czp8/j/nz58Pb2xsA4OfnhylTpmD16tUYOHAgjI2NFfZ4IiIiIiIiKlqxQzFPnDgBPT099OjRQ+p4nz59kJGRgQsXLij08URERERERFS0Ynvs7t27B1tbW+jp6Ukdt7e3BwDcv38f7du3V9jjiYiIvgShV0UFuDKq0IT+GeC/v/D4M0DqTCQuZgWTLl26wNjYGLt27ZI6npeXhzp16qB///748ccfFfZ4IiIiIiIiKlqxQzGzsrJgYGAg+0AtLWhpaSEzM1OhjyciIiIiIqKiFVvY6enpIS8vT+Z4Xl4e8vLy5BZtX/LxREREREREVLRiC7ty5cohJSVF5nhSUhIAwMLCQqGPJyIiIiIioqIVW9jZ29sjKioK6enpUsdv3rwpaVfk44mIiIiIiKhoxRZ2rq6uyMnJQWhoqNTxw4cPo0yZMmjRogUAIDs7G48ePUJMTMwnPZ6IiIiIiIg+TbHbHbRq1QouLi6YN28eHjx4AGtra1y7dg2hoaEYP348TExMAABxcXHo0qULbGxscPz48Y9+PBEREREREX2aYrc7AIC0tDT4+/vj2LFjSE5Ohq2tLXx9feHn5weRSAQAePr0Kdzc3GQKu5I+noiIiIiIiD5NiQo7IiIiIiIiKr2KnWNHREREREREpRsLOyKSkZycLHebEiIiIk3A6yCpomIXT9Fkr1+/RmRkJFJSUtCsWTNYWVkhJSUFiYmJsLGxgZ6entARFSo9PR2nT5/Gs2fP8O7dO5l2kUiEMWPGCJDsy7t27donPa5Ro0ZfOImwjh8/joULF+Lp06cAgBo1amDq1Kn4+uuvBU5GQoiOjsa+ffuQkJCAvLw8mXaRSIQFCxYIkEx5Lly4gKtXryI+Ph66urqoVq0a3NzcULFiRaGjkRIcPHgQnTp1UvvrPf2H10GSJzY2FleuXJG6FjRv3hz6+vpCR5PCOXZy5OXlYf78+di1axdycnIgEomwcuVKtGnTBrGxsejcuTOmT5+O/v37Cx1VYf755x+MHDkSqampKOxHRCQS4c6dO0pOphgODg6ftJCPurx+IH9vyb59+0JPTw8NGzaEvr4+rl69irS0NPzxxx/o0qWL0BGVTpNubnzo6tWrGDZsGDIyMiASiST/Afl/I8ViMXR0dHDr1i2BkypGQkICxo4dixs3bsj8DdTR0cGIESMwbtw4gdIpj1gsxs2bN/Hs2TNkZWXJPcfT01O5oZTIwcEBpqam6NatG3r37o2vvvpK6EhKExkZid9//x2RkZEQiURo3LgxvvvuO7Xef5jXQfpQRkYGZs6cidDQUJlrgZmZGaZOnYpevXoJlE4WCzs5AgICsGLFCowbNw716tXDsGHDsGrVKrRp0wYAMHLkSGRkZGDz5s0CJ1Ucb29vxMTEYO7cubC3t4eRkZHcwsfKykqAdF/evn37pL4ODw/H7du3MX78eJlzb926hcDAQMyYMQMDBgxQVkSFGz9+PK5cuYLt27ejatWqAIDExET4+fkhOTkZp0+f1qhVbDXt5saHhgwZgqSkJPz1119o3749lixZgg4dOgAAwsLCMHHiROzduxe1atUSOKlijB8/HmFhYRg7diw8PDxQsWJFZGVlISoqCuvXr0doaChmzZqFfv36CR1VYaKiojB69Gg8efJEI38HAODcuXPYu3cvwsLCkJWVhdq1a8Pb2xseHh4wNTUVOp7CPHr0CL1790ZmZibs7Oygr6+PqKgoAMCaNWvQvHlzgRMqBq+DsrKzs7FmzRoEBwfj+fPncm/wiEQi/PvvvwKkU7yZM2ciKCgIXl5eMteCTZs24fr16/D390enTp2EjgqAQzHl2r9/P3r06IFRo0YhLi5Opt3Z2RmbNm0SIJnyPHjwAEOGDCk1P6iK1rNnT6mvt2/fjk6dOskcB4AePXrgypUrePHihbLiKUVERAQ8PT0lFzMAsLCwwOTJkzF69Gjcv38ftWvXFi6gkhUMMfT39y/y5oa6unv3Lvz8/GBtbQ0gf9uaAu7u7mjbti2WL1+OxYsXC5RQsc6cOQNvb2+MHj1ackxXVxeOjo7w9/dHYmIiNm3apNaF3Zw5c/DixQtJL42hoaFG/Q4AQMuWLdGyZUukp6cjODgY+/btw08//YTffvsN7u7u6N27t1oWOWvWrIFIJMLWrVvh7OwMIL/YGzZsGObMmYOjR48KnFAxeB2UtWjRImzevBn29vZo166dxv0dOHr0KLp27Yqff/5Z6nitWrXg7u4OHx8frFixotR8XmZhJ0dcXFyxv7ipqalKSiOM8uXLa/ScgocPH8LDw0Num5aWFrp06YLt27fj+++/V3IyxUlJSUHlypVljtesWRNisRgJCQkadUHTtJsbH0pNTYWRkRG0tbVhYmKCmJgYqfbGjRtj5cqVAqVTPD09PVSrVq3Q9tatW2PJkiVKTKR8t27dwsCBAzFkyBChowjO2NgYffv2Rd++ffHo0SMEBQXhwIEDOHLkCGxsbODl5YWePXuqzdzLs2fPokePHpKiDsifazZlyhR89913iIqKQvXq1QVMqBi8DsoKCQlB27Zt1frvfVHEYjEcHR3ltuno6KBjx45YtmyZklMVjqtiylGhQgXJpFl5rl27JrmLra68vLxw4MAB5OTkCB1FEAYGBnj06FGh7VlZWUhKSlJiIsXLy8uDtra2zPGCAl/TfhY0/eZG2bJlJT/jderUwd9//43c3FxJe1xcnNTX6qZ169a4dOlSoe2ZmZlq8yG+MGZmZihbtqzQMUqdV69eISEhARkZGRCLxcjMzERAQADc3NwwfPhwHDt2TOiIny0pKQk1a9aUOe7o6AixWCx3NJM64HVQVnp6Opo1ayZ0DMG4uLjg9u3bRZ5Trlw5JaUpHnvs5OjYsSN27NgBT09PlC9fXqpt7969OHnyJIYNGyZQOuUoV64cnj59irlz58LFxaXQ8wrr1VJ1HTp0QFBQEL7++mu4u7tLtcXGxmLPnj1qOYH84MGDMothvH37FiKRCFu2bEFYWJjkuEgkwrx585QdUWkKbm4MGTIEOjqa96eycuXKuH//PoD892Lq1KkYPnw4OnXqhGfPniEwMBBt27YVNqQC+fj4wM/PD2FhYXLv1oaHh6Nly5YyH3DVZd4xAHTq1AmhoaHssUP+3/29e/fiwIEDePHiBfT09CRDMZs1a4aXL19ix44d2Lt3LyZMmKDy8w5zc3Pl/t0rWAGwsIV01AGvg9KaNGmCe/fuCR1DMBMmTIC3tzcGDx4sd/GkM2fOoH379gIkk4+Lp8jx5s0bDBw4EA8ePICTkxOuXLmCRo0aIS0tDffv34e9vT127NgBIyMjoaMqjIODQ7HnqPOk+dTUVAwcOBD3799H9erVUbNmTejq6uLly5e4fv06tLW1sXbtWjRp0kToqF9MSf7N36fO//4AsHv3bvz000/o0aOHRt7cuHLlChITEyULpsyfPx+BgYGSXrpmzZrhzz//hIWFhZAxFabg96GwuSRisVhumyr/Tny47UtKSgomTpyIYcOGoUWLFoU+Tt22fXlfUFAQ9u7di2vXrkmGZPXq1QvdunWDiYmJzPm5ubkICwtDx44dBUj75Tg4OMDNzU3mpkZ6ejrWrVuH7t27Sw1VFolEGDFihLJjfnG8Dsq6ffs2fH19sWvXLtSpU0foOEpXt25d5ObmQktLC1pasgMdc3JyoK2tLXM9EGrFaBZ2hcjKysKGDRsQEhKC6Oho5OXlwcbGBh06dMCwYcNgbGwsdESFunz5conOK+oDr6p79+4dNm3ahJCQEDx+/Bg5OTmoUKECmjZtiiFDhsgdpkLqQ9NvbsiTmJiI2NhYlC9fXu2HowcEBHzSAgFjx45VQBrlkLftS8FHBHnvRUFxq86/Aw4ODihXrhy6d+8OLy8vjfm7zwKHCnTo0AHPnz+HoaFhkUOz1XVBnWnTpn3StWDhwoUKSFM8FnZERHJo+s2NpUuXwtXVFXXr1pXbfuLECbx9+5b7OqmRD7d9KSl5qweri7CwMLi6usqdd6XOnj179tGPsbGxUUASEtrAgQNLdN6WLVsUnIRKgoVdMZ49e4aEhATo6OigSpUqat9TJ8/du3cRGxsLkUgEW1vbj76Tp+pSU1Px9OlTiEQiWFtbw8zMTOhIShEfH4+HDx8iKSkJFhYWqFWrltoOuyNZDg4OmDt3Lnx8fOS2L126FDt37sSZM2eUnIxIeQYNGoTBgwfD1dVVbvvGjRsRFxeHqVOnKjkZKQOvg6RqNG9FgBIKDAzE6tWr8fLlS8kxLS0tNG/eHFOnTlXLhTM+dPr0afz000+SFUILht3Y2Nhg1qxZkg3b1dXdu3fx888/4+rVq1Kb8zZu3BgzZsxQ27HmDx8+xIIFC3Dp0iXk5eVJjmtra6N169aYOnUqqlSpImBC5dP0mxvyiEQiqb3tVN2nLOWtLvOKCsOiJr/nvmvXroW2Z2VlISgoSK3fAyB/HtHz588lBY61tbVa92LyOkjvy87ORkREBOLj41FYf5inp6dyQxWChZ0ca9aswR9//IHq1atj1KhRUrvMBwcHo0+fPggMDFTrD3eXL1/G6NGjYW1tje+//17yB+zx48fYsWMHxowZg/Xr16vtMLS7d++ib9++0NHRQd++faVef3BwMPr166eWPwNnzpzBmDFjIBaL0bZtWzg5OcHc3Bypqam4fv06Tp06hQsXLmDFihUasfyxpt3ceP78udQQrOjoaEREREidk5eXh+joaGzZskWt9rGSt9G6SCQq9CJeMOdCnQs7FjXFi4+Pl/rgr25ev36NxYsXIzQ0FOnp6ZLjZmZm8PDwwNixY9VuFAuvg7LEYjH279+PsLAwqZuc7u7u6NGjh9xFRdTF8+fPMWLECDx8+FByTN7c49JS2HEophxt2rSBtbU1Nm/eDF1dXam2V69eoXfv3rC3t8e6desESqh4AwcORGJiIvbs2YMyZcpItaWnp8Pb2xuWlpZqO6Z6xIgRuH//Pvbs2SOzP0nBz0CdOnWwatUqgRJ+ea9evULnzp1hYWGBlStXokaNGjLnREdHY/jw4UhOTkZISEip2rvlS7t8+TK+/fZbWFtbw9fXV+bmxsuXL9Xu5sbSpUuxdOnSYieKi8VimJmZ4a+//lKbDzYfzilatWoV/v33X/z1118y5964cQPfffcd1q9frzavX57ihuP+/PPP2LdvH65cuaLkZIoVEREh2cNw6dKlaNu2LerVqyd1jlgsRnR0NEJDQ9GiRQusWbNGiKgKdfv2bQwZMgTJyclwcHCAk5MTzMzMkJaWhuvXr+Pff/+FpaUl1q1bpzabdvM6KOvt27cYPnw4IiIiYGpqKplL+fTpU6Snp8PZ2Rlr1qyR+ayoLqZPn44zZ87gu+++w7Rp0zB58mQ4OzsDyJ+Du2XLFixevFhmayyhsMdOjqSkJAwaNEimqAPyNy/v2bMnNm3aJEAy5bl16xaGDRsm9xfV2NgY3bp1w9q1awVIphxXr17FgAED5P7BLvgZ2LZtmwDJFCcwMBCZmZlYtmyZ3IsZAFStWhUrVqxAjx49sHXrVkyYMEHJKZUnICAAVapUkXtzw9fXF97e3ggICFCrmxvt27eHnZ0dxGIxpk6dil69eskULtra2rC0tETdunXVas7xhws/XLp0CR4eHnIXhLCxscHBgwexa9cutSvs3i9qgPxFcuLj46XO+bCoUTeXLl3C0qVLAeTfkT958iROnjwpc562tjaaNGmC2bNnKzmh4qWlpWHEiBEQiUTYsGEDmjdvLnNOREQEJkyYgBEjRuDQoUNq8feA10FZAQEBuHr1KubMmQNvb2/JENycnBzs3LkT8+fPR0BAAH744QeBkyrGxYsX4eXlhS5dumDatGmwsrKSFHYNGzbEpUuXEBERwcKuNHNwcJC5kL3P3NxcrfewA/LnExa1AWl2drZad73n5uZCT0+v0HY9PT3Jfl7q4sKFC2jRogVq1apV5Hk1atTA119/jTNnzqj1BU0Tb27Url1bcuc9Ly8PTk5OUntVaZIXL14U+Xe+WbNmWL58uRITKQeLGuCbb76Bt7e3ZCjelClT0L17d6lztLS0YGFhobbzzAIDA/H69Wts3ry50P1amzRpgoCAAAwYMACBgYEYNmyYklN+ebwOygoJCYGnpyd8fX2ljuvo6KB///6IjIxESEiI2hZ2r1+/RoUKFaCnpwd9fX2ZtTc6d+6M7du3Y/r06QKm/I/6fjL/DMOGDcPevXvx+vVrue2RkZFqtTG1PA0bNsTBgweRkpIi05aUlIQDBw6gYcOGAiRTjjp16iAkJERucfv27VuEhITgq6++EiCZ4kRHR6NBgwYlOrdevXqIjY1VcCJhafrNjZ49e2psUQcAVlZWRW558ezZM2RnZysxkXJ88803OHXqFE6ePAmxWIzJkyfj1KlTUv+dOXMGN2/exMaNG2Frayt05C/O2NgYVlZWqFixIsLDw9GvXz9YWVlJ/Ve+fHm1LeqA/Hlmzs7OxX7WcXZ2RrNmzXD8+HElJVMsXgdlJSQkFLl/Y61atZCQkKDERMplZGQkmV9ao0YNnDt3Tqo9JycHSUlJQkSTiz12cmzfvh1v3rzBgAEDUKlSJZn2K1euoHLlyvj2228lx0QikVrNuZs4cSIGDBiATp06wdPTE3Z2dhCJRHj8+DEOHDiAzMxMTJw4UeiYCjNmzBgMGzYMXl5e8PX1ReXKlSWvf8eOHXjy5AlWr14tdMwv6s2bN0VuPvo+c3NzvHnzRsGJhFVwc2Pw4MEyiwOo682N6dOno2fPnnBxccGsWbOKPV8kEmHevHlKSKZ8ffr0wR9//IGff/4Zo0aNkixxnp2djcOHD2Pnzp1o1aqVwCm/PGNjY8mQuvDwcJQtWxaGhoYCpxKOpu7NFhUVBW9v7xKd27BhQwQGBio4kXLwOiirUqVKuHXrVqHtN27cQMWKFZWYSLkqVaqEJ0+eAMifrrBkyRIsW7YMHh4eePbsGXbs2FGqFtJjYSfHkydPYGVlhXfv3iE6Olqm3dLSEm/fvpXbpi7q1auHTZs2YcGCBdiwYYNUW4MGDTB9+nSZyeTqpGXLlliyZAl++ukn/PTTT5LFJMRiMaysrODv74+WLVsKnPLLys7Oho5Oyf4kaGtrq91Q1A9p4s2Nffv2wcnJCS4uLti9e3ex56tzYTd06FDExMRgy5Yt2Lp1K8zNzaGrq4vExETk5OSgSpUqJSp+VdmGDRvQpEkTNG7cWO0XiHifm5sbJk+ejK5du6Jjx44leszRo0cVnEq50tLSYGlpWaJzLSwspFbMVGW8Dsrq3r27ZM6hn5+f5MZPWloaNmzYgGPHjmHMmDECp1Qcb29vvHr1CgAwePBghIWFISAgQDJk3dzcHD/++KOQEaWwsJNDXYYUfK4GDRpg586dSExMlAw3sLW11ZgLvLu7O9q1a4dbt25Jlru3tbVF3bp11XYIzunTp0s0pODmzZtKSCMsTby5ER4eDnNzcwD5W35oMpFIhJ9++gleXl44cuQIoqOjkZubiwoVKsDFxQVdu3Ytch6uOti9eze2bt0KkUiEKlWqSIq8Jk2awNraWuh4CiMWiyXLmVeoUEHgNMLIysqSu4CcPDo6OsjJyVFwIuXhdVDayJEjce/ePQQEBGDZsmUoW7YsRCIRXr9+DbFYDDc3N4wcOVLomArTt29fyf8bGBggMDAQJ0+eRHR0NCpUqABXV9dSteUHtzuQIzMzEwYGBkLHEFR8fDzOnTsHBwcHmS7mBw8e4Pbt22jVqlWJ7+ipmn79+qFbt27o16+f0FGU5mOHEohEIty5c0dBaUoXTb25QZotNzcXDx48QGRkpOS/Bw8eIDc3F5UqVZIUeSUdskeqw8HBAV5eXiVa9fXChQvYt2+fWlwPeB0s3JkzZxAeHi51o9vNzQ1ff/21wMkUKzs7G/Hx8TA2NoapqalUW2pqKtLT01GhQoUS9/QqGgs7ORo3boyuXbvCy8sL9evXFzqOIH799Vfs2LEDoaGhsLKykmpLTExEhw4d4OPjg++//16ghIrl6OiIadOmoX///kJHUZoP9/EqCU2df6JJYmNjceXKFcTHx0NXVxfVqlVD8+bNoa+vL3Q0EsC7d+9w7NgxLF26FE+ePNGoD7aaRFMLHF4H6UMbNmzAokWLsH37djg5OUm13b17F71798b3338PPz8/YQJ+oHSUl6VMmzZtcODAAezatQs1a9aEt7c3unfvLhmipAnOnDmDzp07yxR1QP54+s6dO+P48eNqW9jVrVv3k/7AqzJenID9+/fDyckJVatWRXBwcIke4+HhoeBUwsjIyMDMmTMRGhqKD+//mZmZSfa5U1clmVulp6eHChUqoGnTpvDx8SlVw3G+tMjISBw/fhzh4eF48OABzM3N0bNnT7i5uQkdTaGuXLmCoKAgDBgwAHXr1gWQvxXAqlWrkJWVBV9fX4wfP17glF/e5s2bhY4gCF4H6UMhISFo1aqVTFEH5N8Aadu2LYKDg0tNYcceu0Kkp6fj0KFD2LdvH27cuAE9PT24ubnB29tbLTdk/VCDBg0wefLkQn9QN27cCH9/f9y4cUPJyZQjLCwMM2fOxMGDB+UWt6SeHBwcMHfuXPj4+MDBwQEikUimqHmfutyllmfmzJkICgqCl5cXPDw8ULFiRWRlZSEqKgqbNm3C9evX4e/vj06dOgkdVSE6dOiAZ8+eoVGjRjJt8fHxiImJgbOzM5KTk/Ho0SNUqFABgYGBcldSVlWnT59GeHg4Tpw4gVevXqFy5cpwc3ODu7s7GjVqpNbbfRSYMGECIiMjERYWBi0tLdy+fRu9e/dG9erVYW1tjbNnz2LBggXo2bOn0FGJvhguIPSfxo0bY8yYMRg8eLDc9vXr12PZsmW4evWqkpPJxx67QhgbG8PX1xe+vr549OgRgoKCcPDgQYSGhqJSpUro1asXevXqpbYTyE1NTYvcn+Xp06cwMTFRYiLlOnXqFLKzszF8+PBCh+Oq24qAL1++lCwYs2TJEgBAXFwc2rZtK3Ounp4ezp07J1kdS10sXLhQsoWBpt6xLnD06FF07doVP//8s9TxWrVqwd3dHT4+PlixYoXaFnYVK1ZE9erVsXLlSpm2xMREdO7cGd27d4e3tzfu3buHgQMHYsmSJVi4cKEAaRVj+PDhEIlEqFatGn799Vc0b95c6EhKd+fOHbRv315SxIaEhEBHRwdbt25F2bJlMWXKFGzbto2FnZrgdTAfFxD6j0gkQnJycqHtKSkpkpXTSwMWdiVQo0YN/PDDD2jRogVmz56NZ8+eYenSpVi+fDmaN2+O3r17w93dvcQrSKkCV1dXBAUFwdPTU2blv3///RdBQUFwd3cXKJ3iFSz1fu/ePdy7d0/uOepW2O3btw8AZIbXisVitGzZUtITkZubi/379yMkJETtFk14/8OZi4uLgEmEJxaL4ejoKLdNR0cHHTt2xLJly5ScSnnu3buHoUOHym2zsLBAz549sWnTJnh7e6N27dro27cv9u7dq+SUirVy5UqcPHkSp06dwtChQ+Ho6Ag3Nze0a9cONWrUEDqeUhT0VBa4ceMG6tatK9nrrEGDBjh9+rRQ8RQmKSkJvr6+aNSokeRmRUJCAnx8fGTONTAwwN69e9Vi3i2vg/neXx1+y5YtAiYRnrOzMw4dOoShQ4fKdGikpaUhODi40GulEFjYFSM2NhZ79+7FgQMH8OLFC+jr68PDwwPdunXD7du3sWfPHkyaNAlly5bFhQsXhI77xYwfPx5nzpyBj48PWrVqhRo1akAkEuHRo0c4c+YMTE1NMWHCBKFjKowmLvV+/vx5NGrUSOpDTIFBgwahTZs2kq+fPHmCv//+Wy0vaAUGDRqEwYMHw9XVVW77xo0bERcXh6lTpyo5mXK4uLjg9u3bRZ6jzquDvnv3Dm/fvi203crKSrJpLZD/XpRkiXRV0rZtW0lPxZ07d3DixAmEhYXhzz//hJ2dHdq1awc3Nzc0btxY2KAKZGVlJVkFMCMjA5GRkVLFzdu3b5GdnS1UPIU5cOAAYmNj8ddff0mO5ebm4tmzZ3BwcJAUtnl5ebh8+TLCwsLQtWtXoeJ+MbwOyoqIiEDVqlVRvnx5ue0xMTEQi8WoUqWKkpMpx9ixY9G/f3/06NEDAwYMkNzUioqKwtatW/Hq1Sv88ssvAqf8Dws7Od68eYOQkBDs27cP165dg1gsRv369TFixAh07dpV0u3epk0bjBo1CidPnsTOnTsFTv1lWVpaIigoCL///jv+/vtvnDp1CgBQpkwZdOjQAZMnT4atra3AKelLevbsGbp161aic52dnSV3NtXV5cuXi/ygkpWVhaCgILUt7CZMmABvb28MHjwYX331lUz7mTNn0L59ewGSKUeDBg0QHByMb7/9Vu5Qq3Pnzkk+3AL5w9PLlCmjzIhKVadOHdSpUweDBg3CiRMnsHTpUmzYsAEbN25U23mmQP7olV27dsHa2hpXrlzBu3fvpG72XLx4EdWqVRMwoWKcOXMGjo6OclfHnDRpklSB07NnT8nQbVXH66CsQYMGYc6cOXJ7a4H8xYTCw8Nx7NgxJSdTjnr16mH16tWYNWsWfvvtN8mwS7FYDCsrKyxevLhUjfBhYSdHq1atkJmZiXLlymHw4MHw8vIqdNiJSCSCq6troXf1VZmFhQUWLFiAn3/+GYmJiQCAsmXLasSE+QIXLlzA1atXpZZ6d3NzQ8WKFYWO9sXFx8fL7EuopaUFS0tLmY2YK1SoUOSYc00QHx+PvLw8oWMojJeXF3Jzc9G7d2+5v/M5OTm4du0atm3bJnX81q1byoqoUJMmTcLAgQPRvXt39O/fHzVq1IC+vj5evnyJQ4cO4fz58xgzZozk/Bs3bqjlHeuHDx/i+vXruHHjBq5fv45Hjx5BLBbDyMgIrVu3RpMmTYSOqFCjR4/GzZs3sWDBAgCAp6enZG+3K1eu4MKFCxg9erSQERUiJiamxDdumjVrhpCQEAUnUg5eB2UVt8aihYUFXr58qaQ0wmjatCmOHj2Kf//9VzJSw9bWFnXr1oW2trbA6aSxsJOjRYsW8PLyQps2bUrdP5gQRCJRoUOuCiYVr1y5UuoOnqpLSEjA2LFjcePGDZk/agsXLsSIESMwbtw4gdIphpGRETIzM6WOlS9fHmfPnpU5NzU1FUZGRsqKpjQRERG4dOmS5OsTJ04gPj5e6hyxWIzo6GiEhoaq9Qq5Hh4epWpCuLI5OTlh27ZtmDdvHhYtWiR1l9bAwADDhw+XFHZ5eXno1auX2hV2jRs3xps3byAWi2Fubg5nZ2d4eXmhSZMmqFOnjkbc5DM1NcW2bdsQFRUFbW1tVK1aVdJmbGyMpUuXquVQ1Li4uBIvmlGxYkUkJCQoOJFy8DooX2HXgsePHyM4OFgjFlgRiUSoW7euZNuTDyUmJmLixImYMmUKGjRooOR0/2FhJ0f79u1RvXr1Qou669evIycnRy3/mH8KddwxY968ebh58ybGjRsns9T7+vXrsXz5cpQrVw79+vUTOuoXU6tWLVy6dAnDhw8v9tyzZ8+iZs2aSkilXJcuXcLSpUsB5P8RP3nyJE6ePClznra2Npo0aYLZs2crOaHylKY5A0KpX78+9uzZg7t37yI6OhrZ2dkoX748HB0dpT7QaWlpFTpMSZW1atUKTZo0gYuLC+zt7YWOIxiRSCR31I6Dg8NHb+StKsqUKYPc3FypY1ZWVrh586bMQnGZmZlqMwyZ18F8S5culSyOJRKJMHv27EKvd2KxGDNmzFBmvFIpOzsbly9fFrwXl4WdHNOnT8ecOXOk7sy978SJEwgODpZaNYjUy5kzZ+Dt7S01xEZXVxeOjo7w9/dHYmIiNm3apFaFXYcOHfDzzz/j1KlTRfa+HjlyBNevX1fLzem/+eYbeHt7QywWo23btpgyZQq6d+8udY6WlhYsLCzYm69BivoAX1ru0irC4sWLhY5QaiQkJOD58+d49+6d3HZ1G5JarVo1ufvUfjgcEfhvcQ11wOtgvq+++gpeXl4Qi8UICgpCo0aNUL16dalztLS0UL58eTRv3pwdHaUICzs5iuuBMjIywuvXr5WUhoSgp6dX5IT41q1bS/a4URd9+vTB9u3bMWHCBIwfPx6+vr4wNDSUtKelpWHLli1YsWIFbGxs1LKHwtjYWLJQRnh4OMzNzTVmqI082dnZiIiIQHx8fKF/Fz09PZUbqpQpLXdpFSk2NhbHjx9HbGwsRCIRbG1t0a5dO7krB6qbV69e4YcffpAaov0+sVgMkUikdgvItG3bFkuXLsWtW7dktjx638WLF3Hu3Dmp+aaqjNfBfO3atUO7du0A5A8179mzZ6laIIQKx8Lu/6WnpyM1NVXydUpKCp4/fy51Tl5eHqKjo7Fjxw7Y2NgoOyIpUevWrXHp0iV88803ctszMzPVbgEVPT09rFq1CiNGjMBvv/0Gf39/VK9eHcbGxkhNTcXjx4+Rk5MDGxsbrFq1Su0LHk3/HX/+/DlGjBiBhw8fSo4VFHfvz7fQ9MJO3S1evBhr1qyRGZb366+/YujQoZg8ebJAyZRjzpw5uHz5Mvr27Qt7e3sYGhpqxNzTAQMGYNu2bRg6dCjmzp2Ljh07SrWLxWIcPHgQ8+fPh7m5udqMXuF1UFbBPoakGljY/b+NGzdKjSf29/eHv7+/zHlisRg6Ojr47bfflB2RlMjHxwd+fn4ICwuTu/FkeHg4WrZsibi4OKnjVlZWyoqoEJUrV8a+ffuwa9cuHD16FA8ePMCbN29gZGSEBg0awM3NTeYOpjoLDg7G9u3bkZCQIHcFTJFIhLCwMAGSKV5AQACSkpKwcOFCTJs2DZMnT4azszMAICwsDFu2bOFQPTW3Y8cOrFy5El27dsXgwYMlw+0K5hqvWbMG1tbW8PX1FTaoAkVERMDX1xc//vij0FGUytjYGCtWrMCIESMwceJElC9fHvXq1ZMUOJGRkUhMTISpqSkCAgJgYWEhdOQvhtdBWRy9oTpY2P2/Zs2aQVtbG2KxGEuWLEG7du1kPtBra2vD0tISTZo00YghKJpswIABAFDoypdisRh37txBYGCg1HF1GI6jr6+PgQMHYuDAgUJHEdS+ffswffp01KxZE7GxsVKb8kZFReH169dqPTTl4sWL8PLyQpcuXTBt2jRYWVlJCruGDRvi0qVLiIiIgLu7u8BJSVG2bduGli1b4o8//pA6Xr9+fSxevBh+fn7Ytm2bWhd2urq6sLOzEzqGIOrVq4eDBw9izZo1OHbsmNS6AhUrVkS/fv0wfPhwlb+hKQ+vg//h6A3VwsLu/zVu3Fgy+TMvLw+urq6FLmlK6m/MmDEaMdyGCrd161a0a9cOv/32Gxo3bowRI0agc+fOAIAHDx7A29sb/fv3Fzil4rx+/RoVKlSAnp6eZP+2AlpaWujcuTO2b9+O6dOnC5iSFOnJkydFflj7+uuv1W6u8Yfc3Nxw+vTpQoflq7ty5cph2rRpmDZtGt68eYP09HQYGxtrxBDEklLXbZ8KcPSGamFhJ8fYsWNLdJ66/zJrMnXbo44+XmxsLDw8PGBsbAyRSCS1OIa9vT169uyJDRs2wM3NTbiQCmRkZIT09HQAQI0aNXDu3DmMGDFC0p6Tk4OkpCSh4pESmJiYFLnx8MuXL2FiYqLERMrXp08f9O/fH3v37kXLli0LPU8de60+ZGRkVGRBl5CQAB8fHyxYsABNmzZVYjLhqeO2TwU4ekO1qP/uogqmzr/MVLy4uDjUqVMHp06dEjoKfWFZWVmSLQ0sLS2lhqEAQNWqVfHvv/8KEU0pKlWqhCdPngDI39szIiICy5YtQ0xMDC5cuIAdO3ao7R5elK9NmzbYs2cPrly5ItN28eJF7N69W+1vanp7eyMrKwszZ85E27ZtC/2PgNzcXDx79kxmg29SbSUZvXHs2DEBE9L72GNHRcrNzUVUVBRSUlJgb28PMzMz5OXlIScnB3p6etDW1oa1tTUMDAyEjioYFvfqqVy5coiPjweQf1fyyJEjGDNmjGSRgJs3b6r15Hlvb2+8evUKADB48GCEhYUhICBAsoG7ubm5xi0ooWkmT56My5cvY+DAgahTpw6qVKkCkUiEx48f4+7du7C2tlb7VTE5LJ80HUdvqBYWdlSodevWYfXq1ZJtIAqGnN6/fx+9evXCggUL4OnpyY3aSS1Vr14dt27dAgD4+fnh77//Rvfu3dG8eXM8e/YM//zzD4YPHy5wSsXp27ev5P8NDAwQGBiIkydPIjo6GhUqVICrqyvMzMwETEiKZmlpiX379mH16tU4fvw4wsPDAQC2trYYOnQohg0bBlNTU4FTKhaH5ZOm+3D0xpIlS7Bs2TJ4eHjg2bNnaj96o02bNujfv3+x1/vy5csjPDwclpaWSkomHws7kmvr1q1YtGgRevfujQYNGmDWrFmSNgcHBzRp0gSHDx/mKkiktn777Te8ffsWAODs7Ax/f38sW7YMR48eRfny5TFu3Di1Luyys7MRHx8PY2NjmJqaQk9PDx06dAAApKamIj09HUZGRtDR4WVEXT169AgmJiaYMmUKpkyZInQcwWVkZCA1NRUWFhbQ09MTOg6RUmj66I2UlJQSLRakpaVVKva/5Rw7kmvr1q3o0KED5s+fj9atW8u0N2vWDPfv3xcgGZFylC1bFtbW1pKvO3XqhODgYNy8eRPh4eEYPXq0Whc1W7duhbu7O6KiomTanj9/jg4dOmDbtm0CJCtdCu7SNmvWTOgoX1yvXr2wf/9+oWMILiQkBB4eHnB2doarqysuXLgAALh16xa+/vprtd3LkgjIH70xYcIEAP+N3liyZAkmTZqEhQsXIjQ0FF999ZXAKRWnUaNGePTokdAxSkx9P5XQZ3n27FmRexPp6+sjMTFRiYmISJlCQkLQqlUrODk5ybQ5ODigbdu2CA4Ohp+fn/LDKcj+/fvh5OSEqlWrIjg4uESP8fDwKBV3aRXBwMBAo+dPA8CRI0cwefJktGjRAh06dMCyZcskbfXq1YO1tTX279/PFQFJbUVERKBq1aooX748AEiN3gCAmJgYJCcno0qVKkJFVKhRo0Zh+PDh6N+/P2rUqCF0nGKxsCO5zMzMkJCQUGj77du3UaFCBSUmIlKs94cbl5RIJMK8efMUkEZ4UVFRGDNmTKHtjRo1kvqQqw6mTZuGuXPnomrVqvj+++8hEomKXBxJJBLBw8NDiQmVq23btoiIiMCgQYOEjiKY1atXo3nz5li/fj3i4uJkfuZbtWrFXk1Sa4MGDcKcOXPg4+Mjtz0wMBDh4eFquzLm8uXLAQBDhgxB9erV5Z4jEomwbt06ZcYqFAs7kqtt27bYvXs3+vfvDy0t6RG7Fy5cQGhoaJE9ekSqZvfu3R/9GHUu7D7cu+9DKSkparda4MKFC9GwYUMAwObNmwVOI7yxY8eiR48eCA8PV9v9GosTFRWFiRMnFtpuYmIiWT2XSB0Vt/K3hYVFkftdqronT56gbNmyAIDo6Ghhw5QACzuSa+LEiTh//jx69OiB1q1bQyQSISgoCDt27MDp06dRrlw5jBo1SuiYRF/M3bt3hY5Qqjg7O+PQoUMYOnSozCbUaWlpCA4OhqOjo0DpFKNnz56S/3dxcQFQ/JYv6qxTp07Izc3FuHHjZG7wva9g9Vh1ZGhoiLS0tELbHz16JPnQR5pJE7Z9Kuwm3uPHjxEcHKzWI7hUbeV3FnZF0OQ93CwtLREUFAR/f38cPXoUYrEYx44dQ5kyZdCpUyd8//33gi/pSkSKM3bsWPTv3x89evTAgAEDJHMLoqKisHXrVrx69Qq//PKLwCkVq6RbvqgrDw8PteuV/VjNmzfH/v37MWTIEJm2hw8f4uDBg+jcubMAyRRn5cqVqFKlitq9ro9169YtbNu2TbLNzfuuXbuG3bt3Y9CgQahTp47KffgvztKlSyXDjkUiEWbPno3Zs2fLPVcsFmPGjBnKjEdFEIm5u7JchV3Q7969qxEX9A8lJiYiLy8PFhYWRd65VTfFFfcJCQno06cPFi5ciKZNmwodl+iLunTpEmbNmoWYmBjJB3yxWAwrKyvMmjVLrReM2Lp1K+bPny+15cuqVavQpk0bAPl7G+rp6WHNmjUCJyVFiomJgbe3N0xMTNC5c2esXbsWvr6+0NbWRlBQELS1tbF3717Y2dkJHfWLadiwIcaMGYOhQ4cCAOrUqVPkHCt19d133+Hy5csICwuT6Z3Pzs5Gx44d0bhxY/z2228CJVSc48eP4/jx4xCLxQgKCkKjRo1k5pdpaWmhfPnyaN68ORo3bixQUuVIS0vDnj178M8//yA1NRWTJk1CgwYNcP/+fRw6dAheXl6lZvEY9tjJwT3cZFlYWAgdQem4Qbtmc3BwKLa3QiQS4d9//1VSIuVr2rQpjh49in///VeyQa2trS3q1q0LbW1tgdMp1vtbvsTFxcm0N2vWDDt27BAgGSmTnZ0ddu7ciZ9++glr166FWCxGYGAgAMDJyQmzZ89Wq6IOAHR1dZGVlSX5WlPv///zzz/o2rWr3CHXurq66Ny5M0JCQgRIpnjt2rVDu3btAAB5eXnw9PTU2JvXsbGxGDhwIF6/fg07OztERUVJ5p9XrVoVe/fuRVZWFqZNmyZs0P/Hwk4OXtCJxT15eXkVWtjduXMH9+7d04h/f5FIhLp166Ju3bpy2xMTEzFx4kRMmTIFDRo0UHI6xeGWLyjRlg/6+vqoUKECvvrqK7Wdc1i1alWsW7cOqampiI6Ohlgsho2NjdpOR3BycsLOnTtRp04dyRDs2NhYXLt2rcjHNWrUSBnxlCY+Ph5WVlaFtltaWmrEwjkLFy6Uezw2NhZZWVkqsQXA5/jtt9+Qm5uLI0eOQFdXF23btpW06enpwd3dHefPnxcu4AdY2MnBCzqxuKeff/650Lb4+Hh069ZNsoKiJsvOzsbly5eLXEFTFXHLFxS55cP7Q3NFIhGMjIwwcuRIyfA9dWRqaor69esLHUPhfvzxR4wcORKjRo2CSCSSLOVe2HLuBT8Dd+7cUXJSxbK2tsbNmzcLbb9x4wYqVqyoxETC2Lt3L5YtW4Y///xTcvNu8uTJkt7Kxo0bY9WqVTA0NBQypsJcvHgRAwYMQOXKleV+HqxevToOHDggQDL5WNjJwQs6sbinopQvXx69evXC1q1b4eXlJXQcUgBu+QK4urri3r17chfJuXv3LhYuXIiFCxfCyMgIhw8fxh9//AELCwv06tVLgLRfRkk3pv+QOu1naGtri+DgYERGRiI2NhZTpkzRyKF43bt3R0BAAOrXr48BAwZARyf/I3Nubi62bt2Ko0ePyl1UR90cPnwY5ubmkqLu+PHjOHLkCLp164ZatWphxYoVWLduHcaNGydwUsXIysqCsbFxoe2vX78uVVMTWNjJwQs6sbin4lSqVAlRUVFCxyAF4ZYv+as+dujQQbL1w/tcXFwQHh6Os2fP4o8//kCHDh0wZMgQbNu2TaULuw97Kd/vmfzQ+0O11amwA/JfW/369VG/fn1kZWXByckJ1apVEzqWUg0fPhzXr1/HL7/8ghUrVqBy5coQiUSIiYlBSkoKnJycMHbsWKFjKtyDBw/g7e0t+frUqVMwMTHBL7/8Ah0dHSQkJODIkSNqW9jZ29vj/Pnzcov4nJwchIaGok6dOgIkk4+FnRy8oBOLeypKXFwc9u/fj0qVKgkdhRSEW77k/5wXNdSsTZs2WLVqleTr1q1bw9/fXxnRFObDjel3796N27dvY86cOTLn3rhxA/7+/vj999+VlE4Y7+/vqEl0dHSwatUqHDhwAKGhoYiJiQEA1K9fH+3atUPv3r2hq6srcErFS09Ph7m5ueTryMhI1K9fX9KDaWdnhxcvXgiUTvG+/fZbTJ48Gb/88ovkBk52djb+/fdf/PHHH4iJicGkSZMETvkfFnZy8IJOLO6pY8eOco+/ffsWCQkJyMvLK3IeHqm+smXLYt68eZg3b55GbvlSrly5IjcfT05ORmZmpuTrN2/eqPwKih/2Ts6fPx/t27cvtNfyxIkTuHjxIrp06aKsiEq3dOnSYs8RiUQYM2aMEtIol0gkgqenp0YslFWYKlWqIDIyEgDw4sUL3L17F6NHj5a0x8fHq+3CSQDQpUsXvHjxAv7+/ti0aRMASPVOjhw5Ep06dRIqngwWdoXQ9Au6pmNxT4UNtdXX10fbtm3h4eGBJk2aKDkVCUUTt3zp0aMHVq1ahXr16qF///5SvRPXrl3Dzp07pRYTefTokdq9TzExMShbtmyh7e7u7li7di3mzZunxFTKVVxhVzAkVR0LOwJ69+6Nn376CW/evMHDhw8hEokkNzLEYjHCw8Ph4OAgcErFGjJkCLp27YrQ0FA8efIEeXl5sLGxgbu7u8z+fkJjYVcC6nahopJhca/ZtmzZInQEIkGNHj0aDx48wC+//ILly5ejcuXK0NfXx8uXL/HixQuYmprif//7H4D8va7u3r2LZs2aCZz6yzIzM8Pt27cLbU9KSsKbN2+UmEj5Tp06VWjb6dOnMXfuXElPhqobNGgQBg8eDFdXV3z77bfFnl+wYqg669u3L169eoXdu3dDW1sbc+bMkRQz+/fvx8OHDzF79myBUypexYoV8c033wgdo1gs7IhKgMU9EWkaPT09LFu2DCdOnMCePXvw5MkTpKenw9raGt27d8eAAQMkIxe0tLRw+PBhgRN/ed27d8fatWtRt25dmV7LiIgI7Ny5U632b5SnqL3cvL29cejQIezZswfOzs5KTKUYly9fRteuXQEA0dHRwoYpJbS0tDBp0iS588g6d+4Md3d3GBkZCZBMuS5cuICrV68iPj4eurq6qFatGtzc3ErdlhcisaoPiCciUpD4+Hhs374dV65cQUJCAnR0dFCtWjV06tRJrefUfIy4uDjJIhpt2rQROg4JICsrCzdu3ECtWrVgZmYmdJwvKisrC6NGjcK5c+dgamoKOzs76Orq4uXLl3j58iXMzMywefNm1KpVS+iogtm4cSNWrVqFCxcuCB2FFCwjIwOpqamwsLBQ63l170tISMDYsWNx48YNmTnEOjo6GDFiRKlaEZRjyoiI5Lh58ya6du2KFStW4OnTpzAzM4Ouri4uXbqEKVOmwM/PD2/fvhU6JpHgkpKSMGjQIFy/fl3oKF+cnp4e1q1bhz/++AMuLi54+/YtEhMTYWtrizFjxuDIkSMaXdQBwKtXr5Cbmyt0jC/O398fJ0+eFDpGqRASEgIPDw84OzvD1dVVUsTfunULX3/9NcLCwgROqDjz5s3DzZs3MW7cOPz999+IjIzE1atXsXv3brRv3x7Lly/H9u3bhY4pwaGYRERyzJ8/H1paWti6dSsaN24sOZ6Tk4OdO3di/vz5+OuvvzBt2jQBUwqvfPnyCA8P52JCGk7dB/907dpVMkRPHnXutSxs0/bMzExERkYiKCgIrq6uSk6leOvWrcPUqVOFjiG4I0eOYPLkyWjRogU6dOiAZcuWSdrq1asHa2tr7N+/H+7u7gKmVJwzZ87A29tbaiVQXV1dODo6wt/fH4mJidi0aRP69esnYMr/sLAjIpLj7t27+Pbbb6WKOiB/6EX//v0RGRmJQ4cOqVVht3//fjg5OaFq1aqFfpj7kIeHB2xsbBScjKh0K+i1XLlypdoNSf5w0/YPubi4qOXiGTY2NkhPTxc6huBWr16N5s2bY/369YiLi5Mq7ACgVatW2L9/vzDhlEBPTw/VqlUrtL1169ZYsmSJEhMVjYUdEZEclpaWMDQ0LLTdwcEBR48eVWIixZs2bRrmzp2LqlWrFvthDshfEa5gw1YiTaeuvZYfbtpeQF9fH5UqVSp0axhV16dPH+zevRtDhgzRmPlk8kRFRWHixImFtpuYmCA+Pl55gZSsdevWuHTpUqErYmZmZpaqBVRY2BERyeHh4YGQkBAMHz5cbntcXBxq1Kih5FSKtXDhQjRs2BBA4R/miEizyNucXROULVsWcXFxmDFjRpG9sOp+c8vQ0BBpaWmFtj969KjIvR5VnY+PD/z8/BAWFgZHR0eZ9vDwcLRs2RJxcXFSx4taTVaRWNgREclhZWWF+/fv45dffkHdunVl2kNDQ+Hk5CQzZFGVL/I9e/aU/H/Bh7nc3FxERUUhJSUF9vb2MDMzQ15eHnJycjT6LjYRqbcZM2YAAA4dOoRDhw7JPUcTRi00b94c+/fvx5AhQ2TaHj58iIMHD6Jz584CJFOOAQMGAEChK1+KxWLcuXMHgYGBUsfv3Lmj8GzysLAjIpJj3rx5APKX8i7MixcvEBISIvla3S7y69atw+rVq5GamgoAkvlD9+/fR69evbBgwQJ4enoKG5KIFO7KlSsIDg7G8+fP8e7dO5l2kUikNpuUF+CohXyTJk2Ct7c3PD090blzZ4hEIpw8eRJnzpxBUFAQdHV1pRYWUTdjxoyBSCQSOkaJsbAjIpJD0y/qW7duxaJFi9C7d280aNAAs2bNkrQ5ODigSZMmOHz4MAs7IjW3e/du/PjjjwAACwsLGBoaqtQH3U+lqUNQP2RnZ4cdO3Zg/vz5WLt2LcRisaR3ysnJCbNnz4adnZ3AKRWnNO1RVxIs7IiI5ND0i/rWrVvRoUMHzJ8/X2buAAA0a9YMO3bsECAZESnT2rVrYW9vjw0bNqBcuXJCxyEBVKtWDevWrUNqaiqio6MhFothY2PDbW7eExcXh7Zt2wq+Mi4LOyKiYty9exexsbEQiUSwtbWFg4OD0JEU7tmzZ/D19S20XV9fH4mJiUpMRERCePnyJcaOHatxRd23335b7Dl6enqoUKECmjZtig4dOkBXV1cJyZSrTZs26N+/P4YPHw5TU1PUr19f6EilVmlYGZeFHRFRIU6fPo2ffvoJT58+BZD/R1skEsHGxgazZs1Su/2q3mdmZoaEhIRC22/fvq22y5zTxylTpgx69uxZqpb8pi+nZs2aSE5OFjqG0t29exfJyclyf67fvHmDtLQ0VKxYEZcvX8auXbtQp04dbNy4Ue02qE9JSYGRkZHQMaiEWNgREclx+fJljB49GtbW1vj+++9RpUoVAMDjx4+xY8cOjBkzBuvXr1fbIZtt27bF7t270b9/f2hpaUm1XbhwAaGhoUX26JH6iI2NxZUrVxAfHw9dXV1Uq1YNzZs3h76+PgDA1NQUCxcuFDglKcrQoUMxd+5cDBkyBBYWFkLHURpHR0dkZGRgy5YtMm1Pnz5Ft27dMGPGDLi7u+PkyZOYMGECAgIC8L///U+AtIrTqFEjPHr0SOgYVEIs7IiI5AgICECVKlWwZ88elClTRqrN19cX3t7eCAgIkHvRVwcTJ07E+fPn0aNHD7Ru3RoikQhBQUHYsWMHTp8+jXLlymHUqFFCxyQFysjIwMyZMxEaGiozxMjMzAxTp05Fr169BEpXuqhzr+W5c+eQkZGB4cOHo06dOnLPEYlEkpWE1cXNmzfh5+cnt83W1haenp5YuXIl3N3d0bZtW/j6+uLvv/9Wu8Ju1KhRGD58OPr37692e7eqIxZ2RERy3Lp1C8OGDZMp6gDA2NgY3bp1w9q1awVIphyWlpYICgqCv78/jh49CrFYjGPHjqFMmTLo1KkTvv/+e06cV3M///wzQkJC4OXlBQ8PD1SsWBFZWVmIiorCpk2bMHPmTBgaGqJTp05CR1U4Te613LNnD4D8v4m3bt2Se446FnZv3rwpcs5U1apVsW/fPsnXtra2ePXqlTKiKdXy5csBAEOGDEH16tXlniMSibBu3TplxqJCsLAjIpJDS0sLWVlZhbZnZ2fLDFFUN2XLlsW8efMwb948JCYmIi8vDxYWFmr/uinf0aNH0bVrV/z8889Sx2vVqgV3d3f4+PhgxYoVal3Ysdcyf66ZJnJwcMDRo0cxZMgQ6OnpybTfuHEDhoaGkq9fvHghKfTVyZMnT1C2bFkAQHR0tLBhqFgs7IiI5GjYsCEOHjyIwYMHy0yGT0pKwoEDB9CwYUOB0imfJs2toXxisRiOjo5y23R0dNCxY0csW7ZMyamUi72WmmvMmDEYOXIkBg4ciMGDB6NGjRrQ19fHy5cvERwcjNDQUPTv319y/q1bt2BjYyNgYsU4fvy40BHoI7CwIyKSY+LEiRgwYAA6deoET09P2NnZQSQS4fHjxzhw4AAyMzMxceJEoWMSKYyLiwtu375d5DnqvgQ+ey01V5s2bbBkyRIsWLAAEydOlNqUXSwWo2vXrvjhhx8AAHl5eWjYsCFq164tVFwiACzsiIjkqlevHjZv3owFCxZgw4YNUm0NGjTA9OnTUa9ePYHSESnehAkT4O3tjcGDB+Orr76SaT9z5gzat28vQDLlYa9l/nuwatUqbN++HQkJCXLnnYlEIvz7778CpFOs9u3bo3Xr1jh79iyio6ORnZ2N8uXLo0mTJrCzs8M///yDhg0bQktLC5MmTRI6rkJdvnwZYWFhUnu6urm5oWnTpkJHo/ewsCMiek96ejo2bdqEyMhIiEQiuLu7w9/fXzIp3tbWVu17KYgAwMvLC7m5uejdu7fceZU5OTm4du0atm3bJnW8sAU2VBF7LYFNmzZhyZIlaNGiBV69eoWWLVuiUqVKAPJXjoyKioKnp6ewIRVIX18fbm5ukq/v3r2LXbt24ciRI3jx4gXu3LkjYDrFy83NxbRp03Do0CGIxWKYmpoCyB+iuWXLFnTp0gWLFi3S+LnX2trasLa2hoGBgaA5WNgREf2/5ORk+Pj44MmTJ5JjJ0+exM6dO7FhwwbY2toKmI5IuTw8PKSGn2ki9loCQUFB6NatG2bPng1nZ2d4eXmhS5cuAICXL1+iR48eaNSokcApFSs6OhqHDh3CkSNH8PjxY4jFYlSvXl0jtnxZs2YNgoODMWzYMHz77beShVQSExOxdu1arF+/Hvb29hg5cqTASYVlaWlZKuYjisRFreVKRKRBFi9ejNWrV2PChAnw9PSEgYEBjh07hgULFqBBgwbYuHGj0BGJSInq1q2L3NxcaGlpFdprqa2tLVMAq1OvpbOzMyZMmIBBgwahbt26mDFjhtSiIb/++isuX76MoKAgAVN+eS9evMCRI0dw+PBh3LlzB2KxGCKRCD169MCQIUNgb28vdESl6NixIxwcHPDXX3/JbR83bhzu3buHY8eOKTmZ8jx9+hRHjhzB8+fP8e7dO5l2kUiEBQsWCJBMFnvsiIj+3+HDh+Hu7o4RI0ZIjnl7eyMlJQV//PEH4uLiYGVlJWBCIlIm9lrmz7HLy8sDAFhZWcnMpbOyskJUVJQQ0b64xMREhISE4PDhw7h+/Try8vJga2uLYcOGoV69ehg/fjzatWunMUUdADx//hy+vr6Ftjds2BAnT55UXiAlO378OMaPH4+cnBwA+UMuP8TCjoioFHr58iUGDBggc9zV1RW///47oqOjWdiRRsnIyMD69etlFk1wd3fH4MGDYWRkJHREhfrll1+EjiC48uXLIy4uDgDQpEkThISEYOjQoahWrRrEYjHOnj0rGZ6n6lq3bo3c3FxYWVnBz88PnTt3Rv369QEAMTExAqcTRrly5Yos3B8+fKjW80z9/f1RoUIF/PXXX6hVq1ap36tQs2c6EhG9Jzs7W+7EZ2NjYwBAZmamsiMRCSYxMRG9e/fG0qVLkZubi+bNm6NZs2bIycnB0qVL0bt3byQmJgodkxSsZs2aiIyMBAAMGTIEOTk56NmzJ/r16wc3NzecO3cOgwYNEjjll5GTkwMLCwsMGzYMw4YNkxR1mqxjx47Yt28f9u/fL7UiqlgsRlBQEA4cOICOHTsKmFCxYmJi0KdPHzg6Opb6og5gjx0RkZTY2Fhcu3ZN6ljBh9dHjx7BxMREqk3dFw0gzbV48WI8ffoUa9aswddffy3VdurUKYwbNw6LFy/GvHnzBEqoHJrea7l06VLJB/patWph48aNWL16NZ48eQJbW1tMmDABPXr0EDjll/Hdd9/hyJEj+Omnn7BgwQK4uLiga9euar9ATlHGjx+Pf/75B9OnT8dvv/0GW1tbiEQixMTEICkpCY6Ojhg/frzQMRWmcuXKyMrKEjpGiXHxFCKi/+fg4FDofJqCP5UF7QUT6dV9qWvSXK1atUKnTp3wv//9T277vHnzcOzYMZw9e1bJyZQnMTERAwYMQFRUFOzt7VGlShUA+askPnz4ENWqVcO2bdtgYWEhcFL6kgpWwQwJCcGjR4+go6MDR0dHXL9+Hf7+/hq3IX1OTg727NmD48ePIzY2FgAk+9h5eXlBV1dX4ISKs2PHDqxatQqHDx+GoaGh0HGKxR47IqL/t3DhQqEjEJUaqampkv3K5LG2tkZqaqoSEymfpvZazpo166POF4lEavUeVK1aFWPHjsXYsWNx584dHD58GCEhIRCLxfjhhx+wf/9+dOrUCe3atZPs66Yuhg0bBhcXFwwbNgwAEBERgapVq8LX17fIRVTUVUJCAl6/fo3JkyfDyclJ7jkikUhq0TUhsceOiIiIZHTr1g2VKlXCmjVr5LYPGTIEcXFxOHTokJKTKY+m9loWjF4o6UdETRm9cP36dRw6dAihoaFISEiArq6uZP6huqhfvz6mTJkCPz8/AECdOnUwZ84c+Pj4CJxMGA4ODsWeU5p+/tljR0RERDJ8fX0xf/58zJgxA998841kGOLjx4+xceNGnD9/HjNmzBA4pWJpaq9llSpVEBsbK5lHyLnE+ZycnODk5ISZM2fi4sWLOHz4sNCRvjhzc3O8ePFC8rWm9/+Eh4cLHeGjsLAjIiIiGQMGDEBsbCw2b96Mffv2SbWJxWIMHDgQAwcOFCidctjZ2eHixYsYMmSI3PYLFy7Azs5OyakU7+jRozhx4gQ2b96M/v37o0GDBvjmm2/QsWNHjd/XD8jvoWnevDmaN28udJQvrl27dggMDIRIJEL16tUBAKdPn0ZSUlKhjylNQxG/NBsbG6EjfBQOxSQiIqJCRUVFySya0K5dO9SoUUPgZIq3detWzJ8/H7169ZLba3ngwAHMmDFDrQvcBw8eYNOmTTh06BDKlSuHQYMGoXfv3mq/Gqimevv2LX755RccOHAAmZmZJRqSW5qGIirKmzdvcOHCBTx9+hRA/t/BZs2aSbZDKi1Y2BEREVGhLly4gKtXryI+Ph66urqoVq0a3NzcULFiRaGjKcXChQuxefNmmeMFvZYzZ84UIJXyJScnY/v27Vi5ciUMDAzg7++Pli1bCh2LFCg+Ph5ff/01Jk2ahG7duhV5rqr1bH2M3bt349dff8WbN2+kilwjIyP88MMPpWr+IQs7IiIikpGQkICxY8fixo0bMnfsdXR0MGLECIwbN06gdMqlyb2WAPDu3TsEBQVh48aNiImJgZOTE+bMmVOihSVItT179gzm5uYa20N77NgxjB8/Hs7Ozhg0aJBUr/2mTZtw48YNLF68uNRs0s7CjoiIiGSMHz8eYWFhGDt2LDw8PFCxYkVkZWUhKioK69evR2hoKGbNmoV+/foJHVXhNLXXMjExEVu2bEFgYCDS0tLg5uaGwYMHo2HDhkJHIyV7/fo1IiMjkZKSgmbNmsHKygopKSlITEyEjY0N9PT0hI6oEL1794a2tja2b98ObW1tqbacnBz4+PhAJBJhz549AiWUxsKOiIiIZDRs2BDdu3fH3Llz5bb7+fnh5cuXOHr0qJKTKY+m9lo+evQIGzZsQHBwMHR0dODl5YVBgwbB1tZW6GikZHl5eZg/fz527dqFnJwciEQirFy5Em3atEFsbCw6d+6M6dOno3///kJHVYgGDRpgzJgxGD58uNz21atXY9myZbhx44aSk8nHVTGJiIhIhp6eHqpVq1Zoe+vWrbFkyRIlJlK+efPm4ebNmxg3bpzcXsvly5ejXLlyatdr2a1bN2hpacHV1RXe3t4wMTHBq1ev8OrVq0Ifwy0R1NOyZcuwY8cOjBs3DvXq1ZNsXA4AlStXRqtWrXD06FG1LewMDAyQlpZWaHtKSgoMDAyUmKhoLOyIiIhIRuvWrXHp0iV88803ctszMzPVfijimTNn4O3tjdGjR0uO6erqwtHREf7+/khMTMSmTZvUrrATi8XIzc1FWFhYsft4icVijVgVUVPt378fPXr0wKhRoxAXFyfT7uzsjE2bNgmQTDmaNm2K3bt3w9vbW2Zrk8ePH2PPnj1o1qyZQOlksbAjIiIiGT4+PvDz80NYWBgcHR1l2sPDw9GyZUuZD3tWVlbKiqhwmtpruXDhQqEjUCkRFxeH2rVrF3lOamqqktIo33fffQdvb2907doVrq6usLOzg0gkwuPHj3Hy5EkYGRlh8uTJQseUYGFHREREMgYMGAAAhc4hE4vFuHPnDgIDA6WOq1PPjab2Wvbs2VPoCFRKVKhQQbJ3mzzXrl2DtbW1EhMpl52dHYKCgvDnn3/i5MmTyMjIAACUKVMGHTp0wKRJk1C5cmWBU/6HhR0RERHJGDNmDEQikdAxBMVeS9J0HTt2xI4dO+Dp6Yny5ctLte3duxcnT56UmnenjmxtbfHnn38iLy8PiYmJAAALCwtoaWkJnEwWV8UkIiIikqNgn7bCCtyC+WUfUqdeS9Jsb968wcCBA/HgwQM4OTnhypUraNSoEdLS0nD//n3Y29tjx44dGrvPXWnDwo6IiIhIjoCAgE/qtRw7dqwC0hAJIysrCxs2bEBISAiio6ORl5cHGxsbdOjQAcOGDYOxsbHQEb+opUuXwtXVFXXr1sXKlSuLPV8kEmHEiBFKSFY8FnZERERERFSonJwcJCcno2zZsjIbdasbBwcHzJ07Fz4+PpJe+6KUplVhWdgREREREZGUd+/eYcOGDTh48CCio6MlQ49r1aoFT09P9O/fH7q6ukLH/OIuX76MqlWrokKFCnj27FmJHmNjY6PgVCXDwo6IiIiIiCRiY2MxdOhQPHnyBGXLlkW9evVgZmaGtLQ0REZGIjExEfb29li9ejUqVaokdFz6fyzsiIiIiIgIQH5PnaenJ16+fIkZM2agV69eUsMvxWIxDhw4gLlz58LW1hZBQUHQ09MTMLHipKSk4P79+7Czs5Osdvv8+XPs3r0bWVlZ8PT0hL29vcAp/1P61ukkIiIiIiJB7NmzB48fP8bChQvh7e0tM6dOJBLB09MTixYtwoMHD7Bnzx6BkireypUrMWTIEMnXycnJ6NOnD1asWIF169ahT58+uHfvnoAJpbGwIyIiIiIiAMDx48fx1VdfoVOnTkWe5+7ujgYNGuDo0aNKSqZ8ly5dQrt27SS9dcHBwUhISMCqVatw9uxZ2NraYvny5QKn/A8LOyIiIiIiAgA8ePAALVq0KNG5TZs2xaNHjxScSDhPnjyBk5OT5OuIiAjY2dmhTZs2sLS0RLdu3XD9+nXB8n2IhR0REREREQHIn1dW0ENVHEtLS6Smpio4kXDKlCmD7OxsydfXr19H/fr1pdoTExOFiCYXCzsiIiIiIgKQv3hKSRdD0dPTkyp81M1XX32F4OBgpKWl4fDhw4iPj0ezZs0k7ffv34elpaWACaXpCB2AiIiIiIhKj9jYWFy7dq3Y82JiYpSQRjhjx47FwIED4eLiAgCoWLEiOnfuDABITExESEgI2rVrJ2REKdzugIiIiIiIAAAODg4QiUQlOrdg0/I7d+4oOJVw7t69i4MHD0JXVxc+Pj6wtrYGAISEhODQoUMYPnw4GjRoIHDKfCzsiIiIiIgIALBv376PfkzPnj0VkIQ+Fgs7IiIiIiKiD7x48QKXLl1Cw4YNUaVKFQBAZGQktmzZguzsbPTp0wfNmzcXOOV/WNgRERERERF9YM6cOQgODsaJEydgamqKuLg4dO7cGVlZWdDX10dmZiY2b94MZ2dnoaMC4KqYREREREREMq5evYoOHTrA1NQUAHDgwAG8ffsWe/bswcWLF+Ho6IgVK1YInPI/LOyIiIiIiIg+8PTpUzg4OEi+vnbtGmrWrAkHBwfo6uqiffv2uHv3roAJpbGwIyIiIiIi+oCZmRnS09MB5K8AeuPGDTg6OkratbW1kZKSIlQ8GdzHjoiIiIiI6ANOTk7Yt28f3NzccObMGSQnJ6Nly5aS9lu3bqFSpUoCJpTGwo6IiIiIiOgDEyZMQN++fdGzZ0+IxWLY29ujffv2AIBnz57h6NGjpWqrB66KSUREREREJMerV68QFhYGHR0ddOnSBcbGxgCAU6dO4dy5c/Dx8UGNGjUETpmPhR0REREREZGK4+IpREREREREKo5z7IiIiIiIiADUqVMHc+fORZ8+fVC3bl2IRKJiH3Pr1i0lJCseCzsiIiIiIiIAjRs3Rvny5QEAHh4eJSrsSgvOsSMiIiIiIlJxnGNHRERERESk4jgUk4iIiIiIqBCJiYl48eIF3r17J7e9UaNGSk4kHws7IiIiIiKiD7x8+RJTp07F5cuX5baLxWKIRCLcuXNHycnkY2FHRERERET0gVmzZuHq1avw8fGBvb09DA0NhY5UJC6eQkRERERE9IHGjRujf//+mDRpktBRSoSLpxAREREREX3AwMAA5ubmQscoMRZ2REREREREH2jXrh2OHj0qdIwS41BMIiIiIiKiD8TFxaF79+4YPHgwmjZtisLKJq6KSUREREREVEplZGTAyMgIf/31l9x2ropJRERERERUys2ePRuvXr3iqphERERERESqysnJCX5+flwVk4iIiIiISFUZGxujbNmyQscoMRZ2REREREREH+jSpQtCQ0OFjlFinGNHRERERET0gRYtWmDHjh1YtmwZmjdvXuh5pWVVTM6xIyIiIiIi+oCDg4Pk/0UikUw7V8UkIiIiIiIq5RYuXCh0hI/CHjsiIiIiIqJC5ObmIioqCikpKbC3t4eZmRlyc3ORm5sLPT09oeNJcPEUIiIiIiIiOdatW4cWLVqge/fuGDhwIK5fvw4AePDgAZycnLB//35B872PhR0REREREdEHtm7dikWLFqF9+/aYN28e3h/o6ODggCZNmuDw4cMCJpTGwo6IiIiIiOgDW7duRYcOHTB//ny0bt1apr1Zs2a4f/++AMnkY2FHRERERET0gWfPnhW5lYG+vj4SExOVmKhoLOyIiIiIiIg+YGZmhoSEhELbb9++jQoVKigxUdFY2BEREREREX2gbdu22L17N168eCHTduHCBYSGhqJt27bKD1YIbndARERERET0gYSEBPTp0wfp6elo3bo1Dh8+jPbt2yM7OxunT59GuXLlsHfvXlhaWgodFQALOyIiIiIiIrmSkpLg7++Po0ePIiUlBQBQpkwZtGvXDt9//z0qVqwocML/sLAjIiIiIiIqRmJiIvLy8mBhYQEtrdI3o42FHRERERERkYorfaUmERERERERfRQWdkRERERERCqOhR0REREREZGK0xE6ABERkTy1a9cu9pxly5bB3d1doTmePHmCDh06wMXFBVu2bFHocxEREX0qFnZERFRqGRoawtfXt9D2KlWqKDENERFR6cXCjoiISi0TExNMnTpV6BhERESlHufYERGRWrh58ybGjx+PFi1aoF69emjdujVmzJiBFy9eyJw7bdo0eHp6omXLlqhbty4aNWqEXr16YePGjcjNzZWct3fvXnTo0AEAcPnyZdSuXVvyX0BAgOSc2rVrw9/fX+Z5nj59itq1a6Nv374yz1+7dm2cO3cOBw8ehK+vL+rXr4/69evjwYMHn/SaiIhIs7HHjoiIVN7+/fsxY8YMGBkZoUWLFrCwsEBMTAz27t2LU6dOISgoCBUrVpScf+TIEdSuXRstWrSAubk50tPTcfHiRSxcuBAPHjzAzz//DACwt7dH7969sWfPHlSsWBFdunSRfI+GDRt+du4ZM2bg9evXaNWqFfr06YPU1FTo6+t/0msiIiLNxsKOiIhKrbS0NPz6669y2/r27Qs7OztER0fjf//7Hxo0aICVK1fCzMxMcs6pU6cwYsQIBAQESIo1ALh06RLKlCkj9f0yMjLg6emJoKAgTJ48GeXKlYOjoyNMTU2xZ88e2NnZffFhoRUqVMC6detQs2ZNqeOf8pqIiEizsbAjIqJSKyMjA+vXr5fb1rZtW9jZ2SEwMBDZ2dmYM2eOVAEEAG3atEH16tVx9uxZqeNlypRBdnY2IiMjERUVhbS0NKSnp0NbWxtisRhPnjxBuXLlFPa6CkyaNEmmqAPwSa+JiIg0Gws7IiIqtaysrHD69Okiz/nnn38AAN27dy/0HG1tbamv161bh9WrVyM5OVnu+dnZ2R8X9Av7lNdERESajYUdERGptILizM/Pr0TFzpo1a/D777+jbNmymDRpElxcXGBjYwNzc3PMnDkTwcHBCk5cvI99TURERCzsiIhIpRkbGwMABg8ejEqVKhV7fmBgIEQiEbZs2QJ7e/vPfn6RSAQAUqtpfq6PfU1ERETc7oCIiFRavXr1AAB///13ic5/9eoVTE1NS1zUFfSYFTY8s2AOXGHDOj/Fx74mIiIiFnZERKTS+vbtCy0tLSxevBhnzpyRaY+KisK6deskX9vY2CAlJQX37t2TOu/vv//G+fPnZR5vaWkJHR0d3LlzB0lJSTLt1atXBwCcO3cOGRkZkuOJiYn466+/lPKaiIiIOBSTiIhUWp06dTBr1izMnz8fQ4cORf369VG7dm2IRCL8+++/uH37Npo0aYIhQ4YAAIYPH44ZM2agX79+cHNzg5GRESIjIxEZGQkTExOZ729gYABXV1f8/fff8Pb2RvPmzZGSkoI2bdrAy8sLVatWhbu7O8LCwtCnTx80a9YMiYmJOHXqFHR0Pu0y+7GviYiIiIUdERGpvH79+sHR0RGbN29GREQE7ty5AyMjI9ja2mLIkCFSq0t6eXnB0NAQK1asQGhoKExMTODs7Izp06cjMDBQ7uIpCxYsgIWFBU6ePIn9+/ejQoUKUpuVL1y4EKampjh+/Dh27NgBOzs7DB06FG5ubvDw8FD4ayIiIhKJxWKx0CGIiIiIiIjo03GOHRERERERkYpjYUdERERERKTiWNgRERERERGpOBZ2REREREREKo6FHRERERERkYpjYUdERERERKTiWNgRERERERGpOBZ2REREREREKo6FHRERERERkYr7P5cVsyyaKsKkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "'''\n", "1. What features are most important: Let's start HERE\n", "this will be based on Weight \n", "i.e The number of times a feature is used to split the data across all trees.\n", "'''\n", "\n", "# CALCULATING FEATURE IMPORTANCE\n", "imp_df = pd.DataFrame(\n", " {'Feature': X_scaled.columns,\n", " 'Importance': xgb_reg.feature_importances_\n", " })\n", "\n", "# plotting a bar graph\n", "imp_df.plot(x=\"Feature\", y=\"Importance\", kind=\"bar\", figsize=(15, 3 ))" ] }, { "cell_type": "code", "execution_count": 15, "id": "fd38789a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAIzCAYAAABIqnOaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgUVxeH3427CzGcYEES3N0J7i3upRQtFVqsLS18LcW1tBSH4sUJ7gSCS/CQBInrxrPfH7vZZNlNshsS0pb7Pk+eljt3ztzf7MyZO2fuPVcik8lkCAQCgUAgEAgEAoFAIBAIBO+IXnE3QCAQCAQCgUAgEAgEAoFA8N9ABJoEAoFAIBAIBAKBQCAQCASFggg0CQQCgUAgEAgEAoFAIBAICgURaBIIBAKBQCAQCAQCgUAgEBQKItAkEAgEAoFAIBAIBAKBQCAoFESgSSAQCAQCgUAgEAgEAoFAUCiIQJNAIBAIBAKBQCAQCAQCgaBQEIEmgUAgEAgEAoFAIBAIBIL/EFKpFC8vL3bt2qXTfgkJCXz//fc0adIELy8v2rdvz59//olMJtPahoGujRUIBAKBQCAQCAQCgUAgEPzzCAsL48WLF6xYsYK0tDSd9x8/fjz+/v7069cPDw8Prl69yty5c5FKpYwdO1YrGyLQJBAIBAKBQCAQCAQCgUDwH2DKlClcuXKlQPueP3+eCxcu8P3339O7d28ABg8ezJQpU1i9ejUDBw7EwsIiXzti6pxAIBAIBAKBQCAQCAQCwX+AyZMns3LlSqZOnarzvidPnsTIyIiuXbuqlPfp0wepVMrFixe1siNGNAkEAoFAIBAIBAKBQCAQ/Afw9vYGwNLSUud9AwMDcXd3x8jISKW8QoUKADx8+JA2bdrka0eMaBIIBAKBQCAQCAQCgUAg+MCJjIzUGKCysbFRbtcGMaJJ8I8nLeJpcTeh2OjsPa64m1Cs6Eskxd2EYiUkNbq4myAQFAuZOqxq8l9E7wP3fQKB4MOkh3HZ4m5CsXKL+OJuQrGxK2hfcTehSCnM99ldx/3Ztm2b8t99+/alb9++hWY/NTUVExMTtXI9PT309PRITk7Wyo4INAkEAoFAIBAIBAKBQCAQFAWZGYVmqrADS29jZGREZmamWnlmZiaZmZkag1CaEFPnBAKBQCAQCAQCgUAgEAg+cOzt7YmNjVUrj46Wz7Sws7PTyo4INAkEAoFAIBAIBAKBQCAQFAWyzML7K2IqVKjA06dPSUhIUCm/deuWcrs2iECTQCAQCAQCgUAgEAgEAkFRkJlZeH+FRFpaGk+ePOHFixcq5S1atCA9PZ3Dhw+rlB84cABTU1MaNmyolX2Ro0nwn2bHvkPMmreYpfNn0bxRPZ33v3bjDiv+2MzdBw9JS0unTCl3+vXwpadvO431Hz55xtLfNhBw8y5JScm4uTrTrWNbBvXtjoGB/rvK0ZoG7RrQa1RPylYpA8Cz+8/4a9VOLh65qJMdr7pV+WjCADxreGJgZEDw4xD+/vNvjmw7qrF+rWY+9BjZg4o1PDE0NuRNcBgBZwPYvnw7UWHvL7F1g7YN6DG6B2Uqy/U/f/CcnSt3cvGobvqr1q3KgAkDqFC9AgZGBoQ8DmH/+v0czUW/T1Mfuo/sjmdNTwyNDAkLCeP62etsX76d6Pekv0X7pgweO4CKVcsD8PDeE9Yt38TJw2d0suNTrwajJw+jas3KGBoa8vxxEFv/2MnuLX9rrF+hUjk+mTYSn3o1MDUzJTT4JXu3HmDDqq1kZBTevPT8+ND158Ta1opx00bRvG1j7BxsiYqI5tTRcyybv5rY6DidbJmYGjNq4lDadW2Fs4sTcbHxXDx9hSU/reJ16Bu1+vr6+gwc3Y8ufTviUcoNaWIS16/cZNm8NTx68KSwJOaJta0Vn04bRYt2TZT6Tx45y9IC6h89aSjtu7ZW0b/ox5W56h80uh9d+3bCo7Rcf8CVmyydt5pH94tGv7j2s/kQr/0P/fcX+j9c/ZXa1qLhqE44Vy4JwJsHwVxYtZ8HR69pbaNa14ZUbFMLtxplsXS2JTM9g/BHoVzbcpKArSfV6rt7l6dGzyaUrFMR25KOSCQS4sNieHruDpf/OEL4o9BC05cfddvWo+uo7pSuXBqAoAdB7Fm1iytHLxfIXo3GNZm5aQ5rZqzi0J8H8q3vWtaNRX5L2b92H3/+8EeBjikofK5cuUJUVBRPn8qTkN+5cwczMzMA2rdvD8CbN2/o2LEjbm5unDhxQrlv48aNqVu3LnPmzOHRo0e4uroSEBDA4cOH+eyzzzSuSKcJiUz2gS/t8gHi7+/PpUuXGDx4MFZWVsXdnHzRNUv/7fuB7N5/lODQV1y6egOZTFagQNP5y9f45PMZmBgb07JpQ0xNjDl78Sqv3oQxZkh/Ph05SKX+g0dPGTh2ChkZGbRoXB9bG2v8A27x5PkLfNu34sdvp+p0fCjYqnPt+rZl8s+TiImI4eKxSwA0aFMfGwcbfpn6a65Bkrep1cyH79bNITkphYtHLpCclEKdFrVxdndm08LNrP9lg0r97sO7MWbWaOJj4rlywh9pgpRyVctRpVZlYiJjmdRtEi+fv9JJS0FWnWvbty0T/zeRmIgYLh+TP2TrtamHjYMNv079lWPbj2llx6epD7PXzSYlKYWLRy+SLE2mTos6OLk7sXnhZjYu2KhSv+vwroyeKdfvn0N/5VqViY2MZXK3ybwK0k2/rqvOde/vy+xfvyYqIopTR84B0LxdY+wc7Jgx6Qf2bNmvlZ2GzeuxdOPPJCelcPLwGZKkSTRu1QBXdxdWLvid5fPXqNT3rFKe9X+vQl9fn1NHzxEdGUPtht6Ur1iWv/86xPTxc3TSUVA+dP05MTM3Y9Oh3yjnWYZLZ/x5+ug55TzLUK9JbR4HPuWjDiNIkiZpZUtPT481O5ZQp6EPtwPucufGfVzdS9C4VQMiw6MY0H44Ya/DVfb5YckMfHt34HHgU65euI6tvQ0t2jUhLS2NQb6j8w22vOuqc2bmZmw5tJZyFctwUam/NPWb1OHxg6f07zBcJ/1rdyylTiMfbgXc5c71e7h6uNBEob9fu2Fq+n9cOlOu/8FT/C8EYGtvQ8v2TUlLS2Og72ge3nuc9zF19H3i2s/m337tF4QP/fcX+v87+nVddc67bzO6zh9FYkQsgX4BAFRs7YO5gzV7P1/N9e2ntbIz48l6MtLSCboSSOSzV5ham1OhpTem1uZcWX+Mg9+uU6k/aNNXlKpbiRdXA4l48hKZDJwreVCqbiXSklL4rdtM3jwI1kkL6L7qXKu+bRg3fzyxETH4+10BoE7rulg72LD088Wc2O6nlR3nkiXoMrIrDq6O1GzijaGxYZ6BJnMrc/pP+QhbJ1tqNvXG1MKMvat3v1Og6b++6lzqy7uFZsvItWq+dQYOHMiVK1c0bgsMDAQgJCSEVq1aqQWaAOLj4/n11185evQoMTExuLu7069fPwYPHoxEyz6KCDR9gCxfvpxFixZx/Phx3N3di7s5+aJroGnPgWN8M3eBSpmugabMzEw69x9JeEQk235fQtlSHgBIpUl8NGYyz54Hc3D7WlxLOCv3Gf7Zl/hfv83axT9Sx7u6vO3p6XwydQYX/a+zfsXP+FTP3zHkRNdAk5mFGesvriM1JZWx7cYRGylP5GbraMuyQ0sxMjbk43qDSJbmvSylRCJh7ek12Dvb82nH8QQ/CQHAxMyEX/csoGR5D4Y2GU5YaBgAljaWbL66iYhX4XzmO4H4mOw5vd2GdWXs7DEc+8uPnyf/opMeXQNNphamrLu4jtTkVD5t/6mK/iWHlmBoZMjg+oO10r/61Grsne35rNNnhOTQ/8vuX/Ao78GIpiNU9G/030j4q3Am+k4kITZbf9dhXRk9azR+O/xYMHmBxuPlhi6BJnMLM45c3U1ycgp9Wg8mKkK+r72jHdv9/sTIyIi2tbrl+4IlkUjYd34bTiUc6Nt2KM8fBwFgambKhv2rKVOhNJ0b9OZVyGvlPmv+WkLtht6M6DWeaxevA2BgoM/Sjb/QsHk9BvmO5ob/LZ2068qHrv9tRk0ayqdfjGLpvNWs/jW74zdmyjA++Xwki+eu5LfFf2plq3Ov9sxdOpNdm/Yxa8qPyvIufTry/eJv2bFhD3M+n6cs96lXg3V7V3L+xCU+HThV+VW7TiMf1vy1hEtn/BnTb2Kex3zXQNPoSUMZ/+Volvy0ilU59I+dMpxx00ayaO4K1izSTr9vr/b8uGwWOzftY+bkucryLn06MnfJDP7asIfZU39SlvvUq8H6fas4d+Ii4z5W1b92x1IunfFnVN8JeR5Tl0CTuPZV+bdf+7ryof/+Qv9/S78ugSZjC1MmXlhEenIqKzt8TWKkfLSihaM1ow/+gIGRIb82+IxUaUq+thp/0gX/DcdIic8+T+b2Vow+8ANWLnYsaT6FyGfZ2ss3r8HLm0+QRqvmsGkxpRfNPuvOpbWHODxH9YOkNugSaDK1MGXVhbWkJqcwpcNEZZ/XxtGGXw4uxMDIkNENhufb5wWoWt+L77bNVSnLK9Dk6O7EqvO/qZSJQFPepIbcLjRbRu7VCs1WUSJyNAn+c3Tr1IY75w9x5/whxg77qEA27tx/yIuQl3Ro3VwZZAIwMzNlSP+epGdkcPj4WWV5RGQUVwJuUdenujLIBGBoYMDoIf0BOHjsVMEE6UCdFrWxtLHk7/X7lQ8cgOjwaA5sOICljSV1WtTO145nDU/cyrhxcu8pZZAJIFmazM5VOzEwNKBp5ybKcrcybhgZG3L97HWVIBPA4a1HAChR0pmipk6LOlhaW3Jg/YFc9dfWQf/pvaeVQSZQ6F8t198kh37XMq4YGhty49wNlSATwJEs/R4l3lVenjRu1QArGyu2rdul7GgCRIZHsf3P3VjbWtG4VYN87XjVrEypsh4c2n1M2dEESJIm8eeKzRgaGtCuSytlub2jHXUa+eB/PkDZ0QRIT89gzcJ1AHTs0bYQFObNh67/bTp2b4s0Ucq65ZtUyv9YtglpopSOPbVvU1b7V/yyVqV83/aDhASF0rZLK5WpwVn1Vy/8Q2XqhP/5AK5eCKB+0zrYOdjqrEkXOvVohzRRyh9v6f992UakiVI69dA8/VkTHRV1V/ys2qnet/0gwUGhtHtLf5btVb+uU9Pvr9Bv76jdii3aIK59VT60a/9D//2F/g9Xf/nmNTC1Nsd/g58yyASQEB7L1Q3HMbWxoHzzGlrZOrd8n0qQCSAxMo57h+QjQkpULa2y7fGpm2pBJoCIJy/l+0bpNjKpIPg0r4WFtQWHNxxS6fPGhMdweMMhLG0s8W5eSytbdy/doUepLvQo1YUlUxbmWz88JExZ/9u+XxdUguA/jgg0/UsIDw/nm2++oXHjxnh5edGuXTs2bNiQ/45vsWTJEhYtWgRAq1atqFixIhUrVmTXrl188skn1KxZUy3DPMCUKVPw8fFBKpUC0LJlS4YMGcLRo0fp3bs31apVo2nTpqxevVpt34SEBObNm0eLFi3w8vKiZcuWLF68uNhyN2jDrXvyIYXVqniqbatepRIAt+89UJbdvvcQmUyGV+WKavW9KnsikUi4dTewiFqbTUVv+fEDbzxU2/bghry9lbwr5WunUl52rqvbeR38mvS0dGo1r42Ng41K/RIl5QGWhzfVbRU2FWtmtVv9XAdeD1Spk6edLP0387DjnW3nTfAbuf5mtdT1e7wf/dW85aPl7ly/p7btdoB8uG51n/xH1FVT1Lmdh51qPlVyHLcKenp6Go9758Z9MjMzVeoXFR+6/pyYmZtR1rM0D+89ITUlVWVbSnIKj+4/oXzFspiamWplz6tmFcJeh/PmZZjattsBd7GytqR0+VLKsmreVcnIyODuzQdq9W8F3ENPTw8v76I7J9n6H2vU//D+E8pX0l5/NW+5/tfa6vfJ0n9fY309PT28albWUVVe7RPXfhYf4rX/of/+Qv+Hq9/duxwAoTfUp6OG3HisqFP+nY5hYGQIQHJsYp71zGwtqNqpHm2nD+D13SCurNMuTcW7UMFb/o7ySENfPavM01v9PUZQTPyLVp0rLEQy8H8BUVFR9O3bl4SEBHr27ImjoyMBAQF8//33JCcnM3LkSK1tNW/enHv37nHixAkmTpyIjY0NADVr1sTa2prjx49z6NAhevfurdwnPj4ePz8/unTpokwiBnD58mXu3LlDjx49aNu2LcePH+eXX37B3Nycjz6SjyRKSUlh0KBBPHnyhJ49e+Lh4UFgYCArVqwgKiqKWbNmFco5KmxevpIn+LSxtlbb5uQg/xId+iq74xn6Wl7f1kY955WJsTFWlha8fK2eNLSwcXaXjxqKi4pV2xb5JkqlTp52PLSw4+GkLIuJiGHDgo0M/WIIq/xWsmftHvx2+CFNTGL8D5/yMugV25b9pbsgHXFyl7cpTkOy1yhlu7XQrzyPedjJcR5jImLYuGAjQ74YwopjK9izdg/Hdx4nKTGJcXPH8SroFduXb9ddkA64erjI2xIVo7Yt/HWEok7+o6ryshOmtOOiVj9aQ/2U5BTiYuJxdXdR21bYfOj6c+JWMncNkH0+3Eq68PhB3lOTzS3MsLGzzjWnUNib7HOSZcvVw4UkabLaiz5A+JtwZZ2iwr2UKwDRGvwXFLL+LFs59Lt5lMhVv6Zr6F0R1342H+K1/6H//kL/h6vfxt0RAGm0+uih+DcxKnUKgp6BPhVa1CA9OZVXd5/nWm9WkHz0ZGZ6BqcX7ebcyr/JSE0v8HG1xUnRD43Po8+b1S8W/API/OcOsCgqRKDpX8DChQuJi4tjz549ypxKw4YNY/r06axevZohQ4ZgaGiola1q1apRrVo1Tpw4ga+vr0qOppIlS+Lg4MCuXbtUAk0HDhwgOTmZXr16qdgqWbIkGzZswMlJ7sQGDx5M165dWb16NQMGDEAikbBu3ToePnzI5s2bqV69usq+S5cuZdy4cTg6FvwhUFQkKuaym5maqG0zMTFW1JHmqC/NtX7WPpG5dHwLEzNz+VfapET1+dgpSfI56maWZmrbcrWjYV630o6Fqp2tS7ch0ZMw5PPBDJk2mEFTByKNlxL5JoqJXSYRm8tLX2GS1aZkDfqTk5M1tlsTphZZ51E9p0Fu+rcv246enh6DPh/E4GmDGajQHxUWxaSukzQGrQoTc0V7pBranJSUrKhj/k52kjXYyat+1j6FOU0oNz50/TnJal9ubdLtfORtK1mR+8Iihy0zCzOiIzXnF9NUv7AxN8/6TaQat2f9jtq0IVt/3rbMLXPqN89df9axLQtPv7j2s/kQr/0P/fcX+j9c/Ubm8j53qoY+X5qir2Zsod3oRU00Hd8NazcHLq87gjSPqXAXVh/AxNocD58KNJvYA2MrM45+vynX+oWFqRZ9flMt+rwCQVEhAk3/cGQyGYcPH6ZZs2YYGBjw+nV2IrqaNWuyY8cOnj59SsWK+U8Hyg8DAwO6dOnC77//TlBQEKVKyYeD79q1iwoVKlCjhuo8ZxcXF2WQCcDIyIj27duzfPlyQkJC8PDw4ODBg9SoUQMnJyeVtlerVo2MjAxu375Ny5Yt37ntRYWhgfotkpWjVlOqVgMN9bN2KsACagUmPV39S0rW8XXJ/5+RpuGLjNKOanHvMb0YML4/P42fx13/ezTzbUqb3m0o5VmS79bPYdbw2covLEWNRv2KhuukP13D14dczmOvMb3oN74f88fP597VezT1bUrr3q0pWaEkc/6cw5wRc96Lfs2/ve7a87Kj9uPnUj9rn/e55sSHor9d11Z41VSflrBakRsjvzbBu58PuS002tK1vq6079pa4/QzFf2a/Bc59KN9G9Lys/W2fh3rFwbi2l+nVZvg333t58aH8vvnhtD/4erX1Fd7V19brVtDmn3Wjdd3gzg2d0uedY/+sFn5/x1mD6LhyI5EB73Bf4N2K769K0WhX1AE/IumvBUWItD0DycqKorY2Fj279/P/v2alyeNiyu8kRI9e/bk999/Z9euXUyaNIknT55w8+ZNvvrqK632L1FCPjw3IiICDw8Pnj9/TnJyMs2aNSvythcm5or8DSmp6sPfk1MUI2Ny5HgwV0wp1FQfICk5BTPTgn9V0ZasL0tGxkZq24wVI7GSc/n6pMmOoQY7JopRWzntVPKuxIjpw9n46yZO7jkFwF8rd7Bj1U66j+jG6Bmj+HLxNKb1/VI3QToiTZCPOtCo3zRLf/6rbyQl5HEeFXZyruBS0bsiw74exqaFmzi19xQAO1buYOeqnXQb3o2RM0by+aLP+aqfdvdRQUjMQ7tJVpu1+O2z7BjnYSfnF8y86sv3Mcn1i2dh8qHpb9yyAV37dlIr3/L7XyQmyHNJaDoXWW0Cbc+H3FZe+kD1nEgTpBgbG+ddX6p5hJC2NG7ZgG791PVv/n0HiYrRR1k+T5s254ZSvw62pAmJhXJsbRHXvpwP5dp/mw/t938bof/D1Z81ksnAWH1Wh6GpvF2pWqy49jZevvXp9vNoop6/YePgeaSnpGm975kle6g3pB01ejQp8kBTkrKvrq5f2ectgH5BEZEpAk2CfxiZiouybdu29OjRQ2Od8uXfLdHd27aqV6/O3r17mTBhAjt37sTQ0JAuXbpotX+qItCSNbInMzMTHx8fRo0apbF+5cqFlxC1MHEpIR+p9SY8Qm3bq6w8CyWyc/S4ZtUPU6+fmCglPiGRyp7liqKpKoSFyvNGObo4EPw4WGWbk5uijSH554oKC8m28zaObo5qdpp0agyA/8mrKnVlMhm71uymfd921GhYA1NzU606PAUlS7/Du+pX2LF3sVfb5uQqtxMWnJ2jq3FHuf6rGvTv/m03bfu1LXL9WUsOO7s48exRkMo2F3d5ADg05JVOdt4my87L4Gw7L/Oob2ZuhqW1BQ9uF30i+A9N/7cTvufbCd9r3JY1pUFTmwBcFHkdQoPzPx+JCVJio+NwysfW2+ekfKWyGJsYk5Kc8lZ9xTl88Zp34ZsJ3/HNhO80bstXv5tC/wtt9cfi7KJ5ineWLXX95TTrd9P+3GuLuPaz+RCu/bf50H7/txH6P1z9MSHyPrdVCTsiHr9U2Wbt6qBSR1tqf9yKjnOGEBYYzMZB80gI1y3tQ1KMPEBtYl30U9bCFX11hxIOhD4OUdnmoNCfVUcgKA7EqnP/cOzs7DAzMyMtLY0WLVpo/LO11W2pXH19+VK8uQ2n7NmzJ69eveL8+fPs27ePli1bYmen3TzrZ8+eoaenp5x25+bmRkJCQq5tzxoB9U+jWhX5VET/67fVtl27cQeAqpUqKMu8KslXdbh6Q0P9m3eQyWQq9YuKrNXWqtWvprbNq54XAA9vPXonO9U02DFUrMrhoCEwBfKEigB6+kXrch4qVtmoVi93/Y900Z+Xndva68+654pSf9bKL7UbeKttq1W/JgD3bqivhPQ2WSvO1MrDTs4Vle7euJ9rfZ/6NdDT09O4AlNh86Hrz0ligpTnj4OoWqOS8kt0FmbmZlSsWoHnj4NyzTv0Nndu3MPZxRGP0u5q27zr1iAhPpFnT7JfcO5cv4ehoQE161RXq+9TvyaZmZncu1V05yQxQcqzvPR7VeCZTvrv4+zipFG/Tz2F/hzLgd9W6Peuq66/VgOF/kK8JsS1n82HeO1/6L+/0P/h6g+9KV9trnR99Y/WperJV0Z+eSvvpP85aTGlF51/GEbw1Yf80ec7nYNMACWqyN9/YkMjdd5XVx7dlPdDq9RXX1WwiqKv+viW5sUMBO8fmSyz0P7+LYhA0z8cfX19WrZsyenTp7l48aLa9vv37+c6Pzo3HBzkL8PPnj3TuL1Tp06YmJgwc+ZMwsPDVRKD50VYWBj79u2jQYMGWFnJV19r27YtDx8+ZOfOnWr1g4ODiYmJ0anthc3mHfvw7T+Sr777WaW8epWKuLuW4MTZi7wIyf5KkpSczF97D6Gvr0e7lk2U5U6O9tT2rsbNOw8IuHVXWZ6RkcHmnX8D0KF186IVA1w54U9iXCJterfByjZ7BTxrO2tadm9BYlwiV074K8u7DPblt5Or+fzXKSp2HlwP5FXQKxq2a4Br6exVQ4xNjOk4oAMZ6RmcPXBWWX793HUABk8diI2DjYqtFt2a41HOnbv+d0mMy3t52HfF/6Rcf+verVX0W9lZ0bxbcxLjEvE/ma2/8+DOrDqxiilv6Q+8HsirF69o0K4BLqVU9bcf0F6uf3+2/hvnbgAwcIq6/uZdm+Nezp17V+8Vqf6zxy8QH5dA176dsLHLXi3R1t6Gjj3aER+XwNnjF5Tl/Yb1Yu/ZrfywZIaKndsBdwkJCqVlh6YqL1cmpsb0/Lgr6enpHP37hLI8/E0E/hcCqFHbS+XlSk9PjwHD5b7j0J6iX+b3Q9f/Nof2HMPI2IgBw/uolH80ojcGBgYc2nNMbZ+9Z7ey9+xWteXXs+oOHjtApbxjj7Y4ONlz/OAplZxEWXoHju6Lnl52N8OnXg2qVK/ItUs3CH+j21dmXTm0W67/oxGq+j8e2Ueuf7e6/n3ntrLvnLr+g4q6Qz9R1d+pZzscnOzxO/CWfkX9QaP6adBfiWsXC1e/uPZV+dCu/Q/99xf6P1z9j07eIDlOSs1eTTGztVCWm9lZUq1bQ5LjpDw6eUNZXndwGz49/j+6LxijYkffyICei8fR7LPu3Np9jvUf/0hKfO6jzx3Ku9Ly896YWqsmWTe1saDD7EEA3Np9rhAU5k3AyaskxiXSslcrLG0tleVWdlY07daMxLhEAnKMtO8wuBOLjy/nswUTi7xtAg1kZhbe378EMXXuX8DUqVO5fPkyw4cPp0OHDlSpUoWUlBQuX77M5cuXuXnzZu5JqDVQt25dDAwMmDVrFn379iUxMZHmzZvj4+MDgKWlJW3atOHvv//GxcWFRo0aabRz9epVJk2aRLVq1YiNjWXXrl2kp6czbdo0ZZ1Ro0Zx4sQJvv76a44dO6Y8RkBAAGfPnmXfvn3Y2NgU/ORo4PHTIM5ekgcTbtyWf6E5fuYCz4LkU6l6d+2Ahbn84RAdG8ezFyHY26uOCtPT0+OrSWMZ/8Vs+o2YQIvG9TExMeb85WuEvHzN8I97U9LdVWWfaeNHMfiTqYyaOJ0WTepjY2XF1Zu3efTkOe1bNaWuj/oXzsJGGi9l7Y+/89mP41l5bDmX/a4gkUDdVvWwd7Zj8VdLkMZnf8m1srPCo7wHUeGqq+TIZDKWz1jBrN9nsvjvRVw8domUpBRqN6uFSykXti3bzsvn2UOoLx69xJm/z9DUtym/n1nL1VP+xEXHU6ZSabzqehEdHs2v0xa9F/1//PQHn879lGVHl3Hl+BUkEgl1W9XFzsmOpV8vVdFvbWeNR3kPojXoXzljJTPWzmDh/oVcOirXX6t5LVxKurB9+XZeBWXrv3TsEmf3n6VJ5yb8dvo3rp66Slx0HKVz6F9UxPoT4hNZ+P1yvp0/jR0nNnDm2HkkEglN2zTC0dmB76bNJyE+O9Bla2dNmQqliAhX/eomk8n4cfoCFv85ny2H13LyyFmSk5Jp1KI+7qXcWLtkPcHPVYdo/zxzEev2rmTVtkWcOnKGmOg4atWviWeV8hzac4yrF64XqXahX50Nq7bSoVsbJn7zCXUa+vD86QvKlC9Fw+b1eP44iA2rtqrtU6aC/Evs2yNBDuw4Qo/+vvQZ3J3ylcry4M5DSrg60bRNIyLDo1g2f41K/asXrnNozzE6dGvD1qN/cP3KLWzsrGnRrimpKan8PLPofcH6VVvo0L0Nk74ZR52GPgQ9DVbqf/Y4iPWr1JO7lq1QGgDTt1YP3b/jMD0G+NJncA/KVyrHfYX+Zgr9S+evVqnvfyFAqX/7sXUEXL6Jrb0NLdo1ISUllfmFrF9c+6p8aNf+h/77C/0frv6U+CT8ftpK57nDGHvkJx4evw4SCZ6tamLpZMv+r39XCRiZ2VriUN6VhPAYFTtenetTrWtDEsJjSQiPpdXnfdBEVtJvAyNDmn7ajQYjOhJ0+QFRz19jZmtJuabVMLWx4O6By9zcVfSBJmm8lA0//cmYuZ/w65HFXD1+FYkEareqg62THSu/Xq7a57e1wr28OzFv9XkB7F0caOwrTwNRrpo8JUv1htUxUuR/Ovf3OSJfZQfJTS1MaTugHQDOJV2U+3Ud1Q2AgJPXCH6kmsJC8OEhkYl09P8KwsLCWLFiBadPnyYsLAxbW1s8PT3p2LEjPXr0yF4RQksOHDjAkiVLCA0Nxd7envnz51O3bl3l9tOnTzNq1CjGjRvHZ599prZ/y5YtMTY2pkKFCvj7+5OYmIiPjw/Tpk2jShXVL4IJCQmsXLmSY8eOERoaipWVFeXKlaNt27b06dMn18SZWaRFaD/sFWDPgWN8M3dBrtuP7FiHm4s8t8KytRtZ8fsmantXY93S+Wp1r1y7yao/t3Dn/kPS0zMoU8qdPt060btrB43n/MHDJyz9bQMBt+6SlJyMu6sLXTu0ZnD/HhpXsMuPzt7jdN4H5DmDeo7qQZlKpQF4dv8ZO1fv4tyh8yr1Pp70EQMnf8zNi7eY1ucLNTs1GlSn/2f98azhiYGhPsGPQziw8QAHNx1SqyuRSGjfrx1t+7ShdKXSGBoZEvEqgkt+l9m6dBsxETE669Av4FJ9jTo2osfIHpTOoX/3mt2cf0v/R5M+4qNJH3Hr4i2+1JCovHqD6vT7rB+e1T3RN9Qn5HEIBzcd5FAu+tv2a0ub3jn0v47git8VthVQf0iq5mWy86JN5xYMGtOfCpXlOcEe3nvC+pWb8TtwSqXe2KnDGTt1BP4XAhjeQ/06q9PIh1ETh1K1ZmUMDAx49jiIv9bvZseGPRqPW7FqBcZNG4l33RqYmpkQEvSSfdsPsn7lZtI1rd5XRHzo+nNia2/DuGmjaNa2MXb2NkRFRHP62DmWzV9DdGSMWv1br+WjZof1+ETtBcHUzJTRk4fSrksrnEo4Ehcbz6Uz/iydt0pjriMDA30Gj/2ILn064lbShSRpMgGXb7D8f78ReDf/6auZhdA1sbW3YfwXWfptiYyI5vTRcyydv1qj/jtvLgEwtPsn+F8IUNlmambKmMnDaNe1Fc4K/RfP+LPkp5W56h/yiVy/e0lXkqRJXLt8k2Xz12ilX68Avk9c+9n8m6/9gvKh//5C/39Dfw/jsjrvU6VjXRqM7IhzRQ8A3jx4wYU1B7l/yF+lXvOJPWg+qSfPL95jXb8flOU1ezWl2y+j8z3OrFIfAfLk4zV6NqFC8xq4eJXGwtGGjLR0wgJDuL79FNe2nNRZQxa3iNd5nwYdG9JlZDdKVpQHzIMePGffmj1cOqQ6E6bvxP70ndSfOxdvM6PfdJVtVet78d22ubke49u+X3P30h3lvx3dnVh1/rdc6y+ZspCTO07kul0Tu4L26VT/30bKw8ILPhp7Ni40W0WJCDT9BwgPDycjQztnrm1OpOXLl7N48WL8/Pxwd1fPTdCyZUtKlizJunXrdGlqgdA10PRfoqCBpv8KBQ00/VcoSKBJIPgvUBiBpn8zBQk0CQQCwb+dggSa/ksUJND0X+E/H2h6cLrQbBlX0rya+z8NMXXuP0Dfvn0JDQ3Vqm5gYGC+dTIzM/nrr79o0KCBxiCTQCAQCAQCgUAgEAgEAoEmRKDpP8APP/xAcnJyodk7ffo0L1++ZOrUqYVmUyAQCAQCgUAgEAgEgg+Of9FqcYWFCDT9B2jQoEGh2tu6dSs2Nja0adOmUO0KBAKBQCAQCAQCgUDwQfEvWi2usBCBJoEaq1atyrfOiRO6JXgTCAQCgUAgEAgEAoFA8N9HBJoEAoFAIBAIBAKBQCAQCIoCMXVOIBAIBAKBQCAQCAQCgUBQKHyAU+f0irsBAoFAIBAIBAKBQCAQCASC/wZiRJPgH09n73HF3YRiY//1ZcXdhGIlI/BicTehWMk4vLe4m1CsBG1OLO4mFBs/phsXdxOKlbDMpOJuQrESEPe0uJtQrDib2BZ3E4qVS0Nci7sJxUbI7sJbRfnfyLUEu+JuQrFyVZJe3E0oVraemlHcTRAUETJZRnE34b0jAk0CgUAgEAgEAoFAIBAIBEXBB5ijSUydEwgEAoFAIBAIBAKBQCAQFApiRJNAIBAIBAKBQCAQCAQCQVHwASYDF4EmgUAgEAgEAoFAIBAIBIKi4AOcOicCTYL/JA3aNaDXqJ6UrVIGgGf3n/HXqp1cPKJbcmmvulX5aMIAPGt4YmBkQPDjEP7+82+ObDuqsX6tZj70GNmDijU8MTQ25E1wGAFnA9i+fDtRYdHvrEtXduw7xKx5i1k6fxbNG9XTef9rN+6w4o/N3H3wkLS0dMqUcqdfD196+rbTWP/hk2cs/W0DATfvkpSUjJurM906tmVQ3+4YGOi/qxytORHwgD8PX+Rh8BsAPD2cGNy+IS19Kulk59DlO2w74U/gC7kdN0cbWvpUYmDb+liamajVP3/nMRuOXOLOs5ekpafjam9D/aplGdaxEY42lu8uTAv0K9fBsJEveiVKAZD5Ooi083+Tcd9fZ1sSS1sMGnTEoEJNJDaOYGBExsMAUrb8rH5crwYY1u+AXonSIJGQ+SaIdH8/0q+fekdFumHZpj72I3pgXEl+76cEPidyzU7ij10qsE2JqTGlt87H1Ks8L0bMIuFk9rm07tkat/mT8rXxqOlQ0kLDCtwGbanVti4dRnWlZOXSAAQ/COLgqj1cO3qlQPa8Gtfgi00z+XPGGvz+PKSxTjlvT5r0bI5nnco4lXQGiYSYsGjunrvF0T8OEPoouKBydOZ9+/42vVszdcGUfO0NajCYNyFF//tnYWtrw5fTP6Ndh5Y4ONoTER7JkUMn+OmHxURHx+hky9TUhMmfj6Vrj464upYgNiaWUycvMPe7XwkNeaVW38rakgmTR9PZtw1u7q7ERMfw6OEz1qxaz8H9foWkMG+sba34dNooWrRrgp2DLVER0Zw8cpal81cTGx2nky0TU2NGTxpK+66tcXZxIi42nounr7Dox5W8Dn2jVl9fX59Bo/vRtW8nPEq7IU1MIuDKTZbOW82j+08KS6L6cavUxahpV/RcSwOQ+SqI1NN7yLin+70vsbTFsHFn9Ct6o2er8P0PAkjeME9Zx6BWC0z6jM/XVuJPo5FFh+vcBl2xaN0Au+E9MK6Y7fuj1u4kwa/gi4pITI0ptfl/mFQtT/CoWSSeyj6X1t1b4zJvcr42nrQY8l58v3v7WlQe0xHbKiUBiLkfzL0VBwg5fE1rGy7NqlGqWwMca1fAzNUeWUYG0tfRvPS7wYO1R5CGRqrUt/cpR9neTXCqWxGLUo4gkZD0JobXZ+8SuPYIsQ9DC1Vjbni1rU2LkZ1xrSzv97x68IITq//mztGrBbLn2bgaYzdOZ+eMPzi3/kiu9Wp2qk+TIe1xq1IaiZ6Elw9ecHGzH1f+Ol2g4xaU4xeu8ueOAwQ+fQGAZxkPhvTuTKuGtbW2kZmZyY6DJ9hx6CRPX4Sir69P1QplGNijAy0a1Mp1v7iERDbvPcqpSwEEv3yDNCmZCmU82L7sh3fWJfj3I5HJZLLiboRAkBftPDroVr9vWyb/PImYiBguKl4uG7Spj42DDb9M/ZWjuQSJ3qZWMx++WzeH5KQULh65QHJSCnVa1MbZ3ZlNCzez/pcNKvW7D+/GmFmjiY+J58oJf6QJUspVLUeVWpWJiYxlUrdJvHyu3inPi4KsOnf7fiC79x8lOPQVl67eQCaTFSjQdP7yNT75fAYmxsa0bNoQUxNjzl68yqs3YYwZ0p9PRw5Sqf/g0VMGjp1CRkYGLRrXx9bGGv+AWzx5/gLf9q348dupOmspyKpzu85cZ/a6v7G1NKN5zYoAnLoRSHS8lFlDfenexFsrO/M3H2GT32UcbSxpULUsRoYG3HwczKOQMNwdbdn07XBsLMyU9TcevcT/th7FytyExtUqYGFqzIMXr7j1JBRbCzPWTx9GSWfdVpPRddU5A58WGHcfiywhlvQH8g6WQaXaSCysSdm9gvSAk1rb0q9cB+Oen4KePhlP7yCLfgOGxpCZSeq+1Sp1jToNxbB+BzJjI8l4dgcyMtEvXw09awfSLh8hdf9anXRkoeuqcza92+L60wTSI2OI97sMgGXrehjY2/Dyi4XE7DimeyP09PBY+Q2WreT3z9uBJpNq5bHu3CzX3c0b1sSkSlmdA00FWXWuWd9WjJg/jriIWAL85G30aV0HKwdr1ny+lDPbT2hlx6mkMx1GdsHe1QGvJjUxNDbMM9D0xaaZVKpbhYdXH/DySSjIZHhUKkXFulVISUphdrcvCX4QpJOWgqw6Vxy+v0L1CjTvkvvv7924JuWqltM50PQuq86ZW5hz5Ph2KlYqz+lTF3gU+ATPSuVp2qwBD+4/on2rPiQmSrWypaenx65962jUpB7Xrt7kRsBt3D1cad22GeFhkbRp0ZPXr7J12dnZcshvK2XLlebyxWvcvfMAK2sr2rRthrWNFauW/8k3X83N97jvsuqcmbkZWw6tpVzFMlw848/TR88p51ma+k3q8PjBU/p3GE6SVLvrS09Pj7U7llKnkQ+3Au5y5/o9XD1caNKqAZHhUfRrN4yw16pBlB+XzsS3dwceP3iK/4UAbO1taNm+KWlpaQz0Hc3De4/zPa6uq84Z1GmFSa9xZCbEknFPfu/rV6mDnoU1yX8tJf2qdve+fL+6mPSbIPf9j2+TGfUGiZERZGaSsmulsp6eWzkMajbO3U756ui7ltE50FSQVeese7XFZe5E0iNjSDgh9/0WLeW+/9VXvxK7s2C+3335t1i0lPv+twNNJl4VsOzUNNfdzRvWxKRyOZ0DTQVZda5c/2bU/2UkyRGxhBy9DoB7W29MHKy5OHk1T7ee0cpOl/O/YOpszZuLD0gICkOir4dDrfLYeZUmOTKOg62/JulNjLJ+y21f4lSvEuFXAol7/AqQYVO5JE71KpKelMKRzrOIua/bh4arRrqtOlevTwv6zR9NfEQsd/3kQbWqrWth6WDNls9XcuWvU1rZsS/pTPMRHbF1daBik+oYGBvmGWjqMWsITYa0J+ZVJI8u3CUzIwPPxtWxdbXn3Iaj7Pz2d510ZDHvlG595V2HTzHz1zXYWVvRvIEPAKcuBhAVG8ecySPp3q55vjYyMjKZ/P0iTly4SklXZ2pXr0xKahrn/G8SG5/ApOH9GNbHV22/G/ceMWHWAmLjE6hdvTJlPFxJS08nOjaeRTPz/wD3NkaltQ+M/RtJ9t9ZaLZM6vQsNFtFiRjRJPhPYWZhxshvRhD5JpKx7cYRGxkLwJ+O61l2aCmjvhnBmb/PkCzNuyMjkUgY990npKWmMcF3AsFPQgAwMTPh1z0L6DuuD4e3HiFM0XmwtLFk2FfDePn8JZ/5TiA+JkFpq9uwroydPYYBnw3g58m/FJHybJ48fcH2PQffyUZmZiY/LFiOkaEhW35bRNlSHgBIpUl8NGYyv23YTg/fdriWcFbu878lq0lJSWXt4h+p410dgLT0dD6ZOoO/Dx+nd9cO+FSv+k7tyo+EpBQWbD+Go7UF22aPxt7KHICI2Bb0nbWaBduP0a5OVcxMjPK08yjkDZv8LlOjnDtrpg3C2DDbVf5vyxE2HrvMZr8rfNKtOQAxCVIW7jiOh5Mtm74ZgbWFqbL+pmOXmb/lCKv/PsP3I7oVumYlxqYYtR9IZlwUScunQaL8q33a8a2YfDIfo3YDSb9zAVJT8jWl51YO476TyAx9QsrWBcjicx+Np1/BG8P6HcgIekDy+h+y7RsYYtxnIob12pF+7zKZT+8Uisxc22xhivNXw0l7E8lT3/FkKO79sAW2lP17Mc5fDSf24Flk+dz7b+P8zUgsmtYi8dItzOtXV9uefPsxybc1vzjqWZhi3aMVKU+CSXsVobsoHTCxMKX/9MFEv4nimw5TiFPo3+Fow/cHf6H/9MFc3n+BFC3027k60HqQ9gH+Q2v2sezTBSREx6uU95zSn26f9aZpn1ZsmlOwTre2FJfvf3TrEY9uPcq1TW16tyb4cTDhL4v298/J6LGDqVipPD9+v4gF/1uuLJ/6xTi++PozRo4ZyMJfVmllq2dvXxo1qcfG9X8xafw3yvK+/buxdOU8Pv/yU6ZMyF6O+7PJIylbrjRfT/ueNauyA3JZAajRnwxmzar1BD0PKQSlmhk4qi/lKpZhyU+rWPXrH8rysVOGM27aSD4e2Yc1i/7UylanHm2p08iHnZv2MXNydoCsS5+OzF0yg7FThzN76k/Kcp96NfDt3YFzJy4y7uOpZGTIl7Ou08iHtTuWMnXmeEb1nVBIShUYm2LccbDc9y+cgixRfu1LjthgOuEXjDsNJv3WBUjN/97Xcy+PycdTyQx5TPKG/+Xp+zNDn5AamssILWNTzGu1IDMsBFlMpOY6hYSeuSlOX8h9//Oun5IRJdev72BLmT1LcPpiBHGHdPf9Tl+PxLxJLRIv3cS8fg217cl3HpF8R/O9r2duinWP1qQ8LXrfb2Bhive3A5C+juZgm+mkRMqf/Tcdrel49Ad8vh3Ai32XSZfm/+wP+G4zr8/eJT1R9Vw1WDSasr2bUNK3HoG/ZQdeHqw8yPmxS0mJSlCpX/3zXlSb1I1y/ZpxbebGQlCpGWMLU7pM/4jYN1H83PFLEhTaLR2tmXrgJ7pM/5gbBy6SqoV2G1d7Gg/SPFr/bSo3r0mTIe15djWQlYPmKu0bGBsyaOkEGg9sy61DV3h0oWj7PQmJUn5eswlHOxv+WjEXextrACIGx9B73HR+Xr2Zdk3rY2aqPgI/J38dPM6JC1dp06Qu874ch6GBvM8bl5DImK/nseiPbbRsWJvS7i7KfV6FRTB2+jwc7Gz44+dvKVtSt+D4B8kHOHVOrDon+E9Rp0VtLG0s+Xv9fuWLBkB0eDQHNhzA0saSOi3yj5h71vDErYwbJ/eeUr5oACRLk9m5aicGhgY07dxEWe5Wxg0jY0Oun72uEmQCOLxV/lAuUdKZ90G3Tm24c/4Qd84fYuywjwpk4879h7wIeUmH1s2VQSYAMzNThvTvSXpGBoePn1WWR0RGcSXgFnV9qiuDTACGBgaMHtIfgIPHThVMkA6cu/2YeGkyfVrWVgaZABysLejdohZxicmcyyUokJPHofKvr81qeqoEmQC6KUZEhYbHKMtevIkiLT2DelXKqgSZAOUIqtCIGIoS/Qo1kZhakH7lqDLIBMhHN105isTMAv0K2o3mMuo4FJk0nuTNP+f5ogGgX70hAGmndqoGsdLTSD24DgDDWq10E1MALJrVRt/aguhNB5RBJoCMiGiiNx1E38YSi2a6fS2zG9IF+8FdePXtMqSXb+vcJvvRvTGwsyZ84cYiTwJZo7kP5tYWHN9wWBlkAogNj+H4hsNY2FhSo7l2v/+DS3cZWKoHA0v1YPWUJfnWv3XqulqQCeDVE/m0ifioWLVthU1x+f686PNJb6ztrFn/ywYy32MS0J69O5OYkMiyxb+plC9d9BuJCYn07K3+ZTovWwD/+2mpSvm2LXt4/jyYrt06YGCQ7SMrV/YEYO9u1dFvUVHRHDp4HACPku7aiykAnXq0Q5oo5Y/lm1TKf1+2EWmilE49tHuZBOioqLviZ9VzuW/7QYKDQmnXpZXKtPAs26t+XacMMgH4nw/A/0IA9ZvWwd5R9xEreWFQ0QeJmQVpFw8rg0wAsoQY0i4dRmJmiX5F7e594y7DkSXGk7x+Xr6+Py+MmndHYm5F6rGtRf5yZd6sDvrWlsRsPqAMMoHC9285IPf9TXXz/baDumI3qCuvZy4lyV/3YIHdqN4Y2FoTsajofb9by+oY25jz6E8/ZZAJIDk8lofr/TC2tcC1pXqgTBMhh6+pBZkA4p7IR+OnRKr6+Zcnb6kFmQDiHr+UtyFSt2mqulK5eU3MrC04v+GYMsgEEB8ey/mNxzC3saBy85pa2Xpy6R6TSvdjUul+bJ66Is+63r7yfs+RxTtVgljpKWnsni0PYtfv10JHNbpzzv8m8QlS+vq2VgaZABzsbOjTqRVxCYmc9b+Zr51Dp+SzB8YP7q0MMgFYWZgzaUR/MjNl7DmqOh3w17VbycjIZNHMSSLIJMgVEWj6DxAeHs4333xD48aN8fLyol27dmzYsCH/HfOwN2PGDBo3bkz16tXp1KkTP/30E2/eZOciuHPnDiNGjMDHx4eaNWvy8ccfc/nyZRU7ly9fpmLFivz111+sXLmS1q1bU6NGDXr16kVAQECB25cXFb3lU6UCbzxU2/bgxgMAKnnnn6enUl52rqvbeR38mvS0dGo1r42Ng41K/RIlSwDw8Ka6rX8qt+4FAlCtiqfatupV5Lpv33ugLLt97yEymQyvyhXV6ntV9kQikXDrbmARtTab20/lL4ZeZdzUtlUr66ZSJy9KKaa4Hb/2AGlyqsq20Ah557tqmewHq5uDDQb6ely4/ZjI2ATN9UsX7YNY370CAJkh6oG0rLKsOnkhcXJHv6Qn6TfPIjExw6BWSwxb9cWgQSf0NOyvZ2EjP0aM+tQAWUw4mTHh6LmX10VKgTCtIb/2kjTcZ0k35deeWU316zM3LFrWxfnrEUSs2E7MX9pNucqJvoMt9kO6knT3CXEHz+m8v66U85b/Nk9uqH9hzyor561+PxcFFraW1O3UkP7TBxN09xlH173bCEttKC7fnxu2jrZ0H96Nx3eecGb/2XzrFxbmFuZ4VizH3buBpKSo+q7k5BTu3XtIpcoVMDc3y8WCKt61qvH6VRgvQ1+rbQu4ehNrGyvKVyijLHv65DkAfQd0V6tfqpQ7yckp3C/CZ4GZuRllPUvz8N5jUt/Sn5KcwsP7TyhfqSymZqa5WFClmncVwl6H8/qlun+7HXAXK2tLSpcvlV3fpyoZGRncvXlfY309PT28albWUVXe6JVU+P5g9Xs/q0y/ZP73vp6zB/qlKpJ+/TSYmGFQpzVGbftj2Lgzelrsn4XEwgbDxp3JCH0qH0lVxCh9/y316ypZ4ftNaujg+1vUxemrEUSu2k7sjoL5frvB3Ui+94T4Q0V/79t7y5+vETfUR5dFBsjL7H3K6W5YIsHE0ZpyA5pTdZwvr07fJmhf3rkOje0sKOlbD58ZA4i6G0Tg7wWYsqgDpWrKtb+4qa496MZjRZ38+z26YuVoA0BUiPqU0OiQcKJCwpVtK0puBcp1V6uo/vtWryQ//u0H+X9cjYyWB2jdnB3VtnlX9URfT4/bD7LPcWx8In7n/WlctwZmpibsOXqaZet3sO6vA1wMKNpRXP9qMjML7+9fgpg69y8nKiqKvn37kpCQQM+ePXF0dCQgIIDvv/+e5ORkRo4cqZO9yMhI+vTpQ1RUFD179qRkyZIEBgayZcsWPD096dGjBzdv3mTQoEHY2dkxcOBADA0NOXDgAMOGDWP58uU0a6aar2L27Nm4u7vTs2dPUlNT2bRpE6NHj+bEiRNYWhZugmRnd/mooTgNX9Aj30Sp1MnTjocWdjyclGUxETFsWLCRoV8MYZXfSvas3YPfDj+kiUmM/+FTXga9Ytuyv3QXVEy8fCUPKtpYW6ttc3KQB2FCc+TlCH0tr29rY6VW38TYGCtLC16+Vk+aWti8jJD/XraW6i9RTopk3Fl18qJKaVd6NvNh5+kAeny7goFt69OhnhdpGRks2OZH1TKu9Gia/YXY3tqCsV2bsWTXSXp+u5KP2tTDt1F1zEyM+X79QdwdbRnWsVEhqdSMxFbeQZBJ1UeWZMZHqdTJC/1S8pcgA09vDBt2RqKn+j0i7cZpUnevhEz51/rMuGj0AT3nkmREqOcgkyUloGfnolZe2Bgq7usMDYl+09/Ip24YujmpbdOESdVyuC+cRtzhC4T9rN0Um7dxnDAAPTMTwhesL9D+uuLgLtcWr2FkUbTCZ2XVKUo2BO0CICM9gz2LtrN/5W7SU3XLuVEQisv358bASR9hYmbCuvkFu34KSqlS8tFCUZExGre/eS332x4l3XhwX/O0nywsLM2xs7Pl7h3NgaGs3Ew5bS36dTWt2zVnxuypNGxUh99WbeTUyfP4dm1Lh06tmT3jf0RGFt3CGO6l5AH96FxG0YW/lk9jcivpwuMHeefBMrcww8bOOtecSmFZtjyybbl5lCBJmqwW5MpZ39WjcP2hnq38epQlqt/7srgolTp52ikt9/36lXwwbOKLRE91AY+0a6dI2bFM6ftzw6hNXyRGJqQe2axV+9+VLL+u0feHRSnqaDei3LhKOVwXfEH8kQuE/7KuQO1xGP+R3Pf/+n7ufXMPBwCNI4uS3sjvNQv3/J/9KjbdHeh2ZSEAaYnJXP9+K4/WH4c80vp+9FI+RS4zPYPbv+7m3rL9ZBax77dT6EqMUv/t4xTa7XTUrg2xisV9XCuWJPyper9HGpuAY+mi7/e8fCMPdNlYqb9LOdrbqNTJC0d7W4JCX/PoeTBVPcuqbDPQ18fMzISomOxzfPvBY9LS0nn0LJiOQyeTlqb6Ozfw8WLBNxOw0PKDxgfDBzh1TgSa/uUsXLiQuLg49uzZg7u7vIM5bNgwpk+fzurVqxkyZAiGhoZa2/vll194/fo127Zto3r17ClQEyZMICpK/sCeO3cuJiYm7Ny5Ezs7edBh6NChdOvWjTlz5nDs2DH0crycdunShVmzZmFkJM+L4+npycSJEzl9+jSdO3d+53OQEzNz+VfKJA1Df1OS5MNbzTQEIXK1o2FOv9KOhaqdrUu3IdGTMOTzwQyZNphBUwcijZcS+SaKiV0mEfsepo8UFomKRKma5nWbmBgr6khz1JfmWj9rn8iomEJupTrSZPlvY2qsnoPJxEh+HyQk5z9XH2DG4M5kZsrYffY687cc4ZdtRzExMqRyKReWTOyvtJfFiM5NyJTJWLb7FEt3n2TZnpNYmBjjaGPJhunDsMsxla8okBjJr1mZpjwcqfKXHolx/l/x9ezkI/Bk8dGkHt5AxsunkJKEnmtZjDoOwbBmM2QxEaQd3wZA+s2zGPo0x7jzcFIkemQ8ugEZ6UisHdCv6IOerTPoF/2jRk9xz2Ymqif5zVT85noW+d/7BiXs8Vg9g+TA57ycWrCcakalXbHt3Rbp1bsknCrYqje6YqrQn6JBf6rCZ5laaDeK4104uHov5tbmlPepSPeJfTC1MmfL9+uK/LjF6fvfxrW0K+36tePOlbv450gc/z6wsJD7mcREzYn0pQpdlpYW72wrKUnd1utXYXRq049jp3bSum0zWrdtRmxMHNY2Vnw5dQ5r12zSaKuwyBqpJc0l2Xmyos1Z2vK0paiTny1zy2xbZhbmROcSSFMe27KQnwXGWb5f/d6XZU1n1sb3O8hfjGVx0SQf+JPMkKfIUpLQcyuLcZdhGNZqjiwmnNSjW3K1IbF3waBOKzKe3ScjsGhGrqu1W/GbZ2q4ZzMV51xfG9/vbI/7qpmkPHzOq2nqK6tqg2EpV2x6tUV67S6Jp9+P7ze0kPe7NE15S0+SP/sNLXXz/WnxUu6vPIiRrQXODStTa+YA9E0MebBK84IQAPdWHsDI2hzHWhWoNrkHRpZmBMwp2mCjsblce4qGHEypCu0mRfDcu7b7LHV7NaPnnKFI9PW4f+oGGWnp2Lo6UKWlN/YezugbFn2/J1FxzWvqe5say/vqCVosfODbqjFXb91n2o9L+fKTQdSqVgkJEkJeh+F3zh+pNJk06+xg0ouXb5TH/emLT6hRuQK2VpY8DQ7l17VbuXDtNj8sW8eP0z4pDJmCfzEi0PQvRiaTcfjwYZo1a4aBgQGvX2cPba9ZsyY7duzg6dOnVKyo3ZDhzMxMjh49qpwyl5MSJUpQokQJIiMjuXHjBkOGDFEGmQDMzc3p168f8+fP58GDB1SpUkW5rV69esogE8gDTQAvX74skG5tSE9X/4oikcj/q8tCixlpGr7GKO2oFvce04sB4/vz0/h53PW/RzPfprTp3YZSniX5bv0cZg2fTZTii/i/hZxztbPI0i3RUN9AQ/2snSSadigiDPTVZwXn1W5N/LjpEMeu3mP15wNxtLbg8JW77Dt/k6uBQUxd9hfzx/bCwjR7ZbA/Dp1nzd9n+XFUd2qW9+CI/132nbvJ01cRfLpwCwvH98XJtnBH8GkkI69rVotr30TeIU89tYvM5/eUxZkvAknZNB/TycswrN1KGWjKfHqblAN/YNTuY0z6qq4ykhkTDnp6kKzb6nHvgixdw9d2SS437dvVjAwp+dssZKnpBI/5DllqWoHa4DRlMBJDgwKPhnoXMvLQ/z4Wmd3yQ7bmgbNH0HFkF8KCXnN8w+EiPzYUj+9/m6FfDMHA0IA/5q/T+ni60K1HB2r6VFMr//Xn7BXB0jW1H3myc9DtXOhiq4SLE7v2/cmTJ89p16o3Xl6V6N6rM127d2DW918gkUj4bfW7JQdu37W1xulnqxeu077NaK//7a/1arbeOpeFee51IiMP36eFXonC96ed2EHG07vK8sygBySv+xGzL1diULdNnoEm4/YfIdE3IOVI0QYUNaLh3tfW90mMDHFfMxtZahohY+cU2Pc7Tpb7/vBf3r/vz0wrPN+fGitVBokkehKarJ1IrZkfEff4FS+P39C4z/U52ddF7e8HUXlMR+KDwnj0p59Oxy4Imvy10u/rcK9ry8Pzd9g9+098vxzA4KWqyf2jQsLRM9AjKe799Xty5onLIus3l2jR+e7erhnPQ17y586DfPLN/1S2lfFwJSMzE8sco5MSFMH3/l3a0LZJ9orWlcqVZuGMSbQfPJHDpy7x1SeDsdIiqP/B8C+a8lZYiEDTv5ioqChiY2PZv38/+/fv11gnLk77RHxRUVHEx8dTvnzu84qDg+XLlJYsWVJtW6lSpZR1cgaa3sbMTO6sUlK0G1miC1LF13wjDSNajBUjcZI1fPHPzY6hppExii8HOe1U8q7EiOnD2fjrJk7uOQXAXyt3sGPVTrqP6MboGaP4cvE0pvX9UjdBxYS5In9FSqr68P/kFMUXlBw5LsyzflMN9QGSklMwMy360RRmit84VUOnI1nRccxvxTmAQ5fvsPW4P7OHdqFeZXn+kU+6NWdk5yYs3OHHxqOXmbf5MN8N7wrArSchLPzrOKO7NKVjffkL4NAOjRjcriEbj13il23H+GrNLtZOG1woOjWh/JptqEGfoSIgpsWKc6TLz5PE0Fhtkyw+msw3L9B3KwtmlqCYppd+6RAZ9y6j7+mNxMoeUpLIDAsmI+QRZl+uJfPlswJp0oWskUwSDfesnuK60PTFOycGjraYVC5LvN9lHEb1Utlm6iN/sbXp3Rbz+tWJ2XGMlEcv1GyYVCuPVcfGJJy5htT/rtr2oiJJ6bPUR7AaKwKi2qw4V5jsXfIXbYd0pHGP5kUeaCou3/82FapXoGnnJlw9dZU7l4smV0Wr1k3p91EPtfK1qzeRkCB/ucnS/DamZnINibmM0slJvrZM1W0tWjoXJycH2rfuQ1xsPK9fheF37Azz5i5m49YV/Pi/b7l3N5AL5ws+0qtxywZ069dJrXzz7zuUbcmtzVm/oVSLayExH/2abEkTEgvl2DqRkuX71e99pR9Pyf/elyl8P7n5/tcv0Hcvp+L7c6LnVg6D6g1JD7xO5rN7atuLikzFb67R9yt8X34rzhk42mJSqSzxxy9hN/It3++t8P292mBWrxqxO4+R+liD7/eqgFWHJiScuUrS1feXpyYtQTFqS4PvNzCVnxNNo520RZYp4+7ifXi0q0WZXo1yDTTl5M7CPVQc1payvRoXaaApRaHLQIN2w6zn3jtoz4szfxzi5qHLVGnhjXUJO1ISk3j1MIQX1x/xXcAaQu88L5Lj5sRc4c9TNQRGkxTTd81M8l5xDuTBqMkjBtC9XXMuXb9DeFQMtlaWVCpXCmsrC3qO+YrSOab8Gil8TbKGKcKmJsb4VK2I33l/gl++UZuK90EjAk2CfxNZq9i0bduWHj3UO51AnkGjdyGvCHl+0XNtousFJWvJaUcXB4IfB6tsc1LM438Tkn+uoLCQbDtv4+jmqGanSafGAPifVB0qLZPJ2LVmN+37tqNGwxqYmpsqXwj/ybiUUJyrcPVleV8p5nu7lsjOeeCaVT9MvX5iopT4hEQqexYgGaWOuNrLc0q9iY6jrKvqvPxXipWoXBXz1vPC76o8kWvj6qr3j6GBPpP7tGH3meuczpEs+NhVeae6cTXV+np6Ega1a8Dusze4+iCIxKQUzE01v4S8K7IY+bmXWNkhCw9VbYe1g6KOekJbNTsJMXI71vaaK+Ry+8rioki/elylTL98DSR6emQEqSfGLWzSFPe+YQl7Up+o3vuGimshTYt7H8Cydb1ct1m1k682I716V2OgyXnaUADCfnk/uZmyiFQkJbUr4cDLx6q/v72r/PcP15C4tChJVKzAaW5d9F80i8v3v83wr4YB8EcR5mYa/8lXjP/kK43bsqZlubqW0Ljd3V2ew+jFi1CN23OSEJ9IdHRM7rYULx7BClvm5ma0bN2EE35niYtVDUS8CArh53nLWPvnItp1aPlOgaZvJnzHNxO+07jNXDFFytlFc04iF0WuntAX6nlV3iYxQUpsdCzOLppzvGTZehmcbetlyGvKVyqHsYkxKW9N01YeOzj/Y+tCZrT8vtazdiAjTPV3ldg4qNTJC1l8jMo+auTTdzPqOBCA1Pc8minL9xs4O6j5fgPFdZAWqqXvb1U/921t5XkWk67d0xhocvxc7vvDf32/vj8xRP7sN3O1U672loW5m/w5nhis3jfThVSFLzfS0penxMiDtEY2Rev7o0Plumxc7Al7oqrdVvHc05Swu7CIfR3FxS2q/Z5KzWqgp6/HkytF3+9xcZJrfB0eRdmSqovgvFb0x12dc7mfNVDGw5UyHqoL12zfLw8U1vLKXgTD3s5acdxIjXaKYhSZ4N+JWHXuX4ydnR1mZmakpaXRokULjX+2trZa27O1tcXMzIynT3NPkJmVB+rZM/URCs+fP1epUxwE3lCsllZffVqBVz0vAB7eyjsBan52qmmwY6jI1+Og4eUEQE8xrFVPw5SufyLVqsinW/pfV1/S/doN+Ze6qpWyV/LwqiSfDnn1hob6N+8gk8lU6hcVWavNXQsMUtsW8FBeps3qb6mKIfhvNCSYBMjIlKksV56qmK70RkMyUoCMDHndjCKcupSRtbJcafXRhFlJXjNC805+C5ARLA+g6XtqWA7bwBA9uxJkxsdo/KKtgkSCYet+yDIz5asYFTFJt+TtNqunfs+a1ZXfs0l38l59JS00jHvlOmn8C18kf3l6MWIW98p1Iv6Y+uo75k18MG9Yk7hD50jO51iFzZObcn9Uqb7671+pnrzs2a3326aSVeSjASNCiz7AVVy+Pye1mvng3bgmZw+c4/Ht93uus0iIT+Txo2fU8PZSjjjKwtzCHK9qlXj86JlytE5+3Ai4jYurM2XKqo9irle/FvFxCTx+JO8PZE2Rd3HVnHhZX19f5b9FQWKClGePg6haoxImbwX1zczNqOhVgWePg3LNu/Q2d27cx9nFCY/S6v0an3o1SIhP5Nnj7OfN7ev3MDQ0wLtudbX6tRrUJDMzk3s3H6htexeUK8uVUb/3s8o0rUaqZidIfu0bVNTk+43Qsy9BZny0Rt+v71kTg/LVSb99kUwtnjOFidL319Xg++sofP/tvO/9tNAwHnh21PgXsUTu+4NHzeKBZ0cS/C6q7W/e2AfzBjWJO3yOlLvv996PvCE/38711VfDdFKURd56t1HFtlXlMxayglqFXb+gBN2Un+ty9dSn0parK9cefPv9XY8SiYSOU/qQmZGJ/84zRX68rNXmrt5WD2pduyP3M+8yokianMzqLXsxNTGmXbPsIGzNyvL+/Dn/m2r7yGQyHj8PwUBfn1Jumj9SfKjIZBmF9vdv4d/x1ivQiL6+Pi1btuT06dNcvKj+4Lt//77GfBV52WvWrBlnzpzhzh3VYb9RUVE8fPgQBwcHatSowb59+5TJwQESEhLYunUrbm5uVKqU/9LPRcWVE/4kxiXSpncbrGyzV0CztrOmZfcWJMYlcuVE9pfULoN9+e3kaj7/dYqKnQfXA3kV9IqG7RrgmmPlCGMTYzoO6EBGegZnD2QvW3v93HUABk8diI2DjYqtFt2a41HOnbv+d0l8j3O2tWHzjn349h/JV9+pJr6sXqUi7q4lOHH2Ii9Csr8SJSUn89feQ+jr69GuZRNluZOjPbW9q3HzzgMCbmVPF8rIyGDzzr8B6NC6edGKQT4CycLUmL3nbxIdn/0iERWXyIFLd7AwNVYZpbTl+BW6fr2M6Wv2qNipX0X+YP5l21ESklS/Sq87dIHk1DSa1KigVn/Z7lNExqqu/HLw0m2C3kRSs7w7Vmb5D2EuKBkPA5AlSzHwbi6f2pCFmSUGNZogS5aS8TA7OatBvXaYfvYrRj3HqdjJfHaXzIiX6FeshX411ZXyDFv2QWJiRnrAibwbY2CIUefh6LuVI/3SIWSRhfsFXxMJJ/3JiE/Epkdr9HPc+/p2Vlh3aU5GfCIJORIz2w7sTLmjK3H9eXKhtcFp6mBk6RmE/fpuOWgKws2TAUjjEmnSqyUWOXKBWdpZ0aBbU6Rxidw8mf37tx7cgXnHFzN6wWfvdFzX8m70+nwA5taqyaUtbCwYOHs4AOd3F32Hu7h8f06GfjGUjPQM/vz5/Y5oeJtdO/ZjbGzEyDEDVcpHjRmIgYEBu3aoT7W/4H+IC/6H8H4r99OuHQcA+GT8cJXynr19cXJ25MDfR0lLk0/biI6O4fate1Su4smoMYNU6ptbmDP2U/mIj2NHT72Tvvw4tPsYRsZGfDSij0r5xyP7YGBgwKHd6kuu7zu3lX3ntuLlrRqsOaioO/STASrlnXq2w8HJHr8Dp1RyMmXZHjSqn8qiKD71alCleiWuXbxB+JvCfflODwxAlpyIQe2Wqr7f3AoD76bIkhNJz5GY27BBB8ymLMa4j+q9n/H0DpnhL9GvXAeDGo1Vthm16Sv3/f6qozeU29t/jCwjg5Sj72eluZwknpb7fuu3fb+tFVYK3594Ovvet/m4M2UOr8Jl/hRN5gqE45QhyNIziFi0odBsasvL4zdIjZNStk9TjO2y/bCxnSWluzckNU6qMt3Nc2gbOp+ZT4NFo1XsODeqQqXRHdB/O0DrZk/Nr/oC8HzneWW5VXlXanzRW23UkpGtBbW/k/ueZznqFwX3T14nKU5K3V7NMM/x3DO3s8SnW2OS4qTcP3ldWd54UDu+PP4LA34p/CTVBsaG9PxuGB7Vy3F23WHCnxV9v6dJ3ZpYmJmy99gZonOMIo2KiePAiQtYmJnSpG5NZfnmvUfxHT6Vr+evyNd2XEIiX/60nDcRUXw2pI9KjiYPV2fq1axK4NMXrN32t8p+2/cfJyj0NW2b1hOrzr1NZmbh/f1LEFPn/uVMnTqVy5cvM3z4cDp06ECVKlVISUnh8uXLXL58mZs3b+aeoFkDU6ZM4eLFi3z88cf07NkTDw8Pnjx5wsGDB5k+fTqenp589dVXDB48mB49etC1a1cMDQ3Zv38/L1++ZNmyZSqdq/eNNF7K2h9/57Mfx7Py2HIu+11BIoG6reph72zH4q+WIM0RgLCys8KjvAdR4aqrxMhkMpbPWMGs32ey+O9FXDx2iZSkFGo3q4VLKRe2LdvOy+fZD5GLRy9x5u8zNPVtyu9n1nL1lD9x0fGUqVQar7peRIdH8+u0Re/lHDx+GsTZS/JO1Y3b8ildx89c4FmQfEh5764dsDCXdwyiY+N49iIEe3vVkW96enp8NWks47+YTb8RE2jRuD4mJsacv3yNkJevGf5xb0q6q44MmjZ+FIM/mcqoidNp0aQ+NlZWXL15m0dPntO+VVPq+qh/4S1sLM1MmNCrFT9sOEjvGStpWsMTGTLO3HxERGwC0wd2xDJHsCcmXsrz15E4vPWS3Lt5LY5dvce1hy/w/Wop9auUxczEiDtPQ3nw4jUlne2Y0retsn4L74q0rV2Fo1fv4fvVUhpVK4+NhRmPQt5w/VEwdlbmzBziW7TiU5JIPboJ4y4jMR33P/mKPxKJfOU3S1tS9q3JzuUBSMys0HN0U06VUyKTkbJrGSZDZmDSZwIZPi3IjHqDnmsZ9N3Lk/H8HmmndqrsYlCzGfpV6iKLiUBiZoF+uWpILGxICzhF6pH30/HOTJASNu8PXL7/lLIHlsqDShKwaFEXQyc7Xn2zlMyE7HvfwNYK43IepL917xcUK99mmHqVJ2ann9r0jfdBUryUbT9tYOjcMcw98is3jl8FiQTvVrWxcbLlj69XkpTD91naWuFa3p3Y8Bg1W3Yu9tT3lb9olqkm/2JatWF1Zf6jS3+fI+qVfMi8gZEhXT/tRYcRvjy4fI83z19haWuFV9MaWNhYcuXABc7vOlW04ik+359Fi27NqVCtPEf/OqY2de99s3L5Onr06sy3s6bSqHE9njx+RnnPsrRo2ZjHj56xcvk6tX0qKL56m5qp5tL7a9s+PhrYiyHD+lG5cgVu37qHq5sLbds3Jywsgp/mLlapP3XiTHbuXccP86bTu19XrgfcxsLCnJatm2Bvb8uales5ffJCkWkHWL9qCx26t2HSN+Oo09CHoKfBlClfiobN6/HscRDrV6knsy5boTSA2iiw/TsO02OAL30G96B8pXLcv/OQEq5ONGvTiMjwKJbOX61S3/9CAIf2HKNDtzZsP7aOgMs3sbW3oUW7JqSkpDJ/ZhH0A5KlpBzcgEmPMZhN+pWM+/J7X79SbfSsbEnetRKSs699ibkVek7uyqlySmQykrcvxnTkbEwGTCa9Titkka/RcyuLvkcFMp7eJfX4X2qHN6jZBH23sqRdPYEsLP8pmYVNZoKU8P/9QYk5n1J63zIST10BiQSL5nUxcLLj9Yy3fb81xmU9yCgs39+5OSZVyxO761ix+P60+CRu/LCVuvOG0dHvR0L9riORSHBr7Y2psw1XvvidtPjsZ7+xnSXW5V1JDlNdCdnQ0pRaMz+i2qTuhF16QGJIBKYlbHFtXg0DMxPurTxA2OVAZX19YwO8JnSl0qgOhF1+QPyz1xjbWeLStBrGthYE/X2ZZzvOFan25Pgk9s/bTO8fRvD54XncO34dJFC1lQ9WTrb8Nf03knNoN7ezxLmcG/Hh6qtA27jYU7NzAwA8qsv9YYVGVZX5n27sv0jMq+ypYnV6NqVauzpEh0ZgbmuJZyMvLB1tuLLjNPvmvp+PTZbmZkwa3o/vlvxBzzFf0rSeN8hknL5yg4ioGL4dP1QlQBQTF8/zkFc42Nmo2fpt614ePAnCwc6GsMhoLgXcIUGaxMh+Xfm4e3u1+jMnDOejiTNZ+PtWTly8SqWypXgW/BL/W/cp4+HKV58MUtvng0f27wkQFRYi0PQvx8XFhV27drFixQpOnz7NkSNHsLW1xdPTkx9++EFltTdt8PDwYMeOHSxcuJBDhw4RHx+Pq6srffr0oXFj+YuHt7c3GzduZNGiRaxfv57MzEy8vLyYOXMmDRo0KAqZOnFg40Fio+LoOaoHLbo1B+DZ/Wcs/3Y55w5p/3Xlygl/vur/Nf0/60+j9o0wMNQn+HEIi75czMFN6ku8zh33EwFnr9O2TxvqtKiDoZEhEa8i2L12D1uXbiMmIqaQFObNnfsP+WXZWpWy3fuPKv+/bYsmykBTXjRrWJffFs5l1Z9b8Dt9nvT0DMqUcmfG5+Pp3bWDWv0qFcuzYcUvLP1tA+cvXyMpORl3VxcmjhnK4P6ac4gVBX1a1MbW0oz1Ry5y8LJ8Kp+nuzNffdSB1rXVh1drwsjQgDWfD2LTscscunyHEwH3yciU4e5oy8jOjRnaoZFarqV5Y3pS/2xZ9p67wblbj0lNT8fZ1ooBresyolNj7N8KZhUF6f7HkEnjMGzoi0F1+f2a+SaI5P2/k3HvstZ2MoMfkbTyS4xa9Ea/rBd6pasgiwkj9fg20s7uVVvZTpaein5ZL9A3QJYYS8bz+6RfPU7Gk1uFqi8/orccIj06Dvvh3bH2bQZAcuBzXs9aQfyRIny5NdDHadJAZKlpyil2xcGJTUeJj46nw8guNOgqH3EY/CCIP2es4eoh9al+ueFUqgT9p6smrq/dvh6128tzVz299VgZaHr15CW/f7WSGs29KeVVlioNvEhPSyckMJgz2zdycov66JGiorh8v76BPoOmDiItNY2NC97/aLa3iY9LoHO7/nz5zUTatW9B46b1iAiP4o+1W5j3wyLi4xLyN6IgIyODfr1GMnnaJ3Tt3gHvWtWIiYljz65D/Pj9QkJDVINuAddu0bJpNyZMHk2z5g35eFAvkqTJ3Lx5l9/XbGL/vqO5HKnwSIhPZFCX0Yz/YhTN2jamXuPaREZEs23dLpbOX01CvPYjizMyMhjTfxJjJg+jXddWVPOuQlxsPIf3HmfJTyt5rSH3z1fjZhF49xFd+nSk18ddSZImceH0FZbNX0Pg3fynbxaE9MtHSZLGY9SkCwY15fd+5usgkvauIeOO9vd+5ouHSJd8jlHrvhiU84IyVZBFh5FydAtpp3arr2qqp49R2/7I0tNI9dtWmJJ0ImbrQTKiY7Eb1gOrzs0BSA58xps5K4g/WoSjagz0cZgo9/1ZU+yKg0cbTpAcFU/l0R0p3V2eRzDm/gv8p/9J8EHt8qGFXbzPtZkbcWleHfsaZXFtUZ30pFQirj/l4bpjBB9QtRP35BWXp/2Oa8vq2FUrjXPDKmSmpRP7IIQbW0/zeNPJQtepiQub/EiMiqf5yE74dJWPwn754AU7Z/zBrcNXtLZjX8qZrtM/Vimr3q4u1dvVBeRT8HIGmtJS0qjQ0AsDQwPiI+N4cvk+l7adJPDs++339OncGhtrS/7ceZCDiiC+Z5mSfP3JYNo0qau1HQN9A05dko98dLC1oUXDWvTr3IZqlTTnV/VwdWb70h9YsWkXZ6/c4N6jZzjZ2zK4Z0dGf9RdJcAl+HCRyN7HeseCYiM8PJwMTUveaqBEiX/mXNp2HupBjQ+F/deXFXcTipWMQPUpoR8SGYf3FncTipWgzf+sqabvkx/TiyZp/L+FsMx//qIJRUlA3PvNc/NPw9lE+/yS/0UuDck/l+B/lZDd73d1zH8a1xLsirsJxcpVI+1TfvwXmXdqanE3odgwKl27uJtQpCQdX51/JS0xbTWq0GwVJWJE03+cvn37Ehqq3VDmwMDA/CsJBAKBQCAQCAQCgUAg0A4xdU7wX+OHH34gOfnD/jokEAgEAoFAIBAIBAKB4P0gAk3/cf4JOZMEAoFAIBAIBAKBQCD4IPkXrRZXWIhAk0AgEAgEAoFAIBAIBAJBUfABTp0rvnXoBQKBQCAQCAQCgUAgEAgE/ynEiCaBQCAQCAQCgUAgEAgEgqJATJ0TCAQCgUAgEAgEAoFAIBAUCiLQJBD889CXSIq7CcVGRuDF4m5CsaJf8cNOZp/40+ribkKx8jrBubibUGxYmBZ3C4qXGIl+cTehWLEyNC/uJhQrKZlpxd2EYiUpILK4m1BshMc5FncTihUn2Yd97dvJPuxX04xnN4q7CcVH6drF3QJBIfNh380CgUAgEAgEAoFAIBAIBEXFB5gMXASaBAKBQCAQCAQCgUAgEAiKgg9w6pxYdU4gEAgEAoFAIBAIBAKBQFAoiBFNAoFAIBAIBAKBQCAQCARFwQc4dU6MaBIUC7t27aJixYpcvXq1uJsiEAgEAoFAIBAIBAJB0ZCZWXh//xLEiCbBf5IGbRvQY3QPylQuA8DzB8/ZuXInF4/qtopb1bpVGTBhABWqV8DAyICQxyHsX7+fo9uOaqzv09SH7iO741nTE0MjQ8JCwrh+9jrbl28nOiz6nXVpy4mAB/x5+CIPg98A4OnhxOD2DWnpU0knO4cu32HbCX8CX8jtuDna0NKnEgPb1sfSzESt/vk7j9lw5BJ3nr0kLT0dV3sb6lcty7COjXC0sXx3YTqyY98hZs1bzNL5s2jeqJ7O+1+7cYcVf2zm7oOHpKWlU6aUO/16+NLTt53G+g+fPGPpbxsIuHmXpKRk3Fyd6daxLYP6dsfA4P2somVYvzGm3ftiULo8AOnPn5C0eytpl85pbcN84peYtOqQ6/aUM8dJ+N8cAIxbtcdi4lf52owe3pfMsNdat6GgOHSoQ8mxvlhULQVAwr0gXiz/m4hD/lrbsGteA+fujbCq7YmJmwOyjAxSXkUR6RdA8JqDpISqrwjl1KUB7iM6YOFVGolEQsL9IF6u9+PV1lOFJU0rarStQ+uRvrhXlusPfRDEsdV/c/Oo9vpzUqlxNSZs/JatM9Zyev0Rte31ezVj8M/j8rUzvfE4okLCC9QGXajftj7dR3endA7fv3vlLi4dvaSTnSp1q9JvQj8qVK+AocL3H1h/gGPbjmms37hzY3yH+lKmSln09CQ8u/+cw5sOc/wvv3fWVBBsbK2Z+OVYWrdvip2DHVERUfgdPsPCn1YQEx2rky0TUxPGTR5Bp25tKOHqTFxMHOdOX+aXH5bxKlT1njYzN6XPR91o1qoRlb08sba1Ji4mjudPX7Bnx0G2b9hDRkZGYUrViI2tNRO+HEOrdk2xd7AjMiKK40fOsOinlQXS/8nk4XTq2pYSrk7ExsZx/tRlFsxdrlF/74+60bRVQ7l+G4X+Z8Hs++sg2zcWnX6jho0x690X/bJy35/x7AnS7VtJvaC977f8/EtM2ubu+5NPHid+7hy1com5BabdemDUoBH6Lq5IzMxIf/aUmE9G6i6kgNi3r4Pb2C6YVy0NQOK9IEKX7yXycMF8H4CemTE19nyHRfWy3B34I1HHruVa17ScK7XO/Ero6gM8m72+wMcsKI4dalNqrC+WymffC54v30f4Ie0/6No3r0GJ7g2xfuvZF+F3nRdrDpKs4dln37wGJcd0wtq7HHpGhiQFhxN15hbPFu8lNSymsOTlScW2tag/qhPOlUsCEPYgmIur9hN4NPff6228ujbEs00tXGuUxdLZlsz0DMIfhXJ9y0mubz2Z7/4SPQl9f59KhRY1OTRjHVf/1PysKApO3HjE+mP+PAwJA6CCmyOD29alZc0KOtk57H+fbaevExgst+PmYE2LmhUY2LoOlqbGGveJkyaz9WQAp249ISQ8BmlyKuXdHNg6ffC7iRL8JxCBJsF/jrZ92zLxfxOJiYjh7N9nAajXph7f/vYtv079lWPbtXP+Pk19mL1uNilJKVw8epFkaTJ1WtRh4v8m4uTmxMYFG1Xqdx3eldEzRxMfE4//cX+kCVLKVS1H12Fdad61OZO7TeZV0KtC1/s2u85cZ/a6v7G1NKNd3aoAnLoRyKSl25k11JfuTby1sjN/8xE2+V3G0caS1rUrY2RowM3Hwazad4YDF2+z6dvh2FiYKetvPHqJ/209ipW5CU2qV8DC1JgHL16x2e8Khy7dYf30YZR0tisSzTm5fT+Q3fuPEhz6iktXbxTYzvnL1/jk8xmYGBvTsmlDTE2MOXvxKjN/Wsir12/4dOQglfoPHj1l4NgpZGRk0KJxfWxtrPEPuMWC5Wt59PQ5P3479R2V5Y9xm45YfPYFmTHRpJw7AYBR3UZYTf+BhEXzSPE7qJO9ZL9DyOLVX8rSnzzK/v+gZyTt3pqrDcMatTAoq1tnp6C4DGhB5V/HkhoRS9jeCwA4tKtN9XWfc3/iCl5tyb+zCOD503CMnW2IvnCPqNM3kejrY12rAiXH+lKidzOutPyc1DfZgeMKc4fiMbwDyS8jCT9wGVlGJnZNq1F50SdY1izHwy/XFonet2nYpwUD548lPiKWa/vl+qu3rs2Y1Z+z/vMVXPxLO/0OJZ1pPaIztq4OVG5SPc+6LwODObb671y3V2pcDY8qpbXW8C606duGz/43gZiIGM4pfH/dNvWY/ts3LJq6CD8tfb93Ux9mrptJSlIKl45eIlmaTO0WtfnsfxNwcnNi04JNKvVHzR6N71BfIl5FcPHwRTLSM6jZpCYTf5mIZ40KrPhmRaFrzQtzCzO27l9LhYplOX/6MscOnqJ8xbIMHN6Heo1q0bPdIKSJSVrZ0tPTY+3WxdRvVJsb125z+vgF3Dxc6NKzPQ2b1qV764958zo7gFjZqyLfzv2c4KBQLpy9QlREDLb2NjRt2YDvf55OnfreTB7zTVFJB8Dc3Iwtf/9G+Sz9h05R3rMsHw/rQ72GtejVfrBO+n/bsoh6jWpz89odTp84j5u7C74929OgaV16thmopv+bH6YSHBTKxTP+REVGY2tnQ5OWDZnz89fUru/NlLGFr9+kfUcsp3xBZnQ0Kaflvt+4fiOsZ/9A/M/zSD6io+8/cojMOA2+//EjtTKDylWxnv0DEitL0m7dJOWkHxgYomdtUyAtBcG5f0s8f/2E1IhYIvaeB8CuXR2qrPuCh5OW82bLCd2N6ulRaeUkLKqXzbWKgbU5pab1xcjZFpvmNZHov58PSm/jOqAFVX8dQ2pELG/2yj+oOrarRc11n3N34gpebjmllZ1KPw1TPPvuE3n6FhJ9PaxrVaDU2M649G7KpZbTSMnx7Cs5qiMVvxtMWnQCEX7XSY9PwrJaaUqO7EiJ7o250ukbkp6/KQrJSmr2bYbv/FEkRsRyb7/8g4Jnax/6rJnMvs9Xc3P7aa3sdF0whoy0dF5cCeTRieuYWptTvqU3neeNwLlqKQ5/uy7P/dvPGUyFFjXfUY3u7D5/i9kbjsj7/LXlH5NP3XrC5JV7mDWwPd0aVdPKzvztJ9h84hqO1ha09qmIkYE+N5+GsvrARQ5evsfGLwdiY2Gqss/Np6FMXLGHuMQkalXwoEOdyqRlZBAdLy10nf8J3vPUuYSEBBYuXMiRI0eIjo7G3d2d/v37M2jQICQSSb77h4eHs3z5cs6dO0dYWBjOzs40a9aMsWPHYmen3fucCDQJ/lOYWpgy/JvhRL6J5NP2nxIbKe8o2f5sy5JDSxjxzQjO7j9LsjQ5TzsSiYSx340lLTWNiV0mEvIkBAATMxN+2f0Lfcb14ei2o4SFyqP+ljaWDPtyGC+fv2Si70QSYhOUtroO68roWaPpP6E/CyYvKCLlchKSUliw/RiO1hZsmz0aeytzACJiW9B31moWbD9GuzpVMTMxytPOo5A3bPK7TI1y7qyZNghjw2xX8b8tR9h47DKb/a7wSbfmAMQkSFm44zgeTrZs+mYE1jkeRpuOXWb+liOs/vsM34/oVuia3+bJ0xds36Nbp/ptMjMz+WHBcowMDdny2yLKlvIAQCpN4qMxk/ltw3Z6+LbDtYSzcp//LVlNSkoqaxf/SB1v+ct5Wno6n0ydwd+Hj9O7awd8qld9p3blhcTUDLNhn5AZGUHMhOHIYmPkbbZZi82i3zAbNpaUcychWbsXLIDk3dvIePEszzoZjwORPg7MtU3GrdqTERJEZkSY1sctCPoWppSfOZCU11FcaTWNtIg4AIwct1Ln+HzKzxxI2N4LZEhT8rX1ePYGos/cJiNR1U9UXjIOlz7NcOragJDV8mvMvpU3HsM7EHPlATf7/qC0r2dsSNXVE3Ef2o7wA5eJPnunkBWrYmJhSs/pA4l5E8XcjtOIj5Trt3LcytcH5tNz+kACDlwgRQv9tq72NBukedTe27y4/ZQXt5/m2qYGvZrx+kko0S8jtBdTAEwtTBmm8P0T2n+m9P02P29g0aHFDPtmGOe09P1jvhtDWmoaU7pMVvH983f/j17jenN021HCQ+XBhVotauM71Jd7V+8x8+MZSvuGxoZMW/YFHQd14vyhC9w6f7MI1asydPQAKlQsy68/LmfpL78py8d/PoqJX4xh8Mj+rFj4u1a2uvTsQP1Gtdm2cTdfT/xOWd6jb2f+t2wOn00bzfTJ3yvLXwa/YkDXkVw+rzqSwN7BliMXdtK1V0dmfTGPuNj4d1SZO0NGD6B8xbIs/HEFyxZk6/906kgmfDGGQSP7sXLhH1rZ8u3ZnnqNarN94x6mT8rW371vZ+Yvnc2nn4/i2yk/KMtDg1/xUddRXLmgqt/OwZbD53fQpVcHZn9ZuPolZmaYj/qEjMgIoscMRxYTA0Ci7VpsV/yG+aixJJ/WzfdLd2wj43nevh9Az9EJ6x/nkxkZSdyUz8gIflFQGQVG38KUMjMHkfI6iuutpyp9v+FPW/Hx+x9lZgwkfO8FMvO599+m7Jwh2LaoScz5O9g08tJ8bCszXId3fGcN74K+hSmeMz8m5XUUF1t9kePZZ0394/PwnDmQN3svavXsezh7A1Fn7qg9+6ouGYdrn6Y4d23AC8Wzz9DWggrfDED67DWX239Nekyisr7HyA5U+n4IZSf35O5nywtRrSpGFqa0nv4R8W+iWd3ha6SK5565ozUjD/5Am+kDuLf/EmlaaD/1yw6ubjhGSnz2fWJmb8XIAz9QZ1Abrvx+mKhnmkdl1x/ZkdoD2/DkzG3KNdUusFMYJCSlsGDnKRytzdk2fTB2ij7/uNgE+v2wngU7T9G2VsX8+/yh4Ww+cY3qZV1ZM6mvap9/+wk2nbjG5pPX+MS3sbL8VVQc4xbvwMHagt+n9KNMCfuiEflf4j1PeRs/fjz+/v7069cPDw8Prl69yty5c5FKpYwdOzbPfSMiIujRowcpKSn06NGDEiVKEBgYyJYtWzh58iR79uzBwsIi3zaIHE3/AsLDw/nmm29o3LgxXl5etGvXjg0bNhTI1pIlS6hYsSL+/v58/vnn1KtXj5o1azJ+/HjCw1WnNVSsWJHp06fj5+dH37598fLyol+/fsrt58+fZ8CAAdSsWZNatWoxatQoHjx4oHbM2NhYZs6cSf369fH29qZXr14cP368QO3Pjzot6mBpbcmB9QeULxoA0eHRHNhwAEsbS2q3qJ2vHc8anriVceP03tPKFw2AZGkyO1fvxMDQgCadmyjLXcu4YmhsyI1zN1SCTABHtsqnm5TwKPGu8vLl3O3HxEuT6dOytjLIBOBgbUHvFrWIS0zm3O3H+dp5rHiJalbTU+WBA9BNMSIqNDxGWfbiTRRp6RnUq1JWJcgEKEdQhUbE8D7o1qkNd84f4s75Q4wd9lGBbNy5/5AXIS/p0Lq5MsgEYGZmypD+PUnPyODw8bPK8ojIKK4E3KKuT3VlkAnA0MCA0UP6A3Dw2KmCCdISw1r10LOwJPngHmWQCUAWE0Xyob3oWVphVEv36YPvgkmvAehZ2SDd9EeRP2DtW9XE0MaC0HVHlR1tgNTwWELXHcXQ1gK7VtqN5os45K/W0QaQPnkJQFpktn2nbg0BeP7LTpWOfGZKGo++WQeA60etdNajK1Wb18TM2oIzG44qg0wAceGxnNl4FHMbC6o2107/o0v3GFu6D2NL9+HPqcsK3Ka2Y7piYWfF3wu2I8uUFdiONtRqURsLawsOrj+o4vtjwmM4tOEgljaW1GpRK187FWpUwLWMK2c0+P7dq3djYGhA4xy+v2mXpgBsXbhVJYiVlpLGmlmrAWjbr+0769MF354dSEyQsnqp6vSd1Uv+JDFBSpdeuU+NepsuPdsDsGT+apXyXdv28+J5CB27tsHAIPsZ8erlG7UgE0BkRDSxMXEkSZO0Hk1UUHx7ticxUcqaZar61yxdT2KilC49tdfvm6X/f6r6d2/bT7AG/a9fvlELMgFEKfUnF7p+ozr10LO0JHnfHmWQCUAWHUXy/r3oWVlhVLdofL/5yDFI9PSJm/1tsQSZAGxbeWNoY8GrdUdUfH9aeAyv/jyCoa2l1r4/C9cRHXEb0ZHH01YTe/FervVSgsM5W6IXZ0v04laPmQXW8C44KJ59weuOqT37QtYdw9DWAnst9Ycfuprnsy81x7PFrKwLesaGRJ25rRJkAni5ST6CzLSkk856dKF88xqYWptzdYOfMsgEkBgey7UNxzG1saB88xpa2Tq/fJ9KkAlAGhnH/UNXACihmJL5NhXb1qLVV/05u3g3dxQjqd8X5+8+I16aQp9m3sogEyj6/M1qEidN5tzd/APGTxQfgppXL6/W5++uGBH1MkJ1hOOiXadJz5SxYEw3EWT6B3L+/HkuXLjAzJkz+eabbxg8eDBLliyhc+fOrF69moSEhDz337p1K2FhYfz22298+eWXDBkyhB9//JEZM2YQHBzMkSPqqRQ0IQJN/3CioqLo27cvR48exdfXl8mTJ1OhQgW+//571qxZU2C7gwYNIj4+njFjxtClSxf8/PwYN24cMpnqy8DBgwf5+uuv8fHx4YsvvsDX1xcAPz8/RowYQVxcHCNGjODjjz8mMDCQ/v37c+9e9kM5OTmZQYMGsWPHDtq0acOECROoXbs2d+/eLXDb86JizYoABN5QH2EReD1QpU6edrwVdm7mYcc7286b4Dekp6VTq1ktbBxsVOpnBZge3nyohYJ34/ZT+YuRVxk3tW3Vyrqp1MmLUoopbsevPUCanKqyLTRCPmy6ahlXZZmbgw0G+npcuP2YyLcCbcr6pV35t3Drnvw3rlbFU21b9Sryocm372UHVW/fe4hMJsOrsvq15VXZE4lEwq27mkf9FBYGFasAkP7ovtq29MB7ijqVi7QNOZHY2GHapRfpTx6Rek67KVvvgpWPfHpeXIB6IDWrzNqnAFP4JBKMHK1x+aglpT7tStSpm4Ttye5MGjvZAJAcrD5iKzk4nOTgcKx8yut+XB0prcjF8Pymuv5nNx6r1HkfWDla03JYR4LvPiPggG658QpCll9/dEPdzwZef6hSJ087Cr+uyV8/1OD7bR1tAAgLUZ8eEhYSRlhImEr9osbcwozynmUIvPeI1BRV352SnELg/cd4ViqHmblpLhZUqe5TlTevw3n1Ul3fzYA7WFlbUrZ8qVz3NzI2wrNSOX5aNBP3kq7M/mo+6enpuonSAXNzM8p5liHwrmb9D+89poIu+r3l+l/nob9MPvorVCrHj4tm4F7SlTlfF75+g0py358WqO770x7Ifb9hpcL3/RILC4wbNSHV/zIyqRTjtu0xGzQU0159MfTOP6hbWFh6y/1a/HVNvl8+1c9SB99v16YWZWcPJnjxroJNuXvPWCueL7Eann2xymdfAZ5Bimef20ctKf1pFyJP3eRNjmdf0oswMtPSsW9RAyNHa5VdTUvJA0xxN57oflwdcPMuB8BLDccJVTz33Lzf7flrYGQIQHJsoto2l2pl6LboE+7tv8SpX3a803EKwu1n8gBg1dLqH7KrlXYB4I6iTl6UdLIFwO/6Q/U+v+LDTVWFPYC4xGSO33hEY68ymJsYsffCHZb/fY4/j17h0v3nBdLyQfAek4GfPHkSIyMjunbtqlLep08fpFIpFy/m3S+LiJAHH8uWVZ067OPjA4BUqt30SDF17h/OwoULiYuLY8+ePbi7uwMwbNgwpk+fzurVqxkyZAiGhoY62120aBFt22Z/ZXV2dmbx4sVcvHiRhg0bKsvd3d1ZvXo1Li7ZDiYjI4PvvvuOMmXK8Ndff2FqKu+wDRw4kPbt2zN37lw2bpTnL1q/fj0PHjxg8eLFtGuXPRXD09OTr77KP4Gwrji5Kx5u0XFq26LeRMm1ejirbXsbZ3d5nbioPOy4Z9uJiYhh44KNDPliCCuOrWDP2j0c33mcpMQkxs0dx6ugV2xfvl13QTqS9cXB1tJMbZuTIhn3218lNFGltCs9m/mw83QAPb5dwcC29elQz4u0jAwWbPOjahlXejTN/kJmb23B2K7NWLLrJD2/XclHberh26g6ZibGfL/+IO6Otgzr2KiQVBY9L1/JXypsrK3Vtjk5yINwoa+yAwuhr+X1bW2s1OqbGBtjZWnBy9dFm6dAz0ne0dCUVyMzKlKljrZYL1yNxNAIWXISGS9DSD1/iqS9OyAl/ykIZgOGIDExRbqh4AFxXTDxcAQgNUp9SkqK4p7NqqOLzYZX5SN60hOTeTJnI6F/HoMcAfmU1/JAqnnlkkifqOdgS4tJwLSsi1p5YWPvLteWoEF/rEJ/Vp33QaeJfTA2M2Hv/3LP31WY5O375de/kxa+30kL3591rJxlpSqVJvRpqNo+8THxuJZ5f0F295LyDwpRUTEat4cp8gm5e7jy8EHeL4EWFubY2tnw4K56Xh5AmZvIraRmW59NG82EaaMBuHvrAT3aDuLuLfVRz4WJeyn5uY7OTf8bRZs9XHn0zvrlHXH3XGyN/3wUnyn037v9gJ7tBnOvCPTrl5D7dVmsBt8fIb/29Z118/22y1YjMTJCliT3/SlnTiHdtQOSs32/QaUqSIyM0C9TFrs/NyMxUp2ek3rNn7g5M5Bp+UJSUEw85PdjmoZ7NlXhn7X1/ebVylBp5UQiDlzm+dzNhdfIIiRbf+7PPtMCPPuaXF0KyJ99j+ZsIuStZ19qeCxP/vcXFb7uT4NTP/NizUFebj9DRkISleaNQPr8Nc+W7CmgKu2wUTzTpNHq2hPexKjUKQh6BvqUb1GD9ORUXt99rrLNytWevr9P4fXdIPZNXVXgY7wLLxWjuGwt1Pv8jjYWKnXyokqpEvRsUp2dZ2/Rc84fDGxdm/Z1KpOWnsGCnaeoWqqEcmQTwO3nr0hLz+BRaDidv11DWrrqAgf1K5fi51FdscglgfgHi6xoR3bnJDAwEHd3d4ze8ssVKsiD7g8fPqRNmza57l+3bl22bNnCzJkzmT17tnKa3IULFzAwMKBZs2ZatUMEmv7ByGQyDh8+TLNmzTAwMOD16+y5wTVr1mTHjh08ffqUihV1/1pavbpqgtcuXbqwePFirl69qhJoql69ukqQCeDu3bu8fv2a6dOnK4NMAA4ODnTp0oXNmzcTExODjY0NBw8epGzZsipBpqLETOFskzUM/U1WdJDMNDjktzFVTP9K0jDEPSUpRaOd7cu2o6enx6DPBzF42mAGTh2INF5KVFgUk7pO0vjiUthIk+VtMzVWn49tovgqk5Cc/1x1gBmDO5OZKWP32evM33KEX7YdxcTIkMqlXFgysb/SXhYjOjchUyZj2e5TLN19kmV7TmJhYoyjjSUbpg9TGdb7TydRKv/dzUzVV9YzMTFW1JHmqC/NtX7WPpG5vPgUFhJT+fUoS1K/ZmWKwJDETLvfIDMyklT/i2RGR0JqKhI7B4y8a2M2cCRG9ZsQO+1TSE/LdX89FzeM23Qi7d4t0q5dLoAa3TFQ3LOahv1nSuVf6AwstRvFkEV6nJQXK/7G0NYSm4ZVKD97EHomRgSv3K+s83rnWVz6NafiT8OR6OsRefwGsrR0jN0ccGjjg2kpZ/QMi/5Ra6IYoZGiIQ9JapJcv4mFbvoLimPpEjTq04LH/g+4e+r6ezlmnj47Octn568/y46mZ4gm339y90la9W7NmO/GoKevx7WTV0lPS8fR1ZE6repSomQJDN7D75+FhaJt0kTNL/dJSXJdFpb5+wLzfGxlTRXMzVbAlZusW7UZV/cSNGvViEVrfmTCyK+KNNhkbiFvS27T05LyabOqrXz053Mur/vf4s/VW3BxK0GzVg1ZuHouE0d9XejBJq18v7n2vj/l8kX5x4nUVPTsHTCqVRvzoSMxatiEmEmfQprc9+u7uSmOKyXup+9Jv3eXzLhY9EuWwmLEaIxq18Vi/CTi5/2Q1yHfGX0L+XM3U5PvV9yz+lr0+4xc7Ki6/ksS778gcPySwm1kEWKg0K/p2ZfxDs++oBX7MbS1wLZhFTxnD0TfxIigHM8+gOeL9iDR06P8l30p/1U/yn3Rh/T4JFJeR3Ol4zekRRZdLjYAI3O59lQN2tMUv73ROzz3mozvhrWbA1fWHUGaI5BnZGFK/z8+J02awvaRC8hILbpRmnmRqBh9ZGasPuDAxEj+3NG2z//tR+3kff7zt5m//QS/7DiJiZEhlTycWfppD5U+f7BiFW1zYyPmDu1E9bKu2FqY8vR1JIt2n+Hivef8uNWPH4Z2eleJggISGRmJpaX6at82NjbK7XnRsWNHnjx5wooVKzh37hxdu3bFw8ODFStW8NNPP1GyZEmt2iECTf9goqKiiI2NZf/+/ezfv19jnbi4wgleODvLv+JmDZXLi+DgYABKlVIfLl6qVClkMhkhISHY2Njw7NkzraOehYmmoekS5Bn2354emBcZb0XpFYY02uk1phf9xvdj/vj53Lt6j6a+TWnduzUlK5Rkzp9zmDNijvLrd1FjoK8+KzarufmvMyDnx02HOHb1Hqs/H4ijtQWHr9xl3/mbXA0MYuqyv5g/tpfK14o/Dp1nzd9n+XFUd2qW9+CI/132nbvJ01cRfLpwCwvH98XJVt3p/ZMxNFB3kXmdRwMN9bN20mKBh8IhQ0OHR6K8aLUykaRhFJLE3ALLWfMxrFQVk/a+JO/flev+ZoNGITEwQLr+/YxmyolM07SUXO7Z/EiPTeTxLEU+PD0J1f6YSoXZg5A+DiXSTx5AiT5zm4ff/EH5bz/Ga/Uklf2Tg8ORGOiRHqc+5L6oyEjT4PuU1977+ZrW9fP+6BsasPd/W97L8XKiyWdn+37t7Wic3qThOrp57iarZ61m6FdD+WLZFyrVw0LC0DfQJ7GQf/9O3dpS3buKWvmyBdmrG6ZruA4A5UozupyLtFymekny8SvnTl3i3Cn5KlClyniw+9gGlq/7mXaNeimDNAWhY7c2VKupvrDCil+z9efXZl18QW5T3ST5+JWc+kuWcWfX0Q0s++N/dGjc+53054asEHx/4u+afb/1j/MxrFwVk46+JO+V+349RfAqae9uUs9mr+yV8eQxsbO+wX7DVoybtyRh6SJkiXnnAykMMjX217TTLzE2pOrGr8lMTefekHnIUnL/kPJPJTNPn6WbrfTYRB7mePbV+GMKnrMHkvg4lAi/7I8HpcZ1oczE7tweu5iYK4E4d22Ia99mWFR0x3vTV9wc/D+VVeqKinf57XPDq1tDmnzWjdd3gzg+V/VZ1mvFBCxL2PJ7t5kkRRf9tZ0fefb5tex8/rTVj2PXAlk9sQ8O1hYcvnqfvy/e5dqjYKau3se8Eb7KPn+8IojXt7kPbWplD3ao5OHMgjHd6DR9NUf8H/BF31ZYmWn+APtBUoi5Srdt28a2bduU/+7bty99+/ZV/js1NRUTE/Vzr6enh56ennLwRV7Y29vj7OxM8+bN8fPzIzQ0lHLlyuHh4ZHvvlmIQNM/mEzFBdm2bVt69OihsU758oWT+yM1VfHVI7cXZR3JcmwZGRkFmtpXUKQJ8i+PRhpG9BgrHKSmL9Vvk5SQlK+dJGn218OK3hUZ9vUwNi3cxKm9pwDYsXIHO1ftpNvwboycMZLPF33OV/0Kf7pgTswUo21SNbxkJKemKerkvfoEwKHLd9h63J/ZQ7tQr3IZAD7p1pyRnZuwcIcfG49eZt7mw3w3XD7399aTEBb+dZzRXZrSsb58eO3QDo0Y3K4hG49d4pdtx/hqzS7WThtcKDqLGnMzxeiQ1FS1bcmKL8RmZqY56pvlWh8gKTkFM9OiHU0iS5Jf+xJD9aHKEmN5mUyHVYfU7CcmkLT5Dwzn/IxBtZqQS6BJv3xFjBs3J/XaZdLv3irw8XQlXXHP6mm4Z/XM5PozErX7sqeRTBlBi3bj2L4OJXo3VQaaAELWHCJ8/2XsW3tj7GJPRkISCQ+CiQt4RJN7a4m/lX8yznclWTGCw1CDfiOFz0p5F/1aUrJaWWp1asDd0zd4fEU9Z0xRkeWzDTV82c32/flf/9r4/rdXrvv7931cOHie2i1r41DCAWliEi8Cgwi8HsjGG5t4cqdw85Q0a9WQnv27qJWv/20bCYpnoLGJ5ikLpopRl4m5jNLJSWKWLQ3nAuQr8clt5X9eg54Fs3/3ET4a2pu6DXw4c6LgSXObtWpEj36+auUb124jMSExzzZn6dcmIXe2fs3n0kRpK/9z+eJZCAd2H2XA0F7UaeDN2ROFl7dM6fuN8vD9GkY7aW0/MYHE9X9g8+PPGNWoqQw0yRR9ComxhhfJlBTS7tzGuEkz9N3cSH9YdDkKMxLk96OehntfzzTL9+fd7zNyssGiamkij/jjPq6byjar2vIXaed+LbFuWJU3W08gDcw/1+X7Il2hX1/DNa9vpp3+PMmU8WzRHpza18Gld1NloMm6VgU8Z3zEk5938HrXeQCClu0jaPnflBzVkYpzBuG1YjzXeswp+LHzIWskk4GG397QVH4+UnVcbRCgqm99uvw8mqjnb9g8eB7pbwUeyzWtRtCl+/gMaKlS7ugpT3FSsW1tbNwdCTx6jWD/orv2zRX9+ZQ09UCbss+v4dy8zWH/+2w9dZ1Zg9pTt5J8EMEnvo0Z2aEBi3afZuPxa8zffoI5g+ULKRgZ6KscIyemRoZ4l3fj+PVHBIfHULVU0S+E9K+hEANNffurBpbexsjISBlHUG1CJpmZmRqDUDnZvn07c+fOZceOHVSqVAmZTMbp06eZM2cOgwYNYtOmTVSrlv8KiyLQ9A/Gzs4OMzMz0tLSaNGiRZEe69kz+YtQmTJl8q2blStK02il58+fA+DqKs+T4OTkxKtX6nlLioqwUHneHAcXB4IfB6tsc3KTz2N/oyFpa2527F3UV1JwcpXbCcuR/LdxR/mSn1dPXlWpK5PJ2P3bbtr2a0uNhjUwNTfVOLWjsHC1l+cUehMdR1lX1XnprxQJ/VztbfK143dV/oLYuLpqINPQQJ/Jfdqw+8x1TudIunvsqjzhaONqqvX19CQMateA3WdvcPVBEIlJKZj/C+Zsu5RQXCvh6iP8XilyfLiWyM734ppVP0y9fmKilPiERCp7liuKpirJDJdPrdVzcCQjJEhlm56jvK2ZbzQvzav1MSLl+jS+WCgwHyLPSSLd8FuudYqC5BB524xd7JA+Us2VY+LmIK+jIWG3LqQpvlwaWKtPQ0l5FcXLDaqradq1qIFEX4+YS0UfcIkKleu3cbHj9RNV/baucv2RIe+mXxu6fylf6XHfex7NFJ7D94c8Vn0JdHST+8I3WujP9v0Oatsclb5f/RkS+TqSI5tVV2HxaeaDvr4+dy/f0UKB9kwbP4tp42dp3GahmDpWwkXzak+u7vJOf2hw/gliExISiYmOpYSr5txWrm5yWyEv8rcFEKvIn2Vt824jW78YP4sv8tPvqlm/S5Z+Ldqcpd85F1tZ5zIkWLs+TkyM/Blsba2ey+9dyHiTw/e/UPX9+k7OKnUKSqZitLskx8tJZrR8hLa+Yy45cN7TMN6UEPkz2djFnqS3fb+7wvdr6fvs29XJdZtDJ/nKfXGX7/+jAk3JSv12JOb67AtX208X0jU8+5w6y89H5IkbqpVlMl6sOoDbgBbYNaqKvrnJuwW68iBG8dy3LGFHxGPVe9pa8dzLqqMttT5uRfs5QwgPDGbToHkkhmvOa1qqfmVK1decZL9sYy/KNvYi7lVUkQaaXOzkvuRNdDxl33pfea2Y6pf1XpAXfgHy/nzjqqrvgIYG+kzq2Zzd529z+lZ2snkHxXXwRkNuLHivqYgEuWBvb09MjlVIs4iOlo8wtLOzy3P/NWvW0KhRIypVki+AJJFIaN68OS4uLnTp0oWNGzcyb968fNshVp37B6Ovr0/Lli05ffq0xuzw9+/fL5TVS2QyGb///jv6+vq0apX/MtxVq1bF2dmZrVu3qmSdDwsLY9++fdSuXRtbW/kKBnXr1uXGjRu8eJG97G1GRkaRrTr3UBH8qFZPPcrqVc8LgEe3NCf2zEnWqnV52rmdbcdQMXfZQcPLCch/SwA9DcNbC5Os1eauBQapbQt4KC/TZvW3VMV19SaXvFIZmTKVSHmqYtjyGw2JeAEyMuR1M/4lT59qVeRfMP2v31bbdu2G/KWxaqXsVWy8KslXp7t6Q0P9m3eQyWQq9YuC9IfyvB8GXupL+RpWlZelP363Do9+afnqExkvNXeyDb3rYFijFinnT5HxpOhXWcxJ1opDtg3VpxTZKDqD8TefvtMxLLxKA9lBrTyRSCj7ZT9kGZm82nY6//rvSNZqc5711PVXqCvXH3T73fTnR+WmNajUqBoBBy/x4k7Rj+LKSZbvz/LPOamqKHushe/Py45XPfl0rUe31Vd3ehuJ5P/snXdYVMcWwH/bWFg6iCJiF3tBbNjB3nvvvcRojCYmRmOaJsZoLLHH3jX23rD33nsBxUqHhaVseX8sbd0FFl0kL97f9/m9vLlzz51h9p6Ze+bMOSJ6fd0bjUZDwOaALOtbCqUyliePAinvXTbV4yYFWzsFZcqX5MmjwFRvnay4cfUO7vnzUriosat81RrexMQoefoo0CxZZSro9eQLMw0z70NK/ytUMtF/23T9N8MLCeDmNX3/CxX1NLpWpYY3ymz0v2x5/bzyItiy/Vff1+t+WUUTur9Csu7/QI8iaVG97lcHp+n+pDv6dZxV9Rom75EUKYpOrUYT/NzkdUsRc1X/XjvWNNZ9Dsm6X5lF9rOE5yGcdO9k8l/QdH0il9u9f+OkeyfC9l+0cA8+jOhM5j7n5P5HX/8wr8q0uS/NYJXiQSbPb/qDVZTs9SLKwXXvy+R+mTL4FKqh/0B+dcP8ec9vbCdaTBnA80sPWNnllwyNTL8U7mny346x+qDg+yat4JfCPbmwbH92u5QtyhfVx9C9/ND4HUspK2uGR1HqGj7S9DFAjVaHRpu2fq9YTP8dceq28d9Wp9Px6GUoUrGYwsnZ7ASS0Wkt9y8LvLy8ePLkCUql4ZjeuHEj9XpmvH79OvXbNT0FkmPzZRXjKQXB0PQv56uvvsLV1ZWBAwcyduxYli5dyvz58+nbty/t27dHozFxLtkMPvvsM+bOncuSJUvo168fe/fuZciQIameSJkhlUqZMGECQUFBdO7cmblz5zJz5kw6duyIRqMxyCY3cOBApFIpvXr1Ys6cOSxcuJD27duzbl3OZPO4ePQisdGxNOrcCAfntF1DBxcH/Nr5ERsdy8WjaYuEVn1bsejIIsbOHGsg5/7V+7x69oqaTWuSv3BaMHS5tZxmPZqhUWs4uftkavm1U9cA6D22N055nAxk+bX1w7O4J3cu3bF4rI53qVOxBHY2cnacvk5ETNpCOjw6lj3nbmFnIzfwUlofcIG2381jwt/bDeT4ltUvKmdsPIhSZXjcZsW+M8QnJlG3kpdR/XnbjhEWZajU9p67SdCbMLxLeP7rzmqv27yT1t0HM/6X6QblFcuWwtPDnSMnz/IsOG2XTBUfzz879iGRiGnaoG5qeV43V6pWrsD1W/e4ciPNiKrRaFi3ZRcAzRv55Whfki6dQxurRN6wGSKHtB0skYMjcr9GaGOVJF06l1pu3bI9TgtWYffldwZyxO4eWHfqmRpgNr0cRY/+ACQcPWiyDYq+Q9Bp1KjWLLNUt8wm9PAV1NFxuHf1Q+aS5jEhc7XHvWNd1NFxhB6+klpeYEBTapyaSZm/RhjIca5TjoLDWqUet0tBXsCV4hN6APBm80kyQyyXUXLqQBy8i/N8yT5UT3Leq/PW0SuoouPw7eSHbbpYaHYu9lRvVxdVdBy3jqb1v36fpvwQMJO+M0aYEvdetBvXHY1aw64ZG7OubGEuHb1EbHQsDTPR/ek9Tlv2bcWCIwv4cuYYAzkPrt7n9bPX+Db1NdL9TZN1/+ndpzJti0wuY9jk4XhV9GL38l28NCO9tCXZtfUAcrkVfQd3MyjvO7g7UqmUXVsPGN1z8OwWDp7dQsXKhrGPdm/VfygNGtHboLxNp+a45cvDwd1HSEp3VHvk10PwrVPVSH6bTs3xb1yXwCfPuHbZsh5e77J76wGs5Fb0eaf/fYZ0QyqVsttE//ef2cL+M6b6r6876LN3+t+xOW5583Bwz1GD/n/+1WBq1DbR/47N8Wtch8Anz7hu4f4nntfrfusm7+h+R0fkDfW6P/F8Ot3ftj3OS1dhP+4d3Z/fA5tuPREpTOj+Psm6/3Ca7te+eknilUtIi3th07W7wT3Wrdoi9SxIwvGjOZ51LjzgKuroWPJ19UdqoPsdyNuhLuroWMID0o465x/QjConZ1Pyr5E52q6PRejhqyRFx+HRtb6Jua8OSdFxBnGVCg5oSq1Tf1LOxNxX2MTcZ13AFa8J+vF9tTlN94Wf0G+sFf+mK1Zuhl4z7h1qY1vCg8gL91FH59z4Pzp6jfjoOCp1qoeNs11qucLFnvLtahEfHcejo9dSy6v2bczwgD9o++cwAzkSKynt54yg7qj23Nx2irW9fiMhJudOH1iKOuWLYWdtxc6zt4hIt3kQHhPH3gt3sbO2ok75tPT0G45eod0PS5m4fI+BnBrJx+X+3HzUeM1/8IJ+zZ9OTkE3Z2qULsSD4BCWHzBM+PLPiWs8extB4yqlhKxz76LVWu5fFvj7+6NWq9m/39DYuWfPHmxsbFITfyUlJfH48WMDhxCAMmXKcPbs2dQTTymkyHs3qVhGCEfn/uXkz5+frVu3smDBAo4fP86BAwdwdnamZMmSTJkyxShtoblUrFiRHTt28Pr1a/Lnz8/3339Pr169zL6/adOmLF68mPnz5/P3338jkUjw8fFhzJgxlC2btqvi5eXF33//ze+//87ixYtxdnamVatWdOrUiSlTLJ+JJC4mjuVTl/P5r58z7+A8LgRcQCQSUb1hdVzyujD3u7nEpTPAOLo4UrBEQSJCDIMV6nQ6Fk5ayKSlk5i1exbnDp4jQZVAFb8q5C+Un03zN/EqKO3j8dyhc5zcfZK6reqy5PgSLh27RHRENEVKF6F89fJEhEQwe9xsi/f3XewV1nzRqSFTVu+l86SF1KtUEh06Tlx/SGiUkgm9W2CfztgTGRNH4Osw8jjaGcjp7FeFQ5fucPnBM1qPn4tv2WIorK249eQF9569plA+F8Z2bZJa379yKZpULcvBS3doPX4utSuUwMlOwcPgN1x9+BwXB1t+6GccUyMnePQkiJPn9MbEazf1R/oCTpzhaZB+d6dz2+bYJQcxjYiK5umzYFxdDXddxGIx478czshvfqLboC/wr+OLtbWc0+cvE/zyNQN7daaQp6FRdtzIIfT97CuGjJ6Af11fnBwcuHT9Jg8fB9KsYT2q+5inlN8XXVwscSsWYTdiLE5zlpF48SyIRFhVq4nYxRXlvBno4tIMnSIHRySehVOPP6SW2yiw7TsEm049UN+8hibkDWJnF2SVqiC2dyBu4yo0D42zJlnVb4S0eEniA/YZHd37GGhiVDz6ZS2l/xhM9aN/EHroCiKRCNfGPsjzOXPv67/RpFs4Wrk4YOtVgMS3kQZyJPYKvH7qQ9GxnYg4e4f44BDk7i64+ldCorDm2fxdRkfh3LvUx61FdeJfhCJztsOlXgWs3Jx4teEYj39a/TG6T3yMim2/r6XHlMFM3P8HNwP0/a/Q0AfHvM6sm/A38en6b+figHvxAkSHRBrJcs7vSpVW+kVI4Yr6xWXp2hVS4z9d3n2GiFeGu1nV2tSmUPlinN18zOjo3scgLiaOFVNXMOLXEcw5+BcXAy4iEomo1rAaLnldmPfdPAPd7+DigGeJgkS803+dTseiSQuZuPR7/tw9k/PJut/HrwruhdzZPP8fA90P0KBTA2o2rUnIyxDsnRyoVKcSzm7OBPxzmGVTPr7RddmCtbTu0JRxk0bhW7sqTx8HUcyrCHX9a/LkUSDLFqw1uqe4l/7IhM07mwHb/9lL557t6NGvEyVLF+fOzfvkL5AP/yZ1CX0bxsypCw3ql6tQitHfDCPwyTOuXLhOXJyKchXLULlqBWJilHz12SSTcSMsyfKF62jVoSlffz+SGrWrEPj4GcVKFKGOvy9PHgWyfKHxRldxryIARl5QO/7ZS6eebenerxNeZUpw5+Y98nu449+kDqFvw5j1Tv/LVijNFyn9v3gDVayKchVL4121AsoYJV+PsHz/dXGxxC5ZhP0XY3FevIzEc8m6v0ZNJK6uxMw21P1iB0ekhUzofoUCu4FDUHTrQdL1a2jevEHs4oJV5SqIHRyIXbsq1XM2hZhZM3CeswC7QcOQ16qL+vEjJAULYeVdGfWzIJTz5li0r6bQxMTxdPJavKYNwefIDMIPXQaRCNfGVbDK58zDcYvRpHv3ZS4OKLwKkGhC92UXiZ0N7r31KcJtiuiPKdpVKk6B4foYahFHruT4MTt18txX5o/B1Dw6jZBDV0Akwi157rv79d+o0+l+mYs9tl4FSHhn7pPa21Dyp94UHduRyLN3UAWHInd3IY9/RSQKawLfmftC9l/i9Y6zuLetSe2zswg9co2kcCV2ZQri7FuGhJBI7oxZlKN9T4hRETB1Ay1/HcDQA1N5GHAVRCK8Gnpjn9eZPd8tMzAYKZztyVPCA+U7Y1+ulS/l29ZCGRKFMiQK/6+7mHze4Sk5s0n+vtjbyPmiQ32mrDtEl19WULdCcXQ6OHnzMaHRsUzo0Rj7dMaeCKWKwDfhuL6TBbpzvUocvnqfyw+DaTNpCb5lCqOQW3Er8BX3nr+lUF5nxnbyM7hnYs8m9Pl9LbO3neDotYeUKpiXp6/DufTgOUXdXfima9YnZARyjjp16lC9enV+/vlnHj58iIeHB1euXGH//v2MGjUqNSPdmzdvaNGiBQUKFODIkSOp93/99df079+fzp0707FjR/Lnz8+dO3fYvXs3xYsXp3///ma1QzA0/R+QN29efvjhB5PXQkJCzPZqcndPc58cNmwYP/74Y6b179/P3NW6bt261K1bN9M6ADVq1GDrVuPAwX369Mny3vdh75q9RIVH0WFwB/za+gHw9O5TFny/gNP7Tpst5+KRi0zoMYFuo7pRu1ltJDIJwY+C+Wv8X+xbu8+o/tQRU7ly8gqNOzemqn9VZFYyQl+HsmPZDjbO3UhkaKSFepg5Xfyr4myvYNWBs+w9r99xKumZj/E9m9Ooqunz5O9iJZPy99d9WHvoPPvO3+LIlbtotDo83ZwZ3KoO/ZvXNoq19PuwjvieLMaOU9c4deMRiWo1+Zwd6NGoOoNa1sH1HWNWTnHr7gNmzFtqULZtd9oubBP/uqmGpsyoX6s6S2b9yqKV6zl8/DRqtYaihT2Z9PVIOrdtblS/bKkSrF4wg7lLVnP6/GVU8fF4euRn9LD+9O1uOpi/pUnYvxNddBTW7bsir6+f5NWBT4hdNIvEMyfMkqF59YLYlYuxqlwNSbESyHyqoUtMRPPkEbG7tpB4zoQ3j0SCoucAdElJqNatsGCPssfLVYdICo+m0PDW5Ougj5sWeyeIB+OXEbLnfBZ364k8c4eHk1bi4lcJB+/iuDbwRqtKJPrqI4KXHSBkt7EcbUIiznXLI5ZJSQyNIuLMXV6tDSD8+McLhg5wcu0hlOHRNBrcmmpt9f1/cS+IjZOWcXW/ef0HyFM4Hx0nGHpweDetjnfT6gAE3XxsYGgSSyW0HtsVdaKa3bP+sUBP3o/9a/YRHR5N+8Htqd9WHz8w8G4gi75fyJl95gefvnTkEt/3mEjXUd2o2axWqu6fN34u+9caH4VITEiiYu1KyGQyIsMiuX3+FgfXH+TqyasmpOc8yhglXVsO4Mvxn9GgaT1861YjLDSctcv/YdbUBShjzM+SpNFoGNDtcz4fO5gWbRtT0ac80ZHR7Nl+kD9/nc+rF4axf+b8sZjnz15SzbcyjVv6Y20tJzQknM3rdrJg1lICn+TsMSrQ9797q4GM/nY4/k3r4VunGuGh4axbvpnZv2e//4O6jWTEmEE0b9uYipXLER0Zzd7th5j5m3H/505fTPCzF1T1rUyTFn7Ira0JCwljy/qdLJi1jKAc6n/87p1oo6JQdOqKdYNk3f/kCcq5s0g8Zabuf/EC5dLFWFWphrR4Cayq6nW/+tEjVNu3kHjaWPdrX70k4rNBKHr3w6q6L9ZeJdGGhRL3zwbi1qwyMHDlJK9XHUQdHk2BYa3Jm6r7n/HouyWEman73wepsx3FfjBcyzrVKodTLb1n3P3w6I8Szyl41WESw2MoPLwV7sn9V94J4t74Zbzdc8EsGRFn7nJ/0kpc0819GlUiUVcf83zZAd6amPtuDp1N+IkbeHTzI0/DyoitZMS/CuPZ33t5Ons7iRkcPbMkV9YGoIqIwXdwC8q31W+QvLn3jP2TVnJvn5nHHMX6Az52bo7UHNIyw2r/NkMTQOd63jjZ2rD68EX2XdQbAr0KuPFtt4Y08imVxd16rGRSFo/uytojl9l/8S5Hrj5Eo9PhmceRQc196d+0Rmrg8RQKujmz/rs+LNpzhlO3nnDn2RvcHO3o06gqg1vWMjBwCSTzEcOHiEQi5s+fz8yZM9mzZw+RkZF4enoyfvx4+vbNOjFTtWrVWL9+PfPnz2f79u0olUry5ctHnz59GDFiRKqhKst26LKb71ngX0WDBg148cK83eP79+/z119/MXfuXI4fP25gePo306JQi9xuQq6xdX3P3G5CriIpVTO3m5CrRJu5Y/Bf5foF00GIPwX+ydkkhf96grU5e9zm386duI973O7fhvgjBZL+t3LG++NszPwbuXczg+DinwjxOuO4KJ8S56w/bR+Ir1bkbPKnfzM2/oNyuwk5imr5OIvJsuk/zWKycpJP+23+DzBlyhTi43Mmm4OAgICAgICAgICAgICAgIBAdhAMTf/n1Kz5aXt8CAgICAgICAgICAgICAj8a8nh+IT/RoSsc58YI0eO5P79+/83x+YEBAQEBAQEBAQEBAQEBP5v0Wkt9+//BMHQJCAgICAgICAgICAgICAgICBgEYSjcwICAgICAgICAgICAgICAgI5gE776eVfEwxNAgICAgICAgICAgICAgICAjnBJxijSTA0CfzrCU6MyO0m5Bqa/Ttyuwm5SuzUxbndhFzFYfny3G5CrlLt51G53YRcY/tO29xuQq4Sp03M7SbkKi+UobndhFylpFOB3G5CrmI//ZvcbkKu4b18QW43IVe5v1mS203IVS7pYnO7CblK9E9rcrsJuYaN/6DcboKAhREMTQICAgICAgICAgICAgICAgI5wf9REG9LIRiaBAQEBAQEBAQEBAQEBAQEBHKCTzBGk5B1TkBAQEBAQEBAQEBAQEBAQEDAIggeTQICAgICAgICAgICAgICAgI5gRAMXEBAQEBAQEBAQEBAQEBAQEDAIgiGJoFPjYSEBP755x8OHDjAgwcPiI2Nxc3NDU9PT2rWrEn79u3Jnz8/AMHBwTRs2DD1XplMhq2tLUWKFKFmzZp0796dfPnyGT2jVKlSqf8tFotxdHSkWrVqDBo0iEqVKuVIv/yb1aPv8B6UKlcCgAd3HrNi/lqO7j+RLTk+NSoxdMwAynmXQSaTEfgoiA3Lt7Bt/S6T9b1KF+ezcYPxqVEJG4UNL56/ZMeGPaxetAGNRvPB/TIXSZlqyGq3RuxeGADt6yCSTu9Cc/ditmWJ7J2R1myB1MsbkZMbSK3QPLhCwvrpxs8tXxOZb3PE7kVAJEL7Jgj1xcOorx77wB5lD5lvHWzad0VaRD/+6sDHqLZtIOncKbNl2I7+FuuGzTO8nnAiAOUfPwMgb9gMu9Hjs5QZMbAr2revzW7Dh7J55z5+/H0Oc6f9iF/tGtm+//K1WyxYvo7b9x6QlKSmaGFPunVoTcfWTU3Wf/D4KXOXrObK9duoVPEU8MhHuxZN6NO1PVLpx8mkI63gi6xBeyQFigKgfRlIYsBW1DfPZVuWyMEFmV8bpGWqIHbJCzIr1LcvEb90ikE9q+Y9kDfvkaEcTeA94v78KtvPfx8qNKlKg8GtKVBG/+6/vPeMgMU7uXnw0nvJK1WnAiPWTOSfScs4uepAhvVK16uE/6CWFK5UHKmVjPDgEO6dusHh+TuIDol8r2e/D7Wb1qLz0E4UL1sMgCd3n7Jp4T+cPnAmW3IqVC9P79G9KFWpJFIrKc8fPWfHyl3s27A/w3tsHWxp378dNRv74lEkPwpbBU/vPWVY8xEf1Kf3wcXFiUmTxtKqVWPc3FwJCQlj9+5D/PzzDMLDI99LpkQiYd++dZQtWwpPT2+TddzcXBk4sAcNGtShbNlSODraEx4eyenTF5k6dQ43btx5/05lA0dnB0aMG4Jfkzq45HEmPDSCYwdPMW/aYqIiorMly9pGzpDR/WnatiH58uclOiqGs8cv8NfURbx+8caovkQioffQbrTp2oKChQsQF6vi6oXrzPv9bx7ee2ypLhpx5MJNVu46yoOglwCULJyfvq0b0KB6BbNlaLVaNh8+y9aAczwJfoNEIqZs8YL0blkfv6rljeqfvHKHA2eucuNhEK9DIwEolD8PLetWoVdLP2QfSe9Dsu73b4/Eo4i+Ly8DSTy67f11f/3Wet3vnKz771wiftmvpm+wscWqbiuk5WsgdnUHaxu0L4OImzH6/TuUTZya1iDf0LYoyurnPtXdQF4v3E7kgfPvLVNsI6fU1l+xrVCch30nExWQxTwiFuO1YgKODaoQNHExISv2vvezs0ONJr60G9qeomX0fQ+8F8i2hVs5fzD7Yw9Qqa43P6+dzKLvF7J35e4M6xUuVZgeY3tRtnpZ5Apr3j5/Q8Cmw+xYsh2t5uMZFeR16qDo2hVp8eIAqB8/Jm7jRhJOmb/mdfj2W2yaNcvwevyRI0T9/HPGAsRinH79FbmvL9GzZ6Pats3sZwv8dxEMTZ8wz58/Z+jQoTx+/JjatWszYMAA5HI5oaGhXL9+nXnz5jF37lzu3DFcGDZo0IB69eqh0WgIDw/n+vXrLFq0iFWrVjFr1izq1atn9CwfHx/atGmDVqvl+fPnbN++nYCAAObMmUOjRo0s2q/23Vvz08zvCA8N58COAAD8mtZh9orfmfTlFLavz3jSSE8tvxrMXTOdeFUCR/efQBWnok7Dmvw08zvyF3Rn/rS/DeqXLFuCVbsWIZFIOHbwFBFhkVStVZkxkz7Hq0xxJozMREFbEKmPP/L2w9Epo1Df1H9cSUtXxbrH1yRsW4D6ylGzZUnKVEPe8XMQS9A8uYUu8A7I5Cat8lYt+yPzbY42Kgz13fOg0SIpUQF5h88QFyhO4u6lFutjZsgbt8Bu1DdoIyNIOHVE37bqtXGYMAXl7N9JOJy9hU/84X3oYqKMytWPH6b9d9BTVNs2ZChDVqkK0mJe2Xru+3Lz7n227T7I8xevOHfp2nvLOX3+Mp99PQlruZwG9WphYy3n5NlL/DB1Fq9ev+HzwX0M6t97+ITew8ei0Wjwr+OLs5MjF6/c4M/5S3n4JJDfvs95Q4vMtzHWPb5AGxNJ0tWTAEjL18Bm8ERU62ajPnfIbFnSCr5Y9x4DEimaB9dJenQLrEz/9lNIun4GXaixIVEb8Tb7nXkPfLv402PaMGJCo7i6+ywA5RtVYfDir1n39QLO/XPMLDl5CuXDf1BLnD3yULpuxSzr+w1oQYdJfYmNVHL7yFXilSo8yxXBr38Lqrapw58dJhIaZPxBbmmad2vGV9PHEBEaybFdxwGo2bgmPy/9kT/GzmD/xowNZempWr8Kv66cTLwqntMHzhAfF0+NBtX5avoY8nnmZcX0VUb3lPUpw8/LfsLByZ7r525wZPtRpDIZTq6OFu2jOdjZ2RIQsIUyZbw4cuQUO3ceoEyZkgwb1pd69WpSt24bYmPjzJY3bFhffHwq4OtbhZIlixMaGp5h3UaN6vHjj18THPySgIAThIVFUKpUCTp0aEGLFg1o0aInZ85kf8MjOyhsFazYsZDiJYty7sRFjuw/QfGSRenWvyNVa1WmZ/NBqOJUZskSi8XMW/sn1Wr5cPPKbU4dOYeHpzstOjShRt2q9Gg2kLevQwzu+XnWBFp3bs6j+0/Ytn43zq5O+DetS426VenTeigP71re2LT1yDl+WrgRZwc7mtbyBuDYpdt8OX0ZPw7rRvsGWW80aLRaxs5YwdGLNynknocWdX1ISFRz+tpdvpi2lNE9W9G/bUODe35fvo1XoeFUKlkU3wolUSUkcvbGfWat3c3lu0+Y++1gi/fVFLIajbHuPipZ9+s/rqXlq2MzcAKq9bNRnz9stixpBV+se35ptu4XFymFzcCJiBT2aB7fIunKcZBIEdl9vHc/T7dGFJn+OUmhkYTv0vffqXE1Siwdz9OxfxG2MSD7QsViis3/CtsKxc2+pdAvg3FsUCX7z/oAGnVtzMg/viAyNJJTu/TzfrXGNfhuyUTmfDWbgE3mzfvuhd1pO6gdeQrkpXLdylnWL1KmKFO3TkMikXDh8Hmiw6IoX7MC/SYMoHDpIsz68s8P6pe5WLdogeO4cWgjIkg4ql/fy2vVwmnyZKJ+/534ffuyJU+1bx/aaGNjvPrhQxO107AfNQq5r2+2nvXJofv0goELhqZPlPj4eIYOHUpwcDALFy7E39/fqM6zZ8/4448/jMorVKhA9+7dDcru3bvH559/zmeffcbWrVspWbKkwfVixYoZ3NO1a1c6dOjAb7/9ZlFDk62dgrE/fM7b1yF0adSX8NAIAFynurDp8ErGThrJgR0BWS4yRSIR438dS1JiEj2aDyTwURAANgobVu9ezMCRfdi2bhevgtM+Kr/+6Qvk1nIGdRrJ5bNXAZBKJcxdM4PWnZvzz6rtXLt4w2J9NYncBqtmvdFGh6OaPw5i9ZNFUsAGrD+bhlXT3qhvnYHEhCxFiQsUR971S7QvHpOw4U90MREZ1pV4VUbm2xxN0D3iV01Jky+VIe8yGlmNpqjvnEf75JZFupkRIhsFigGfoQ0LJfKLgeiiIgGIc1qK0+wlKAYMJ+HUUYg37yMDIH7bRjTPnmZaR/PoPnGP7mfYJnnDZmiCg9CG5rzB4fGTZ2za/mG7iFqtlil/zsdKJmP9ktkUK1wQgLg4FT2HjWHJ6k10aN0UD/c0D8Y//lpMQkIiS+f8RrXKeuNEklrNZ19NYtf+ADq3bY5PxXIf1K5MsbZB3m4g2qgw4n4fhU6pNw4m2q9GMW4O1m0HoLxyEhLjsxQlLuSF9YBv0T57iGrpb+iiM/6wTk/SuUNobufsR3RGWNvZ0G5CL6LehPN7i29QhunffXs3R8bt+Z22E3pzZc9ZEuOyfvedPFyp28e019q7KJzsaPNND0ICXzOj7XfERcWmXqvfvzkdf+hH01EdWTt2/vt1zEwUdgqGThxM6OswhjYdTmRYJADObitYtH8+Q78fzLFdx4mPy3z8RSIRIyd/TmJiEiNajeL54+cAWCus+WvHLLqP6Mbe9ft5+yLtXc7r4cZva34l/G04X3Ycm3pPbjFy5EDKlPHip5+m89tvc1LLJ0wYzfffj2HEiP5MmzbPbHkdOrSgXr2aZtUNCgqmXbt+7N9/xKC8W7d2rFgxhylTxuPv38HsZ78PvYZ0pXjJosz9fTGLZy5PLR82dgCffT2YnoO6sGTOSrNktejQhGq1fNi6dic/jv0ttbxNlxZMnvM9w8YO4Oevf08t96lRidadm3P6yDk+7/1Vqidztdo+/P3PX4z9YSTDuo22TEeTUcbF8+fqnbg5O7Bx2le4OtoDEBoZTddx0/lz9U6a1vJGYS3PVM7mQ2c4evEmjX0r8duo3qneSNGxKoZPWcicdXvwr1aBIh55U+/p2rQ2LepUwdXJPrUsLj6Bft/P4eSVO5y9cZ+aFUsZPcuiyG2Qtx2g1/1/fJGm+/c6ofhqNtZtBqC8eso83V/QC+t+3+h1//KpWep+kZMbiqE/oY2OQPXXeLRvgy3SpewgtrPBc2I/El+Hc6fpl6jD9P1/4eZE2f1/UvD7fkTsOo02C933LgV/HICDX2Wiz9zEoVbWXnH5hrQlb9/mRB2/hmN97/fpSraxsbOh/8SBhL8JY3SzUUQl991p+mpm7ptD/4kDOL37ZJZ6HyBPfjda9G1l9rMHTBqElbUV33ebwO3z+rWtRCrh+xU/4N+xAfvX7uPepbvv1zEzESkU2A8fjiY0lLBBg9BFRgIgdnHB5e+/sR8+nIRjx9CpzF/zxm7ahOZp5mved1F06YKiXTsSLl5EXq1atu79pPgEj84JWec+Uf755x8eP37MyJEjTRqZAAoVKsRff/1llrzSpUuzcOFCAH79NQPX4nQULVoUb29vgoODCQ837yPOHOo0rImDkwMbV2xNNTIBhIWEs2nlNhydHajTMOsFc3nvMhQuVpB92w6lGpkAVHEqVi5Yh0wmpWmbtJ09VzcXqtX24eLpK6lGJgC1WsPfs1YA+gVrTiPx8kZkY4f6wsFUIxOg9266cBCRwg6JV9Y7NQBWLfqji4shft30TI1MAJKKtQBIOrbF0IilTiJx7woAZFUamrjTssiq1EBsZ0/83u2pRiYAXWQ48ft2ILZ3wKpK9o+QfQjWnXogdnAibu3yjzLJtGvZmFun93Hr9D6GD+j5XjJu3X3As+CXNG/kl2pkAlAobOjXvSNqjYb9ASdTy0PDwrlw5QbVfSqmGpkAZFIpQ/vpDcx7Dx17vw6ZibRMVUQKO5JO7k390ADQxUSSdHovIlt7pGXN22m17jgUnTIa1ZIpZhuZcpsyft4oHO04ufpQqpEJICYkitNrDmHrZEdZP/Pe/Ufn7jCqSFdGFenKmq8yNxDlLZofqVzG/dM3DYxMAGc36o0Nrp55Td1qUar7V8PeyZ6dq3alGpkAIkIi2LV6Nw5ODlT3z3oBXMq7FJ5FC3B0x1EDg1F8XDybFm5GKpPi17q+wT2DvxuERCrhh0E/5rqRCaBr17YolbH8+ecig/IZMxagVMbSrVv7bMlr0qQr1taFsLYuRFBQ5v07c+aikZEJYMOG7URGRuHtbXz8ytK0aN+EuNg4Vsxfa1C+fN5a4mLjaNHR/Lk4Zd5eMMPQI3fnpr0EB72gSZuGBseCU+ovnrXc4Lj8xdNXuHTmCr71quGSxznbfcqMU9fuEhOrokuT2qlGJoA8Tg50blKb6Ng4Tl3N+oN3/xn92uXzbi0Mjrw52NrwZa/WaHU6dhy7YHBP71Z+BkYmAIW1nNb19e/a3Sc5b3iRlq2i1/2nTOj+M/v0ur+Mubp/iF73L/3VLN0vb9MXxBLil03JFSMTgKO/D1InO0JW7Us1MgGoQyIJWb0fqZM9jv4+2ZKZd2Ar8g1oxbPxC1Geu51lfaemNfCc0IeXszYRvj17ISo+hCr+VbFztGPvqr2pRiaAyJBI9q/ei72TPT7+5o39rXM3aVuoFW0LtWL2mJmZ1nVyc6JCzQrcOnsz1cgEoFFr2DRnIwD129bP6HaLYVWjBmJ7e1Q7dqQamQC04eGoduxA7OCAVfXqOdoGeZ062A0dinLVKuID3sNzTuA/jWBo+kQ5cOAAMpnMyDPpQyhRogT16tXj/PnzvHmT9TEJuVy/uyYSiSzWhgqV9R4Tt64ax4G4eUU/WVb0ydqrokJynZuZyKngUzbdc8siFotNPvfWtbtotVqD+jmFxFN/PEsb/MjoWkpZSp3MEOX1RFKoJOrrJxFZK5BWaYCsYVekNVsiNnG/2M5J/4xIY48dXWQI2sgQxJ4lstOV90JaSv83Vj80XlSr799JrlMmx9uRgsjJBZs2nVA/fkjiKfOPLOY2N+7ovbMqlC1pdK1i2dIA3LxzL7Xs5p0H6HQ6ypcx3rkuX6YkIpGIG7dNe3xZCkkR/bM1zx4YXdME6sskhbPeWRe7F0JStDTqS0fBWoGsZhOsWvRC5tcWcZEc3pn/AIp469+vZ9eN3/3Aa/qywt6WfwfDnr9Fk6SmTP1K2OcxPCriWlBvYHp2I+fi0qRQprL+d3nvmvHv7O7VewZ1LCnHztGOOs1rc+HIBeJiVTTt3Ji+Y3vTeWgnfOqYZ9izJHZ2tpQu7cXNm3dJSDD0XouPT+DWrXuULVsSW1vFR2+blZUVERHGx5AticJWQbGSRXhw5zGJCYkG1xLiE3h49zElShXDRmFjlrzy3mV5+zqENy+N57abV27j4GhPkRKFU8sqVC6HRqPh9vV7RvVvXLmDWCymfGXLrgVuPtRvhpUvUcjoWoXktqXUyYzQyBgAPNxcjK55lyqKRCw2Sw5AoloNgIOdeX/nDyFFr2ueGR/t0QTdN6iTGWL3QkiKlEZ9+RjYKJD5NsGqeU9k9dsiNnW/jS3SirVQ372ELl6FtHpDrJr10MeJKpkz8UdNYVtZP0/HXjPuf+zVBwZ1zMGxUTUKTurPq7mbCd2Q9ZFDRcXiFP3rS8J3nebl9HVmP8cSlPTWj8vDa8bz/oPkvqfUsexzSyIWi3lg4rmPrj9Eq9VSsnLOrxdkZfTr2aS7xmvelDJZ2Zz79pCWKoXjhAkkHDtG7LJlOfac/wxaneX+/Z8gHJ37RHn48CFFixbFzs7OoPzt27do3/G6cHd3N1uut7c3AQEBPHr0yGRg8BTCw8O5fPkyxYoVw9nZcrt7HgX1gcsjTQQ7DXkdmlwn6/5kJudtqpz8RvUjTNRPiE8gOjIGD8/8RtcsjcjZDQBdXIzRNW1MuEGdzJAU1k9e0pKVkdVqhUhsaJNOunacxG0LQavfsdVGRyABxPkKoQl9ZSRPp1Iidsn5/ovzuie3x/hjRhseZlDHXBxnLUYks0IXr0LzMpjE08dQ7dgMCVm7Yit69ENkbUPc6r+zrPtv4uUrvaHYydE4xkTePPqPkBev0j68XrzW13d2cjCqby2X42Bvx8vXORujR+SiN2rolMaxBXRR+rEXuWask1KQFNcbmSVlq2Lr3w6R2DCYbdKFI8Svm53620+PzcDvEEll6BIT0Ia/QX3rAkkBW9HFZi/48Pvgkuw1pAw3fvej3ujffVfPrN/97BITGsXemf/Qelx3xh+YzrFle7mw9QQJsSq6TB5EaNBrDi/YbvHnvku+gvqxjQ43fvfD3ujH390M3e/uqZcTlYmcfJ5pv6MylUtjJbeiWJmirD61Aiu5lcE9l45f5qehvxCnND8m0odQpIjeAzEszLQX6qvkd7twYU/u3DH+SMopmjTxQ6Gw4cCBnDW4FyiU8dwNaeuAAoXy8+jek0xl2dopcHJx5MEdY+MtwNs3aWuBFFkeBfOjios3MnIBhLwJSa1jSV6G6N9vZ3tbo2t5XRwM6mRGXmcHnr0K4eGzl5Qrbmi0kkokKGzkhEcrzWrT0Yt6L4+KXkXMqv8hiJyTdb8JPauLSl73uGTtVSkppv8gl5Spiq1fW2Pdf/EI8evnpOp+SeFSiKQyJB5FsP3+b0RSmUF99b2rqJb/BgnmH1t6H+TJBn11uHH/k97o9YBVQfO8ShXli1Fs3hgi9p7jxdQ1Wda38shDieUTiLv1hMAxc7Ksb2nyJs970SYC/Ien6OuCWc/72X9uynxj/NzEhESUUcrUtuUkkuTvM22UiTVvaKhBHXNxXbQIkZUVOpUK9YsXeiPS5s0Qb7jmFefNi9Ovv5L06BFRU6e+Zw8+MXSf3tE5wdD0iaJUKilWrJhRefv27QlNVk4p3L9vvieCk5MTABERhovc+Ph4Xr9+TVJSEo8ePeLPP/8kOjqa6dONM5d9CLZ2+l3auFjjiV2lik+uY7wYy46ceBNyMqufco+riV1CSyOy0u8e6kzFIkjUL3xF8qx3GMUu+olJFxNB4v7VaF4+gQQVYo9iWLXoh8y7PrrIUJIC9C7C6usnkfn4IW81kASRGM3Da6BRI3LMg6SUD2LnfCDJeXUjstGPg6nz6Lpkw5BIkfX4A2jDwki8eBZtRBgkJiJyyYNV5aooeg/GyrcuUeM+B3VShveL8xdA3rglSXdukHT5/bO+5AaxyTHMFDbWRtesk+N8xMbFpasfl2H9lHvC3jPTlbmk/K51Jhb1uiS9Z4fI2ozffh79R6AuOgLV9mVonz9Cl6BC4lkcecchyKo3QBv+lsS9aYtwnTIa9d0r6KLC0CWoEDk4Iy1ZCXmjTsi86xA3Y0yOG5vktvq/fYKJWBRJKv27b51D3gWH5m9HJBbT6quutPq6Gy3GdiFeqSL6TQR/tp9o0vhlaRTJHjoqkzpbP/4Ku6y9eGyS/0aqWOO/Y0KyHFv7NDkeRTwAiFOq+G3U79y5fIeo8GgKlSjI4O8GUc2vKqOmfM7UL6Zls0fvh729fvMoNjbW5PWUedDBwd7k9ZxAobBh6tSJqNVqZsxYkKPPSpmXM5qLs7cOyFxWfHK8M7t0shR2CiIyMPKZqm8J4pJ/lzYmYjBZW+kNn0pV1hsjLetV5dKdx3w7ezXf9O+AT5liiEQigt+EEXDhBnGqBJLUWWfP3X70PDcfBlHPpywlC3tkszfZJ0Wvm9T9iSm6P+t3X5xH31ZddDiqne/o/vaDkVVL1v371ibXT54r4lUkrJ6OJvAeOmU0YveCyFv3Q1raB+tOw4lfm7NBoSW2+v5rTOgsbfJvQ2KG7pPld6XEigmo7gXxdPSsLOuL7Wwosep7tKoEHg/8DV2iOnsNtwAp+jrexDuaEJ9gUMeiz03+m8dnEO81UZWAYx4niz/3XUSKzNa8CQZ1skIbGkrC2bNow8PRJSYidnXFqlo17AYNQl6nDuEjR0JSUqpMp6lT0cXHEzlxYmq5gMC7CIamTxQ7OzuiTWQV+OOPP1Ld7desWcOpbKTGBFJlurq6GpTv3r2b3bvTsr25ubkxffp06tfPmTPMarXxhJdyRE+Xjaj/mckxlT3AVP2Ue7Lz3A9GY6Idqc02ox3Ji7LEY1vRBqYdB9Q+u0/C2mnYjJmHrGrDVEOT9slNEvYsx6ppL6y7fmkgShsZAmIxxJv+8MkRTPY/43EzhcqEF5LI1g77H6chK10O62atid+9NcP7FX2GIJJKiVv1/+XNlB6Z1HiKSPnzmTrwKjVRP+UmC56QzRyNqQ+hlLE3434b/Udg4oGNaB7dTBP79C6qxb9g++NSZLWaGhiakk7uJunkO9ksZXKs+3yFrFJNrBp3JmH7x8m6qEnK5N3PoWc2HNqGpiPbs3LUHJ5cvo9Pq1rU6FQfdy9Phi4fz9+D/yD6beZx3iyF2sSH8Pvofo0pXW5Ch9ome5HsWLGDE3vS4pY9vvOEHwb9xNqzq/Bv48df388jNtoyOrBTp9ZUqWKcDfD33+em/neSqd8B6dXgx5mPpFIpa9fOp2zZkkya9DuXLl3/YJlN2zakvLfxcZDFyfEQIfO5GD58HaCXhUlZ2a1vKdLHikpBl/zWmxOioL1/DYJevmXVrmOM+G2xwbWiBfKi0Wqxz+LI4YVbD5myZDP5XJ34cXg38xtvCUzp/tR+m/E3T96oSjy0Ec2jdHF3nt5FtWQytpOW6HV/sqFJlDJXnNqD+vqZ1PraF09RLf0V20l/I/WpC1sXgSrn1z+6THRWVusekVyG18qJ6BKSeDTgN3QJWRsOii/6Bit3F+62/gZ1RM5vJmSGKb2f4xMfoEnKwPAqEuXoc9/F9Nhnb82rXLLEWISdHU7TpmFVtiw2rVqh2rYNAMeffkKSJw/hn32GzoQ3lUAG/B8debMUgqHpE6V48eJcu3aNqKgoHNMdj6lVq1bqfx8+bH462BSuX7+ORCIxyjpXp04devXqhVQqxc3NDS8vLyQS40XRhxKbfDzh3eMLANY2+t0+UzveGcmRZyIn/S5nZvX191hnuCtqSXSJyc+QmWiHLHm304yMcymeOiKZ8Q6pLiYC7ZtnSAoUA4U9JB/TU5/bh+bOeSQlKyNycIUEFdq3z9EEP0Tx7VK0L7OXxeJ90KniMmy3KDkmmC4bGeeM5McqUa1bjuzn6UgreEMGhiZJiVLI6/iRePk86ts5nGkwB7BN/phISDQ+/hGf7BmmSPfBYZu8Y2aqPoAqPgGFTc7G6kjZzRbJZEbrO5GV3KBOpqR4qVmZ+O1Hh6N9FYSkYAlEtg6ZeyklJZCwawWySjWReGWdsedDSUjezZaZ0EFWyTorwcSO94dSpLIXbcf3ZN/szVzeeRqAgEU7ObJ4F34DWtD++z70nT2Sv7r/bPFnpycuNkX3y4yupep+M1Laq5SqZDmmdL/eayy9t1NSov73IjfhzZcQn8DNi7eo16IuBYp48OBG5umhzaVpUz969+5sVL5w4UpiYvRHm1JiIL6LTfJ7qFTm/IevVCplzZp5NG/ekHnzlmcr011m1GlQk7ZdWxqVr1/2D7HJ/TI1fpB+DM1ZB+hlZTavg+FaIE4Zl+HfPrV+nGWPUSqSf9+JJjxK4pMNBooM2pQekUjEl73a0L6BL+duPCA0Mhone1tKFSmAk72CTl/9QRGPjI/fXrrziFG/L8HWxppFE4cZBCbPSVLmdJO6X5ai+83QfSm639S6x4Tu12WyTiIpAc2Tu8gq1UKcJz/a56aPX1oCTfLvT2zidypO/m1klXFO5uaMomxRIg9ewH24YbIAu6r6mHR5ujXEvmZ5QjcFEP/gOY71vYk5dwu3nobB9W1K6Y/vOjetgdwzL5EHL6C8YBy/1BKk6WtjvS/Pxpo/289Nlikz8dyUZ5sz33woumRdIrIyHvvUNW82Ms4ZyVcqiV2+HKs//sDK2zvV0CSvVo3Ea9ewad3aoL60SBH99Tp1kLi7k3DqFEk3b74r9pNF9wlmnRMMTZ8oDRs25PLly6xevZrPP//cIjIDAwM5duwY9erVM/Jocnd3zzC7nSV5FfwagHz58/L0naCV+T31x8FeBBvHEMpMzrukyHn5PE3Oy0zqK2wV2Dvace9mzsfD0EXqjz2KHFzQhbwwuCZ2zJNcxzioqZEcZaRejqOr6QoZbI7qosNRXzLMOiEpUQmRWIwmKGfTvAJoQ/TjIM7jhibYcPzFbvoz9do3rz/sGWHJf2O56WNiALb9hgIQt9p4h+j/gfzu+t/xm5BQo2uvUuKMuKfFPfBIqf/WuH5sbBwxyljKlCyeE01NRReu/12LnPLAG8PsP6mxy8LN+O1H6z1vxE55yPqQSBayIvUxIkwZrSxN+Av9uDjld+HNY8N339lD/+6HB4dY/LmVmuuzON49ds2gXKfTcXTpHny7+uNVsxxyW+scMXSl8CZYP7Zu+d149sgwM1re5HTsb55nHSfszQt9nTz58xhdy1tAL+d1cJoOiQjR/17cMvgAt2SyixQGDx7L4MFjTV5LOTrnmUFMwIIFCwAQFJSzGbJsbRVs3LiYRo3qMX36AiZO/M1isr//YjLffzHZ9HOTjwiZmosB8ifHVnnxPOt1QKwyjqiIaPJmIevdtUCJ0sWQW8tTj+6k1U9eOzz7sDnoXTySs9i9CY+kWLr4YQCvkrPveuQ1/+h+EY+8FPEw7POmg3ojcpUypvX40Ys3+WbWapwdbFk4cRhFC1g+Lk5G6CL0ek3kmJnuz/rdT9X9zm4Z6H7DdzmlvsjZWFd8TBKT9bpVflfiHxn23ypZLyU8z3ruA3BqknGGMufm+ozNyot3iX+g17H2vuWx9zWdSdKhbiUc6lYi8VVYjhmaQl7o++WaPw/B7/TdrYC+72+Dzet7dkiRaWqesLG1wdbBlie3M48BZwk0yYmXJG5uaJ49M7gmTo6Tq3n9YfpGkxxORfTOZqGVtzdW3t4m75FXqYK8ShW0ISGCoekTR8g694nSrVs3ChQowMKFC9mzZ4/JOu8GBc+Mx48fM2TIEMRiMd98842lmpltUrK+Va1pnO2niq83AHeuGWeDeZeUbHNVMpGTPqvM7Wt3M6zv41sJsVhsMguNpdGkZJYrYnysQFxEH+Bb8yLryU/zPDlLV0kTWZOkMsQu7mhjIlO9mTJEJELWqBs6rRb11eNZPvdDUT/Q/42l5Y0zvsjK6cvUjz4s+5mkiD62meal6Q81WeVqyCpVIeH0MTSPP16wXUtSoaw+W8rFq8YLhMvX9EcKypVOyz5YvrTeg/HSNRP1r99Cp9MZ1M8JNEHJv9kSxoteaXF9mamsREZyAvW/IUlZEymRZVaI3TzQRkeYFXNJ7FEEAN3bl1nW/VCCkrPNlahh/O4Xr65/95/dtHz2N6mVfkfXyd30h6w42XNVLMnZ5ca9ZL1e0df4SFlFX71H2f0bWb+P967q9UMlU3Jq6OU8uJ72O7p9WT9XVPevZlJe0VJFUCepCX7ywuR1SxMTo+TBg8f4+FTA5h0vKzs7WypVKsuDB49z1KMpXz43Dh7cRIMGdfjmm18samTKilhlHIGPgihXqXSqJ1sKClsFpcp5EfgoKNUDLituXbtDvvxuFCziaXStcvVKKGNiefo4bVPj1tU7yGRSvKsZ/358fL3RarXcuWHZtUD55Mxyl+8Yv99X7urLyhUr+N7y4+ITWLLtMDZyK5rU8ja6vungacbOWEGBfC6smvzFRzUyQVqmUdO6X5/cQWOGR1Gq7i+Tke7Pb6D7U+pLTdUHJPkLo9Oo0b7N2Xc/Jducna9xRmX75LK4G5n3PzH4LZc825n89/LPDQA87DuZS57tiDygjzmZUf2nX+qDggdNXMwlz3a8XbrLYn19l5Ssb+VrGI99ueSyRxbyJE1PisxyJoxsZauXQywW58hz30WdklnOhMHHqqJeB6mzEWfXFLKiRQHQPE/bwHnj52fyX0pQ8OjZs3nj50fc5s0f9Oz/HJ9g1jnB0PSJYmtry+LFi8mbNy9jxoyhW7duzJ07l1WrVjF9+nS6d+/Otm3bkMmM3UJv3rzJ+vXrWbNmDXPnzmXYsGG0adOGsLAwFixYQNFkpZQbnAw4Q0y0krZdW+LkknYk0NnViRYdmhITreRkQNpZ+m4DOrHj5Aam/DXJQM7NK7cJDnpBg+b1DBaY1jZyOvZqi1qt5uCuI6nlIW9CuXjmCpWqljdYYIrFYnoM1B9x2Lf9oMX7+y6aB1fQxcchreynP9aWgsIeaaW66OLj0Dy4klosrdEUm1Ezseo4wkCO9ulttKEvkZSqgqRCbYNrsgZdEFkrUF85QqZIZVi1GoikQHHU5/ahC8t6B/lDSbp0Dm2sEnnDZogc0sZf5OCI3K8R2lglSZfOpZZbt2yP04JV2H35nYEcsbsH1p16pgYXTy9H0aM/AAlHTY+nou8QdBo1qjX//lSv6zbvpHX3wYz/xTAof8WypfD0cOfIybM8C04zkqji4/lnxz4kEjFNG9RNLc/r5krVyhW4fuseV27cTi3XaDSs26JfZDZv5JejfVHfuYROFYusRiNEtmnZ70R2Dkir+qFTxaK+cym1XFa3FYoJC7DuNcZAjubhDbRvXyAtXwOpTz2Da1bNeyCyVpB0Nt3YW1lj1aYfIrt3MvTJ5Mjb6n8rSRezeFcswJ2jV1FFx1GjU31sndPefTsXe6q2q4MqOo47R6+mltft05QJAX/Sa8YIU+LM5sFpvXGxxdiu2Ocx/BtUaVObfMU9eHLpPqronM26duHIBZTRsTTt0hgH57Txd3RxpGH7BiijY7lw5EJqedt+bVh+bCnfzPraQM7dq/d4GfSK2k1rpQb6BpBby2nZswUatYbje06klr8KesXlk1coUa443T7rYiCrde9WeBbz5NjuEx8t6xzApk07kcvljBgxwKB8xIj+SKVSNm3aaXTP9etHuH79CFWrflha9rJlS3Ly5A7KlPGiZ8/PmD3748eo27f9EFZyK3oMNByPnoM6I5VK2bf9kNE9O05uYMfJDZSvbGioTanbd3gPg/IWHZqQJ68rAXuPoU4XDytlnu89tCvidNlafWpUomzFUlw+d42QN8aenx9CHZ8y2NlYs+PYBSLSZYULj1ay5+QV7GysqeNTJrV8/f6TtB39GxPmrs1SdnSsiu/mrOFNWCQju7cwiNGk1Wr5c/VOpizZTLVyJVj5yxfkc3WyaN/MIVX3V29oqPttHZBWMaH767REMX4B1j0N40lqHt3U6/5y1Y11f7Puet1/Lu23owt7jfr+NSQFimHVsKNBfVnt5ojzFkB99VSOZ52LOnIZdXQsebo0QJpO90tdHHBpXw91dCxRRy6nlrv1a0G5Y3MpMuuLHG3Xx+Dy0UvERsfSoHMj7NPpfQcXB+q38yM2OpbLR9PGvkXfVsw7soDRM8eYEmc24W/CuXn2JqV8SlO6atq7JRaLadmvFQAnd5zI6HaLkXD+PFqlEptmzRClC4MicnTEulEjtEolCefTktHYtG+P66pVOIwfbyBH4uGBokcPo8DhIkdHbPvr1zGqgzn/DfOfR6e13L//E4Sjc58wJUqUYOfOnWzYsIGAgABWrVpFbGwsjo6OlC1blp9++onmzZsb3XfkyBGOHDmCVCpFoVBQsGBBBg0aRK9evXBzs3z67OygjIll1uT5fD9tHJuPrObEodOIRCLqNa6NW748/DJuGsqYtJ1cZxdHinoVJjQkzECOTqfjtwl/MmflNNbvX8rRAyeJV8VT298Xz8IFWPrXKp4HGnq0TP9hNit2LGTRxtkcO3CCyIhoqvh6U7JsCfZtP8SlM1fJcRJUJB5ci7zNYGxG/IHm/hUQifSZ3+ydSdj5t8GiR6RwQOxWIPWoXLo/AAlb52HdbxLWXb5A4+OPNvwNYo+iSDxLoAm8Q9KxLQa3SL3rIylbHV1kKCKFHZLiFRDZOZF05RiJB1bnfN8BXVwscSsWYTdiLE5zlpF48SyIRFhVq4nYxRXlvBno4tLGX+TgiMSzMNoIw9TPIhsFtn2HYNOpB+qb19CEvEHs7IKsUhXE9g7EbVyF5qHxrrRV/UZIi5ckPmCf0dG9j8WjJ0GcPHcRgGs39d4WASfO8DRIvxvVuW1z7Gz1QUwjoqJ5+iwYV1dnAxlisZjxXw5n5Dc/0W3QF/jX8cXaWs7p85cJfvmagb06U8jTMJvQuJFD6PvZVwwZPQH/ur44OThw6fpNHj4OpFnDelT3Md7htyjxcSTsXIF11xEovv0L9a2LIBIhLVcNsaML8RvnQXzax77IzgFJvoLooiMN5eh0qNbMRPH5ZGz6jUPt2xht6GskBYsjKVwS9aNbJB7YkFZfIkHeqBNW9VqheXwb7duXiGztkXhVQOzoStLFo6ivnc7ZvgPxMSp2/r6WrlMG8+3+adwKuIJIJKJcQx8c8zqzccLfxMekvft2LvbkK16A6JBII1lO+V3xaaU/JlGwov6oTMna5VPjUVzZfZbIV3qdefPQJa7uPkvlVjX5/ugs7hy/RmyEEo9SBSlevQzRIZGs/2ZRDvceYmPi+PvXJXw59Qv+PrSIcwHnEYnAt2ENXPO5MvPb2cTGpI2/o4sjhUoUJPydtO86nY6538/jl+U/MX/3X5w5eJZ4VQLV/KriUTg/6+dt4GWgoYfazG9nM3fnbAZ/N4jaTWvx6PZjCpUoiHctb4IePmPe95aJTWQuc+YsoUuXNkye/C316vny8OFTSpUqTqNG9Xjw4DFz5hgf6S1VqgRgGHsthU6dWqcexbO3t0cut2L06CEABAe/YvPmNI+FP//8iUKFPDl27DTVq1emenVjr9jLl28Y3GNpVi/aQPN2jRk98TOq1fIh8MkzipYoTC2/GgQ+CmL1og1G9xT10nsFvesFtWfzATp0b02Xvu0pUboY9249wN0jL/Ua1yYsJJx50wwNaZfOXGXf9kM0b9eYDQeXc/XCDZxcHPFvWo/EhESm/zDb4v21V9jwRc9WTFmymc5f/0E9n7LodHDiym1CI2OYMKiTgYEoMjqWwJdvyeNkHENp6bbD3At8QR4ne0Iiojl34z5KVQKD2jeiZwvD5C1X7z1l5a6j2MitKF7Qnb+3mP4QHdyhMQ5mZD17b+LjSNi1AusuI1CMm4P6drLuL5us+zeZ0v2e6GLeSVCg06FaNxPFZ1Ow6fM16hqN9LrfM1n3P75F4kHD3078pnkovpyuzzJXwRfNiyeI83oi9aqI5s1z4rcaBlXPCTQxcbz4dRWFpw6n7KHZRAVcAhE4NqyKVT4Xgr5dgCad7pO5OGBTwhO1Cd3//0ZcTByrpq5g+K8jmHPwLy4GXEQkElG1YTVc8rqw4Lt5xKXru4OLA54lChJhou958uehTmv9BlqJinoP7Eq1K6XGfzq16yShr9KMxMt+WcJvm3/n57W/cP7geWIiYihXoxxFyhTl5M4T3DqX80fGdLGxKBcvxmHMGFyXLiXhrH7NK69ZE4mrK9F//okuXQZSsaMj0kKF0Ia/s+ZVKLAfMgTbHj1IvHYN7Zs3iF1csKpSBbGDA8rVqz/YM0qA/ytPJEshGJo+cezs7Bg0aBCDBg3Ksq6npyf330PRvM89H8I/q7YRGR5Jn2HdadFBH6TwwZ3H/PbdDA7vOWa2nJOHzzCkyyiGjO5PwxZ+SKVSnj4K4uevf2fz6u1G9e/efECf1kMZMW4wtfx8sVFYExz0klmT57Nq4ToL9S5r1BcPoYuLRlarNdKKdQDQvgkifvcyNHfOZ3F3GtrnD1Et/BYr/85IipVHXKQsusi3JAZsJOnkDqPMbjp1IpJi5UEiRRcbhSbwLupLAWgef9xg2An7d6KLjsK6fVfk9RsCoA58QuyiWSSeMW+HSfPqBbErF2NVuRqSYiWQ+VRDl5iI5skjYndtIfHcSeObJBIUPQegS0pCtW6FBXuUPW7dfcCMeYYZzrbtTvsAaOJfN9XQlBn1a1VnyaxfWbRyPYePn0at1lC0sCeTvh5J57bGBuiypUqwesEM5i5Zzenzl1HFx+PpkZ/Rw/rTt3uHD++YGSSd3ocuNhor//bIquo/irQvA1FtXmiQFSgrtIH3iJv+JVbNuiMpWQlJifLowt6QsGcNiQGbIX2Gl3gV8ZsX6Q1abh5IipcDnQ7tqyDi96419H7KYU6vPUxseAz+g1tRta3+3X95L4jNk5Zxff+FLO5OI0/hfLSb0NugrFLT6lRqqo/f8ezmk1RDE8CKkbO5d+oGvp39KOtXGamVjMjXYRxbvpdD87YTE/pxstLsXrOH6IhoOg/pSMN2+piAT+4+4a/v53Fyr/kZVM8fucC47t/Sc1QP6jSvjVQm5dmj58z8Zja71xofNX8V9IphzUbQZ0wvqvtXx6uCF2Fvwti08B/WzF5rYOD6GERHx9CgQUd++OErWrRohJ9fLd6+DWPx4tX8/PMMoqOzlyFqyJBe1KtX06Bs6tSJAJw4cdbAaJTixePnVxs/P0Nv2BRWr/4nRw1NyphY+rYdxohxQ6jfpA7V61QhPDSCTSu3Mm/a3wabTVmh0WgY3mMMQ8f0p2mbhlSoXJboqBgO7Ahg7u+LeP3COPbPhM9/4sHtR7Tp0oKOPdugiovn7PHzzP9jCfdv58xxmi5NauPsYMuqXcfYe0rvtVyysAfjB3Skka/5XmpSiYTjl/Reqa5O9vhXq0CXprWpkHw8Lz3a5GxWqoRE1u7NeG7t1qxuzhqagKQz+9N0f5V0un/LItQ3sqP77xM3I1n3e1VEUrw8uvA3JOxdQ2LAFuN1T9hr4qaPxqppd6RlqyDzLI4uOpzEI9tIOLjBwMCVk4SsOYA6Ipp8Q9ri0k5vLFHdDeLZ938TuffsR2lDbrF/zT6iw6NpO7g99drqxz7obiCLv1/I2X3mj7174fz0nzjQoMy3WU18m+l136MbjwwMTU9uPebbDl/TY2wvKtf3wdrGmtfPXrNq6gq2L95mgZ6Zh2rnTrRRUSi6dMG6USMA1I8fEzN7NgknzFzzvnhBzOLFyKtVQ1aiBOLq1dElJqJ++JC4LVtIyGYGcgGBFES6j5pzXUAg+1R0r5l1pf8oZwe/f1yF/wLx17IO4PlfxmH58txuQq4S//Oo3G5CrjFhZ9bGwP8yt9URWVf6D3M6NOdj+v2bKelUILebkKtcOPB9bjch10haviC3m5Cr3N9s+YzM/0/8IjbOnvgpsbiYMutK/1HyHTuW203IUWJ/7G4xWbY/rreYrJxE8GgSEBAQEBAQEBAQEBAQEBAQyAk+waNzQjBwAQEBAQEBAQEBAQEBAQEBAQGLIHg0CQgICAgICAgICAgICAgICOQE/0fZ4iyFYGgSEBAQEBAQEBAQEBAQEBAQyAmEo3MCAgICAgICAgICAgICAgICAgLvh+DRJCAgICAgICAgICAgICAgIJAD6LTC0TkBAQEBAQEBAQEBAQEBAQEBAUvwCR6dEwxNAgL/YoLWxeZ2E3KV18p8ud2EXKXaz6Nyuwm5ivWkObndhFxjz7pOud2EXMXVyj63m5CreNi55nYTchWpSJLbTchVtEd35HYTcg35qO9zuwm5yqUtn+68B/Ao4WFuNyFXuX+vUG43Idf4tFf8/00EQ5OAgICAgICAgICAgICAgIBATiB4NAkICAgICAgICAgICAgICAgIWATdpxejScg6JyAgICAgICAgICAgICAgICBgEQSPJgEBAQEBAQEBAQEBAQEBAYGcQDg6J/D/TKlSpejUqRNTpkzJ7abkOv7N6tF3eA9KlSsBwIM7j1kxfy1H95/IlhyfGpUYOmYA5bzLIJPJCHwUxIblW9i2fpfJ+l6li/PZuMH41KiEjcKGF89fsmPDHlYv2oBGo/ngfpmLfWNfXAd1QF66KAAJ9wMJ+3sLMYfOvbdMkY2cIhumYVO+BM8G/Yjy6MXUa44dG1Fg2pdZynhYrz9JL96+dxvMJU/zahQa3hq7coUBUN4J4tn8XYTuu5jFnWm4+FUiX/vaOFQtiXWBPOg0GhJehRN2+ArP/95Lwoswo3vytqmJ56Dm2JUvgkgkQnk3iJerDvNqwzFLdS1LpBV8kTVoj6SAfuy1LwNJDNiK+mb2x17k4ILMrw3SMlUQu+QFmRXq25eIX2qoY6ya90DevEeGcjSB94j786tsP/9D2LxzHz/+Poe5037Er3aNbN9/+dotFixfx+17D0hKUlO0sCfdOrSmY+umJus/ePyUuUtWc+X6bVSqeAp45KNdiyb06doeqTR3Ahs7OTsy+tvhNGpWD5c8LoSHhnN4/wlmTV1AZERUtmRZ21gzYswgWrZrjLtHPqIjozl1/Dwzpszj1YvXBnUVtjZ06dmO+g1rU6Z8SRydHYmOjCbwyTO2b97LptXbc0wf1m9Wh57DuuJVVq/7H919zJoFGzi+/1S25HhXr8jAMX0pW6kUMisZgY+esXnFNnau32tUt7xPWVp2bkal6hUoUDg/IpGI0DdhXDh5mU1Lt/DkQaAlupYtnJwd+fLb4TRsVh/XPC6EhYYTsP84M99z7D8fM4iW7ZqkG/tzzJgyj5fvjL0patSuwopN84lVxlK1VIP37VKW+DWrS+/h3SmZPPYP7zxi1YL1HNt/MltyKteoyOAv+1POuzRSK/28v2n5Vnas35PpfYWLF2Tz8TWsXbyJWT/Pe+9+vC+S4pWQ+jRB7OYJgDY0GPXlg2geXzfrfplvK2S+rbOsFzdraOp/i92LIilbE4lHCUSOeQARutgoNM/vor56BF34q/fqy/sQcOYSK7fs4/7TZwCULFqQfh1b0LBWVbNlaLVaNu87yub9x3jy7AUSiYRyXkXp3b4Z/r4+Gd4XrYxl3c5DHDt3heev3hKniseriCeb5k7+4H6ZS5GmVag0pAWuZfXBpMPvPufaoj0EHrhstowS7WpSpEkV8lYshq27M1q1hoiHL7i77ih31x8zeU/xVjUo378JecoVBrGI8LvPubP2CPc3ZW+9bSkcnR0YOW4ofk3r4prHmbDQCI4dOMlf0xYRFRGdLVnWNnKGfjmAZm0b4Z4/L9FRMZw5foE5vy3g1Ys3md47dd6PtO7UnGpF/YiLU31Aj7LGtVk1PIe3wTZ5zRt7J4jg+TsJ22/+mvddxAo5lbb/jH3FYtzq/Rvhh64Y1VGULkSRcV1xrFEascKa+OdvebPhKMGLdoPm0zsmlhU6wdAkkBFbt25l/Pjxqf9fJpPh7u5Oy5Yt6devH87OzrnYug9DqVSyfPlyqlevTo0ahh9kKf3+7bff6NChQy61MHu0796an2Z+R3hoOAd2BADg17QOs1f8zqQvp7B9/W6z5NTyq8HcNdOJVyVwdP8JVHEq6jSsyU8zvyN/QXfmT/vboH7JsiVYtWsREomEYwdPEREWSdValRkz6XO8yhRnwsifLd5XUzh1boLH1C9Qh0USvUe/wLZvVIOCC7/n5TeziNx8KPtCxWI8Z3+DTfkSJi8nPAgkbMnWDG+3reWNddli2X/ue5C/hz9lZg4nMTSKtzvOAJCnaVUqrviau6MX8Gr9UbPklJw6EHk+JyLO3CH8+HVEEgmOVbwoNLw17p3rc6HB1yS+iUit7/VrfwoObE78yzBC9pxHp9HiUq8CZWZ/hr13cR58uzRH+psemW9jrHt8gTYmkqSr+rGXlq+BzeCJqNbNRn3O/LGXVvDFuvcYkEjRPLhO0qNbYCUHbcaLh6TrZ9CFGn94aiNy3rgIcPPufbbtPsjzF684d+nae8s5ff4yn309CWu5nAb1amFjLefk2Uv8MHUWr16/4fPBfQzq33v4hN7Dx6LRaPCv44uzkyMXr9zgz/lLefgkkN++/7hGNgBbOwUbdi/Fq1QxTh8/z6G9xyhRqhi9B3ahRu0qdGzah7hY8xa/YrGYpRvm4Fu7Ktcu3+R4wBkKFMxPm47NqFWvOu0b9eLN65DU+mXKl+L7X7/medALzpy8QHhoJM6uTtRrUJPJ0ydQzbcyY4ZNtHif23RvwcQZ3xAeGsHhnUcAqNukNn8sm8IvY35n1wZjI5EpfOtX48/VU4lXJXBi/ylUcfHUaliDiTO+wd3TncV/LDOoP+ybgVSuUYnrF25y7fwNdOjwKlOcDr3b0KJTEwa0Gs6ju08s3t+MsLVTsHH3MoOx9ypVlN4Du1KjdlU6NO2drbFftuGvdGN/Onnsm1OrXg3aNeppMPbvUrREYRasmIFcbkWsMueyqLbt3pIf/hxPeGgEB5Pn/fpN6/Dn8t/46cvf2LEhcyNRCjX9qjN79TTiVQkc238ydd7/4c/x5Pd0Z+Efhnrc3tGe4V8PJE8+V2r61UAiyR2jsqRcbeSN+6CLi0bz4JK+rFhF5K0/I+HgSjR3zmQpQ/PyMVw+mPEzSvggdsxjUCar1RZxAS+0Lx+heaHPFibOUwBZhXpIS/sSv3EqutAXH9Az89h64Bg/zFqKi6M9zerp17HHzl1h9C+z+Xn0INo3rZ+lDI1Gy5gpczhy9jKFPPLR0r8WCYlJnLp0g1E/zeTLAV0Z0LmV0X3X7j7ki59mEhUTS9UKpWnhX5OkJDURUTEW72dGlO5aH7/pg1GFRvF413kAijSuTLMlX3L0q8Xc32ie0afBzGFoktS8vnCfoCPXkDvaUriBN/WnDcK1XGFOTVxpUL/2z32o0L8JylfhPNl3EZ1Gi2fd8vjPGELeSsU4OWGFpbuaKQpbBat3LKZ4qaKcPXGBI/uPU7xkUboP6ES1Wj50bz7AbKOPWCxmwdqZVK9dhRtXbnEq4CweBd1p2aEJvnWr0rVpf96+o/tatG9CjbpVKVexNGUqlMqJLhrh3r0BJZPXvCHJa17XplUpt2Ic97+czxsz17wGiMWUWTga+4oZr9ttyxbGe9dkRBIxYQcvkRQWjWOtchSb1BvbMoW4P3Lu+3ZJ4D+EYGjKJgMGDKBQoUIkJCRw6dIlFi9ezL59+9i8eTMODg653bz3QqlUMnfuXD7//HMjQ5O3tzc//vgj3t7eudO4bGJrp2DsD5/z9nUIXRr1JTxUbwhwnerCpsMrGTtpJAd2BKDKYqIRiUSM/3UsSYlJ9Gg+kMBHQQDYKGxYvXsxA0f2Ydu6XbwKTvuo/vqnL5BbyxnUaSSXz14FQCqVMHfNDFp3bs4/q7Zz7eKNHOq5HrGdDfnGDyTpTRhPWo9EE6bfuX77pzPFds0h3/iBRO09iS4uPlty800cjF29KsSeu4Gtb0Wj6/E3HxF/81GGbXLs0JCEx89JehWa/U5lA4mdDSV+6E3C63AuNBxHUqh+98rKbQPVAqZR4ofevN1xBk1cQpayHv20mogTN9HEGv6tyvw1gvxd6pO3bU2CF+s/XF0bVqbgwOZEXrjH9a5TUuWL5TLKLR6NZ/+mhOw5T8TJWxbucTqsbZC3G4g2Koy430ehU+rHPtF+NYpxc7BuOwDllZOQmPXYiwt5YT3gW7TPHqJa+hu66HCzmpB07hCa2++/g/ahPH7yjE3bzTMmZIRWq2XKn/OxkslYv2Q2xQoXBCAuTkXPYWNYsnoTHVo3xcM9LRHvH38tJiEhkaVzfqNaZf37kaRW89lXk9i1P4DObZvjU7HcB7Uru/Qf2gOvUsWY+dt85s5Yklo+8ushjP5mGH0Hd2fBrGWZSEijTcfm+NauysY12/hu9C+p5R26tuKPeT8zatxQJoxJ27l/+fwVPdoO5vxpw5101zzOHDizhbadWvDjN78TbcEPMVs7BaO+/4yQ16H0ajyQiLBI/TPdlrL64BJGfT+cwzuPmqX7v5oymqTEJPq3HEbQI713hI3ChiU759Hv857sXLeH1+l2s9cu3MSE4T8TFW7oKTT06wEM/LIvrbu1YOYPH2/R3X9oT7xKFePP3+Yzd0bahsior4cw+pvh9BvcnfnvMfbjR6dtlnTo2prpJsY+PS6uzixb/xevXrwhKTEJSQ559tnaKfhy0ueEvA6lW6N+qWM///e/WXdoGaMnjeDgziNmjf03U74kKTGJPi0GE5hu7FfsWkD/kb3ZsX43r4LTxt7O3pZuAzvlSL/Mxsoaq7od0SojiV87GVTJ75XCAZueE7Gq1wnVw8uQlPm8p312F+2zuyaviRxckVbyR/PO9aQrh9Du/RviDY2IspptkNVoibRcbZKOb3r/vpmBMlbF9CXrcXNx4p95k3F1cgQgNDySzp9PZPqS9TStVwOFjXWmcv7Zd4QjZy/TuE41fv/mM2RS/SdStDKWYROnMXvFJhrUrEIRz/yp97x6G8rwiX+Qx8WJ5X9MpFhBj5zraAbI7GyoObEHsW8i+KfpBOLD9OueC26OdNo3hZoTe/B413nUZqx7Lk7fzO1Vh0mMSXtXrF0d6LRvMuX7Nubm0gNEPdWvewv5V6JC/ya8vviA3b1+T5UvkctoNP9zyvVpxJO9F3lx+nYO9No0fYZ0o3ipovw1dRELZ6bpuOFjB/L5uCH0HNyFv2evzERCGi07NKV67SpsXruDH8b8mlretksLfv3rBz77ahA/fvWbwT21/WrQrpuxMTKnkNjZUDR5zXul0depa97AqU74HJ5GsUl9CNlxFm021/zFf+6Ls783kadv4VS7vMk6xX7qi9jaihudfiLq7B0ARFIJ5deMJ1/n+rxadYjoi/c/rIP/NT5BjyYhGHg2adiwId27d6dfv37MnTuXL774gqCgIFatWpXbTcsRihUrRvfu3SlW7ON4o3wodRrWxMHJgY0rtqYamQDCQsLZtHIbjs4O1GlYM0s55b3LULhYQfZtO5RqZAJQxalYuWAdMpmUpm0appa7urlQrbYPF09fSTUyAajVGv6etQKAFh2aWKCHmWNXvyoSRzsi1u5JNTIBaEIjiFi7F4mTPXb1zXcjB3Dp1wbXvm149f084s7fzHabXId2RuriSMisNZl6w1gC14beyJzseLHiYOqEC5AYEsWLFQeROdvh0rCyWbJC9100MjIBxD1+CUBSWJr8vO1qARA4Y4uBEUubkMTDiSsA8OiZ9nvJCaRlqiJS2JF0cm+qkQlAFxNJ0um9iGztkZatYpYs645D0SmjUS2ZYraR6d9Au5aNuXV6H7dO72P4gJ7vJePW3Qc8C35J80Z+qUYmAIXChn7dO6LWaNgfkHYUJzQsnAtXblDdp2KqkQlAJpUytF93APYeOvZ+HfoAWndsTqwyjsVzDeemxX+tJFYZR5tOzc2W1aZjMwD+mrbYoHzrxt08CwymRdvGSKVp+1avXr4xMjIBhIVGEBUZjSpOZbZHjbnUbFADByd7tqzcnmpoAL3u37JqB47ODtRqkPURyrLepSlUzJOD2wNSjUyg1/1rF25EKpPSqI2/wT1nj543MjIBqYaKyHTt+Ri06dgseewNP6gWpY59i2zI0v9O5kxbZFC+deMungUG07JtE4OxT8FKbsWi1TOxtrFmUI9RJCQkvkdPzKN2A18cnOzZtHKb0dhvXrkdR2cHajfwzVJOOe8yFCpWkP3bDqeOHejHftXCDchkUhq3Njz69yr4NT756+CTvw6DO4y0WJ+yg6RIeUTWtqhvHE8zMgHERZN04zgia1skRT7M0C2r1RaRVEbSme0G5drA20ZGJgBtuN4YoYvLea+eU5euE6OMo2urhqlGJoA8Lk50admQaGUsJy9lfXxw33H98fKRfTunGpkAHOxs+XJAN7RaHdsPGXoGzVy2EY1Gw+zvv8gVIxNAIf+KyJ1sub3qcKqRCUAVEsWd1YexdrKjkH8ls2RdnbfLwMgEEB8WzdO9+g2kPOULp5YXb6N/py7N3mZgxNIkJHHmh9UAlO7u9159el9adGhCXGwcy+avMShfNm8NcbFxtOrQzGxZLZPX7AumLzEo37FpL8+DXtC0TUOjY/ETvviFcvlqUC5fDS6YmAMtjUvDysic7Hi14oDBmjcpJJJXK1PWvN7ZkukxqAUFBrXg0bi/Uw1I7yJzc8KpdjkiT98yqKNTa3g2awsAeTvUyX6H/utotZb793+CYGj6QNq3bw/AzZv6D/Bbt24xaNAgfHx88Pb2plevXpw/f97gnvPnz1OqVCnWrl3LzJkz8ff3p0KFCnTu3JkbNww9Xnr37k3jxo2NnjthwgRKlcrcLTM8PJzBgwfToEEDKlWqRLVq1ejQoQNbt6YdcQoODqZ+fb1L8dy5cylVqhSlSpWid+/eBm3dsWOHgezs9POff/5h4cKFNGrUiEqVKtGpUyeuXDE+62sJKlTWL6ZuXTVWjjev6HdVKvpkveCqkFznZiZyKviUTffcsojFYpPPvXXtLlqt1qB+TmFTSf+bUF1/YHRNdV2/s6DwNt+d165BdfJ9N4jQBZuI/Cdjl/qMkORxxrVfW1S3HxO9N3sxUt4HBx8vAKKvGHtXpZQ5JtfJFiIRVm6O5O/ZgMKftyX82HXebk87iiDP6wRA/HPjI2Lxz0OIfx6Cg4/pY4eWQlJEP66aZ8ZjrwnUl0kKZz32YvdCSIqWRn3pKFgrkNVsglWLXsj82iIu8nFcwXOTG3f070mFsiWNrlUsWxqAm3fupZbdvPMAnU5H+TLGf5vyZUoiEom4cfvj7urZ2ikoUbIo9+88JPGdD/yE+ATu331EydLFUdjamCWvok853rwO4dVL45gU16/cwsHRnmIlCpu4U4+V3IqSpYszdfYPeBby4Kfx01Cr1dnrVBaUr6zXr7evGXtk3L6i18vlfMpkKadcsp6+ffWe0bUU/V6ucuZyHF0cadTany8mfcaD2w/ZtCzjY8WWRj/2xbhnobGv9J5jP33ez5Qu68WgHqNM3mtJyqeOmYn5N7msvBnzb6ocE7+hW8nzvjlyPjZi9+R4fK+fGl1LKUup8z6I8ngiKVUN9eNraF8HZl7Z2haJVxWs6nVCG/Ic9fX3OLaTTW7cfwxAhZLFja5VLK0vu3nvcZZywpJjlxXIm8foWuVyJZGIxdy8nyYnKiaWw6cvUadaJRQ2Nmw/dIJ5q7ewYvMezl7NQe/ld8hbWb+2eHvNuI9vksvyVjb+22QHsZXe8JYQlWZUVCSve2KeG3uqxwSHEhMcSj7vD3tudlDYKihesij37zwyqfse3H1MidLFUCjM030VKpfj7esQXr80XtfdvHIbB0d7imQy730M7Cvr17MxV43XvDFX9EdZ7bOx5nVpXIXiP/Xl2ZxtvF5/JJPnlkAkFpt+7rXH6LTabD1X4L+LcHTuA5HL5YDe5fr69ev06dMHFxcXevfujUwmY8+ePQwYMID58+enGnRSmDx5MiVLlqRbt27ExcWxYcMGBgwYwJ49e8iXL5+px2ULlUpFUlISzZs3J2/evGi1Ws6fP8/48eORSCS0bdsWJycnxo4dy4wZM/Dz88PPzw+AvHnzZig3u/386aef8PT0pGPHjiQmJrJ27VqGDh3KkSNHsLe3/+B+psejoN6lOTI80uhayOvQ5DruHyTnbaqc/Eb1I0zUT4hPIDoyBo907tY5hcxT/7vRmAh4qH6jD14tK5Dx2KbHulxxPGeNI3r/Gd5ON8/V+F3cvuiBWGFNyJ8fx+PPuqAbAInhxruoCW/CDepkR2atS/rArurYeB7/vIYXKw+BLs0FNuG13nvOtkwh4h4bBz9NilRiUyxnx1/koh9XndJ47HVR+rEXuWatVyTF9UZWSdmq2Pq3QyQ23LFLunCE+HWzQWsczNlm4HeIpDJ0iQlow9+gvnWBpICt6GKzF4AzN3n5Sv9R7OToaHQtbx4XAF68Slt4vnitr+/sZHx02loux8Hejpevc/ZD+108CxUAINyEPgJS40p4FvTgQRYfYHZ2tji7OHHv9kOT11Pi8xQoZFrWqHFD+WKcPnjw7Rv36NCkD7dvGBtxPpT8yXo90oRnUUiy7svvaYbu90yRE2l0LdSMOeTCy+MAqNVqls5cxap560hKTMryuZaiYPLYm5qL4H3H3th4DWlj7/nO2H89cSTNWzdiWN+xOTLW75I2X5sY+2zN+xmPfYiJef/fgsjBFQCdSml0TaeMNKjzPljV6QA6SDqzI9N6itF6rzedVkPS+T2oLx0AjWUNyqZ4+UY/Nk6OxutJNxdngzqZ4ebiRNCL1zwMfE65koZe/FKJBIXCmvDItLns5v3HJKnVPHz6nBYDxpL0jvG8ZuXy/DlhFHZmGnXfF3tPvWEsPtx4/OOS40jae2Zv3ZMesVRCoQaVUMcnEnorzcM/RbZraU+inhivexIilTgWzfq9sxSehfUeZabeX0j3DhfKz6N7mcfMs7WzxcnFkft3TM97KXq0QMGsZeUkKevZJFNr3uR1qXVB89b8dhWKUmbhaEL3nCPw13Xv/VxtfCLqyFisP+A395/lEzw6JxiaPpBDh/TBdX18fPj111+xtrZmy5YtuLjoP0j69+9Pu3bt+Pnnnzl06BBicZoTWa9evRg/fnxqWd26denZsyfr1q3jyy+zzuCVFQUKFGDFihWp/1+n09GpUye6devG+vXradu2LXZ2drRp04YZM2ZQvnx5unfvnqXc7PazTZs2/Pjjj1hZWQFQsmRJRo8ezfHjx2nVyrJnmW3tFAAmj2WoVPHJdWw/SE68CTmZ1U+5x9XNJcvnfiji5AWN1kQ7tPHJcYOS25oZUndXCi6eRPz9QF5+NeO92mJVxAPnzk2Iu3Qb5bFL7yUju0jt9P03deRNG6ff4ZLaZ2/Rp46O49mCXcic7XGqVZYSP/VBbG3F84VpQeVfbzlJ/m5+lJo6UB8YMeAauiQ18gJ5yNPYB5vC+RDLclbdiuT6fukSjMdelxybQ2Sddd/FefQfUrroCFTbl6F9/ghdggqJZ3HkHYcgq94AbfhbEvemuabrlNGo715BFxWGLkGFyMEZaclKyBt1QuZdh7gZY/5vjE2xyXFcTMXzsLaWJ9eJS1c/LsP6KfeEZbDwzSnsUvVRnMnrKbrQzj47utC0rPi4zGVduXCdFYvW4eHpTv2GtZn99298MXi8xQ0QiuR2qjLT2Wb0N1WOiXg+8Sr9e5TZHLJm4QYcHO0pX6Ucg8b0xc7eltk/z8+6AxYiq/FSqfT9srO3M1tWbAbzmsrE2Hfu0Zbhowfwy4Q/CNh/3PyGfwAKWzPm62yMvWk5WY99biGS6fWSyRhMav28J7J6P2OH2LMkkiLlUN89jy7sZaZ1ky4fRCRXIM5fDFmNVoisbEg6ufm9npsdYpN/04pk/ZweG7l+3ak0IwB064a1uXTzHuN+n8+3w3pTpUIpRIgIfv2Ww6cvERcXT5Jj2gbLs2RPPYXChqnjhlOpTAmcHex58vwlM5dt5MyVm0yZv5Lfvh5miW5miJWtfu5JMrHuUav042+VzXVPenxGtcW+QB5uLj9IfDrDwoOtpynVuR51JvdDJBHz7OgNtElq7DxcKdyoMvaF8ub4uic9tpnoAUg3733gNwCk6QNz5tCcRJLZmje5jSnr4sywyu9CuVXfEnv3GffMCOKd2XNTni1zc8pSzieHYGgSyIqIiAhev36NUqnk2LFjzJs3jwIFCtCqVStmzJhBv379Uo0vALa2tnTr1o1p06Zx7949ypZNc7suX768gUGmatWq5M+fn8uXLXeu9/Lly6xcuZIrV64QGhqKLtkLw9PT873khYWFce3atWz1s0aNGqlGJtAbmgBevsx80fIhmDqWIRKJAFL/Bh8qBxNyMjoOIhKJsvXcD0WnNpE6PJN2G1SzklFoyY/oEtU8H/YLuvfcjc87ti8imfS9vaE+BJ2pcUjtfvbGQR0Vy6Mf9fEGEIuosPwrvH7qQ9yjF4Qd1sfjijhxkwcTl1Pi+16UX2xoJI5/HoJIKkYdnXMZlwwwmTY+pfNm3G+jXzglHtiI5lFaTC7N07uoFv+C7Y9LkdVqamBoSjq5m6ST72RzlMmx7vMVsko1sWrcmYTtOZ91z5LITMSdSfnpiEzUNxWnJuUmkakbPpCW7ZpQsbLxMZ55f6b9ndVJGeuj5KaZzbu79e/KykjYqWPnOHVMH/ukcNGCbDu0mvkrptO0dqdUI4AlMdXnrNpoWo7xe5T6d8vkRZrz84LU//5q8hf0HNaV4KCXbFm53exnZ4V+7I2PgM/7My2WSFKWY/9h86BeFsmy9P9bvVYVfpk+gdVLN7J8UeY74jmB5cbeMuuHj44JL9M0bfV+7ZbV6YBOoyHp3M4s6yad3JJ2n183ZFUao4sK0ceO+gi8Gy8H0notMkMJt29Sn8DgV6zcuo/PJk03uFa0oAcarRZ727SNOmWyMbd760Y0qVs9tbx08cLM+v4LmvUfw/7j5xg/vDcOH8FAqf2AdV9GeLWrRZUv2hF6O4hzv643uPbi1G1O/7Aa3++60Xi+YXyymOBQxFIxiRZe9zRr24jy3sbz3uJZy1P/O+N5T/+/menvd8lS1r9EHWS25s9KZ4nkMsqvGY82MYnb/X5Hl2D+mt/kWjvl2f+WP45AriIYmrLJ559/bvD/q1evzq+//srbt/qjFIUKFTK6p3Bh/Rne58+fGxhgTOHu7k5ISMapgrPD/v37GT16NI6OjrRo0YISJUrg7OzMokWLiIl5vwCNz58/Bz6snwqFfqJOSMg6A0Z2iVXqJ34ruZXRNWsb/W6XqR3vjOTIM5GTfqcjs/r6e6wtHvzWFCmeTCIT7RAn7/ZllX1C6uaMdZlixBw+T54hhtl0bJJjnDh1boKtb0UiNx8i4eEzIxnWFUrg0KIOyhOXibv48TKOqJX6/otN9V+h778m9gN+d1odQbO34dasGu6d66UamgCC/95HyO7zuDaqjDy/KxqlCuW950RfeUjdO0uJuWEcP8OSpHgyiWQyo2WUyEpuUCdT1MmLDCvj3WFddDjaV0FICpZAZOuQuZdSUgIJu1Ygq1QTiVcFc7rwr8A2OX5DQqJx8OL4BP27kz7Gg22KPjNRH0AVn4DCxvJHJ+o3rEXH7m2Mylct2YgyRR+Z2OEHsEn2vorNwOslPVnqNkWKrKx/W0FPn7N72wF69u9M9Zo+nDiSdcp1c4lL1f3GfTals7OWY57uz4xls1bRZUAHWnRqYlFDU/2Gtelkcuw3pI2XtenxShn7jDye0pPV2Nskvwcpv6Oadaqi1WhISkpi/E+GBndHJ3ukUinjf/qSeFUCM6dazssrpS+m+myd2t9sjL2J9yZ1/WBmavSPSYrHKhKZ8UWZ/m+iS8z+vCcp4YPEvShJN46ji8pextikC3uQefsjKeOb44Ym22T9mmhiU0yVvM5U2JjWhekRiUSMGdid9k39OHf1FiHhkTg72FO6eGEc7e3o+Nl3BhnnrJK9deJNBLq3sZbjU64kh09f4vnLN0ZH8SxJYrJXiURuPP7S5HfClLdTVhRv44vfn0OICnzDnt7T0MQb/31vLjvAk70XKdSgErb5XUhSxhN+/zlvrz2m77UFBkftLEHdBjVNZnVbt+yfVD1klYHuy44uyEqPWmdDj+YkGmXKmt947CU2+rZn5HWUglVeJ+zKFSHswCU8R7Q1uOZQVR970r1bAxxrlePNhqPE3Q9Ofa6ptTaA2Eae5XM/Rf7VGxU5hGBoyiZfffUVXl5eyOVyihYtiru7/vxxWFhyDJRMdk3M2VFJTExEJjOxWHgP5s2bh6urKzt27CBPnrTghps2bXpvQ1MKH9JPc/4O78urYH2mk3z58/L0oeEElxKf40Ww8VnyzOS8S4qcl8/T5LzMpL7CVoG9ox33bpqOc2FJkl7oDZ4yd1cSHz83uCbzSD5TnS41c2bYN8o4Q5NDU32WtbhLt00amvKN6w/A2xkfNxtjfLB+MSzP70LcwxcG16wLJMcxMBGwOzskRejjIEgdjXcoE16F83J1gEGZi38lRBIxkedMp422FLpwfb9ETnngTbDBNZGzm0GdTOVE68/1i53yYGp/PFttitTrRVNGq38r+d317/CbEOMPq1dv9JsAHu5psa48Uuq/Na4fGxtHjDKWMiaC1H4o40b+yLiRP5q8lnI0wN2EPoK0OEQvnmftVapUxhIZEYW7h+n4Xh4F9LKCn5nnoRqVHD/O0cmy8fleJ+vgvB5uBplCAdwL6Nv+6vnrLOWk6P68+Y3jS+TLhhyAqOR4Lg4W7uu4kT8wbuQPJq+ljX0G45X8oRxswbF/kW7srW2sGTCsV4YyB4/oQ3RUjEUNTenH7N15P2XsX5o19vq5MZ+JsU+Tk/X64WOji05ef9o7o4sw7KfI3sWgjtmIxMhqtUWnTkR9fm/2G5WciU4kz/qo/oeSP68+/tTr0HCKJccoS+H1W32/PfKZHy+mqGd+ir4TU3PTHv28XqV8WtIHVxcn/TNCTP9tP9Y3pfKFfu6xy+9C5CPD99qugP5vExOcPUNh2d4NqfNLX8LvP2dPr2moQozjn6UQ+zqcu+sMg74X9KuIWCLm1XnLHpGe8MUvTPjiF5PXbLOY9/Kn6qus3+FYZSxREVEm1/QGsnJZH8QH69ck8vyuqN5Z88qTY3clBJvnvODatCoZRXLL01L/PRB9/h5x94NTZcrzG98hsbVG6qhAeTPQrOd+UnyCR+eErHPZpHLlyvj5+VGzZs1UIxOkHUV7+tTYayEwMNCgTkYkJSURHBxM0aJp2UGsrKxSYypkl8DAQHx9fQ2MTKZIOb6nNSNdoiX6mZOkZJipWtM4hX0VX28A7lzLeuJLyTZXJRM5t6+nyUnJUmOqvo9vJcRisUH9nEJ1Q2/MUtQw9iBRVC+vr3PLOEtEepJevOVO8ZYm/4XMXgvAs0E/cqd4S2IOnTO637auD7a1vIned4r4LJ5laVIyYDjXMvaoc/LVe2PFXP+wwI125YsAaUatTBGJKPZtN3QaLa825uyuriYoObNcifJG16TF9WWaZ6YDWxrICdT/TiVlqxhflFkhdvNAGx1hVswlsUcRAHRvc+6YrKWpUFb/IXHx6k2ja5ev6TMJlSudlk2lfGn9UeBL10zUv34LnU5nUP9joFTG8uRRIOW9y6buvKZga6egTPmSPHkUmLprmxU3rt7BPX9eChctaHStag1vYmKUPH0UaJasMhX0fy9LL9BvJ+t1H1/jNN6Vk8vu3sg6+1/K/OBTMxM5183LIliynH7cX5lp3LcEKWNfwWJjfzvLsX+SPPazpy2iWJ7KJv8FP3tJeFgExfJUxrt4vQ/uZ3puXc18/gW4Y8b8ezt13vc2IcfbbDkfG+2bQAAkBYwzZUoK6H+D2rfZ8yyRlq+N2MUd9fVj6GIjs90msZv+96KLCc/2vdmlQim9If/STeOxuXxLX1bO6/2z7sXFx7N4w05srOU0rZe2AeddWp/t7dSlG0b36HQ6HgUFI5VIKFwgZwPIv72mX9Pk9y1tdM2jhr4sJBse1dW+6kS9X/vz+tIDdnaanKmRqullRgABAABJREFUySQiEdW+7oRWo+X+Pyezd+8HEKuM5emjIMpVKpPqgZiCwlZB6fJePH0UZLYX0q1rd8mXPy+Fihh/0/jUqIQyJtZoU+Njk7LmdappvOZ19NWXxZjIRpiehOchnHDvbPJf0PRNANzq/Rsn3DsTtv+igUxHE8918C2DSCxGeT3rTI8C/30EQ5OFyJMnD5UqVWLnzp2Eh6dNrEqlkg0bNlCgQAFKlzaeBNKzadMmoqKiaNKkSWqZh4cHoaGhvH6dtksVEhLC3btZe0e4ubnx4oWhhfvhw4c8eWL4oe3i4oJEIkk1FGWGJfqZk5wMOENMtJK2XVvi5JKWNcrZ1YkWHZoSE63kZEDacY1uAzqx4+QGpvw1yUDOzSu3CQ56QYPm9SiYbpKxtpHTsVdb1Go1B3elpf4MeRPKxTNXqFS1PN7VKqaWi8ViegzsDMC+7Qct3t93UR69iCYmFqcOjZA4p2XBkrg44NjGD01MLMqjF1PLnXu3ovjBhXhMH2OxNuT9qi86tYa3M9dkXdnChB6+gjo6Dveufshc0rwIZK72uHesizo6jtDDV1LLCwxoSo1TMynz1wgDOc51ylFwWKvU43YpyAu4UnxCDwDebM58ASWWyyg5dSAO3sV5vmQfKhNZWSyJ+s4ldKpYZDUaIbJNG3uRnQPSqn7oVLGo76QFZZfVbYViwgKsexmOvebhDbRvXyAtXwOpj+EHoVXzHoisFSSdTfdbtrLGqk0/RHbvZGmTyZG31Xu2JV3MOE1ubrFu805adx/M+F8MY3FULFsKTw93jpw8y7PgNAOZKj6ef3bsQyIR07RB3dTyvG6uVK1cgeu37nHlRtoxUY1Gw7otuwBo3sgvZztjgl1bDyCXW9F3cDeD8r6DuyOVStm19YDRPQfPbuHg2S1G8X92b90PwKARvQ3K23Rqjlu+PBzcfcQgJtDIr4fgW6eqkfw2nZrj37gugU+ece2yZdN/nw44hzJaScsuzXBMp/udXBxp2r4RymglpwPSDOOd+7dn04lV/Dj7OwM5t67c4UXQS+o3q4NnkTTvCLmNnPa9WqFWqwnYfSy1vEiJwgz/ZpCR15KjswNf/TIKgP1bDlmyq1mya+t+5HIr+g02TO6RNvb7je45dHYrh85uNRr7lLqDR/QxKG+bPPYH3hn73OB0wFliopW07tLcYN53cnWieYcmxEQrOR1wNrW8a/8ObDm5lp/nTDSQc/PKHYKDXuLXrC4F0429tY2cDr3aoFarObzL0HPj34Dm6U19woayNcE6naetjR2S0tXRJajQPE0zhEsr+WHd5yesmvQzLVAqQ1qjFboEFUkXjX8rKYic3ZHVagvvei1Z2yLz0+sd9b3z79sts6lbrRJ2Cht2HDpJRFSat354ZDR7jp7FTmFD3WpphuN1Ow/RevA4vpu+MEvZ0cpYvp22gDeh4Yzq29kgRlNBj3zU8C7H/SfPWLrJMEbhpj0BBL14TZO61XM869yzI9dIiI6jVOd6WDunBfm3drHHq30tEqLjeHbkWmp5ub6N6Xp0Gv4zhxrIEVtJafjXZ1T5oh0Ptp5md4+pJMZkb6NbIpdRd0pf8lYsxq3lB4h6ap73p6XYu+0gVnIreg3qalDea3AXpFIpe7cZr8N3ndrIrlMbqfBOzMOUuv0+62lQ3rJjU/LkdeXwnqO5rvvCA66ijo4jX1c/pAZrXgfydtCvecMD0kI8eAxoRtWTsyj11+emxJlN4psIIs/cxqFqSRyqpXn5IRZTYGBzAN5uP/VBz/hPotVZ7t//CcLROQsyfvx4+vbtS4cOHWjbti0ymYzdu3fz8uVL5s2bZxD4G+DPP//k3r175MuXj3v37rF9+3aqV69Oy5YtU+u0bt2aTZs2MXz4cNq1a8fr16/ZsmULcXFZW+Q7duzInDlzGDNmDBUrViQwMJBt27ahVqvJly/NFV4qlVKtWjX279+Pq6srbm5uWFlZ0b9/f4v082OijIll1uT5fD9tHJuPrObEodOIRCLqNa6NW748/DJuGsqYtOCEzi6OFPUqTOg7rs86nY7fJvzJnJXTWL9/KUcPnCReFU9tf188Cxdg6V+reB5oeDxp+g+zWbFjIYs2zubYgRNERkRTxdebkmVLsG/7IS6duUpOo1XG8fb35eSf/DnF9szVG5VEYOdfHVleF15NnIs23U621NkBefGCqEMiLPJ8h9b1sSlfgsgth42O7n0MNDEqHv2yltJ/DKb60T8IPXQFkUiEa2Mf5Pmcuff132jSLZysXByw9SpA4ttIAzkSewVeP/Wh6NhORJy9Q3xwCHJ3F1z9KyFRWPNs/i6jo3DuXerj1qI68S9CkTnb4VKvAlZuTrzacIzHP63O+c7Hx5GwcwXWXUeg+PYv1LcugkiEtFw1xI4uxG+cB/FpYy+yc0CSryC6aMO+o9OhWjMTxeeTsek3DrVvY7Shr5EULI6kcEnUj26ReGBDWn2JBHmjTljVa4Xm8W20b18isrVH4lUBsaMrSRePor52Ouf7Dzx6EsTJc3pD6rWbeu+EgBNneBqk/y12btscO1v9h1hEVDRPnwXj6upsIEMsFjP+y+GM/OYnug36Av86vlhbyzl9/jLBL18zsFdnCnl6GNwzbuQQ+n72FUNGT8C/ri9ODg5cun6Th48DadawHtV9KvKxWbZgLa07NGXcpFH41q7K08dBFPMqQl3/mjx5FMiyBWuN7imevOtvozD0hNn+z14692xHj36dKFm6OHdu3id/gXz4N6lL6NswZk41/GArV6EUo78ZRuCTZ1y5cJ24OBXlKpahctUKxMQo+eqzSWZ50GaH2JhY5k5ZxLe/j2Xd4WWcOnwWkUhEnUY1yZPPlanfzCA2ne53cnGkSInChL019LjQ6XRMnzib6St+ZcXeRZw4cIp4VQI1/atToLAHK+euJTgwbQNHJpfR/4vedB/ShWvnr/PsaTBOLo7UqFcNR2cHAnYdY+9mY6NeTqIf+2aMmzSKGrWr8PTxM4p/wNh3STf2t5PHvkHy2M+ausBI1sdGGRPLnCkLmPD712wMWMnJw2dABHUb1cItXx6mfPOHwbzv5OJE0QzGftqEmcxcOZXV+5Zw7MBJ4lUJ1PKvgWdhD5b/tYbngYabd7Z2Cjr00sc18Syi1wtlK5Wm9zC9ke/0kXM8eZCz8flIjCfp1FasGvbEutcktMlGJUmxiohsHUkMWAuJafFSRDZ2iF3c0cWZ9lSRVm6E2M6JpHO7Uo/Ama4oRVa9BVKfRmhfPEQb8RaRjR2SwmURWduifnAZzV1jr2dLY2+r4MsBXfll7go6fvYd9ap7A3D8/FVCI6L4/vN+BgaiyOgYAoNfkcfZ0UjWko07uffkGXmcHXkbFsG5q7dRxqkY3LUNvdo1Nar/w8j+9PzyJ2Yt38iRs5cpXawQT4NfcfHGXYoW9GD88N5G91iaxBgV53/bQL3fBtD50G8EHb6KSCSiUMPK2OZz4sT4ZQYGIxsXe5xLeBh5KpVo7YtXu1rEhUQRFxJJ9XGdTT7v3OS0oOAlO9WlaLMqKF+EYe1sR4E65VG4OXL/nxOcTVfvY7Fq0XpatG/ClxNHUK2WD4FPnlG0RBFq+9Xg6aMgVi0yblMxryIARh6guzbvp0OPNnTt2wGv0sW5e+s+7h75qN+4NqEh4cydtthIVh1/X0qU1nvYpRy37Tm4C0mJapQxSjav2WHR/mpi4ng6eQ1e04ZQ5ch0wg9dARG4NK6CPJ8zD8ctRhOTtu6Tudij8CpAYkjkBz/7yQ8rqbTjZyps/J6wAxdJilDi6FsGu7KFebv9NFFn7nzwM/5r6P6PDESWQjA0WZDKlSuzZs0aZs+ezapVq9BqtZQvX54ffviBmjVrGtX39vbm/PnzPHnyBIVCQe/evRk9erSBoaZ69epMnjyZJUuWMH36dIoVK8bXX3/N1atX2bJli5HM9AwZMoT4+Hi2bt3K0aNHKVOmDDNmzGDNmjU8e2YYV2fy5Mn8+OOPbN26FbFYTMeOHS3Wz4/NP6u2ERkeSZ9h3WnRQe8d9uDOY377bgaH9xwzW87Jw2cY0mUUQ0b3p2ELP6RSKU8fBfHz17+zefV2o/p3bz6gT+uhjBg3mFp+vtgorAkOesmsyfNZtfDjZeCJWL8PdUQ0rgPb49i6PgDx9wN5/eMCYg5YLviuEVIJeb/sjS4xKfWIXW7wctUhksKjKTS8Nfk61AEg9k4QD8YvI2SPeburkWfu8HDSSlz8KuHgXRzXBt5oVYlEX31E8LIDhOw2lqNNSMS5bnnEMimJoVFEnLnLq7UBhB83dqvPKZJO70MXG42Vf3tkVfVjr30ZiGrzQtTXzR97beA94qZ/iVWz7khKVkJSojy6sDck7FlDYsBmSJ9pJF5F/OZFeoOWmweS4uVAp0P7Koj4vWsNvZ9ymFt3HzBjnmF2u227057fxL9uqqEpM+rXqs6SWb+yaOV6Dh8/jVqtoWhhTyZ9PZLObZsb1S9bqgSrF8xg7pLVnD5/GVV8PJ4e+Rk9rD99u3f48I69B8oYJV1bDuDL8Z/RoGk9fOtWIyw0nLXL/2HW1AUoY5Rmy9JoNAzo9jmfjx1Mi7aNqehTnujIaPZsP8ifv87n1QvDXes5fyzm+bOXVPOtTOOW/lhbywkNCWfzup0smLWUwCc5Y4TeunonkeFR9BzalabtGwLw6O4T/pgwi6N7T5gt53TAOT7vOpYBX/TGr0U9pFIpQY+f8du46Wxbs8ug7rPk8loNalCqQkmq1KpMUlISj+89ZdeGfWxfuyuDp+QcMTFKurQcwJjksa9Zt3rq2M+cuoCYbI59/26fM3LsYFq0bWIw9jN+ncfLFx/XYyEjtqzaQWRYFL2HdaNZ+0YAPLzzmN8nzOTIHvOPLZ8KOMvwLqMZNLovDVrURyqVEvgoiCnj/mDLauOPRAcnB778wdAjtmqtylStpT/GFxkemfOGJkB98wQ6lRJplcZISlUDQBv6AvXR9WgeZWOTS65AVrUJOpWSpCuHM62qC39DYsAaxEXKI3YrhNSzFGjUaMNeor59Bs2tj3dsqkvLhjg52LNy6z72HtN7r5UsWpDvPutL4zrVzJYjlUg4dk7v9ZzH2RH/mj50a9Uo9XjeuxT0yMemub+wYO02Tl68zp1HT8nr4kzfDs0Z2qOdgYErJ7mz5gjx4TFUHNICr3b6GJphd59x6vuVPN13MYu79YjE+vipCjdHvIe2zLBeekOTJiGRArXLIZFJUYVF8+rcPe5uOErwCct6rJqLMiaW3m2GMPKbofg1qUONOlUJC41gw4otzJ222MDgnBUajYZh3UczbMwAmrZtRIXKZYmKimH/jsPMmbqQVy+Mj0Q3b9fYKFj56O8+A/Sx7CxtaAJ4teoQSeExeA5rTd7kNa/yThCPv1tKqJlr3vdBefMp11p/T5FxXXH280aikBMf9Iank9cSvPDjz3sC/05Euk8xBHouc/78efr06cO0adNo27Zt1jd84lR0z33jVW6xwdYlt5uQq7xW5nxK4H8z1brmbkaT3MZ60pzcbkKuUbp0p6wr/YdxtbJsAO3/N0ITs46B9l/GSfZp6/5T35TLutJ/FGmbgbndhFxlWf1Pd94D+Csx61iS/2UWiIyzen8q1Hv9T243IUeJ6tvQYrIcVwZkWUepVDJr1iwOHDhAREQEnp6edO/enT59+pidmCspKYn169ezd+9eHj9+jEqlonnz5vzxxx9m3S94NAkICAgICAgICAgICAgICAjkBJaNGJAlI0eO5OLFi3Tr1o2CBQty6dIlfv31V+Li4hg+fHiW90dGRjJgwADu379PkyZNaNasGSqVCo3G/JzUgqFJQEBAQEBAQEBAQEBAQEBA4P+c06dPc+bMGSZPnkznzvp4a3379mXs2LEsXryY3r17Y2dnl6mM7777jidPnrB27Vq8vb3fqx1C1jkBAQEBAQEBAQEBAQEBAQGBHECn1VnsX1YcPXoUKysroxA9Xbp0IS4ujrNnz2Zwp56bN28SEBDAZ5999t5GJhA8mnKFGjVqcP/+/dxuhoCAgICAgICAgICAgICAQE7yEbPO3b9/H09PT6ysrAzKvby8AHjw4AGNGzfO8P69e/ciEono1q0bANHR0cjlcuRyebbaIXg0CQgICAgICAgICAgICAgICPyfExYWhr29cVIVJyen1OuZcfv2bdzc3Pjrr7+oUaMG1apVo2LFirRs2ZLTp0+b3Q7Bo0lAQEBAQEBAQEBAQEBAQEAgJ7BgMPCNGzeycePG1P/ftWtXunbtmvr/ExMTsba2NrpPLBYjFouJj4/PVH5YWBgRERG8evWKL774gjx58vDixQtWr17N4MGDWbVqFVWrVs2ynYKhSUBAQEBAQEBAQEBAQEBAQCAHMCe2krm8a1h6FysrK7RaY8uWVqtFq9WaNEKlJykpiSpVqjB37lyD8hYtWtC4cWNWrlwpGJoEBP7f+U2dvbOw/zXsbHK7BbnL9p22ud2EXGXPuk653YRc4969zbndhFxlU8VJud2EXGWTIjK3m5CrtNE65XYTcpX+M9/kdhNyjUuTh+V2E3KVyraeud2EXGWrs0tuNyFX+SpOldtNyDXq5XYD/kO4uroSGRlpVB4REQGAi0vm75m9vT0qlfFvMV++fJQuXZqnT5+a1Q4hRpOAgICAgICAgICAgICAgIBATqC14L8s8PLy4smTJyiVSoPyGzdupF7PjJIlS/L48WOSkpKMrkVFRaFQKLJuBIKhSUBAQEBAQEBAQEBAQEBAQCBH0Gl1FvuXFf7+/qjVavbv329QvmfPHmxsbKhVqxagPyL3+PFjnj17ZlCvWbNmKJVKVq1aZVB+5coVgoKCqFu3rll9Fo7OCQgICAgICAgICAgICAgICPyfU6dOHapXr87PP//Mw4cP8fDw4MqVK+zfv59Ro0alZqR78+YNLVq0oECBAhw5ciT1/vr169O0aVOmTZvG9evXqVy5Mi9fvmTz5s14eXnRv39/s9ohGJoEBAQEBAQEBAQEBAQEBAQEcgILZp3LCpFIxPz585k5cyZ79uwhMjIST09Pxo8fT9++fc2SMXPmTFatWsXatWs5cuQILi4udOrUiVGjRmFnZ2eWDMHQJPCfx9HZgRHjhuDXpA4ueZwJD43g2MFTzJu2mKiI6GzJsraRM2R0f5q2bUi+/HmJjorh7PEL/DV1Ea9fGAfvlEgk9B7ajTZdW1CwcAHiYlVcvXCdeb//zcN7jy3VRSOqNKlO8yFtKVSmCADP7wWxd9F2Lh+88F7yytepxDdrf2DlpL85vHKfyTrFK5ekbkc/SlYrQ95C+UAkIvJtBLdP3eDg8j28ePj8fbuTbSo1qUajwa3xLFMYgBf3gji0eBfXD158L3ml61TgizXfs2HSUo6vOmB03bdTffpOH5GlnAl1RhAeHPJebTCXCk2q0mBwawok9/3lvWcELN7JzYOX3kteqToVGLFmIv9MWsZJE31PoXS9SvgPaknhSsWRWskIDw7h3qkbHJ6/g+iQyPd69ofi5OzI6G+H06hZPVzyuBAeGs7h/SeYNXUBkRFR2ZJlbWPNiDGDaNmuMe4e+YiOjObU8fPMmDKPVy9eG9RV2NrQpWc76jesTZny/2PvLMOqyroA/NKdgoTYgQUqKogFWNjd3TV2d8zo2N05dnd3F7aigoqBoqCEdAjI9+MGXO8F7iVk5vO8z8Mz4z77rL3X3Wevvc46O0phYmZCZHgk799+4MiBU+zbfoTk5OScVFWOA8dOM2PeclbOn4F7DReV73/w+Blr/tnFc99XJCYmUbSwHR1bN6NNM0+F+V+9ecfKjdt5+OQ5cXHxFLC1omXjBnTv0ApNTY3sqqM0dg0rU2ZgY8zKFgIg3OcjL9acJODMA6Vl2Lg5ULilK5ZVSqJvm4+U5GRig77x+cJjfDedJfZTqEz+fE7FKdauFvmd7TEsbAlqasR9CSfo+nNebjpLxKtPOapjerg0qEbLAa0oWqYoAO9933N47SG8zt3JkrwKtSry585ZrJu6llNbT6Sbr7B9YTqP7kpZ57Lo6Ovy9eMXLu67wNGNR/iR/Os868KelSk/oDHm4rb/5vMR77Un8T+rfNsXcHOgWAtX8lcuiWGBfPxIErX9x4uPeb7pLDGfQ9O916SYDa0vz+P5htPcnbU72/qoSpUGLjTr34LC4vb/4PueY+uOcP+cV5bkOdSswJSdM9k8bT1nt55SmKeiR2WqN61ByUr2WBSwACDwXSA3Dl/l5KZjJCflrp1Lj9/R9ldt4ELz/q0oIvb7/H39ObruEPey2P6ONSsybeefbJy2jjNbT2aa37ZYAZZcWMnJTcfYNvufLJWZVQzrumLWuw26pUXPfsLLd4RtOkj0xdtZlqmmp0OhHQvRLVeCgIHTibki7z/r13TCvGdrdB1KoaatReKnr8Teekjohn0kB3/LctmqUq1BNVoNaEWRn2z/HRVtf1nncnQc3pGSjiXR0tYkwC+Ak9tOcn7veYX5azatSbNezShathjq6mq883nPmZ1nuLj/QrZ1+n8k5RcGmkC0ofe0adOYNi39w1Xs7Ox4+fKlwmsaGhr06tVL6dlLihACTXnIoUOHmDhxInPmzKF169Z5XR2lCAgIoG7durRq1Yq5c+cC4Ovry/nz52nVqhV2dv+u0zL0DfTZcnQtxUsV5c61e1w6c43ipYrSsVcbqlSvRJdGfYlT8oQHdXV1Vu1cTNXqTng/fM6NS3ewtbOmcesGuNSqQueGffgaJBtE+HPpZJq1a4Tfy7cc3n0Cs3ymeHjWwqVWFbo3G8Brn5wPNrl1qEvf+X8QGRKB14mbADjVq8qIDRPYMHYl1/ZdykSCiPyFrGjUrzn5bC0oX6tipvnbjulEaeeyvLrvy8t7PpCSQsHShanTpQE1Wrsxs+UEPvr6Z0c1paje3oNu8wcRFRLBgxO3AHCsV4WB68eybewabu+/rJQci0JW1OvbFDNbC8rUcsww7+eXHzm//ni610vXdKBg2SJK65BVqrX3oPP8gUSFRPDohMjBKl+vMv3Wj2XX2DXc2X9FKTkWhazw6NsEM1sLSmeiO4B778a0ntaDmPBonl96RHx0HHbliuDeqzFVmtdkcesphPj/2lOUDAz12XNiEyXti3HzqhfnT12hhH0xuvVpj0uNyrTx7E5sjPJ9f9Oe5VSrUYXHD7y5evEWBQra0LxNQ6rXdqZVva58SdP3y5S3Z+rfY/no/4lb1+8SFhKOWT5TatdxZdbCyVStVolRA6fkuM7ePi85fOIcHz8Fcuf+4yzLuen1gMFjp6Gro0Od2tXR09Xh+u37TJ+7lMCgLwzp110mv+/rt3QbNJrk5GQ8albDzNSEew+fsnj1Jl6/fc+cqWOyqZlyFO/kRrVF/YgPicD/mOjlyq5BJdw2j+T2qPW83XNNKTlV/+6JnpUJX277EnjVGzUNdSwql6DMwMYUbVeTU/UmEfclXJq/wvh25HcpTfDdl3z1egmkYFqmECW71aFo2xqcbTqDcJ/cDbTX61CfoQuGEx4Szo3j10V61Hdh0sYpLB+zjIv7FL8o/Ix1YWta9G2JRYH8VKpVKdP8RcoUZe6h+WhoaHD3gheRoRGUd3Wg5+TeFC5dhKUjF2dLL2Up1dGNWgv7ERcSwbvjorYvVL8S9TaN5Nro9bzeq1zbV5/dE738JgTd8eXTNW/UNdTJ71QChwGNKdG2JkcaTCI2Tdtrm+jjNKYt+vlNKeDmgLpG3mx96tGhHgPnDyEiJJzbJ24AULleVcZumMiasSu4su+iUnKsClnTpF9zLGwtcVRi3O81oy8WBSx59cAX75tP0NHTxbF2RbpM6kFpl7LM7z07O2plid/R9tfpUJ/B84cSERLOTXH7V63nzPgNk1k9djmX9in34m9VyJpm/VpgYWtJBSX6v4GxAR1Gd8EsvxkVa1dCQ+PXfVSQYNKmAdazR5IUGk7kKVE/N6xTjQKrphE4aQmRh86pLlRdHdvFE9EtVyLdLGbdW5J/0gCSw6OIuXqP5OhYdMsWx6x7S4yaevCh40gSPwRmVS2lqd+hPsN+sv3O9V2YvHEKy8Ys44KStr9SbSemb5lOQlwCd87dIT42nioeVRi2YDj5C+Rn5+KdMvn7zxxAs17NCAkM4faZ2yQnJVOxVkVGLBpBqQolWTNlTY7rKvDfQwg05SEVK1ZkxowZVKxYMa+rojSmpqbMmDGDokWLStNevnzJypUrcXZ2/tcFmrr270DxUkVZOW8965ekfmEZOLo3g8f2o0vf9mxcvlUpWY1bN6BqdScO7TzGjNFzpOnN2zdm1vKpDBzdmz/HzpOmO7lUoFm7Rty8dIch3cZIv2JVreHEhv0rGD19KAM7jsgZRcXoGurRaXIPvn0JY0qj0USGir7cHbA0ZdapRXSa3AOvE7dIiI3PVJa5rQX1ujdSuuzTG46xashior9FyaS3Gd2JlsPaUbt9XXb+uVk1hVRE11CPNpO7Ef4ljL8bjyMqVDRjzdhyD5NOzqfN5G48PHmLhNiETGWZ2ebDrbvi2Rs/88H7LR+836ZbJ9e2bgS9+cS3zyHKK6MiuoZ6tJzclYgvYcxrPJ5ose5GliaMOzmPFpO78fDkbb4robupbT5qKam7vqkhzcd3Jvh9EItaTCI2IkZ6za1XI9pM74nnsDbsHL06a4plkV4DOlPSvhhL5qxm5aKN0vShY/szYvxAevTrxJqlyj2Pzds0olqNKuzdcZhJI/6Sprfu0JQFq/5k2LgBTB41S5r++WMgnVv0w+um7EyKfBZmnL11kBZtGzNj/DwiI2T7SnZ58/YD+44onnmgLD9+/GD24tVoa2mxe+MyihUuCEBsbBxdBo5i4/Z9tG7mia21lfSeBSvWk5DwnU3L51C1kigwmZiUxOAx0zh+5iLtWjTCybFctuqVGZqGelSa2pnYoG+cqj+ZBPHz/8TShMbnZuM0tTMfjnmRpMTz//CvXQRdf05SjKyddF02gGLtalGomQsvN6bO7vNde4qbg1aSECZ7uovj2LY4jGxJ8Y5uPJi+Iwe0VIyeoR69pvQh7EsoIxoOI0Js900XbmfJ6eX0mtKbmyeuE6+E3bewsaRxj6ZKl917Wl+0dbWZ2nEyz72eAaChqcHULdPxaFOHMztP43vfJ2uKKYmWoR7OUzoTE/SNI56TiRe3vZ6lCS3PzMZlamfeHVeu7e/+tYvPN56T+FPb1146gJJta1G0qQvPN6W2vbaRPuV6NchZhVREz1CPrpN7EvYljPGNRkrHfRNLU+adWky3yT25feKmUuN+PlsLPLs3Vrrss9tOcfPoNSJCUmcJ6ejp8OfBuVSuWxWHmhXwvvFEdaWywe9m+/UM9eg+uRdhX0IZ02iEtP33WJqy4NRSuk3uxa0TN5Tr/7YWNOzeROmy9Y0NaNxTeXuR06gb6GM5ri9JX0N53/IPksNEuocs20aRQyvJP64vUWeukaKE7mnJP7E/BjUrE+v1BH2XCvLlmhphMaY33/0/499+OD8iUm2/abcWWE0eSL7BnQmasCh7CmaCnqEevaf0IfRLKMN/sv3LTi+n95Te3FDC9qupqTHwr4Ekfk9kdPNRBLwJAEBXX5f5hxfQ9o92nNt7juBPoqBqZY8qNOvVjBf3XzC96zSpfC0dLcatGk/j7k24efoWT2/+2r7/r+cXz2j6NyCcOpeHFCtWjE6dOlGsWLG8rorSGBoa0qlTJ6pVq5bXVVGKxq0aEBsTy5bVspH4f1btJDYmlsZtlHcQG7cW5V2zaJNM+rF9pwjw/0SD5nVllohI8q9f+o/MVOl7Nx9y/9ZDqtWuirmFmco6ZUQFdycMTAy5uP2M1NkAiAgO5+L2MxiaGlHBPfOvVAC+d57TrXBruhVuzfrRKzLN//TKI7kgE0DgG9Gykagw1aarZ4Vy7hXRNzHk2vZz0iATQGRwBNd2nMPA1JBySur/+s4LBhVpz6Ai7dk6ZlWW69RgYAsMzY05vnifUidFZJUyYt2vbz8vDTIBRAVHcHPHeQxMDSmrpO5+d14wrEgHhhXpwI4xGQeI8he1QVNHi5c3vWWCTAC394pmz+Wzy6+iNtmnWZtGxETHsn6l7IkZ61dsJSY6luZtlQ+iNm/TEIAV89fLpB/ae4IP7wNo3KI+mpqp320CP3+Re9EACA35RkR4JHGxcUp/UVeFlk3q8+zmaZ7dPM2g3l2yJOOZzys+BHymUT13aZAJQF9fj56d2pCUnMyZi9el6SGhYdx9+BRnJ0dpkAlAS1OTAT07AXDq/JWsKaQCBeo4omNqwOutF6RBJoD44AhebbuAjpkhtnXkXxgUEXDmgVyQCSDyjejrdEKorJ37fPmpXJAJINLvs6gOoaot0VaVyh5VMDQx5NS2U9IXDYDw4HDObD+FkakRTh6VlZL17I43LQo1pUWhpiwbtSTDvKaWpji4OvDstrc0yASQnJTMvuV7AXBr4ZYFjVTDzkPU9r7bLsj81nHBEfhsv4COqSF2Hsq1vf/ZB3JBJoAIcdvHh8m2fXRACJvsurLJrisn2/362TsAFd2dMDQx5Pz203Lj/nnxuF/J3UkpWS/uPKND4ZZ0KNyS1aOXZ5r/1KbjMkEmgIS4BK4eFNn+ouV/vX/7u9n+Su6VMTQx5OxP7R8eHM7Z7acxMjWikrty/f/5nWe0LdyctoWbs3L00kzzBwd8leaf3mFSVlXIMga1q6BhYsS3XSekQSaA5JBvhO85iYapEQa1qqgk07RbC8y6teDLjBXE3vNWmEe7cAHUtbWIvf1IJsgEEHFQFIjWKmCl6NYcJSPbf1ps+ysrYftLViiJbVFbrh29Kg0yAcTHxnN4/WE0tTSp2TT1lLHazWsDsGfpHpkgVmJCIhtmiPpKg455G4D/N5LyI+f+/isIgaZcJDg4mClTplCzZk3Kly+Pp6cn27dvl1738vLC3t6eo0ePZrmMZ8+eMXDgQKpUqULlypVp164dmzdv5vv37wDs2rWLVq1aUa1aNRwcHHB3d2fixIl8+iS7Z8SECRMoW7YsPj4+DBo0CCcnJypXrsykSZOIiZF9ebS3t2fy5MmAaPnfuHHjAOjevTv29vbY29uzYoUoMHH//n06d+5MrVq1KF++PNWrV6dPnz7cv5+1/WJUQd9An2KlivDqxRu+J3yXuZYQn8BrnzeUsC+Gnr6eUvLKVyzL16Bgvnz+KnfN++FzjE2MKFKisDTNoVI5kpOTef7EVy7/04cvUFdXp3ylsipqlTHFK5UE4M3j13LXJGnFK5XK0TLTw9DMCOcm1ek0uQf+z99xbkv2ZlooQ5GKIv3fP/GTu/busZ9Mnl+BsaUJdXo35uPzdzw8mfW9ApShSEXRFO8PCnR/L9a9cMX0p4FnldCPX0lOTKKMWwWMLExkruUrKAowfXiae/uRKcLAUJ8SpYry8sVrhX3/pY8fpUoXR99Aub7v6FSOL0HBBH6WX/735OEzjE2MKJam7/+Mto42pUoXZ+6y6dgVsmXmxPkkJSWpptQv4ukL0Vp9h7LydsKxbGkAvF+k2jTvF69ISUmhfBl7ufzly5RCTU2Np88Vr//PSfJVEj3bIY/ln7XQh6K0fE7FVRespoaupQnFO7tT7o9mBF71xv9Yxvte6JgbUqiZC07TOhP23J+Xm5VbupBVSlUU/favH7+Su/bq0SuZPDlbbinU1dV5paBcvyev+fHjB6Uq5Xy5P5Nf3PbBCto++NEbcZ6stb2epQmlOrnjOLgZn6568zaTts8LSojHdD8F476fuG1K/KJxX4KWthYAMT99fMhtfkfbX1La/vL9UGITSv7i9v9V6FYQ2Zd4b3nd456Kxim9CqWVlmfg4UL+Cf0IXb+XiIPpL7lLDAgiJTEJg1pV0MhnKnNNy85aVKdn8nXKaewzsP0vxbbfXgnbby+206+eKBpDXsrkATCzNAXga4B8v/ga8JWvAV9l8gv8vghL53KJsLAwOnToQHR0NG3atMHS0pKHDx8ya9Ys4uPj6devX7bL8PLyol+/flhYWNC5c2dMTEy4ffs28+fPp0GDBtjZ2fH161dKly5NgwYNMDIy4uvXrxw8eBBvb28OHTqEtra2VF5ycjLt2rXD09OToUOH4u3tzcGDB4mJiWHZsmUK61CxYkVat27NoUOH6NmzJ0WKFAGgfPnyAISGhmJubo6rqytmZmZER0dz5swZ+vXrx8GDB3N1NleBQjYAhIeFK7weHBQizefnq3jZkwQDQ31MzU149UL+JR7g6xeRLNuCqbJsC9oQFxsv5+wABH8JlubJSSzEM0eiFMws+vYlTCZPbrLd/xAg+rJ9ZNk+Tqw9TNL33H+xzmdnCUB0mLz+EWL9JXl+BU1GtEdHX5ejC/bkelnm4nb91bpHhURwasl+mo3rxMSzC7my+RR3D10jISaO9rP6EuIfxIU1R3K83IywK1QAgLB0+r5kLzW7gra8ymRTfkNDA8zMTfF9Lv8SB0j35yhQSLGsYeMGMHzcAACeP/WldYPuPH8qH3z+t/A5UOQ4mpqYyF3Lb2EOwKfA1GD7pyBRfjNTY7n8ujo6GBsZ8jko9/fnMigo2ohY0cyiuC+iTVkNVXz+DewsaHl3KQCJMfE8mrWH19suQkr6MxO7fBYtkfuRlIz3ksO8WHWCH7ls+/KL+36kgsMtwr6INq+2KpjzX9fz24lkRobJl/s94TvREdHSuuUmhuK2j1fQ9rGSti+oWtsb2lnQ4c5SQNT292bvwWd7xm2fV+SXjvuK2l+kv+UvnlVatYHoAILXj3I/yJyW39H2S/uhgvaX+H2/uv1/FVq2It2TFWzwnvRVpLuyM4t0yhbHduF4os7dJGTxlgzzJoeGE7JyB5Yje1Lk+Fq+bT1C5NEL/IiJw2r6EL5/CCRs/X7VlMkCytj+/ErY/oxseZj4GUpryyVphUsX4dNb+cMuosKjsC1qm2m5vx3/oZlIOYUQaMolli5dSmRkJEeOHJHuW9S7d28mT57M+vXr6dmzZ7bk//jxg6lTp2Jubs6hQ4cwNTUFoE+fPjx8+FB67OCIESNk7vv+/TtFixZlwoQJ3L17l5o1a0qvqampsXv3bhwcHKRpurq6HDx4EH9/fwoXlv9qU6xYMapVq8ahQ4eoU6cOLi6ypxt5enri6Zm610tSUhKNGzemfv36HDlyhFGjRmXrd8gIA0MDgHSnKcfFxcvky46sePHeD4ZpZOkb6vMtVPGpE4ry5wR64q90CQrq+T1OVKaeoXJf8rLDqfVHMTAxoISTPa1GtEfP2IDds7bkerm6Ev0VrEf/HicK+On+Av0BLItYU6O9B373fHl+5VGul6djoAso1j0xl3U/v/oIaurqNB3TgaZjO9J4dHvio+OI/PKNxa2mKAx+5SaGhvoAxMbEKrwu6fuGRsr0/YxlSaaNpyfr4d0nbFm3C1s7a9zq1mDZhjkM7zfxXxtsihEfjqCvpyt3TVdXR5wnNk3+2HTzS+4JTeelLyfRMhSVr2jJW5L4+dcyUu35T4yKxWftKbTNDLGqXobK0zujoauF7zrFJ28CvFh7Em0TAywrl8RhVGu0jfR5+OculcpVFYlNj1dg9xPic8/uS8ab+HQO1Pgel4CJhWmOl/szWmLbp2jJm6TttVXU/3tULN7rTqFjZoiNaxmcp4na/tn69Ns+r5CMe/EK9E8d9/V/WX3c29WhpJM9Dy7c48MvOAAkLb+j7c+o/RPE7a//C9v/V6Iu1v2HAr8nRay7uhK6a1pZUGDNDBJevydo/EKlyg5btxfU1LAc0QPLkT2wGN6NH9GxJH0N40OHkQqDXzmNxK7HZWD79ZWwfaljiHLP0OXDl6nbrh4D/xqIuoY6Dy7fJykxCUtbS6rWdca6kDWaWkKI4Wf+S0vecgrhKcgFUlJSOHPmDG5ubmhqahIUlHr8acWKFTlw4ABv32Y8gyYzXrx4gb+/P2PGjJEGmSQ4OaWuxY+Li2PLli2cO3eON2/ekJCQuhlmSIjsxsTq6uoyQSaAZs2acfDgQe7fv68w0KQMR48e5eDBg7x48YKoqNQXzuDg7B/z7tmiLuUryi8/W790i/T/05umrKamBojaS1nSl4VCWarmzykUHimcBX2zyu7ZqRusd5vZl8b9mvPVP4iL28/ketkAyYnyv7vkN4df80W6xdhOaGhpcnTBrz3mWpHuSJ63XCqz7oDmeA5txdZhy3n74CVOTavj0tYN65J2DPhnIhv6LSDya84e9dukZQMcFSw9XbU4dQ+1JEW/BWn7vvLlJWZiR9ITduPKHW5cES23KVy0IIfPb2f1loV41mhLfJxqG5T+SrQ05d0DiYpqcleQ2afk55vUFN2QS/xIzDnb9z0iVhokUlNXo9amEVSe3oVIv0A+X3ys8J5Hf6b29yqzulNmYGOi/L/yemvuH/ecpPAo+Vzu/ECyot8cRL/7L5wA9CMHx73vEbHc/Su17etuGIHLtC5E+AXy8dLj7FY1V1Dob0j63i+aiVXOtTx9Zg0k5HMIa8etzJUyBNuvGEV+X1b83P8kGfg9mTW2mrYWBdbNJOV7Ip8Gi/6rDOZ92pJvUCc+j5lH3MMXGDeqjXGr+uiUKESB9X/y6Y+ZJItnVeU2Ctse1Z/1jGxI2mfoyY0nrJ+xnl4TezF+1XiZ7F8DvqKhqUFM5K9dNivw70QINOUCYWFhREREcOLECU6cOKEwT2Rk9jYH/fDhAwAlSqS/58r379/p2rUrz549w9nZmUGDBmFjY0NQUBBLlizhx4/MQ6vW1qK1xj8HpZRl1qxZbN++naJFi9KpUycKFSqEkZERI0eOzJGBr2YdV1p0kD8hY/fm/cREi4ycto623HUAXfEXeEVfAn5GIksnE1lpZzzFRseio6OTcf5YxV/KsopEFy0dLblrOnqiuihz8kxOcnTFfhr0bEzN1u65HmiKl+ov307aEv1jMj95KLsUcihG5SauPL/6GL+7uXvikoSEGMmpHxnpnvNtX6RSSVpM7MLpZQd4cOwmABfXHePS+uO4925Mq6nd6bFsKCs6/Zmj5brVrU6bTs3l0rdt3Et0tKhf6egq7n964v4Xk86X6rTESGSl1/f1JbIytyP+7z5y4vBZuvRqh7OrE9cu3cr0nl+NgXjPuoTv8kt+4xNEz49+mn3tDPT1080PEBefgL5e7s8iTIwW1U1Dge3T1BO1naLZTsqS8iOF58uPUdCzMkXb1kg30JSWZ0uPYN+7AcXa1szVQFNctOjZ087A7iszzqlcbgbjjaTsuHRmO+UkkplMGbV9YjbGvZQfKTxZeYzCnpUp0abGvy7QJBn3FPk6kvZX5sSx7FLGpRzjNk0mLjqW2V2ny2xMnZMItl+WeCX8vl/R/nnBD7HuagraSF38DPzIxAZpWJqhW7oY0ZfuYN63ncw1vUplADBp3QB9Z0ciDp3ju98HdCuUxnJsH0JW7STqxBUAwjYdIGzzQcx6tCT/hP7YLhjHxx4Tsqtihkhsf4Ztr8TzmTqGKG9Djm8+xq1TN6lSpwoW1hbExsTx4aU/Lx+9ZMfjnbx59mv35vwvIMxoEsgRJAGcBg0a0Lp1a4V5SpQowatX2d8oTi2DT8WXL1/m2bNnDBkyhKFDh0rTVdmIW7KpeLpfqzMgNDSUXbt2Ub16ddavX4+WVqohzKklc1OHz2Lq8FkKr0mmPVvZKF6bbiNek/zpY2Cm5cRExxLxLZL8mcj6nEbW54AgSpQuho6ujnQKa2p+UQDv84cgcpLQANEsMXNrCz77ya6bzmcr2sciOCD7M8lUISZctG+GgUnOLhNURNgnUUDU1MacoDey+puJ9Q8NkN/MPadpNUF04texXzibKUx87KypjTlf0tE9LBfavkIj0XJZnyuPZdJTUlK4vOkk1Tp4UNK1HDoGujka6Bo3dAbjhs5QeE2yJNU6nf5qK+5/nz5+zrSc6OgYwr9FYG2reJ8D2wIiWQEfMpcFECHeS8HE1Eip/L8aG2vRb/YlWP7jQqBkbznr1N/CVpL/q3z+mJhYoqJjKFMqCxsxq0hMgKh8fVtz6WlvEgwK5BPl+Zi1DyYSvottmbaStiwhXPyxwzR3bV/wJ5FNy2djQYBfgMw1ywKivYm+5oLdk8i0sLGQu6ZnoIeBsQFvn2dv9rYyRIvb3sDGnIif2t7QVtT20dls+wQV2/5XEiwd9/Px6af2t7C1FOfJ3XGvSn1nhq8cTWRoJLO7zeDzG/l9W3IKwfbLImnbfNYWCtpf1Ddzo///G0gUH86jaW3B97cfZa5p2oqegcRPyu0RaFgn/dO0jRrUACDuwXO++33AyFO07UjMtZ/ep1JS+LblMCZtPNF3qYCagR4puRDklyCx/RYZ2P4vSrT91zRjyM9Yin/Hrx/lf8fQoFDO7jork+bk5oSGhobMSaQCIn7HQJNw6lwuYG5ujr6+PomJiXh4eCj8MzPL3rH2BQqINjx88yb9iLG/v2htfLNmzbJczrt37wAoWrRounk0NDQA5GZIffz4keTkZBo1aiQTZPpVxETH8t7Pn3IVSqOrJ/t1S99AH/tyJXnv55/u+vufefb4BVY2lhQsYid3rZJzBaKjYnj3JnU/gmePXqClpUnFqo5y+Z2qVeTHjx+8yOG1+m+eiDatLF1Nflp5aRdR2runijc0zy0KlRU9OyGfcj/AJTltrpSLvP4lnUVfpvy9c/fFp0ztCpSu4cDDU3f48OxdrpaVFn+x7iUU6F5crPsH75z/wqQpPl3I1Npc4XV1sX1Q1/h1w010dAxv/d5TvmJZ6exBCQaG+pQpX4q3fu+lX6wz4+mjF1jb5Kdw0YJy16q4VCQqKpp3fu+VklXGQXT6jzIB7rzAoazopJh7j+SPdX7wWOQ4liudenJj+dIife4/VpD/yTNSUlJk8ucWoY9F/dqqmvwJQ/nFaaFPs9cfzcqJlo9Lglo5nT+rSE59K+9SXu5aOXGa31PFGxpnB4nMctXkyy3rXA51dfVcKfdngsVtb6Og7a3FaSHZbHvzsqK2jP6Uu22ZFfzE437ZauXkrpVxEaW9ycVxv14XT0atHc+XD1+Y2npCrgaZMuN3tP2vM2x/Ud/MzfbPS+K9RZvN61d1kLumX0Wke/yzjG1Q0qevvCzdSOFfyErR4Q4BA6fzsnQjoi+KTg9WE/s9mtbygRkANU2R36Omnrt+T07Z/ozklBfbkNfemT9DampqdB3bjeTkZC4euJhpfoH/f4RAUy6goaFBnTp1uHr1Krdvyx9p7uPjk+3jTcuVK4eVlRU7d+6UW4bn4+NDREQElpaiaPanT6mDfnJyMhcvKtf5ExMT2bp1K8bGxri6uqabz8JCZGjfv38vk66ofIALFy4otWwvJzh95DzaOtp07tNeJr1L33Zoampy+oj8sdNHr+/h6PU9lP9pDwBJ3h6DOsukN27dAIv8+bh46orMvgCnj4iORu02oAPqaQYbJ5cKlHW058GdxwR/yVmn9cnlh8RGxlCrbR0MzVK/mhmZG+PasjaxkTE8ufxQml6vRyPmXVzOgMXDslWubYkCtB3bGQMTQ5l0Q1NDus3sA8DNw9eyVYYyPLv8kLjIWKq1dccgjf6G5kY4t6xFXGQsz9Lo79bdk+kXl9Bj0R85VoeW4zqRnJTM8UV7c0ymMry4/Ii4yFhc2rrJ6V6lZU3iImN5cTl1U/Ja3T2ZfHExXbOp+6ubogBD49EdMLKQPamscvMaWBW35e39l8RF5uwy0cw4fugsOjra9OjXUSa9R79OaGpqcvzQWbl7zt0+yLnbB3GsJOuwnzgkWvLZ949uMunN2zbC0sqCcycukZim7w8d259qNavIyW/ethEe9Wvx/u0HHj/I2699uw4co1mnfkz8S3bjU8ey9tjZWnPp+m0+BKR+qY+Lj2f/0dNoaKjjWaeWND2/ZT6qVHLgyTNfHj59Lk1PTk5m18HjADSq5567ygCfLz7me2QsxdrXRsc81Q7pmBtRpFV1vkfGyix3K9WrPk2vzcd12QAZOVY1ylJ6QCM0fv44USAfFSd2AOD9wZvSdOMStlQY305u1pK2mSFV/hI9L+/S5M8NHly+T0xkDHXa1cPILPX0P2NzY9xauhMTGcODy6lf3hv3aMqqS2sYsSR7M4vDvoThfdsbe6fSlK5SRpqurq5Ok55NAbh+NPft/sdLorYv2b42Omapba9rbkRxcdunXe5Wpmd92lyZT+2lsm1vU70s5fs3QvOntjewzUdVcdu/OZS7bZkVHl1+QGxkDG5t62D007hfUzzuP7r8QJru2aMxiy+u5I/Fw7NVrpqaGl0m9aDf34N4ftubaW0mEhYUmi2ZOcHvZvsfifu/R9u6Mu1vbG5MrZZuxETG8ChN/2/YownLLq5m6OIROVqPvCDm6j2So2IwblUfjTQnn2qYmWDUzIPkqBhirt6Tppt2aUaRU+uxnjs6W+XG3hL5UhbDuqGRz1TmmlFTd7SL2hH38Dk/onJ3n6L74rav264exj/Zfnex7b+fpu2b9GjKmktrGPmT7X/16CVBH4Ko5lkNm8Kpp2Hr6Org2bkhyUnJ3DxxI8O6aOloMXDWIEo6luTEP8f5/E65mX6/FSlqOff3H0FYOpdLjBkzBi8vL/r06UOjRo0oW7YsCQkJeHl54eXlxZMnT7IlX1NTk6lTpzJ8+HBatmxJ06ZNMTEx4dGjR1y6dIlz585JZ05NnDiRjh07oqmpyZkzZ3j5UvFxs8nJyXTr1k16Et25c+d49uwZs2bNQi+DPTbKly+PiYkJS5cuJTQ0lJSUFMqWLUvdunWpVq0a//zzDwkJCVhbW3Pv3j2uXLnyyzYm3L5uD41a1mfElMFUre7E+7cfKFqiMNXdXXjv58/2dfLHzhctKfpy+fMsqJMHztK6UzPa92hFidLF8H32Cmvb/NSuX4PQ4DBWzd8gk//+rUecPnKeRi3rs+fcPzy6+xRTcxM8PGvzPeE7C6cvy3F946Ji2Tt3O73+HsjfZ5fw+OJ9UFOjUt0qmOY3459Ja4mLSn3hNzIzxraEHRHB4XKyzG3yUa2Z6Fko6iBa+lKuuqN0Dfed4zcICxQ5lZraWrQY0pZGfZvh6/WCL+8DMTIzpnztChiaGnH35C1uHrqS4/r+THxUHIfn7aTz7H5MObMA74sPUVNTw6GuEyb5zdg1eQPxUanTmA3NjbEuXoBIBfqb2eSjctPqABR2LAZA6RoO0j2QHpy4xbdAWae6avMaFCpfjNsHrsgt3ctt4qPiODZvJx1m92PCmfk8E+teTqz7XjndjbBKR3dTm3w4NRUFlws6itq+VI3y0n0AHp64TbhYd+/z93l04jaVmroy9fJSXlx9TMy3aGztC1LcuQyRweHsHr8ul7WXZ/OanTRr7cm4acOoVqMK7974U6xkEWp5uPLW7z2b1+yUu6d4SdHsOz192S/hR/afol2XlnTu2ZZSpYvzwvslNgWs8GhQi5CvoSyZu1YmfzkHe0aMH8j7tx94ePcJsbFxlHMsQ6UqDkRFRTNm8LRcCbb7vfXn+h2RU/3Y+wUAF6/d4p2/aElBuxaNMDQQBUS+RUTy7kMA+fLJzq5VV1dn4shBDB0/k459h+NRsxq6ujrc9HpAwOcg+nRtRyE72WOLxw3tT4/BY+g/YjIetaphamzM/SfevH7znoZ1a+PsJD+rM6dJjIrj8ew9OM/rTeMLc/h04RFqamoUqFcJPStT7o7fTGKa51/H3AiTErbEf5XdR0bLSI/K07vgMLIVX+/4EhMQgp61GbbuDmjq6/Ji7Um+eqWOoRo6mpQf3oLS/Rvx1cuXqHdB6JgbYVPbAR0zQ/yPe/HuQMYOenaJjYpl29wtDPr7D5afW8G9i/dQU1OjSt2qmOc3Z82kVcSmsfvG5sbYlSjINwV938LGgprNRIHEEo6imWgValSQ7v904/h1QgJTP5Bs/msjcw7M48+df+F1zouob1GUcylHkTJFuX7sGs/uyM90y2kSo+K49/ceasztTavzc/h4UdT2BetWQt/KlJsTZNte19wI0xK2xAXLtr22kR4u07pQaUQrAu/4Ev0pBANrMwq4OaClr4v32pMEecn6T1qGeth38QDAuLBoiYlFhWKUH9AYgIDLTwh/lbtjQVxULDvnbqPf34OYf3YZDy/eR00NnOpWwSy/ORsmrZEb9wuUsCNcQfvns7HAtZlomVBxB9EeoOWrO0pt/+3jNwkVt3/pqmVoPqAV8TFxBLz6SOuh7eTkARxesf+Xbgz8u9n+2KhYds7dSv+/B7Po7HIeiNu/ct2qmOU3Z/2k1bL9X9r+8gd05LOxoIbY75O0v0N1R2n/v3n8hrT9QXRaWf3OopOlrQrZSO9r3r8lAA8vPyDgteyStpzkR3QswQs3Yz1zKEWOrSb6yl0ADN1d0MxvTtD0FfxIM3tNw8wYnWIFSQ7J3uEk0ZfuEHn6GsaNalP07CZirt0jOTwKnVJF0K9SnqSQbwRNyXkf/2dio2LZMncLf/xk+6uKbf8qJW1/SkoK66atZcqmqSw+sQSvc3dIiEvAyb0y1oWsObB6P4H+sjPx6rStg6unK8GfgzEyNaZCzQqYWZpxcf8FNs/enOu6/xf5HZfOCYGmXMLGxoZDhw6xZs0arl69ytmzZzEzM6NUqVLMnj0bbW3FmwuqQv369dm8eTNr1qxhx44dpKSkULRoUcaOHUv+/PnR1tZm48aN/PXXX6xduxYzMzPq16/PoEGDGDJkiJw8dXV1Spcuze7duwkNDaVIkSIsWbKExo0bZ1gPQ0NDli1bxrx581i/fj3GxsZMmCDaAG/x4sXMnDmT/fv3o6mpiYuLCwcPHkx376qcJjoqhh4tBvLHuP64NaiJc83KhIV8Y9/WQ6yav4FoFb42JCcnM6jzKAaM6oVn87o4VCpLZEQUZ49eZOW8dQQpWAc+echMXj33o3n7xrTp0py42HhuX/Vi9YKNvHyeO0sKLu08R9S3KBr1a45rC9ELw0dff7ZO28D903eUlpO/sDWdJveQSavS0IUqDUV78rx96icNNAW++czmiWup4F6JwuWLUda1PEmJSQS8/Mi1fTu4vFt+5lhucX3neaLDIqnXrxlVW4gcpk++/uydtplHZ7yUlmNR2Io2k2W/Ylb0dKaipzMA/t5vZAJN6poaNBvdgaTvSZxYuj8HNFGdmzsvEBMWhUe/plQR6/7Z158D0zbz5MxdpeVYFLai5U+6V/B0poJY9w/eb6WBJoAtQ5fhe+Mp1dq5U9a9EpraWoQHhXLln1OcX3WEqJDcP+b3Z6KjounQpDcjJw6mjmdtqtWqSmhIGDv/2c/SuWuIjopWWlZycjK9Ow5hyOh+NG5RH0en8kSGR3LyyDkW/72awE+ye60tX7Cejx8+U7VaJeo38UBXV4eQ4DAO7DrGmqWbeP82dxzvZz6vWLRqk0za4RPnpP/fwKOWNNCUEW7Vndm49G/Wbd3Nhas3SUpKpmhhO6aNHUq7Fo3k8pe1L8H2NYtYuXE7N70eEBcfj52tDSMG9qJHp19j6wFeb79EfFgUZQY0pkgrUZA43OcD9yZv5eOpe5ncLeLrbR8eTN+Bjbsj+SoUw9bDkaS474Q8esurLef5eFJWTuSbQLzGbca2jiPmDkWwql6WH4lJRPgG8HjPVfx2Xs5xPRVxZsdpIsMiadGvFbVbuAHg7/Oe9VPXcvu08hsPWxe2odeUPjJp1Rq6Uq2hKPDs99RPJtD09tkbJrQeS+fRXank5oSuni5BH4LYNncLR9YfzgHNlMN3xyXiv0Xh0L8xxVuK2j7M5wO3p27lvZJtH3jHhzszdmDn7ohlhWIUFLd98OO3+Gw9z/uT8nJ0TA1wmSo7y9nGtQw2rqIZXglhUbkeaAK4sPMsUd8iadqvBTXF476/rz+bp23g7mn5mfXpYVXYmm6Te8mkOTeshnND0f41b5++kQYaJMuCdA30aNwn/S0azm499UsDTb+j7T+38wyR3yJp1q8lNVvUBuCD73s2TluHlwrtb13Ymu6Te8ukuTR0xUXc/9889ZMJNBmaGsnlL+fqQDlX0VK2yLDIXA00AUTsPUVyeCTmvVpj3MQdgIRX7/gyazXR53JvBmLgqLnE3nqESev6GLpVRU1Li8QvIXzbdoTQdXtJDg3PtbLTIrH9rfq1wk1s+9/7vGfd1LXcUsH23790n6mdp9BhWEdcG1ZHQ0uDAL8AVk1cyZmd8gf5fE9IxLFGBbS0tAgPDee51zPO7T7Ho+uPFEgXAEj58d+ZiZRTqKX83595+d8gOTmZ4GDl9rDR1tbG3FzxfihZZcKECRw7dowXL17kqNycwNE6/WV7/+9U0LHJPNP/MYZqv3csXEvhQfK/Dyejc39/l38rvr4H8roKeco+x2l5XYU8ZZ9meF5XIU9p/sM0r6uQp5zTUD4Y8v/G/ZgPeV2FPKWSgfw+oL8Ts/US87oKecqYWI28rkKecfyD4pPa/18IrOmRY7Jsbvyaj1jZ5fd+i/sXERgYSN26dZXK6+zszPbt23O5RgICAgICAgICAgICAgICAtlBWDonkGdYWFiwdu3azDMCpqamuVsZAQEBAQEBAQEBAQEBAQGBbJPyH9rEO6cQAk3/EnR1dfHwyLkpdQICAgICAgICAgICAgICAgK/GvXMswj8DsydO/dfuT+TgICAgICAgICAgICAgMB/lZQfOff3X0GY0SQgICAgICAgICAgICAgICCQC/yOp84JM5oEBAQEBAQEBAQEBAQEBAQEBHIEYUaTgICAgICAgICAgICAgICAQC6QkpLXNfj1CIEmgX89P37Hninm64+4vK5CnhKuppHXVchTYn98z+sq5Cn5tI3yugp5xj7HaXldhTyl/dM/87oKeUoP21p5XYU8JcyydF5XIU/R+fH7uueW2sZ5XYU8JeZHYl5XIU9ZGG+Y11XIU6J/hOd1FQRyCWHpnICAgICAgICAgICAgICAgICAQBb5fT+ZCAgICAgICAgICAgICAgICOQiv+OMJiHQJCAgICAgICAgICAgICAgIJAL/I47wQhL5wQEBAQEBAQEBAQEBAQEBAQEcgRhRpNAjhEQEEDdunUZPnw4gwcPzuvqSDExM2bIuP54eNbC3MKMsJBvXD57nZXz1xPxLVIlWbp6OgwY2YuGLephZZOfyIgobl+9y7I5awn69EUuv4aGBt0HdKRFhyYULFKA2Jg4Ht59wsp563nt8yanVJTD1dOVtv3bUKxsUQDe+bxj/7qD3D57WyU55Z3L0WV4Z0pVKIWmtiYf/QI4vvU4Z/eek8lXv109xiwenam87q49+BLwVaU6ZIVqDarRakAripQR6f/e9z2H1x7izrk7Kskp61yOjsM7UtKxJFramgT4BXBy20nO7z2vMH/NpjVp1qsZRcsWQ11djXc+7zmz8wwX91/Itk7KUsOzOu0GtKV42WIAvPV5x761+7l59pZKchycy9NtRFfspW3/kaNbj3N6z5l07zEwNqBVr5a41q+GbREb9A30eef7joGN/siWTqrg1rAmXQZ2oGTZEgD4+bxhx5o9XD1zQyU5FZ0d6TOqB2Ur2KOlrcV7vw8c2HKYY7tPyeUt71SWJu0aUsHZgQKFbVBTUyPkSyh3rz9g36aDvH31PidUUwq7hpUpM7AxZmULARDu85EXa04ScOaB0jJs3Bwo3NIVyyol0bfNR0pyMrFB3/h84TG+m84S+ylUJn8+p+IUa1eL/M72GBa2BDU14r6EE3T9OS83nSXi1acc1VEZDhw7zYx5y1k5fwbuNVxUvv/B42es+WcXz31fkZiYRNHCdnRs3Yw2zTwV5n/15h0rN27n4ZPnxMXFU8DWipaNG9C9Qys0NX/9oQbm5mbMmD6GZk0bkD9/Pr5+DeX4iXPMmLmQsLBvWZKpoaHBuTN7KFeuNNa2Dkrf51bblVMndxIVFaPSfapSy7MGHQe2o0TZ4gC88XnL7jX7uH72pkpyHJ0d6DmyG6Ur2KOlrckHv48c2nKUk3tOZ3qvuro6c7fMwrWuC0smL+fQlqNZ0iUrVPd0pX3/thRLa/vX7eeWyuN+eboN7yJn+8/sPSuTr0G7+oxbPCZTeV1cu/MlQN4/ymlqi21/avu/YceavVxT0fZXcHagz6gelKlQGi1tTfz9PnBgyxGOK7D95ZzK0qSdJ44/2f571x+wb9Mh3v1C2+/q6Uqb/m0omsbvO5gFv6+cczk6p/H7AsR+37mf/D4JTm5OtO7XmlIVSqGlo8XXj195eP0h+1bv49vXrNkaVanYoCoN+jWnYJnCAAT4+nN2/TEen7uXJXllajoyasdUdk3bxOVt6fs8AHrG+tTp0YiK9apgWdgaHQNdPr38wKym47NUdlao4VmdDgPayfh9e9buy5Lf131EV0pXsEdTbPuObj3GqUz8vta9WlK9vqvU73vr+44Bjf4974H/Fn7HpXNqKSm/40Su/08OHTrExIkTmTNnDq1bt/7l5edWoKm8VbUs36tvoM/u05sobl+U29fu8fb1e4qXKkK1WlXx831Lp0Z9iItV7mQ3dXV1Nh1YSdUaTjx9+Jxnj15gW9CGWnVdCQ0Oo6Nnb74GBcvcM2fldJq1a4Sf71vu3XqIWT5T6jSsTWJiIt2aDeDVC78Myyygbaayzp4dGjBq4UjCQ8K5fV4UWHGtXw1TC1MWjVmSrrPwM5XdnPhry5/ExyVw++wt4uMSqOpRBSs7K3Yu3cW2RduleUs6lsS9uVu6sirVrEjxcsVVDjRpZ+HUufod6jNswXDCQ8K5e94LAOf6LphamLJszDIu7FMcJJKrc20npm+ZTkJcAnfO3SE+Np4qHlXIb5efPUt3s3PxTpn8/WcOoFmvZoQEhvD01lOSk5KpWKsilraWnNp2kjVT1qisi6qnzjXq2JAxC0fxLSSc2+dFzqVrfVfMLExZMHqR3ItCelRxq8zfW2cRHxfPzbO3iI+Nx6WOM1Z2VmxfuoMtC7fJ3VPWqQx/bp6JsakRT+485YPfBzS1tDDNZ8L0vjNV0kNC1I8ElfI379SYKYvGExbyjevnRC+XtRrUwNzCjL9GzeP4HvkXBUVUc6vK4u1ziY9L4NqZG8TFxlO9rgs2dtZsXLKV9Qs2y+RfuXcRlVwq8OSuN+/9PpBCCiXLFKeiiyPxcfH0bjoIP5+3KukynIIq5Qco3smNaov6ER8SQcC5RwDYNaiEroUJt0et5+2ea0rJaX5zEXpWJny57Uu0/1fUNNSxqFwC8/JFiA+N5FS9ScR9CZfmr7N3AvldShN89yWRfoFACqZlCpHfxZ6kuATONp1BuM9HlXTJyqlz3j4vOXziHB8/BXLn/mNSUlKyFGi66fWAwWOnoaujQ53a1dHT1eH67fsEfvnKwJ6dGNKvu0x+39dv6TZoNMnJyXjUrIaZqQn3Hj7lzfsPNGtYlzlTM38Z/xm9bJw6Z2howK2bJyhbphQXL17Hx/c1ZcuUok6dmjx/8ZLqNZoSExOrtLzBg3ri5OSIq2sV7EsVJyQkTOmAUalSxblx7Sjm5mYq3eeq4qlzTTo2YsKiMXwL+cbNcyLbV6OBK2YWZswZtYBTezN+WZTg7FaFedv+JiEunutnbxIfG0+1Oi5Y21mxZcl2Ni3ckuH9o/4eRqseLQCyFWjSUVftO3DDDp7p2v6FYxZxRslxv4pbZWZv+Yv4uHhunb1NfFw8zh5VxbZ/J1sXpdr+Uo4lcW/unq4sp5qVKFGuuMqBpuhk1ew+QLNOjZm8aBxhId+4cU70cl2zQXXMLcyYNWoeJ5QIEgK4uFVl0fa5JMTFc/XMDeJj43EV2/5NS7ayYcE/MvlX7F1ERRdHntz1xl9s+0uksf19mw5W2fabaeiplB+gQYcGjBT7fXfEfl81sd+3RAW/z8nNiT+3/ElCXAK3zt4iIS6BKmK/b9fSXWxP4/cBtOzTkgEzBhAVHsW9S/eIjY6leLnilKlchojQCEa2HEng+0CVdLHTUO3UuZrt69Bj/iAiQyJ4cuE+ABXqVcHYwoQtY1dzc/9lpeRYFrKift+mmNtaULZWBbR0tDINNBVzKsUf68dhYGrIK68XBPp9QlNLE6N8xqwesEAlPST4JYWrlL9xx4aMXTiabyHfuCVu++r1q2FmYcb80Qs5raTfV9WtCnPS+H1xYr/P2s6KbUt38M/CrXL3lHUqw6zNMzE2NebJnaf4+31AS0sTk3wmTMuC33c5QDn//L/Km/KKP1RlheLPlGvXvEYINP0f8fbtW7y8vHBxcaFYsWK/vPx/Y6BpwMheDJ0wgBVz17FuSaqDMGh0H/4Y149lf69hwzJ546mIZm0bMmfVDA7uPMb0UX9L05u3b8zfK6axf/sRZo6ZK013cqnAtmPruHHpNn90HUNycjIAVWs4senASu5cu0f/DsMzLFPVQJO+oT7bbm/he8J3Bnn+QURoBABmlmasOr0SbR0turp0Jz42PkM5ampqbLq6gXxW+RjSeCgf3wQAoKuvy5IjiylUoiC9avXh66fMg0b6hvpsubmZyLBI+tcdyI8fP5TWR9VAk56hHptv/0NCfALDGw6T6m9qacqy08vR0taid7VeSum/9so6zK3MGdlkBAFp9J9/eAEFSxSkf+1+BH8SBRYre1RhxtYZvLj/guldp0nla+loMW7VeKo1qMbkTpN5evOJSvqoEmjSN9Rn153tJMR/Z4DnIMJDwwFR2687sxotHS06OXdVSvct1zaTzyofgxr9wcc3H6W6rzi6lEIlCtGtZk+Zts9va8mGC+sJ+xrGtD4zpPdkF1UCTQaG+hy9u4+E+AS61u/DN7H++SzN2X5uI1raWjSv2j7TwLKamhr7r+/A0jof3Rv2x9/vAwB6+npsPLaKoiUL07p6Z5kZjK4eLrx44ktEWISMrAFje9NnZA92b9jPkukrldYFVA80aRrq0fLuUpLjv3Oq/mQSQkWzNXUtTWh8bjbq2pocqTqcpNjMf1O7hpUJuv6cpBjZZ8V12QCKtavF/Wnbebkx1cmx9XAk9MlbEsKiZfI7jm2Lw8iW+G44w4PpO1TSJyuBpiMnzzPl78UyaaoGmn78+EHTTv0IDgll7+YVFCssaofY2Di6DBzFu/cfObVvE7bWVtJ7+gybwL1H3mxaPoeqlRwBSExKYvCYady+94htaxbi5FhOJV2yE2iaPGkEM2eMZfqMBcz+e6k0feqUkUyfNoYpU+cyd94KpeVdPL8fN7fq0n8rGzCysDDn5vXjRMfEYpXfAk1NzVwJNOkb6nPAaxcJ8Qn0ajBAavvMLc3YfHYdWtpatHXuRJwStm/n9S1YWOWjb8NBfBDbMT19XdYcXUHhkoXoWKMbX9IZ9zoMaMeQaQO5e/U+zm5VflmgSd9Qn523t5GQ8J2BnoMITzPurz29Ci0dbTq7KGf7/7m6iXxW+RjceIiM7V9+ZAmFShSie61eSo/7229uISIskr51+6s07qsaaNI31OfI3b0kxCfQvX5fqe03tzRn27kNaGlr0bJqB6Vs/77r27GwzkfPhgNkbP+GYyspUrIwbat3+cn2O/PiyUs5299/bG96j+zOng0HWKqi7Vc10KRvqM8Wsd/3x09+38rTK9HS0aK7kn7fBrHfN7TxUBm/Z/GRxRQsUZA+afw+I1Mjdt7fSXBgMMObDSc6PNX+t+jdgoEzB3Jh/wUWjVqkkj6qBJp0DfWYe3M1ifHf+bPxWKLE456xpSlTT85HS1uL8dUHkZCJ7gClqpVl7B7Z4EhGgSZzWwumn1lERPA3VvefT9Cbz0rXOyNUCTTpG+qz584OEuK/089zoIzft+HMGrR0tOjg3EWptt927R/yWZkz4Ce/b+XRZRQuUYiuNXvI2L78tpZsurCBsK+hTMkhv08INCnPfyXQJOzR9H9EsWLF6NSpU54Emf6tNGntSWxMLP+slp19snnVDmJjYmnSWvlO31icd83CjTLpx/ad4qP/Jzyb15VZIiGRvW7JFmmQCeDezYfcu/WQarWrks/SXGWdMqKqRxWMTI04vu2E1NkA+Bb8jZPbT2JkakRVjyqZyilVoRQFihbg8tEr0iATQHxsPAfXHURTS5PaTZV7EWo/uB0m5iZsW7RdJWczK1T2qIKhiSGntp2S0T88OJzT209hZGpEZY/KmcopWaEktkVtuXb0qtTZApH+h9cfRlNLk5pp9K/dvDYAe5bukRnQExMS2TBjPQANOjbItn4Z4exRFSNTI45tOy51NkDU9se3n8DY1Bhnj6qZyrGvaI9d0QJcPnpZxnGIj41n39oDaGpp4t5MdvZav0l90dDUYHrfnAsyqYprHReMTY04uPWI9EUDIDQ4jIPbjmJiZkz1OpkHHMpWLE2hYnacO3JR+qIBEBcbx861e9HU0qRecw+Ze25f9pJ70QB4L74/bXvkFgXqOKJjasDrrRekQSaA+OAIXm27gI6ZIbZ1KiglK+DMA7kgE0DkG9GX6YTQKJn0z5efygWZACL9RI53fKhqS5SzSssm9Xl28zTPbp5mUO8uWZLxzOcVHwI+06ieuzTIBKCvr0fPTm1ISk7mzMXr0vSQ0DDuPnyKs5OjNMgEoKWpyYCenQA4df5K1hTKIh07tiQ6OoaFi2RnUS5YuIbo6Bg6dWqlkry69duhqV0ATe0CvH+vXP/W0dHh8MF/0NPTpUXLHsTHqz5LRVmq1XHGyNSIw9uOyfS1sOBvHNl2HGMzY1zqOGcqp0xFewoWtePikcvSIBNAXGw8u9ftQ1NLkzrN3BXeW8uzBoMm92PL0u1cOHIpuyqphMT2H992XBpkAontP4mxqZFytr9CqXRt/37xuO/etLZSdeowuD0m5iZsXbQt18f96mLbf2jrURnbHxYcxiGx7XdVov3LVixNwWJ2nD9yKV3bX/enGVy3L99VaPv9f6HtryL2+05k4PdVUcHvu3L0ipzfI/H7aqXxewoULYCWjhaPrj+SCTIBnN0jegm2KmRFblLevRIGJoZc2X5WGmQCiAwO5+qOcxiYGlLevaJSsl7deUG/Iu3oV6Qd/4xZlWn+NhO6oKGpzur+C3IsyKQqLuK+f/Qn2/ct+BvHxH6fi0fmz35psd936egVBX7ffoV+X/9J/dDQVGdq35l55vf910j5kXN//xWEQNN/iODgYKZMmULNmjUpX748np6ebN+eOo3Vy8sLe3t7jh7N+p4Ajx8/pkePHlSoUAFnZ2e6detG/fr1qV+/vky+Hz9+sGHDBurVq4eDgwOenp6sW7dOTt6KFSuwt7fn3r17jB07FhcXFypWrMjQoUMJDg6Wy5+T6BvoU6xUEV698ON7guzMkIT4BF75vKFE6WLo6Sv39cihUlm+BgUT9Fn+a573w+cYmxhRpETh1PxO5UhOTub5Ex+F+dXV1SlfsYyKWmWMfSV7AF4+fiV3zfexLwClK2X+pbh0RnIeKS/HzNKMVn1a4vfsDddOXM80f3axryiq92sF9X756JVMngzliPV/9URezqtHL2XyAJhZmgLwVcHygK8BX/ka8FUmf25QRtwevo9fyl3zEbdZGSXaTFU5hiaG1GxUg7uX7hIbE4dnu/r0GN2NdgPa4lSzkuqKZJHylcoC8PyxfH97/vAFAOWcMu9v5ZzEcsS6puXZI7GcShnLMTE3oV4zD4ZPG8yr56/Zt/lQpuVml3yVRHtShTyW3/st9KEoLZ9TcdUFq6mha2lC8c7ulPujGYFXvfE/lvFeZzrmhhRq5oLTtM6EPffn5eb/zlfKpy9Ez71D2VJy1xzLip577xepz4b3i1ekpKRQvox8/y5fphRqamo8fS7fl3ILQ0MDypQuibe3DwkJssGd+Ph4nj3zpVxZewwM9HO1Hv9sXoqDQxlatOxBQEDuvoSVFfdHHwV99sUjH5k8GVFGnOfF4wzkKLAh9o6lmLpyIpePX2XTgi1K1zunkIzXimy2auO+KM/LDGy/suN+6z6t8Hvmx9UTyi3XzQ4Se6zY9ovSJHY9Qznitn3+SIEccVq5ShnLMTE3oW4zd4ZOG8Sr536/xPZL/ZVs+n0ZylHQ/kEfg0hKTKKKexVMLUxl8lsXshbJUuBD5STFKpYE4N0T+W0o3j1+DUBRcZ6cRN/YgEqeLnhffkRCTBzV27rTfGR7GvRrRpkaubcP3c/kvN8nb/vS8/tqNaqB16V7xMbE4tmuAT1Hd6f9L/b7/mv8SFHLsb//CsJm4P8RwsLC6NChA9HR0bRp0wZLS0sePnzIrFmziI+Pp1+/ftku4+nTp3Tt2hUrKyt69eqFvr4+Dx484NOnTxQoUEAm7/Tp09m3bx/u7u506tSJ2NhYrly5kq7s7t274+bmxsCBA3n37h379+/ny5cv7N27FzW13OkwdoVtAfim4GsTQHBQCAAFCtng55vxGnoDQ31MzU3S3VPpq0RWwVRZBQpaExcbLxfkSpvftqCNEpooj5Wd6OtRpAKdQ7+EyeTJUE5BJeQUzJ+pnG4ju6Crr8uW+cotT8wu+e1EdYpUsMl72BfRBsb5C2auf37p76hITphMWWnTCpcuwqe38hsfR4VHYVvUNtNys0PGbSbS3bqgdaZyrMW6K/pKK5GT9hkqU6k02jraFCtTlO03tqCtoy1zz/2rD5g54C9io5XfEyYr2Ih1C1dQ72BxvW3sMtff1k4iJ1zuWoi036Yv5+7nqwAkJSWxack2tq3aReL3xEzLzS4GBS0AFM4sivsi2pDV0M5SNZl2FrS8uxSAxJh4Hs3aw+ttFzM8o7fLZ9ESuR9JyXgvOcyLVSf48T1JpXLzks+BomCxqYmJ3LX8FqIZqJ8CUz82fAoS5TczNZbLr6ujg7GRIZ+Dcn8jZAlFi4o2gQ8JDVN4/XNgEABFihTkeS4FwGbPmkCb1k1o064Pjx4/y5Uy0pJqs+TtdYik7yth+yR5FNm+kKBQmbIk5LfNz7wts3j9zI+/R85XreI5hFUG+kttvxLjvnXBzOVYKTF+dh/ZDT19XTbP35Jp3pwgw3b7IrLZyth+SR7F7R8iU5Yi7ny+AkBSUjKbl2xl+6rdv8T2W2UwZodlwe/LSE7+NH5feEg4OxbvoOf4nqy9sJYjm45w4cAF4mLiGDJ7CIH+gexftV91hVQgn3hMiw6LkrsWLh73LOwy91VVpWilkmjpaGFXujCzr4qWJ6bl+bUnrB28iPho5faAzSpWSjz71kr0WWVsqHWaPpTW79t5Y6uc33fv6gNmDPgz1/0+gX8/QqDpP8LSpUuJjIzkyJEj2NnZAdC7d28mT57M+vXr6dmzZ7bkp6Sk8Oeff2JpacmhQ4cwSeNkd+vWjaCgIOm/Hz9+zL59++jatStTp06Vprdq1Yq6desqlL9s2TIaNEhdOmRlZcXy5cu5ffs21atXV3hPdpF8sY1NZ9PT+DjR0hBDQ4PMZYnzZCbLwChVlr6hAd9CFZ+4IS3bKPOyVUHfQDQ7K07BspeEONHXbX2jzL9kS+UoWNctlWOYsRzbIrZ4dvTk2d3n3LuctZM/VEXPUKK//OCeEC+pd+Yz2CRy4jP6HdPof/nwZeq2q8fAvwairqHOg8v3SUpMwtLWkqp1nbEuZI2mVu6aW33x865I93gl2wzS/obp626Q5hmyLSIKoMVGxzFn2DxePHhBRFgkhUoUpN+kvlR1r8Kw2UOYOzx3X8IkuinWX75/ZipHwX4ekt/RIAObsWPtHoxNjChfuRx9R/XA0MiAZX+uzlyBbKJlqAugcMlbUpwo2K1lpNreH4lRsfisPYW2mSFW1ctQeXpnNHS18F2X/sa6L9aeRNvEAMvKJXEY1RptI30e/rlLpXLzkhhxu+vr6cpd09XVEeeJTZM/Nt38kntCFQQtcwsj8bMZHR2j8Hqs2KYbGxnlSvk9e3Rg/LihjBo9nRMnfs1Mtoz7bLxMngzlGGQwfkhtX9oxXp/522YTFxvPpN7TfklQQRFK2X6lxv30f0ep/pn8jgWK2NKooyfP7j7j7i8a9yVtG5uB/gbK6C+Rk6HtT1/OzrV7MTIxxKFyOfqIbf/yP1U/BERV9AyU8FeU0F8qRwW/b+/Kvaipq9FjbA96jOtBtzHdiI2KJexLGCObj1QYAMlJdMV1VrQH03dxnXWV8PlUJX9hUdAlPiaOjSOW8/bhK6K/RWJTwo42E7pQrnZFOv/Zl82jlN8LLysoY7P0lXjH0cvAf1L0DBUoIpp8EBcdx+xhc9P4fYUYIPb7hs8eypzh81TU6P+blP/QTKScQgg0/QdISUnhzJkzuLm5oampKRP0qVixIgcOHODtW9VOtfiZly9f4u3tzejRo2WCTIo4dUp0ctOgQYOUlu/o6Cjz7+bNm7N8+XLu37+frUBTwxb1FC4/W790i/T/kxIVf02XzKRKQfn98BMzk/XTl/5My86lvfiTkuTLlUwcU6XMZEX1l8rJ+N5e43uiqaXJP7/oq2ZakpOS5dLUkPzmystR9Dui4Hd8cuMJ62esp9fEXoxfJXuk7deAr2hoahATqfjFL6dJUqR7Fp63ZCV1l7x4Hd1ylGsnU5dHvnnxlul9Z7Lz9jY8mruzYuqqX/IbKOpzampKPrQycjL4HTOwGWlfLMbMGk6XgR0I8P/Mwa1HlC47O/xQUG+yaG++R8RKg0Rq6mrU2jSCytO7EOkXyOeLjxXe8+jP3dL/rzKrO2UGNibK/yuvt15Qqey8RktT3j2S/HyKXEVNBfklN+X0pN127ZpTtbL8flt/z10u/f/0xypJtXJ+7KldqxqrV81l9ZotLF+xMfMbcpgc6/sKbahETKqcv9ZPx9LagoHNhxKhYBbtr0aRzc4p26fI9iui9/heaGppsmn+Pxnmyw0yan9VnvcM5WRg+1eksf2jZw2j88AOfPL/zMGtWd/OQhWU9VcylZOB3/ez+m0HtqXT0E7MGzqPF/deULtZbeq3q0+hUoX4c9ufzOwzUzobKjdJzmDck6t0DqAnDrpc3naGh6dTl5J/fPGe1f0XMOf6Kqo2q87uGZuIi8z9WT2KbBZZsn2q+X2H5fy+N0ztO4Ndt7dTp7k7y6eu/GW+73+BlB9CoEngX0hYWBgRERGcOHGCEydOKMwTGZk9J+fdu3cAlChRQqm8pqamWFhYZLk8KyvRNM2QkJAsywCoWceVlh2byKXv2nxAenyzjvgr9M/oir9AK/oK9jMx4q/DqsiKjY7JkbJVQSLv52mskFr3eCXKlMjRUiBHUveM5JR0LEntprW4f+U+z7xyf+mEhLhoSb215K7p6Cmvv0SOwt9RIuenL2jHNx/j1qmbVKlTBQtrC2Jj4vjw0p+Xj16y4/FO3jyT3zsnJ5HMttNWoLuuuM6ZnboDGesuafu0s50kX/F1FMzoSIhPwPveM2o3rkWBIra8evo60/KzimSKtraOfJ+T6K9Mf0uVo0h/5eUAbF66jfa9W9O4bYNcDzQlRovaRENB+2vqiXRRNNtJWVJ+pPB8+TEKelamaNsa6Qaa0vJs6RHsezegWNua/5lAk4F4z76E7/JLnuMTxLNj0uzrZ6Cvn25+gLj4BPT1cvaLekNPD3p0by+XvmrNP0SJxyrddMYeSd2jY3Le+Xd3r05ycjKJ3xOZP3eqzDUzMxO0tLSYP3cqcfHxTJ+RtaO/FZFxn1V+rM1w/JTavlQ5zm5VeHz7Cc26yPogRUsVAaBWwxpYF7TmxtlbPL3rrYQmWSPV9qc/7iuaoZq+HEVjiLzt/5lSjiVxa1qbe1fu4/0Lx31J++tkYLMVzdRQRY6OCnIA/lm6nXa9W9OorWeuB5rilPD7lKl3RnJ0FTz/pSuVps/kPuxcspMrR64AcGDtAQ6uO0jLvi3pP60/45aPY0KHCaoppAISf05TwTOrLR73FM30yi5JYr9HW1f+t/oe/53X932p3Kga+Qtb4++dvYkAGZGRzVLN78vchqb1nRPF452kjLQkxCfwTOr3FeDV09zdp0vg340QaPoPIDmxo0GDBrRu3VphnhIlSvDqVdY7c2Ki+GVRwUvazyQnJ6OlJW/UVeG72Eil+xVYSaYM/4spw/9SeE0yxdnKRvH6bJsComDXpw+BmZYTEx1LxLcIrGwU73EikfX5Y6qszwFBlChdHB1dHemyLbmyP2ZetipIjp21tLHgo5/sKRD5C4h+hy8KNqyWkxOQKudnLAtYZiqnz8TeAPzzi/ZmkhAs1t/CxoIAvwCZa6n1zvxoZsnvmE+R/rai3/HrR3n9Q4NCObtL9shRJzcnNDQ0eJ7LjvcXaZtZ8uHnthfX+YuCOsvJER/dbKFAd8kzFBSQOqvyW7BoeailreK+kVt7sP2MpE75bS157+cvc81a3N8CPwbJ3fczgRI5Cvq6lQpyACLCxUctm+bOMqW0xASIgvb6tubS094kGBTIJ8rzMXuB/e/ik4W0TZRb8psQLgpmaJvm7BLh3MTGWtxXguV/q8AvogMsbK1T97ywleT/Kp8/JiaWqOgYypTKwibsGdCn70j69B2p8JqRkehocLsCivf/K1hQtORB2dPjVEVPT4/hw9PfM3LUqIGEh0fkaKBJYrMsbSxlTgsDsJLarMxtnyRPfgW2TyLn575f0bUCFV0Vn+ZYpVZlqtSqTHBgcK4Gmr5Kxz0Ftl8F/dOOIT+TX4lxv+/EPgBs/sWzmQIl7WZrKT3pU4IqNlsqR4H+qowhkGr7jUwNlcqfHb6m8Xtywu9TNPYr8vtqNqkJwP3L92XypqSkcHjDYTw7eFKhegX0DPSUDtCpSugnkU02s8lH0BvZ/THz2Yr0CA3I+YOHIoLDReXaKv7g/qv8Hkl7WNpY8OGnZ1/i9wUp5fel7/MrsiFhmfh9OT6N9/+EXFrE8q9GOHXuP4C5uTn6+vokJibi4eGh8M/MzCxbZVhaioxF2mV56ZE/f36+ffsmDRZlBckMqqJFi2ZZRmbERMfyzs+fchVKy0Xd9Q30sS9fknd+/unuu/Qzzx77YGWTn4JF7OSuOblUIDoqhndpXnC9H71AS0uTSs6Ocvkru1bkx48fvHgif8JDdpCcFuNQTf7Ui/Iu5QGUmlWSkRyHTORUdnOiUs2KXD95Az9vxZun5xaS01IkuqalnDjNTwn9M5JT3qUcAK+V0E1NTY2uY7uRnJzMxQMXM82fHSSnhThWk3/eHMXt+FKJL0u+4lP1KiiS4yKS8+pJ6m/4/IHoJLb0js8ual+EpMQkAhRskp6TPBfr71RN/qWvkjjN52nmmx9LTpxyUvDyKJXzRLlNlEuVE512E6iEk59dQh+LvppaVZM/YSa/OC306btslWFWTnSqpiSoldP5/w04lBWdvHTvkXxg4IF4Y+typVNPMSpfWnQ63f3HCvI/eUZKSopM/twmKiqal6/eULmyI3o/zTI0NDSgYoVyvHz1Jt09nLLDn38tRlO7gMK/9+8/EhIShqZ2ASzyZ34CmCq8EJ+KVNFV3mZVcBGl+SrRZ33Efb+iAhsisYdpbWitAnUV/kk2BV8yeTm1CtRl/8bcPXlMcuJUBQXjtaN0vFbC9ovlOCqU45ChnCpulXGqWYlrJ68rNTbmJC/Ep81VqlZR7lolcbspZ/vFclwzkKO07RetDlAmwJddlPH7XmfT71MkR0tb9MFZUWAKQENTAwB1jdx71XwvPm3O3kXeppR0FqX5e+f8bPK3D0X9wMFd8QlrBUoVJCkxiS/vcvZj8s+k9n0Ftk8Fv09yspxCOeK+/zLNCYIvxH6fi4ezQnmpfl+Awuu/Kyk/1HLs77+CEGj6D6ChoUGdOnW4evUqt2/flrvu4+OjeF2tCjg4OKCrq8uJEydk1uGGhYXx9avsDBBnZ2eSkpLklvE9ffpUqbJSUlLYvHkzGhoa6W4enlOcPnwebR1tuvSVXWbQtV97NDU1OX1YfrPSYzf2cOzGHulx6RJOifP2GtxZJr1JG08s8ufjwskrMmvbJbK79++IunpqV3NyqUBZx9I8uP2Y4C85+wJ299I9YiJjqN+uPsZmqacgmZibUKeVBzGRMdy9lLpBZ/Mezdh4eT1jl4yWkeP76CWB/oFU93TFtkjql3EdXR0ad25EclIy19Osy05Lr/G9SE5KZuvCbTmqmzLcv3yfmMgY6rarJ6O/sbkx7i3diYmMkfn61qRHU9ZcWsPIJaNk5Lx69JKgD0FU86yGTWFZ/T07NyQ5KZmbJ25kWBctHS0GzhpESceSnPjnOJ/f5e4R33cv3SU6MgbP9vJtX7dVHaIjY7h76a40vUXP5vxzZRPjl46VkePzyJfP/oHU8Kwu3egbRLo36dKY5KRkrp5MPbI60D+QB9cfUqJccToOlu1nzbo1xa6YHVdOXMv100duXrxDdGQ0Tdo3xMQ8dZ85U3MTPFvVIzoympsXU/dSaNerFfuubWPGskkycp49fMEn/8+4NayJXZHU0zZ19HRo1bUpSUlJXDxxRZpepERhBo3vKzdrycTMmDF/DQPgzMHc3xT588XHfI+MpVj72uiYp35F1zE3okir6nyPjJVZ7laqV32aXpuP67IBMnKsapSl9IBGaPwcnC+Qj4oTOwDw/uBNabpxCVsqjG8nN2tJ28yQKn91A+Bdmvz/FnYdOEazTv2Y+NdCmXTHsvbY2Vpz6fptPgSk9tm4+Hj2Hz2NhoY6nnVqSdPzW+ajSiUHnjzz5eHT59L05ORkdh08DkCjeu65q8xP7N17BB0dHYYO6SOTPnRIHzQ1Ndm794jcPc+8r/LM+ypVq1T8NZXMQe5cukt0ZDSN2ntiksb2mZqbUL9VXaIjo7mTxva17tmCHVf/YfIy2f30Xjz04bP/Z2o2rEGBn2xf8y5NSEpK5vKJq7mvkIrcvXSXmMgYGigY9+u2qiMe99PY/h7N2Xx5I+OXyNp+30e+BKZj+xt3lth+xeN+H/G4v2Xhr53FDHDrole6tr+B2PbfuuglTW/bqxV7rm1j2rKJMnKeP/Thk/9naiuw/S26NiMpKZlLadq/SIlCDBzfR872G5sZM+oX2v57Gfh9HmK/714av69Zj2asv7ye0T/5fS/Ffp+rpys2P/l9jRT4fY9uPAKg25humFqYyshyb+mOXXE7nt97nqt79HhffkRsZCzV27pjaJbaDobmxri0rEVsZCzelx9J0z26N+TPi0vpvWhItsoN/vCFFzeeUrBsERoObCFzza1rA6yK2fLg5O1cP3XO65IX0ZExNGzfQEHfr0t0ZAxel1Kf/ZY9W7D1yiYmLh0nI0fi99X0rCHX95t2aUJyUjJX0vh9n2X8vg4yspp3a0rBYnZcOXFVOHVOQFg6919hzJgxeHl50adPHxo1akTZsmVJSEjAy8sLLy8vnjx5ki35hoaG9OjRg3Xr1tG3b19q1KjBly9fOHz4MJGRkRQsWFCat0mTJqxbt47p06fz4sULChQowJ07d7h27Vq68gcPHkydOnXQ1dXl+vXr3Llzh0GDBmFrm7tHvm9bt5tGreozcsofVK3uhP/bjxQtUZjq7i688/Nn27rdcvcUK1kEQO5r8IkDZ2jduRnte7SmROni+Dx7hbVtftzq1yA0OIyV89fL5L936yGnj5ynUcv67Du/hYdeTzDLZ4qHZy0SEr4zf/qyHNc3NiqWTXM2M2zOUNaeX43XhbuoqYFzXRfyWZmzfOIKYqNSDb+xuTEFSxSUToOVkJKSwuppa5ixeTrLjy/j9vk7JMQlUMWtMjaFbdi7ah+f38t/qfFo6U5JhxKc239ebgr3ryA2KpYtc7fwx99/sPzcCu5dvIeamhpV61bFPL85qyatktPfrkRBvomnQUtISUlh3bS1TNk0lcUnluB1TqS/k3tlrAtZc2D1fgL9ZfWv07YOrp6uBH8OxsjUmAo1K2BmacbF/RfYPHtzruseExXLhr83MnLucDacX8edi16oqUG1ui7ks8rHkgnLiEmju4m5CYVKFCQsWHajzpSUFFZOXcVf/8xk9YkV3Dp3m/i4BKq6V8G2sA27V+3h83vZoNmSCctYeWwZ/Sb1pYZndfyev6FQiYJUrF4R/9cfWDV11S/QP4aVs9cxYd5odl3YzI0Lt1FTU6NmPVcsrPIxd/wiYqJSHV5TcxOKlChM6Fd5/RdOWcbCLX+z5dQ6rp29QXxcAq4ezhQobMvWlTsJeJ86O0tLR4tew7vRqX97Hns94cO7AEzNTXCpXRUTM2MuHr/CqQOyyylzg8SoOB7P3oPzvN40vjCHTxceoaamRoF6ldCzMuXu+M0kRqU6vTrmRpiUsCX+q+ypQFpGelSe3gWHka34eseXmIAQ9KzNsHV3QFNflxdrT/LVK/WrvoaOJuWHt6B0/0Z89fIl6l0QOuZG2NR2QMfMEP/jXrw7kHFQNqfwe+vP9TuiF6rH3qIvrhev3eKdv8gWtWvRCEMDUUDsW0Qk7z4EkC+f7GxgdXV1Jo4cxNDxM+nYdzgeNauhq6vDTa8HBHwOok/XdhSykx23xg3tT4/BY+g/YjIetaphamzM/SfevH7znoZ1a+PsJP+VODdZumwDHTq05O/Zk3Cr7cqr128pbV+C+vXdePnqDUuXbZC7p7S9aAZG2v2nJLRr15yCdqIXT2NjQ3R0dBg1UhSg/BgQyP79x3JRm8yJiYph7d8bGDN3JFsubODWhTuoqalRvV418lnlY+GEJTJ938TchMIlChGmoO8vnbqSOf/8xYaTq7lx7hbxcfG4uFfFtrAtO1bu5tP73P1gkBViomLZMGcTI+YMY/35tXhd8EJNTQ2Xus7ks8rH0onLf7L9xhQqUZBvimz/tNX8uXkGq44v59b52yTEJVDVrQo2hW3Ys2qvnO0HqNPSg5IOJTm7/5zc0r1fQUxUDKtmr2f8vFHsuLCJm2LbX0Ns++eNX6zA9itu/0VTlrNgy2w2n1rL9bM3iY+Lp5rY9m9buesn269Nz+Hd6Ci2/R/ffcLU3ATn2lWktv/0gXO5rn9sVCyb52xm6JyhrD6/mrsX7oIauNR1wdzKnBXp+H3fFPh9a6atYfrm6Sw7vow7Yr+vstjv27dqH4Fp/L475+5w7fg1ajerzaZrm7h35R5R36IoUroI5Z3L8y34G8vG5byfm5a4qFgOzdtB19n9mX5mIU8vPgQ1cKxbGdP8ZuyYvJ64NLobmhthU7wAkT/5fCBafle1qehwosKOouXOZWo4SPf8vHfiFt8CQ6X5d0xaz8TDf9NmQlcqNnDm44v3WBe3pbRreQL9Atg949f4fev/3sioucPZdH49dy7eATU1XMV+32I5v8+YQiUKKfT5V0xdyax//mTtiZXcPHebhLh4qrpXxbawDbsU+H2LJyxl1bHlDJjUl5pp/L5KYr9vxS/w+/5r/BBOnRP4t2JjY8OhQ4dYs2YNV69e5ezZs5iZmVGqVClmz56Ntrb8Bm6qMmLECDQ1Ndm3bx9eXl4UKlSI0aNHc/z4ccLDw6X5dHR02Lx5M3/99Rf79+9HS0uLGjVqsHnzZnr27KlQtqOjI0ePHiUoKAgbGxumTp1K165ds13nzIiOiqF78wEMHd8ftwY1calZhdCQb+zdcoiV89cTHaX8l5bk5GQGdhrJwFG98WxRF4dKZYmMiOLM0YusmLuWoE/yU6Qn/jGDl89f07x9Y9p2bUFcbBy3rt5l1fwNvHyeOxsjn9xxioiwSNr0b41HS3cA3vm8Y/XU1dw4rfzMgruX7jGx0yQ6DetEjYY10NTS4KNfAMsmLOfUTvnjzTU0Neg+pjuJ3xPZsXhHTqmjMmd2nCYyLJJW/Vrh1sINgPc+71k3dS23Tt9SWs79S/eZ2nkKHYZ1xLVhdTS0NAjwC2DVxJWc2XlGLv/3hEQca1RAS0uL8NBwnns949zuczy6/kiB9NzhxI6TRH6LpF3/NtRt6QHAW5+3rJi6iuunlH/Z97p0l3GdJtBlWGdqNqqBppYmH/w+smT8Mk7sPCmXP9A/kIEN/6D7qK44ezhT0qEkoV9C2bd2PzuW7ZRxdHKTQ9uPER4WQZcBHfBsJZot6efzlgWTl3L5VPqB8J+5efEOQzqMpvfwbrg3ro2mpib+bz4wZ9xCDu84LpP3gzi9eh0X7B1KUbl6JRITE3nj+47je05zZOfxdErJeV5vv0R8WBRlBjSmSCuRwxzu84F7k7fy8ZRyR41/ve3Dg+k7sHF3JF+FYth6OJIU952QR295teU8H0/Kyol8E4jXuM3Y1nHE3KEIVtXL8iMxiQjfAB7vuYrfzss5rmd6PPN5xaJVm2TSDp9IfdFr4FFLGmjKCLfqzmxc+jfrtu7mwtWbJCUlU7SwHdPGDqVdi0Zy+cval2D7mkWs3Lidm14PiIuPx87WhhEDe9Gjk+J9FXOTyMgo3NxbMnPGOJo2qYeHRw2+fg1l7bptzJi5gMjIKJXkDezfDTc32dNh58+bBsDVq7fyPNAEcHT7CSLCIukwoB31xH3/jc9blkxZwdVTimfhKOL2RS9GdhxHj+FdqN2oprTvLxi/hGM7FB/G8m/gxI6TRIRF0K5/G+pIbf87Vk5dzfXTqtr+iXQZ1omaDUW2/6PfR5ZMWMbJnafk8mtoatBTPO5vy8Nx/7DY9nce0J4GreoB4OfzhkWTl6lk+29dvMPQDqPpNbwb7o1roSFu/7njFnFEge2fO24RrnVcsHcoKbb9Sbz1fcfqPac4uvPXPS+ndpwiMiyS1v1b4/6T33dTBb/v3qV7TErj90n8nuUTlnNagd8394+5PLr+iPrt61PVoypa2lqEBIZwZNMR9q7cS3hIeA5pmD5Xd54nKiyKBv2a4dxCtG9UgK8/u6dt4uEZr0zuTsWysBXtJneXSavk6UwlT9HysPfeb2QCTcEfvvBX03E0G94OB49KFC5fjPCvYZxdf4yTKw7KBLhyk+M7ThDxLYL2/dtSt2UdQGT7lk9dyTUV/L47l+4yptN4ug3rQq00ft/i8Us5rsDv++wfSP+Gg+kxqhsuHs6UEvt9e9fuZ/uyHb/M7/svkfIbBprUUnLrfHWBPCU5OZngYOU2wNPW1sbc3Dzd682aNcPS0pLNm1WPzq9YsYKVK1dy9epVrK2tVb4foLxVtSzd9/9AAe3s7b31X0dbTSOvq5CnxP7I+j5o/w9E/UjIPNP/KcMpmHmm/2PaP/0zr6uQp+jZ1so80/8xrpbye439Tuio/77fgaOTf1+7D2CmkbOnVP7XsNPI/Q3U/834JYXndRXyjMsBub/UNC/xLtosx2Q5vPt1HzGzw+87kv2fExgYqPT+R87Ozmzfvp3k5GQ0NGRf7F++fImfnx+NGzfOjWoKCAgICAgICAgICAgICPzf8jtO7RECTf+nWFhYsHbtWqXympqaArB//34OHTpEhQoVsLOzIywsjF27dmFhYUHHjh1zsbYCAgICAgICAgICAgICAv9/CHs0CfzfoKuri4eHh0r3FC5cmKSkJA4dOkR8fDxmZmZ4eHgwfPhwzMx+7yVcAgICAgICAgICAgICAgICmSMEmgSkuLq6cujQoRyVOXToUIYOHZqjMgUEBAQEBAQEBAQEBAQE/gv8jpuBC4EmAQEBAQEBAQEBAQEBAQEBgVzgd9yjST2vKyAgICAgICAgICAgICAgICAg8P+BMKNJQEBAQEBAQEBAQEBAQEBAIBcQNgMXEPgXoq72+3VMCQ8j3+Z1FfIUYy2DvK5CnvIpOiSvq5Cn2Brmy+sq5Bn79MPzugp5Sg/bWnldhTwl7vP1vK5CnlLdsWdeVyFPuR/il9dVyDPy65vkdRXylICUH3ldhTwlRs8qr6uQp7yN+5LXVRDIJX7HPZqEpXMCAgICAgICAgICAgICAgICAjmCMKNJQEBAQEBAQEBAQEBAQEBAIBcQls4JCAgICAgICAgICAgICAgICOQIv+Ghc8LSOQEBAQEBAQEBAQEBAQEBAQGBnEEINAnkGocOHcLe3p779+/ndVUEBAQEBAQEBAQEBAQEBH45P1LUcuxPGaKjo5k1axa1atWifPnyNGzYkK1bt5KSovrcqh8/ftCvXz+V3+uFQJNAtoiOjmbFihV4eXnldVVk8GhYmy1H13Lb7wK3/S6w9dg6PBrWVlmOk0sF1u1dxo2X5/B6e5m957bQqlOzdPOXLF2cJZvncvX5ae6+u8Lha7voObgLGhoa2VEnW5iZmTJv4TQeP79CwFdvHj+/wryF0zAzM1VZlp6eLpOnjeTu4/MEfPXm+asbrFo3nwJ2NgrzG5sYMXXmGLweniXgqzfPXl7n8PFtNG5aL5taKYepmQkz5k3gxpNTvPh0hxtPTjFj3gRMzVQ/1UZXT5fRk4dw6d5RXny6w53n51i4+i9sCljL5dU30KNn/078s3cld56fw+ezF14vzrP3xCY69Wzzy54Hc3NTli79Cz+/O0REvMbP7w5Ll/6FublplmVqaGhw7txeAgIep5vH0jIfEyYMleaLinqDv/8Ddu1ai6Nj2SyXrSqmZibMnDeBG09O4/PJixtPTjMzG+0/ZvIQLt87hs8nL7yen2fR6r+wVdD+inCpURmfT17cf3lJ5bJVwaVBNeYcnMeeF/vY82Ifcw/Nx6VBtSzLq1CrIkc/nKBxj6YZ5itsX5iJ6yez/fFO9r06yMqLq2k1oDXqGnnnZpibm7F82WzevblHTNRb3r25x/JlszE3N8uyTA0NDS6e30/QZ2+V7nOr7UpM1FuV78sqB46dpnyNRly5mbWx+cHjZ/QdPglXz7ZUqdOSdr2GcPD42XTzv3rzjmET/6Rm4w5U9mhB8y792bzzAElJyVlVQWXcGtZkw5GVXHl1hiuvzrDx6CrcGtZUWU5FZ0dW7lnEJZ+TXH9zju1nN9K8UxOFeavXqcb0pZM4cH0H19+c5/qb8+y68A/dBndCQzPvxn1zc1OWLPmL169vEx7+itevb7NkSfZt/9mze/j48ZHS92zevJS4OH8MDPSzXG5WMDUz4a/5k7j99ByvPt/n9tNz/DV/UpZt/9gpw7h2/ySvPt/n3otLLFkzW2nbX61GFV59vs+jV1dVLjsrmJqZMGv+ZO56X+BN4EPuel9g1vzJWdZ9/JTh3HhwmjeBD3noc4Vla+ZkqntNt2qs3DAfr6fn8fv8AF9/L5q1aphVlTKlpmcNVh5eypmXxznz8jirjiyjpmcNleU4OjuwaPd8Tr44yjm/k2w8s5YmHRspzNtrVHeufbqY7t+a4yuyq1aW+B3b/79CSopajv0pw9ChQ9mzZw+enp6MHTuWkiVL8vfff7N27VqV675gwQKuXbum8n1qKVkJawkIiAkKCsLNzY0hQ4YwdOhQmWuHDh1i4sSJ7Ny5kypVqmS5DEdrV5Xyt+rUjJlLJhEWEsaVszcAcPesibmFOdNGzubI7hNKyanu7sLKHQuJj0vg8plrxMXGUbOuK7Z2NqxdvJnV8zfI5C9VtgTbjq9DQ0ODK+du8C00nCrVK1HCvhjH959m8tA/VdIDIDAuTOV70mJgaMDZi/uwL12Cq1du8frlG0qVLkFtN1d8fV7TsG57YmJilZKlrq7OoWNbqFHLhQf3n/D4oTd2BW2p18CN4K+h1PdoQ1DgV2l+c3MzTl/YQ7HiRfC6/YDnz3wxNjGmfgM3TEyNWbd6K1Mm/p1hmcZaBtnQXZ+DZ7dR0r4YN6968ebVO0rYF6N6bWde+b6hjWd3YmPilNZ9++G1VKtRhccPvHn66AUFCtrgXq8GIcFhtKrXlS9BwdL8lV0qsu/kZj76f+LhvSeEhYRjls+U2nVcMc9nxtEDpxg1cEqm5X6KDsmy/oaGBly/fowyZUpy6dINfH1fU6ZMKTw8avDixStq1WqudNsDDBzYAycnB6pVq0ypUsUJCQnDzq6iwrydOrXin3+WERDwmZs37xIa+g17+xLUrVuL+Ph4Gjfuwq1b9zIt09Ywn9L1+xkDQ30Ond0ubX+/V+8oaV+U6rVdeOX7htae3VRq/x2H16Vp/+fi9q9JSHAYLet1kWn/nylaojAHT2/F1MyEsNBvVLGvk2mZDvoFlNZVQr0O9Rm6YDjhIeHcOy8KMFSt74KphSnLxyzj4r7zSsmxLmxNi74tsSiQn0q1KqGlo8W6qWs5tVWx7SxSpihzD81HQ0ODuxe8iAyNoLyrA4VKFebywUssHblYZV1OBin/MqsIQ0MDbt08Qdkypbh48To+vq8pW6YUderU5PmLl1Sv0VSl53/woJ44OTni6loFe/Hzb23roNS9pUoV58a1o5ibmyl9X9zn60rXTYK3z0sOnzjHx0+B3Ln/mJSUFFbOn4F7DReV5Nz0esDgsdPQ1dGhTu3q6OnqcP32fQK/fGVgz04M6dddJr/v67d0GzSa5ORkPGpWw8zUhHsPn/Lm/QeaNazLnKljVNalumNPlfI379SEqYvGExbyjWvnbgJQu0ENzC3M+HPUXI7vOaWUnGpuVVmyfR7xcQlcPXOduNh4atStho2dNRuXbGHdgs0y+Q/d3IWNnTVP7z/jzct36Onp4uJWFUtrC66fv8WoHhNU0kPCs2/+WboPRM/+tWtHpbb/5Us/SpcuKbX9tWu3UNn2V6pUXsb2FyxYKd387ds3x929BpUqOVCxYjkALCzKKF1mfn3VX4jTYmCoz9FzOylpX5wbV+/g9+otJe2LU6O2C698/WjRoItKtn/X4Q241qzKowfePH30jAJ2tnjUr0lIcCjN6nXmSxq/52eKlSjC4TPbpba/Uim3TMtMTvmhtK4/Y2Coz/HzuyllX5zrV25Lda/pVo2Xvn40q99JJd33Htkk1v0pTx4+o0BBW+rUr0Xw11Ca1uso4/OBKBg5f9kMOnRuxedPQdy+cY+I8EgsrfJx4ug5Th49l2m5xfSsVNK5ScdGjF80hm8h37h57jYANRq4YmZhxtxRCzi194xScqq6VWHetr9JiIvn+tmbxMfGU62OC9Z2VmxZsp3NC7fI5O81qju9Rvfg2qnrfP4QKCcvKOALh/45opIuAG/jvqh8j4T/evsHhD3Lsu7/BW5at80xWTWCDmRc1s2b9O7dm1mzZtGuXTtp+ujRo7l06RLXr1/H0NBQqbIOHz7M5MmTadSoESdOnFDpvV7YDFzg/woDQ31GTx/C16Bg2tfrQVjINwDyzTVn34WtjJ42lLNHLxIXm7GhVVNTY+Lfo0n8nkjnRn147ydy+vT09dh+Yj19hnbn8K7jBAYESe8ZO3M4Oro69G07lAe3RS9JmpoarNyxiGbtGrF/2xEe33uaS5orZsCgHtiXLsGcWctYvGC1NH3M+D8YP2kY/QZ2Y+midUrJatOuGTVqubBj235GDk0NknTo1JKVa+cxdsIQRg+fJk0fNqofxYoXYdK4WWxYt12aLglADRjcgw3rtuH/PiAHNJWn14DOlLQvxpI5q1m5aKM0fejY/owYP5Ae/TqxZunmDCSk0rxNI6rVqMLeHYeZNOIvaXrrDk1ZsOpPho0bwORRs6Tpnz8G0rlFP7xuPpCRk8/CjLO3DtKibWNmjJ9HZERUNrVMn6FD+1CmTElmzlzInDnLpemTJ49g6tRR/PFHL+bPX6W0vNatG1O7tnJBX3//AFq27MmZM7Kzdzp2bMmWLcuZPXsiHh6tlS47K/Qa0IWS9sVYPGc1KxelBoWHje3PiPGD6NmvE6uz0P4TR6QGjFt3aMZCBe2fFvN8ZmzevYLAT19I/J6Ya7Mc9Az16DWlD2FfQhnRcBgRoREAmC7czpLTy+k1pTc3T1wnPjY+U1kWNpaZzmBKS+9pfdHW1WZqx8k89xI5ihqaGkzdMh2PNnU4s/M0vvd9sqZYFhk+rB9ly5Ri+owFzP57qTR96pSRTJ82hqFD+jB3nvJfnNu0boKbW3WV62FhYc7xo9v4GBDI9++JaGrmntv15u0H9h1RLqCSHj9+/GD24tVoa2mxe+MyihUuCEBsbBxdBo5i4/Z9tG7mia116svgghXrSUj4zqblc6hayRGAxKQkBo+ZxvEzF2nXohFOjuWyVa+MMDDUZ/jUwQQHhdClfm++hYYDsNbSnB3nNjF86mAuHLus1Lg/dvZIEr8n0rPJAPz9PgCicX/TsdX0HNKVo7tOEvQp9UVw/5bDnD18QeprgGgWwKZjq6hVvzrOtatw99qv3T5gyBCJ7V/E3Lmptn/SpOFMnTqKwYN7sWCB8ra/VatGStt+gHr1atOtW7vMM+YSfQZ0paR9cRb9vZLli9ZL04ePHcioCYPp1b8Lq5ZszEBCKi3aNsa1ZlX2bD/E+BEzpOltOjZn8apZjBg7kImjFH9ENM9nxpY9q/j8KUjc93N/hlvfgd0oZV+cBX+vYNnCVN9u5LhBjJ7wB737d2Xlkg0ZSEilVdsmuNasyu7tBxk7fLo0vW3H5ixd/Tcjxw1i/MiZMvdM/WsMHTq3YsHfK1ixeAM/fmQ9aKYM+ob6DJ46gJCgEHo3GEC4uO+bzzdj09l1DJ46gMvHrxCXybinpqbGyNlDSfz+nQFN/uDDm48A6OnrsvroCroO6cTJ3af48kk+qHhy7xluX7iT06plid+t/f9r/Mpf4/Lly2hra9OiRQuZ9Pbt23PixAlu375N/fr1M5Xz6NEjpk2bxrhx4zA2NubECeUma0j4LZfOrVixAnt7e+7du8fYsWNxcXGhYsWKDB06lODg1K/SKSkp7NixgyZNmuDg4ECNGjWYOnUqYWGys0wmTJhA2bJl8fHxYdCgQTg5OVG5cmUmTZpETExMluuZkJDA0qVLcXd3x8HBgXr16jFw4EDs7e05evSoXPkfP35k/PjxODs74+DgwOvXrwEIDg5m0qRJVK9eHQcHB5o2bcru3btlyhoxYgSVK1eWMQpXrlzB3t6eq1dTp/smJSVRoUIF/vzzTwICAnBzE32dWblyJfb29tjb29OtWzcZ2ZGRkcybNw93d3cqVapEt27dePPmTZZ/l4yoWdcVY1Nj9m45JOP4hQaHsW/rYUzMjKlZN3OHqXzFMhQuVpDTh89Lg0wAcbFxbF2zCy0tTTyb15Wm57M0p2oNJ+7dfCgNMgEkJSWzYekWABq3bpADGqpGm3ZNiYmOYdVyWadq5bKNxETH0KZd+ssAFckCWDB3pUz63t1HeP/+Iy1aNpJ5iSpTphQARw+flskfFvaN06cuAlCwkJ3yyqhIszaNiImOZf3KbTLp61dsJSY6luZtFU+HVkTzNqIpvyvmr5dJP7T3BB/eB9C4RX0Z3QM/f5ELMgGEhnwjIjySuNg4pb8qZZUOHVoQHR3D4sWygcRFi9YQHR1Dx46tVJLXoEEHdHULoatbCH//jxnmvXXrnlyQCWDPniOEh0dQsWJ5lcrOCs3bNBS3/1aZ9HXS9m+sgizRs7J8vuxveWjvcT68D6BJiwYKAwjaOtqs274EXT1d+nYeRkLC9yxoohyVPapgaGLIqW2npEEmgPDgcM5sP4WRqRFOHpWVkvXsjjctCjWlRaGmLBu1JMO8ppamOLg68Oy2tzTIBJCclMy+5XsBcGuR+Vf8nKZjx5ZER8ewcNEamfQFC0XPf6dOqj3/deu3Q1O7AJraBXj/PuPnX4KOjg6HD/6Dnp4uLVr2ID4+QaUyVaVlk/o8u3maZzdPM6h3lyzJeObzig8Bn2lUz10aZALQ19ejZ6c2JCUnc+Zi6myrkNAw7j58irOTozTIBKClqcmAnp0AOHX+StYUUpLqdaphbGrEga1HpEEmEI37B7cdwcTMmOp1Mp/VVbZiaQoVs+PskYvSIBOIxv0da/egqaVJveYeMvfs3rBfxtcAiI+L58Q+0SyK0g6lsqFZ1pDY/iVLZO3V4sVrxba/pUryPD07oqdXGD29wpnafoD+/cdI81+7dlulsnKCFm0bExMdy7qVW2TS1674h5joWFqqYPtbthHlXTpf1o4c3HNMZPtbKrb9OjrabNyxDF09HXp3GkJCQu72fWl92zYhJjqWtSv+kUlfs3wzMdGxtGqneAmoYlki3Rf/pPuBPcfwf/+Rpi09ZXQvaV+MXv06s2fnYZYtXPdLggzV6jhjZGrEkW3HpEEmgLDgbxzZdhxjM2Nc6jhnKqd0RXvsitpx8chlaZAJIC42nj3r9qGppYlHM/dc0CBn+d3a/79GCmo59pcZL1++xM7ODm1tbZn0kiVLAvDq1atMZQQGBjJkyBCaNm1Kz549s6TzbxloktC9e3eioqIYOHAgzZs358KFC/zxxx/STbLmzp3LX3/9hbW1NcOGDcPT05MjR47QuXNnoqOjZWQlJyfTrl079PX1GTp0KG5ubhw8eJBJkyZluX6jRo1izZo1ODk5MXLkSOrUqYOvr6/CvMnJyTRv3pzo6GgGDx7MH3/8gbGxMZGRkXTq1ImTJ0/SqFEjhg0bhqWlJTNmzGDJktQXiKpVqxIdHY2fn5807fLlywBcvHhRmvb69Wvi4+OpUqUKpqamjB49GgB3d3dmzJjBjBkz5B7GESNGcPfuXbp06UKnTp148uQJgwcPJjk55/ducKgk+mr67NELuWveD58D4OiU+ZdVB3Ee7wzkODil7jXjUKks6urqCst99tiHHz9+yOT/FRgYGlDKvjjPn7+Ue8GNj0/gxYtXlC5TUum9EypVdiAo8CufPwXJXXt4/wkmpsaUKFlUmvb2zXsAOnSWf6ErXNiO+PgEfJ6/VEEj5TEw1KdEqaK8fPGa7z/pnhCfwEsfP0qVLo6+gZ5S8hydyvElKJjAz/JTmp88fIaxiRHFShRO935tHW1KlS7O3GXTsStky8yJ80lKSlJNKRUwNDSgdOmSeHv7yDm48fEJPHvmS9mypX75vhkA2trafPsWkXnGbCBq/2L45lD7V8hi+y9c9Sely5akb+dhCu/NSUpVtAfg9WN55+HVo1cyeXK23FKoq6vzSkG5fk9e8+PHD0pVyvlyM8LQ0IAy6T7/8Tx75ku5sva5/vz/s3kpDg5laNGyBwEBn3O1rJzi6QuRTXYoKx8gcSxbGgDvF6l+iPeLV6SkpFC+jHwbly9TCjU1NZ7mkp2XUK5SGQCeP5afNffsoWhMLq/E+CvJ8+KRvJzn4rG9fCXlxnFtHZFzHxWee7NWFSGy/SV49sxXoe1//vxlntn+X0Gq7X8l5/eIbP9rSpUuoYLtL8+XoK8K7fejB96YmBhTrEQRuWuLVs2idNlS9O40NNdtvwQDQ31KliqGjwLd4+MT8PV5hb0Kuld0Evl8gQp8PonuxUsWkaZ16NwKDQ0NNq7eRi13V/oN7s7oCX/QsWtrLCyzvgw+I8qI+77PI/l3I0k/LivOkxGSPD6PM5DjlLmcvOR3bH+B9AkNDcXIyEgu3dTUVHo9I+Li4vjjjz8oWLAgM2fOzDBvRvzWS+eWLVtGgwaps0ysrKxYvnw5t2/fxsrKiq1bt9KqVSvmzp0rzePu7k6/fv3YvHkzw4YNk6arqamxe/duHBxS917Q1dXl4MGD+Pv7U7hw+i+hirh8+TIXLlxg/Pjx9O7dW5pet25dunfvLpdfTU2N+fPny02DW7RoER8/fmTbtm24uIi+6PXr149Ro0axfv162rRpQ6FChahatSoAT548oVQpkYN59epVihYtyqVLl5g5cyZqamp4e4s2Mq1atSqGhoY0b96cRYsWUb58eTp16qRQlz59+jB06FDU1UVxTXNzcxYsWMDTp0+pVCn9df5ZwbagaFPq8LBwuWvBQSHiPJlv4JiRnK9SOTZy+b8pyJ8Qn0BkeBS26WyYnVsULiyaLRSW5itPWr4EiaYAFyxUAF+f1xnKMjQywNzcjOfPFL8wSNZpp5W1bMl66nm6M23mGKrXqMrGdTu4cvkmzVo0oFGTesyctoDQ0G8K5WUXu0Ki/W3CFLQHwFfxfjp2BW155Zvx7DpDQwPMzE3xfa74N5LszVOgkGJZw8YNYPi4AQA8f+pL6wbdef5UccA4pyhSRDQTIb3fNzBQ5PgWLmzHixeZf9XIKRo0cEdfX4+zZy/najkFxe2vqD9CVttf8e8kaX+7n9p/7JShNGpWj4E9Rud6ewPkt8sPQOS3SLlrYV9EDoVVQdX2vlCuXJHMyDD5cr8nfCc6Ilpat19F0aKFANFsG0V8DhQ5zkWKFOR5LgVBZs+aQJvWTWjTrg+PHv939p34LLYNpiby++TktzAH4FOafTk+BYnym5kay+XX1dHB2MiQz0G5+6KdOl7LB7CDxc++jV3m474kj0I54nHfRgn/AcDNU7QJueTD1K9CYvtDQhQ/+3ll+38VEtufvt8jsf0FeOXrpzCPBEMjke33Scf2fxX7UCLbnypr3NRhNG5en/7dR/Ls6a9bMlyokMTnUzzuS3QvWKgAL32yp7vEf7QrmCrL2dWJpKQk1vyziJKlisnkj46KYfSwqUrt0aQKNuLxJ0LB+BMq7vvWSvRZSZ4IBX0/JEgsx07x+PnX+ulo62iTEJdA4Mcgbp2/ze41e4lQMBbnJr9j+//X+JGDu2Lv3buXvXv3Sv/doUMHOnToIP339+/f0dXVlbtPXV0ddXV14uPTX06akpLChAkT+PbtGwcOHJCbFaUKv/WMJkdHR5l/N2/eHID79+9z6dIlUlJS5Gbn1K5dm5IlS3LhwgWZdHV1dZkgE0CzZs2k8lTlwIEDGBkZ0bVrV6Xyq6urK1xrefHiRcqWLSsNMkno1asXP3784NIl0fKWkiVLYmpqyuPHjwHw8fHhy5cvTJs2jeDgYGmAydvbmyJFimBpaam0LjVq1JAGmSRlAXz+nPNfeA0MRV/pFC1LiouLF+fJfIPpjOTEK5CTUX7JPYZGWd/YOisYiuuX3vLNWPGadSOjzDeDy0yW5LdNKyso8CtN6nfk86cg6jVwY8/BDbx8e4cN/yxl8vjZrFn5j0JZOYGhtD0Ubz4qqa8ybWKQiSzJnjfpyXp49wlb1u3i3MlLlChVlGUb5lDOsXSm5WYHSTtk1l7GxvJfO3ILfX095s6dQlJSEot+Ws6U02TWZnFxon5qqMSzL5EVk07fjlPQ/u06t2DQiN78PW0xF8/8mpOG9AxFXynjFdQzQbxkS5InR8sVfx2NT2f/m+9xCegZ/trZE0ZiexUdnbHtM1bwtS8n6NmjA+PHDWXsuD85cUK5Ddj/LcSI21FfT95B1dXVEeeJTZM/Nt38knuiVdh4Oivoi5/rOAXlSMdrVWy9gmc5Pi5BnCdzOc06NMKhcjmun7+Jn8/bTPPnJKm2X/FvLtHtV9r+X4nEV8nM9hsp9TxkJkve72nfuSV/jOjLrKmLuHDmitL1zgkkz3i69ZWOVar4fJnpnvo7FilaiOTkH1w4c4X6tdpQokAVyherzviRM9HQUGfFunmU+CkAkV30MuyzEl898/FHMssnTtH4Ken7Pz0zEWER3L1yj/OHL3Jg0yFuXriNmaUZnf/oyLqTqzAxkw++5ya/Y/v/1/iBWo79dejQgUOHDkn/0gaZQLR6QNHyxR8/fvDjxw+FQSgJN27c4MKFC0ybNo3ExESCgoIICgoiMlIUPP327RtBQUEoc57cbz2j6WesrETR6pCQ1JOeFM1EKly4MLdu3cpUnrW1tZw8ZXn//j2FChXKVhQR4OPHj9SpI3/CUZEiRaTXQTQjqnLlytJA0+XLl3F0dKR69eoULFiQixcv4ujoiLe3d7ZOkAMwMBAZptxcs65oWZKammhNqyoHLWYkBwVy0lsOpaamplK5ytKydSMqOsmfYLRkYerRlUmJ6dcJVPw9VJBlbZOfQ8e28ubNezzrtqN8+dK0atuUFq0aMWPWeNTU1Ni4fofSZf9Mk5YNcFSwjGHV4k0q1Ff58hIzaNuMhN24cocbV0QbRRYuWpDD57ezestCPGu0lTpCWaFt22ZUruwolz5vXuoeWonp6i+p8q85dFRTU5OdO1dTtmwppk2bx/37T7ItU9T+8stgVy1O3Y8sff1zxhaIZCGWJfqvc/XK/LVwMts37eWfdbuUlp9TKD5OXlLJ3Cs3OTGdpdBqarlSbrt2zalauYJc+t9pNj/Oi+e/dq1qrF41l9VrtrB8hXIbDv8b0VKw74zk51K0O0S6m5ynpEh/79wmScEzmFPjnNTOZ/IwV65eifFzRvHl81f+GjVP6TJVoW3bplRW8OzPS7O5fWJiosJ7s/J7/Nto2tKTCpXk9/lbsTh1D8XMxmtV9Fd2HHGpXpnZi6aybdMeNq/Lum+TEc1aNVSse5pNz3N03EvvOUJelpGxIUGBX5k9I/WU0fi4eHZu3Y+hkQFT/xxDxy6tmDV9kdLlK0tyBn1WtXFekQ1BoZxDW45yaMtRmTQdXR2mrpxE7UY16Tq0M6v+VP0Y+YwQ2l9AWfLly0d4eLhc+rdvohlv5ubm6d6bkJBAUlISAwcOVHh9yJAhANy7dw9j44wDqkKgKQ3fv4vWtGpqama6f4qaEp5TWnmqkpiYqHBtZVZQVFdJWtprzs7OXLp0iaioKK5cuUK9evUA0XK9S5cuMWjQIF6/fp3lDcF+BTHRoui7ZH+EtOjqib7GKvpikZ4cnQzkpJ29lFF+0T26ubL5c916tenYRf70rk3rd0q/5uuIv0L/jJ6+KJqtzJHDmcrSk5e1bOXf5M9vQcN67YmMiCIo8CsXzl9j3t/L2bFnDXMWTOXF85fcupn5MfeKcKtbnTadmsulb9u4l2hJe6hQ3/TItG2lv2Pm7ev/7iMnDp+lS692OLs6ce1S5gHr9PD0dFd4ss/atVuJiooW1zk9/UVf79Kb8ZGTaGpqsmPHKho1qsuqVf+odNJdRrjVrUFbhe2/J7XNdBW3maT90/vyl5bM2l9PX/RbSp4l15pV+JGcTGJiIhNnjpTJa2JqhKamJhNnjiQ+LoElc1fLycsqcdGi509bR0vumo4Ktk/lcsUytRSUKyk7s9O+skJDTw96dG8vl75qzT9EiZ9r3XT6v764zaKzcVhHeri7Vyc5OZnE74nMnztV5pqZmQlaWlrMnzuVuPh4ps9YkOPlZxcD8W+T8F1+4/r4BFFgXPL7ifLrp5sfIC4+AX29nJ9Jl5ZY6bP/a8f9n3GqVoHFW+cQEx3LHx1HyWxMnpM0aKDY9q9Zk2r7M332f4Htzy3c69WkXacWculbN+5O9VXSs9d6yo/XMSr6Pa41nfmRnMz374lMnjlaJq+JqTFamppMnjma+Ph4Fs3J2jjoUbcm7Tu3lEvfsmEXMVHK1Tc2Ogd8PgX+4/eERGkZP3P14k2m/jkmx2e0xGXg8+uI66JM35f06+zKSYhPYN2cDdRuVJOKrvLB4OwitP9/G2U28c4pSpYsyd69e4mOjsbQMHUW29OnT6XX06NixYqsXSsfJL19+zZbt25lzJgxlChRAn39zGcLCoGmNLx79w6AokWLSqfXvn//njJlZDeAe//+PXZ2mZ+WlVaeqlhaWubI0jI7OztpPdLy9u1b6XUJVapUISUlhcuXL/P06VP+/vtvAOrVq8eWLVs4d+4cSUlJMjOaJEvi/i2nCwQGiPbesLLJz7vX/jLXJPsvfAoIVEnOz0jkfP6YKudzBvn1DfQxMjHE1zvn90MYOngiQwdPVHhNspTH1lbx+nQ7O1sAPnz4lGk50VExfPsWnr4s8R4ZH8WyDAz0qVOvFpcuXCcyQnYz1A/+ASyct4pNW5fh2ahOlgNN44bOYNzQGQqvSab9WitoDwBbybPwMfM+Fh0dQ/i3CKxtFa/Pty0gkhXwQbn+Klm3b2KavUByv36j6ddvtMJrkqn8dunsC1awoGgfC3//gGzVITMMDPTZu3c99erVZuHCNUyZMifHZI8bOp1xQ6crvJba/um0mfh3CcjB9v+Upv119XTpPTD9Zc/9/uhOZERUjgaagsXHLuezsSDAT7ZdLQuIljp/DZA/mjm7SGRa2FjIXdMz0MPA2IC3z3N++VCfviPp03ekwmvS579Axs+/sqfHqYqenh7Dh/dL9/qoUQMJD4/4VwaabKxFNvNLsPxM7MAvoj0+bK1T+4KtJP9X+fwxMbFERcdQplTx3Khqar3E429+W0uZU2IBrAuI6hr4UX5D258JChDtX5TfRn5rgMzk1PasyezV0wkPC2dIp9Eyp9blNP37j6F//zEKr0me/QLpPPuScT+3bX9uMmbIVMYMmarwmsTvsUnPXkttv3J+T/i3CGxs0/MjxLJ+sv19B3VTmB+g/5AeREREZjnQNGrIFEYNmaLwmrK6f1RF93TG0AIKdA/+GoJdIVt09XTlZmsr83E+KwR9EvVZSxtLuT5nVUDUbpJ+nRFfAiRy5McxqRwlbAhASKDIFko+QuYkQvv/t/mVb8oeHh7s3LmTM2fO/I+9sw6rKmkD+O/S3UjaAWIBiiAmomK7tq7dveYa6xq76hq7drfo2t3dXRhgo4KiotLdfH9cuHi9F7gXic/1/J6HZ9c577xn3nvmzMx5Z+YdOnToIEk/evQo2trauLu7A+KFLW/evEFdXZ0SJcTxLc3MzPDw8JDRmbkaysnJSeHdTT90jKYvSU9PZ8OGDaiqquLp6Ymnp/jo+o0bpePIXLx4EX9/f8n17EhOTsbb2xsDAwNq1aqldHlq1KjB+/fvZeI7PXumXOBST09Pnj59yvXrWUfMZtoqEomkKlLFihXR09Nj+fLllChRgnLlygHg7OyMsbExy5Ytw8rKSso5ZWJigqqqKgEBAUrbWBBknvpWo5ZskPHqbo4APJZzqsTXZJ42Vz0HPY8eZOnJPO1GnryzWzVUVFSk5AuDmOhY/F+8pppTZZlZBl09XSpXscf/xWvJrF1u3PfxxcragtJlSshcc3WrTnRUDP4vxE7NzC2f2XV4qqqqUv/Nb2JiYnnlH0BlRwe0ZGzXoWLlCrzyD5DMYOfGw3uPsbQqRsnSxWWu1XB1JDo6htf+AQrpqphx3PW7t7k7PPNKdHQMz5+/xNm5isyz19PTpVo1B54/f1mgs9oWFuacOrWLhg3rMGHCjHx1MuVG5vOvkm/P/1Guz/9VxvNfPG81Zcyc5P4FvXlPWGg4ZcyccCxb75vt/JLMU98qu8ouq6+Ukeb/MOeg/3khU2clN9n7OtSshIqKSoHcNyeio2N49vwl1atXlVv/HatV4lkB1f8/ZyxATcNG7l9AwFtCQsJQ07DBrFjhnkKqKFUcxKfH3b7nK3PtbkZQ80r2WTOhle3F7dmd+3LkH/iRnp4uJV8QZPa/zhl985c4uYlXFTxWICC/RE+t7PU8kdOPt+vRmrlr/+T9m/f0az20QJ1MufH/0PYXJTHRsbz0D6CKYyW5bb9DZTteKtH2P7jnh6WVRTZtv1NG2y8e9yyat5KSplXl/r19846w0HBKmlalapk6326oHGKiY3n54jVVs7G9UhU7Xr54rbDt9+/5YWltQSk5tru4OhMdHcNL/6yJ7Lu3H6CmpkZ9D3cZ+YqVxO1EbgHYlSXztDnHWrJhBKq5itOePsj9uynztDlHN9lVSNXcMvQ8VGyyuExF8aqdoFeF68z9EZ+/QPbUqVOHmjVr8ueffzJ79my8vb0ZOXIkhw8fZsCAAZJdUx8/fqR58+YFtlvph3Y0DR06lGXLlrFu3Tp69+7NsWPHGDhwINbW1pQtW5YePXpw8OBB+vbty9q1a/nzzz8ZPnw4pUqVol+/flK6UlNT6dGjB6tXr2b16tV06dIFHx8fxo8fL9mmogzdu3fHyMiIoUOHMn/+fNavX0/Pnj0lq4wUZcCAAdjY2DBo0CBmzJjB2rVr6d27N8ePH6dfv35SMahUVVVxdnYmICBAKq6TqqoqHh4eBAYGyngw1dTUcHFx4cSJE8ycOZPVq1fLOOcKk8tnrxEdFUObzi0wMsk6NcfY1Ijm7byIjorh8tms7Upd+nbg4OUdzFo6VUqPr88jggLf0bBZPYqXynKsaWlr0r57G1JSUjh1+Jwk/fPHEG5f86Fajco4umR1eCoqKvzcT7zE/fiBwj9tYd+eI2hqajBgsPQM28DBPVBTU2PfniMyea7dPs6128dx+ir20749RwEYOkK67rfv2IpiFuYcPXxKEhciPDwC34ePqehQgYGDpU9J1NXTZcjwPgCcPnXhm+zLicP7TqKpqUGvAV2k0nsN6IqamhqH952UyXPq+l5OXd8rE/vnyL4TAPQfJv07tu7QDHMLM04dOSe1L37ErwNxqyPr7W/doRkejesS8OoN9+8W7ElUu3YdQlNTk2HD+kqlDxvWBzU1NXbtOiST58GDczx4cI4aNb5tybeDQwUuXz5IxYrl6dZtKIsXr/0mfXnh8L4TaGpq0HuA9GmYWc//hEye09f3cfr6Ppnnnyk7YJh0XW6T8fxPfvX8i4K75+8QGxVLw46N0P8iCKmBiQH1f2pAbFQsd89nTVw079WS5edWMmrhmG+6b9jHMHyv+2LnbI99jazVvyoqKrTo3RKAywcvfdM98sLOnQfQ1NRkxHDp9mrE8H6oqamxc+cBmTx+vhfx872ISw3HwilkEbJtzyFadR3ApBn/SKVXdbDD1tqSc5ev8yYoa7Y6PiGB3QePo6qqglfDupL0Yuam1HCqwgO/p/g8zDphLTU1lW17DwPQrFGDArXl6tkbxETF0LJTUwy/6PeNTAxp2rYxMVExXD17Q5LesU87dl/awvTFv0np8fN5zLvA99RvWgfbUjaSdE1tTdp2b0VKSgpnjlyQpItEIn6ZMoRJc8dx99o9+rUZxqcPnwvOUAXJavv7SKUPHZp923///lnu3z/7zW3//wOH9h5HU1ODPgN/lkrvM7AbampqHNp7XCbP2RsHOXvjINWcpR3mh/aJZQcO6yWV/lOH5hSzMOPEkbNF3vZ/ycF9Ytv7Dewmld53YHfU1NQ4uE/W9gs3DnHhxiEcv7L94N5jAAwaLl2P2nZoQTELM44fPiNl+1bv3QD8/sdYqdXkRsaGDB8zgJSUFHZtl45p9K3cOHeLmKgYmnbykgq+bWhiSOO2nsRExXDj3C1JervebdhycSO/LZ4gpeexzxPeB76nTtPa2JSylqRramnSqlsLUlJSuXAk62APbR0tBv82ACNTIyk9mlqaDPl9IAAn9hT+QRA/2vP/3khHlG9/uSESiVixYgUdOnTg6NGj/P333zx79oxJkyYxdOjQQrBWzA+9da5q1aocPHiQ4OBgrKysmDJlitQpb5MnT6Z48eLs3LmTxYsXY2BgQOvWrRkzZozUfkcQD6rt7e3Zvn07oaGhlCpVioULF9K8efM8lc3c3Bxvb29mzpzJpk2b0NLSok6dOsyaNYvffvst29grX2NoaMiOHTtYuHAhx44dIzo6mpIlSzJ16lS6desmI+/i4sKlS5dkAoh7enqyb98+XFxcZPLMnDmT6dOns2/fPlRUVGjfvn2ebM4PYqJjWTRzBVPmjWfPuS1cOn0VkUhEvca1MbcwY8b4ecREZ83kGZsYUrp8SUI+h0rpSU9PZ/bkBSzxnsf2E+s5f/IyCfEJ1PZww7akDeuXbuZtgPRsxT/TFrPp4CpW71zMhZOXiAiPorqbIxUcynH8wGnuXLtXKL/Bl6xasYl2HVoyZfo4atdx5aX/a8pVKINHwzr4v3jNqhWbZPJkHkuqrSPtIN298xDdenSgd98uVKxYHt+Hj7G2saJJ0wZ8+hTCnL+WSMmPGzWNvQc3MWvuZDp2acM9H1/09HRp2KgupqbGrF21mYvn8x6jKDc2rNxKq3ZejJ/6C261a/D6ZSBlypeirkctXvkHsGHlVpk8ZcuXzrBdejbowO5jdOz2Ez/37kAF+7I89n2GlY0FHk3qEvIplIVzpPcyV6pix6gJgwl49QafWw+Ii4unUtWKONWoQnR0DOOGTi3w7aZLlqyjU6fWzJw5kXr13Hjx4jV2dmVp1Kgez5+/ZMkS2UDFdnbiVYw6OrLO8Q4dWkm24unr66OpqcGoUeIBVVDQB/bsOSyRXbDgD0qUsOXChavUrOlEzZqyK/3u3n0olSe/ET//poyf+guutavz+uUbyn7D8+/0xfN/lPH8G2Y8/0VzCvYUPUWIi45j85xNDPlrGEtOLeX22duIRCJqeLpgUsyElb8tJy46aybTwMQA23LFCf8cIaPLzMqMOq3EzoRyVcWrUarVriaJ/3Tl8GXJ9gCADTPWMXvPXP7cOoObp24SHR5NJddKlKpYmsuHLuF3Q3a1S0GzaPFaOnf+ib9m/Ub9erV4/uIV9nblaNy4Ps+ev2SRHOenfQ71v2PH1hTPqP8GBnpoamoyZvQgAN4GfWD3btmP98LG/1Ugl2+ItyLf9xWvyj176RqvA8VbBDu2aYZexmEc4ZFRvH4ThKmpsZQOFRUVJo0ewogJf9Cl/0g86rihpaXJ1Zt3CXofTL/uHSlhay2VZ/yIgfQaOo6BoybjUdcNIwMD7jzw5cXLAJp61qOms+xqg/wkNjqWpbNWMWnuOLaf2ciVM9cQiUTUaeSOmYUpsyf8I4lfAmIHVKlyJQn9FCalJz09nb9/X8T8TbPxPraGSyevkBCfQC0PV2xKWuO9bCtBAVnbThxrVqXHkK7Excbx6lkA/UZJO6Iz2bB4M9GRMQVjvByWLl1Pp06tmTFjInXruuHv/5oKFbLa/qVL18vkyWz75U2MdujQUrLlTrbtf8+eryasGjeuT6VK4pVxmfmGDu1DcnIykZFRbNy4I/+MlcP6lVto3b4ZE6eOwq22C69fBlC2fGnqebjz0j+A9Su3yOQpl9n2f7USZP+uo3Tu1o7ufTphV7Ecj3yfYmVjiWeTenz+FMqCPG6BKyjWrthMm3bNmDRtNLXquPDKP5CyFUpT38Odly9es3bFZpk8mXFzvn72+3YdoUv3dvTItP3hE6xsLGnkVZ/Pn0L5Z/YyKflbN3xYs8KbgUN7cebqfs6evER6ejr1PNwxMzdh6sTZ+D/P323UsdGxrPprLePmjGbjmbVcO3MDkUiEeyM3TC1M+WfiQql339DEkJLlShAm591fNGUZszfOYM3RFVw5dY2E+ARcG7hgXdKarcu28y4gy/GuqqbKz8O60K7vTzy48ZCg1+8wMNLHyd0RM0szTu09w8WjhT/B8qM9/++Nwg4yo6+vz9SpU5k6dWq2Mra2tgrvlmrXrh3t2snGBc4JUfr3fPREHlm6dCnLli3j4sWLkpPhvoWJEydy6NAhHj9+nK1MZGSkJO5TbpiYmGR72tzJkyf55Zdf2L59O87Oznkq7/dGVUvltx42bulBz8FdKV9RHBvi+eOXbF61jTNHL0jJDRnXjyHj+nP7mg/92g2T0eNS25mBo/pQybEiampqvPYPZPfm/ezZckDufe0qlWfY+AE41ayGto4WQYHvObTrGJtXbcvmNKic+RAflrtQLpiaGjPx91F4NfXA1MyYkM9hnDxxnrmzFhMaGi4j/zlS3OC0adGDa1duSV3T1dVhzPihtGnbDCurYkRERHHpwnVmz1zEGzkxH0qXKcHIMYOo38AdC0tz4uMSePDgERvWbuXIodxXeBmo534EcU6YmBoxetJQGnrVw8TUmNCQMM6dvMSiOSsJkxOo9WWIDwA/txnAzat3pa7p6GozfOwAmrdpjIVVMaIiorh66SYL/lohE5/JoYodbTu3xMXNiVJlS6ClpUnI5zCuXrjJykXrCXilWGyYdzHKn1j5JWZmJkybNo7mzRthbm7Cp0+hHDt2hj//nE9IiGzdSkgQb/lo0qQTly7dkLp26tRO6tWT/y5eunSdJk06KySbyZYtu7ONMZWJtZ5pjtdzw8TUmDFynv/COSsJk1P3X4WIncFd2/SX+/xHjB1A8zZNpJ7//L+WKxyf65LPUXR0talhJ3sS6NdU0bHJVUYe7s1r02ZAW0rai1erBj4J4MDa/Vw/Lu3U7TL6Z7qO/hnf67783lk6zltltyrM2pX9VsfJnSbJOI9KO5Tm57Hdqegi3q4Y/CaY83vPcmDNflLz0PYdDf52x7yZmQl/TB9PyxaNMDc35dOnUI4cPc30P/6WW/9TksROBM9GHbh46brUtbOnd1O/vuyWAICLF6/h2Vg2OPPX+D+/gZ6eLpbWsieFfk38+8u5ynzNgaOn+f2vBdleP7lnEzYZMTeWr/+XlRu2UsOpCpuWzZORvXX3Aau9t+P35DkpKamULmlLp59a0LFNM7nxNp4+f8mydVvwefiI+IQEbK2taNOsEb26tpN7gl1uuFftrXSehi3q021QZ8plbF3xf/KKf1ft5Pyxi1JyA8b2YeDYPty9do/BHUbK6Knu7kS/kT2p6GiPmpoagS8D2bv5EPv/lXYmOtdyZPXeJTL5v6Z1zU6SOFKK4hcemLtQDpiZmTB16lhatGiEmZkJnz+HcvToGWbMWCC37sfHi+/XpElnLl+WbvtPntyRY9vv5SW9anjNmn/kBisHCAx8i719zlvHiukY5nhdEUxMjRk7aRiNmtbHxNSE0JAwzpy8yILZy+W2/YGh4gC5nVv35cZV6ZAVOrra/DJuEC3beGFhVYzIiCiuXrzBP38tk8SlzI0r946jq6uDU4X6ucqmpn/b56iJqTG//jaCxl71MTEzITQklNMnLvLP7GVybQ8KE6+u7tiqD9e/ipmpo6vNqHGDafmTF5ZWFkRGRHHl4nXmzVqare3tO7Wi94Cu2FcsT1paOg/u+bFs0TouKTixWEZbfsiFnKjfoh6dB3WkjL3YYfjqySt2rt7NxWPS7WifMT3pM7YX967dZ2RH2fGHk7sjPUd2w76aXca7/4ZDW45w6F9pZ6qKigpte7ehlqcrNqVsMLUwIS0tndfPXnNk23GObj+mtA2ZvIrPPaZUTnzPzz+zLP9Vjll0yV1IQZp/LFiHfX4hOJoKydE0ceJE9u/fr5C+zZs34+rqSmpqqkwMm5EjR3L58mWuXbuGllb+B5r7fyQvjqb/CvnhaPqe+VZH0/fOtzqavne+1dH0PZNXR9N/hfxwNH3P5MXR9F8iL46m/xLf6mj6nskPR9P3zLc6mr538uJo+i/xrY6m7xnB0aQ434uj6YfeOleY9O7dGy8vL4VkK1QQB01r1aoVFStWpEyZMujq6nL58mWuXLnC2LFjfxgnk4CAgICAgICAgICAgIDA94oisZX+awiOpkLC3t4ee3t7pfJUqVKFGzducOrUKUQiEeXKlWPmzJl07Jj7En0BAQEBAQEBAQEBAQEBAYGiJe3H8zP9mFvnBL4vhK1zPy7C1jlh69yPirB1Ttg69yMjbJ0Tts79qAhb54Stcz8q//Wtc4ctu+YupCCtgrfnm66CRFjRJCAgICAgICAgICAgICAgIFAApAlb5wQEBAQEBAQEBAQEBAQEBAQE8oMfcQuZSlEXQEBAQEBAQEBAQEBAQEBAQEDgv4GwoklA4P8YCy3joi5CkZKYllzURShSKhj92HF61ESqRV2EIqN1mlFRF6FICTNX7vCM/xo/eoyiaw83FXURipQalbsXdREEioiPCeFFXYQixVHdrKiLUKREpMYVdREECogfMfqa4GgSEBAQEBAQEBAQEBAQEBAQKADSRD9ejCZh65yAgICAgICAgICAgICAgICAQL4grGgSEBAQEBAQEBAQEBAQEBAQKAB+xGDggqNJQEBAQEBAQEBAQEBAQEBAoAD4EWM0CVvnvhNu3ryJnZ0dBw8eLOqiCAgICAgICAgICAgICAgICMhFWNEkoDQNGzYE4Ny5cwDExMSwceNGatasiaura1EWTS6GxgYMGz+QBk3qYGJmTFhIOBdOXWH5vDVEhkcppUtLW5OBo/rg1cYTC6tiREVGc/3iLZbOWU3wu48y8qqqqvQY1IXWnZtTvKQNcbHx3Lv1gOVz1/Li6cv8MjFHDI0NGD5+IB5edSX2nz95mWV5tH/Q6D40bdNIyv7Fs1dla3/PQV1o07kFxUuJ7fe59YBlc9fw4knB229kbMjIiYPx9KqHqZkJoSFhnD15icVzVhERHqmULi1tLYaO6UeLNk2wtC5GZGQUVy/cZMFfK/jwLlhKVkdXm47dfqKepzsVK1fA0MiQqIgoAl6/5dDuY+z69wCpqan5aapcfsS636BpXXoM6UoFh3IAvHjsz+aV27lw4rJSepxcqzJgdB8qOdqjpqFOgH8guzbu4+D2oznmK1m2OHsu/svWNbtY9OfyPNuRV0p6VafyoOaYOJQAIPzJW3xXHSXw5F2FddjUr0KZNrUoVr08ejampKWkEhccztuz93m0/iSx70OzzWtYxop25+fyaO1xbs3c/s32KEtdr9p0GdyRcg5lAXj55BXbV+7i8smrSumpWrMKvUf3wL6aHeoaarzxf8u+TQc5uuN4rnlVVFSYs2kmtTxdWTh5Cfs2Fc4EUf2mdeg+uAvlM+q+/5OXbFm5nYsnriilx7FmVfqP6YVDNXvUNdQJ8H/D7k37OSSn7rs3dKNx64ZUqe6AhbUFAG9fB3F83ym2rdlFakrBt3Py2HPoONPnLmHZvOk0qK38uOTufT9WbtzGo6fPSU5OoXRJW7q0a0X7Vl5y5Z+/fM2ydVvwefCI+PgEbKwt+Kl5E3p2bouaWuGcnunRtB69hnSlQiXx83/++CXeK7Zx/sQlpfQ4uVZj0Jg+VHKsiLq6uO3buXEv+7cfyTFfybIl2H9pK/+u2cmCP5bl2Y68UlT2l7Mvw7DxA3ByrYa2jjbv3r7n4I6j/Lt6Z6H0819jbGzE+N9G0KSZB2bmpoR8DuXU8fPM+2sp4eERSunS1tZi1LjBtGnXDCtrSyIjIrl44TpzZiziXdAHKdnbD89QvETOJ+Xu3LafkUN/U9akXKnSpAYNB7TCpmJJAN4/fcPZNYfwPXUnT/rs6lRh2L+/s3vqBi5vPpmtnH29anj0b0HJamVR01AnLOgzT6885MyKg0R9jsjTvb+VH3Hc972Q9uPFAkeUnp7+I24Z/O64efMmPXv2ZN68ebRp06ZIy3Lo0CEAWrduDUBwcDD169dn+PDhjBgxIt/vV9WyVp7z6ujqsPX4OspWKM2NS7d59SKAshVK41q3Bv7PXtGtWX/i4+IV0qWiosLaPUtxcXfG1+cRfvefYG1rSR3PWoR+DuPnpv34FPxZKs+spVNp1bEZ/s9ecefaPYxNjfDwqktycjI9Ww3K1dmS9o2vp46uDtuPr6esXWmuS+wvhVtdF/yfvqJrs35K2b9+zzJcajvz0OcRfvceY13ciroZ9nfx6itj/+xl08T2P33F7Ws+GJsa0bBpPZKTk+nRahDPH/vneM/EtOQ8266rq8Oek96UsyvD1Ys3efniNeUqlMG9Xk1ePH1Jh6a9iItV3PbN+1biWrsGD+768fD+I2xsrajfqDYhn8No37gHH7+wvbqrIzuOrOdt4Dvu3X5IWGg4xiZG1G3ojompEYf2HGfskN9zva+2qkae7f/e6z6Amki5D7Q2XVswbcEkwkLCuXhS/HFd30s82Ppj9GwO7sjZSZRJrQY1WbxlHgnxiVw4cZn4uHjqeNbCytaSNQs2surv9VLy+ob6DPm1H2YWptRq4Iqung6bV27/JkfTMNVSSuep0KU+df8ZQHxIJG9O3wOgRGMntM0MuTR2DS92KvbB1fHKfLSLGRJ84ylRgZ9QUVWhmHM5TCuXIj40igNNfiPuY4REXsNQB+dxHdApZoRN/Spo6Gnju+roNzmaNqV/yF3oK1p0acbE+eMIDwnn6qnrANRuUgtjM2Nmj/mbYztPKKSnZv0azN38F4nxCVw+eZWEuATcGrpiaWvBpoVbWP/Pphzzj/nrF9r2EvfTeXU0JaQr1/a17tqCKfMnEBYSzqVTYqdavSa1MTEz5s8xczi845hCetzqu7Bwy1wS4hO5eOIy8XEJ1PZ0w8rWknULN7H67w1S8vuubsPK1pKHd/x4+ew12tpauNZ3wdzSjMunrzGm10Sl7Mjk2sNNSufxffKM/UdO8fbdB27cuU96enqeHE1Xb95l6K9T0dLUpGE9d7S1NLl8/Q4fPn5icO+uDB/QU0r+6YtX9BgyltTUVDzquGFsZMhtn4e8DHhDq6aezJ4yTmlbalTurpR8264tmb7wN/FH5UmxU71BxuTStNGzOJCLgzwT9wauLP33bxLiEzl/4lJG2+eOta0lqxdsYMW8dVLy+ob6DBvfHzMLM9wb1ERXTxfvldsK3dFUVPZXcCiH9+FVqKqqcuHUFcJDI3Bxd6KsXRkO7z7O7yNmKG3Lx4RwpfNkoqunw/EzO6lgX45LF67z4vlLKtiVpW79Wjx74k+zRp2Ji41TSJeKigp7Dm3EvU5NfO484L6PH7YlrPFsXI/Pn0Jp2rAjwR8+SeR/GTMQY2NDubq0tbXp3b+rQo6mTkZVFTcYcOvkwc/zBhMdEonfGfGESuVG1dE3M2Tbryu5sfuCQnrMSljg0b8FxtZm2Netipqmeo6OpgZ9m9Nuai9iI2J4fP4eCTHx2FYqRWnnCsSERrGg3e+EBMo6Y3LjQsIbpfNk8r2P+x4GX8+z7d8DW62Va9dzotv7f/NNV0EirGgSUJpMB9P3QPeBnSlboTTL5q5hzcKNkvTBY/sy9NcBdOvfiXVLvBXS1bxdE1zcndm39RDTx86WpLfu1JyZS6YweGxf/vx1riTd2bUarTo24+q5GwzvMU4ys+VS25m1u5cydtoIBncZlT+GZkOPgZ0pa1eapXNWs/oL+4eM7cew8QPoPqATaxcrZn+Ldk1wqe3M3q2HmDbmL0l6607N+WvpVIaM68cf4+ZI0jPtv3LuOsO6S9u/fs8yxk0bwcDOI/PJUll6D/qZcnZlWDR7JcsXZA0Oh48bwMgJg+k5oAurFm3MQUMWrdo3xbV2DXb9e4DJo7MGjm07t2Tesj8Y/utApoydJUl/9/YD3doM5NY16VUkJmbGnLi6h9YdmvHHxLlERUZ/o5XZ86PVfV09HUZPHc7n4BC6NOpNeGgEACvmrmXb6Q2MmjqMU4fO5TrIEolETJg1muSkZHo2H0CAv3jQp62jzabDK+kzogcHtx/hQ1DWAFJPX5cu/Trkqz3Koq6nTc3ffyY2OJwDXpNJCBXPXGqbG/LTiVm4TvmZ14dvkhKXmKuuWzO28f7KI5JjE6TS6y0aRPkOdSnd0pVH67MG3xr6OlTq0yR/DVISHT0dhk0ZREhwCH2aDCIi4/mbzDNmw8nVDJsyiPOHLxAfl5CjHpFIxKhZI0hOSmJgi2G8efkWAG0dLVYeXEr34V05sv0YH999kpu/86COtO3VhlsX71Czfo38NDFbdPV0GDllKJ+DQ+jWuK+k7q8yN+HfU+sZOWUoZw6dV6ju/5pR93u3GETgF3V//aEV9B7enYPbjkrNZO/etJ+T+88QFpL1caylrcX6Q8up29idmvVqcOtS3lYVKMvLV2/YdUAxh1p2pKWlMWvBCjTU1dm+bjFlShYHIC4unm6Dx7Buyy7atfLC2tJCkufvpWtITExi/ZLZuDiJP5KTU1IYOm4qh0+cpWObZjhXrfRN5coJXT0dxkwbzqfgz3Ru1FvyLJbNWcPOM5sYM3UEJw8q1vZN/GsMyUnJdGvWnwD/QED8/DcfWU3fET3Zv+0IH4KyVvDqG+jStV/HArNNEYrS/nF//IKmliYDOozg7vX7AKipqbLs3/m06tiMPZsPcP+2b8EYLoeBQ3pRwb4cc2ctYeHfKyXpYycM5ddJI+g/qDtLFqxRSFe7ji1xr1OTrZv3MPaXKZL0Tl3bsGTlHMZOGMavo6ZJ0nPSO3LsIAAuXchfR4KWnjY/Te5O5Mcw5jafQExGv6dvbsj4o3NpM7kHPkevk6RAv2dkbUrdnvJXLH6NjpEerSf8zOeAYOa3+Y24yFjJtfp9mtF+Wm+8fmnP1rEr8mZYHvnRxn0C///8UDGali5dip2dHbdv3+bXX3/F1dUVR0dHRowYwefPWV7Z9PR0/v33X1q0aEGVKlWoXbs2U6ZMISwsTErfxIkTcXBw4MmTJwwZMgRnZ2eqV6/Ob7/9Rmxs7Ne3V5jExETmz59PvXr1qFatGq1atWL37t1yZQMDAxk9ejSurq5UqVKFNm3acOyY9EAr0+6HDx8yZcoUatWqRY0aNRgyZAgfP0p72yMjI5kzZw5eXl5Uq1aNxo0b88svv3DnTtZAsUePHjRu3BiAoKAg6tevD8CyZcuws7PDzs6OHj16cObMGezs7OSW/erVq9jZ2XHgwIE8/06K0LxtE+Ji49i0YqtU+sblW4mLjaN5e8U/jpq3E8uunC+9muHQrmMEBb6jSWtPqSXymfJrFm2UWj59+6oPd6754FbPBRMzY6VtUoYW7byIi41j41f2b1j+L3GxcbRop1inCtA8Q3blP9Izeod2HeNt4Du8vrI/U/fqhZtk7L+dYb+puYnSNilKq/ZNiY2NY+3yzVLpa5dtJjY2jtbtmymlC2Dp39IDqf07j/A2IIjmbRqjppbltw9+/1HGyQQQFhJOZEQU8XEJCq+myis/Wt2v3dANAyN9dnnvl3xoA4R+DmOP9wEMjQ2o3dAtVz2VHCtSokxxTuw/I3EyAcTHxbN51Q7U1dVo3KqhVJ4PQcE4W9XB2aoOA9rl/6pORbD1qIqmkS5PN5+ROJkA4j9H8mTLGTSN9LD1qKaQrsCTd2WcTACRL8WrjBLCpB2kMUEhrLftznrb7hztOEsmX2Hg1rAm+kb67N98SOJkAgj7HM6BzYcxMDbAtWHNXPVUdLSjeGlbzh44L3EyAcTHJbB99S7U1NVo2KqB3Lx1vWozZPIANi3awpkD577VJIVxz6j7e7wPyNT9vZvFdd+9Ye6rehwc7SlRxpaTB85KnEwgrvv/rtqBmroajVp7SOXZvna3lJMJICE+gSO7xKvH7KtU+AbLlOOnFo3xu3ocv6vHGdK3W550+D15zpug9zRr1EDiZALQ0dGmd9f2pKSmcuJs1jbckNAwbvk8pKZzVYmTCUBdTY1BvbsCcOz0hbwZpCB1PGthYGTArk37pZ5F6Ocwdnvvx9DYgDqeubd9lR0rUrJMcY7vPy1xsoD4+Xuv3Ia6uhpNWku3fe/fBlPN0p1qlu70azcs/4xSgqKy39TcBJfazty+6iNxMgGkpKSyZtEmAJq1K1wHfNsOLYiNiWXFEum+evni9cTGxNK+YyuFdbXr0AKA+XOlV+bu2n6QwIC3tG7bVGrckx3GxkYM+6UfTx+/YN/unLdfKkvFBo7oGOpxectpiZMJIPpzJFf/PY2ukR4ODZwU0uV/4zG/lOrML6U68++4nB1ExUpboaapzrOrvlJOJoDrO8Vtv6ltMSWt+XZ+tHHf90Z6Pv59L/xQjqZMevbsSXR0NIMHD6Z169acOXOGYcOGkbmLcM6cOcyYMQNLS0t++eUXvLy8OHDgAD///DMxMTFSulJTU+nYsSM6OjqMGDGC+vXrs3fvXn77LW97kNPT0xk6dChr1qzBxcWFUaNG4eHhwaNHj2RkX79+TadOnfDx8aFLly6MHDkSIyMjRo8eLeNsAvj55595+/YtAwYMoGXLlly4cIFff/1Vcj0tLY0hQ4awc+dO6tevz9ixY2nQoAEPHz5kz549cstrZGTE2LFjAWjQoAHTp09n+vTp9O7dmwYNGmBqasq+fftk8u3btw99fX2aNm2ap99JEXR0dShToRTPH78kKTFJ6lpiQiIvnryknF0ZtHW0FdJX2dGBT8Gf+fhedibb1+cRBob6lCpXUpJWxakSqampPHrwVEb+oc9jVFRUqOzkoKRVipNlv79c+58/eUk5e8Xtr+Iktj9YUfudM+1/IldeRUWFyo4VlbRKMXR1dShboTTPHr2Qb/tjf8rbl0VHVzHbqzpV4mPwZ4Lfyy6DfuDjh4GhPqW/sP1rNDQ1KG9fltmLp2Jbwpo/f5tHSkqKckYpwY9Y9ys7i/U9uvdY5ppfRlqmjEJ67svWWz+fRwrrKWyKOYnjkny+L7s0/fO9lxkyZZVXLBKhbW5Iha4NqDq0Fe8u+vLq0I1vKmtB4OAkbkue3JOtc4/vPZGSyYmKGTKP7+egx1lWj13VCkxZNonzhy+y/u9NCpc7P6iUUWb5dVb5up9p55dkvleKvrcamuJtv9ERBbdqsyB4+PgZAFUcZB1kVR3sAfB9nFU3fB8/Jz09ncoV7WTkK1esgEgk4uGjZwVUWjFVnMSrpfzktH2+Gc+/inPuK6oyZfzkPH9l9BQ2RWV/ZScHVFRU5N730f3HpKWlUaUQ+wpdPR0q2JXl8aPnJH7V7yckJPLk8QvsKpZDR1dHIX2O1asS/OET77+KQQngc+chhoYGlCtfOlc9I8cNwsBQnzmzFpPf0VpKOYr7vTcPZMMwBNwXp5XMkMlPQt9+IjU5hYr1q6FvJr1d0LS42MH05mHhxiT6Ecd93xtpovz7+174IbfOLV68mCZNsry6FhYWLFmyhOvXr2NhYYG3tzdt27ZlzpysbUANGjRgwIABbNiwgV9++UWSLhKJ2L59O1WqVJGkaWlpsXfvXgIDAylZMvuPT3kcO3aMK1euMGHCBPr27StJr127Nj17SscFmDlzJrq6uuzfvx9DQ3FD179/f/r06cOKFSto3ry5lPy0adPo2DFribNIJGLbtm18+vSJYsWK8erVK+7evcukSZPo3bu3RG7ChAk8eSLb8QLo6enRunVr5s+fT+XKlenatavU9datW7Nx40ap3yI6OprTp0/Ttm1btLS0lPp9lMGmhBUAEWERcq9/Dg6RyPk/fZWjLl09HYxMDLONKfTpo1iXdfEsXdbFrYiPS5Bp8AE+f/wskSkobEtaAxAeJj/odb7an6nrC/ttiltma3+mfEHZn2V7hNzrnzJ+f5vi1rkGKNTT08XYxIinj17Ivf4xwxbbbHSN+HUgv4wXLxt/7PuU9l69ePxQtiPOT37Eup+pL0JOff8sqW+WCuixzNATkYOegntv84pecTMAEsJiZK7FfQzPkDFXTqetGZ1vLAIgOTaB27N28GTLWfg/DO1oaSveyhQZJhvsNOSjOHi5lQLPP1MmUk49CgkOlbpXJsWsizF300xe+Pnz1+h5yhU8H8ix7mfabquA7baZdT/7d0iR3xDEsdFA/EHyPfH+g3gywchQNtZMMTPxCtx3X8SleRcsljc2MpCR19LUxEBfj/fBysdpUYbMNktef5cZQ0WRNiurHsnqUaYNLWyKyn6bHN67xIQkoiKisbYtvL6iRElbAMLC5Md4Cg4W19sSJWx4+kT+eCYTPX1dTEyMeJyNk/Rjhq7iueiyLW5N735d8bnzgBNHz+Zqg7KYZKwaigmTdWhHfhTvQjG1Va7fU4TokEiOLdxNq/FdmXTyHy5sOMatfZdIjI2n08z+hAQGc2blgXy/b078iOM+gf9/fsgVTVWrSgeay4w5dOfOHc6dO0d6erqUowWgXr16lC9fnjNnzkilq6ioSDmZAFq1aiXRpyzHjh1DX1+f7t1zDhgWGRnJ1atXadasGfHx8QQHB0v+nJ2defHihczqq7p160r9u3z58gC8f/8eEJ8WkFnuL7f+qampydioKO3btweQWtV05MgREhMT6dChYGOa6OrpAmS7RSk+PkFK7lt0JWTs/9b7QpeOnk62QRflyec3uhmzVtmWIcN+RcqQZX/OunT1v7RfN/d76xeM/bk++zjF76+rp+DvmI2ue7cf4r1mO6eOnqds+dIsWvMXDlXtc73vt/Aj1n0dSX2XLae8+pmtHr2c9IjLrsjvVtio64qd9vK2vKXEiwd+GnqKzWRmkhQdh+/qYzzfdYmEsGhqTv2ZygMKbhXqt5D53OTFYcl8/pkyOerJWOUYL+f5J2Y+f33puj5v8yzi4xL4re9UkpPyfoBBXtHRyyyz7DunTN2XtHVyf0PF636rzs2oUr0Sl09fxf9Jzh80/2/EZtiuoy07CaalpZkhE/eFfFy28pl5YhQMvpxXJHU/hzZLkfY257ZP8fFCYVNU9uckn5mnoMY48sgsW2yM/PoWr8S4KzddcQrqGv/bCLS0NJk9Y3Gu98wLmhn9XqKc2HvJGf2elpL9nqKcXnGAI//sRM/UgJa/dmH61WVMu7IMXSM9FrT9Xa7zqyD5Ecd93xtp+fj3vfBDrmj6GgsL8exkSEiIJE3eSqSSJUty7dq1XPVZWlrK6FOU169fU6JECTQ0cj5tKjAwkPT0dNatW8e6devkykRFRaGnp5etDh0dcSeZmChuAEqXLk2bNm04ePAgly9fpmrVqlStWpVmzZpRuXJlpW0BsTOrSpUqHDx4kJEjR6KiosK+ffuws7PLs/PqS7zaeFLZUXYpZub+eCDbLUoikXjtoTJLebPXhVxdysorS9M2jeRuP5OyPzkX+5XY7Zucm66v7VdSXhma/9SYKo6yy+FXLszaT55chM8+kysXbnDlgnirUYnStuw7tYXlG/+mWZ2OksFrXvjR6352yKtzoqyb5oue/+fDWtPkHSefx3InRcZxa8Y2sQoVEZ5rR+E6tRuR/h94e+7+txa1QMi35y/nd5RXd2esmYa5pRmDW49Q+ujo/CYlWV6Z8/Cu5/Qb5tJfVHd3YsLsMXx8/4kZY+bmKPv/jLqc2DOZP6G8XQvZxqpJT5fUm4JGXpubl/ZWvp7//7avqOzPqZ/N79+rTdtmODrLjscX/bM69/Jk/FeZImWvK/f6YO9QnvadWnHl0g0uXyzY08RS5Y01M599Ad3Tc1BrvEa0xfuXJby6+wznlu64dqiPZXlbBm2cxNoBfxP1Ke8nCMpDGPd93/yI1guOJiApSez1VlNTyzVuikiBEcOX+pQlNTU1VycTiOMpAXTp0oUGDRrIlTExyTnQsjxb5s2bR9u2bTl37hwPHz7E29ub9evXM2XKFLp1y1twzXbt2vHHH39w48YNihUrxsOHD5k8eXKedH1NnYa1aNO5hUz69g27iY0Rr8rKjBXxNVoZM5DyZsG+JlOXZi66vvT+x8XEoampmbN83LfNdNZpWIufusjav23DHmIzZhY0tXIpgzL2K6ErLiY2X+6dHfU9a9Oui2xgy3/X78z1eWkrZXvG75jbs1Rg1vrN6yCO7j/Fz3064FLLicvn8j74+tHr/tfESeq7bDmVqW9xGc9bQ07d1dIWpyl6PHBhkrmSSVVTXeaamrb4N0nO5cS1nEhPS+fBskOU9KpOufa1/+8cTZLnJqeeKvX8M2Tk6dGU897UrF+D+9cf0Kqb9LtYukIpAOo2rY1lcUuunLzGw1sFc/pUXEz2ZZbUWaXauuz15PQbOrtVY4H3bGJj4hjWZYxUYPLvBd2M+CWJSbLbPxISM1bGfRHjRDdzwk6OPEB8QiI62gWzoiITxep+7u1tznpyf/5FRVHZn5N85r3z+/dq2LgunX9uK5O+Ye1WYiR9tfy+NzM2jyKHFcXkNobS0crQlf3vOnnqGFRVVfnrz0W53i+vJGb0e+pyyqmR8cwS5azy/VZKOZWnzaRuHF+8h7uHrgJwdvUhzq05TIO+zWk7pSe9Fo9gadc/8/W+wrhP4HtDcDQhXkUE4hU98fHilyYgIICKFaVXigQEBGBra6uUPmUpVqwYb968yVXOxsYGEDuzPDw8cpFWjlq1alGrVi0AwsLC6N69O6tXr87W0aSiIt6Bmen8+pqWLVsyZ84c9u3bh7m5ORoaGpLtit/KlJEzmTJyptxrmdsALKzkn/xglRFn493bD7neJzYmjsjwKIrlouv9F7reBwVTzr4MmlqaJCYkfiUvXvX2/o1skEVl+H3kDH4fOUPutVztt8mw/42i9kdiYSV/r3umLln7y8q330bx3z47JoyYzoQR0+Vey1yea2md3fMS//7v3rzP9T4xMbFEhEdikY0u6wxdQQraEhEhjudgaCgb00MZfvS6/zWZR04XszLn9YtAqWuWkvqZ+z0/BInjqcir65Zy6vn/CzFB4hW0ulYmRPpL12s9a1OxzFvlV9l+SWKEeDu2huH/3/L3j+/Ez83cylzqxDQACxtx3Q0Oyj1WTqZMMSszmWuZej58VY8ca1XDsZb8E/1q1K1OjbrV+fzhc4E5miR139pc6rQsyKqzX5dZHlm2Z1/3s9NTz6sOs1ZMIyIsguFdx8o8g+8FK0vxM/74WfZd+ZAZZ8QyK0aXdab8J1n52Ng4omNiqVghD0H4leB9xvO3sCom0/ZJ2ueg3J//l3q+RtJu/x+2fUVlf07yOro66Bvq8dT3uSImKMzIob8xcqj8w4Yyt7FZWVvIvW6bES/q7Zt3ud4nJjqW8PAIrKzlx+TKTZdrreo0btqAk8fP4XPnQa73yyth78TvpJGVCR9fSpfF2FrchocFfZbJ961UayY+xfPJhftS6enp6ZxffxS3zh6Ur1UJTV2tfHV0CeO+75vvKYh3fvFDxmj6kvT0dDZs2ICqqiqenp54enoCsHHjRim5ixcv4u/vL7meHcnJyXh7e2NgYCBx1ihDzZo1CQ4O5ubNm1LpDx8+lPq3ubk5Tk5O7NmzhxcvZAPx+foqP6B9+vSpTFwpExMTrK2tJau05GFiYoKqqioBAQFyrxsYGNC4cWPOnDnDwYMHady4MUZGRkqXT1liY+II8A+kUjV7yWxUJjq6OthVKk+Af6BCM10AfvcfY2FlTvFSss5Gp5rViImO5fXLrEGO373HqKur4ehSVUbe2c2RtLS0Ag0KHRsTx+uc7K9cntdK2f8EC6ticu13ds2w/4uPHN8M+51qytpfvVaG/XJOp8gPYmJieeUfQJVqDpKZlEx0dXWoWLkCr/wDcpyN+xLf+4+xtCpGidKytld3dSQmOobX/gEK6XKoLD6d6F1QwQ3Yf8S6n3lSUPVaskcZO7uJnQCK1LfM07Wq13KUo8dRYT2Fzef74lg4Vm6y8b8sM9JCHr7+pnuYOIi3lMe8+zaHVUHwOOO0OcdasnWumqs47emD3E//epJx2pyjm6zjqJqbWM+zh1kfj3VtPOX+ZQYFXzh5CXVtPNm9Tvb01fwi87S5zPr5JU6ZdV+B902iR07dz9TzRE7db9ejNXPX/sn7N+/p13rod+tkAqjiIG6fb9+THUPdve8HQCX78pK0yvbi0+nu3Jcj/8CP9PR0KfmCIOe2zxGAR3JOUZTVI277auSk5/+w7Ssq+zPflxpy+4pqqKioFGpfERMdi/+L11RzqixZtZ2Jrp4OlarY4//idbZxl77mvo8fVtYWlCpdQuZaTTdnoqNiePkiQG7e36ePJS0tjTkzCyY2UyaBGafNlXOV3U5WtqZ4scAb3/w//U1NQ7xy2MhS/s4RlYyYtyqqhfeZ/SOO+743fsQYTT+ko2no0KEsW7aMdevW0bt3b44dO8bAgQOxtrambNmy9OjRg4MHD9K3b1/Wrl3Ln3/+yfDhwylVqhT9+vWT0pWamkqPHj1YvXo1q1evpkuXLvj4+DB+/Hi087Bc+ueff8bIyIjhw4fzzz//sH79erp27cqCBQtkZKdOnYqqqirt27fn999/Z9OmTSxZsoROnToxZMgQpe8dFBREt27d6N27N6tWrcLb25uxY8dy+fJlOnfunG0+NTU1XFxcOHHiBDNnzmT16tUyjrr27dsTHx9PaGhogQcB/5LjB06joanBz/06SaV3698RNTU1jh84LZPn4OUdHLy8Q+YYzkzZXkN+lkpv3q4JZsVMOXvsglRsi+MHTgHQY1BnyaovEDtlHKracffGfT5/LNgPtuP7xfZ36y9tf/cBncT275e1/9CVHRy6Imv/sQzZPkOl7W/R3guzYqacOfqV/RnyPQd2kWO/PXevF6z9R/adRENTg54Dukil9xzYBTU1NY7sOymT58S1vZy4tpeqTtKxnzJl+w/tIZXeun0zzIuZceroean4VcPHDcC1dg0Z/a3bN6NB4zoEvHrDg7t+ebZNEX60un/17HWio2Jo1akZRiZZJ0YZmRrRrF0ToqNiuHo2a6ti5z7t2Ht5K38u+V1Kj6/PY4IC39OgaV2Kl7KRpGtpa9Kue2tSUlI4c/h8vpY9P3h77j5JUXGU71QPTeOs2HxaJvqUbetOUlSc1Ha3ir0b0/7CPOotGiSlx8rdgcoDm6H21UBV19oUl0nifuDlvqsFZ0geuXHuFjFRMTTr5IWhcdZqQSMTQxq39SQmKoYb525J0tv1bsO/FzcyefEEKT2PfZ7wPvA9dZrWxqaUtSRdU0uT1t1akJKSyvkjFwveICW4evYGMVExtOzUFMMv676JIU3bNiYmKoarZ29I0jv2acfuS1uYvlh6ZYSfz2PeBb6nftM62H5R9zW1NWnbvZW47h+5IEkXiUT8MmUIk+aO4+61e/RrM4xPH/J/9UBBsG3PIVp1HcCkGf9IpVd1sMPW2pJzl6/zJihrZWB8QgK7Dx5HVVUFr4ZZB6sUMzelhlMVHvg9xedh1gl7qampbNt7GIBmjRoUqC1Xzl4jOiqGNp2bS7V9xqZGtGjnRXRUDFfOZsUX7dK3PQcub2fm0ilSenx9HhEU+A6PZrJtX/uMtu/04XMFakteKCr7P38M4fY1H6rWqIyjS1bMURUVFbr2E49z5fWzBcmBvUfR1NSg3yDpA4X6D+qBmpoaB/Yelclz+dZRLt86ipOzdNzUTNkhI/pIpbfr2JJiFuYcO3Ka5GTZww+atWyEi6sTB/Ye48mj/F3R9TWPz98jPioO1w710TXWl6TrmehT46c6xEfF8fj8PUl63Z5eTD67gO7zh33TfZ9fFTuWm4/tjL6Z9AmV1VvXxqKsNa/uPCM+qnC3iv1o4z6B/39+yK1zVatW5eDBgwQHB2NlZcWUKVOkTnmbPHkyxYsXZ+fOnSxevBgDAwNat27NmDFjZIJrq6ioYG9vz/bt2wkNDaVUqVIsXLiQ5s2b56lspqameHt7M2vWLLy9vdHV1cXT05Pu3bszZswYKVkHBwf27dvHihUruHjxIgcOHKBYsWLY29vTv39/pe9dvXp1hgwZwvnz51mxYgXq6uqULFmSWbNmSU6Py46ZM2cyffp09u3bh4qKioy8m5sbZmZmaGpq5mmlV17ZsnoHzX5qzKjfh+Li7kzAqzeULlcS9wauBPgHsmX1Dpk8pcuLZ+2/nhE4uuck7bq2olOvtpSzL8NTv+dYWhejXuPahH4OY/m8tVLyd67d4/iB0zT7qTE7Tm3k3q2HGJkY4uFVj6TEJP6ZVrAzPQCbV2+nWdvGjP59GC7uzgS+eiux/7V/IJtXb5fJU6Z8KQCZGbEje07Q7udWdOrVjnL2ZXmSYX/9DPuXzVsjJX/7mo/E/l2nN+Fz8wHGpkZ4eNUlMTGJeQVs/8ZV22jZzotfp4zAtXZ1Al6+oUy5UtTxcOOVfwAbV22TyVM2w/avV0Ed3H2MDt3a0LV3B8pXLMdj36dYWVvi0aQOIZ9CWTRnlZS8QxV7Rk4YTMCrN/jcfkh8bDyVqtrjWKMKMdEx/DpsarZbTfOLH63ux0THsmTWSibP/ZWdZ725fOYaiKBuI3fMLcyYNeFvYqKzYlMYmRhRulxJQj+FSelJT09n3uSFLPSew5bj67hw8jIJ8Ym4e7hiW9KajUv/5W2A9BJ9XT0d2nVvA4BthnPCoZo9PQZ3BeDquRu8ev5tq4lyIzk6ntt/7aD2nL60PT2bt2fvIRKJKO7phI6FEVcnbiA5OiuegpaJPkblrIn/LH00t4a+Nq5Tu+E0qi0fbjwl5l0IupbG2NSvgrqOFr6rjhJ8U3plkLqeNnbdxFu4DUqKl9qbVStD5UHifjDo/AMinue+XeNbiI2OZdVfaxk3ZzSbzqzl2pkbiEQi3Bu5YWphyj8TFxL7xfM3NDGkZLkShMl5/oumLGP2xhmsPbqCK6eukRCfgGsDF6xLWvPvsu28C8h9y21hEhsdy9JZq5g0dxzbz2zkyplriEQi6jRyx8zClNkT/pGy3cjEkFLZ1P2/f1/E/E2z8T62hksnr5AQn0AtD1dsSlrjvWwrQV/UfceaVekxpCtxsXG8ehZAv1E95ZZvw+LNREfGyL2Wn/i/CuTyjdsA3PcVr045e+karwPfAtCxTTP0dMXbi8Ijo3j9JghTU2MpHSoqKkwaPYQRE/6gS/+ReNRxQ0tLk6s37xL0Pph+3TtSwtZaKs/4EQPpNXQcA0dNxqOuG0YGBtx54MuLlwE09axHTWfZGf78JCY6lsUzV/D7vPHsPreZS6fFz79eY3HbN3P8PNm2r3xJQj6HSulJT09nzuSFLPaey7YT6zmf0fbV9nDFtqQNG5Zukdv2te8hbvsynTMO1ezpOSSr7Xv5rGDbvqK0/59pS9h0cCWrdi7mwsnLRIZH4uzmSAWHcpw4cIY71+5RmKxe4c1P7Vvw+/SxuNepyauXAZQrX4YGDWvj/+I1q1d4y+QpX6EMkBV3KZM9Ow/TtXt7evXtgn3F8vj5PsHaxpLGXg34/CmEeX8tldGloqLCpN9HkpyczN+zlxWMkV+QEB3Poblb6TxrABNPzMPvrA8ikYhKns4YFjNm5+S1JHzR7+mZ6GNR1oaozxEyuoysTHFuKf4+KV5VvN21Qu3KqGfEPfQ5cp2ID+I643v6DveOXMepZS2mnF/E44v3iQ2PwdquOGVrViTqcwTbJ6yWuUdB86ON+743vqeVSPmFKP0HCgG/dOlSli1bxsWLFyUnw30LEydO5NChQzx+/DhbmcjISEncp9wwMTFRKBD498j79+/x9PRk2LBhDB8+XKm8VS2/zTFlbGrEsPEDqd+kDiamRoSFhHPx9BWWz1srN1jpw2Dxqoe+7YbKDBK0dbQZNKYPXq09KWZpTlRkNDcu3WbZ3NVyYx2pqanSa0g3Wndqjk0JK+LjEvC5eZ8Vf6/j2SPZLY9fk5YPr6exqREjJmTab0xoSDgXT11h2bw1cu33+yie+e7Tdii3r/lIXdPW0WbwmL54tfHEIsP+65dus3TOqmzt7z1UbL9tCWvi4+K5e/MBy+etVcj+xLRvOyrcxNSIUROH4OFVDxNTY8JCwjh38jKL564kTI7tLz7fBaBbm4HcunZX6pqOrjbDxvSnWZvGWFgVIyoiimuXbrFw9gqCvor15FDFjp86taCGmxOly5ZAU0uL0M+hXL14k5WLNhD46q1C5ddW/bb24Huu+wBqIlWlbfZs0YAeg7tQrqJ48Pzi8Uu2rN7BuaPSq1AGje3LoHF9uXPtHgPbj5DRU8Pdif6jeuHgWBE1NTUC/APZu+Uge7cclJG1srXk6O092ZZp2shZHN51XCk7hqmWUko+k1ItXKgysDnG9sUBCHvyBr81xwk4dltKzmlMO5zHtOPD9Scc6zhLkq5hqEP5jvWwbVAVk4ol0DLRIyU+iRC/AJ54nybgqLQeAD1bMzrfWJRtmS6NXs2L3ZeVsmNTet62ljZoUY/OgzpSxl4cI/Hlk1fsXL2bi8ek799nTE/6ju3FvWv3+aXjWBk9Tu6O9BrZDftqdqipqRH48g0Htxzh0L9HFCpHs05e/LZwPAsnL2HfJtk6kxsJ6cq3fQ1b1KfboM6Suu//5BX/rtrJ+WPSdX/A2D4MHNuHu9fuMbjDSBk91d2d6DeyJxUd7TNsD2Tv5kPs//eQlJxzLUdW712Sa7la1+wkiSOlKNceblJKHuDA0dP8/pfs6u9MTu7ZhI2VOLbI8vX/snLDVmo4VWHTsnkysrfuPmC193b8njwnJSWV0iVt6fRTCzq2aSb3IJWnz1+ybN0WfB4+Ij4hAVtrK9o0a0Svru3knmCXGzUqd89d6CsatfSg5+CulM94/s8fv2Tzqu2cPXpBSm7wuH4MGdeP29d86N9OdjzmUtuZAaN6U+mLtm/35v3skdP2WRe35Pjt7LeFThk5k0M7jyltS14oCvsB7CqVZ+j4/jjVrIa2jhZBge85vOs4m1dtk3t6ZW58TPi2k8pMTY0ZP/kXmjT1wNTMmJDPYZw+cYF5fy0hNFRWd3CEeAtgu5Y9uXZFun3X0dVhzK9DaN22KZZWxYiMiOLShevMnbWYN4Gykwdde7Rn4dKZbNm0i19HTctT+TsZKe+YdWzmiseAlljbibf5vX8ayLm1R3hw4paUXLNRHWg2qiMvbjxiaRfpQN3l3Bz4ZUf2ZV7S5Q/8b2R974lEItw6e+DWsQFWdiVQ01AnIjgUv7N3Ob38ANEhkdnqyokLCd+29fh7HvdlluW/yqriyrfr2TH47b/5pqsgERxN34AijqaJEyeyf/9+hfRt3rwZV1fXby7X/yMLFy5kzZo1nD17Fmtr69wzfMG3Opq+Z/LD0fQ9862Opu+db3U0fe/kxdH0XyGvjqb/Cnl1NP1XyIuj6b9EXhxN/yXy4mgS+G/wrY6m7528OJr+S3yro+l7RnA0Kc734mj6IbfOFSa9e/fGy8tLIdkKFSoUcGmKhpSUFPbu3Yu7u7vSTiYBAQEBAQEBAQEBAQEBge+VH3HrnOBoKmDs7e2xt5c9BehH4syZM3z+/JnJkycXdVEEBAQEBAQEBAQEBAQEBAqNH9HR9EOdOjdixAiePXuWL9vmAObMmZPjtjkBMU2bNuXZs2c0a9asqIsiICAgICAgICAgICAgICBQgAgrmgQEBAQEBAQEBAQEBAQEBAQKgB8x6q7gaBIQEBAQEBAQEBAQEBAQEBAoANJkDyz9z/NDbZ0TEBAQEBAQEBAQEBAQEBAQECg4hBVNAgICAgICAgICAgICAgICAgXAjxgMXHA0CQj8H3Ojt3VRF6FIifcJLeoiFCn6/0wo6iIUKWnnDxZ1EYqMPgs/FnURihTNtB97eHInxL+oi1Ck1KjcvaiLUKTc8fu3qItQZKQcXlXURShSjk8KKuoiFCmrUsOKughFyrlqGkVdBIEC4kd0NAlb5wQEBAQEBAQEBAQEBAQEBAQE8oUfe8pQQEBAQEBAQEBAQEBAQEBAoIAQTp0TEBAQEBAQEBAQEBAQEBAQEMgXhFPnBAQEBAQEBAQEBAQEBAQEBAQE8oiwouk75e3bt8yYMYN79+6RkpLCgAEDGDp0aFEX6/8Gj6b16DXkZ+wqlQPg+eOXbFqxlfMnLimlx9m1GoPG9KWSY0XU1dUJ8A9kx8a97N9+WK58efuyDB0/AGfXamjraPPu7XsO7jjKltU7SE1N/Wa7FEXVoSYa9dqgYl0KgLQPgSRdPEDq41tK6xLpG6NepyWqdk6oGJuDmgapT31I2DJXIqNW3QOtTiNy1RU7ZxDp4Z+VLoOyaLjXQadjZ1TLiJ9/6uuXxO3aQdK1Kwrr0P91IlpNmmV7PeH8WaL/+lMmXaSrh/ZP7dCoVRtVK2tEOjqkvH5FxNAByhuSB87d8sX78HmeB74HoEJJK3q1akjDmlUU1pGWlsaeM9fZd/YGr4I+oqqqgkPZ4vRoUZ8GNSrLyF/2eczJa/d4+CKQ4JAIAEpYmdGibnW6t2iAuppqvtimCKplq6Hm3AQVc1uxLSFBpNw9RerLBwrlV3dribpbq1zl4hYNkvy/imVpVB1qoWpdDpGhGSAiPTaS1LdPSLl3jvSwD3myJS/UaOJKq4FtKFmxNABvngZwaPUB7py6mSd9VepU4/etf7Bh6hpOeh+TK+PoUR33lrUp72SHmY0ZAB9ef+DK/oscXX+I1JTCa/vcvWrRaWAHyjiUAeDVk9fsWr2bayevK6Wncs3K9BjZDbtqFVDTUOOt/1sOeh/mxM6TUnJNOjZm/IJxuerrVqsnH4MKL8C7iYkRU6aMpWXLRpibm/L5cyhHjpxhxoz5hIVF5Emnqqoqx45txcHBjuLFnRTKs2HDIrp2bYuZWUViY+PydF9FEff7XanwRb/vvWKb0v2+k2s1Bo3pI9Xv79y4l/3bj+SYr2TZEuy/tJV/1+xkwR/L8mzHt7Ln0HGmz13CsnnTaVDbVen8d+/7sXLjNh49fU5ycgqlS9rSpV0r2rfykiv//OVrlq3bgs+DR8THJ2BjbcFPzZvQs3Nb1Aqx7T/3/AObb/nz/FMkAOXNDenlWo6GFawUyr/y8lNWX32Wq9z9iW0AOPjwDdOO3ctV/ujgxtgY6ShUhm/BqmkNyg9pgWGlEgBEPX7D8xVH+XDijsI6ijWoSvG2tTCpXh4dGzPSUlNJ+BBO8Nl7+K89Qfw76QNaKo5rT8Vx7bPVF3b3BRdaTMubQUrg7lWLDgM7UMZB3O+9fvKa3av35KHdr0T3kd2oIGn3gzgsp91v3LExvy4Ym6u+HrV6FUq7r1GrDtodpMe88bt3kHRd8TGv3ticx7yJF84SPVv+mFerTTs03Gqjam2NSFuH1NeviBheOGPe74kfMRj4D+9o2rdvH5MmTUIkEnHkyBHKlSsndT09PZ2mTZsSEBBAhw4dmDVrVhGVNIu0tDSGDBlCZGQkvXr1QkNDA1tb2zzpio6OZuvWrZw/f57Xr18THx+PhYUFJUqUoG7durRp0wYTExMAbt68Sc+ePSV5NTQ00NfXp0yZMtSrV48uXbpgYGAgpT8oKAhPT0/Jv1VVVTExMaF27doMHDiQsmXL5qncOdG2ayv+WPgbYSFhnDx4FoAGXnVYvGkuU0fP4kAug8VM3Bu4suzff0iIT+T8iUvEx8VTx7MWfyz8DavilqyYt1ZKvoJDOTYfXo2qqioXTl0hPDSCGu5OjJk6nPIVyzJ5hGwDXRCouXii1WEYaTGRpDy4CoCqgwvavSaSsHsZKXfOKaxL1aEmWl1Ggooqqf6+JL96jEhDA9Kkm8u04DckXcr+hDDVclVRtS6dN4OURKtpc/THTiAtPJzEi2JbNd1qY/jHLKL/mUvCSfkfy9mRcPI4aVGRMukp/i9k0tQqVsLwj1mIDPRJfviAxPNnQE0dFUOjPNmiLPvO3eCPVTsxNtDDy90RgAt3HjH6nw1MH9yFtg1z/+hITUtj7PxNnL/tSwlLM5rXdSYxKYWr958wct56RnVrSZ82nlJ55m7cz4eQMKpVKI1blQrEJyZx/eEzFm09wt0nr1g2sXAGHKqVaqPZuCfpcVGkPhcPrlXLVEWz1VAST3mT+vharjpS37+Eu6eyv0c5Z1QMzaTS1N3boGJTnrT3/qS+E9cLFTMb1KvUQ83ejYSdc0gPefcNlimGR+dGDJ43nMiQCK4fEQ8wqzdy4de1k1j561Iu7DqrkB6LEpa0GNAaM2tzqtZ1zFW+z/T+mNmY8/zuU3yvPkBTW4uq9Rzp9lsv7F0dmNe3cPrNpp29GPfPGMJDIrhw+CIAtRrX4s910/ln3HxO7Mz+uX5JjfrVmbVpBgnxCVw7eZ2E+ARqergw7p8xWNha4D1/s0Q24FkAu1bvyVaXcx0nylXK/34uJ/T0dDlzZg8VK5bn3LkrHD58Cnv78gwe3JN69dyoV6+NUk6fwYN74eRUGTe36lSoUJaQkJxPherUqTUNGtTGyakKjo6VvtUchWjbtSXTF/5GWEj4F/1+XRZtmsO00bM4sP2oQnrcG7iy9N+/v+r33Zku6ffXScnrG+ozbHx/zCzMcG9QE1XVwnOsfInvk2fsP3KKt+8+cOPO/TzruXrzLkN/nYqWpiYN67mjraXJ5et3mDZnER+CPzJ8QE8p+acvXtFjyFhSU1PxqOOGsZEht30esmDFel68CmD2lNydsPnB/geB/HH8PsY6GnjZ2wBwwT+YMftuMb2ZIz9VK5mrjmq2JvSsmf27eubZB95HZr035cz1c5S/EfCZ55+ilLAi75Ts2oDqCweSEBLJu4M3ALD0cqbWpjHcHb2awO0XFdLjOLs3WhZGhFx/yqeLvojUVDFxLkf5wS0o0bEuZxtOJOFjhEy+d0dvEfvmk0x6XFDIN9mlCE07ezHmn9FEhERw8bDYqVyrsRvT101j/rgFnFSw3a9evzozN/0p0+6P+Wc0xWyLsXn+FolswLMAdufS7pctpHZf06s5+mMmkBYRTlLGmFejVm0Mps8iev5cEk8pOeY9JX/Mm5rNmNdg+ixE+lljXpGaOqJCGvN+bwgxmn5gRCIRGzZs4K+//pJKv3DhAm/evCmiUsnH19eXFy9esHz5cho1apRnPX5+fgwZMoTQ0FAaNmxIo0aNUFNT49OnT9y5c4e5c+eybds2Tp8+LZWvXbt2VK1aleTkZEJDQ7l9+zbz589n8+bNrFq1isqVZVc8NGzYkHr16pGamsqLFy84dOgQJ0+eZPPmzVStWjXPNnyNrp4OY6cN51PwZzo16kVYSDgApnNM2HXGm7FTR3Dy4Fni4+Jz1CMSiZj011iSk5L5uVk/AvwDAdDW0WbLkTX0G9GT/dsO8yEoWJLn1z9GoqmlSf8OI7h7XTzLpaamyrJ/59OqYzN2bz7A/dsP881WuWhqo9m8F2lRYcQvGkt6rLizEJ00QnvkfDRb9CLl4TVISshVlYptObS6jyMtyJ+ELX+THh2erWzau5ckvXuZbZl0q3uQ9imI9IhQ+TL5hEhHB92BQ0kNDSF8cD/SIyIAiDVej/HKdegOHELCxfOQkPPz/5K4PTtJDXidq5yKeTEMZ88jLTSUqLG/kPq2cNuNmLgEFmw5hLmxATvnjcPUUB+AkIgoOo//hwVbDuHl7oiOlmaOevacvsb52740dqvG7F96SFYjRcXGM2TWKpZsO4qHSxVKWReT5OnsVZvmdapjaqQvSYtLSKT3lCVc9nnM9YfPqFXVrgCs/gINLTTqtictJoKErTMhPlqcrmOAdrff0ajXgfgXdyE5MUc1aW+ekPbmidxrIgNT1Kp5kPrV9WSf06QdWwsJsVLp6rVao+7aArVKtUm+uCvvtimAtp423Sf3JuxjGBOajSYqVPzuG5obMffYAnpM7s31I1dJjMv93Te1NsOrZ3OF731y8zGuHrxEZEjW4FRTW5M/986huqcLVepUw/eKYivK8oqOng6Dfh9AyMdQBnsNISLDfmNzb1YdX87A3wdy4fAlEnKxXyQSMXzGMJKSkhneaiRvX74FQEtHiyUHFtJ1WGeO7zjBp3fij6rnD1/w/KHsADyzTF4dG/PG/y2f3xf8Ss5Mhg/vR8WK5fnjj/nMmbNEkv7bbyOZMmUMQ4f24e+/lyusr23bZtSrV0th+UaN6tGjR0elyvwt6OrpMCaj3+/cqLek3182Zw07z2xizNQRnDx4TqF+f+JfY0hOSqZbs/5S/f7mI6vpO6In+7cdker39Q106dqv8GzNjpev3rDrgHIflF+TlpbGrAUr0FBXZ/u6xZQpWRyAuLh4ug0ew7otu2jXygtrSwtJnr+XriExMYn1S2bj4iQeyyWnpDB03FQOnzhLxzbNcK5asM7GmMRkFpx7hLmeJjv7eGCiK+7jhsUk0GXjBRacf0STijboaOT8yeNeuhjupYvJvfYuIpbtd1/jWjJrkqGSlTGVrIyzLdMh37eUMtHD0kA7j5YphpqeNlWmdSM+OJxzjSaRGCJ2bmnOMcTzzF9UmdqNoIM3SI3Lue8D8P1jG58v+5ESK91OVl86hJId62LT2o2Xa0/I5AvccZHg07mv7spvdPR0GPB7f0I/hjLEa6ik3d9kbsyK48sZ8PsALirc7g8lOSmZX1qN5O3LIEDc7i86sJAuwzpzYsdJSbv/4uELXuTQ7jfp2Ji3hdDui3R00B0gHvNGDOlHemSEON17PcbLxWPexEvKjXnj9+wkNVCxMa/BrHmkhYUSPa7wx7wC3wdCjKYMPDw8OHz4MCEh0t53b29vGjZsWESlkk9QkLgB/Hr1lTKEhIQwaNAgkpKS2LFjB8uWLWPAgAH06dOHCRMmsHv3bvbv30/16tVl8rq5udG1a1d69uzJ6NGj2bZtG5s3byYlJYV+/frx+bNsw1qlShW6du1K9+7d+eOPP1i7di0JCQn8/fffebZBHnU8a2FgZMDOTfskg02A0M9h7PLej6GxAXU8cx8wV3asSMkyxTm+/7RksAkQHxeP98ptqKur4dU6a1WHqbkJLrWduX3VR+JkAkhJSWXtok0ANG/XJB8szBk1O2dEOnokXz8hcTIBpMdEkHzjBCIdfVTtFNvyoNm6H+mx0SRsnpujkyk3NBq0RaRrQNLpHZBesAtHNVxcUdHXJ+HQAYmTCSA9PIyEIwdRMTBAo6byWwkUQXfAYEQqqkT9MaVIOtwr958QHRtPpya1JU4mADMjAzo2qU1UbBxX7sl3oHzJiWvi+ju8S3OpLW8GutqM7t6KtPR0Dl6Q3oLZo2UDKScTgI6WJq3quwDw5FVQnu1SFNVSlRFp6ZLy8GKWkwkgLorkhxcRaemiWurbPnjU3dsgUlMn+doBqfS0gEcyTiaAtDDxB2l6XLTMtfzGsYEzeoZ6nN5yXOJkAoj8HMHpLSfQM9LHqYGzQroe3/Cjc8mf6FzyJ1aMXZKr/LH1h6WcTACJ8Ylc3CueXS1duYwSluSNmh4u6Bvpc3jzYcnHBkD453AObzmKgZE+NT1cctVjV60CtqVtOH/wvMTJBJAQl8Du1XtRU1ejQct6CpWp89BOGJoY4j1/M2lphbdovnPnNsTExLJw4Wqp9AULVhETE0uXLj8ppc/Lqwva2iXR1i5JYODbXOUHDhwnkb90SbmtK3khs9/ftWm/TL+/W9Lvu+WqR5F+v0lr6fHg+7fBVLN0p5qlO/3aDcs/o5TkpxaN8bt6HL+rxxnSt1uedPg9ec6boPc0a9RA4mQC0NHRpnfX9qSkpnLi7GVJekhoGLd8HlLTuarEyQSgrqbGoN5dATh2+kLeDFKCq68+EZ2YTCen0hInE4CZnhYdnUoTlZDMlVfftn1p2aWnJKemMbx+RYXkN954QUR8EkPq2qOqUrARgC08q6FhpMurTaclTiaAxM+RvPI+g4axHpaejgrp+nDijoyTCSDGX7wVPym04PsyZXDxqJHR7h+RafePbDmCgZE+Lgq2+zalbTh/8ILEyQTidn/P6j2oqatRX8F2v9PQjoXW7qtnjnkPH5A4mUA85o0/ehAVfQM0XApozNtvMCJVVaKLaMz7PZJGer79fS8IjqYMOnXqhLq6Olu2ZC2NfPHiBdevX6dPnz5SsmlpaQwbNowmTZrg5OSEs7MzrVq1YuPGjTKNip2dHZMnT+bYsWOSlUBeXl7s2iU9u33z5k3s7Ow4eFB6+1FwcDB2dnYsXboUEG/1GzNmDABeXl7Y2dlhZ6f8SoF169YREhLCtGnTsl1RVLFiRebMmaOQPldXVxYsWEBERASLFi3KVb5GjRqUKFECPz8/ZYqdK1WcxB+Sfvcey1zz9XkEQFXn3D82q2TI+Oagp4qzwxf3dUBFRUXuff3uPyEtLU1KvqBQKVEegLS3sjMtmWmqJSrkrseiOKol7Ui5dxG0dFBzaYRGk66o12mJigL5MxHpGaFepyWp716JV1IVMGr24t84+ZmsQyX5qfjZqNsrNlBUBpGeHpq165J0+ybpcXFoNmmKTs8+aHfojLqTrLO2IPB9If4wqlyuhMy1KuVKSsnkREiEeCBpbW4ic83RrjSqKioK6QFISkkBwECvYGd0QRwnCSAtWHYmLjMtUyYviMxsUbVzIeXlfdKCA3IW1tJFtXx1NOp1IO3zW1IenM/zfRWlnJP4vfS/L/vu+99/LiVTWKhrqAMQGynrhMtv7J3E/eDT+7IxVp7ef5ohY6+AHrHMMzl6ntxTXI+xuTHt+rXF38+fi0eUixH0Lejp6WJvXw4/v6ckJkqvYEhISOTRo2c4OFRAV7fgY8YUFjn3++K0Kkr0+35yHPLK6PleefhYXOerOMi2E1UdxHXe94LsEpYAAQAASURBVPFTSZrv4+ekp6dTuaLsGLRyxQqIRCIePso95tG34vte7FysZC27uqhKRprf+7xPlj37GMmJx0E0KG9JFWvZfvFrQmIS2HrnFXbFDGlib53n+yqKiZN40jn8nuyq8jAfcZqxcx62cYlEaJobUurnBlQY3oqPFx4SdLDgHcfKkFN7ndkXZPYNedZzT3E9X7b7l45czlX+W1G3E495U+SMeVMyxrxqBTTm1ahdl6RbN0mPj0OzcVN0ehTumPd7JC0f/74XhK1zGejp6dG+fXt27NjB4MGD0dbWxtvbm6pVq1KjRg0p2fT0dMLDw/Hw8MDS0hKRSISfnx9z584lPj5eJij3wYMHOXPmDO3ataNp06YcPnyYKVOmULp0aVxccve0f4mjoyM//fQTBw4coG/fvpQoIftRqQinTp3C3Nycpk2b5im/PNzd3bG3t+fEiRNMmzYNDQ2NHOU1NXPewpMXrIuLgz5GyAl2+jk4JEPG8pv0fJLosZKRD5cjn5iQSFRENNa2igWk/BZUjMXLvtNjZWed0qPCpGRy1FNK3DGp2jujXrcVIhXpuBPJdy+QuGc5pOUc5FejcWdEGlokndymUPm/FVVL8bNNj5TdX54WIt62p2qR+/P/EuPlaxBpaJAeH0/q+yASL10gbt8eSMia9VOzd0CkoYFq6TKYeG8Tx7H6gqS7t4n6cyrpcQUXDPf9Z/HzNdbXlblWzMRASiYnihkb8ObDZ168eU+lstLti5qqKjramoRFxShUpvO3xY7kquVLKST/LYgMTAFIj5ctW3pMhJRMXtCo0w7SIfla9rHIAHRGiVeRpKelknzzKCl3TkJqSp7vqyjFbMXvdXS4bEyQsI/ijyxz29zf/fzEpYl4JvXFvYL/2LSwFW/niQyTtT/0o/jdt7S1kLn2NZbFc9djUTx3PT1H90BbR4sN8zblKpuflColXomSXRylDx/EKztKlrTl8ePnhVaugiSzT5fX/34K/pwhk3v/m1/jh++V9xl1w8jQUOZaMTOxg+Xdh6w4PO+CxfLGRgYy8lqamhjo6/E+uOADIWfGTTLWlh1zmutpScnkhcUXHiMSwfB6in2wr7ryjITkVIbXr4hIVPDnmesUF2/nSwqTHfclBIvbft3i5krrbHpbvJo1JTYBvxnbeOV9FtLlr6RwXTcKVU11UuOTiH37iQ+nfHix4qjcMuUn+dXuW+RTu99jdHe0dLTYOM87V9n8QCVjPCsvplJaaN7GvEbLMsa8CfGkvgsi8fIF4vftgUT5Y17jjfLHvNEzC3bMK/B9IDiavqBnz55s3bqVffv20bx5cw4fPszs2bNl5FRVVdm2LevDOT09ndjYWMLDw9m2bZuMo6lChQqsWbMGMzNxZ9CuXTvq1KnD4cOHlXY0lSlTBldXVw4cOICnp6eME0wRYmJiePfuHR4eHqioSC9qCw4Olvq3qqoq5uaKd1COjo48ffqU9+/fU6pUqWzlXr58yatXr6hVS/G4D4qgqyeepY2Lld2PHB+fkCEj+yGujJ4EOXpyks/MYypnhUi+oyleOZKeJFuO9KREKZmcUDETD7jTo8JJOOpNWtAr0hPjUbEpg2brvqhXb0B6xGeSTm3PVofI1Ao1F09SXz8h9ZlPHoxRHpG2+Dmkx8uxP6OTFOnm/vxB3Ekn3rxOWlgoJCWhYmqGRvUa6PYZgIZ7XSJGD4fkZABUbWwy7htH1JyZpDx+RFpUJKolSqLXfxAaNWqiN2I00XMLLihyXLz4+WrLicGklTEIiInPPT5Pi3o1uPP4JRMXb2FCn3Y4VyyDSCQi6GMoZ289JC4+kWQFThE7cP4mvi8CqefsQIWSBT+rK1LPsFteDKaUJLGMRt5WVqnYVkC1VCVSntwkPfR9jrLJd08h0tRBxaoM6q4tEWlok3w5+6Ch+YWWrti2BDnbHpIy64Ze4a1iadCxIeWd7bh75jZvniq2Au5b0MlYoRMvt80W26+jn7v9Ej1y4vkkZujRzeV3tCllTbMuXvjd8uPW+du53jM/0dfXA8g22Hdchl0GBvpyr3+P6Ojl/uz1FOj3dRTo9xXR870Sm1E3dLS1ZK5pZfQrsV98OGb+vzz5zDyheTzhUBlik8SOfHkxmLTUxZNkMYl5c/bfDgzh2utPNK9kSzlzWYfa1wSGxXDgYSCOtibULZu7YyI/UMtYMSxvy1tqRv1XU3JVcXJUPC9WHUXDWA8zdweqTO+OipYG/quk44AlhkXz8fxD4oPDSIlNQKuYEeZ1KmE3vDW2rdw432xKgTqbdDL6PXnvfqIS7b52Zv+ZQ7uvk0u7b13KmqZdvPC79YjbhdTui3QUGPPqKDjmDQslKWPMm56chIpJxpi39wA0atUlcuwXY17rrDFv9NyZpDzJGPMWL4luP/GYV3fYaGL+LvoDtP6f+H42vOUfgqPpC4oXL06jRo3YtGkTERERmJqa4uWVzXGuz5+zfv16bt26xcePHyVH18ubvahYsaLEyQRgZmaGiYkJ794V/ClE8oiNFW9j0NPTk0pPTEykfv36Umk2NjacO6f4KWVGRkYAhIeHSzmaYmJiCA4OJjExET8/P+bPnw/AuHEFcyJJSorsoCLz2aRnMyOjrB55Mzvy5DPzKHPfbyZVjiNAUjdzL4dIS9x5JZ/bQ+qrR5L0tMCnJGyajc7EVajVbJyjo0mzaTdEqmokntyqVNHzg3R5K0hyeG7yiN2wViZNpKuH4ex5qFeshFbzViQc3AeASobzKv7gfpIuZ53ukvrSn8jpv2O6ZQeaDRoSs2wx6bGKrQbKK/KOk07PeOaKzK629XAl8P0nNh++wLDZa6SulbYpRmpaGvo6OQ9ab/m9YNa6PViYGjF9SBfFC58fyF1lp3jdl4d6nXakp6aSfONQrrLJl/dm5WvQBfXqjUmP/CyOHVUIyG2DJOYXThtUqVZl+s0cTMj7EFaNL9xj3lOVbLOzIyVZXhuaqSZnPX0n9EFNXY318zYqfD9l6NChJdWrV5NJnzt3qeT/kzM+CL4mL/3g94L8/lr83/zq9/+Lv9vXqKvJfhpkmi2vB1GTI5+ZqRAW9GSVQ04spKy+L286F194hJqKiCF1ct8uC7D04hNS0tIZoeDqp/wkTd4EkOQFUE5XcmQsvtMzxm4qItw2jKbq9O7E+L8n+Mx9idyrDad4tUH6VDdVbQ1clg/DurkLdr+0ztJTgMhv98X/VeaVTUnOvv/MTU9mu7+xgNr9HJHb7yv3A8RtlD/mNZiVMeZt1oqEQ/sy0sVj3oRD+0m68sWY95U/UX/+jom3eMwbu6Lgx7zfE9/Tlrf8QnA0fUXv3r3p2rUrK1euZOzYsXKPqvXx8aFXr16oqanRtGlTHBwcMDY2Zt++fVy9elWh++jo6JCUlJTfxVcI3YwGIipKeomouro6q1atkvx70aJFREcrNxORqdPUVHqLyvr161m/fr3k3yVKlGDNmjXY2yvWeStKbIx4hk1DU3YJtZa2eEZO3sxHdno0c9Dz5axnTvLiPFrZrnbKVxIz7qGuLnNJsuIjMfdVLekpGR8p6rKrY9Kjw0kLfoOqbVnQ0Qc5gY5VbMqiVtWdlGf3SHstGzejoEiPFz8HkYZsuUUZWzXlzfworD82htjNGzGa/Q8a1Rwljqb0pOSMe8iZ2U1MJNnPF8269VG1sSHlecFsI9LJqJdJSbIDjoREcfl0FNiuKhKJGN29NW0bunHj4XNCIqIw0tfFrpQNRvo6dBj3N6Wss1/leOexP7/MXYeutharfx8sFZi8IEnPXMmkKlv3URe/l5JVfUqgWs4ZVcvSJD+8SHqkckc1J986irqjB6oV3Qrc0ZSQ0b7Ia/s0M+pGbifv5AcVXSsxfv1k4mPimNV9mlRg8oIkLjb7tl9TK7Ptz93+LD2y9UgrY+VGTnoqVC1P/Zb1uH3hDr438zcGYSZNmjSQe6rbypXeREeLB/Va2ZwuqZPhJI6JKfi4WYVFXI79vviZxWWzwktxPbL9/n8N3Yy6kShnbJqQMW7Q+WKSQTdjNYU8eYD4hER0tAs+Pp9uxkqmxBTZz7iEDIexjrrynzunn77H70MEHRxLUdw491Uhjz6Ec+bZe9xLF6N6CbNc5fOLlBhxnVSV02apZmwnlLfaSWHS0nm2+CDWTWtQvENdKUeTPFLjk/CbtQPr5i6Y1SrY2KSZ76O63HY/s73O/Z2Nz6H/zGxDEnLQU75qeeq1rFug7b48Mrem5TjmVeLEORn9sTHEbdmI4V//oF7NUeJoylzZlO2Y95EvmnXqo2ptQ8qLgt86L/D/i+Bo+gpnZ2ccHR3x9/enY0f5R9auWbMGkUjEnj17KFs2K8De9euKB8krjH3b2aGnp4elpSW+vr6kpqZKnGkqKip4eHhI5Ly9vZV2ND148AAjIyOsrKTjIbRu3ZrmzZujoaGBpaUlZcqUKZDfIPPYYQurYrz+KmCxla14n/K7oA9K6fmaTD3v32bpeZ+DvI6uDvqGejz1Lfh4GGnh4ngUKoZmpH6SXjEnMjKTksmJ9OgIqTwy5PLsNJr3ACCpkFczpX4UPwcVM3NS30g/f9ViFlIyeSUt42RKkVZWB5sWLo6HoprdNtNCeN+tzcRBTz+GRVDmq5gEHzJOYrIupvj2zVLWxShlLV2fd50SO9KrV5QfWPT8bV8mLNqCsYEuq34fTGmbwtk6AJAeJY5HINI3Jj1c+hmL9E2kZBRGpIK6exvSU5JIuZmHo8MzTqITaRb8lrXPQeL32sTSlHf+0qf8mWU4Bj8HfZLJl5/UaFyTkcvGEhUaxawe03n/svBW7WYeO21mZc4bf+mT0YrZiOtxcFDu8WI+ZvxG5lay73IxG/MMmez19J/UD4ANBTirPXDgOAYOlL8aOHPrnI2N/JhEtrbibayBgQV/EmRh8T7Hft9CSkZRPV8jr9//r2FlKbb742dZh/qHjxmxriyz2nTrTPlPsvKxsXFEx8RSsUIeglAriZWB2Jn1MTqeMmbSExvBUeKPbGtD5drglLQ0ll16jKaaCgNqK3aIwuIL4kk1RU+myy/igsS/v7aVCdEvpLd269iaZcjkPu7LiaQIcV+mYajYNqz4D+IxkZpO/sdi/ZJP78RtsbmVGW9l2v3c2+tMMmXMrGTHvJl6cuo/+k/qC8CmQo7Jl/YpY8xrbk7qW+m2TyVjzJtWEGPesDDJfeVTdN+4/8+k/YA/i3DqnBymT5/OokWLZLaWZRIQEICDg4OUk+lbyQyMnZBQ8DPOAJ6enoSFhXH48OF803n79m0ePXpEy5YtUf9qRU3p0qXx8PCgdu3alC1btsAcbZmnztSo5SRzrbqbIwCP7z+VufY1mafNVc9Bz6MHWXoe3X+SrbyzWzVUVFSk5AsKyclypWVnkTLT0oL8c9cTKJ6BULOTtQc1DVRMLUmLDpe7mkm1giNq5aqS4nudtHevlCn+N5PyTPwbq1eV3VaiXkWc9q0ritRKi49qTwnK+lBLfizeXqhRU/4xsqqlSpOekkJqUO5Hg+eVyhkny919LHvyjM8TcVqlMsVlrilKXEIi6/afQVtTgybujjLXd526ytj5m7CxMGHzzJGF6mQCSPsYAICqjexHgapNxmmMn5SLFaRWuTYqJpakPLhAemyE0mVSMRf/3unRuQdh/1b8H4jffQc32VOxKrqK014+zP3dzyuNunkxZtUEPr75yJR2EwvVyQRZJwxVc6sic62qa2UAnj/M3dmfqaeqXD1VctRTo351nOs4cenoZV74FtxvnRPR0TE8f/4SZ+cqaH8VO0dPT5dq1Rx4/vzlf2pFU+YpcfL7X0cAHinQ7+c0fnCW0+//16jiID5V6/Y9X5lrd++LV2lUsi8vSatsL25r79yXI//Aj/T0dCn5gqJyxslyd9/KTiRkpjlYGSml88CDNwSGxdLZuTQW+rmvyrr26hO3AkNoZGeFg6Vy9/pWMk+bM6sl6+AycxPvGgi//21jMaPK4vFFplMrNwwrig8SiXlVsI7ZpxknqlZ1kz09u4qkvZY9ifVrnimg50U2eqrXr45THScuF0G7n5w55q0iZ8xbWZyW/I1jXtWMMW/ql2PeJxljXhf5Y161zDHvu4Ib836PpJGeb3/fC4KjSQ4VK1akbt262V43NzcnODhYEpcJxEG0Hz58mOd7Zq4A8vOTXnJ5+XLBHI85cOBADA0NmTFjRrYrsdLSFN9NevfuXUaOHImpqSnDhw/Pr2IqzeWz14iOiqFN5xYYmWSdnGJsakTzdl5ER8Vw+ew1SXqXvh04eHkHs5ZOldLj6/OIoMB3NGxWj+KlbCXpWtqatO/ehpSUFE4dzopd9fljCLev+VCtRmUcXbI6KhUVFX7uJ14Zd/yA9D72giDlmQ/pCbGo1Wgo3taWia4Bak71SE+IJeWLwNzqtZqhM3YJmp1+kdKT+sqPtM/vUa3oglq1OlLXNBp3RqSlQ8rts3LLoNG0O+mpqSSeKpyT5r4k6eYN0mJj0GrSFJFB1vMXGRqi6dmItNgYkm7ekKRrtWmL8frN6I//TUqPipU12l26SQItSvQYGKLTsw8AiWeynmfah/ck+dxBrWx5tDt3lcqj1bINarbFSbx4vkBP4KjjXBE9bS0OXrhF+BenwoVFxXD0sg962lrUcc4aiG4/cZk2o2YzeVnuq86iYuP5bcm/fAyNYETX5lIxmtLS0liw5RCz1u3BpVI5vGeMxMLUKF9tU4TU176kJ8aj6lALtL6YddXWQ9W+JumJ8aS+zvogUqvWAK2ef6DRpLd8hWrqqLm2JD0xnuTbJ7K9r8jYEnX3NvD1qiUtXdQbiONTpTy9mVezFObe+bvERcVSv0ND9I2z3n19EwPq/FSPuKhY7p2/K0n36tWcBWeXMWzByG+6r0gkottvvRjw1xAeXfdlavtJhAUruXIsH7h17haxUbE06dgYA+OsoL2GJoZ4tm1IbFQst87dkqS36dWaDefXMWHhr1J6nt57yofAD9T2cse6VFYQe00tTZr/3JzUlFQuHpXfL/eb0IfUlFQ2/VM4Jw5lx65dh9DU1GTYsD5S6UOH9kFNTY1du2Rjjd2/f5b7989So4bsB8v/O1ck/X5zmX6/RUa/f0Wq32/Pgcvbmbl0ipSezH7fo1ldipeykaSL+/3WpKSkcPqw4jEr/1/ZtucQrboOYNKMf6TSqzrYYWttybnL13kTlLUyJj4hgd0Hj6OqqoJXw6yxcTFzU2o4VeGB31N8HmbFckxNTWXbXvEkZrNGDQrWGKBOGQv0NNU45PuG8Lis7dFhcYkcexSEnqYadcpkTXzsuPuKn9ac5ffDd+WpIz45hdVXn6KroUYft9wdZenp6Sy5+BhVkYihdQs/NlPw2fskR8VRsnM9NEyy2n4NU32Kt6tNclQcwWfvS9LL9G1C48v/UH3pECk95rUdKDe4OapfrULStjGl0m+dAXiz94okXVVHk0q/d0HTTDpIuqq2BpWn/gxA4O6C+YbJJLPdb9yxkUy737Cth0y737pXK9afX8uvC6VXhGa2++5etbAulbUaVNzuNyM1JZVLRy/JLUNfSbu/OZ+ty53kW+Ixr2ZjOWPehuIxb/KtL8a8rdtitG4zer/KGfN2lj/m1e2RMeY9+9WY917GmLeT7JhX1bY4iZcKdswr8H0gbJ3LA+3bt2fChAkMHDiQunXrEhwczL59+yRBtvOChYUFNWvWZM+ePejp6VGsWDHOnz+Pj0/BnNZlaWnJ8uXLGT58OH369KF27dq4uLigpaXFx48fuX79Ok+ePKF06dIyeW/cuEFcXBwpKSmEhYVx7949bty4gbm5OWvWrMHY2LhAyqwIMdGxLJq5ginzxrPn3BYunb6KSCSiXuPamFuYMWP8PGKis56TsYkhpcuXJOSz9IdReno6sycvYIn3PLafWM/5k5dJiE+gtocbtiVtWL90M28DpLce/DNtMZsOrmL1zsVcOHmJiPAoqrs5UsGhHMcPnObOtXsF/wMkxJF4bAta7QajM3ohqU/ugEiEqn0NVAyMSdi3ChKyGn6RrgEqxWwlW+W++AFI2LUE7QF/oPXzGFJcPEkPDUbFpgyqxcuT+uoRSWd3y9xezbEuqjZlSL5zjvRPhbuiASA9LpbYdavRHzkW4zUbSLpxHUQiNFxroWpqSvTi+aTHZT1/FQND1EqUlGx9y0Sko4Nev4HodPmZ5Af3Sf34ERUTEzScqqNiYEDs1s2kPJee2Y5eNB/jJSvR6z8YTfe6pLz0R7V4CTQcnUh5E0jM8iUFaru+jjYju7Vk1ro9dPz1b+o5O5CeDpd8HhESEc3k/h2kHEQRUbEEvP+EmZFsDKX1+8/wNOAdZkb6fA6P4sbDZ8TEJ9K/bSO6NZc+MODe09d4Hz6PtqYGZYtbsnavfIfqgHaNMSjIU8+SEki+sg8Nz25odZ9KWoZTSbVMVUS6hiSd3QpJWStGRdp6qJhYkh4nP4aQmlMjVPSMSL5xWLIFTr6gGuo1m6Pm3Ii0dy9IC/+ESFsP1ZIOiLR0SXl+l9QnN7LPn0/ER8exdc5mBvw1hHknF+Nz9g4iETh71sC4mAlrf1tJfHTWu69vbIBNOVsiPkfI6DK1MqNWq9oAlK1SDoDK7lVRz4gBcv3wVUI/iGe27V0q0npQWxJi4wl6/pZ2I+RvOd+/dDexUQW3iiY2Oo61s9czavYvrDm9iptnbiISiXD1rImphSmLJi0h9gv7DU0MKFGuOOGfpd/99PR0lk1dwZ8bprP88BKunb5OYnwiLvVrYFXSih3Ld/I+QPbkwYY/eVC+SnlO7j4ls3WvsFm6dD2dOrVmxoyJ1K3rhr//aypUKEujRvV4/vwlS5eul8ljZyd+ztpyYup06NBSsuVOX18fTU0NRo0aCEBQ0Hv27DkiJd+4cX0qVRKvjsnMN3RoH5KTk4mMjGLjxh35Zyzifn/xzBX8Pm88u89t5tLpaxn9vjvmFmbM/KrfNzIxyrbfnzN5IYu957JN0u8nUtvDFduSNmxYuoW3AdL9mq6eDu17tAGQOKccqtnTc4j44+vquRu8fPY6X+2Vh/+rQC7fEJ90dd9XvDLr7KVrvA4U18WObZqhlxGfMzwyitdvgjA1lR6rqaioMGn0EEZM+IMu/UfiUccNLS1Nrt68S9D7YPp170gJW+kTRMePGEivoeMYOGoyHnXdMDIw4M4DX168DKCpZz1qOsuuEMlv9LXUGdnAgVknH9Jpw3nqlrUkHbjsH0xIbCKTvaqir5W1yj48LomAsBhMdeVv69p6+xWfYxIZVNsOYwW2fh1//I6nHyNpVbm4zNa9wiAlOh6/mdtxmtcPz3NzCD59D0Rg1dgJLQtj7o1fT0p0VpweTRN99Mtbk/BV26+mr0PV6d2pOKYdIdefEBcUgpalMRYeVVHT0eL5yiOE3sga96ioqWI3vDVl+3oReuMpMa+DUTfSw7y2A9qWxrzZc4X3R25RkMRFx7Fu9npGzv6F1adXcvPMTRCJcPV0xdTChMWTlhAn1e4bUrxcccI+h0vpSU9PZ/nUlfyxYRpLDy/h+ukbJMYnUEOq3ZddneXxUwPKVynHqd2nZbbuFQbpcbHErV+N3i9jMVq1geSbGWPemrVQMTUlZomcMW/xkqSHfTXm1dZBt+9AtDv/TPLD+6RljHnVnaqjom9A3DbZMW/M4vkYLVqJbr/BaNSqS8qrjDFvNfGYN3ZFwY55v0cKex1STEwMixYt4uTJk4SHh2Nra0vXrl3p2bNnrjuLwsLC2LBhA7du3SIoKIj4+HhKlChBp06d6Ny5c/aHQHyF4GjKAz/99BPh4eF4e3tz584dypYty/jx4/Hx8WHv3r25K8iGf/75hz/++IPdu3ejqqpK/fr12bRpE926dcvH0mfh4uLCsWPH2Lp1KxcvXmTt2rUkJCRgampK1apV6du3L40bN5bJt2/fPvbt24e6ujq6urqULl2a0aNH8/PPP6OvX/RHJu/evJ+IsAh6Du5K83ZNAHj++CWzf5vPmaMXFNZz+cw1Bnb6hYGj+uDZvAFqamq89g/kz1/nsmfLARn5J77P6dlqEMPGD8C9gRvaOloEBb5n0cwVbF5VeKt7Um6eIj4uGo26rVFzFM8+pgUHEn9wLal+in/wpr15TtzSX9Fo1Bm1spWhtAPp4Z9IPLWd5Av74euT3VRU0WjSlfSUZJLO7MxPk5Qi4cgh0iIj0enQGa2GngCkvHpFzLJFJF2RPyP1Nanv3hGzfg0a1V1QK1sOjRoupCclkeLvT/yBvSRdlZ2lS/vwnvCh/dHp0RuNmm5ola9AWmgIcbt3EPfvZqnOvqDo1KQ2xga6bD58gWNXxE7qCiWtmdS3PY3cFF+poKaqysU74hlqUyN9PFyq0MmrNlUytud9SVrGiSbxiUlsPZb979ulad2CdTQBKb6XSI+PQa16Y1TtXMTlC3lHyvntpPor4ejV1EG9RhPS42NI9jmTo2h62EeSzv6LSqnKqJiXQM3WDlJTSAt9T8qja6T6FeyM7pec2XqS6PAoWg5oQ5024nc/8GkgG6au5dZxxWMIWpS0pMdk6dUwNZu6UbOpGwCvHr6UOJpEKuKF0Vq62jTv1ypbnSe9jxWoowngyL9HiQyLpOPA9jT8SRxv8NWT1yybsoLLx6/kkjuLm+duMb7rJLr90pU6TWujpq7GW/+3LJy4mKNbZWN1qaqp0ntcT5KTktm84N98syevREVF4+nZgalTx9KiRSMaNHDn8+dQ1qzZwowZC4iKUi724oAB3alXr5ZU2uzZkwG4dOm6jKOpY8dWMsHK//xzPACBgW/z3dEEsHvzAcLDIjP6ffG4RdzvL+Cskv3+oE4jGTCqt6TfD/APZMavc9mz5aCMvKGxAWOnjZBKc3F3xsXdGYCIsMhCcTT5PXnO/OXSDsT9R7Kc/k086kocTTlR370m6xb9xWrv7Zy5eJWUlFRKl7Rl6q8j6NimmYy8g105tqycz7J1W7h68y7xCQnYWlsxanAfenVt9+2GKUhHp9IYaWuy5ZY/xx+LJwHLFzNgYuOqNLK3ziV3FpHxSWy6+QIjbQ161Mw9PEZyahorLj9BTUXEYAVPpisIXm8+S2JYNOUHt6B4O3cAIh+/4f5vm3h/9LZCOkKuP+Hh1C1YNKiKsWMZLBpWIzU+ifB7L3m58bSM0yg5Jp4Hk72xbOSEbhlLTN3sIT2dqKdveTJvNwHbLuS3mXI5+u8xosKiaD+wPR5ftPvLpyznynHFDmgC8eqoiV0n8fMvXand1F3S7i+euCTbdr9XRru/pQjb/YSj4jGvdvvOaHpkjHlfvyJmhRJj3vfviN2wBvXqLqiVKYdK9Ywx70t/Eg7sJema/DFvxPD+6HTrjfqXY949O4jfWjhj3u+Nwj51bsSIEdy+fZsuXbpQvHhx7ty5w19//UVcXBxDhgzJMa+fnx+bNm2iXr16NGrUCICzZ8/y559/4ufnx+zZsxUqgyj9Rzir9QcgOFixYG+qqqqYZxu87f+Tqpa1chf6j3Ktl/yArj8K8T6FvwXn/wn9fyYUdRGKlLTzsh92Pwp9FuYewPS/TGjaf/d0L0W4GvLfjQWkCBUMbXIX+g9zx6/oHZZFRcrhVbkL/Yc5Pum/E6g/L6xSL/iYhv/PbHP4cfs+s5MFezpvUTOhVNfchRRkbsD2HK9fvXqVvn37MnPmTKnDzcaOHcu5c+e4fPlytrGoAYKCglBRUcHaOstRn5qaSufOnfH19eXSpUtYWOQei1VY0fQfoX79+rkLATY2Npw79/3HGBAQEBAQEBAQEBAQEBAQEMji/PnzaGho0KZNG6n0Tp06ceTIEa5fvy5311Imtra2MmmqqqrUrFkTX19fPnz4IDiafiRWrVJsBkhLSyt3IQEBAQEBAQEBAQEBAQEBgW+mMLeQPXv2DFtbWzQ0NKTSy5cXH3Dw/PnzHB1N2ZG5g0oRJxMIjqb/DB4eHkVdBAEBAQEBAQEBAQEBAQEBgS8ozBhNoaGhcuMmGxkZSa4ry6dPnzh79iyVK1fGykqx0C6Co0lAQEBAQEBAQEBAQEBAQEDg/5ydO3eyc2fWwUudO3emc+fOkn8nJSXJ3cWkoqKCiooKCQkJMtdyIiUlhV9//ZWkpCQmTFA8fqzgaBIQEBAQEBAQEBAQEBAQEBAoANLycfPc146lr9HQ0CAtTXYNVVpaGmlpaUqF0klLS2PixIncuHGD3377jZo1ayqcV3A0CQgICAgICAgICAgICAgICBQAhRmjydTUlIiICJn08PBwAExMTBTSk5qayuTJkzl8+DCjRo2iV69eSpVDRSlpAQEBAQEBAQEBAQEBAQEBAYH/O8qXL8+rV6+IiYmRSn/48KHkem4kJyczduxYDhw4wOTJkxkyZIjS5RBWNAkI/B8TtF+5PbT/NT5HmRd1EYoUx40ri7oIRYrmL1OKughFxp2Zg4u6CEWKuYZBURehSCmmY1jURRAoQlIOK3aS8H8RtVY/dtsXOG1qURehSHmXGF7URShS/H1tiroIRYZZUReggCnMYOAeHh5s3bqVEydO0KFDB0n60aNH0dbWxt3dHRA7k968eYO6ujolSpSQyMXGxjJixAhu3brF33//TatWrfJUDsHRJCAgICAgICAgICAgICAgIFAApBfi5rk6depQs2ZN/vzzT168eIG1tTU+Pj6cOHGCX375RXIi3cePH2nevDk2NjacO3dOkv/vv//m6tWrNGvWjJiYGLZv3y6lv1ixYnh6euZaDsHRJCAgICAgICAgICAgICAgIPCdIxKJWLFiBQsXLuTo0aNERERga2vLpEmTFIqzlHkq3fHjxzl+/LjM9Zo1awqOJgEBAQEBAQEBAQEBAQEBAYGiojC3zgHo6+szdepUpk7Nfjuura0tz549k0mfM2cOc+bM+eYyCI4mAQEBAQEBAQEBAQEBAQEBgQIgrVDPnfv/QHA0Cfwn8Whaj15DfsauUjkAnj9+yaYVWzl/4pJSepxdqzFoTF8qOVZEXV2dAP9Admzcy/7th+XKl7cvy9DxA3B2rYa2jjbv3r7n4I6jbFm9g9TU1G+2S1H0GtXCpF87NO1KA5D4LICw9XuJOXM9zzpF2pqU3PY3WpXK8XbgdGIv3JJcM2zbCKu5Y3LV8dKjN8nvPuW5DIpi2tQFmyGt0a1UCoDYx4G8W3GQ0BO386xTRUeTagdmoFe1DI96zCbs9N1sZbXLWlP90kLerTnK6z825/meeUGtihvqHm1RtS4FQNr7AJLO7yfF94bSukQGJqjXb4VaxeqoGBcDdQ1SHt8hYcNf8jNo66JRtyVqlV1RMbUELW3S3gcSN39U3g1SkrPX7uC99zjPXr8BoELp4vRu3xxP9xoK60hLS2PP8fPsOXGBV2/eoaqqSqXypenRtikebs7Z5ouKiWXbodNcuOHD2w+fiItPoHwpW3Ytm/nNduUFI2NDRk0cQqOm9TAxMyEsJIwzJy6xaM5KIsIjldKlpa3FsDH9afFTYyytLYiKiOLKxZvMn7WcD++CpWR1dLXp1O0n6nvWpmLlChgaGxIVEUXAqzcc2HOMXVsOFFh7WK9pHboN7kw5h7IAvHzykn9X7uTSiStK6alWswr9xvSiYjV71DXUCPR/w55NBzi8/ZiMbCVnB1p09KJqzSrYlLRCJBIR8jGU25fvsmv9Pl4/D8gP05TCyNiQsZOG0ahpA0zNTAgNCePMiQvMn708T89+xNiBtPrJC0trCyIjorhy8Tp/z1zK+6+evTzcatdg8+5VxMbE4lShfl5NyhVxv9+VCl/0+94rtind7zu5VmPQmD5S/f7OjXvZv/2IXPly9mUYNn4ATl/1+/+u3lmo/f655x/YfMuf55/Ez7e8uSG9XMvRsIKVQvlXXn7K6quyM9tfc39iGwAOPnzDtGP3cpU/OrgxNkY6CpUhP9hz6DjT5y5h2bzpNKjtqnT+u/f9WLlxG4+ePic5OYXSJW3p0q4V7Vt5yZV//vI1y9ZtwefBI+LjE7CxtuCn5k3o2bktamqq32qOwpRtUp3qg5pjXlEc0Dfk6VvurDrKy1PZj1W+xq5NLco2qY5ltTLoWhiTlpJK2It3+G4/j9/2C1KyDh3q4rVgUK4617uPIiooRClbvgVDYwNGjB9EA6+6mJoZExoSzoWTl1k6bzWR4VFK6dLS1mTQ6L40bdMIS6tiREVGc+3iLZbMXsmHdx9zzDtn+XRadWiGS+kGxMXFf4NFuWPctCZWg9ug61AKgLgngbxfeYDwE7dyzpgDKtqaVDowC90qZXjacxYRZ6TrkVFDZ0xb10avegU0rcVhvONffyBk3yWC1xwmPaXw2j6B/18ER5MSrFu3jr///htVVVUuXbqEmVnBxMe3s7OjZs2abNmypUD0Z5KYmMju3bs5efIkz58/JzY2FnNzc2xtbalVqxZt27bFyko8QAkKCpLai6muro6uri6lSpWiVq1adO3aFQsLC7m2ZKKiooKhoSEuLi7079+fatWqFYhdbbu24o+FvxEWEsbJg2cBaOBVh8Wb5jJ19CwOZDNY/Br3Bq4s+/cfEuITOX/iEvFx8dTxrMUfC3/DqrglK+atlZKv4FCOzYdXo6qqyoVTVwgPjaCGuxNjpg6nfMWyTB7xZ77bKg/DDk2w+msUKaERRB+/DIBeQ1dsV0zhw6SFRO49rbxSFRVsFk5EK2MA/zWJLwIJXb832+y67o5oVSyr/H3zgEXXhlRYOJSkkEhCDl4FwMTLBYdNE3g+egUft5/LRYMcVFSwXzUavaplshVRM9Sl5PjOaFgYY9TAEZFq4Q0wM1F3bYxW119Ii44g+Z74w1qtck20+00mfvtiUm6eUViXWhU3tLqNBlU1Up8/INnfDzQ0IU3+4l+VUnZo9/sdkY4+qS/9SPa5CKpqiPQK7/SsfScvMG3RekwM9WlaT/yBceGGD6NmLObPUf1p65X7R25qahpjZi3h3PW7lLC2oIWHO4lJyVy585Bf/ljI6L6d6duxpUy++09eMPKPhURGx1Kjij3NPWqRnJxCeGR0vtupCLp6Ouw4sp7ydmW4evEmp49doJxdGXr064Rr7eq09+pJXKxig18VFRXW71iCW+0a3L/ry8Wz17ApbkXr9k1xr1eTto268zH4s0S+YmU7pvz1K28D33Ht8i3CQiIwNjWiXsNazPxnMi5uTowZ/Hu+29yqa3Mmzx9PWEg4Zw+dB6BOE3fmbZjJzDFzObJDNs6APFzruzB/yxwS4xO4eOIKCXEJ1PJ0ZfL88VjaWrD2741S8oMn9MPRtSoPbvny4OZD0kmnXMWytO3RmmYdmtC/5VD8n7zKd3uzQ1dPhz1HN1HerixXLt7g1LFzlLcrS89+XXCrXYM2Tbop9ew37VhOrTou3Lvry4WzV7CxtaZN++bUrudKq0Y/8/FD9pMHZcqVYrX3QjQ1NYiNic0vE2Vo27Ul0xf+RlhI+Bf9fl0WbZrDtNGzOLD9qEJ63Bu4svTfv7/q992ZLun310nJV3Aoh/fhVVL9vssX/f7vI2bku63y2P8gkD+O38dYRwMve/GpVRf8gxmz7xbTmznyU7WSueqoZmtCz5rZ99Nnnn3gfWSc5N/lzPVzlL8R8Jnnn5T7sM8rvk+esf/IKd6++8CNO/fzrOfqzbsM/XUqWpqaNKznjraWJpev32HanEV8CP7I8AE9peSfvnhFjyFjSU1NxaOOG8ZGhtz2eciCFet58SqA2VPGfaNlilGpc32a/D2AuJBInh2+CUDZxk60XjeaU+PW8GiXYs7WpgsHk5qcwrtbz3h19j5ahrqU9nSk8dz+mDuU5PwUb4ls6PMg7qzO/r0qUacyxSrlXu/yEx1dHbYcXENZu9Jcv3SLcycuUrZCabr27YCLuzNdm/VV2OmjoqLCyq0LqVm7Og99/Lhy9jrWxS1p0a4JbnVr0NmrD5++6PcAmrdtgmvdGlSqak/FKnbZaM5fzLt6Unb+MJJDIgk9JB7zGjdxwW7DRF6OWcbnHXkb85ZfNQbdKtmPeUvN6IeGrTkxd54RefkhqtqaGNZ3pOTvPTFwdeBZr2wmJH9gfrz1TIKjSSmOHTuGiYkJYWFhnDhxgu7duxfIfaZPn06xYsUKRHcmb9++ZdCgQbx8+ZLatWvTt29fNDU1CQkJ4cGDByxfvpxly5bx+PFjqXwNGzakXr16pKamEhYWxoMHD1i9ejWbN29m0aJF1KtXT+Zezs7OtG7dmrS0NN6+fcuBAwc4e/YsS5YsoVGjRvlql66eDmOnDedT8Gc6NepFWIj4mFTTOSbsOuPN2KkjOHnwLPG5dDQikYhJf40lOSmZn5v1I8A/EABtHW22HFlDvxE92b/tMB+CsmZzf/1jJJpamvTvMIK718WzfGpqqiz7dz6tOjZj9+YD3L/9MF/t/RoVXW2KTehH8sdQAtoMJzVMPLOpamZM6QNLKTahP1HHL5Mel6CU3mK/DUC3bnVibzxA103WQZjg94IEvxfZlsmwXSMSX70l+UPBzmqp6mlTelpPEoPDuNdoHMkh4kGu+pwdOJ/5m9JTe/D54DXSlLS/zJ+9MfZwJOKqH0a1K8u/t4EO1v2af7MNeUZTG802fUmLDCXu75Gkx4iffdIxI3TGLUardV9i7l2BpNxtVyleHq3eE0h784L4jXNIjwrLUV5kZI7OoD9Iiwonfukk0j4F5YtJyhATG88/67ZjbmLE7uUzMTX6H3vnHRfVsQXgj96rINWOgCIiYEFFBewde+/d2FuiRk2xRGPX2DWWWGPvDXvviooFFRSUJr3X98cuC+susDTNS+73fvzimzv33Dk7c8/MPTNzRuTgioiMptuYH1m8aTctG9dDW0szXzl/n7rAhZv3ae5eh4Xfj0ZNVdRNxsYnMPLHRazYug+v+q5UtM5ZJfApLIJRP/6OibEhf/7+I5XLWZaeogoyaERvqtpVZtmCNaxekvNxPHbqcCZ8P5IBw3qxdvkWhWR16NIat4a12fvXIWZMyPlw7tyjHb//8Qvjpo1g5qScVVsfP3yid8dh3L4uPQNaxsSIMzcO0LFrG376fiGxJeiE09bVZuysUYSHRNC/+VCiPkcDYGxqzPazGxk7axQ+Ry8pZPunzBtPWmoqg9uOItBftDJOS1uLjUdXM2BMH47tOklIrtnsXev28uOoX4iJlF4pNHzqYAZP7E+7nm1YPmd1ielaEENG9KWqXRWWzF/NyiUbJOnjp45k0g+jGTS8D38s25SPhBw6dm1Dffc67NlxkO8n/CRJ79KzA0v/mMuEqSOZPkn+JIpxGSO27vmDj8EhpKamldrqDh1dbSaJ+/0ezQZK+v3Vv21g7/mtTJo9ljNHLihU9z/Mn0Raahp9Wg+V6ve3H1/P4LH9ObTruFS/P+XncWhoajCs61ju33wESPf7+7cf5tFd31LRO5v4lDSWXniGqa4Gewd5YqyjAcB38cn0/PMSSy8+o0U1K7TV8x/yN6hUlgaV5I89g6MT2H3/HfUq5EywOlgY4WBhlGeZjvp+oKKxLub6WkXUTHHevH3PvsOyqw0LQ2ZmJvOWrkFdTY3dm1ZQuUI5ABITk+gzchKbduyjc/uWWJrnTKr+vmoDKSmpbF65gDrONQFIS09n9JTZHDvtQ7eOrXGp6VCschWEuq4WjX/sTXxoFH+1mknSZ9G458ZiA/qemkfjH3vz6vht0hJTCpR1Y8l+Hm8/T2pczruiVUafPifnUmtAcx5uOUP0O1H7D33yjtAn7/Isk0O3xkT6fyTu4+cS0FIx+g/vSRW7Sqz6bT3rluX0b6MmD2HMtOH0GdadjSu25SMhh7adW1K3oSv7dx5hzqQcp0nH7m2Yv2oOo6cM5acpC6TuaehRD++eshNRpYWKrhYVZg0gNSSSJ80nk/5Z1AepmRrieHYJFWYN4PPRwo95K/w8CAMPZ2Ku+2LQ0FFunpCtp/h86CppETn9nrKWBg5H52PUvDYGjZ2IufK46Mr9C/kvbp1T/tYF+H8hICCAZ8+eMXr0aMzNzTl+XLFVMUWhV69eCkVyLyrJycmMGDGCoKAg1q1bx5YtWxgxYgQDBw5kypQp7Nixg1OnTsktg6OjI7169aJv376MGzeOzZs3c+jQIYyNjRk9ejSvXr2Suady5cr06tWLPn368MMPP7B79240NDRYsGCBTN7i4t60PvqG+uzdelAy2AT4HB7Jvm2HMDDSx71p/QLl1KhVjQqVy3Hq0DnJYBMgKTGJbWt3oaamSssOOb9PGVNj6jR04e71BxInE0B6egYbl28FoE3nFiWgYf7oNKmDioEe0btOSJxMABkRUUTtPoGKoR66jRXfQgRg1L8jxv07EjJnNUl3nxa6TMbDu6FqZEDEir/yXA1TUhg1dUbNUJdPW89InEwAaeHRfNp2BjUjPYybOhdKpuXQNlgNbYP/tA3E3HyeZ76UD+FcNe/KVfOuPOk8p8g6FBXV6q4oaeuSdu2kxMkEkBUXTdqNUyjp6KFazVUhWZpdhpMVH0vS5vkFOpkANDoMAGUVkrfM+yZOJoBr9x4TF59Ij3ZNJU4mABNjQ7q3bUpsfAJX7xU86Dl1WbTFcOyAbhInE4C+rg4TB/ckMzOLw+ekZ4eXbRFtkVkxa/w/wskE0L5LaxLiE9mwWnrr5oZV20iIT6RD19YKy+rQpRUAqxZtkEo/uPc47wOCaNOxOaq5fqtPH0NlnEwAnyOiiImOJSkxSeEVNYrSwKse+oZ6HNx2ROJkAogMj+Tg9iMYGOlT36tugXKq17KnXGVrzh2+IHEygcj271y3F1U1VZp28JC65+bFOzJOJkByf3Su8nwNOnZtQ0J8IutXb5VKX7fqTxLiE/HuqrhD3LuLKO/yRWul0g/sOcr7gCDaereQqvtsNDTU2fTXCjS1NBjcawwpKQV/5BaV7H5/39ZDMv3+35J+361AOYr0+y06eEnSpfv9R5L09PQMNoj7/dZfod+//jaMuJQ0ujtXkjiZAEx0NenmXInY5DSuvc1/m09BrL7ygrSMTMY0qaZQ/j9vvSY6KZVRjexRUVYq1rMVwbttc55eP8XT66cYNbhPkWQ89XvF+6CPtG7mIXEyAWhrazGwVxfSMzI47XNVkh7xOZI7D55Q16WmxMkEoKaqyoiBvQA4ee5S0RQqBBU9a6JpoMPj7eclTiaAxPAYHu84j6ahLhU9FdtBcPePY1JOJoCkz7H4nxKFHShbQ7EVSrVHtUPLWI+bSw+Qlfn1Pq7bdG5BYkIiW9b8JZW+5Y+/SExIpF3nVgrLait+d9culnbKH9l3kg+BwbTs0FTGeT5z/K84mNXDwawed+T0gSWNoZcLqoa6hG47LXEygWjMG7r9NKpGehh6FW7Maz6kLRZD2vLuh/XE3cp7zBuy8biUkwkgMymF8H2i1cT5rYYS+O8gOJoU5Pjx4ygrK9O6dWtat27No0ePCA4Olsl3+fJlunfvjqOjI25ubgwfPpz69eszcOBASZ7bt29jZ2fHgQMH2Lx5My1btsTBwYElS5YAolVDufMDpKWlsWbNGlq2bImjoyNeXl5MnjwZX9/Cz5T9/fffvHnzhrFjx+Lp6Sk3T/ny5Vm1apVC8uzt7Vm3bh0A8+cXvFSyUqVK1KpVi6CgICIjC/6ILQyOzqKZo6cPZY2j74NnANR0KXh2yVGcxzcfOY4u1XM9tzrKyspyn/v0kR+ZmZlS+UsLLSfRUt2kJ7JxFpIfi9I0nRRfzqvrWZey04fyef0+YvafLXR5VEyMMB7gTfLzN5JtfKWJnnNVAOIe+stci30gWnGl51JVYXnGzV2p/PMAPqw8WLQtd18RlQqies14L7uyLCPwpVSe/FA2L49KRXvS718CLW3U3Fqg3roPak06oizvfi0dVGs2IN3vHlnJSajWbYp6q96iOFG2pbM9Vh5PXr4BwNFWditHTXtRmu+LNwXK+SyOX2NVVnZrtLODLSrKyvi+zJETE5fA+ev3cK/jhLaWFofPXeGPHQfYuv8ENx8W3jFbEujoamNjW4mXz1+TmpIqdS0lOYWXfv7Y2ldBW0exlQY1XRwIDQnn00fZj9XHD56ib6BHZZu8P0DUNdSxta/CbyvmYF3ekp+nLyI9Pb1wShWAg7PoA/jZIz+Za88eiNIcFLDBDi5iOQ/lyBGnOTjnL8fA2ICm7T0YO3sUr575s2/LwQKfW1KI6r4yL56/IkVu3b/G1t5G4bp3cqlBaEiY3Lp/eN8XAwN9KttUlLm25I+52Fe3ZXCvsXLvLUny7/dFaY6F6Pefyql7eXJq5NPvP3v0/Kv1+74fRc41B0vZ1UWO4rSnH6NkrinKy9AYTj8PwqOqOY6WxgXmj4hPZue9t9iVNaCF/T/D8a4IT56L+knH6rYy12pWtwfA9/kLSZrv81dkZWVRo5psv1ijmi1KSko8eVZwzKviYl5LFNIg5JFs/xby8I04T/FCF6iIV8MlRxe8/VXb1ACXIS0JexrAq+O3i/XcwqCto00V20q8fO4vt9975fcGG/vKaGsrZvscnR0ICwkn5KPs1mDfB8/QN9CjYj793tdAVzzmjX8kO+6LF495dV1k23NeGDavTYWfBhK86gDhu32KVCZlDTUA0qPji3T/v5nMEvz7f0HYOqcgJ0+epG7dupiYmNCmTRv+/PNPTp48ybBhwyR5zp07x9ixY7G1tWXkyJEoKSlx48YNoqLkd/Bz586lbNmydOjQAV1dXcqVKyc3X2ZmJt999x2XL1+mVatW9OjRg7CwMI4fP46amlqhjx88c+YMampq9OrVq1D35YeNjQ2NGzfm4sWLhIaGyo3XlBsNDdGsm5JSyc50WZYTbWeJjoyWuRYeEiHOY14sOWESORYy+aPk5E9JTiE2Og7LXFttSgs1K9Gy9ww5AQ/TwyLFefKvm2w0qlfBcun3xJ25QfiSrUUqj8nYPihraxK+TLGlysVFs5xI/7RIWf1TQ6LEeUwVkqXjWAn7dROIOHGbgPm7Sq6QpYSSkUj3rARZ3bNiRHWvZFzwllyVyqIPI5VqtdHx6IiSsvSMXdrdCyTvXgmZokCPKhXsUFJVQ8WyIjqzNqKkqiaVP/3FQ5L+XAAppRsM82Oo6L00NNCTuWZqbCSVJz9MjQ0JDA7hdcAHHGylZ+RUVVTQ1tYkMjrnN/Z9+Ya09HRev/tAm8GTSfvCgVLfuQZLZ45DV8EP+5LAurwoRkukHHsESOJKWJez5FUBzjddXR2MjA158Uz+1tjs2ExW5eXLGjdtBOOniQLGPnvygs4t+vPsyQuZfMXFQmzX5a0sihDXu4V1wbY/O49cOWLbb5FPH3Lr4yVAtKply7Jt7PhjN2mpaQU+t6Qol133eayiCpXUvRWvXsg65HOjqyeqe79nsiuVAcJCRB9g1uUtpWRNmzWONh2aM7z/RJ4+kXXalDTZfbq8/je7refur/OWU7jxg5Ukv2xbSUlO/Wr9fnbcJCMtdZlrprqaUnmKwopLz1FSgjGNFVvNtO7aS5LTMhjTpFqJj/FKk4+fRA5RQwPZuIJlTUQOtuBc8ciCQ0T5jQz1ZfJramigr6fLx5DSdbIC6FuLJkWSo2Q/7ONDReMeAwXHPfJQVlWhoqcT6cmphD8LLDB//YmdUdPW5Prvfxf5mUXBuoLIqSnv/YVc73B5C/xf5B8zT0dXB0NjA14+l9/vZdsVq3IFyypNNCRjXtlt6KmhonGfhrVioVi0HStTdc1EIk/c4sOCnUUuk1FLUXzM+Afy+43/Mln/wa1zgqNJAfz8/Hjz5o1klVHNmjWxtrbmxIkTEkdTcnIy8+bNo0aNGuzcuVPiSBk9ejReXl5y5Xp6ejJ//nw0NfOPGXL06FEuX77MtGnTGDJkiCR9woQJPHjwoND6vH79mkqVKqGrqyuVHhYWRuYXW5vMzQsemGdTq1YtfHx88Pf3z9fRFBkZyf3796lcuTJGRvL39xcVHV3RySbytmUkJSWL8+gUS06yHDn55c++p4xpwTOBxUVZR1QOefuxM8XlVtEt+PQXVbMyWK+fQ8qrAD5NW1yksqhVsMSwawsS7z8j4fK9IskoLCriQXVmgjz9U8R5CtZf3cIYh+0/kOD3npdjFVvZ961R0hQ5MrLkOHSyUlPEeQrWXdlENFjLio0k6egWMj/4k5WShIp1FTQ6DUOtjheZkWGkntopzi/6kMpKTiJlx2IyAl6QFR+Lsnk5NNoPRNXeBc2uo0jeubRE9MyLhCSR3tqaGjLXtDREH2DxCgQBbd+0Ifd8XzBt4Rp+GNkPV0c7lFAiKCSM89fvkZiYTJpBzmkq78WrNbS1tfht2iicqtlgpK/H2w8fWbZlLzce+DJvzTYWTB1ZEmoqhK7EHsn/uMy2hbp6hbGF8mUlJ+Yv68Gdx2xdvwtLa3OaNG3Iio0LGD9seok7m7Tztdmi9q+jV3D7l8iR01YkcvKxITvX7UXPQBdHVweGTBqArp4OK39Zm2f+kkZX3C/lXfcivfQUqvuCZCWLZeWMJbr39ua7CUP5ecYizp++pHC5i0N2nSXlU/e6CvT7+behZBk5+eXPvudr9PsJqSLntrwYTJpqoomC+JSirSC8GxjBjXdhtHGwxsZU1qHyJYGR8Rx+Ekgta2MaVVFsUuufQoL4nZcXx09T3K8kJCbmyp+YZ/7sez7n4fQoSdTF455UOeOe9ORUcZ6iT3TUG9cRfSsTHv55liQ5Do3cGFY0w6FHE4LvviTg4teNz6Ojk//7mCTnHc5TVoHvttiuKGBHSxNlcb1myimnZMyrV3Ddq1uUwX7rdBL93uM/fmWRy2Pawws9V1uizt0l0a9gp6TAvx/B0aQAJ06cQFVVlebNm0vS2rRpw4YNG3j79i2VK1fm2rVrfPr0iWnTpkmcTAXRpEmTAp1MAKdPn0ZfX59+/fpJpWtqatKgQYPCKQPEx8dTubLs3tlOnToRESE94//ypeLLfg0NDQFkVnAlJycTEhJCWloa/v7+LF26lNjYWBYvLpoDQxHkbcvInlnLylLco5yfHOTIyWs7iJKSUqGeW2zklUNB/ZXU1bDe+DNZqWkEjfqFrCLOxptOGoCSmirhS77OaqbcZMo7VjWfepPKpqGGw18zyExN5/nAhWSlfL3VCCWCvOO0JbPKCrRBLdEAK/XcXjL8c7Z+ZbzzI2nTXHRmb0KtQUuJo0lJSzTQSr12gvTHNyT5M4PfkbR5PjqzN6Lq0ggOroek0jt1Kht5AYeztVZkdr1TiyYEBH1i28FTjJ4tbaMqlbMkIzMTPZ0cR0O8+CO8V/tmtGiUEwPIvkoFls8aT6tBkzh9+RbTR/VDX4EBrqK09W5BTTlbuP5Yulny7/S0vO0RFPgqSPHlSq0vZeUl7NqlW1y7JIp7VaFSOQ6d28GarYtp2bCr5OO9JJGnc5Fsf35y8nmPVuVyKk2eO47eI3sQHPiRA9uOKPzsgmjn3RInZ9lDCVYtzYmhVVB9Fea3SCuwHYlk1Wvgyrwls9i+eQ9b1v8l957SRH5/LfpvSfX78uT8U/p9VTmxkLLbalEXFq249AxVZSVGudsrlH/VZT/SM7MYq+Dqp38ianJijmVXo7yfUV6MsuybvuaCLrnjHgr/vufG3rsB9cZ5E/YskKvzdxeYv+H33VFRU+X6wn1Fel5BtOrYjBq1ZPu9DctzTgLNu98T/bcwq0oKlPUPWaCSlVa8Ma/d9plkpqbxctBvRR7z6jeoQaUFw0n5GMGbSWuKJOPfzv/TlreSQnA0KcDJkydxdHQkNjaW2FjRlglHR1EU/hMnTjB27FgCAgIAqFKl5I9wDwwMpFy5cqiryy6LLgq6uroSPXLz+++/SwJ2/vXXX1y7dq1QcrNllilTRir9+PHjUsHTTU1NWbx4MU2aFHzUeGFJiBd99KlryP5WmloiB6C8Wc+85GjkIyf3TEd++UX3aJZ48Ft5ZIo/epXklENZXO6CTpxTNTVC074ycT63MB7WVeqaljgOimHX5mjXcyTmwDlScwXMzUazRlX0Wzci/so9ku59vTg1GfEi3bL3iOcmW/8MObN+uVEva4iuQ0U+n7mL9XfeUtf0a4tiMZj19MKggQOhey6Q+PLbBL/+kqxkUftSUlOTGUYpqYnrPkWBD/t08SBDTdZhnhUbSeanQFTK2aCko09WQixZ4vxKcvKTlkLGWz/UnBqgbGJB5of8t+oUBx0t0axdqhzHaJLYrmlrFTwJoKSkxKQhvejU0oNbD58SHhmNkb4e9lUqYKCnS5fRM6ROnFNXE8eu+CImBICWpgYuDracv36PDx9DZbbiFYcmTRvQpVcHmfTtm/YSn22P5KzuAtASz8An5LFSJTcF2jbtbFkF27fAdx84fugMfQZ1o259F65cuFHgPYqSqIDNVsT25ydHoxByAP5cvoNugzvTumvLEnU0eTRzp1uvjjLp2zbtJj5e5MzNq75y6l6RflAsS8F2VN+9LpkZGaSmpjHz58lSeQ0M9VFTVWXmz5NJTk5myYI/Cny+oiTm2++LypjXqizF5cj2+/nlz3721+j3dcQrmVLSZT9jksUfoNpqhR/un3vxkaefoulaqyLljAp2kj/7FMX5lx9pUKksruVlY9z909ERx+5JSZW15cnivjN3fB8dbe088wMkJaegrVX6W6ZTxeMeVTnjHjXxdsq0AsY98rBt70aLJcOJDgjlUP9FZBTggDCrWQnbtvUIuPSE4DulE5uqkVd9uae67dryt8QOqWvm/T5C3quUciPp9wqUVfQtqSVBZrx43Cen7lUUHfOaGqLjUJHIs3ex/GLMqyce85bt2RT9BjUI33OBpFcfZGTouVXHbtt0MuKT8Ov5s1RgcoEchK1zAjI8fPiQ4OBggoODadFC9vSQbEdTWprIACu6mqmwlOQ+9ypVqvDo0SNiYmIwyLUXPffqqPPnzxda7uPHj1FRUcHWVjrwnLu7O3379kVVVRVTU1OqVq2KikrpHHOcfeywmUVZ3r2WXraZHXsjOOhToeR8Sbacjx9y5HzMJ7+2jjZ6Brq88C39/cppwaL4AapmJqS+ke4MVMVlSwtWLGaAXj6n9Oi1aAhA0v3nch1NplMHARC+bLvMtdIkJUi0b17DogxJr6WD9WtmxzEIkg3sKI8yLevkec2krWgPeuxtv3+OoylKpLuSgQmESpdJyUgUnyErsuC6z4oVrUhUNjJF3vzol3O62fmVjL7th4VFWZGDOyQiksriODXZhISJjle2NFM8TkUlawsqfRFfZd8JUXBM1xo5wV/LGBuKnhEu/wjn0prxnDb2J6aN/UnuteytAeZy7BGAZbYt/PCxwOfExycQHRWDuaX8bTCWViJZQe8LlgUQI44fZ2AoG0urOHwKErXtspamBHxhk8zEcek+fQiRuS9PORaybcW8EHIAYsSxvPQMdQvIWTimjJnFlDGz5F7L3sphkVd9idt00AfZw0y+JD5OVPcWlnm1I7GsXHWvqaXJ0FH95OYHGD5mADExsSXqaPqYb79vJpVHUTlf8k/u9y30Rc6M0LgkKptIv1chsaIPUUuDgreN5iY9M5PVV56joarMsIaKBRNecUkUFF3Rk+n+aViYi+oxNFw2lt+nUHGsL/Oc98oyO3+YbP6EhETi4hOoJudwipImLlj0fF0LYyL9pe2wnpWoX4wNKjg+YW5q9m2K568D+PzyAwf7LSIxvGDHgfv0ngBc/710VjOB6FS3meN/lXtNp4B+z0LcVwW/L/gbICE+gZioGLnvtpSsDwXLKk0kY15LE5L9pW26upVoTJbyIVwhWcYt8h7zGrcRfQ/E3fGTcTQZtaxD1TWTSIuMxa/XLzLlEPhvI5w6VwAnTpxATU2NZcuWsWLFCqk/b29v3r17x/PnzzE1FQ1KQ0IUG4AWBisrK96/fy9xZhWXpk2bkpGRwY4dO0pEHkBAQACXLl2icePGMiuazM3N8fT0pFGjRtjb25eakwlyTp2pXV/2OE9Xt1oAPH9UcGyQ7NPmXPOR8+xxjpzsk47k5Xdxc0JZWVkqf2mR9EQ0qNWu6yhzTbuOaKtFkq/84IbZpAWH8cK2jdy/iFWi7VIfhv/EC9s2xJ+/KXO/jrsLOvVrEXv6GinPSm8FizziHop0M6gvu7Ra3000+I2XczJLblI+hHPVvKvcv8DFogHUs34LuGrelc+n75awBkUn472o7lVsZLfUqFYRnZSUocCKoowAUTtVqeYqe1FNHWVTCzJjoyRBx7Pzq8rLD6hYVCArI53MsNIdfDjaiQb093xl37P7T0VpDlUrFVl+YnIyG/YcRUtTg5aN60nSa9mLTvy5du+JzD1ZWVn4BwahqqJCBavSDwqcTXx8Am/9A6hRq7pk5jUbHV1tqtWw5a1/gGTWtiCePHyOuUVZKlSSPbCidr1axMXF884/QCFZ1RxFH60lPUB/LrbBzmL7nBtnN9HR435yTuPMU079fOQ8Vmy23tZBfBpUUOkHBM4mPi6BN/4BONZykFv31WvY8aYQdf/44VPMLczyqHtn4uLieev/DoDli9ZSoUxNuX8f3gcT+TmKCmVqUrOye/EVzUX2KXHy+99aADxToN/Pb/zgkk+/X1tOW8nu959/hX6/hvhkufsfZJ3d2WnVLQwLJfPw4/cERibQw6USZgrEeLnxNow7gRE0s7OgunnhnvVPwbG6aALh7kPZ05zvPxKtzHawzzm1toa9yJbdeyQn/+OnZGVlSeUvLUIeiYJRW9eT3d6YnRb65J3C8upP7krT+YP4eO8V+7rNVcjJVKGxI+UbOvD65B3CfAMUflZJkhCfwDv/QBycqklWIGajraONfY2qvPMPVHgV0tNHfphZlKV8RWuZay71nIiPSyDA/9vGIco+bU7PTd6YV5SW8CT/cV9KUDi3LDvL/QtasheAF/3nccuyM1Gn70jdW7ZfC2w3TiP5fSjPOswQnEwF8F88dU5wNOVDZmYmp0+fpkGDBrRp04ZWrVpJ/WUH5j5+/Dh16og8wceOHZOSERQUREJC8eKSeHl5ERsby86d0qcApKamcv/+/ULL69mzJ1ZWVqxbt44TJ07IzfNlUPD8ePPmDcOHD0dZWZnvv/++0OUpSa763CAuNp6OPdpiaJyzWsuojCFtOrckLjaeqz452zV6Du7Kkat7mLdqtpQc3wfPCAoMxqt1Y8rl6mQ0tTTo0rcj6enpnD2Wc9x9eGgEd288wKl2DWrVqSlJV1ZWpveQbgCcOny2xPX9koTLd8mIS8CgczNUjHICd6oY6aPfwYOMuAQSLuc4Rwz7tqPS6fVYLJosT1yRMJ08kKz0DCJWlJwjU1EifR6SHpuAWQ9PVI1zZnbVyuhTtnMj0mMTiPR5KEm3GNwK16srsF019quXtaRJf36PrKQE1Oo2RUknp+6VdPRRdfUgKymB9Oc5QdnV3NuiPX0tmn0mSsnJ8PclMywYVYe6qLo0lrqm3qoXSprapN06J0nL+hxC+stHqFhVRr1pF6n8ag1bo1zWivSH10r91LlGdZzQ1dbiyLmrRMXkBCyNjI7lxMWb6Gpr0aiOkyR919FztB82jRmL1xUoOzY+gR8WrSU0IpJxA7pJxWgqZ2lGvVoOvHz7ns37jkvdt++ED4HBIbRoVPernjoHcOzgGTQ01BkwrKdU+oBhvVBVVeXYwTMy95y9eYCzNw9Q01n6KPjjB08DMPQ76ZUqHbq2xtTMhLPHL0jF8Rk7dThu7rVl5Hfo2hrP5o0IePueR/dLdkvtDZ/bxMfG07Z7Kwxy2X5DYwNadGpGfGw8N3xyjtruOqgTe65sZ/aK6VJynj3wIzjwI41buWNdMWdlnIaWBh37tic9PYMLxy9L0ivalGfk90PQ/2KFlr6RPpN+HQfA6QPn+JocPXAKDQ11Bg3vLZU+aHgfVFVVOXrglMw9PreO4HPrCE4u0o7qowdFeYd/N0Aq3btrG8qamXD6uE+eMZy+Ftck/X4bmX6/rbjfvybV73fh8NXdzF0lvSosu9/3bN2IcrnqXtTvdyA9PZ1zcvr9mrVrUKtOzuSOsrIyvYaItp2fOlz6de9e2QxdDVWO+r4nKjFFkh6ZmMLJZ0HoaqjiXjlnJc6e+2/x3uDDj8fkjx+T0tJZf/0FOuqqDHIr2FGSlZXFysvPUVFSYnSjf/5qpl37j9K+1zCm/yodg69mdTusLc25cPUm74NyVgYlJSfz95FTqKgo09KrkSS9rGkZajs78vjpCx48eSZJz8jIYNcB0bdA62YepasM8O7iI1JiE6nerTGaRjmrJ7WM9bD3bkBKbCLvLj6SpDsNaM6AC4touWyElBwVdVVarxyN23hv/A5e52Cf30iNU6zfbvh9DzLTM7ixeH+J6FRUTh46i7qGOn2H9pBK7zusO6qqqpw8JDsOP3ZtL8eu7cXxi5iH2XkHju4jld62S0tMypbh/ImL39z2Rfs8ID02AdPuXlJjXlVjfUw6NSY9NoFon5xDo8wGtcbpykqqrBhXvAcrKVF+Vn8qLxxJzI2nPOs4g9RP8ld1C+SQmZVVYn//Lwhb5/Lh9u3bhIeH07JlS7nXbW1tqVy5MqdOnWLq1Km0a9eO/fv3k5CQQK1atXj37h2HDx+WxD0qKl27duXIkSMsWLCAhw8f4uTkxOfPnzl16hR169bF1VX+SoK80NHRYcOGDQwfPpxJkyaxY8cO3N3d0dfXJywsjPv37/Pw4UPU1GT3/Pr6+rJ7924yMjKIjo7m6dOnXL16FU1NTdauXUulSkVfMVASxMclsHzuGmYtmsb+Czu4cu46SkpKNG7eEFMzE36dtoj4uBzHn5GxAZWqViDii20vWVlZLJi5lJXbFrH79GYunrlKclIyDT3dsK5gxeZV2/kQIL09afGcFWw9so71e1dw6cwVoqNicXWrhW11G04dPse9Gw8pbTLjEwn//U/MfxlDxaN/kHDpDigpoetRF9WyxoTMXk1mrplsVSMDNCqXIyM8Kh+piqPfzgNNBxtiDp6T2br3NciIS+Td3J1UXTQclwtLiDx3H5SUKNPcFXUzI15P20BGXI7+asb6aFe1IjU8utjPVtHVwryf6MAArYqiQb2uUxWsRoni6ERdeFC62+ySE0k5thXN7t+hPW0l6c/ugpISqtXroGxgTPK+PyA5R3clXX1UzKzJivui7rOySNq1DO3R89DqP5X0es3IjAhBxboKKhVsSX/zlNSze6Qfve8PtCcuFp0y5+hGRvBblMtao1q1JhmhH0g+uIHSRk9Hm4mDe/Dr6q10GT2DxnVrAXD59kMiomKYNWaglIMoOjaOgKBPmBjJHmW9ae9RXrx9j4mRAWGfo7j18BnxiUkM69GBvt6y/cGcsYPoM/Fnlv+5lws372NfuTzvgj5x94kflcpZMj2frUSlxZa1O2nfuSXTZo/DrWFt3r0JpHLVijTyrM9b/wC2rJU9vriKeMWXlrb0SpjDf5+kWx9veg/siq19FZ77vsTCygzPFo2ICPvMst+knXUOjnZM+H4kAW/f8+DOYxITk3CoWQ3n2o7ExcUzZfTsQk1mKEJCXAJ/zNvA9wsn8df5zVw/fxMlJSUaNquPiVkZFn6/lIRctt/Q2ICKNuWJDIuUkpOVlcWSH1fy+9Z5bDm5jqtnrpOclIybZ12sKliyffUuggJyZm3VNNQZOL4fPYd359Htx3x4F4yhsQF1G9fGwEgfn2OXOLW/9CcZcrN57Q46dGnND7Mn4NawDu/eBFClaiUaezbgjX8Am9fKTgLYZNf9F6ugDu07QY8+nek7qDt21Wx45vsCCytzmrZoTHjYZ5aW4Ba4ohIfl8CKuWv4cdE0/r6wnSvnboj7/QaYmpkw94t+39DYMM9+/7eZy1ixbSG7JP1+Cg0962FdwYotq3bwIUB6xn7xnJVsPbKWdXtXcOnMVWKiYnAR9/unD5//Kv2+nqYa4z2qM+/ME7pvuUijKuZkAVf9Q4hISGFmy5roaeaM56ISUwmIjKeMjvxQDzvvviU8PoURDe0w0i44HMSp58G8CI2hfY1yMlv3vhb+bwO5eks0ifbIV7QyzefKDd4FisYh3Tq2RldHtLUqKiaWd++DKFNG+tRjZWVlpk8cxdjvf6bn0PF4uruhqanB9dv3CfoYwpC+3ShvbSl1z7SxwxkwegrDJ8zEs5Ebhvr63Hvsy+s3AbRq2pi6LjUpbVLjkrj22x6azh9Mv7MLeOfzEJSUqNzUGZ2yhvjM2CLlMNIy1sPYxpKEL1Yq2bZ3w967AQnhMSSER9Ngaje5z7s6TzoouF3H+pg5VuTZ31dktu59bbav302bTi2Y+ON31GngQsDb91SyqUhDj3q88w9k+3rZgOaVq1YEkFkBemz/aTr37kCPAZ2pal8Fv6cvMbc0o0nzhkSER7J6key4xt3TDRt70erq7K3WfYZ1Jy01nfi4ePb/VXKx+kA05n0/bweVF46k5vllRJ2/B0pKGDWrjbqZEW+/Xycz5tWysSYtLLpYz9WrWw3LUd5kJCSR9PIDVhPkt5XgFfvJiCn9Q2AE/rkIjqZ8OH78OKqqqjRt2jTPPK1atWLNmjU8ePCAefPmYWBgwIkTJ/Dx8aFq1ar8/vvv/Pbbb8WK3aSurs6ff/7J6tWrOXPmDD4+PpiYmODq6ipzEp2i2NjYcPToUfbs2YOPjw/bt28nISEBAwMDqlevzs8//0zr1q1l7rtw4QIXLlxAVVUVbW1typUrx9ChQ+nbt69k++C35u/th4iOjKb/yF606SyKq/Xq+RsWzFjC+ROXFJZz9fwNhncfx/AJg2jaxgNVVVXe+Qfyy9SF7N9xWCa/n+8r+rcfwXfThtHAww0tbU2CAj+yfO4atq/bVULaFUz0npNkRMVgPLgz+u08AEh++Y7QX9YSd/Z66T1YVQWTCf3ISk2TbLH7FoRsP0t6ZCxWI9tTtrNoi0bC8/f4z9jE5xO3C7i76Kga6VJ5Tn+pNMMGDhg2EK0OeRkZW+rxnNJunCYrIRZ1z06ouYqC7Wd+DCDpwHrSnygeeDkz4CWJSyai3qoXKlVrolKlBlmRoaSc/ItUnwOQIT2Ll/U5hMTFE1Bv2QvV6q6oWVchKzaS1AuHSDm7R8rBVZp0b9sUQ309th08xclLom2dtpXKMWP0AJq75x1/4EtUVVS4dEs0C2hiZIBnfRd6tmsm2Z73JeUszdi3+lfW7jzE1buPee7/jrLGRgzo3JoRvb2lHFxfi/i4eHq0HczE6aPxatkYt0Z1+BwRyc4//2b5b2uJj4tXWFZGRgaDe45hzORhtOnYnJouNYiNjuXE4bMsnb+GT8HSW8ZX/r6BD+8/UsfNmeZtPdHU1CAiPJL9u46ydvlmAt6WjhP60I6jREfG0HtEd1p0agaAv98blsxcwcWTVxSWc8PnFmN7TGbQ+H54tGmEiqoqgW/e89u0JRz+S3rV8ntxen2vetg5VsW1gTNpaem8ffGONXtOcmTn8TyeUnrExcXTtc0AJk//jmatmtCgUV0+R0Sy4899LF3wB3GFrPsBPUYxbsoI2nVsiZOLIzHRsRw/dIbF81fzMbjkwwUUhb+3HyYqMkbc74sc/qJ+fyk+hez3R3Qfz7AJAyX9foB/IL9OXcj+HbIfiS98XzGg/UhGTxtKA496kn5/xdy1X7Xf7+ZcCUMtDXbc8efUc1E/U7WsPj80r0kze8sC7s4hJimVrbdfY6ilTr+6BccXSsvIZM1VP1SVlRip4Ml0pcFTv1cs+WOzVNqh4zkO3haejSSOpvxo0qAum5bPZ/223Zy/fJ309AwqVbBm9tSxdOsoOyaubmfDjrVLWL1pB9dv3ycpORlrSwsmjBzEgF6di6+Ygjz56wJJkXG4DGuDXUdRvNUIv/dcmLUN/1OKbfHPjgWrY2pA7RFt88yX29GkrKpCgyldyUhN59ayg8XQoGSIj0ugX4fhjP1+BB4t3KnnXpvPEVHs2XqA1Ys2SDmcCyIjI4ORvSYwctJgWnZshqNzdWJi4jh95Dwrf1vHJznxTlt7N5cJVj5hxmgAgt9/LHFHE0DYjrOkR8ZhMaIDJp1EK+4S/QIJmLmRyJO3Svx5AEriEy5VdLSwGCYbnD2b0C0nBUdTLv5/1iGVHEpZX/XM9f8mzs7OtGvXjl9/lR/ArriEh4eTIe9IczmYm5uXShlKk5rm9b91Eb4Z+/SNCs70LyY89ut/oP+TqNWzeKsh/9/RGCc/4PF/gWp1R37rInxTTNX1C870L+ZTSmTBmf7FGKqVbAD1/zduLSjZOFb/T6i2/2/bvtUuswvO9C9mU0r+cUT/7WxWsSo4078Ut4/f3llZmvSu0KnEZO0KPFRiskoTYUVTCZKRkSET6PrSpUskJiZKYjiVBj169CA4WLEAbC9fls6RowICAgICAgICAgICAgICAgKCo6kEWblyJQ8ePKBGjRpYWFgQHBzM7t27sbOzo1WrVqX23Hnz5pGcnFxq8gUEBAQEBAQEBAQEBAQEBApP1n9w85zgaCpBbG1tuXDhAnv27CE1NRVTU1O6dOnCuHHjUFdXL7Xn1q//391aJiAgICAgICAgICAgICDwT6Vkj0D5/0BwNJUgbdu2pW3bvAPoCQgICAgICAgICAgICAgICPybERxNAgICAgICAgICAgICAgICAqVAprB1TkBAQEBAQEBAQEBAQEBAQECgJPgvxmhS/tYFEBAQEBAQEBAQEBAQEBAQEBD4dyCsaBIQ+AdzP974Wxfhm1I2K+1bF+Gb8nK/yrcuwjfl3oGV37oI3wxnHetvXYRvSkLmf/vdD8r6L4YNzSE0OepbF+Gbcmp60LcuwjcjcM7sb12Eb8qYB7986yJ8Uw46DfvWRfimnFXV+tZF+Ga4fesClDL/xV5dcDQJCAgICAgICAgICAgICAgIlAJZWcLWOQEBAQEBAQEBAQEBAQEBAQEBgSIhrGgSEBAQEBAQEBAQEBAQEBAQKAWEU+cEBAQEBAQEBAQEBAQEBAQEBEoEIUaTgBSJiYksWrQIHx8foqOjqVu3Lps3b/7WxRJQAM9WjRkwqjd2DjYAvHr+hq1rdnLx9JVCyXGp58SISYNxqFUNNTU1AvwD2fPnAQ7tPiY3f1X7KoyeNgyXek5oaWsR/OEjR/acYMf6PWRkZBRbL0WxbuVKtZFtMKpeHoBovw88X3uCoNP3FZZh0cSRCt71Ma1dFW3LMmRlZJAYEsXH8494sfkMicGfpfKXcalC5W6NKFvXDt0KpqCkRFJoNCFXn/Fy8xliXgWXqI75Ydq6NhVGtUfPoQIA8c/fE7DmKOGn7ikso4yHE+adGmBQ2xZNKxOyMjJI+RRJxPmHvN94kuQv9M++p/zIthg4V0FZXY2kD+FEXnnCu5VHSA2LLin18sWwZT3MRnREu3olAJL8AghZd5joM7eLLFNZSwO7g/PRcazC6wFzifEp4HdUVqbq1pkYeLkS+OMGwreeLPKzC0vFlq44DW9DGXHbj/T7wKP1Jwg4o3jbt/GuT8UWrpStWRkdcyMy0zOIeh2M366L+O2+JPeeKu3qUWNQC0wcKoCyEpF+H3i+8wIv9xXO5hSXOi3q0WF4JypWqwhA4ItAjqw/yN2zRav/mu61mL3zFzbNXs/pbScKzG9Z2Ypl51dzYvNRts/7s0jPLA71W9any/AuVBK3/3d+7ziw/gA3z9wslByHug70Ht8bWydbVNVVCfIP4ti2Y5zde1ZufpcmLnQe1hlbJ1vUNNQI+xDGg6sP2LdmH1FhXz+wtaGRAVOmj6FFa0/KmBjzOSKSs6cusnjBaqKjYgolS1NLk/GTR9C+UyssLM2IiY7l6qWbLJy7go/BIXne597EjZ59O1OnnjNlTIxJT0tn6oQ5HDt0urjqFYiRkSHTZoylRWtPTEzLEBH+mbOnLrJo/iqioqILJUtLS5MJU0bSsXNrLCzNiYmO4fKlm/z263KCgz5J5b375DzlylvlK2/vrkOMHz2jsCoViEWr2lQd1RYDB5Hti33+nldrTvDptOL9XlmPmpTrVB9j16poW5mQmZFB8qcoQnwe4r/xNElf9HvVpnSh2pQuecqLvP+aS23nFE2hQlKlhSuuI9pgWk2kf8SLD9xbd4I3ZxW3/XYd61OlhSvmTpXRMRPZ/sjXwfjuvsjTL2x/9a6NaLl0RIEyNzeYQGxQRKF0KQ77j57ip4UrWb3oJzwa1iv0/fcfPWXtn7t49uIVaWnpVKpgTc/O7enSvqXc/K/evGP1ph08ePyMpKRkrCzN8G7Tgv49OqGq+nUONGnUsiE9R3bDpnoVAN74vWX32n1cPXO9UHJq1nVk4MR+2DvZoaauynv/DxzceoQTe04VeK+ysjK/bZ1L/ab1WDZzJQe3HimSLkXBroUr9Ye3xUzc9sNefODG+uO8LETbr9GxAXbNXbF0qoyeuO2Hvw7mwe6LPNxzscD7lZSV6LllClU9a3Fq9lbubjtXZH0E/j383zuaDh48yPTp0yX/X0NDAwMDA6pWrUrTpk3p0qULmpqaRZK9cOFCDh48SM+ePbGysiI1NbWkil2i+Pj48Pz5c8aOHVsqMry8vAC4cOFCkeV/TTr1as/Py2YQGRHJmSM+AHi0dGfF1oXMnjiPw7uPKySngUc9Vv+1mOSkFC6evkJSYhLuTevz87IZWJQzZ82ijVL5bavbsP3YelRUVLh09hpRn6Op3cCZSbPHULVaFWaO/ToniVTp1QS3JcNIjogh8Kjo49K6hTNNtkzk5qQNvN2j2IdvnfkD0TIzIPTmCz5d9kVJRRkTVxuqjWxDpW7unGw2g6TQaEl+p++7UbaePeF3XhJ2+yWQhWG18lTt50Wlrg050+4nov0+lILG0lj29sRh2UhSI2IIPSL6uDRt6UqtrVN5NmEtH/NwFHyJ/W+D0TAzJOqGH58vP0FJRRkD16pUGNUOi26NueU1jZTQnA/I8sPbYPfrANKi4ok4/5D0uCT0HCtSflgbzDu5c6ftjyQFhJaGyhJMejaj4uIxpEVEE3nsGgCGzetgs3k67yav4vNen8ILVVam8pop6DhWUfiW8r8Ow8DLtfDPKib2PZrgsXgYSRExvDkmavsVmzvTatNELk7ZwMu9irV9r2UjyUhLJ+TOSwIvPELDQIcKXrVosmgoZRwqcO3HbVL5G/7SH8dBLYj/FMnbU3fJysjEulENPJcMp6xTZa7O3FrSqsovd4/mjF40lpiIaK4fF9V/nWZ1+X7jTNZMXcmFfecVkmNW3pz2wzpiYmmKUyPnAvPr6OvQY3IfjMoaUauxMyoq3+a0xBY9WjBx8USiI6K5ckxU127N3Zi9aTbLpizL00n0JS5NXPhl6y+kJKVw48wNUpJSqO1Zm4mLJ2JmbcaOJTuk8nsP8WbETyOIi47j7oW7JMYnUsWhCt5DvPH09mSi90Q+BXzK42klj46uNgdPbsfWrgpXL93kzAkfqtpVYeDQXtR3r0P75r1ITEhSSJaysjI79q6lvnsdHt5/wqXzV7EqZ4l31zY0bFyPds16EvIpTOoeFRUVFq34iR69O/ExOISb1+4SEx2LqVkZMjNLf05XR1ebI6d2YGtvw5VLNzl90gdbuyoMGtabBu51ad2sB4kJiQrJUlZWZuff62ngXpcH9x5z4dxVrMtb0rlrWxo1dqOVVzcp/Xds3YeRkYFcWVpaWgwc2qtEdPySCr08cF02nOSIGIKP3ALAvKUL9bdO4v7E9QTuvqyQnFoLBqJpZkjEzReEXfZFSVUFYxcbqo5sS/lujfDx+oHkXP1+NsEn7pDwPkwmPfErOVgcejShxe/DSIyI4aXY9ldp7kyHTRM5O2UDzxR0+LcS2/7gOy956/MITQMdKjWtRfOFQzGtXoGLs3Js/+dXQdxbn7fzvbx7DcqKJ7tKG1+/lxw6fpYPwZ+4de9RkeVcv32f0VNno6mhgVfjBmhpanD15j3m/LacTyGhjBnWXyr/i9dv6TdqMhkZGXi6u2FkaMDdB09YumYzr98GsGDWlGJqVjBte7bmhyVTiIqI4sLRSwA0bFGf+Vt+YcGk3zm5VzHHdt0mtVm4fT4pSclcPXOd5MRk3Lzq8cOSKZhbm7F58dZ8758wdwz1mxbesVdcavVoQodFw0mIiOHZcdG7b9fMhR4bJ3F06gYe7VPs3fdeKmr77++85PWFh2ga6FDVy5n2C4di7lCBU7O25nt/q18GUNWzVjG1+XeTJWyd+/9l8ODBlC9fntTUVEJDQ7l58ya//PILO3bsYOPGjZQrV65Q8rKysjh8+DC9evVixoySn3kqSS5cuMD+/fuL5WjKT8aECROKUbqvi46uNpPnjCEsJJzuzQYQGSFyBJT5zZh957cxefZYzhzxISkx/0G2kpIS0+dPJi01jd6thxDgHwiAlrYWO45vYMjY/hzadYxPQTmzuVN/Ho+GpgZDu47l/s2HAKiqqrD6ryW079aav7cf5tHdJ6WkuQhVXS2cZ/UmMSSKk81nkvI5FoDHpga0OTsPl1m9eX/0NumJKQXKevDrLkKuPiM9IVkqvf6KEVTu1ojy7evxctMZSfqLdSe5Pmo1KZHxUvlrTu2K40RvqvRswv05f5WAlnmjoquF7Zy+pIREcrPp96RFiPRXNzXAzWchtnP6EXrkJhkK6P/q5x1EXnlKxhf6O6z6DsvujTHrWJ/3G0QrddSMdKn6Y28S34Vwu9UM0qMTJPnLDWuN/dyBVJ7UhWfj1pSgttIo62ph/eNAUkMied5yIumfRasWgk0NqX56KeVmDSTq2HUyE5MLkCRNuZ8Go+/hTOwNX/QbOBaY32x4R8oOaE3M5UcYNKlVFFWKhJquFvV/7E1CaBR/t5xJsrjt3zE1oOupedT/sTdvjinW9u8u3s+z7edJjcuxE5pl9Ol6ai41BjTHd/MZYt6J3v3ynk44DmpByN1XHO+7UCJfRUONZmvG4NC/GW9P3iX4+rNS0DoHLV0t+s8cRGToZ6a0nkCsuP73mBry+8nl9Js5iBvHr5GsQP2bWJrQqn9bhZ+tra9Dm4Htilz2kkBbV5uhPw7lc+hnvmv5HTFi/bebbmf1qdUM/XEoV45dKVB/JSUlRv86mrTUNMa3H0/QG9Ex85ramiw9vJTu33XnzJ4zhAWLPqr1DPUYPH0wHwM+Mr79eOKjc+xfx8EdGfnzSHqP682SSUtKSXNZho7sh61dFX6fv4oVi9dL0idOG8XkH75j8PC+rF62MR8JOXTq2pb67nXYveMAU8fnrEzp2rMDy9fMZ+K0UXw/8Wepe2b9OoUevTvx+/xVrFq68as4l3IzfNQAbO1tWDhvJct+XytJn/z9aKZOH8vQEX1ZuXSDQrI6d2tHA/e67Ny+n8njZknSu/fqyMq1vzH5+++YOiHnd8lP7vjJotUvVy4VbnVdQajqauE4pw9JIVFcaDadFHG/p/GbAU3Pz8dxdh+CjtxSqN/z/XkX4VefyvT7rqtGUaFbI6w6uPFmo+yHe+Cey4Sce1gyChUSdV0tGv/Ym/jQKP5qNZMkse2/sdiAvqfm0fjH3rw6fps0BfS/sWQ/j7+w/Vpl9Olzci61BjTn4ZYzRIttf+iTd4Q+eZdnmRy6NSbS/yNxH2VXP5c0b96+Z9/h4q0czszMZN7SNairqbF70woqVxB9NyUmJtFn5CQ27dhH5/YtsTQ3k9zz+6oNpKSksnnlAuo41wQgLT2d0VNmc+y0D906tsalpkOxypUf2rrafDdrBBEhEQxqMYLoz9EAGC8yYsuZ9Xw3awQXj10iSQG7P2HeWNJSUxne9jvevxFNimppa7L2yCr6junF8d0nCQ2WdaYC9BjRjU4DOnLn8j3qNqldkirmi7quFs1n9iEuNIr1rWeQKG77F00NGH5yHs1n9ubZ8VsKtf2LS/Zzb8c5UnK1fe0y+gw/MY86/Ztze8tpIt/JX8HqNqwNdfo1580VX6o0Lnic+F/lvxij6V9z6lzTpk3p1asXAwYMYNq0aRw6dIhly5YREhLCkCFDSEpSbPYum4iICJKTk7GxsSmlEv//0KFDBzp06PCti6EQ7k3ro2+oz96tByVOJoDP4ZHs23YIAyN93JvWL1BOjVrVqFC5HKcOnZM4mQCSEpPYtnYXamqqtOzQVJJextSYOg1duHv9gcTJBJCensHG5VsBaNO5RQlomD9WXjXRMNTh9bbzEicTQHJ4DK+2n0fDSBdLLyeFZAWdvi8z2ASIfSOamU/5HCeV/vHiExknE0Cs/0dRGXKVp7QwaVoLNUNdPmw9J3EyAaSGxxC09RxqRrqUaVrwCg2A8FP3ZJxMAIlvRPqk5tJHu7IFyhpqRF7xlXIyAXzcKVoJqFW+bKH1KQwGni6oGuoSvv2UxMkEkB4eTfiO06ga6mHg6VIomWWHtMNscDveT19H/K2CHSWGLethPbM/H5fvI/Lw190yVt5T1PafbT8v1daSwmN4vuM8moa6lPdUrO0//OOY1IcGiNrvu5N3ATCpkTNLXaWDGwD3VhyScmJlpKRxY45o5Yt9L48i6VQYnD1c0TXQ5cyOUxInE0B0eDRndpxCz1APZw/FVpk9u/WUrhU60LVCB1ZPXl5g/vCgMEn+OT2+zcRMbc/a6BnqcXz7cYmTCSAqPIoTO06gZ6hHbc+CPwBsnWyxqmTFpSOXJE4mgOTEZA6sP4CqmiqN2jWSpFtVskJNQ42HVx9KOZkAzuwROeLNypvxNfHu2paE+ETWrZLeurh25RYS4hPp1E1xJ6J31zYALF20Vip9/56jBAZ8oJ13S1RVc+Ysq9pVZtCw3uzZeYgVi9d/dScTiJxjCfEJrFkpHergjxWbSYhPoEu39grL6txV9FstWfiHVPq+3UcIDPhAh06tpPTPCyMjQ74bN4QXz19z8G/FVlUrillTJ9QNdXi79ZzEyQSQEh7D223nUTfSxbxpLYVkfTp9T26/H++f3e/FyVz71lT0rImmgQ6Pt5+XOJkAEsNjeCy2/RUVtP135dj+pM+x+J8S2f6yNRRboVR7VDu0jPW4ufQAWZml/3Hp3bY5T6+f4un1U4wa3KdIMp76veJ90EdaN/OQOJkAtLW1GNirC+kZGZz2uSpJj/gcyZ0HT6jrUlPiZAJQU1VlxEDRyr2T5y4VTSEFcfOqi56hHoe2H5U4mQAiw6M4vP0Y+kb61POqW6CcarXsKFfJGp/DFyVOJoCkxGR2r9+HqpoqXu095N7bqGVDRs0cxtblOzh/+Ovu/LDxcELLQId7O85LnEwACeEx3N/hg5ahLjYeirX962uOSjmZABI/x+J36g4A5g4V5d5n18KVZtN7cWXlIZ4euVE0RQT+tfxrHE3yaNOmDTNnziQwMJA//8wZcMXHx7Nw4UI8PT2pUaMGXl5erFy5UhJDJygoCHd3dwBmzZqFnZ0ddnZ23L59W3L/ggULaNKkCTVq1KBFixasXbuW9PR0qed7eXkxcOBA7ty5w6BBg3BycqJRo5wBamBgIBMnTqRevXo4OjrSsWNHTp6UnpHIyMhg586deHt74+zsTKNGjRg8eDAHDhwA4IcffmD//v0AknLmLuuuXbvo1KkTbm5uODo64uHhwfTp0wkOzomXU5CMfv360bx5c6lypaWlsXr1apo3b06NGjXw8PBg4cKFJCZKL0fPvvfp06cMHz4cZ2dn3N3dmTdvXqlsRXR0Fs2cPH34XOaa7wPRh3JNl4JnVxzFeXzzkePoUj3Xc6ujrKws97lPH/mRmZkplb+0KOMscoxGPHojc+3zA1FaGRfFt0BJUFJC09SAKr09cPiuPZ8u+xJ49Fa+t2gY61K+fT1cZvcm8lkgL7eU/n5tAxeR/jEP/GWuZadl5ykUSkqomxpg1ceLimM68PnSY0IP53SoSe/DyExLp4ynE+qm0tsmtCqIHEyxcuqkJNFxtgUg4dFrmWsJD19J5VEEg2Z1KDd7EJ9W7ydiT8FbrrRrVqHSqolEHrvOx8W7FH5OSVFW3PbD5PzOoeK0ss5FaPu5UFYXfVCmxOQ4E7XLGgIQ90F2i0hcUARxQRGY1SrecxWhqrhu/R+9krn2WpxWtRD1//+GnbMdAK/k6P/i0QsA7J3tiyfnoayckA8hpKelU9ujNoYmhlL5zcubi2Q9lpVVWujoalPVtjJ+z1+RkiLdxyYnp/DC7xV29jZo62gpJK+WiyMhn8L4JCcW08P7vhgY6FOlakVJWo/enVBRUWHTmu008qjPsNH9mfzDd/Ts2xkT0zLF0k0RdHS1sbWrwvNn8vX3e/4au2o2aOtoKySvlmtNQj6FyY1F9eDeEwwM9LGpWqlAOeOnjEDfQI/f5q0gK6tkHQ/GYtsX9VDW9kWK+32jIvb7GqYGVOztge2Y9oReekLQkZJdjVUSmNcS6R8ix/aHiH8T82LaYBWx7U/+YiJJHtqmBrgMaUnY0wBeHS96bMSvzZPnLwFwrC7bT9SsLrJ5vs9fSNJ8n78iKyuLGtXsZPLXqGaLkpIST569LKXSiqjuXA0Av4cvZK49f+gnlSc/qonzPH+UjxwXWTl2NW2ZtXo6F49dZvPvWxUud0lhLR7TBMtp+8GP/MV5irdgQkVdDYDkGNm2b+FYiU4rRvP8+C0uLdlfrOf8F8jKyiqxv/8X/jVb5/KiU6dOLFmyhKNHjzJ69GhSUlLo378/b968oUuXLpQrV46XL1+ydu1aIiMj+emnnzA0NGTChAksX74cLy8vGjduDEDFihVJS0tj8ODBPH36FG9vb6pUqcLjx49Zvnw5/v7+LFkivTz+8ePHDBs2jE6dOuHl5SVxxLx7946ePXuiqalJz5490dPT4+rVq0ycOBEQOckAVq5cybp162jXrh2dOnUiOjqay5cv88cff9ClSxe8vb0JDAzkwYMH/PTTT5LnVqxYEYCwsDDs7e1p0aIFenp6hIWFceDAAXx9fTl48CDq6uoFypDHpEmTOHv2LK1ataJHjx68efOGrVu38uTJE7Zv3y4Vo+Pjx4/07NmTdu3aMW7cOG7evMn27dsxMDBgzJgxRa1auViWswAgOjJa5lp4SIQ4j3mx5IRJ5FjI5I+Skz8lOYXY6DgsrS1krpU0OuVMRM+Us7IoSRxPSNfatHAyrU3wvrMcgLSEZB7O3cPr7T6Qj6Hr81G0RS4zPQPfZYd4/sdxMlPT88xfUmiWEzl10iJlZ11TQiMB0CpXOP01y5nS6N5qANITknn9y06Ctp2T0j81PIY3v/9N1Rm9qH9pMe83nuTjvitkxCdhv3AoiQEhvFt1uIhaKYaGWPf0SNmVY2niulcvp9iqKu0alan8xySiTt4i+LeCtzuqW5pg8+dMEp++JWDSykKUuuTQsxa1/WQ5bT9RrL9eIdt+bpRVVSjv5UR6cioRT3NWOWbLLmNvTcxb2Tg8KdHxGFQq2OYUl7LWolUzsVGy9R8lbvum1qW7qu5bYibWPyZSNtB1pFj/7Dz5yilXsJyyud6j6Iho/lr6FwO/H8i68+s4vPkw5/efJykhiTHzxvAp8BN///F34RUqIuXLW4vK+ll+APLQkHAAypW34qWfrEM+N7p6OhgZG+L3TL6jLDREtI3EulyOrLr1XUhPT2ftn0uoaltZKn98XAKTx83ixBHFYmUVhfIVxPpHytc/RFzm8uWteOEn65TPja6eDsbGhjzP42M5W/9yBciyLmfJwCG9eHDvMadPFCFOXgFoi/v9VDn9XnKI6HfQKWS/p13OhFZ3RbY8PSGZp7/u4u22vPv9epsmoKKhRkZSKgkfwvh09gGv15yQW6aSRj/b9kfJ2v54sX02KKT+uVFWVaGip8j2hz8LLDB//YmdUdPW5PrvX++9Lwk+fhLFkDQ0kI0xVtbEGIDgXPHIgkNE+Y0M9WXya2pooK+ny8eQ0o1LaS6x+7L9XkSoaMuihQJj/uw88ux+RMhnqWdlU9ayLAu3zuX1U3/mT1xUuIKXEAbiMU1ilOx7FieOpWZQzHFPVXHbD3kWIHVN37IMPbdMJuRZIEemrJcvQEAK4dS5fyGqqqrUqFGDa9eukZqaytatW3n16hW7du2iZs2cpZ7ly5dn9erVfPfdd5iamtK+fXuWL1+Oo6MjvXrlBG/cs2cPjx8/ZsGCBXTu3FmSvnjxYjZu3Ei3bt1wc3OTpOvp6bFp0yZsbaVnCObOnYuOjg6HDh3CQGzUhw4dyqBBg1izZo3E0bRv3z68vLykHFjjx4/n4UPR9iw3NzeOHTvGgwcPpMqZzZfxlVJTU6lUqRI//PADd+7cwd3dvUAZX3L16lXOnj3LmDFjpGI61axZk59++onDhw/TpUvOKSRaWlps3bqVGjVqADBw4EDat2/PsWPHStzRpKMrmqWUF+g0KSlZnEenWHKS5cjJL3/2PWVMjQt8bnFR0xUFvpe39D09STS7q6an2Ex2NmlxifitO4m6kS5mDarhOqc3KppqvFif9ykcz9edQN1AB1PXqjhO6oy6njYPfin9VS6qYv3lbXnLSBTpr1pI/dNjEwlcexw1I12MGlTH9ud+qGiqE7hOevtDwIrDKCkrY/NDD2ym96TK991Jj0siJSSKO21+JK2UtxyoiFcoyNM9M0kcN0i34Fl8NYsy2GydSdKLQN5NWF5gfmVdLWy2zyIzKYU3QxaQ9RUcivJQ1xHVfVo+bV+9kHWfG5dxHdGzMsH3z7Mk5/p4enXwOnbdGuM+dyBKKsq8v/iEzLR0dC3LUKGZM3rly6KsVvpdraa4/pPl6J8irn9tBer//xUtRfTXK1h/iRw5MT3y+h33rt6LkrISA6YOYMC0AfSb0o/EuEQiQyOZ2GGi3I+X0kJHT9Qv5RXsOjtWia6eboGydMV9XEJessR9oZ5eTl9YsVJ5MjIyOX/6EqOHTOXd20A0NdRp27ElP82bxqr1C3np54//q7eKK1UIJGWOz7/MunoFjwMKkpWooKxpM8aiqanBgl9XFPjMoqCqK2qz8vr9DHGbzc6jKGmxSbxedwJ1I11MGlTH8ae+KGuq479OetV9SmQcoRefkBQSSXpCMpplDTF1d8BuTAes27txsfWsUnc2qYv7/VR5tj9ZbPsLqX9u6o3riL6VCQ//PEtSAboYVjTDoUcTgu++JODi4yI/81uQII5dqq0le4CSpqaGOE9irvyJeebPvueznMnXkiTbFsuLu5o9Vlek38te4ZkkZwyfbfd1cr3n2rraLNo+j6TEZGYMnk1aalrhC18CaOjk3fbTxOXWKEbbbzTWGwMrE+5sPUNirravrqtFrz+nkpaYwt5hS8n4RuM+gX8+/3pHE4CBgQFZWVlER0dz8uRJnJycKFu2LCEhOUuhHR0dycjIwNfXV3LKmjx8fHwwMjKiY8eOUumDBw9m48aNnD9/XsrRVLlyZRknU0xMDNevX5fEjsodP8rFxYXVq1cTHx+Prq4uKioqvHnzho8fP2JpaSnJ5+ysWJyZpKQktm7dytmzZ3nz5g0pKTkxRCIiinYaiI+PD0pKSgwcOFAqvVu3bixdupTz589LOZqMjIwkTiYQBd2zsbHBx6fkZ/ay+XIbY/ZzgUItOcxPjryZPXn5s+/5mksdM9My5BUCKJz+AKkxiRInkZKyEo02T8B1Th9i/T/x0eeR3Hse/rJb8u/ac/tTbWQb4gLDeL1NsVOvikumvHrIu9ryJT0mgVc/iU+ZUlbC6c/J2P7cjwT/YCLO58TjqvBdBypN6ITvqJVE33mJWccGWPZogq6dNc47p/N4wO9Sp9SVFln56F6Q8koaalTd9iNZKWn4D15AVkrBg6cq679H3dwYv/bfky5nVu1rk5med9svdOWLqerdANfx3kQ8C+TW/N1S14KvPeP6nB24zehJ8zXShynEBUWgrKpMamzB2y1Kigw5+hfF9v2/ItcGS6q/ELY/Lb/3SDq568iu9Brbi4VjF/L87nMat29M827NKW9bnl+2/8LPQ36WrIYqCdp3aoWTcw2Z9FVLcgJRp8krP0XsB9Pk2wElZGXp6esS8imMeT8tlaQlJyWzc9vf6OrpMOuXKfTs04m5c4oeHL1jp9bUcpHVf3muwOd59sXi/xbmVchbVsG/pX31qnTp3p5rV25x9XLpbjvL3/YVTlZaTAK+P+0U/R9lJdy2TKTmT32J9/9IyPlHknxvt5zl7RbpFWoqWurU+eM7LNvUwW5chxw5pYxc/RWoo/yw925AvXHehD0L5OoXtl8eDb/vjoqaKtcX7ivS8/4JqMmJOZb98ynJXCHvGGVZWZLmV9rIs9f5jdXzlCO3/8wWkyPn1w1zMDU3YWSHscTIWUX8tSmNcU8N7wY0HudNyLNAzn/R9rutHY++uRGbveeQJGcloYB8hFPn/qXExcWhpKSEkZERAQEBJCcn06RJE7l5Y2PzNxgfPnzA2tpa5vhmY2Nj9PX1CQoKyuPOHAIDA8nKymLTpk1s2rQpz3Lo6uoyfvx4Zs+eTdOmTbG3t8fR0ZEmTZrg5eWVY0TzIDU1lb59+/L06VPq1q3LqFGjsLCwICQkhGXLlhU5SOeHDx8wMjJCT09PKl1VVRUrKyuFfgNtbe1SidGUPfOorqEuc01TSzQjI2/GIi85GvnIyb16Kb/8ons0FT5OujikxYtmNVQ01GSuqWqJyiZv1lNRsjKzeLbyKOVaulKpa8M8HU25ebr8MHaDW1C5q3upO5rSJfrL1oOKtqje5K34UZjMLN6tOEzZVnWw6NZY4mgycK2K7ew+vFm8n5CD1wEI/OMogWuOUX54G+x+6U+NtWO53/mXoj+7ADLE7UtZju7K4jZb0IlzaqZGaFevRPTZO5iP6iR1Tbe2KEaDSc+m6NWvQcQ+H5JffcCgSS3ibj3FtI90sHstO1EwUaOW9dCwLkv02TvE35GNYVZSZM/oyW37mqLfRN5qp4Ko0sENj6XDiQkI5US/RWQky350+245w9uTdynv5YSOhTFp8clEvvxA2KM3DHi0VmqrXWmRLK5/NTn6a4jrX5ET5/5fybbr8my/hqbitj8/OZrimfvccuyd7Rkycwg7l+3k0uFLAOxft58D6w/gPdSb4bOHM23lNH7o8UPhFMoHz6budO/tLZO+deMuEuJETs1snb9ES6xDYh6rdHITH1+ALG2RrNwrnlJT0iTP+JLLPteZ9csUbL7YUldYvJo3okfvTjLpWzbuzCmzRl5l1hKXuWDnb44s+f26PP2/ZObsSaioqDD/l+UFPq+opMeL2qM826dSAv0+mVm8XHEEy1a1Kde1kZSjSR4ZSak8nbcHyzZ1MKlf+rEpU8X9vqoc/dW0im77bdu70WLJcKIDQjnUfxEZBUy8mNWshG3begRcekLwndKNTVQa6IjfjRQ5Y/PkFPHqIG2tXPm188wPkJScgrZW0VfTKEJivmN+sa1TwO4n5td/yLH7dZvU5tHNx7TvI32wQiXbigA0atUQ83LmXDtzgyd3fBXQpGikJBTc9lOL0O87tHej4+IRRAaEsnPAQtK/aPtVGjsSeMsP197SCzNMbUVbl+1a1MbQ2pSXZ+/z/u7/37tQWvwXT5371zuaMjMz8fX1pWrVqqipqZGZmYmLiwvDhw+Xm79atYKDxhXk4FGkTAA9e/bEw8NDbh5jY9E2q27duuHi4sKJEyd49OgRJ06cYO/evbRu3Zrly5fn+5yLFy/y9OlTmS1u9+7dK1b5ofi/QXHvz4tPQaJVamYWZXn3WvrjzsJatAc7OEg2jkp+cr4kW87HDzlyPuaTX1tHGz0DXV74ln5A2IQg0So1bUtjyWlv2ehYiQKxJsgJWlwYUsUnK6kbFLz1ACBFHDxT3VCx/MUhOUgUf0TDwpiE18FS1zStxHEcPoQX6xnp4tkb1Vz6l21XD4DPFx5JZ87K4v36E1j19sS4oQMqOprFc3TlQ6pYd3WLMiT7Szt71S1Fe/RTPsg/mvdLDFvkfUqLUWvRqY3xd/1IfiU6nUXPrQZ6brIrDAD0Gzmh38iJ1E+fS9XRFB8sate6FsZEf9H2dcVtPy6ocG2/er+muP86gMiXHzjRdxFJ4XlvgUoIicRv10WptHIeNVFWUebTbdkAoyVNeJCobsuYmxD8Rf2bWIrafliQYvX//0iY+NhpEwsTPvh/kLpW1kpkl0ODCo4Xkv0bmViYyFwztTKVkePeVnRwyL2L0v1qVlYWhzYeomWPljg1cEJLR0shR5ciTBrzI5PG/Cj3WvY2LgtL+fGosmMFfvgQLPd6buLjEoiOisHCQr4sK7GsoPc571t4WATW5S3R1NKUbF3JpqT6/fGjZzB+tPzTDQvS3zpb//eK6R8VFY2FpfwYLwXJqlffleatPDhz6gIP7pXeNqpEsV3TsjAm7rW07dMWxy9KDCpev5ea3Y8r2O8nfRKt4FPVlu/wK0nictn+yC9sv57Y9scW0vbX7NsUz18H8PnlBw72W0RiPrY/G/fpPQG4/vv/52omC3OxnQyX/a0+hYraj6V5zntlmZ0/TDZ/QkIicfEJVLMt3YMwQoNFttjUwpRA//dS18zEdj9EAbufnaesHLufLefTB+kDAWrVd6JWffknutVu5ErtRq6EfwovVUdTjLhd65sbE/FF2zcQ9/vRhWz7rn2b0vqXgYS9/MDO/gtJyKPtV3CrRgU3+d/Mld1rUNm9BrGfIgVH03+cf72j6ejRo0RGRjJs2DAArKysiI+Px9PTs0jyrK2t8fX1JSMjQ2pVU2RkJLGxsVhbWxcow8rKChCtAFKkHFWqVGHcuHGAaJXS9OnTOX78OBMnTqRChQqScmRmZqKsnHOQYGCgyNHSvn3BR/nmJUMe1tbWXLt2jZiYGEl8KRCdRBcUFESdOnUKfF5pkX3qW+36zty6clfqmqtbLUD+qRJfkn3anGt9Zw7sPCpXzrPHOXKePfKT5P8SFzcnlJWVpfKXFp8fieJemLnZE3LlqdS1sm6iFSmfn7wr1jOMHETH+yYo2HkVNn9xiH0oCkhr1KA6kVekO3cjcYcY+7h4p7/p1qgI5Di1AJTFs0kaFvLjcCmpit4vJZXSO+gz+7Q5XTcHYq9Kf9TouYlOUUx8kn/w39SgMO5Ze8u9ZjmpJ5aTevJ6wFxifHI+qvPKX6abF5WWjSPwxw2Ebz0pN09JEiZu+xZu9gRdlW77lvVEbT+8EG2/zpSuuI735uPtF5wetETmyOsCUVKiztSuZGZk8vLvqwXnLyavH4vqv7qbA0+uPZK6Vq2eyAn4poD6/3/m5SPxiUlujjy8+lDqWg2x/q+f5B/8+Us5p3efLlCOmvhEHhMLE5B+LAAq4ndfuRTf/dzExyXw5vU7atZykHH26Ohq4+Box5vX7/KMO/Qljx4+xcOrIRUrlSPgnbQDr049F+Li4nnjn/Ne3b/7mIqVy9PEswFnTkof9V3NQRRG4NWL0muH8XEJ+L9+h5NzDbS0NCUxmSBbf3v8C6P/g6d4NnWnYqXyBLyT/pCt6+ZCXGw8b14HyL33x58mk5mZyW9zSyc2UzbZp82Z1K9G2Bf9vom43496VLyYWIY1RP14ooL9uEG18gDEyzkgoaQJEetmXc+e91/Yfmux7Q8thO2vP7krbuO9Cbr9giODFbP9FRo7Ur6hA69P3iHMN0Dxwv+DcKwuOj3u7kNfunZoLXXt/iPR7+pgX1WSVsNe9D7feyTrSLn/+ClZWVlS+UuD5+LT5mrVr8m9q/elrjnVE8XhffG4YEeHn/i7oJabE8d2SY9XnNxEcl4+yZksbmTVVK6c1t1bMmPZNJbNXMnBrUcU1KLoBIvHsxXcqvH2mnTbryBu+x+fKP7ue0zuSuNxnQi8/YI9QxaTkkfb/6VCH7npTl0b03HJCE7N3srdbaV/0vT/G/+F8AVf8nVGPt+I8+fP8/PPP2NjY0Pfvn0BaNGiBa9eveLAgQMy+T98+EB0dHS+Mps2bUp0dDQHDx6USs/eAte0qXzjkxtTU1OcnZ3Zv38/r1/LDnx9fUVGOykpiYMHD0ptcVNXV8fOTtQZZG89MzERea3fvZPuSE1NRbOvwcE5s20ZGRlyYyPlJUMe2Tr++eefUun79u0jLi5Ood+gtLjqc4O42Hg69miLoXGOE8yojCFtOrckLjaeqz45x9L3HNyVI1f3MG/VbCk5vg+eERQYjFfrxpSrmOM81NTSoEvfjqSnp3P2WM4gOjw0grs3HuBUuwa16uQEmVdWVqb3kG4AnDpceiftZPPR5xGpsYlU7t4YDeOcYK8axnpU7NSA1NhEqe1utoOa0+7KIuqvGCElx6xhdexHtEZFS3o2UtuqDLWm9wAg4MB1Sbq+jSVO33eTWbWkbqRL7V/7AfAuV/7SIuL8Q9JiE7Hs0QQ145ytnWpl9DDv4k5abKJUXKVyg1vS4NpSHFZ9JyXHyN2BCiPbofzFbKymVRmqzhQFzP+0/5okPdupVeX7HqibSp/YYt65ITo2lkTfeUl6rGIfN0Uh5sJ90mMTMOnuhapRju6qxvoYd2pMemwCMRdyBmKmA9vgcGk1FZePL7UyfU3eX3hESmwidt0ao2mU0/Y1jfWo2qkBKbGJvM+14sxhQHN6XFyE5zLptq+srkrTVaNxHe/Nq4PXOd77t0I7mVQ01Gg0bwBla1bm6Z9niHknezR6SfPw4j0SYhPw7NoUvVz1r2+sTyPvJiTEJvAw16qbVgPassJnDWOXTij1sn0N7l64S0JsAs27NUffKOcUJANjAzw7eZIQm8DdCzmTD+0HtGfDxQ1MXjZZSs7Lhy/5FPiJ+i3rY1Ex56RQDU0NWvduTUZ6BldP5DgOH14T2ZN+U/phaGIoJcvD2wPrKtY8u/uMhK8Yp+vIwVNoaKgzZLj0x8Dg4X1RVVXlyEHZgxwu3TrKpVtHZWIfHTkg+ugaMWaQVHqnrm0pa2bCqWPnpeJB7dwmOmnrx58nY55rha+hkQFjJg0jPT2dfbtL9wPs8IETIv1H9JVKHzqiH6qqqhw+cELmnqt3TnD1zgmcXRxlZAGMGiutf+du7ShrZsrJ4+dIkxPDqnW7ZtSp58zhAyfzPLWvpAjxeURabCIVejRGPVe/p15Gj3KdG5IWm0hIrn6/8uAWNL+6GNdVo6TkmDasjs3INpJt5tloWZXBYYao339/IKffU9HWwOHHnmiYSJ86pqKlTo3ZvQEI/ApO9ncXRba/+he2X8tYD3tvke1/d/GRJN1pQHMGXFhEyy9sv4q6Kq1XjsZtvDd+B69zsI/itr/h9z3ITM/gxuJ//hHvu/YfpX2vYUz/dbFUes3qdlhbmnPh6k3eB+WsjklKTubvI6dQUVGmpVcjSXpZ0zLUdnbk8dMXPHjyTJKekZHBrgPHAGjdzKNUdbl14Q7xsfG07t4Sg1x239DYgOadmhIfG8+tC3ck6Z0HduSvy38yc8X3UnKeP/DjY+BH3Fs1xKpiTjxcDU0NOvRpS3p6BhePXy5VXYqC/8VHJMcm4tS1MVq52r62sR41vBuQHJuIf662X2dAc0b7/E7HpSOl5Kioq9Jp5Xc0HteJJ4eu8VffBXk6mQSKTiZZJfb3/8K/ZkWTj48Pr1+/JjU1lYiICG7fvs3jx4+xsbFhw4YNqKuL9qoOHz6cCxcuMGPGDM6dO4eLiwsADx484OrVqxw9ehRDQ8M8n9OlSxcOHDjA7NmzefDgATY2Njx69IizZ8/SunVr6tevr1B5Z8+eTd++fenSpQsdOnTAxsaG2NhYrl27xsePH7l27RppaWlMnz6dzZs306xZM0xMTPjw4QN///03rq6uVK0qmilo0KABf/zxBxMmTKB9+/ZERUXRo0cPPD09MTIyYvr06fTs2RNVVVVOnz7Ny5ey3v28ZFSsWFEmb+PGjWnatClr167l7du3ODk58fr1aw4fPoyLiwve3t4K/QalQXxcAsvnrmHWomnsv7CDK+euo6SkROPmDTE1M+HXaYuIj8sZ8BsZG1CpagUiwj9LycnKymLBzKWs3LaI3ac3c/HMVZKTkmno6YZ1BSs2r9rOhwDp7SmL56xg65F1rN+7gktnrhAdFYurWy1sq9tw6vA57t2QM91dwqTFJfFo3h7qLhxMm/MLCD7/ECUlJayaOaNlZsid77eQlqvz0DDWw8DGkuQw6aWxanpauM7pg+PEToTdekFCUARa5kZYejiiqq3J83UnCLud045UNFSpMb4j9sNbE3b7BXHvQtAw1sOisSMaRroEHrvNu1yOmdIiPS4J/193Uu33YdS/uIjwcw9ASQnT5i5omBnhN3Uj6bn0VzPWQ6eqFSlh0VJyVPW0sP25H5UmdyH65nOSgiLQMDfGxLMmKtqaBKw5RvQtP0n+8NP3CDlyE/OO9Wl4czkRFx6RFhmPbrVyGLlVIyU8mueTSvf414y4RILnb6fCb6Oofm6FaNWREhg0rY26mTGBP6wlIy7H0aVmrI+WjTXp4dF5C/0/IjUuidsL9tB4wWC6nVtAoLjtl2/qjI6ZIVemb5H6aNAy1sPIxlJmO5xNezeqejcgMTyGxPBo6k7rJvd5t+bmBMe07dqISq1ciQ/+jKaRLlbuNdA2NeDl31e4mStfaZIYl8jO37YxfP5olpxZyX2feygpgWvTOhiVNWbDjDUk5qp/fSN9rGysiQ6XDVBfxsKEhu1FW8KqONoA4NigJurilXvXj13j86eclQ1aulo0790SALPyFpL7Ogz3BuDBxfsEvZZeDVPSJMYlsmXBFsYuGMuac2u4c/4OKEG9pvUwNjNm1fRV0vob61POphxRX+iflZXF2tlrmbNlDiuOreDWuVukJKXg2sQViwoW7PtjH58CclZp3Dp7iyvHrtC4fWM2X9nM3Ut3iYuKo6J9RWrUrUFUeBQrppXuipYv2bhmOx07t2b6nInUd6/DW/9AqthWoolnA968fsfGNdtl7smOm6T1RUyVg/uO07NvZ/oN6o5dNRuePfHDwsqcZi2bEB72mcULVkvlv3PrARvWbGP46AGcv34InzNXyMrKorFnA0xMjZn9w4JSO3Eum/VrtuHdpS0//jSZBu51efsmAJuqlfHwaoj/63esX7NN5p6q2fprS8eX2r/3GL36dmHA4J7YV6vKU18/LK3Mad7Sg/CwCBbNXyUjS1lZmek/jictLY3fv/h9SoP0uCSezt2N86IhNL3wGyHnHoISWDR3RtPMiIfTNkv1exrGeuhVtST5C9uvqqdNzZ/6Um1SZyJu+pEYFIGmuRFmnjVR1dbk1drjfL6VszJbWVUFuzEdqDK4JZ9vvSD+XQhqhrqYNqyOlrkR7/df4+PxO5Q2qXFJXPttD03nD6bf2QW883kISkpUbuqMTllDfGbI2n5jG0uZLUG27d2w925AQngMCeHRNJgq3/ZfnSdt0+061sfMsSLP/r4is3Xva+H/NpCrt0SO9Ee+ohX5Pldu8C5QZHe7dWyNro5oIjAqJpZ374MoU8ZISoaysjLTJ45i7Pc/03PoeDzd3dDU1OD67fsEfQxhSN9ulLe2lLpn2tjhDBg9heETZuLZyA1DfX3uPfbl9ZsAWjVtTF2XmpQmCXEJrJu/kSm/TWTr+Y3cOH8LJSUlGjRzo4xZGRb/sEwStw5EEw8VbMoTGSZ9OENWVhbLZ61mwZ+/svHEGq6dvUFyUjL1POpgWcGSv1bvJjjg29RtfqTEJeHz2x7azh/MyDO/8cpHNO6p2rQWemWNODFji5TDSNtIDxMbS+K/ePcd2rnh2LEB8eExJITH4DW1u9znnZtX+qdHC/y7+Nc4mrZs2QKAmpoaBgYGVK5cmVmzZtGtWzepoJC6urrs2bOHdevWce7cOa5du4a+vj5VqlThhx9+KHDrm7q6Olu3bmXFihWcOXOGY8eOYW5uzrhx4xgxYkS+9+amevXqHDx4kDVr1nD58mUOHz5M2bJlsbe3Z+jQoQDo6Ogwe/ZsTp8+zc6dO0lNTcXCwoIBAwZI8gDUrl2b6dOns337dlauXIm5uTndu3fH0NCQTZs28euvv7Ju3TqMjIxo3rw5o0aNYsyYMVLlyUtGXixfvpz169dz+PBhLly4QJkyZRg4cCBjx47N+wSKr8Tf2w8RHRlN/5G9aNNZFKD41fM3LJixhPMnLiks5+r5GwzvPo7hEwbRtI0HqqqqvPMP5JepC9m/47BMfj/fV/RvP4Lvpg2jgYcbWtqaBAV+ZPncNWxf9/WM8+sdF0iOjKPaiDZU7NQAgGi/99yduY0PJ+8WcLeIsJt+3J/zFxYeNSnjVBlLz5qkJ6US8fAtr7ae48MJaTmxbz5xe9oWLL1qYuxYEbMG1clMSyfmRRCP9lzGf+fFPJ5U8gRtP09qZBwVRrXDvLPoYzn+eSAvpm8h7IRig96oG368nL2NMh5O6NeqQhmvWmQkpRLz8A0ftpwh7PhtmXt8R6wg8soTLHt6YNLUGWV1NZI/feb9xpO8W3GYVAViPBSX8L/OkB4Vi9nwjhh7i2Yek/wCeT9rI9EnS/fEo38Cz/8Stf2aw9tQ1VvU9j/7vefarG28O6VY21dSFsWR0TY1oNaItnnmy+1oykhJxaqhAypqqiR9juXTrRf47blI0BfbWEqbsztPExsVS/th3rh3bAzA+xcBbJq9ntunFK9/8wrm9J85WCqtXqv61Gslmkh588RfytGka6gnk9+hviMO9UWrQ2IjY0vd0QRw8q+TxEbG0nl4Zzy8PQB45/eONbPWcP2U4isq7164y4xeM+g1rhcNWzVERU2FIP8gVv6wklM7ZVcD/fbdbzy8+pDm3ZtTx7MOaupqRHyK4PDmw+xdvZfoiOgS0lAx4uLi6dSmP1NnjKV5yyY0aFSPzxGf2b5lL4sXrCYuTvFTgjIyMujXfSQTpoyknXdLark4EhMdy7FDp1k0bxUfg2VX6/3y4+88e/KCgcN60aZ9MzIzs3j88CkTRs/gysUbcp5SssTFxtOxVR+mzRxHi1aeuDeuR0R4JNs272HR/JXExRZO/97dRjBp6ig6dGqFs6tI/yMHT7Fw3gq5MR979OmErb0NO7bu493b0j8IAODddh9SIuOoOrIt5TqLbF/M8/c8mrGVjycUs30RN/14MnsHZh41MapVGTMvJzKSUol6+IY3f56TcRqlxSfxeOY2zJs5o1PZnDJu9pCVReyLD/gt+puAXZdKWs08efLXBZIi43AZ1ga7jiL9I/zec2HWNvwVtf3iGGI6pgbUzsf253Y0Kauq0GBKVzJS07m17GCe95Q2T/1eseSPzVJph47nrKJv4dlI4mjKjyYN6rJp+XzWb9vN+cvXSU/PoFIFa2ZPHUu3jq1l8le3s2HH2iWs3rSD67fvk5ScjLWlBRNGDmJAr87FV0wBjuw4TkxkLD1GdKNZJ9GOijd+b1n24youn1R8Rd1Nn9tM7DmNAeP70Li1O6qqqgS+ec/v3y/j6F/HS6v4xeb+Th8So+KoP6wNjuK2H/riPadmb+OFwuMe0QYnXVMD6g/Pu+0Ljqbi8V88dU4p67+4YVDg/4qa5oqtEvs38r1y6QZS/KdTNiP/U17+7RippXzrInxT7inpFpzpX8p55W9/ZPK3JCHzv/3u+yaUvmPun0x6pryj6v87rNGUjff4XyFQ/V8d1aNAxjwovdNp/x/wchr2rYvwTWmuKv/wgf8CswN3fusilCqN84jtVRSuBMuGwfkn8q9Z0SQgICAgICAgICAgICAgICDwT+K/uLLnvz1tICAgICAgICAgICAgICAgICBQYggrmgQEBAQEBAQEBAQEBAQEBARKgf+n0+JKCsHRJCAgICAgICAgICAgICAgIFAK/BcdTcLWOQEBAQEBAQEBAQEBAQEBAQGBEkFY0SQgICAgICAgICAgICAgICBQCmRl/fdWNAmOJgEBAQEBAQEBAQEBAQEBAYFS4L+4dU5wNAn84+msUflbF+GbcU8p/VsX4ZtinPXfNlH3shK+dRG+Kf4pr791Eb4ZB42Mv3URvimLk3W/dRG+KQlaZt+6CN+UWmom37oI35R1GZHfugjfjOCUqG9dhG/KQadh37oI35QLjzd+6yJ8UybWnv6tiyAgUGL8t7/iBAQEBAQEBAQEBAQEBAQEBEqJLGFFk4CAgICAgICAgICAgICAgIBASfBfjNEknDonICAgICAgICAgICAgICAg8C8gPj6euXPn0qhRI2rUqEGrVq3Ytm2bwg6v4t4PwoomAQEBAQEBAQEBAQEBAQEBgVLhawcDHzt2LHfv3qVnz56UK1eOe/fuMX/+fBITExk1alSp3w+Co0ngX4p9C1caDG+LWbXyAIS++MCN9cd5cfa+wjIcOzbArrkrVk6V0TMzIjM9g/DXwdzffZEHey7K5Ld2tsGpSyPK17HDqLwpSkpKxIVF8/baU27/eYbw18Elpl9B1GhRG89h7bCsVgGATy/ec2HDMZ6evVckebbujoz6ayYHZv/Jte1n8sxXq60bjQa2wqp6RZSUlfj44j03d53nzt+Xi/TcomLXwhW3XPUf9uIDN9cf52Uh6r9GxwbYNnfF8ov6f7j7Ig/l1P+XKCkr0WPLFKp61uLU7K3c23auyPoUhnot3PAe0YlK1SoBEPAigEPrDnL77K0iyXNqVItfds5l/ax1nNx2PM98Fewq0HtyX6rXrY6GtiZhH0Lx2XeeI5sOk5mRWaRnFxcDI33GThuBR8tGlDEx4nNEFJfOXGXVovXERMUWSpamlgYjJg6mVcdmmFuUJTYmjhuX77BywVo+BYfme+9vf/xE+66tqVPJg8TEpGJoVDC6TetjNLgLmvai+k95+Y7IzQeI97lZZJlKWhqU/2sxmg42BI2cQ8KlOzJ5tN1dMB7YGU1HW5TU1UgLDiPxxgM+b9xHRvjXC+5bq0UdWgzrQDmx7Qt6EciZDUd5dPZukeRVc6/JpL9msWv2Zi5uP51vXi19bbwGtKZWs9qYVjBHQ0eT4Jfvmdvu+yI9u7C4t2xIz5HdsKleBYA3fm/ZvXYf185cL5ScmnUdGTCxH/ZOdqipq/Le/wOHth7hxJ5TMnkHTerPoMkD8pT17MFzRrUfWzhFiohji9p4DWuPlbjuP754j8+Go/gWsd+zc3fku79+5O/ZW7iaT79n39gJz6FtqeBUBVV1NSKDwnlx7Qnn1xwhNjy6SM8uCg1a1qfr8K5Uri5699/5vePv9fu5caZw736Nug70Hd8HWydbVNVV+eAfxLFtxzi9V/o3aN6tOVOXTi5QXr/6AwgNyt9GljT/RdvfKI/3/2oR3v+BX7z/B/N4/79EWVmZ37bOpX7TeiybuZKDW48USZfisP/oKX5auJLVi37Co2G9Qt9//9FT1v65i2cvXpGWlk6lCtb07NyeLu1bys3/6s07Vm/awYPHz0hKSsbK0gzvNi3o36MTqqoqxVVHIWq2qE3TXLYvWGz7nhTR9tm7OzLmrx/ZN3sLV/KxfdUaO+GVy/Z9Ftu+c1/Z9v2/8DW3zl2/fp0bN24wd+5cunXrBsCAAQOYPHkyGzZsoF+/fujq5n3oSnHvz+Yf5Wjq168fd+7c4eXLlyUq9/bt2/Tv358xY8YwduzXGfAIfDucezSh46LhJETE8Oy46OParpkLPTdO4sjUDTzcp5jTo9PSkWSkpRN45yWvLjxEy0CHql7OdFg4FHOHCpyctVUqv9eUblSoa8/7ey95f/cFWVlgZl+O2n2a4tTZnU3ecwh98aGk1ZWhXndPei4aQVxEDI+OiwaYDs1cGbJhCrunruPO35cUklOmvBkeQ9tgZGmCXaOaBebv/NNAGg1sRfSnzzw5fYfMjAxs3WvS6/dRlKtZhQOzthRHLYWp1aMJ7cX1/1xc/7bNXOi+cRJHp27gsYL131Fc/+/vvOS1uP5tvJxpt3AoZg4VOP1F/X9Jq18GUNWzVjG1KRzNejRn7O/jiY6I5tqxqwDUaV6PGZt+ZOWUFfjsU8zZZV7BnI5DvTGxKotzI+cC81esVonfDi5CRUWFO+dvE/s5hhr1HRk4czAV7CuyfOLSYulVFLR1tNlxZANV7Cpx88odLpy+TBXbSvQa3JU6DVzo1XqwwgN/ZWVl1u5cRt2Grjx58JRrPjexLGdO284tcGtUmx4tBxEWEi51T5tOLajXqDYONe2p5mhXGirKYNClBebzJpL+OZrYk1cA0PVyw+qP2XyasYzYg2cLL1RZGcul09F0sMkzi1F/b8rOGEFGdBwJl++SEZ+IZvUqGPX3Rq+dJ+97TiTt/aeiqqUw7t29GLBoFLERMdw9fgMAp2a1+W7DNLZOXcP1vwt2EAOYljej+dB2GFuaUL2Rk0L3VHax5bsN09Ax1OXV7efcPnINVTVV9MroF1mfwtC2Z2u+XzKFqIgoLhy9BEDDFvWZv+UXfpv0Oyf35u8ky6ZOk9os3D6flKRkrp65TnJiMm5e9fh+yRTMrM3Ysnir3PuunLzKRzl1HPKVHAxu3T3pvWgkcRExPBT3ezWauTJsw1R2TV3LLQX7PZPyZngObYuRpQn2CvR7HoPb0Hn2ABKi43l24SHJ8UlYO1TEY1AbandwZ2nnH4kILP3foFWPlkxaPJHoiGguHxO9+/Wbu/HTpjksmbKUM3sVe/ddm7gyd+svJCclc+PMTZKTkqnrWYdJiydS1ros25fskOQNeBnA3+v35ynLxd2ZKg5ViqdYEfgv2v62PVvzQx7v/4JCvP9183j/f1gyBXNrMzbn8f5nM2HuGOo3Lbxzp7j4+r3k0PGzfAj+xK17j4os5/rt+4yeOhtNDQ28GjdAS1ODqzfvMee35XwKCWXMsP5S+V+8fku/UZPJyMjA090NI0MD7j54wtI1m3n9NoAFs6YUU7OCqd/dkz5i2/dAbPscm7kyfMNU/iqk7fMqpO3rKrZ9T8W2r5xDRTzFtm/JV7J9AvK5ePEi6urqdOzYUSq9e/fuHD9+nJs3b9K8efNSuz+bf5SjaeDAgbRp06bE5VasWJGffvqJGjVqlLhsgX8WGrpatJjZh7jQKNa1nkHCZ9HMla6pASNOzqPFzN48O36L1MSUAmVdWLKfuzvOkRKXMyDRKaPPiBPzqNu/Obe3nObzuxDJtRsbT7J/zCoSo+Kl5HhO7kqTcZ1w7t6E07/8VUKaykdDV4sOM/sQExrJ4jY/EC/WX8/UgCknfqPDzL48OnFTIf0NLcvg3l/+DM6XVPOoRaOBrXh37yXr+s+XyFfVUKP/6vG492vBk1N3eH3jadGVUwB1XS2aiet/Q+sZJIr11zE1YNjJeTSf2Zvnx2+RpoD+l5bs594X9a9dRp9hJ+ZRp39z7mw5TWSu+s+N27A21O7XnDdXfKnS2LFklCsALV0tBv04hMjQz0xoNY6YzzEAGC7ewbJTKxn042CuH79KcmJygbJMLExpM6Cdws8ePHso6prqzOo5k2e3RXWsoqrCrK1z8Ozixemdp3hxz69oihWR/sN7UsWuEqt+W8+6ZTlOzlGThzBm2nD6DOvOxhXbFJLVtnNL6jZ0Zf/OI8yZNF+S3rF7G+avmsPoKUP5acoCqXsaetTDu6fiv2FxUdbRxnTaUNLDPhPg/R0ZkaL6j1ixnYoHV1N22lDiTl8hS4H6z03Z6cPRcXcl8fZjtOvJOl2UDfUwmTKY1MCPBHYfT2ZMjv0z7NcRs5kjKTO6NyE/LCmeggWgqatF15n9iA6N5Jc2U4kTv/v6pobMOrGIbjP7c+/ETVIU0N/Isgye/Vsp/GxjSxPGb51JTHgUv/eYTcibj0XWoyho62ozetYIIkIiGNxiBNGfo0XlWmTE5jPrGT1rBBePXSKpAN2VlJSYOG8saampjGj7He/fiCZGtLQ1WXNkFX3H9OLE7pOEBofJ3Hti72luni/aqsnioqmrhffMvsSERrKwzfdS/d60EwvpOLMfDwrR7zVSsN/TNtSlw/e9CQ8IYUnHGSTGJEiuNRnUmi5zBtJyXBd2Tl5TNMUURFtXm2E/DuVz6GdGtRxNtNj2bzU1Ys2pPxj24zAuH7tSoO1XUlJizK+jSUtNY1z78Xx4EwSAprYmyw8vo+d3PTi95wxh4vp//eQ1r5+8zrNMLbo154P/B8I/hsvNU1r812y/tq4234nf/0FfvP9bzqznu0K8/xPE7//wL97/teL3/3ge7z9AjxHd6DSgI3cu36Nuk9olqWKBvHn7nn2HTxZLRmZmJvOWrkFdTY3dm1ZQuUI5ABITk+gzchKbduyjc/uWWJqbSe75fdUGUlJS2bxyAXWcRc6ZtPR0Rk+ZzbHTPnTr2BqXmg7FKld+aOpq0Uls+xZ8Yft+OLGQToWwfUaWZWisoO3TMdSlo9j2/f6F7fMY1JqucwbSelwXdpSy7ft/42tunXv58iXW1taoq6tLpVetWhWAV69e5esoKu792fyjgoE3bdqUXr16lbhcMzMzevXqhaPj1/ngE/h22Hg4oWWgw90d5yVOJoD48Bju7fBBy1AXGw/FZqivrTkq5WQASPgcy/NTom0j5g4Vpa75X3os42QCiBB/dCRExhVGlSJRzaMW2ga6XN9xTtLhAMSFx3D9r3PoGOpSzaOWQrLe3HrOxIo9mVixJ7umrM03r3P7BgCcWXlAqkNLT0nj0M+iAZ1bT89CalN4suv/3o7zEicTQEJ4DPcLWf/X5dR/4udY/PKo/2zsWrjSdHovrq48xNMjN4qmSBFw9ayNroEuJ7eflDiZAKLDozm94yR6hnq4eLoqJOvpLV86lm9Hx/LtWDFpWb55DU0NcazvyNObvhInE0BGegb7Vu4FoEnHJkXQqHi06dyCxIREtqyRdu5u+eMvEhMSaddZcUdC284tAFi7eJNU+pF9J/kQGEzLDk1llsjPHP8rDmb1cDCrx53rim/ZLCo6jWujYqBH1K7jEicTQEZEFNF7TqBiqIdOo8IN/g37dcSoX0dCf1pF4l1fuXnUK1ihrK5G4s2HUk4mgJgDoiX3alZm8m4tUWp4OKNjoMulHWckTiaA2PBoLv91Fh1DXWooaPte3XrOsIrdGFaxG39O+aPA/F1+6IOKqjJrhv/+1Z1MAG5eddEz1OPw9qOSj0yAyPAoDm8/hr6RPvW86hYox76WHdaVrPE5fFHykQmQlJjMnvX7UFVTxbO9RyloUDyy+72r+fR71T0KXpkJ4H/rOeMq9mBcxR78NSX/j6SylSxQ1VDj5XVfqQ8tgJt7LwBQxrpsIbUpPHU8a6NnqMex7cclTiaAqPAoju84jr6hHnU86xQox87JFqtKVlw8ckniZAJITkxm//r9qKqp0qRdY4XK1H10NwyMDdi2ZDuZmV936/R/zfZnv/+Hivn+V6tlR7k83v/d4vffK4/3v1HLhoyaOYyty3dw/vCF4qpUaLzbNufp9VM8vX6KUYP7FEnGU79XvA/6SOtmHhInE4C2thYDe3UhPSOD0z5XJekRnyO58+AJdV1qSpxMAGqqqowYKPqWPXnuUtEUUpDqYtt3RY7tuyq2fQ4K2r7Xt54zpmIPxlTswY4CbJ9pJQvU8rB9N76i7ft/I6sE/1cQnz9/Rk9PTybd0NBQcr00789GYUdTeHg4P/74I+7u7tSoUYOWLVuyY0fOEtqDBw9iZ2fHxYsXmT9/Pu7u7jg5OdGvXz/evn1LaGgos2fPpmHDhri6ujJ06FA+fZJeZv3DDz9QvXp1qbS3b98yYcIEmjRpgrOzM+3bt2fOnDkEB+fEu3ny5AnDhw/H3d0dFxcXOnXqxMKFC4mKEsWFCAoKws7OjjVrpF+cwMBAxo0bR926dalZsyZdunThzBnpvajZ965evZrdu3fTtm1batasSfv27fHx8VH055Nh1apV2NnZcffuXaZOnUq9evWoVasWY8eOJTxcdvbn5MmTdOnShZo1a1K7dm3GjBnD+/fvpfJ4eXkxcOBA7ty5w6BBg3BycqJRo0ZFKt/Tp08ZOXIktWvXxtXVlW7durFlyxZSU1MB2LVrF506dcLNzQ1HR0c8PDyYPn26VL1ATp36+fkxatQoXFxccHV1ZcaMGSQkJMh7dLGwdhYt0w5+9EbmWtAjf3GevLeAKIKquhoAyTH5l1/bSBeHtvVoMbM3Ic8CubO1CNtWCkmFWiLd3j+W1T9QrH+FWlVL/Ln6poYARAbJtt2ooHAig8IlZStNrMT1/1FO/QeL9bcqxfq3cKyE94rRPD9+i0tL8t5SUBrY1hIt0X/96JXMtVcPX0nlKdnn2qKsrMwrOc/1f/yazMxMbJ2/zvaBbLR1tKliW4mXz/1JTUmVupaSnMIrvzfY2FdGW1tLIXmOzg6EhYQT8lF2Jtf3wTP0DfSoaFOhRMpeVDSdRL9xsq9sPSQ9eQGAlpO9wvJ0POtR9odhfN6wl5gDeduutKAQstLS0WlUG5UyhlLX1KzNRWV6Klumkqay2K69e+wvc+3dI9Gqi0qlYPu09XVwblkP34sPSUlIokFXDzpM7E6LYe2p1vDrTG5Vc64GgN/DFzLXnj8UrSSsLs6TH9l5/B7lI8elYDlfm4qSfk+27gMk/V7J9z+fP4SRkZZOtSZO6JkYSF0rU070kfX+iWxfVNLYO4ve65ePZMNOvBCn2Stgg/OV81BxOUamRnQe0gn/p/5cOX61wPwlyX/R9lcvofc/2448L+T7b1fTllmrp3Px2GU2/75V4XL/03jyXNTGHavbylyrWV30bvg+z/ltfJ+/IisrixrVZN+JGtVsUVJS4smzkg0F8yXZti9Qju3LHvNX/Mq2z0Rs+wK/gu37L7N37146d+4s+du7d6/U9dTUVDQ1NWXuU1ZWRllZmeTk/Fc4Fvf+bBTaOhcZGUmPHj2Ij4+nS5cumJqa8uDBA+bOnUtycjLDhg2T5B07diwODg4MHjyYqKgotmzZwpAhQ0hISKBixYoMHjyY6OhotmzZwrRp06ScVV8SGhpK79690dbWplu3bujq6uLn58fRo0dxcnKic+fOvHjxgr59+1KhQgX69++Pqqoqjx49YseOHXh4eFCvnvy9wh8+fKB79+4AdO3aFX19fXx8fBg3bhy//PILPXr0kMq/bt06ypQpQ6dOnVBXV+fvv/9m3LhxnD59mnLlysl7hEL079+fJk2aMHLkSN69e8fff/9NaGgoe/fuRUlJCYDNmzezaNEiGjZsyNixY4mPj+fAgQP07duXY8eOYWCQ85I/fvyYYcOG0alTJ7y8vEhMTCx0mW7fvs2wYcMwMTGhd+/eGBgYcPPmTRYtWkSLFi2wtrYmLCwMe3t7WrRogZ6eHmFhYRw4cABfX18OHjwotdQuIyODbt260bJlS8aOHYuvry8HDhwgISGBFStWFPm3k4ehtSkAiVGyq4fiQqOl8hQFZVUVqno6kZ6cyqdnAXnm+ylwJwCZ6RlcXnGIa+uOkZGaXuTnKoqxWLeESNlgl7GhUVJ5SpKYMJFsS7vyhL+VjdORGBOPaUWLEn/ul+RX//ElVP824voP+aL+9S3L0GPLZEKeBXJ0yvoiP6OolBXPHsXKCXQaGSqaeTArV/IrS8pai2TGymlzqSmpxMfES8r2tbCuYAlAdGS03OvhIREAWJa3wP/F23xl6ejqYGhswMvn8reIZMfnsCpXsKzSRM1SVA8ZUTEy19LDIkV5FFxZpFG9CpaLvyfu7HUilm7NN2/G52giVv+F6cSBVDy2jqhth4k9cp7MhCTM5owh9f0nIjf8XThlikAZ8XsdL2flaLTY9pmUQjus5FwVNQ01rO0rMO/yatQ01KSuP7vymHWjl5AcX3qBgC3E72CMnHfws/jdNy9nXqCc7DwxkbJtKCJELMdafhv6dcMc1DXUSUlK4dOHEG6cu8nutXsLHXi5KBiL61Ve3ceEitp+mVLo9+IiYji57G/aT+vF9DOLubTlJHcOXiElIYnuc4cSERjC+bWHS/y5X2KmSP3nUW9ScsoVLEeRPqTfxL5oamvy5yLFtqeVJP9F22+eT/1HiOvNQoH336II739Zy7Is3DqX10/9mT9xUeEK/g/j4ydRPCFDAwOZa2VNjAEI/pTjcAwOEeU3MpSNw6epoYG+ni4fQ0o3RpEitq80xvxxETGcWPY3Hab1YobY9t0W274ec4cSHhjCua9g+/7fyCzBYOA9evSQ8VXkRl1dXe5q0szMTDIzM+U6kUry/mwUcjQtX76c2NhYDh8+jLW1NQCDBw9m5syZbNiwgYEDB0ryjhgxgjFjxkicJLGxsezZs4dx48YxevRomfSIiAhMTEzkPvf8+fMSZ1XulU7Tp0+XrFY6evQoKSkp7NixQ7KcC+DTp0+SZ8lj2bJlJCQkcOzYMSpVEp3QMWTIEAYMGMDChQtp27atVDT1+vXrs2zZMkmau7s73bp14+TJk4wYMUKRn1EuK1asoEWLFpL/b2ZmxsqVK7l58yYNGjTg06dPLF26lP79+zNz5kxJvq5du9K6dWv279/PkCFDJOl6enps2rQJW1tZj7wiZGZmMmvWLIyNjTl48KDkNx0yZAgPHjyQ6D9hwgSp+1JTU6lUqRI//PADd+7cwd3dXXJNSUmJ3bt3S21d1NTU5MCBAwQGBlKhQsnNBqnriBp+aoKspzUtSbSlS0NXsZkseTQe642BlQm3t54hMZ+tcDc2nEDTQIdyLlVpMqEzGvranJ27s8jPVRQNsf4pcvZjpyaJZvc0i6F/Xtw/dJW6XZvQ5ZdBKKko43fpERlp6RhZmlDdy5ky5cxQUSv9kHCK1L96MfRvJK7/O1/Uv7quFr3+nEpaYgr7hi39Kk7FL9ES65WcIPtBm5KcIpWnRJ+rI35uHsFVU5NSMDAxLPHn5oeOjjYAiXJ+C4CkJFH70NXVKViWbv6yksXtSlevYFmlibK4HjLlxOHIEpdRWaxLfqiamWC19idSXgcQ8v1ihZ4duX4vKClhOmEAphMHYDK+H5nxiaSHRfK+x0S5zq+SRlOsv7wYTKli/UvD9pWtIF61lZDEpgkrefvgFfFRsVjYWNPlhz44NK5F71+GsmXSqhJ/djZa2W1UzjuYLG7rOgrUvbb4N0ySZ0PEv6HOF+08JjKGO5fuEh4SQVJCEsZljXF1d6H3dz3xaNeYEW2/K3VnU06/J8/ul16/B3BuzWGUlJVpN6UH7ab2pM3k7iTHJxEbGsXSTj/K/QAsaRSpN229gus/P1sukVNAO7KsaEmrni15eucZdy8W7aTH4vBftP3ZdZKUz/tfUL1B4d9/bV1tFm2fR1JiMjMGzyYtNa3whf8HkSD+/bS1ZD+gNTU1xHkSc+VPzDN/9j2f83B4lhSa2WNeuf1e6dq+s2Lb135KD9pP7Ulbse2LCY1iyVeyff9vKLLlraQoU6YM0dHRMunZ/hNjY+NSvT+bAr/8srKyOH36NE2aNEFVVZWQkJzgt7Vq1WL//v28fZvjya9fv76Ugyfb4eHm5iY3/dOnT3k6mlRVRcW7du0a9vb2KCuLdvoZGhpKHCC587RrlxN8z8Ii79UTGRkZXLx4EQ8PD4mTCUBNTY3+/fszfvx4mWjqzs7OUo6n7PJ/uVWssNSsKR3Zv0OHDqxcuZJ79+7RoEEDzpw5Q3p6Oh06dJD67dXU1ChfvjyPHj2Sur9y5cpFdjIBPH/+nMDAQKZMmSLluANwcXGR/DspKYmtW7dy9uxZ3rx5Q0pKjmMjIiJC6j5lZWWZ+Fjt27fnwIED3Lt3r0QdTdlkpGfIpGW3v6IeL+no3YAm47wJeRbIufm78817dt4uyb9b/9yfBsPaEBUYyt0d54v07MKSkSbr6Mh+/UrD0L26/pRDP2+j/Q+9GbB6vNS1yKBwlFWVSYot+a2SeZEpp/5zfoCi6V/DuwGNxPXv80X9d107Hj1zI7Z4zyFJTpyur0m6PN2RVH6pkZEm77mIfvdSeG6rjs2oUau6TPqG5X9K/p0u5z3ILhIU7l0oUNbXGz/kj7xyZne9BRRSSV0Nq/U/k5WaRvBo0X8VwXhIV8qM6sXHKQtJevAc/daN0e/UHA2b8lht+IXg734mQ7yqqrSR2w4lY4+SryQt8Qf8xe2neXAqJxj2h+cBrBn+Owuu/kGd9g3Y/dNmkmILv8K4MMi3+4Xv9+TZkJx2Li3n4NYjMkeYa2hqMGv1DBq3dqfv2N788cs6hZ9dHOTpX9qmr+mIDrQc24lt41by9v5LXNo1oF7XJphXtWbEn9PZOOx3YsUrfkubjPR8+v1C/ABybZ2CcgZ/PwhVNVX+XPRn/hmLgWD75SOvnEpFKKSi7/+vG+Zgam7CyA5jv8rKxa+Fmqrsp3G22vKWL6jKyZ99Uz7rHUqU/GxfadFsRAdaje3E1nEreXP/Ja5i22dR1ZpRf05nw7DfJbsdBL4+VatWZe/evcTHx0v5L548eSK5Xpr3Z1OgoykyMpKYmBiOHz/O8ePH5eaJjc3bwGhpiTypXw5OstNzOyi+pG3btuzYsYMlS5awZcsWatWqhYuLCx06dMDcXDSL2KNHD44cOcLkyZNZuHAhzs7O1K5dm/bt22NkZJSnTomJiZQvX17mWsWKFQHR1rr80NTUREVFRRKzqKQwMxMtS8121gQEBACiFUzyyMtJV1Sy4z7Z2OS9pzc1NZW+ffvy9OlT6taty6hRo7CwsCAkJIRly5YpFPgxu/6+dEoVl+yVLKpfbF8AUNMSbeeT5/kviBrt3fBePILIgFD+GrCQ9BTFZ26urDpMvYEtcercqNQdTSn56q8hlaekufLnKR6fuk11T2cMzI1JSUji06sg3j98za8PNhL8NKBUnpub0qp/h/ZudBDX/y459V+lsSOBt/xw6e0llW5qK1oBateiNobWpv9j76zjosraAPwM3R0KdregqGCC2IqNHevaXeuq66eurrG6YffavXZiYXd3FyIqgijdzPfHwMg4g6AyzDqc5/vx+9Z7zj33PXPvPefc97zBg0NXCLykHp/92FTXHAMVfTdMvfeqdiq/+bqpbX7qMpT+2qp2Wr+VWnU9VGb22bBiC9HRsg96AyMDpXIAo9QdyIx2qtMTHSVryzDTttSrRMiMlNS+SAyV5dRJ3Y1NyeQ+6NpbY1SqCFFHz2PTy1ehzDg1fodl6waYVK1A+PZDJDx+gVHFUtiP6knogvVE7j0OQNjyrYSt2IZ195Y4jOmD0x8/E9h9zLd28bOkWfKpevcNUt/9ODWMfUmpyjhVz1pCXAKPLt+ncmN3HArmIeCWetxrYlOfUQMV994w9fnMyruf9j58azvxcfEsmb6M2o1r4uKRteQL30LanKavQm4DNc57hVyL02JsZ/zmbOXK7jMA+C/ZzdGle/D8sQmtxnej+5zBzOs4OduvnZ4Y+Ris4r4ZZf2+xX7m/qeNc6osZtMoXqE4tZvV4tLxy9xKlxgiuxFjvyIxn3n/v6S/X/r+V63jxvVzN/Dp3FShbuEShQCo1agGefLn4fTBs9y8qDqZxH8J09S4XfEqvuvi4lMtw9LF9jI1McmwPkBsXDwmxuqxJpLLJV/z5vzY13JsZ/bP2crl1LHvyJLd+C/dg9ePTWidOvbNVfPY972Rna5zmeHl5cX69es5cOCAgg5h3759GBsbU726LIlTYmIiL168kBuwfOn5mZGpoilNadCgQQNat26tsk6xYsUyVcx8DWZmZmzbto1Dhw5x9uxZbt68ybFjx1i0aBGrV6+mQoUKODs7s2/fPvz8/Dh//jw3btzg4MGDLFmyhM2bN8td/VTxOde6z5WpkzTFVZqGPO33nzt3rlKKQUDJ6ii7+Fz/jx07xu3btxk0aBCDBw+WH798+XKW2/+0n9nFh5cyxZVFHhtCHytm/7F0slOok1XcunjTZPIPvH0QyLpuM4gK+TI3kNgPMkseI8vMTZe/lfdBsr5Z5bXl7SfZj6xT+68qYHd2Ef4mjHMbFYPkl6pTER1dHZ5cVH96+7R7a56N979yF28aTf6BkAeBrO82g+gM7n9B99IUdFcdcLNIzXIUqVmOiNdhalM0haSmHLbNa8fLxy8VyuydZT76b1+qTkv8LaS1aZdXWeltbGqMqYUpT+9k/wf2uKG/MW7obyrLTFPdIvLkVR2TJ6+zTNEd9EI5ntinREdFE/4+HMfM2grMvC11kpgarFYvjx0JTxXnYz0nmeyJQVmLF2FW1z3DMvMGNQCIvXKHhMcvMG8oc5OOPvnJ+C+V8n7VDizbNMSkWkUkpsZI1aDoTONdkGxcs85ry5snipbGtqnv/js1jH3hIR9k13VSvemTE2uJN6n31T6vPQGPFZOEODrL7v2bl5nf++CXae0o90XeTuAbpTJVhL6WjbNGJlmL4/AthKXee6u8NgR/cu/VOe9VbCyLAXrv+HWF41KplGPL9+He3oviHmUxNDVS2wYPwNugj/ct8LHiu++QOvYHf8H9VzWWp7Xzueeo19gfAVg1c1XmQn8DYuxXJDib3v+0Og6fef9ff/L+u3hUzFCZ7FarMm61KhPyOuS7UDTlzSPrY3CI8hrxdbBs/HDK8zFGlVNa/bfK9aOjY4iMiqZ0iaLqEFVOmHzeUx77bNQ477mmjn13VYx9R5fvw6O9FyVyYOz73shJ17maNWtStWpVJk+ezKNHj3BycuLq1ascOHCAIUOGyDPKBQcH06RJE5ydnTl69OgXn58ZmX7l29jYYGJiQmJiIl5e6k9P/imGhob4+Pjg4+MDyFy72rVrx5o1a/jzT1n8CDMzM3x9ffH1le3AHj9+nL59+7JlyxaGDx+u1GZan549e6ZUlnbscwoqdZJ2/TSXvjQ5nJ2dKVeunNqv7+zsDMCTJ0/w9PRUWScgIABAfk++hk/7mV0EpWZbK+RemqenFXfUClaTZY14dTPrH71eI9tSZ0grAi7cZ0PPP5XS3WeFPGVkroHhQVlLBfktpGWeKFqtNA9PK07sRavK+h+opl11VUgkEpqMbEdKcgqXtp1U+/Vepd7/gu6lefbJ/S+Qev9ff8H99xzZllqp93/zZ+7/bwVVp9Ot0LY2Lf7qi9+EVVxefTjL1/0a0rK+latWjhunriuUla0mGzse31Qd1PRbSGuzrLvy+FSmall0dHTUct3PER0VzbPHAZStWBojY0N5LA2QZSUqVa44zx4HZHkn+vb1e9TwcqdAoXy8eK6oxKtUrSJRkdE8fxyQrX34UuJuyRSYJlXKE3P2mkKZiZvs3sTd/vx9SAp6y4NSjVWW2Q7qjN2gLrzsN5Ho4xflxyWpWRj18tjBDeXzJKmpvyU6OmpdYj1PHftKVivDvdM3FcqKV5W52QTcyv4sOE+vyt678p6u7Ji5QancuUR+khKTCH6mvo/RtGxTLh4VuHxKMZ16xWoy9/z7NzJXcKdlm3Nxr8jeDfsV23FPbedm1jIIFildBICXT19mUvPbSZv3ilUrwwOleU+m/H+hhnufloHUKo/qWBU6urqp/5/lBM9fxf3Usb+CewWunlJ898tXk4UteJiFMfhBunb8Nh5Q2c6jDNqpXKcyrjVdObXvFI9uKWfAyily49h/Vw3v/54M3v8H6d7/Ws7eKttp3K4hv8z6mVnj5iq51f6XKV9Glj3u0rVbtG2uOA9euS5bT5Yt9dFdqFwpWZiSy9eVlWhXbtxGKpUq1FcH6ce++7lw7BNkjEQiYeHChcyaNYt9+/bx4cMH8uXLx9ixY+nevbvaz08j0ydAV1eXunXrcuLECc6dO6dUfu/ePZJU+IVnB8ePH+flS8WBvXjx4hgYGMgtYvbv309YmGLshzSFTEZubbq6unh6enLixAmePPn4AiYmJrJ69WpMTExwd894R1ddSKVSVqxYga6uLt7esgHc29sbiUTCX3/9RWKiortOQkICDx5kr3VE2bJlcXR0ZP369Uoukffu3SM8PBx7e9nOVvr4VMnJyfj7K1qyZETa72xhYYGHh0f2CQ88OnaduIgYXNrWxsT6o0+piY055VtWJy4ihkfHrsuPV+1en0H+f9Dq734K7ega6NFm7kDqDGnFzR2nWdNl+meVTHbFnKg7yhdjS8WgkMZWZjSe1A2AmztOZ0MPP8+9Y9eIjYihats6mFp/1Dab2phTqWVNYiNiuHfs40K0ZreGjPH/i05/Dch2WfQM9Wnz24/kr1CUU6sOEKLGD600Hqfe/4pta2P8yf0vl3r/H6e7/27d69Pf/w9aqLj/reYOpNaQVtzacZr1mdz//wJXjl0mOiKaur71MLf+mAXFwsaCOi09iY6I5sqxj1YnTbo3Y8HRRQybNeKbrhsWHMatc7coWakUpdw+WnTp6OjQ9AeZe8OpXepXMn7K/h2HMDA0oEsvxawcXXq3Q09Pj/07Dimds+f0Zvac3kx5V8X4H2l1fxigqFBs2qYhdg62HNl3jMQM4njkFNEnLpEcGY1Fq/ropsuCo2ttibmPF8mR0USf+Bic16qzD4X2LyXP7yO/6bppSi27IV3RtbVSKDNv5olB4XzEXr1DSqR6Y7TdOnaNmIgYqrf1xCzd2GdmY0G1lrWIiYjhVrqxz6tbIyb7z+bHvwZ903VDXgRz9/RN8pcpRKN+LRTK6nRpgGMRJ67sO6fWrHPnj14kKiKKRu0aYpnu3be0saR+K2+iIqI4f/SjcrD1Dy1Ye2Ilv8wZrdDO3av3eBXwipqNauBcyEl+3NDIEJ/OTUlKSub43hPy48YmRvT7pTdWn9x3QyND+v+vDwAHtqpXwQ5wN3Xeq/bJvGdmY45b6rx3N929r9WtIeP8/6bLXwO/6boPz8g+7JqMbK+U4rty8xo4FnXi6eUHao/NdfHoRaIjoqnvWw+LT+5/3VZeREdEczHd/W/e3Yflx5YxatZPCu3cv3af1wGvqd7QA6d0WWINjQxp0qkxyUnJnNyneiz/cXQPkpOSWfXnmmzu3ZeT28b+tPe/8Sfvv9Vn3v91J1Yy7gve/+ap7/+xdO//98qGrbvx6dibsb8pJruoUKYk+ZzycPTUOV68/GgRHxsXx5Zdfujq6tCwbi35cQd7W9xcy3Pj9n2u3rwjP56cnMyGbXsAaFzPU619ufOZsa9K6th3J93YV7tbQ/7n/zddv3Hsu5869jVTMfa5pY59T3Jg7PveSJFKs+0vK5ibmzNhwgROnz7N7du3OXDgAD/88IOCpXW+fPl48OCBgjXTl5yfGVnyW/rpp5+4cOECPXv2pHHjxpQpU4b4+HguXLjAhQsXuHFDxTZmNnDmzBkGDRpEw4YNKVeuHMnJyRw5coTY2FjatWsHwN69e/nf//5H48aNKVGiBLGxsezbtw8jIyNatmyZYdvDhw/nzJkzdOzYkbZt22JpacmhQ4e4ffs2EydOzLJJ2LcyYMAA6tati5GREadOneL8+fP0798fJyfZIF+0aFH69evHokWLaNasGQ0bNsTW1pZnz55x5MgRWrZsScmSJbNNHj09PcaPH8/QoUNp2bIlzZo1w9LSkmvXrnH06FEOHTqEl5cX1tbWjB07lg4dOqCnp8eBAwcyVHolJyfTtWtXeSa6tN95ypQp8lhd2UV8ZCxHft9Es2k/0v/g7zz0vwYSCSW8XTB3sGbvLysUFAYm1ubYFXMiKtX9IY1yzdwp36I6USHhRIWE4z2qncrrpQX91jPQp/aglnj0akLAhfuEPX+DibU5RWuXx9jKjDv7LnBju/oVTXGRseydsQHfqb0YdWAGd/2vgQTKelfCwsGaLeP+IS5d/01tzHEs6kykCncwq7y2uDSTKQLzV5DtThevUVYeA+X63nN8eP3RSqtKm9qUb1iF90GhmFqbU6JGOcztrbi49QS7p61TZ7flxEfG4v/7JppO+5G+B3/nUer9L556//dl8f6XbeZOuXT33yuD+39kqrIFg6aIiYxhze+r6D9tIHMPzeOS/yUkEglu3lWwcbBh0S8LiIn8OOlb2FiQr1h+3n/Sd5C5TtT0kS2oilWQ7chVrFFRHv/p9J5TctcYgBW//cP0rTOYvP43Lhy6QOT7SMpWK0uh0oU5tfskt8/nvNn8miUbadKqAcP/N5Aq1Svx/OkLChcrRA3Pajx7HMCaJcoB/YsULwR8jGuRxp6tB2jdqTntu7emeKmi3Lv9gDxOjtSpX4PQkDDmz1yq1FZNL3eKlZKZzedxlpnbd+7djsSEJKIio9i6Lnt3elOiYgj5cwV5Jg2m0O6FRKVaHZl5VkPPwYY3E+eREvXx/utaW2BYJD/Jod8WrDPq6Hki/E5i0bg2hQ8uJ/rkJZI/RGJYohAmbuVICn3Pm//N+aZrZIXYyBi2z1hHl6l9mHjgT276XwUJVPCujJWDNevGLSU23fNvZmNO3qLORKh4/q3z2lKlmSz+QMEKsntYukZ5eRyyS3vP8j7d2Lful6WM3TGNNmO64NKgKoF3n5OnqBOlPMrx+vFLNv66Qo09h+jIaBZPW8ZPvw9n5ZFlnD1yHolEQvV67tg62vLnmFlEp1P0WdpYUrBYAcI+CdAulUqZPX4+01f+xtJ9Czl96CxxsXFU86yCU0En1s/fSNDzjx9gunq6dBrYgdY/tuTG+Zu8fBaEhZU5rtVdsMtjx6FtRziRgWIiO4mLjGX3jPW0n9qbMQdmctv/KhKJhLLelbB0sGbzuGUK855Z6ryn6t5b5bWlknzek937EjXKye/91XTz3q3Dl7m29xyuzTwYf2w2d09cJ/p9FE4l81O0amkiQj6wcfQSNfdeNvb/M305Q6cPYcnhRVw4cgEkEqp5V8PW0YY5Y+cqjP2WNpbkL5afsBDFd18qlbJgwiImrZjIvD1zOXf4PPGxcbjVcSNvwbxsWrCZV8+VN4y8WnpSvHwxDm05rOS6pwly29if/v1flU3v/zIV7/+6T97//xKPnwZw6rxsI+X6rbsA+J88y7MA2fPo26IxZqayjeD34RE8e/ESW1vFOL46OjqMHd6fwaMn0aHXULxqumNkZMiZC1d4+eoNPbv4UiCfk8I5Pw/uQ/cBP9Fn2Di8arljZWHB5Ru3ePTkOY28a1O1kmLCp+wmLjKWXTPW02Fqb35JHfuQSCiXOvZtUjH25SnqTGQGY1/l1LGvQOrYVzLd2Hflk7Hv6t5zVGrmwYRPxr5iqWPfhhwY+743ctJ17r9ClhRNefPmZfv27SxatIgTJ05w8OBBrK2tKVGiBFOnTlUZOyg7aNeuHXFxcZw7d46DBw9iYWFB6dKlWbNmDVWqVAGgd+/eGBsbc/r0aXbt2oW1tTUuLi788ccfn1XAFChQgM2bNzNr1iy2bNlCXFwcxYsXZ9asWTRp0kQt/VFFhQoV2LVrF2/evCFv3ryMHz+eLl26KNQZNmwYJUqUYP369axbt46UlBTy589P48aNadOmTbbLVL9+fVasWMGiRYtYt24dUqmUwoULM2rUKBwcHDAwMOCff/7ht99+Y/HixVhbW1O/fn369+/PoEHKu8M6OjqUKlWKjRs38u7dOwoVKqTW3/nyen9i3kfi0bsJ5VvIPhaC779g/4TV3PPLWrpdSWqGQzN7S6r3aZphvTRFU+iTV+wZu5zinhXJW64QhT3KkJyYxNsHL7n273GubDz2jb3KOmfXHyE6LBLP3k2p1EIWT+XV/Rdsm7CSmwcuZnL2R2wLOtJinOKzWKFhVSo0rArIXPDSK5oS4xMpXr0cevp6RL6L4MmFe5zffIwHpxTdWNTN1fX+xL6PxL13E8qlu/8HJqzmfhbvP+nuv8dn7v9/SdEEcGCdHxFhEbTo3YraLeoAEHDvOUvHL+ac39kst5OnYF56/K+nwjH3Rh64N5ItQh7ffKygaHp6+wljWo+i08guuNaphJGxEW9evGHN76vYuXRHNvTsy4mKjKZr8z4MHt0XzwY1qVbTjXeh79m0ahvzZy4l6gssbJKTk+nXcRj9RvxIwxb1KO9ahvDwSA7sOsLc3xfzWkXso8Yt6ysFrB32i8xyMOjFq2z/2AAI37yf5A8R2PRojUVTTwDiHz4jeMpCog6dyfbrpfF6xO/EnL2GZev6mNWpgkRfn8TgUN6v2cm7JZtJfvdBbddOz4n1h4kMi6RBbx+qtpBtbLy8H8DGCcu5euBCltuxL+iI77huCsdcG1bFNXXse37riYKiKeRFML81+xmfob6U93KlYLkifHgbxsGlu9k3b5uCgktd7F67l/CwCNr39aVeK5lF9NN7T5n9v3mc2H8qy+2c97/AiA4/021oZ2o3romenh4BT17w5+hZ7F6nmBAmJiqWOePn4+FdjXyF81HRvQIpKVKePXjG8j9Xs2/j/gyukv2cSZ33vHo3wy313r+6H8DWCSu48QXznl1BR1qO66pwrGLDqlRMvfcvPpn3Vg2ew/3TN3H39aSMpyt6Bvp8ePOO4yv3c3jBTiJDvyym49eyb91+IsIiaNOnDV4tZWEunt57xoLxCzjtl/V3/+LRi4zpOJZOQzpSo1F19PT1CHwcyJwxc9m3Xvl+6urp0v2nbiQmJLL275zZUMqM3Dj271Lx/j+595RZX/j+n/O/wPAOP9P9k/f/DxXv/3+J2/ce8teC5QrHduz9aLnWwKuWXNH0OepUr8o/s6exZPVGjpw4Q1JSMoUL5mPCqMH4tlB2Ky9TshhrF/3F/H/WcubCFWLj4sjnlJdh/XrQvaPquMbZzen1R4gKi8Q73dgXdD+ALRNWcP0Lxj77go60+oKxb2W6sa9surHv2Mr9HMrBsU/w30Yi/dpc7wIFQkJCSE7OIL33J+TJk4d58+Yxf/58Tpw4Ic/Apg6Sk5MJCclaIDgDAwNsbFT7234tY8aMYffu3dy9e/er2/g1g/g3uYFwSdaeKW3FRqqraRE0ymVp7p6oH8erL3D9f53t1tk7Fn9v/BlnlnklLeZBYljmlbQYF/3szaj7vXE/OfeO/UEJuTsluo1e7h77jt5YpmkRNMpwt7GaFkFjzH++WdMiqJWidpWyra0noVezrS11kr0pv3Ix7du3V4hZ9DmyO67S53j9+rU83lNmVK1albVr16pZIoFAIBAIBAKBQCAQCHIHwnVO8NVMnTqVuLj/XgpHOzs7Fi9enKW6VlZW6hVGIBAIBAKBQCAQCAQCgVYjFE3ZRHZnT8sujIyM8PLy0rQYAoFAIBAIBAKBQCAQ5Dqk0hRNi5Dj6GhagNzK4MGDefDggVrjM/0X+P33378pPpNAIBAIBAKBQCAQCATfKylIs+3ve0EomgQCgUAgEAgEAoFAIBAIBNmCcJ0TCAQCgUAgEAgEAoFAIFADUun3Y4mUXQhFk0AgEAgEAoFAIBAIBAKBGvieXN6yC6FoEvznuUmkpkXQGJuOT9C0CBol+dl1TYugUSImrdO0CBrlwf0CmhZBY/wUE6tpETRKVMoHTYugUZ7GBmtaBI3yITlG0yJolKMVDTQtgsZ4fMtZ0yJolEN6xpoWQaMMdxuraRE0yqzL0zUtgkCQbQhFk0AgEAgEAoFAIBAIBAKBGhCucwKBQCAQCAQCgUAgEAgEgmwhJRcqmkTWOYFAIBAIBAKBQCAQCAQCQbYgLJoEAoFAIBAIBAKBQCAQCNSAVAQDFwgEAoFAIBAIBAKBQCAQZAciRtN/mA8fPrB27Vr8/f0JCAhAR0cHZ2dnKlasSIsWLXBzc1Oo/+jRI5YvX8758+cJDQ3FzMyM8uXL06lTJ7y8vJTa37p1K4cOHeLp06e8ffsWe3t7qlWrxpAhQ8iTJ09OdfOr6dq1KxcvXuTBgwfZ2u6FCxfo1q0bgwYNYvDgwdnatjqp2qAaLfq0olDpQgAE3A9g55LtXDx04avaq1jThYnrJ7NswhL8Vu/LtL5TEWfmHJnP3uW7WT115Vdd81vwP3uZ1Vv38eDpCwBKFM7PD77N8K7ulsmZH0lJSWHr/qNs9TvG0xdB6OrqUrZ4Ybq2boyXR+UMz4uIimbDrkMcP3+VwFfBxMTGUbxwfv5dMPWb+5VVjl5/xJrDl3j48i0AxZ3t6d6gKnVdin9ROwcu3WPziWs8CJS142xniZdLcbrWq4K5saHKcyJi4th07CrHbz7hZcgHYuISKOZsx6Zx3b+tU1nEsGZNTNq3R69oUQCSnjwhZvNm4k+fznIbFmPGYNyoUYblcUePEj55csYN6OhgNW0ahu7uRMyZQ+yOHVm+9rdi26gK+fo3x7RsQQCi7wbwcuFu3h249NVt6pgYUnHnZMwrFOF21+mEHb6qVMekVAEK/dwey2ql0DExIi7wLcGbjvFyyV5ITvnqa38p7g3cadW3FYVKFwbg+f3n7Fi8nfOHzn9RO2WqlqXD0A4Ur1AcfQM9Xj5+yb41+zi8+bDK+jWb1cSnhw+FyxRBR0fCs3vPObD+AP5bjnxzn76EGg2r076vL0XLFAHg6b1nbFr8L2cOnv2idspXLUe3YV0oVbEkegZ6vHgcyK7Vu9m/6UCG55hamNK6R0uq1/fAqVBeTExNeHr/GX0bD/imPn0NVtaW/DR2EA0ae2FrZ8O70DAO+R3jz+nz+fA+/IvaMjI2YujIvvi0akReJ0fCP0Rw6vg5ZkyZw6ugNxmeV7OOOx26tKZKNVds7WxISkxi1LCJ7NmR8W+YXVhaWzDw5z54NqiJjZ01YaHvOX7oNAtmLiX8fcQXtWVkbEifYT1o2MIbx7wORIRHcu7EReb9voQ3QcrZAXV1denatwPN2zchf0FnYqJjuXbxBgtmLOPR/SfZ1UUlDDxqYty2PbpFigGQ/OwJsVs2kXAu62O/2cgxGDVonGF5/HF/Iqcrj/0SUzOMWrTGwL0Guk5OSIxNSH72lA+Den95R74S60ZVyduvBaZlCgEQcy+AV4t28v7Axa9uU8fYkLI7p2Javgj3u03lw5ErCuVWdSth27wGZpVLYOhkB0Dss9eEbj/Jm6V7kCYlf/W1v5SSDSrj0acpjqVl2Vrf3g/k7JK9PDh0JZMzP1KuRXVK1q+MU8UimDtak5KUTMijIK5uPMa1TccyPV+iI6HDip8o7uWC34RVXFqter7Ibio0cMO7tw/OpWXzftD9F/gv3c3NQ5e/qr1SNcszaN3/+HfCCk6uOZhhvdK1K1K3V1MKViyKnoE+716GcP/0TQ4v3EVEyIevuva3sHW3H7/OmMv8mb/iWaPaF59/5fptFq3cwJ37D0lMTKJwwXx0aO1DG5+GKus/fPKM+f+s5eqNO8TGxuHs5EjLJg3o1r4Venq639odgRbwXSia7t69S58+fQgLC6N+/fq0aNGC5ORkHj58yP79+/n3339Zv369XNm0d+9exowZg4mJCT4+PhQsWJB3797h5+dHv3796NKlC+PHj1e4xqxZs7C1taVx48bY2dnx4MEDdu3axYkTJ9i9eze2traa6HqW+eGHH2jSpEm2t1uoUCF+/fVXypUrl+1tqwvv9vUZOHMw4aEfOLNXtsCqUq8qY5aNY/6ouRz9N2sfPo4F8tC8dwvsnOxxqeWaaX1TC1M6juyMtYM1LrVd0dXVzCC7/cBxJs5aho2lBY3quANw/NxVhk2axeQRvWnV0DPTNpKTUxgxZQ5Hz16mgJMjTevWID4hkdOXbjDk178Z3rMDP7bzUTrv+t1HDP31b8Ijo3CrUJomXtVJTErifXhkdnczQ3acucmktQexNjehoVspAI7ffMKIxTv5tWsjWtYon6V2Zv57lA1Hr2BvaUa9SiUx0NPlxtMglu47x/4Ld1k3pitWZoppiG88DWLYop1ERMdSuXh+GlcpTWJyMu8jcyZVt1GTJlj+/DMp798Tf0y2KDSsXh2rKVMInzGDOD+/L2ov1s+PlAjlj7KkR48+e575kCEYurt/0bWygzwd61JiVn8SQsMJ2SVTLNg2dKPsqp95MHwhwRszXygroaND6cXDMK9QJMMqpmUK4rJnChJdHd4dukziuwgsq5elyISumJYuwIPB87+2S19E/fb1GfLHUD6EfuD0nlMAVK1fjXH//I85P83hyL9ZW/S71q7ExFUTiY+N5/yh88TFxOHm5caQP4bi4OzA+r/XK9TvM6kvPj18CH0dyrkD50hOSsallgvD/hpGiYrFWfS/RdneV1U06dCIUX+O5H3oe47tOQFA9fruTFk+iZkj/8Rvc8YfDOmpUseN6aunEBcbx5mDZ4mNiaNa3aqM+nMkjvkcWfnnaqVzylQqzZQVk7CwsuDG+Zv47zyGvr4elraW2drHrGBqZsL2/WsoUbIop46f4+A+f4qXLMoPvTriUbMKPvU7EhMdm6W2dHR0WLt5ER41q3Dtyk2OHzmFc34nWrZtQo3a1WhWrwNvXr9VOEdXV5eZc36lfadWvAp6w7nTlwj/EIG9oy0pKepXupqYmrBq12KKlijM+ZOXOHrgJEVLFKZDjza4VXelc+NexMZkvf8L1v9NleqVuHX1DqePnscpXx6atG5AtVpudGrUk7dvQhTOmTx7HD6+jXn84Ck7Nu7F2tYKr4a1qFbLjW4+fXl0L/uVTYYNm2A+YjQpH96TcOIoAAYeNbD4dSqRf80g/tD+L2ov7pAfKRHKCsnkx8pjv17pslj8OhWJuTmJN28Qf+wIEj19JJZWX9WXr8G+ozdF/xpIYmg473afAcC6QRVKrhjDkxHzCdl09Msb1dGh+OIRmJbPeOwv9FtPDPLZE3X5AeGnbqJrbIhlHRcK/q8bFtXK8KD7tK/t0hfh0r4OzWf2ITo0nDt7ZZsKJetVov2yEewetZTr/57IUjst/+5HcmISLy4+4NHRaxhZmlK8ris+M3qRp2xB/Mav+uz5jSZ3p7iXyzf25svwaOdF55n9iAwN5+recwCUr1eZPktHsW7UIs5vOZ6lduwKOFK3V1OsnewoVatCpvU9f2xC2wndif4Qxe2j14iLiiV/2UJ49WiCW/Oa/NX6f4QGKCuis5tb9x6wY+8hAoNec/7y9a9u58yFKwwYNQEjQ0Pq1q6OsZEhp85dZuLvs3n9JphBvbsp1L//6Cld+48kOTkZr5ruWFtZcunqTf5euJxHT58zffxP39gz7SNFuM7994iKimLgwIFER0ezZs0aJculDx8+MGPGDPni5dmzZ/zyyy/ky5ePNWvW4ODgIK87cOBAhg8fzrp16yhfvjwtW7aUl82ePZsqVaootF2qVCmmTp3K1q1b6du3r/o6mQ14e3urpV1HR0c6duyolrbVgbGZMd3H9SAs+B0jGw8j/J1soWRlb8Vf+2fTfVwPzu49TVxMXKZt2TnZ0bhb0yxf28TClCY/NPtq2bODqOgY/ly2HnsbK7YsmoatlewjJ7T7B3wHjuPPpRtoWNsdE2Ojz7azZb8/R89epn6tqswYMxB9PdlQEREVTb9fZjBn5WbqVnejUL688nNevw2l/7gZ2NlYsfLP8RQp4KS+jmZAVGw8f287jr2lKZvHdcfGwhSAgeFRdJi6hr+3HadB5ZKYGBl8tp1HQSFsOHqFCkWcWDa8PYb6H4fKP/49yvqjV9hw7AoDfGrKj78Oi2Dg3K3YWZqxYmQHCufJWeW0xMQE8/79SQ4N5V2vXkg/fABAx8YGm2XLMO/fn/jjx5HGZu0DCyD6339Jfvbsi+QwadcOk5Ytib90CcNPxlR1omtmTOGJXYl/E8bVeqNIDJUpyJ7/bkWlIzMpMqEbIbvOkZKFdz89RSd3x9rLhQ9nbmNVQ7XCvcik7ugYGXCz7STCz90FQKKnS7l1Y3H0rcPrNYeJuJS91qafYmxmzI//68m74HcMbTTk49j351rm+M3lx//9yOm9pzId+yQSCf1+60diQiIjm4/g5ZOXABiZGDFzxx+0HejLoc2HCAmSfVxX9nLDp4cPdy/fZWKXCfL29Q31+XnBaJp0a8oZv7PcPHNDjb0HEzMT+v2vD6Fv3tG7YT8+vPsAgLW9NcsOLKLf+D4c23MiS/0fMmUQCQkJ9G82mMAngYCs//N3zaHTwA7s3+hHcNBH5YqDkz0z1k0n7O07hrYZKT9HU/Tq15USJYvyx7R5zPlzifz48J/7M3LMQH7s04X5s5Zlqa1WbZviUbMKG9duY9TQifLjbTs0Z/bCaQz/uT+jh09SOGf8bz/RvlMr/pg2j3l/L8sR5VJ6uvRpT9EShZk/YylLZ320KO438kcGjOpN517t+GeusrJQFU1aN6BK9UpsX7+bX0dOlx9v3q4JU+aOp9/IH5k8aob8eKVqFfHxbcyZo+cZ1PUnkpNlFi1ValRi2ZZ5jJw4mH4dhmVPR1ORmJhg2nsAye9C+dC/J9LwD7Ljq5djveAfTPv0J/7kMYjL+tgfu3UzyQGZj/069g5YTJ1JStg7In8aQnLgi6/txleja2ZMwfHdSXgTxs36I0lKHfv07a0of+gvCo7vzrvdZ7947C84qQeWnq6En7mFZQYbVG9W+fFuxykSQz8q5XSMDSm7exrW9d2wrF2R8JPqHfsMzIypP64zkcHvWdL4F2Leyea+Y/aW9Nk/lfrjOnFn73kSY+IzbevYX1u5vPYw8ZEfnxUTWwv67JtKlW71ubDiAGHPVFsxuvduQpWu9Xly8hZFa2dtQ+9bMTIzptW4LoQHhzG9yWiiUvtubm/JmH0zaDWuK1f3nSMhC323drKldjfVljufYmplRovRnQh5/oY/WvxCTHi0vMyzR2PaTvyBxkPasHbkwq/r2Bfw5OkL/t35ZYrkT0lJSWHq3wsx0Ndn4z9zKFIwPwAxMbF07jeCf9b+S2ufhjjlcZSf88e8pcTHJ7B87nSquMoUc4lJSQz4aQJ7Dvjj26IxlSqU/Sa5tI3c6Dr3n886t3nzZl69esXIkSOVlEwAVlZWTJ8+ncqVZa48y5cvJz4+nilTpigomQAMDAyYPn06FhYWLFqkuMP6qZIJoHr16gAEBQV9tfwhISH873//o2bNmpQrV46GDRuydu1ahTrbt2+nZMmSHDt2jGnTplGzZk0qVqxI165defr0KcHBwUyYMIEaNWpQuXJlevXqxevXrxXaGDNmDGXKlFE49vTpU4YNG0adOnVwdXXFx8eHiRMnKvTn5s2b9OnTh5o1a1KpUiVatWrFjBkzeP/+PQAvX76kZMmSLFyoOFgGBAQwZMgQqlatSoUKFWjTpg0HDyruFqedO3/+fDZu3EjTpk2pUKECPj4++Pv7f/Vv+jkqeVbGzNKMA2v95B9aAB9CPnBgrR/mVua4embs9pWeO+dv07pgc1oXbM68kbMzrR/y8q28/vj2v3xtF76J05duEBkVQ3ufenIlE4CdjRXtmnoTERXNqUuZL3r8jst2hQZ395UrmQAszEwZ3qsjKSlSdh5S3CGbtXwTyckpzJk4XCNKJoAzd54RGRNPuzquciUTgJ2lGb51XIiIieP0ncwXz09ehQLgWaGYgpIJoFXqgvNVqOJu75ztJ0hKkfJ3v5Y5rmQCMKhWDR1zc2J37ZIrmQBSwsKI3bULHQsLDKpWVasMhjVrYta3L1Fr1hCnpnc8I2y8XdG3MuP1qoNyJRNAYsgHXq8+hL61GTbeLl/UplOvJjj3asLjn5fJFUifom9vhVWNsnw4c1uhjjQpmReztwHg0LqmynOzk8pebphZmrF/zX6lsc9v7X7Mrcyp7JX52Fe8YnGcCjtxctcJuZIJIC4mjh1Ld6Cnr0fNZrXkx2s3rw3AptmbFJQ4ifGJLPt1KQANOjT45v5lRjWvKphbmbNrzW65kgngfch7dq/di4WVBdW8Mn/+S7mUJF9hZ47uOq6gMIqLiePfxVvQ09fD06eOwjl9fumNrp4O43tN0riSCaBl26ZER8WweJ6i2/aiuSuIjoqhlW/WN1BatpVZSv89U3HNtHXTbgKeB9KsZUP00s0RxUsWoUfvTmxav4M5fy7JcSUTQJNWDYiJjmHVQkXLu5UL1hMTHUOTNll/Hpu0ltVd9NdyheO7/93Py4AgGjT3VnARSau/dPZKuZIJ4NKZq1w+exX32lWwsbP+4j59Dv0qsrE/bs9OuZIJQPo+jNh9u9Axt8Cgype70WQF0579kOjqEjlpvEaUTCBzX9OzMiN49QG5kglkY3/wmgPoWZtjVTdzq/T05OnZlLw9m/JszBIiz6se+wHeLNuroGQCSImNJ+RfmfXs56yhsotinhUxtjTl8tojciUTQHRIOFfW+mNsZUYxz4pZauvMwt0KSiaAmHcR3POTuR/mKVtI5XklG1Sm3tiOnJy7g9u7vsxN+Vso4+mCiaUZJ9celiuZACJDwjm17jCmVmaU9czavX90/i6DCrVnUKH2rP3p8woi+8J50TfU58GZWwpKJoCzm2XWc7b5HFSdmu20bFqf22f8uH3Gj/4/dv6qNm7fe8iLl69oXM9TrmQCMDEx5oeObUhKTuaA/yn58dB3YVy8epOqlSrIlUwA+np69P1BZpyw//Dxr+uQQKv4zyua/P390dfXp3Xr1p+tl+amdPz4cfLly6dSKQVgYWFBvXr1eP78Oc+fP/9sm2nKHEdHx8/Wy4iwsDDat2/PoUOH8PHxYcSIERQvXpwpU6awbJnybuLgwYO5ceMGP/74I926dePq1av07NkTHx8f7t+/z48//kinTp04d+4cP//882evHRwcTKdOnbh58ya+vr4MHTqUMmXKsHv3bi5ckMUpun//Pl26dOH169fyOEz58+dn7dq1PHz4MMO2AwMDadeuHRcuXKBt27YMGDAAHR0dhgwZwubNm5XqL168mMWLF1O/fn369etHVFQUQ4YMITAw+xfkxV1LAPDourL8acdKpNbRRm4+kJnkly9ZVKmsQilZ3IZb9x9n2s671Bgezo72SmWuZUugq6PDrXSxJsIjozly5hI1q1bExNiInYdOsGDNVlZt2ce5q7e/qi9fw61nrwAoW0g5rlr5QjLrq9updT5HAQfZh8CRaw+JiUtQKAtKXciWLfTRmisiOg7/64+oWa4wpkYG7Dp7m4V7TrP60EXO33v+VX35UvRLlwYg8d49pbK0Y/qfKKOzE72SJbEcN47448eJXrFCbdfJCHNXWfytyGvKz3fkVZm7h3mlrMfosqlfmaKTuvNi7g7ebMzY7cLctRgSHR3V173+BGlKyhdd92sp6VISUD32Pbj2UKHOZ9txldV5eEO5nYfXHijUAbC2twLg7UtlF4G3L9/y9uVbhfrqorSrzE32/nVly7F71+4r1MlaO/ez1I6ZpRm1GtfgwtFLxETH0NC3AT+M7Ea7vm2pVPPLPm6zA1MzE4qXKMK9uw+Jj1ccu+Li4rl/7yElSxXDxNQ4gxYUcalUnjev3/JaRSyma1duYWlpQdHiheTH2ndqha6uLv8sXEMtTw96D+jGyDED6dClNXb26lfAm5iaUKREIR7efULCJ/2Pj4vn0b0nFCtZBGOTrPW/nEsZ3r4JIfjVW6WyW1fvYGFpTqFiBeXHyruWJTk5mTs3lJ+fm1fvoqOjQznX7B2H9UvK2kt6oDz2J92XKUn0SpXO1msCSMzMMKhRi4SLF5DGxmBYvxEmXXtg3LY9+q5Z29DLDsxSx/6o68pufVGpY79Zpayv+6zqu1Hw1x8ImreNkI1ft2GiY6gPQNKHqK86/0vI5ypb7wVdV3bJDLr+OLVOsW+6hq6BrD9xnyhVAPKWL0yrOQO4u/c8x//a+k3X+VIKucj6FXBDef4NSO17Wp3s5F3gW5ITkyhdpyLmdoru0Xb5ZQqmgJvqi8eW3dy8K5s3y5dRfk8qlJHNd7fufhzTbt19iFQqpVxp5bm9XOkSSCQSbt5RrxX390iKVJptf98L/3nXuSdPnlC4cGFMTEwyrRsVFUVISEimbmQlS5aUt12oUKEM623cuBGA+vXrZ13gdMyePZuIiAh27txJvnz5APjxxx8ZN24cS5cu5YcffkBfX19ev2/fvgwaNAiJRAJAREQEmzZtYsiQIQwYMEDpeGhoKHZ2diqvfeTIEd6/f8+KFSsULJ3Gjh0rt1bavXs38fHxrF27FisrK3md169fy6+lilmzZhEdHc2ePXsoXFgWcLZnz550796dGTNm0LRpU8zMzOT1PTw8mDVrlvxYzZo18fX1Zf/+/dnukuiQT6YUjFQR7DMsOCy1Ts7sMmiCV8EydxYrC3OlMntbK4U6n8Pe1pqAoDc8eh5I2RKKO3J6urqYmBgR9uHjb3zr/mMSE5N49CyQJj1GkJiYpHCOR6Vy/P2/oZiZZv4efwuvUne0rM2Ur2NvZaZQ53OUKZiHNrUqsO3UTdpMXknXem40qlKaxKRk/t52nLIF88gtmwBuPX9NYlIyj4JCaDZ+GYmfBAB1L12QP/u0wCyDAOLZgW5q0oKUcOW4GimhoQp1sortkiVIDAyQxsaSFBQkUyJt3Qpxii4IOg4OWE2bRuLjx4T//vtX9uDbMMovU4omhinHA4t/8z61TtbefbPyhSm9eBih+87zfNqGr75uSlwCSR+iMcqnrLDNbtLGtQiVY987WZ38mW+apI2hEWFZG0PTjhUsVYigp8rWv5EfInEqrH4LR8f8smc7PEz5+Q8Nlj3/ebLQ/zyp/Q9X0f/Q1N8xT76P71Fp11IYGBpQpHRh1p9ejYGholvupRNX+LXvZGKiciZOW4ECsrVG2Lv3KsuDU+MJ5S/gzIN7n990MDM3xdrGint3VG88Bb+RKV/y5f/YVlWPSiQlJbFo5V8U/2TuiIqMZuSQ8ezbdSjrHfpCnAvINgA+hH1QWR7yJlRe7/H9p59ty9TMBCsbSx7eVf07vU19rpzyf2zLKX9eYmPilJRcACGpc69T/rxKZd+CjmPq2K8iplLKO9kzq+v4ZWO/1fylsrE/LpbkoJfEnzpO7PatEP9x7NcrVQaJgQG6hYtgvXIDEgPFZz/hyiUip0xAGqPeZ98wdVxXNQYnpI5Phllc95mUL0LxhcMJ23eewOnrMz8hA6wbyizIoq5mvGmbXVimzi8x75X7Hxn8QaHO16Cjp0txr4okxSXw5s5zhTILJ1s6rBjJmzsB7PppieoG1IhN6n2NUnHvw1PvvY0a5t/I0HD2zdpC85878svBPzm+Yj8Xtp8kPjqW9lN6ERLwhsOLdmb7ddXFq9eyjSIrS+WYgg52NgAEpYvFF/RGVt/aykKpvpGhIRbmZrx6o/74VN8bwnXuP0hUVJSC0iKzugCmpqafrZdWHh2trJlPY+vWrfj7+9O2bVtKlPhyCxipVMqBAweoU6cOenp6vHnzRv7n4uJCREQET58qLnI8PDwUFDxp13V3d1d5/FP3ufSkmbKfPn1awXTdyspKrhxKXyc9efPmzTDTXnJyMseOHcPT01PeDoC+vj7dunUjOjqac+fOKZzj6uqqcA/T5P8Wl8SMME7dpY2NVvbFj4+V+Wgbq1BCaAvRqa4rqmIwGRvKlBxRWQiC6uMtc/X5efp8Tl26TkxcHLFx8Tx6HsiidduJiYkjMemjMunFq2D5dX8fPYAj6+dxZc8qtiycSvXK5Tl39TZTF6z61u5lSnSq9ZGJob5SmZGB7HmPisvcVx9gfOeGtKpRntdhEcz89yj1Ry+k9aQV2FmY8c+I9hgZfLxG4FvZR52poQHTejTl4PR+XJw3nE3juuFRphDn7wUwfZN6s29JUpXxqmIwSePjFepkRkpoKPHnzhF3+DAxO3YQf+kSus7OmPXqhc3s2ZBOQS4xMcHq99+RxsXx4X//g8TEb+/MV6CbGpg9WcW7n5L67uuZZW7FYJDXhrJrxhB97wX3sxDE+3PXTbu2rrn6xxxjs7SxT/n+x6c+8yZZ6H9aO3GfGUNN0o2hx3bIXET6/daPmj61MDYzRt9QH6fCTrTo1ZI8BfKgp6/+PS0T08/0Xy7359cG8HF++Gw76e6ncyFnWf2oWKYO+R1ftw40KNKEXg36cen4ZarUqczQqTmXsdXUXNbHmGjVH/exqXOEmXnm6yozs7S1UgZtxcraMjf/+LsWKlyA5OQUjhw4Tv1abSjm7Ea5ItUZPXwSuro6zFsyg2Il1OdOZGqW1n/V81yazKZZeBYyaysuNe6LWbq2TMxMMvztVdXPDj4/9sel1snaNVPC3pFw4Rzx/oeI3b2dhMuX0HVyxvSH3lj+MUdh7Nd1ck69bgyRM6YQ1qkNoc3q8b5/TxIuX8SgchVMBw7/1u5lik7qmJWi4j6ljf265lkZ+20ptWosMfde8Hjo3K+Wx759Xcwrl+D94UvE3Av46nayiqGpbL2XoGLMTkztv2EWxv6MqDW4JZbOdlzddIyYdAodAzNjOq4cRWJMPJt7/01yQtJnWlEPRml9VxF/KyFWth40+oa+f45DC3ey58/NmNta4DOqA5PPzGfS6fmYWJnxV6v/qVR+/VeJTv0uUPXtYGRkmFonJl39mAzrp50TlcE4KMhd/OctmkxNTeUKpMxIU2Z8ToGUvjwjBdbx48f59ddfcXV1VcpOl1XCwsIIDw9n79697N27V2WdCBXZnNJjbCwbHD/VgKYdj4/P+IO5adOmrF27lr/++osVK1bg4uJCpUqVaN68uVyJ1L59e3bt2sXIkSOZMWMGrq6uuLm54ePjg7W16hgCYWFhxMTEUKBAAaWyNOuwzFzijIyM0NXVJSFBeccvu0hWkVI2TVmXGzTKqtKKpvX7c9ZqabRqWIfnL1+xett+BvzvD4WywvmdSE5JwTyddVLahNKxeX0a1PoYC6JU0ULMnjCcRt2HceD4ecYO6I5FNi+yVaGnq6xDT7vtWek/wO+bjnD4ygOWDmuHnaUZBy7fY8+5O1x5FMhPS3czo5eP3EIpMnUx196zEvUrfzQlLpXfkb/7taTpuKUcvHSf0e29sTD5fCD2b0WapGKxl9bnLD77Uf/8o9yEmRlWM2diUKYMxs2aEbtjBwCWkyaha2dH2IABSFVYU+U0KtNJZ/HdlxjqU27dWFISErnzwwyk8VlXmqn83dOunYNjjsqxj7T+Z72dJJXPEantfGzoxukbLP11KT3G9mD0gtEK1d++fIuuni7REZ+fk7OTpM/c/y/5AbLa/zTFzo5Vuzi572MMiyd3nzC+169sOLeWus09mTt+frb9Dj6tGlHRVTkw/by/lsr/+1Or0jS+Zh5MykB5/PG5+tiWuYUZb16/Zeqvf8uPxcXGsX71FszMTRk/+Sc6dG7FlIl/Zfn6n9KwhTflXJTdz5bOXvVR5gzex6/qf4ZtobKtL62fbWTD2B+zUjmsg8TUDIupM9EvXRajxj7E7d6eelz27Mft3kHC6Y8xG5OfPiZi8v+wWb0JQ8+6RC+cgzRa/S5k0sSvf/clhvqUXDOOlIREHvT4/YvG/vRYVC9H4el9iH8VypMR6g8EnZ6UbBr70lOuZXVqD2nJmzsBHJm2UaHMd9FQLPJYs7zlRGLfq//+fo5kVeNd1pZ6X029vs1pNLgVq4bM5cmVB1RuVp1qbeuQt3g++q8cy9LefxD+VrVl6X+V9DFZ05CvnVXU11NRP+2kLC61cxUi69x/kMKFC3Pnzh1iYmIydZ8zMzPDwcHhs/GFAB48kPmNFium7Ld7/PhxBg8eTOnSpVmyZAlGRl/3UZhmRdSgQYMM40upun52YWZmxrZt2zh06BBnz57l5s2bHDt2jEWLFrF69WoqVKiAs7Mz+/btw8/Pj/Pnz3Pjxg0OHjzIkiVL2Lx5s9zdTxWf+1jP6oe8OkjbhdZXYdFimKoUyErGue8V01QlRkKC8iIpNtWU3yQLz7REImFEr060aujJ+Wu3CQn7gLWFOaWKFsTSwow2/cZSKJ35v0HqLmecCncBYyNDKpUtyZEzlwh8FazkipedmKZmk4tXseCMS/1NVFk7fcqBS/fYdPwav3ZrRNVSsvgbA3xq0ruxB3N2nGCd/xVm/nuUyd0bA2CQqtiLU/G7Gxvo41rMGf9rjwgM+UDZgl/mwpBV0twTPnVfAJCkWrN9ScY5pfajooheuRKDP/7AwMVFrmgyrFKFhOvXMfbxUaivl6p4NqxZE908eYg/fZrEW7e++vqZkRwl65tExf3VNZb9JhlZHaVh4GCFWdlCvDt4mXwDWyiUWbjJFIh5OtTFsnpZgjcdI+bBS/l1dQyVf3eQZSDK7LrZQWxUFsa+LKS0T2vnUxcwhXY+GUP3rNjN2f1ncKvrhl0eO2KiY3nxIIAH1x6w7vp6ntxWf6yKNKsTVXIbpcqdlZT2sakubqrbkY2d6X/HxNQNEyMVbrHxcfHcvnSb2k1q4VzImYc3s8eNxsu7Ju06tVQ6vmrZBqIjZcosQyPVbrrGqX3IiitfVFQmbaXON+ktnhLiE+XX+JQT/mcYP/mnb7ZoqlnXgxbtlQOab1yxhehUmVXdP/h4D1VZrH1KWluGmbSV3uIpJioGQ0PVv5e8fja7kn0c+5WvKx/7vyDjnFL70VHErF2J5bQ/0a/oIlc0pVmvSgxV3O/4eBLv3MKwZh10nZxJeqS+eC0pnx37Zf3PdOy3t8K0bCHCDl3CaWBLhTLz1LHfoYM3FtXLEbLpKLEPlTdUzd3LUHL1WJKjYrnXYZJCYHJ1Ep/aNz0V/ddPnftUWfxkRlkfd1r82Zew58Gs7z6DpE+Ub0Vrlyfg/D0qd6qrcNy+hOzboWQDN6zy2fPg0BVeqCnrapy878rvqEHqvY9Xw/xbyLU4Lcd2Zv+crVzefQaAI0t24790D14/NqH1+G50nzOYuR0nZ/u11YFpasy6eBUGAHGpVpEm6eLamaZ+j6uqDxAbF4+JsXosyb5ncoOhw6f85xVNderU4fr16/z777/88MMPWaq/ZcsWrl69SqVKlZTKo6Ki8Pf3p0iRIkpWOQcOHOCnn37C1dWVRYsWZdllTxU2NjaYmJiQmJiIl5fXV7fzLRgaGuLj44NP6gfg3bt3adeuHWvWrOHPP/8EZAopX19ffH19AZmirW/fvmzZsoXhw5VNntP69UxFyvO0Y59TUKmbkJcyH2K7PHYEPX6pUGbnZKdQRxvJ6yDr45uQMIoUcFYoe/M2NZ6Eo+q4XqoonN+JwvkV46v8u1fmAla53MeAuLY2lqnXfaeyHWkOafHz2sj8xYPfR1Ikr2Lg2TepZsxOtso+6J9yJDWuQs2yhRWO6+vpMryNJzvO3OLEzY9xO+wsTeXXVUVOzC3JwTL3RV17e5JfKGb/0UlNaJD8RnVa4ixfIzXWk+STBYSBiwsGLi4qzzGsXBnDypVJCQlRq6Ip7qUs/olhXltiHym65Rrmkz3z8S8zj08GYNvQjYzCFts1lVnsRVy4T8yDl/I2DfMqn6FraoSepQlRt55n6brfQkhQ6tiX146Xn4x99s6yGBXBWRj73qa2Y5tXeZywd5LFw3gbqBx74d2bdxzcoJh5tFKdSujq6nLngvoTAgSnBiO3z2vHi8eKz79DqtxvVMit1E5q/+1V9N/BObWddIHPw0JkO9b2ThnEAVHDxsuIQf9jxKD/qSwzS7WwyuukOh6VUz7ZBkFgYOau61GR0Xx4H07evKrbck5t6+WLjwkWQt6Gkq+AE0bGRsTFKn7gZdcm1PihUxg/dIrKMtNU10fHvKpj8uRNjcEVFJhx6IE0oqNiCH8fgUMmbb1K19arl28oVqoIhkaGcpfVj/VlmwyvXnzbOPwpKW9l7enY25McqOiqpeMgkzEl+NuumRbnT5JuoyolLEx+XdXkzKajfAx2siPuseJzbeCcOvYHZm3st2mgnIFaXtbEHYDIi/eUFE3WDatQfOEIEsMiuNdxspIc6iT8pezeWOSxIfSxYrITy9R174fUOlmlchdvGk/+gbcPAlnfbQbRIaqVZgXdS1PQXXWg+SI1y1H9hwrQAAB1lklEQVSkZjkiXoepTdEUFiS7r9Z5bQh+ovib26T2/V0W5/0vwbWxbB1w9/h1heNSqZSjy/fh0d6LEh5lMTQ1UouiK7vJm0c2xgWHKD8nr9Niy+X5OA84pdV/q1w/OjqGyKhoSpdQTkokyH3852M0derUCVtbW2bPns3FixeVymNjY/njjz+4f18WDb9nz54YGhoybtw4QkIUB5eEhATGjh1LeHg4/fr1UyjbsGEDw4cPp27duvzzzz/fpGQCWRa8unXrcuLECaWYRQD37t3L0Lw6Ozh+/DgvXyp+bBQvXhwDAwO5y9r+/fsJS10opFGunMwcPyO3Nl1dXTw9PTlx4gRPnnzcpU5MTGT16tWYmJjg7u6enV35Ih7dkGUYKeNeVqmsTDVZ3x6nUxBoG2nZ5i7fUs4+c+W27B35FouimLg4lm7chbGRIQ3rfLzPLqVlWV9OX7qhdI5UKuXx85fo6epS0Fk91jxplCss+/C58kh5tzHtWJksWBQlpJqgB2eQMSY5RUpyykftUYUiMmXc6TvKwWWlUimPX4Wip6NDQYfsTWudnqS0zHIqFD4GFWTpZ5MefNtiTz81LltyOvfYYE9PlX9pQcEj5swh2NOTmK3qzUaTlvXNykPZpcbSXXYsUkVWnvTEB4ZwMo+vyr+AP/8F4HbX6ZzM48u7A5cU2rRUcV0L99JIdHSIuqF+i56HqdnmylVTdqkqKx/7lLMyfUk75arJxtVHtzIfQyUSCV1GdSU5ORn/rV+XuelLSMs2V9G9glJZRXdZ4P4HWbAoSsssp7KdaqntpMvId/eKLKtXNa+qKtsrXLIQSYlJvHz6UmV5dhMVGc2TR8+o4FJWbkGThqmZCWXLl+TJo2dEZzE4+fVrt8nj5EihwvmVyqpUq0RkZBRPHn/ceLpy6QZ6enrU8aquVL90WVl8xodZyHz6tURHxfD8cQBlK5ZSsjIzMTWhZNniPH8ckGEcpU+5ff0ujnntyV9IeQPNtWpFoiKjefbko3Ln9rW76Ovr4VJF+fmp5O5CSkoKd28qZ6T7FhIfyNrTL6+cwl6/nOxY4sNvG/t1C8vWDcnp1pWJ9+4AYFClmspz9AoVRpqURHJQ9mcYTk9atjlzd1VjsOxYdCbrvviXIZx3aq3y7+VfsmzK97tN5bxTa94fUPwWcejagBLLfibuRTB3mv+So0omgKDU+UWVwqdgNdmG4Kubnw98nx7PkW1pOvVHAi8/ZHW73zJUMk0u2Fnl366RsqDgfhNWMblgZy6sOPClXcoyadnmilVTvvdFq8p+jxe3sn/+1UuN0WmVx0ZluU5qJnQdFWEc/ouULyOz2rt0TXkz8Mp12UZR2VIfs+eWKyUbyy9fV1H/xm2kUqlCfYGM3Jh17j//BlhZWTFv3jwMDAzo3r07AwcOZPny5axcuZLx48fLFUM6OrKuFC5cmN9//53AwECaNm3KlClTWLt2LbNnz6ZZs2YcOnSIbt260aLFR7eImzdvMmnSJPLmzUu1atXYvn07GzduVPjLapyo9Pz000/Y2trSs2dPRo4cyfLly1m4cCHdu3enVatWJCer8KfOJs6cOUOjRo0YOXIkK1eu5J9//qFr167ExsbSrl07APbu3Uu9evUYN24cq1evZvHixfTo0QMjIyNatmyZYdvDhw/H1NSUjh07MnPmTJYsWUKHDh24du0ao0aNwtxcOeNZTnH12GWiI6Kp29Ybc+uPcljYWFC7ZR2iI6K5euyy/Hjj7k2Z67+QIX8P04C02U+tqi6YmRiz6/BJ3od/tK4J+xDBvqNnMTMxplZVF/nxDbsO4dPzJ36ZuSjTtiOiohnz+0KCQ8MY8kM7hRhN+Z0cqeZSlgdPX7B88x6F8/7d609A0Bsa1K6m9qxzNcsVwczIgN3nbvM+3YdUWGQM+y/ew8zIgJrlPiraNh27SsuJy/nfyn0K7VRLdZf7e+sxomIVd6VXHbpIXEIitdK1k9/emmqlCvDwZQgrD15QqL/l5HVevH1P/col1Zp1Lv7CBVKiojBu1AhJuswhEktLjOrVIyUqivgLH2UzbtUK2zVrsBg7VqEdXScnTDp1UgocLrG0xLRHDwBiD6kva9TXEuZ/jaSIGBzbe6Jn8/Hd17e1wKF1LZIiYgjzvyY/7vRjI9xOzabkvEHfdN2E4Pd8OHsHC7cSWFRJl+pXRwfnnjLXyrc7T2dwdvZxOXXs8/ath4X1x0wwFjYWeLb0JDoimsvpxr6m3Zux6Ogihs8aodDOw2sPePPiDe4N3clb8KN7rKGRIQ07NSI5KZkzez/fH31DffpN6U/xCsXZu3IPr569+mz97ODC0QtERUTTqF0Dhf5b2lji3cqbqIhoLhz9+Py3/KEFq48vZ+zsnxXauXftPq8CXlOzYQ2cCn205jQ0MqRZ56YkJyVzfN9J+fFXAa+5cuoqxcoWpcOA9gptNe/ajPxF8nF874kcyzoHsGu7H4aGBvTs01nh+I99uqCnp8eu7X5K5xw/v5vj53fjUklRwbhr234A+g7qoXC8VdumODja4bfniEI8qPWrtwDwv0kjyZPOEsjK2pJBI3qTlJTEvxt3fVsHM8Fv52EMDA3o1LOdwvHOvXzR09PDb+dhpXN2ndrErlObKOeq+MGaVrd7/04Kx5u0boCdgy3++4+TlK7/fjtlY2PXvu3l61KAStUqUqZCSa6cv05I8JdZl2RG4sXzpERHYVi/ERILxbHfsG49UqKjSLx4Xn7cqHkrrP5Zg9moXxTa0cnrhHH7zspjv4Ulpl1l9z/e/+PYn/L6FQnXLqNXtDjG7ToqnGPUrAW6+fITf/KY2rPOffC/SlJENPbt6iqM/Xo2Fti1qk1SRDQf/K/Kjzv2aEzFk3MpOmfIt11YIqHA+G4UmdGP8LO3udPiFxJeq7bqViePj10nLiKGim1rY2z9cZPcxMacci2rExcRw+Nj1+XHq3SvzwD/P2jxt+KGu66BHq3mDqT2kFbc3HGadV2mEx/59S6XOcGdY9eIjYihWts6mKZb85vZmFOlZU1iI2K4c+zjvF+7W0P+5/83Xf8a+E3XvX9GpmBpNrI95naKVvJuzWvgWNSJJ5cfEBvx3wqIvWHrbnw69mbsb38qHK9QpiT5nPJw9NQ5Xrz8OF/HxsWxZZcfuro6NKxbS37cwd4WN9fy3Lh9n6s378iPJycns2Gb7BugcT1P9XbmO0Sajf/7XvjPu84BVK5cmd27d7N8+XJOnTrF6dOnkUgkODs707RpU1q1aqWQGa5JkyYUK1aMf/75h8OHD/Pu3TtMTU0pV64cY8aMoW5dRX/i2NS4JUFBQUyerNqftlatWl9s5ZQ3b162b9/OokWLOHHiBAcPHsTa2poSJUowdepUDFTEUsku2rVrR1xcHOfOnePgwYNYWFhQunRp1qxZQ5UqMtPg3r17Y2xszOnTp9m1axfW1ta4uLjwxx9/ULJkyQzbLlCgAJs3b2bWrFls2bKFuLg4ihcvzqxZs2jSpIna+pQVYiJjWPv7avpNG8Csg3O57H8ZiQTcvKtg7WDD4l8WEhP5ceC3sLYgX7F8fAhRDthnm9eOmj6y7GtFy8viaVWoXgGDVD/403tO8+71xwWjsZkxDTo1BMAxNcVy0fLFaNGnJQBXj10hUIWlTXZibmrC8J4d+G3eStr0G0Ptaq4glXLi4nVCwz4wfnAPBQXRh4hInr98jZ2NlVJb/2zaxf0nAdjZWPH23XvOX71NVEwsvTu0oEurRkr1Jw7tSedhE5m9YhNHz12mVJGCPAt8xaWb9yic34mxA7qps+sAmBsbMrR1HaZuOEy731ZRq3xRpFI4desJoRHRjOtUH/N0yp73UbE8Dw7D1kIxQLlv7YocufaAK49e0nzCP7iXLoiJoQG3n7/mfuBbCjhYM7Ktp8I5/+vcgG4z1jNnx0mOXX9EyfwOPHsTxuWHgRTOY8Po9t5q7bs0OpqopUuxGDEC2+XLiT93DiQSDD080LW1JeLvv5GmS5SgY2mJXoECcveHNCQmJpj36YNpp04kXL9OSnAwOjY2GFSujI6FBVFr136zZZQ6SI6M4dmUdRSf2YfKR/8k7PBVkIBN/coYOlrz6OelJKd79/VtzDEp7kxCyIdvvvbTiaupuGsy5TeP593BSyS+j8LSvTRmZQryducZws/e/eZrZEZMZAyrfl/FwGkDmXtoHpf8LyGRSKjiXQUbBxsW/LJAceyzsSBfsfy8/6T/UqmUJRMW87/l4/l77ywuHDpPfGw8lTwrk6dAHrYu3MLrAEW3o7pt6+LR0IOQVyGYW1lQsWZFrO2t8d9yhBVTV6i97wDRkTEsnfYPI34fyvLDSznvfx4kEjy8q2HraMvfY+YQna7/ljYWFChWQO76lr7/88bPZ8rKySzeO58zh84RHxtHFc8qOBXMy4YFm3j1XFFx9veY2SzYPZe+v/SiZsPqPL7zhALF8uNa3YWARy+YN35BjvwGaSxbuIYWrRszduJwPGpW4enjAIqWKEwdr+o8efSMZQvXKJ2TFjfJ+BO32O3/7qVDl9Z07dGOkqWLcefmPfI656FewzqEvH3Hn9MVMzNePH+VpQtX02dAd46c2YH/wZNIpVJqe1XHzt6GCWOm8/hh1q0rvoa1SzbRuGV9hv1vAFWqV+L50xcULlaQ6p7VeP44gLVLNimdU7i4bHPhUyuofVsP0rqjD+26t6JYqSLcv/2QPE4O1K5fg3chYSyYqRg8+/LZa/jtPEzjlvXZdGgl1y7exMrGEq+GtUmIT+DPiXOyvb/SmGhili/BbMhIrBavIPGCbOw3qOqBjq0tUXP/QhqTbuy3sEQvf0Gkn479xiaY/tgH4/adSLz5cezXd62MjrkFMRvWkPRQ0Roras5fWM1ehGnPfhh41CLp6WN08xfAoKIrSS8CiF749dnbskpyZAwvpq6lyIx+VDgyi/dHLoNEgnU9NwwcrXk6evEnY78FxsXykfj2wzdd17xqaZz6tyQ5OpbYB4E4D/NVWS9ozlaSw9WXECE+Mhb/3zfRdNqP9Dv4Ow/9ryGRSCju7YK5gzX7flmhoDAysTbHrpgTUZ+M/WWbuVO+RXWiQsKJDgmn7qh2qOLw1A1q68uXEhcZy64Z6+kwtTe/HJjJbf+rIJFQzrsSlg7WbBq3jLh0fTezMSdPUWciVcz7VnltqdzMA4ACFWTeASVrlJPHPbyy9xwfUhWJtw5f5urec1Rq5sGEY7O5e+I60e+jcCqZn2JVSxMR8oENo5eoufcyHj8N4NR5mYX19VuytYb/ybM8C5B9b/i2aIxZauD+9+ERPHvxEltbRet6HR0dxg7vz+DRk+jQayheNd0xMjLkzIUrvHz1hp5dfCmQTzGMxs+D+9B9wE/0GTYOr1ruWFlYcPnGLR49eU4j79pUraRs1SnIfXwXiiaAPHnyMG7cuCzXL1GiBDNnzsxS3WrVqskDhH+OkJCQLFshpWV2c3BwYOLEiZ+t27p1a5UBw7/k+O+//87vqa4qIHOT++233z57XVdXV1xdXT9bJ1++fCp/m8KFCzN37ucXEBmdC7J4Ueri0PoDRL6PoHnvltRqURuAgPvPWTZhCef9lN0YMyJPwTx0H/ejwrFqjTyo1kg2ET2++VhB0WRmZa5Uv5xHecp5yNwtIsIi1K5oAmjXrB5Wluas3raf/cfOAlCicAF+GdCd+rVUu3eoQk9Xj+PnZbuAdtZWeFWvTIdm9SlfSrXfdX4nR/6dP5VF67dz6uJ17j56hoOtNd3bNKFv51YKCi514lvbBStTY9YeuYTfJZk7WXFne8Z08KZepYwVqOkx0Ndj6bD2rD96hQOX7nH02iOSpVLy2VnSq7E7PRpWkwceTyO/vTUbf+nGkn1nOX37KXdfBGNvaUa3em70blpdQcGlLmJ37yYlPByTdu0wqlcPgKQnT4icM4f4kyczOVtGclAQkUuXYlilCvrFiqFTtSrShASSHj0iZts24k+r3zrna3m95jCJYZHk6+eDQ2uZkjjqbgBPfllO6L4LmZz99UTdesZ1n/EU+rk91p4u6JoYEhcQzLMp63m5eE/mDWQTB9b5EREWQaverajTog4Az+89Z8n4xZz1O5vldi4fvcz4Tv+j/ZAOeDSqjq6+Li8fv2TB2PkcWK/sBpEQn0iFGhXR19fnw7sP3Llwm0MbD3Ht1DUVrauPPev2Ev4+nHZ92uLdUrah9OTeU+aOn8/J/Vl/bs8fvchPHUfTdUhnajWugZ6+Hi8eB/L36NnsWb9Pqf6rgNf0aTSA7iO6Us2rKiXKF+dd8Ds2L97C2jnrFBRcOUFkZBStmnRj1C+Dqd+wDtVrVeNd6DvWrNjMn9PnExmZdQvt5ORkurbrx7Cf+tGsZUNcKpUn/EMEe3YcYObUebwKUo79M/l/f3Dn5n1+6N2RJj71SEmRcuPabYYN+IWTx7L+HH4tUZHRdG/Rj4E/96FOg5pUrVmZsND3/Lt6OwtmLiMqMusf/cnJyfTvNIK+I3rQsLk35V3LEBEeycFd/syfsYQ3Qcpxv8YNmsTDO49p3q4JbTo3JzYmjnMnLrDwj394cCdz99WvIW6fbOw3btMeQy/ZpkbSs6dELZxNwuksjv2vgohesRT9ylXQK1IMncpVZGP/k8fE7dxGwtlTSuekvH7Fh0G9MOn8A/pV3TEqXoKUd6HEbN1E7Po1CgoudfJ27SGSwiLJ27c5dq1klhcx9wJ4Pm4ZYfvPZ3L21yHRkcWg0jU1Jm/vZhnWC16xX62KJoAr6/2JeR+JR+8mlG8hc1sNvv8Cvwmrue93KUttSFIt8MzsLfHooxxsP43/kqIJ4PT6I0SFReLduxluLWTzftD9ALZMWMH1T9wcP4d9QUdajeuqcKxiw6pUbChbN7+49VSuaAJYOXgO90/fxN3Xk7KerugZ6PPhzTuOrdzPoQU7iQzNmWDwt+895K8FyxWO7dj70fKwgVctuaLpc9SpXpV/Zk9jyeqNHDlxhqSkZAoXzMeEUYPxbdFYqX6ZksVYu+gv5v+zljMXrhAbF0c+p7wM69eD7h1VJ8HK7XxPLm/ZhUSaG0OgfyV169YlKChrvtdZUVwJskbrgs01LYLG2HRigqZF0CjJz65rWgSNEjFpnaZF0CgP7mcUZFb7+cPgv+2yoG6iUuIzr6TFPIrJPFi1NmNjoDkX/P8CRyuqz+L9v87jWxmlYsgdHNLP3dm63krUF7/2e2DW5emaFkFj6NupLyv1fwEjowKZV8oicXEvMq/0H+C7sWj6LzB16lTi4v772QMEAoFAIBAIBAKBQCAQaJ7vKbZSdiEUTV+Ah4eHpkUQCAQCgUAgEAgEAoFAIPjPIhRNAoFAIBAIBAKBQCAQCARqIDdGKxKKJoFAIBAIBAKBQCAQCAQCNZAbFU06mhZAIBAIBAKBQCAQCAQCgUCgHQiLJoFAIBAIBAKBQCAQCAQCNZD77JlAIs2NdlwCgUAgEAgEAoFAIBAIBIJsR7jOCQQCgUAgEAgEAoFAIBAIsgWhaBIIBAKBQCAQCAQCgUAgEGQLQtEkEAgEAoFAIBAIBAKBQCDIFoSiSSAQCAQCgUAgEAgEAoFAkC0IRZNAIBAIBAKBQCAQCAQCgSBbEIomgUAgEAgEAoFAIBAIBAJBtiAUTQKBQCAQCAQCgUAgEAgEgmxBKJoEAoFAIBAIBAKBQCAQCATZglA0CQQCgYAPHz4QHh6uaTEEAoFAIFA7Ys4TCAQC9aKnaQEEgv8a796949atW4SHh+Pu7o6joyPh4eGEhYXh7OyMgYGBpkUUZANXr179qvMqVaqUzZJolqNHjzJ9+nRevnwJQNGiRRk9ejS1atXSsGQCQc5y7tw5rly5QkhICPr6+hQuXBhvb2/y5MmjadEEAkE2IeY8wacEBgZy+fJlhbHfw8MDQ0NDTYsmEHzXSKRSqVTTQggE/wVSUlKYMmUK//77L0lJSUgkEhYvXkydOnUIDAykcePGjB07ls6dO2taVLURFRXFyZMnCQoKIj4+XqlcIpEwcOBADUiW/ZQqVQqJRPLF5927d08N0miGmzdv0rFjRwwMDHB1dcXQ0JArV64QGRnJX3/9RZMmTTQtoiCHeP78OTt27CA0NJSUlBSlcolEwrRp0zQgmfoJDQ1l0KBB3Lhxg0+XRHp6evTt25fBgwdrSDqButm9ezeNGjXKdZtIt27d4s8//+TWrVtIJBLc3Nz46aefKF68uKZFUxtizhOkJyYmhnHjxnHgwAGlsd/S0pLRo0fTunVrDUmXM7x8+ZL9+/fz6tWrDNf92jr3C9SPUDQJBKnMmzePRYsWMXjwYMqVK0fv3r1ZsmQJderUAaBfv37ExMSwZs0aDUuqHq5du0a/fv2IiIhQmnDTkEgkWqNo2bFjh8K//f39uXPnDkOGDFGqe/v2bTZu3Mgvv/xCly5dckpEtTNkyBAuX77Mhg0bKFSoEABhYWF0796dDx8+cPLkya9Sxn2v5CZFa3quXLlC7969iYmJQSKRyP9ApoCXSqXo6elx+/ZtDUuqHoYMGcKRI0cYNGgQPj4+5MmTh4SEBJ4+fcqKFSs4cOAA48ePp1OnTpoWVW1IpVJu3rxJUFAQCQkJKuu0bNkyZ4XKIUqVKoWFhQXNmjWjbdu2lClTRtMiqZ0nT57Qtm1b4uLiKFCgAIaGhjx9+hSAZcuW4eHhoWEJ1YOY85RJTExk2bJl7Nmzh1evXql8/yUSCXfv3tWAdOpl3LhxbNu2jTZt2iiN/atXr+b69evMmjWLRo0aaVpUtXD06FGGDBlCUlISALq6ukp1JBKJ1s79AvUjFE0CQSre3t5UrVqV6dOnExwcTJ06dRQUTcuWLWP16tWcPn1aw5KqB19fX168eMGkSZMoXrw4pqamKhdcjo6OGpBO/fj6+uLm5sbo0aOVylJSUmjVqhU1a9Zk1KhRGpBOPXh4eNCyZUulPh87dowBAwawc+dOSpYsqSHpcpbcpmhNT8+ePXn//j1z5syhfv36zJ07lwYNGgBw5MgRhg0bxvbt2ylRooSGJVUPrq6uNG/enEmTJqks7969O2/evOHgwYM5LFnO8PTpUwYMGEBAQECue/YBzpw5w/bt2zly5AgJCQmULFkSX19ffHx8sLCw0LR4amHMmDEcOnSIZcuWUblyZUCmfOrduzf6+vpa+6yLOU+ZadOmsWbNGooXL06xYsUwMTFRufabMmWKBqRTL25ubtSpU4e//vpLqSwpKYn27duTlJTErl27NCCd+vHx8SE6Opo5c+ZQokQJ4SooyHZEjCaBIJXg4OBMFxgRERE5JE3O8+jRI3r27Km1OzeZ8fjxY3x8fFSW6ejo0KRJEzZs2KBViqbw8HDy58+vdLxYsWJIpVJCQ0NzzaI7zTR81qxZn1W0aiP379+ne/fuODk5ARAZGSkvq1evHp6enixcuJDZs2drSEL1YmBgQOHChTMsr127NnPnzs1BiXKWX3/9ldevX8vdpjL60NRWatSoQY0aNYiKimLPnj3s2LGD3377jZkzZ1KvXj3atm2rdRY+p0+fpkWLFnIlE8hiFY0cOZKffvqJp0+fUqRIEQ1KqB7EnKeMn58fnp6eLF68WNOi5DhSqZTy5curLNPT06Nhw4YsWLAgh6XKOV68eEH//v0z/A0Egm9FKJoEglQcHBzkwSFVcfXqVfmHmDZib2+f62JUpMfIyIgnT55kWJ6QkMD79+9zUCL1k5KSotJUOu05SDOnzg3kZkVrREQEpqam6OrqYm5uzosXLxTK3dzctPojpHbt2ly4cIEffvhBZXlcXJxWBwS/ffs2Xbt2pWfPnpoWRaOYmZnRsWNHOnbsyJMnT9i2bRu7du1i//79ODs706ZNG1q1aqUVz8L79+8pVqyY0vHy5csjlUoJDg7WSkWTmPOUiYqKwt3dXdNiaISqVaty586dz9axtbXNIWlynvz582foKi0QZAdC0SQQpNKwYUM2bdpEy5Ytsbe3Vyjbvn07x48fp3fv3hqSTv20adOGXbt20bNnT/T0ct/Q0KBBA7Zt20atWrWoV6+eQllgYCBbt27VyiCpu3fvVvK/j42NRSKRsHbtWo4cOSI/LpFImDx5ck6LmCPkZkWrtbW1XIlaunRpDh8+zJAhQ+QfZMHBwSQnJ2tSRLXSvn17unfvzpEjR1Tu7Pr7+1OjRg2Cg4MVjmuLG7GlpSXW1taaFuM/xdu3bwkNDSUmJgapVEpcXBzz5s1j/vz51KhRg7Zt28rdS79HkpOTVc7zaa4z2vzxKeY8RapUqcKDBw80LYZGGDp0KL6+vvTo0UNlbLZTp05Rv359DUiWM3Tp0oUlS5bQq1cvTExMNC2OQAsRMZoEglSio6Pp2rUrjx49wsXFhcuXL1OpUiUiIyN5+PAhxYsXZ9OmTZiammpaVLWwZcsWfvvtN1q0aEHVqlUzrJeRe9n3TkREBF27duXhw4cUKVKEYsWKoa+vz5s3b7h+/Tq6urr8888/VKlSRdOiZhulSpX6ovraHKdl8eLF7N69m927d+c6RWvnzp2xtbVl7ty57Nq1i9GjR1OjRg0aNWpEUFAQq1atwtPTU2td59Leg4zcxaRSqcoybXkXZsyYweXLl9myZYumRdEogYGBbN++nV27dvH69WsMDAzkrnPu7u68efOGTZs2sX37dkJDQ7/r+1+qVCm8vb2VFKtRUVEsX76c5s2bK7iTSiQS+vbtm9NiZjtizlPmzp07dOjQgX///ZfSpUtrWpwcpWzZsiQnJ6Ojo4OOjo5SeVJSErq6ukrjv7YEx54/fz5Lly6levXquLi4qKyjLe++QDMIRZNAkI6EhARWrlyJn58fz58/JyUlBWdnZxo0aEDv3r0xMzPTtIhqIysLMG1fdMXHx7N69Wr8/Px49uwZSUlJODg4UK1aNXr27KnS1UCgHeRmRevly5cJCwuTW2hMmTKFjRs3yq2Y3N3d+fvvv7GxsdGkmGpj3rx5XxWTaNCgQWqQRv1cvXpV4d/h4eEMGzaM3r17U7169QzPq1SpkrpF0wjbtm1j+/btXL16VR6zpXXr1jRr1gxzc3Ol+snJyRw5coSGDRtqQNrsQShcBGk0aNCAV69eYWJi8lnLRm0MED9mzJivGvunT5+uBmlyHrHuF6gboWgSCAQAXLx4MUv1PvcRLhB8r4gFlyJhYWEEBgZib2+v1bHpciOlSpVS+rhKWwqq+uhKs+jS1me/VKlS2Nra0rx5c9q0aZMrNhSCgoK++BxnZ2c1SCLQNF27ds1SvbVr16pZEkFOk9VxQLz7gq9FKJoEAhUEBQURGhqKnp4eBQsW1GpLJoEyERERvHz5EolEgpOTE5aWlpoWKUcICQnh8ePHvH//HhsbG0qUKKG1ViyfkpsVrfPnz8fLy4uyZcuqLD927BixsbE0adIkhyUTqIMdO3Z81XmtWrXKZkn+Gxw5cgQvLy+VQaIF2k1unvMEAoFA3eSuQBQCQSZs3LiRpUuX8ubNG/kxHR0dPDw8GD16tFYGg1bF/fv3CQwMRCKRkC9fvi82s/9euX//PlOnTuXKlSuk18G7ubnxyy+/aG38gsePHzNt2jQuXLhASkqK/Liuri61a9dm9OjRFCxYUIMSqh9tVCBllfnz52Nvb5+hounOnTts3rxZaxRNX5NBT5viVGirwuhrWbNmDbq6unh5eaksX7VqFcHBwYwePTqHJcs5kpKSePXqlVzh4uTkpNWKNzHnCdJITEzk0qVLhISEkJHtRcuWLXNWqBwmOjqac+fOyTNv58uXD3d3d7HJLvhmhKJJIEhl2bJl/PXXXxQpUoT+/fuTJ08eEhISePr0KXv27KFdu3Zs3LhRq5UuJ0+e5LfffpNPNmkuE87OzowfP546depoWEL1cf/+fTp27Iienh4dO3aULzKfPXvGnj176NSpk1be/1OnTjFw4ECkUimenp64uLhgZWVFREQE169f58SJE5w7d45FixblmhTIuVXRmhESiYTIyEhNi5FtqApqLpFIMvzISHMn0xZF06d069aNHj165FpFy8WLF2natGmG5QkJCWzbtk0r+//u3Ttmz57NgQMHiIqKkh+3tLTEx8eHQYMGaZ1Fr5jzlJFKpezcuZMjR44ozH316tWjRYsWKgNlawOvXr2ib9++PH78WH5MlRuxNiuatmzZwowZM4iOjlaYA01NTfn5559p3769BqUTfO8IRZNAkMq6detwdXVlzZo16OvrK5T169ePtm3b8scff7B8+XINSaheLl68yIABA3BycmLUqFEKipZNmzYxcOBAVqxYobWWH7NmzcLKyoqtW7dia2urUNa/f3/atm3LrFmzWLJkiYYkzH7evn3LsGHDcHR0ZPHixRQtWlSpzvPnz+nTpw9DhgzBz89P6bfRJnKTovXVq1cK8RmeP3/OpUuXFOqkpKTw/Plz1q5dS5EiRXJaRLXh7++v8O8lS5Zw9+5d5syZo1T3xo0b/PTTT6xYsSKnxMtxcrOiJSuEhIQoWL1oC3fu3KFnz558+PCBUqVK4eLigqWlJZGRkVy/fp21a9fi5+fH8uXLKVmypKbFzRbEnKdMbGwsffr04dKlS1hYWMjj8Vy8eJGjR4+ybds2li1bhrGxsYYlzX7mzZvH+/fvmT59OmPGjGHEiBFUrlwZkLnUrl27VmuzrQIcOnSI8ePHU7lyZbp166aw7l+9ejW//vorVlZW33XiA4FmEYomgSCV9+/f061bNyUlE4CDgwOtWrVi9erVGpAsZ5g3bx4FCxZk69atSguKDh064Ovry7x587Q2IOSVK1fo0qWLykVl2v1fv369BiRTHxs3biQuLo4FCxaoXHADFCpUiEWLFtGiRQvWrVvH0KFDc1jKnCG3KVq3b9/O/PnzkUgkSCQSVq1axapVq5TqSaVSLC0t+fnnn3NeSDXxaWDTCxcu4OPjozLgqbOzM7t37+bff//NNdYNn6KNipZLly5x4cIF+b+PHTtGSEiIQh2pVMrz5885cODAZ7PxfY9ERkbSt29fJBIJK1euxMPDQ6nOpUuXGDp0KH379mXv3r1a4UYj5jxl5s2bx5UrV/j111/x9fWVu0wmJSWxefNmpkyZwrx587RqDkjj/PnztGnThiZNmjBmzBgcHR3liiZXV1cuXLjApUuXqFevnoYlVQ9Lly6lYsWKcvfhNEqVKkX9+vVp3749y5YtE4omwVcjFE0CQSqlSpVSWmimx8rKClNT0xyUKGe5ffs2vXv3VrlrZWZmRrNmzfjnn380IFnOkJycjIGBQYblBgYG8nTv2sK5c+eoXr06JUqU+Gy9okWLUqtWLU6dOqW1i+7cpmitX78+BQoUQCqVMnr0aFq3bq2kSNHV1cXOzo6yZctqxUdmRrx+/fqzY7u7uzsLFy7MQYnUT25XtFy4cIH58+cDMheZ48ePc/z4caV6urq6VKlShYkTJ+awhOpl48aNvHv3jjVr1lClShWVdapUqcK8efPo0qULGzdupHfv3jksZfYj5jxl/Pz8aNmyJR06dFA4rqenR+fOnbl16xZ+fn5aqWh69+4dDg4OGBgYYGhoqBSftXHjxmzYsIGxY8dqUEr18ejRIwYOHKgyHpuenh4NGzZkwYIFGpBMoC0IRZNAkErv3r0ZN24cvXv3VmnVcuvWrQwXZNqAjo4OCQkJGZYnJiZqrZ8+QOnSpfHz86NXr15KCqfY2Fj8/PwoU6aMhqRTD8+fP6dLly5ZqluuXDnWrFmjZok0R25TtJYsWVLuDpOSkoKLiwuFCxfWsFSawdHRkYsXL9KjRw+V5UFBQSQmJuawVOoltytafvjhB3x9feVxekaOHEnz5s0V6ujo6GBjY6OVQbFPnTpF5cqVM13TVK5cGXd3d44ePaoViiYx5ykTGhpKsWLFMiwvUaIE+/bty0GJcg5TU1N5bLKiRYty5swZhVh8SUlJvH//XlPiqR0jI6PPxl8MDw/HyMgoByUSaBtC0SQQpLJhwwaio6Pp0qULefPmVSq/fPky+fPn58cff5Qfk0gkWhOzydXVld27d9OjRw+l4J/v379n165duLq6akg69TNw4EB69+5NmzZt6NChA/nz50cikchdpwICAli6dKmmxcxWoqOjsba2zlJdKysroqOj1SyR5sjNitbcnoWsXbt2/PXXX0ydOpX+/fvL05snJiayb98+Nm/eTM2aNTUsZfbyqaJlxIgRtGjRQqGONitazMzM5FZ6/v7+Wm+x/ClPnz7F19c3S3VdXV3ZuHGjmiXKGcScp0zevHm5fft2huU3btwgT548OShRzpE3b14CAgIAmZXv3LlzWbBgAT4+PgQFBbFp0yatTgZSrVo1tmzZgq+vLwUKFFAoe/bsGVu3bs21LuOC7EEomgSCVAICAnB0dCQ+Pp7nz58rldvZ2REbG6uyTBsYNmwYXbp0oVGjRrRs2ZICBQrIFS27du0iLi6OYcOGaVpMtVGjRg3mzp3Lb7/9xm+//SbPOCKVSnF0dGTWrFnUqFFDw1JmL4mJiejpZW0a0NXV1TrXwfTkNkXr2LFjadWqFVWrVmX8+PGZ1pdIJEyePDkHJMt5evXqxYsXL1i7di3r1q3DysoKfX19wsLCSEpKomDBgln6jb4nPlW0WFtbY2JiomGpNIOq2FzaTmRkJHZ2dlmqa2Njo5CR7ntGzHnKNG/eXB6zqnv37vJxITIykpUrV3Lo0CEGDhyoYSnVg6+vL2/fvgWgR48eHDlyhHnz5smtPa2srJgwYYImRVQrP/30E76+vjRt2hQvLy+Fdf/x48cxNTVlxIgRmhZT8B0jkWaUz1cgEOQ6bty4wbRp07hx44bC8YoVKzJ27FhcXFw0I1gOkpKSwu3bt+WZx/Lly0fZsmW1cle/VKlSeHt7U758+Uzr3rx5k2PHjnHv3r0ckCznuX37Nl26dMHY2DhDReu6desoV66cpkXNFkqVKsWkSZNo3759lnZsJRKJ1t77NK5fv87+/ft5/vw5ycnJODg4ULVqVZo2bfrZ+G3fO1OmTKFKlSq4ublpfYatNLy9vRkxYgRNmzbNcqDbgwcPqlmqnCP9+58ZmzZtYtKkSVrx/os5T5mkpCSGDx/O4cOH0dHRwdraGolEwrt375BKpXh7ezNnzpwsK+i+ZxISEjh+/DjPnz/HwcEBLy8vpY0nbePly5f8/fffHD9+nJiYGACMjY3x8vJi+PDh5M+fX8MSCr5nhKJJIEglLi5O+CKnEhYWRmBgICBTtOSGj49OnTrRrFkzOnXqpGlRcowvNQnXdmVDblK0BgUF5Tp3IYFqKlasSHx8PBKJhIIFC8qVTlWqVMHJyUnT4qmFunXrMmLECJo1a0bXrl2zdI62JAIA2djfpk2bLLnFnDt3jh07dmjF2C/mvIw5deoU/v7+Cpts3t7e1KpVS8OSqY/ExERCQkIwMzPDwsJCoSwiIoKoqCgcHBxyhZItJSWFsLAwQGbFqK2hAgQ5i1A0CQSpuLm50bRpU9q0aUOFChU0LU6OExISwpkzZyhVqpTSYuzRo0fcuXOHmjVrZtnc/nujfPnyjBkzhs6dO2talBwjKCjoi8/JDW4muVHRKsi9JCcn8+jRI27duiX/e/ToEcnJyeTNm1eudMpqTB/Bf5/cqnARc54gPStXruSPP/5gw4YNShtJ9+/fp23btowaNYru3btrRkCB4DtHKJoEglRGjhyJv78/8fHxFCtWDF9fX5o3b46VlZWmRcsRZsyYwaZNmzhw4ACOjo4KZWFhYTRo0ID27dszatQoDUmoXjp06EClSpW0MoWvQJAVAgMDuXz5MiEhIejr61O4cGE8PDwwNDTUtGhqJSuuUwYGBjg4OFCtWjXat2+v9e4U8fHxHDp0iPnz5xMQEKA1igaBjIsXL37xOVWrVlWDJAKB5mjXrh1WVlYZJnoZNGgQb968YevWrTksmfqYP38+Xl5elC1blsWLF2daXyKRKGTiEwi+BKFoEgjSERUVxd69e9mxYwc3btzAwMAAb29vfH19qV69uqbFUyvNmjWjQoUKTJs2TWX5+PHjuXz5Mn5+fjksWc5w5MgRxo0bx+7du5UUbQLtZOfOnbi4uFCoUCH27NmTpXN8fHzULFXOExMTw7hx4zhw4ACfLgksLS0ZPXo0rVu31pB06qdBgwYEBQVRqVIlpbKQkBBevHhB5cqV+fDhA0+ePMHBwYGNGzeqzE76vXPr1i2OHj2Kv78/jx49wsrKCk9PT7y9valXr56mxVMLly9fZtu2bXTp0oWyZcsCsHHjRpYsWUJCQgIdOnRgyJAhGpZSIMg+cnuMsjTc3NwYOHAgPXr0UFm+YsUKFixYwJUrV3JYMvUh4jMKchLtdzoVCL4AMzMzOnToQIcOHXjy5Anbtm1j9+7dHDhwgLx589K6dWtat26tlXErAgMDP+saUbRoUXbv3p2DEuUsJ06cIDExkT59+mToOqltmbfevHlDvXr1qFu3LnPnzgUgODgYT09PpboGBgacOXNGnpFGGxgzZgyTJk2iUKFCjBo1ColEoqRoSY9EItFKRdPUqVPx8/OjTZs2+Pj4kCdPHhISEnj69CmrV69m3LhxmJiY0KhRI02Lqhby5MlDkSJFVO7uhoWF0bhxY5o3b46vry8PHjyga9euzJ07l+nTp2tA2uzn5MmT+Pv7c+zYMd6+fUv+/Pnx9vZmwoQJVKpUSetjdaxdu5Zbt24xdepUAO7cucPkyZMpUqQIxYsXZ9GiReTPn59WrVppWFLBt5Lb57w0pFKpfK5zcHDQsDSaQyKR8OHDhwzLw8PD5RmItYU1a9ZQqFAhQJZxVCBQJ0LRJBBkQNGiRfn555+pXr06EydOJCgoiPnz57Nw4UI8PDxo27Yt9erVQ19fX9OiZgsWFhbyuDSqePnyJebm5jkoUc6yZcsWAB48eMCDBw9U1tE2RdOOHTsAlNwhpVIpNWrUkFtsJCcns3PnTvz8/LQqTsv06dNxdXUFZIuv3MrBgwdp2rSp/EM7jRIlSlCvXj3at2/PokWLtFbR9ODBA3r16qWyzMbGhlatWrF69Wp8fX0pWbIkHTt2ZPv27Tkspfro06cPEomEwoULM2PGDDw8PDQtUo5y79496tevL1eo+fn5oaenx7p167C2tmbkyJGsX79eqxRN79+/l7uLpylMQ0NDVWahMzIyYvv27VrhQpvb57w0jh49Kv9vbQpy/6VUrlyZvXv30qtXL6X1bWRkJHv27MlShsLvifQusCL+mEDdCEWTQKCCwMBAtm/fzq5du3j9+jWGhob4+PjQrFkz7ty5w9atWxk+fDjW1tacO3dO0+JmC15eXmzbto2WLVsqpXC/e/cu27Zt01rXCZAFfsxtnD17lkqVKqlMX9utWzfq1Kkj/3dAQACHDx/WqkV3+g/H3Bx/RCqVZriY1tPTo2HDhixYsCCHpco54uPjiY2NzbDc0dGRgIAA+b9tbW15//59ToiWIyxevJjjx49z4sQJevXqRfny5fH29qZu3boULVpU0+KpnTQrrjRu3LhB2bJlsba2BmRZ+U6ePKkp8dTCrl27CAwMZM6cOfJjycnJBAUFUapUKXnfU1JSuHjxIkeOHKFp06aaEjfbyO1zniouXbpEoUKFsLe3V1n+4sULpFIpBQsWzGHJ1M+gQYPo3LkzLVq0oEuXLvLx7unTp6xbt463b9/y+++/a1hK9REeHs7Dhw8pUKCAPGTEq1ev2LJlCwkJCbRs2ZLixYtrWErB94xQNAkEqURHR+Pn58eOHTu4evUqUqmUChUq0LdvX5o2bSo3n65Tpw79+/fn+PHjbN68WcNSZx9Dhgzh1KlTtG/fnpo1a1K0aFEkEglPnjzh1KlTWFhYMHToUE2LKchGgoKCaNasWZbqVq5cWb4brI1069aNHj164OXlpbJ81apVBAcHM3r06ByWTP1UrVqVO3fufLaONmfeq1ixInv27OHHH39U6SZz5swZ+Yc3yKw7jY2Nc1JEteLp6Sl3Hbp37x7Hjh3jyJEj/P333xQoUIC6devi7e2Nm5ubZgVVE46OjvKU7jExMdy6dUvBsic2NpbExERNiacWTp06Rfny5VXGaBk+fLiCwqVVq1Zyq8fvHTHnKdOtWzd+/fVXldZsIItX5u/vz6FDh3JYMvVTrlw5li5dyvjx45k5c6bcTU4qleLo6Mjs2bO1ehNq8eLFrF+/nsOHDwPw4cMH2rVrR2hoKAAbNmxg06ZNlCxZUpNiCr5jhKJJIEilZs2axMXFYWtrS48ePWjTpk2Gu7kSiQQvL68MP0q/R+zs7Ni2bRt//vknhw8f5sSJEwAYGxvToEEDRowYQb58+TQspfo5d+4cV65cUci85e3tTZ48eTQtWrYTEhKCnZ2dwjEdHR3s7OwwMDBQOO7g4PDZWAbfOxcvXvzsh1RCQgLbtm3TSkXT0KFD8fX1pUePHpQpU0ap/NSpU9SvX18DkuUMw4cPp2vXrjRv3pzOnTtTtGhRDA0NefPmDXv37uXs2bMMHDhQXv/GjRtaubsPULp0aUqXLk23bt04duwY8+fPZ+XKlaxatUprA8J6eXnx77//4uTkxOXLl4mPj1eY28+fP0/hwoU1KGH28+LFiyy/0+7u7lqTBETMecpklhPKxsaGN2/e5JA0OU+1atU4ePAgd+/elVuu5suXj7Jly6Krq6th6dTLhQsXqFu3rtyaac+ePYSGhrJkyRLKli1Ljx49WLhwoYLlo0DwJQhFk0CQSvXq1WnTpg116tTR+sklI2xsbJg2bRpTp04lLCwMAGtra60PBguy+BSDBg3ixo0bSguv6dOn07dvXwYPHqwh6dSDqakpcXFxCsfs7e05ffq0Ut2IiAhMTU1zSrT/HCEhIaSkpGhaDLXQpk0bkpOTadu2rcp3PSkpiatXr7J+/XqF47dv384pEdWKi4sL69evZ/Lkyfzxxx8Ku9pGRkb06dNHrmhKSUmhdevWWqdoevz4MdevX+fGjRtcv36dJ0+eIJVKMTU1pXbt2lSpUkXTIqqNAQMGcPPmTXnG1ZYtW+Lu7g7IMtKdO3eOAQMGaFLEbCc4ODjLQaDz5Mkjt3D43hFznmoyCnj97Nkz9uzZo/UBwyUSCWXLlpVnnfyUsLAwhg0bxsiRI6lYsWIOS6c+AgICaN68ufzfly5dokCBAnKLxmbNmrFhwwZNiSfQAoSiSSBIpX79+hQpUiRDJdP169dJSkrSWveB9EgkkgxdZdIytCxevFjBvP57Z/Lkydy8eZPBgwcrZd5asWIFCxcuxNbWlk6dOmla1GyjRIkSXLhwgT59+mRa9/Tp0xQrViwHpMo5Ll26xIULF+T/PnbsGCEhIQp1pFIpz58/58CBA1SvXj2nRcwRfHx8tC6zzpdSoUIFtm7dyv3793n+/DmJiYnY29tTvnx5hY9NHR2dDF1Mvlfc3NyIjo5GKpViZWVF5cqVadOmDVWqVKF06dJav9FgYWHB+vXrefr0Kbq6uvKMTCDLRDt//nytm/eNjY1JTk5WOObo6MjNmzeVEpzExcVpjatobp/z0pg/f7487p5EImHixIlMnDhRZV2pVMovv/ySk+L950hMTOTixYtaZ+FmbGys4BZ8/fp1BVdBY2Nj+aazQPA1CEWTQJDK2LFj+fXXXxUWmek5duwYe/bsUcjWkVvJzNT6e+TUqVP4+voq7Fzr6+tTvnx5Zs2aRVhYGKtXr9YqRVODBg2YOnUqJ06c+KzScP/+/Vy/fl0pU8/3zoULF5g/fz4gW2wfP36c48ePK9XT1dWlSpUqGS7Ev3e0Odjpl1KqVCmVcWtAe3e1a9asSZUqVahatWquDfwqkUhUusp/7nn4nilcuDA3btxQOv6p+xh8DBatDeT2OS+NMmXK0KZNG6RSKdu2baNSpUoUKVJEoY6Ojg729vZ4eHhonaJVIKNMmTLs2bOHDh06cPLkSUJCQuTWnAAPHz5UcjUVCL4EoWgSCFLJTHliamrKu3fvckgaQU5jYGDw2TgctWvXZu7cuTkokfpp164dGzZsYOjQoQwZMoQOHTpgYmIiL4+MjGTt2rUsWrQIZ2dnrbPk+OGHH/D19UUqleLp6cnIkSMVzMhBtti2sbHJte60go9o66727NmzNS3Cf4LQ0FBevXpFfHy8ynJtch/09PRk/vz53L59WynLbHrOnz/PmTNnFGKUfc/k9jkvjbp161K3bl1A5g7cqlUrrQ56LVDNoEGD6Nq1q/ze58mTh8aNGwOyjRU/Pz/5cyIQfA1C0STI1URFRRERESH/d3h4OK9evVKok5KSwvPnz9m0aRPOzs45LaIgh6hduzYXLlzghx9+UFkeFxendQHBDQwMWLJkCX379mXmzJnMmjWLIkWKYGZmRkREBM+ePSMpKQlnZ2eWLFmidfEqzMzM5FnG/P39sbKy0ro+ZpXExEQuXbpESEhIhkr3li1b5qxQghwlMDCQo0ePEhgYiEQiIV++fNStW1dlKnht4u3bt/z8888KbrTpkUqlSCQSrQqG3qVLF9avX0+vXr2YNGkSDRs2VCiXSqXs3r2bKVOmYGVlpTWWvLl9zlPF9OnTNS2CQENUqFCBzZs3s3v3bvT19Wnfvr38mb9w4QLu7u506dJFw1IKvmeEokmQq1m1apWCn/qsWbOYNWuWUj2pVIqenh4zZ87MaREFOUT79u3p3r07R44coXz58krl/v7+1KhRg+DgYIXjadk6vlfy58/Pjh07+Pfffzl48CCPHj0iOjoaU1NTKlasiLe3t9KurzaSm5XIr169om/fvjx+/Fh+LE3ZlD52k1A0aS+zZ89m2bJlSnF7ZsyYQa9evRgxYoSGJFM/v/76KxcvXqRjx44UL14cExMTrY9ZZmZmxqJFi+jbty/Dhg3D3t6ecuXKyRUut27dIiwsDAsLC+bNm4eNjY2mRc42xJynjNhoyL1k5B7cuHFjuXWTQPC1CEWTIFfj7u6Orq4uUqmUuXPnUrduXSUlg66uLnZ2dlSpUkXrd3ZzM2m7NhlllpNKpdy7d4+NGzcqHNeGXW5DQ0O6du1K165dNS2KRtmzZw8bNmwgNDRUZYY5iUTCkSNHNCCZepk3bx7v379n+vTpjBkzhhEjRlC5cmUAjhw5wtq1a4V7lRazadMmFi9eTNOmTenRo4c8Hk9aIoRly5bh5OREhw4dNCuomrh06RIdOnRgwoQJmhYlRylXrhy7d+9m2bJlHDp0SCH+ZJ48eejUqRN9+vT57jdTVCHmvI+IjYbcy+vXr7lw4QKurq7yTKq3bt1i7dq1JCYm0q5dOzw8PDQspeB7RiiaBLkaNzc3eZDDlJQUvLy8MkxvKtBuBg4cqPW72IKM2bFjB2PHjqVYsWIEBgZSqlQprK2tAdkH97t377Q2hsX58+dp06YNTZo0YcyYMTg6OsoVTa6urly4cIFLly5Rr149DUsqUAfr16+nRo0a/PXXXwrHK1SowOzZs+nevTvr16/XWkWTvr4+BQoU0LQYGsHW1pYxY8YwZswYoqOjiYqKwszMLFe4jGUVbc20m4bYaMi9LFmyhD179nDs2DFA9qx3796dhIQEDA0NOXToEGvWrJE/DwLBlyIUTQJBKoMGDcpSPW1fdORWMrJkEuQO1q1bR926dZk5cyZubm707dtXbjb+6NEjfH196dy5s4alVA/v3r3DwcEBAwMDDA0NefPmjbxMR0eHxo0bs2HDBsaOHatBKQXqIiAg4LPWCrVq1dK6RAjp8fb25uTJkxnG58stmJqaflbBFBoaSvv27Zk2bRrVqlXLQck0jzZm2k1DbDTkXq5cuUKDBg2wsLAAYNeuXcTGxrJjxw6KFi1K165dWbRoEf/884+GJRV8r+hoWgCB4HtEmxcdgs8THBxM6dKlOXHihKZFEWQjgYGBVK1aFTMzMyQSiUJmseLFi9OqVStWrlypOQHViKmpKVFRUQAULVqUM2fOKJQnJSXx/v17TYgmyAHMzc0VlIuf8ubNG8zNzXNQopylXbt2XL58me3btxMcHJzhX24nOTmZoKAg4uLiNC2KIBvJykbDoUOHNCihQF28fPlSIT7T1atXKVasGKVKlUJfX5/69etz//59DUoo+N4RFk0CgUDwhQhFo/aRkJCArq4uAHZ2dgrxKgAKFSrErl27NCGa2smbNy8BAQEA1K9fn7lz57JgwQJ8fHwICgpi06ZNKoOFCrSDOnXqsHXrVho2bCh3JU/j/PnzbNmyhaZNm2pIOvXj6+sLwLhx4z5bTxvi8QkEn6Jqo6Fv377ycrHRoL1YWlrK771UKuXGjRt4eXnJy3V1dQkPD9eUeAItQCiaBAKBAsnJyTx9+pTw8HCKFy+OpaUlKSkpJCUlYWBggK6uLk5OThgZGWlaVIEg27C1tSUkJASQuQvs37+fgQMHyrMt3bx5U2uzEPn6+vL27VsAevTowZEjR5g3bx7z588HwMrKKtcFSs5NjBgxgosXL9K1a1dKly5NwYIFkUgkPHv2jPv37+Pk5KTVWedEfD5BbiY3bzTUqVOHzp0706dPn8/Ws7e3x9/fHzs7uxySLGdwcXFhx44deHt7c+rUKT58+ECNGjXk5bdv3yZv3rwalFDwvSMUTQKBQM7y5ctZunQpERERAPI4VA8fPqR169ZMmzaNli1bKmSnEQi0gSJFinD79m0AunfvzuHDh2nevDkeHh4EBQVx7dq1TBej3ysdO3aU/7eRkREbN27k+PHjPH/+HAcHB7y8vLC0tNSghAJ1Ymdnx44dO1i6dClHjx7F398fgHz58tGrVy969+4tj+GhjYj4fILcTG7eaAgPD89S4HsdHR2cnZ1zQKKcZejQoXTs2JFWrVohlUopXrw49evXByAoKIiDBw/SqlUrDUsp+J4RiiaBQADIgiH/8ccftG3blooVKzJ+/Hh5WalSpahSpQr79u0TKW4FWsnMmTOJjY0FoHLlysyaNYsFCxZw8OBB7O3tGTx4sNYqmhITEwkJCcHMzAwLCwsMDAxo0KABABEREURFRWFqaoqeXu5eMmjrrvaTJ08wNzdn5MiRjBw5UtPiaJSYmBgiIiKwsbHBwMBA0+IIBGonN280VKpUiSdPnmhaDI1RuHBhdu/ezZEjR9DT06NJkybyce/x48d07NiR9u3ba1hKwfdM7l41CgQCOevWraNBgwZMmTJFZeBTd3d3Nm3apAHJBAL1Y21tjbW1tfzfjRo1olGjRhqUKOdIUzJv2LABFxcXhbJXr17Rtm1bRo0aRffu3TUjoBrYuXMnLi4uFCpUiD179mTpHB8fH63c1W7dujUDBw7UWkVqVvDz82PhwoXy2Gxp1ry3b9+mf//+TJw4UWTdEmglly5dolChQtjb2wMobDQAvHjxgg8fPlCwYEFNiag2+vfvT58+fejcuTNFixbVtDgawcHBgU6dOikdr1OnjsisLfhmhKJJIBAAMjPZDh06ZFhuaGhIWFhYDkokEAhyAj8/P2rWrKmkZAKZNaOnpyd79uzRKkXTmDFjmDRpEoUKFWLUqFFIJJLPBvmXSCT4+PjkoIQ5h5GRUa6Oubd//35GjBhB9erVadCgAQsWLJCXlStXDicnJ3bu3CkUTQKtpFu3bvz6668ZWq5s3LgRf39/rcw8t3DhQgB69uxJkSJFVNaRSCQsX748J8USCLQGoWgSCASALPtEaGhohuV37tzBwcEhByUSCNRHetfQrCKRSJg8ebIapNEsT58+ZeDAgRmWV6pUSeHjWxuYPn06rq6uAKxZs0bD0mgWT09PLl26RLdu3TQtikZYunQpHh4erFixguDgYKVnvWbNmuzcuVMzwgkEaiazLLo2Nja8efMmh6TJWQICAuSWzM+fP9esMDlE6dKlmTRpEu3ataNs2bJZSoSQFr9SIPhShKJJIBAAso+NLVu20LlzZ3R0dBTKzp07x4EDBz5r8SQQfE9s2bLli8/RVkWTRCLhw4cPGZaHh4drXVau9AFOq1atCmSecVNbGTRoEC1atMDf3x9vb29Ni5PjPH36lGHDhmVYbm5uLs9IKch95IZMuxmN78+ePWPPnj1au8mYGxPbuLm5yd0kfXx8tG5uF/y3EIomgeATMvvY0NZFx7Bhwzh79iwtWrSgdu3aSCQStm3bxqZNmzh58iS2trb0799f02IKBNnC/fv3NS3Cf4bKlSuzd+9eevXqhbm5uUJZZGQke/bsoXz58hqSLmfIasZNbaRRo0YkJyczePBgpU2G9GjrrraJiQmRkZEZlj958kQhftv3zuLFiylYsCCNGzfWtCga5fbt26xfv16eXTQ9V69eZcuWLXTr1o3SpUtrnUJi/vz5css9iUTCxIkTmThxosq6UqmUX375JSfFE6iRtWvXyv/7999/16AkgtyAUDQJBOnI6seGti06QJbietu2bcyaNYuDBw8ilUo5dOgQxsbGNGrUiFGjRmldtiVV5FZFoyD3MmjQIDp37kyLFi3o0qWLPCjq06dPWbduHW/fvtXqBWluz7iZ23e1PTw82LlzJz179lQqe/z4Mbt379YqpcySJUsUXGVLly792Rg9aTg6OmqVgn7VqlVcvHiRSZMmKZWVL1+en376ieTkZGbOnKkB6dRLmTJlaNOmDVKplG3btlGpUiWlGEU6OjrY29vj4eGBm5ubhiRVP5GRkWzdupVr164RERHB8OHDqVixIg8fPmTv3r20adNGKwOhCwQ5gVA0CQSp5PaPDZBl3po8eTKTJ08mLCyMlJQUbGxsPrvLrU3kZkWjIPdSrlw5li5dyvjx45k5c6Zc6SCVSnF0dGT27Nly9zJtJLdn3NRmJWJWGD58OL6+vrRs2ZLGjRsjkUg4fvw4p06dYtu2bejr6zNgwABNi5lt6Ovrk5CQIP93ZjF6tJVr167RtGlTlW6x+vr6NG7cGD8/Pw1Ipn7q1q1L3bp1AUhJSaFly5ZUq1ZNw1LlPIGBgXTt2pV3795RoEABnj59KncjL1SoENu3bychIYExY8ZoVlA1ExYWxuvXr4mPj1dZXqlSpRyWSKAtCEWTQJBKbv/Y+BQbGxtNi5CjCEVj7qZUqVKZWnVIJBLu3r2bQxLlLNWqVePgwYPcvXuXgIAAAPLly0fZsmXR1dXVsHTqRWTczN0UKFCAzZs389tvv/HPP/8glUrZuHEjAC4uLkycOJECBQpoWMrsw8XFhc2bN1O6dGm59WJgYCBXr1797Hna9rEZEhKCo6NjhuV2dna5IjbX9OnTVR4PDAwkISFB/oxoIzNnziQ5OZn9+/ejr6+Pp6envMzAwIB69epx9uxZzQmoZt68ecPo0aO5ePGiynKpVIpEIuHevXs5LJlAWxCKJoEgFfGxkbsRisbcTZs2bTJUNN27d48HDx5ovZJRIpFQtmxZypYtq7I8LCyMYcOGMXLkSCpWrJjD0qmP3J5xc8+ePZnWMTQ0xMHBgTJlymhlYPRChQqxfPlyIiIieP78OVKpFGdnZ610F58wYQL9+vWjf//+SCQSefr2jFK4a+vHppOTEzdv3syw/MaNG+TJkycHJdIM27dvZ8GCBfz999/ycX3EiBFyay43NzeWLFmCiYmJJsVUC+fPn6dLly7kz59f5bqvSJEi7Nq1SwOS5Qzjx4/nypUrtG/fnuLFi2vlPRZoFqFoEghSye0fG7kdoWjM3UydOjXDspCQEJo1a4arq2sOSvTfIzExkYsXL342Q933SG7PuDlq1CgkEolKF6r0bpQSiQRTU1P69evH/9u797ic7/9/4I93OlGEkA4ilmUqOZ+2KCEpopIpLCXMYWyzzWlIk+93H5/mHHPKMVNWKpWpNfaZMecyzSEppLSIaom6fn/47Pqt1cW+03W91/v9uP/ler9ebrfHbljX9byer+crKChI0zE1olmzZrC3txc7hlpZWFggPj4eGRkZyMvLwwcffCDLo1OjRo3CunXrYG9vD39/f2hrP/9IVFVVhT179iAlJaXOuV1Sk5iYiObNmyuLTGlpaThy5Ajc3d3RuXNnbNq0Cdu2bcPs2bNFTlr/KisrYWhoqHL9119/lXRH7/nz5xEYGIh58+aJHYUkioUmov+S+4cNuWOhkVRp3bo1xo4diz179sDLy0vsOFTP5H7jppOTE3755Zc6ZzVlZWUhLCwMYWFhMDAwQGJiIlavXo2WLVti7NixIqR9dX+lg6suHh4e9ZxEPIIgwN7eHvb29qisrISDgwOsrKzEjqVRwcHBuHDhAlatWoVNmzahXbt2EAQBubm5KCkpgYODA2bNmiV2TLW7du0afHx8lK+/++47NG3aFKtWrYK2tjaKiopw5MgRSRaarK2t8cMPP9RZUHz27BmSk5PRpUsXEZJphr6+Ppo3by52DJIwFpqI/kvuHzbkjoVGehFTU1NkZ2eLHYPUQO43bl6/fh3Dhg2rc+B7nz59kJqaiu+//x6rV6/GsGHDEBgYiL179zbYQtOfO7j+2LX1Z388TiulQtMfjRkzRuwIotDW1sbmzZsRFxeH5ORk5ObmAgDs7e3h7OwMb29v6OjoiJxS/UpLS2sUGzIyMmBvb6/s8LK0tER+fr5I6dRrypQpeP/997Fq1Srlv++nT5/i559/xurVq5Gbmyvpbh9nZ2ekpKQgICBA7CgkUSw0Ef2X3D9syB0LjaRKQUEBYmNjYWpqKnYUUhM537hZUFDwwlk0gwYNwubNm5WvHR0dER4eroloarFr164arw8ePIjLly9j2bJltfZevHgR4eHh+Ne//qWhdJq3fv36l+4RBAEzZ87UQBrNEgQBnp6ekp+/9yLt27dHRkYGACA/Px9ZWVk1blm8f/++JOeyAYCbmxvy8/MRHh6OyMhIAKjRuTV9+nS4urqKFU/tZs6ciVGjRiEiIgJ9+/ZVeQOl1C4CIM1hoYnoD+T8YUPuWGiUt+HDh9f5/LfffkNRURGqq6tfOMeJpENuN24aGxsjMzNT5frDhw9RUVGhfF1WVqbyA0lD8OfOrdDQUAwdOlRlR9e3336LH3/8EW5ubpqKqFEvKzT93tUlxUITAd7e3lixYgXKyspw/fp1CIKg/LuuUCiQmpoKGxsbkVOqT2BgIEaOHInk5GTcunUL1dXVMDc3h4uLCzp27Ch2PLUqLy+HgYEB1qxZU+e6VC8CIM1hoYlIBbl92CAWGuVM1fwtPT09DB48GB4eHujdu7eGUxGp3+jRo7F582bY2trCz8+vxnGhc+fO4cCBAzUGZN+4cUNSPx9zc3PRokULlesuLi7YunUrQkJCNJhKc7777juVa8ePH8fy5cuV3R4N3aRJkxAQEAAnJydMmTLlpft/v5FPyt5++20UFhbi4MGDaNSoEZYtW6YssMTGxuL69etYunSpyCnVq23btnjnnXfEjqFxS5cuRWFhIW+dI7VhoYmIqA5S+iBFL7d7926xIxCJ4t1338W1a9ewatUqbNy4Ee3atYOenh7u3buH/Px8NGvWDIsXLwYAVFdXIysrC/369RM5df0xMjLC5cuXVa4/ePAAZWVlGkykWSYmJirXfHx8kJCQgOjoaPTs2VODqdTj9OnTGDlyJAAgJydH3DD/EFpaWpg3b16ds4hGjBgBFxcXGBgYiJBMc06ePImzZ8/i/v370NHRgZWVFYYMGfLCI8VScOnSJd46R2rFQhMRERGRTOnq6mLDhg349ttvER0djVu3bqG0tBRmZmYYNWoU/P39lceGtbS0kJiYKHLi+jVq1Chs3boVXbt2rdXR9dNPP+HAgQPKq9/lyMnJqcaMroYsKytL+eu0tDQRk/wzlZeX49GjR2jZsiV0dXWhr68PfX19sWOpTVFREWbNmoWLFy/WOg4cFhaGadOmSfK2vd8ZGhq+sJuT6FWx0ERERITnQ0/37duHM2fOoKioCNra2rCysoKrq6tk57MQ/c7JyQlOTk4q1ysrK3Hx4kV07twZRkZGGkymXrNnz8bPP/+s7OiytLSEjo4O7t27h3v37sHIyEjZ0SVHhYWFqKqqEjtGvQsPD0f37t0xePBgsaOILikpCRs3bsT169cBABERERg0aBAyMzMxY8YMLF26FC4uLiKnrH8hISG4dOkSZs+eDQ8PD7Rt2xaVlZXIzs7G9u3bsXHjRhgbG2PChAliR1ULNzc3JCcny/LYIGkGC01ERCR7ly5dQlBQEB49egRTU1OYmJigsrISp06dwjfffIMDBw4gIiICjRs3FjsqkSgePHiASZMmKT+ESoWuri62bduGxMREJCUl4ebNm3j8+DEsLCzg5eWFCRMmSPoodXx8fJ3PKyoqkJGRgZiYmBcWIBuqbdu24eOPPxY7huiOHDmC999/HwMGDMCwYcOwYcMG5ZqtrS3MzMwQGxsryULTiRMn4OPjU+OWPR0dHdjZ2SE8PBzFxcWIjIyUbKFpwIABiIqKwoYNG9C/f3+V+3jrHP1dLDQREZHshYaGQktLC3v27EGvXr2Uz589e4YDBw4gNDQUa9aswSeffCJiSnG1bt0aqampvH1RxhrybXMvM3LkSOX8nrpItaNr/vz5EARB5Z9tnz59JDkM2tzcHKWlpWLHEN2WLVvQv39/bN++HQUFBTUKTQDw5ptvIjY2VpxwaqarqwsrKyuV646Ojli7dq0GE2nW9OnTAQDr1q2r8/ZJ3jpHr4qFJiIikr2srCxMmTKlRpEJALS1teHn54eMjAwkJCRIptAUGxsLBwcHdOjQQWVHw595eHjA3NxczcmI/pmk2tG1a9euOp/r6enB1NRU5Y2cDd24ceNw8OBBBAYGQldXV+w4osnOzsbcuXNVrjdt2hT379/XXCANcnR0xKlTp1QeHauoqJD0QPCwsDCxI5DEsdBERESy16pVqxde7WtjY4OUlBQNJlKvTz75BMuXL0eHDh1e2tEAPL/m28PDQ4MJif55pNjR1adPH7EjiKJFixYoKCjAwoULX1g4lPr/95o0aYLHjx+rXL9x44ZkB0b7+vpi8uTJOHbsGOzs7Gqtp6amYuDAgSgoKKjx/EU3NTYkY8aMETsCSRwLTUREJHseHh5ISkpCcHBwnesFBQXo1KmThlOpT1hYGLp37w5AdUcDEZFULVy4EACQkJCAhISEOvfIocDev39/xMbGIjAwsNba9evXcfjwYYwYMUKEZOrn7+8PACpvllMoFLhy5Qr2799f47nUjpJVVVUhOzsbJSUlsLa2hpGREaqrq/Hs2TNZd/vRq2OhiYiIZM/ExARXr17FqlWr0LVr11rrycnJcHBwqHXMrKF+CPnjN5m/dzTwzSaRPJ05cwbx8fG4e/cunjx5UmtdEARERkaKkEx9WGB/bt68efDx8YGnpydGjBgBQRCQnp6OEydOICYmBjo6OjWGZUvJzJkzIQiC2DFEtW3bNmzZsgWPHj0C8P9vHLx69SrGjh2LlStXwtPTU9yQ1GCx0ERERLIXEhICANi5c6fKPfn5+UhKSlK+ltK33XyzSSRPBw8exKeffgoAaNmyJZo0aSKLD99yPTL4Z5aWloiKikJoaCi2bt0KhUKh7OBxcHDA0qVLYWlpKXJK9VDVySQXe/bsweeffw5vb29069YNS5YsUa7Z2Nigd+/eSExM5M9++ttYaCIiItmT87fbfLNJJF9bt26FtbU1duzYAWNjY7HjkAisrKywbds2PHr0CDk5OVAoFDA3N+cNo/9VUFCAwYMHS+4igD179mDYsGEIDQ2tNYcKAPr164eoqCgRkpFUsNBERESyJ+dvt/lmk0i+7t27h1mzZsmuyDRlypSX7tHV1UWbNm3Qt29fDBs2DDo6OhpIplmDBg2Cn58fgoOD0axZM9jb24sd6R9JihcB3LlzB+PHj1e5rqenh+LiYg0mIqlhoYmIiOgPsrKykJeXB0EQYGFhARsbG7EjqRXfbBLJ12uvvYaHDx+KHUPjsrKy8PDhwzqvry8rK8Pjx4/Rtm1bnD59Gl999RW6dOmCnTt3wsjISIS06lNSUgIDAwOxY5AIjIyMUFRUpHL98uXLaNOmjQYTkdSw0ERERATg+PHjWLFiBW7fvg3g+TeYgiDA3NwcS5YskVTL/B/xzSb9FY0bN8aYMWPq/GBODVdQUBCWL1+OwMBAtGzZUuw4GmNnZ4fy8nLs3r271trt27fh7u6OhQsXwsXFBenp6Xjvvfewbt06LF68WIS06tOjRw/cuHFD7BgkgsGDB+PgwYPw8/ODlpZWjbWTJ08iOTn5hV9CEb0MC01ERCR7p0+fxrvvvgszMzPMnz8f7du3BwDcvHkTUVFRmDlzJrZv3y7JI3Z8s0kAkJeXhzNnzuD+/fvQ0dGBlZUV+vfvDz09PQBAs2bNEBYWJnJKqm//+c9/UF5ejuDgYHTp0qXOPYIgKC9MkIpLly5h8uTJda5ZWFjA09MTERERcHFxweDBgzF+/Hh88803kis0zZgxA8HBwfDz80OnTp3EjkMaNHfuXPzwww8YPXo0HB0dIQgCYmJiEBUVhePHj8PY2BgzZswQOyY1YCw0ERGR7K1btw7t27dHdHQ0GjduXGNt/Pjx8PHxwbp16+r89ruh45tNeSsvL8eiRYuQnJxcaw6JkZERPv74Y4wdO1akdP8cUu3oio6OBgBkZmYiMzOzzj1SLDSVlZW9cO5Ohw4d8PXXXytfW1hYoLCwUBPRNGrjxo0AgMDAQHTs2LHOPYIgYNu2bZqMRRrQqlUrxMTEIDw8HCkpKVAoFDh69CgaN24MV1dXzJ8/nwPh6ZWw0ERERLKXmZmJqVOn1ioyAYChoSHc3d2xdetWEZKpH99syttnn32GpKQkeHl5wcPDA23btkVlZSWys7MRGRmJRYsWoUmTJnB1dRU7qlrJtaMrKytL7AiisLGxQUpKCgIDA6Grq1tr/eLFi2jSpInydX5+vvLvgpTcunULLVq0AADk5OSIG4Y0rkWLFggJCUFISAiKi4tRXV2Nli1b1upuJvo7WGgiIiLZ09LSQmVlpcr1p0+fSvqNF99syldKSgpGjhyJzz77rMbzzp07w8XFBb6+vti0aZNkC03s6JKnmTNnYvr06Zg4cSICAgLQqVMn6Onp4d69e4iPj0dycjL8/PyU+zMzM2Fubi5iYvVIS0sTOwL9Q6ia0VZQUIDBgwcjIiJCsrMqST1YaCIiItnr3r07Dh8+jICAgFq3Cj148ABxcXHo3r27SOk0S04Dgen50Hs7O7s617S1tTF8+HBs2LBBw6k0hx1d8jRo0CCsXbsWK1euxNy5cyEIgnJNoVBg5MiR+OijjwAA1dXV6N69O15//XWx4hKJ6kXHTIlUYaGJiIhkb+7cufD394erqys8PT1haWkJQRBw8+ZNxMXFoaKiAnPnzhU7JlG969OnDy5fvvzCPcbGxhpKo3ly7+hSKBTYvHkz9u3bh6Kiojo/UAqCgJ9//lmEdOo1dOhQODo64vvvv0dOTg6ePn2K1q1bo3fv3rC0tMT58+fRvXt3aGlpYd68eWLHVavTp0/j2LFjyMvLgyAIsLCwwJAhQ9C3b1+xoxFRA8VCExERyZ6trS127dqFlStXYseOHTXWunXrhgULFsDW1lakdETq895778HHxwcBAQF44403aq2fOHECQ4cOFSGZZsi9oysyMhJr167FgAEDUFhYiIEDB8LU1BTA85vZsrOz4enpKW5INdLT08OQIUOUr7OysvDVV1/hyJEjyM/Px5UrV0RMp35VVVX45JNPkJCQAIVCgWbNmgF4fqRu9+7dcHNzw+effy7rY9SNGjWCmZkZ9PX1xY5C1KCw0ERERLJVWlqKyMhIZGRkQBAEuLi4IDw8XHm7kIWFhaS7OYi8vLxQVVUFb2/vOj9MPnv2DOfOncPevXtrPFd1Q1lDI/eOrpiYGLi7u2Pp0qXo2bMnvLy84ObmBgC4d+8eRo8ejR49eoicUr1ycnKQkJCAI0eO4ObNm1AoFOjYsaMsbtv88ssvER8fj6lTp2LKlCnKweDFxcXYunUrtm/fDmtra0yfPl3kpOJp1aoVZ1kR/Q0sNBERkSw9fPgQvr6+uHXrlvJZeno6Dhw4gB07dsDCwkLEdESa4eHhUWM+jdzIvaPr7t278PHxgYGBARo1aoQHDx4o19q2bYuxY8di7969khuInp+fjyNHjiAxMRFXrlyBQqGAIAgYPXo0AgMDYW1tLXZEjfj6668xfPhwfPDBBzWet2zZEh999BHy8vJw6NAhyRaabt++jSNHjuDu3bt48uRJrXVBELBy5UoRkhE1fCw0ERGRLO3cuRN5eXmYN28ePD09oa+vj6NHj2LlypVYvHgxdu7cKXZEIrVbtWqV2BFEJfeOLoVCgerqagCAiYlJrVlMJiYmyM7OFiNavSsuLkZSUhISExNx4cIFVFdXw8LCAlOnToWtrS3mzJkDZ2dn2RSZgOeFxvHjx6tc7969O9LT0zUXSIPS0tIwZ84cPHv2DMDzI3J/xkIT0d/HQhMREclSYmIiXFxcMG3aNOUzHx8flJSUYPXq1SgoKICJiYmICYlI3eTe0dW6dWsUFBQAAHr37o2kpCQEBQXBysoKCoUC33//vfI4VUPn6OiIqqoqmJiYYPLkyRgxYgTs7e0BALm5uSKnE4exsfELC4nXr1+X7NHR8PBwtGnTBmvWrEHnzp2hp6cndiQiSWGhiYiIZOnevXvw9/ev9dzJyQn/+te/kJOTw0ITyUJ5eTm2b99e69YpFxcXBAQEwMDAQOyIaiP3jq7XXnsNGRkZAIDAwEAkJSVhzJgxeOONN3Dv3j3k5+fj448/Fjll/Xj27BmMjY0xdepUjBgxAi1bthQ7kuiGDx+OvXv3omfPnhg9erSy6KpQKHDo0CHExcXV+XNSCnJzczFjxgyVlwEQ0athoYmIiGTp6dOndd4iY2hoCACoqKjQdCQijSsuLoa/vz+ys7NhbW2N/v37A3g+IHn9+vVITEzE3r17+aFcotavXw+FQgEA6Ny5M3bu3IktW7bg1q1bsLCwwHvvvYfRo0eLnLJ+fPjhhzhy5AhWrFiBlStXok+fPhg5cqSkZ3C9zJw5c3D+/HksWLAA//u//wsLCwsIgoDc3Fw8ePAAdnZ2mDNnjtgx1aJdu3aorKwUOwaRZLHQREREspWXl4dz587VeFZcXAwAuHHjBpo2bVpjTeq3L5H8fPHFF7h9+za+/PJLvPXWWzXWvvvuO8yePRtffPEFQkJCREqofnLu6BIEocbRwR49eiAiIkLEROoTFBSEoKAg5S1zSUlJWLx4MZYtWwY7OzsIgqCcVyUXBgYG2LdvH6Kjo5GWloa8vDwAgK2tLYYMGQIvLy/o6OiInFI9/P39sXnzZgQFBaFJkyZix/nHatSoEczMzOr8Yo7oRQTF719jEBERyYiNjY3K2Sy//2j84zECQRBw5coVjeUj0oQ333wTrq6uWLx4cZ3rISEhOHr0KL7//nsNJ9OMP3d0tW/fHsDzjq7r16/DyspKch1dS5Ys+T/tFwRBsoXGK1euIDExEUlJSbhz5w50dXUxYMAAuLq6wtnZGc2aNRM7Yr2aOnUq+vTpg6lTpwIAfvrpJ3To0AGtW7cWOZnmrV+/Hlu2bMGAAQPg4OBQ5x5BEGrMcZST8vJyPHz4EGZmZmJHoQaKhSYiIpKlr7/++v/8e8aMGaOGJETisbe3x3vvvYfAwMA617du3Yq1a9fi0qVLGk6mGZ9++iliY2OxYcMGlR1dnp6ekiq0/F5k/6sfAeRSZL9w4QISEhKQnJyMoqIi6OjoKOdXSYW9vT0++OADTJ48GQDQpUsXLFu2DL6+viIn0zwbG5uX7pHi3/3i4mJER0fj7t27MDExwdChQ/Haa6/V2hcVFYXly5dL7r+fNIdH54iISJZYNCICLC0t8eOPP6osNJ08eRKWlpYaTqU5aWlpGDduXK0iEwAMGjQI3t7eOHr0qKQKTe3bt0deXp7yaCCPBD/n4OAABwcHLFq0CD/++CMSExPFjlTvmjdvjvz8fOVrOfcbpKamih1B4woKCuDl5YVff/1V+We/du1a+Pj4YPHixdDV1RU5IUkJC01EREREMjV+/HiEhoZi4cKFeOedd5RHx27evImdO3fihx9+wMKFC0VOqT6PHj2CqampynUzMzM8evRIg4nULyUlBd9++y127doFPz8/dOvWDe+88w6GDx+u8jixnAiCgP79+ysH40uJs7Mz9u/fD0EQ0LFjRwDA8ePH8eDBA5W/R6rHx8zNzcWOoHFr167Fw4cPsXDhQgwYMAB3797F/v378dVXX+HGjRuIiIioNZuS6O/i0TkiIiIiGQsLC8OuXbtqPVcoFJg4cSIWLVokQirNcHd3h6mpKb788ss61wMDA1FQUICEhAQNJ9OMa9euITIyEgkJCTA2NsakSZPg7e0t6QHocvbbb79h1apViIuLQ0VFxV86QinF42N/VFZWhpMnT+L27dsAAAsLC/Tr1095A62UuLi4oF+/fggNDa3xPDo6GsuWLYOtrS22b9+OJk2a8OgcvTIWmoiIiIhkLjs7u8atUxYWFnB2dkanTp1ETqZee/bsQWhoKMaOHVtnR1dcXBwWLlyIiRMnipxUvR4+fIh9+/YhIiIC+vr6CA8Px8CBA8WORWp0//59vPXWW5g3bx7c3d1fuFeq3T8HDx7E//zP/6CsrKxGwc3AwAAfffSR5GZXdevWDR9++GGd/z9LT0/HnDlz0KNHD2zZsgWHDh1ioYleCY/OEREREclcQUEBKioqAAA6Ojpo0qSJLLpa/P39kZeXh127dtW6IOD3ji6pF5mePHmCI0eOIDY2FpWVlXjjjTdgbGwsdixSs9atWyM1NRXNmzeXxb/1Pzt69CiWLFmCnj17YtKkSTWKzJGRkVi2bBmaN2+O4cOHi5y0/rRp0wZFRUV1rg0ePBhr167FrFmz8NFHH6FPnz4aTkdSw44mIiIiIpkqKirCrFmzcPHixVpHaLS1tTFt2jTMnj1bpHSaI8eOruLiYuzevRv79+/H48ePMWTIEAQEBKB79+5iRyMN+/XXX5GRkYGSkhL069cPJiYmKCkpQXFxMczNzSU5JNrb2xuNGjXCvn370KhRoxprz549g6+vLwRBQHR0tEgJ69+0adNQUFCA2NhYlXuSk5Px/vvvw9TUFHfv3mVHE/1t7GgiIiIikqmQkBBcunQJs2fPhoeHB9q2bYvKykpkZ2dj+/bt2LhxI4yNjTFhwgSxo6qVnDq6bty4gR07diA+Ph7a2trw8vLCpEmTYGFhIXY00rDq6mqEhobiq6++wrNnzyAIAiIiImBiYoJHjx7Bw8MDCxYsgJ+fn9hR6921a9cwc+bMWkUm4HmRffjw4diwYYMIydRn6NCh+OKLL3DmzBn06tWrzj2urq4oLi5GSEgILwegV8JCExEREZFMnThxAj4+Pnj33XeVz3R0dGBnZ4fw8HAUFxcjMjJSsoWmF3V0hYWFSbKjy93dHVpaWnBycoKPjw+aNm2KwsJCFBYWqvw9PXr00GBC0pQNGzYgKioKs2fPhq2tLaZOnapca9euHd58802kpKRIstCkr6+Px48fq1wvKSmBvr6+BhOpn7e3N7y9vV+6b8KECbC1tVUW34n+DhaaiIiIiGRKV1cXVlZWKtcdHR2xdu1aDSbSLDl2dCkUClRVVeHYsWNITU196V6p3zomZ7GxsRg9ejRmzJiBgoKCWus9e/ZEZGSkCMnUr2/fvjh48CB8fHxgaWlZY+3mzZuIjo5Gv379REonPnt7e7EjUAPHQhMRERGRTDk6OuLUqVN455136lyvqKhA27ZtNRtKg+TY0RUWFiZ2BPqHKCgowOuvv/7CPY8ePdJQGs368MMP4ePjg5EjR8LJyQmWlpYQBAE3b95Eeno6DAwM8P7774sdU61yc3Nx48YNlJWVwdDQEJ06dUK7du3EjkUSwUITERERkUz5+vpi8uTJOHbsGOzs7Gqtp6amYuDAgbW6HUxMTDQVUa3k2NE1ZswYsSPQP0SbNm1w+/Ztlevnzp2DmZmZBhNpjqWlJWJiYvDvf/8b6enpKC8vBwA0btwYw4YNw7x58yRbdImLi0NERARycnJqrXXq1AnTp0+Hu7u75oORpLDQRERERCRT/v7+AKByDpFCocCVK1ewf//+Gs+lcpRK7h1dJG/Dhw9HVFQUPD090bp16xprhw4dQnp6eo25TVJjYWGBf//736iurkZxcTEAoGXLltDS0hI5mfqEhoZi7969aNq0KTw9PfH666/DwMAAZWVl+OWXX5CWlob58+cjMzMTn3zyidhxqQFjoYmIiIhIpmbOnCnrm4Xk3tFF8jZr1iycOnUKb7/9NhwcHCAIArZs2YLVq1fj6tWrsLa2xrRp08SOqXZaWlpo1aqV2DHULj09HXv27IGLiwvCwsLQtGnTWntKS0uxYMECREZGon///hg0aJAISUkKBMWfr9ggIiIiIpIBGxsbAFBZbPt9GPafSaWji6iyshI7duxAUlIScnJyUF1dDXNzcwwbNgxTp06FoaGh2BHrzfr16+Hk5ISuXbsiIiLipfsFQZBUoS04OBi3bt1CYmIitLVV95s8ffoU7u7uaNeuHbZu3arBhCQl7GgiIiIiIlmSe0cXka6uLgIDA+Hl5YUWLVqgUaNGYkdSm/Xr16N169bo2rUrvvjii5ful1qhKSMjA76+vi8sMgHPL0Rwc3NDVFSUhpKRFLHQRERERESypGo2FZHUPXnyBDt27MDhw4eRk5Oj7N7r3LkzPD094efnBx0dHbFj1qtdu3ahQ4cOAJ4fi5Wb0tLSv3xE0NjYGKWlpWpORFLGQhMREREREZFM5OXlISgoCLdu3UKLFi0wcOBAGBkZ4fHjx8jIyMCqVasQExODLVu2wNTUVOy49aZPnz7KX5ubm4uYRBytWrWq86a5uuTk5MhibhWpDwtNREREREREMvDkyRMEBwejsLAQK1aswNixY2scl1MoFIiLi8Py5csRHByMmJgY6OrqiphYPUpKSnD16lVYWloqh/vfvXsXBw8eRGVlJTw9PWFtbS1yyvrVt29fxMfHY8aMGTA2Nla5r6ioCPHx8XByctJgOpIa6d7dSERERERERErR0dG4efMmwsLC4OPjU2smkyAI8PT0xOeff45r164hOjpapKTqFRERgcDAQOXrhw8fYty4cdi0aRO2bduGcePG4ZdffhExYf0LCgpCWVkZJk2ahPPnz9e558KFC5g8eTLKy8sRFBSk4YQkJbx1joiIiIiISAYCAwPx4MEDHDp06KV7fX19oa+vj8jISA0k06yxY8fC0tJSORR89+7d+Oyzz7B582Z07doVAQEB6NixI9asWSNu0HqWkJCARYsWobKyEhYWFnj99ddhYGCAsrIyXL16FXl5edDV1UVYWBjc3NzEjksNGDuaiIiIiIiIZODatWsYMGDAX9rbt29f3LhxQ82JxHHr1i04ODgoX//000+wtLTEoEGD0KpVK7i7u+PChQui5VMXd3d3xMXFwcvLCxUVFTh27Bji4uJw7NgxVFRUwNvbG3FxcSwy0SvjjCYiIiIiIiIZKCkpUc4keplWrVrh0aNHak4kjsaNG+Pp06fK1xcuXKgxLLxx48YoLi4WI5radejQAaGhoQCe30RXVlYGAwMDGBoaipyMpIQdTURERERERDLw5MmTvzzcW1dXt0YxRkreeOMNxMfH4/Hjx0hMTMT9+/fRr18/5frVq1cleeva2bNncebMGfw+PcfQ0BAmJiY1ikxXr17F9evXxYpIEsGOJiIiIiIiIpnIy8vDuXPnXrovNzdXA2nEMWvWLEycOFHZxdS2bVuMGDECAFBcXIykpCQ4OzuLGbHenT17Fv7+/hg7dix69eqlct/hw4exbds2HDp0CF26dNFgQpISDgMnIiIiIiKSARsbGwiC8Jf2KhQKCIKAK1euqDmVOLKysnD48GHo6OjA19cXZmZmAICkpCQkJCQgODgY3bp1Ezll/fn000+RlJSE1NRUNGvWTOW+3377DUOGDIGHhwcWLFigwYQkJexoIiIiIiIikoGwsDCxI/xj2NjYwMbGptbzESNGKLubpOTixYsYMmTIC4tMwPP5VC4uLvjhhx80lIykiIUmIiIiIiIiGRgzZozYEf4R8vPzcerUKXTv3h3t27cHAGRkZGD37t14+vQpxo0bh/79+4ucsn7duXMHo0eP/kt7O3bsiPj4eDUnIiljoYmIiIiIiIhkY/PmzYiPj8e3334LACgoKMDkyZNRWVkJPT09HD16FLt27ULPnj1FTlp/qquroaX11+4Cq66uVnMakjreOkdERERERESycfbsWQwbNkx5jCwuLg6//fYboqOj8eOPP8LOzg6bNm0SOWX9at++PS5evPiX9p47dw6mpqZqTkRSxkITERERERERycbt27drzGc6d+4cXnvtNdjY2EBHRwdDhw5FVlaWiAnrn7OzM7755hucP3/+hft++uknpKWl4a233tJQMpIiFpqIiIiIiIhINoyMjFBaWgrg+e16Fy9ehJ2dnXK9UaNGKCkpESueWkyaNAnNmzdHUFAQ9u3bh4qKihrrFRUV2LVrF4KDg9G0aVNMmTJFpKQkBZzRRERERERERLLh4OCAr7/+GkOGDMGJEyfw8OFDDBw4ULmemZkpuaNjRkZG2LJlC2bOnIkVK1YgLCwMHTt2hKGhIUpLS5GdnY2nT5/C2NgY69atg4mJidiRqQETFAqFQuwQRERERERERJpw8+ZNvP322ygpKYFCoYC1tTViYmKgq6uLO3fuwNXVFWPGjEFISIjYUetdWVkZoqKikJaWhuvXr6OsrAwGBgawsrLCoEGDMGHCBBgZGYkdkxo4FpqIiIiIiIhIVgoLC3Hs2DFoa2vDzc0NhoaGAIDvvvsO//nPf+Dr64tOnTqJnJKoYWKhiYiIiIiIiIiI6gWHgRMRERERERERUb3gMHAiIiIiIiKStC5dumD58uUYN24cunbtCkEQXvp7MjMzNZCMSHpYaCIiIiIiIiJJ69WrF1q3bg0A8PDw+EuFJiL6ezijiYiIiIiIiIiI6gVnNBERERERERERUb3g0TkiIiIiIiKSneLiYuTn5+PJkyd1rvfo0UPDiYikgYUmIiIiIiIiko179+7h448/xunTp+tcVygUEAQBV65c0XAyImlgoYmIiIiIiIhkY8mSJTh79ix8fX1hbW2NJk2aiB2JSFI4DJyIiIiIiIhko1evXvDz88O8efPEjkIkSRwGTkRERERERLKhr6+P5s2bix2DSLJYaCIiIiIiIiLZcHZ2RkpKitgxiCSLR+eIiIiIiIhINgoKCjBq1CgEBASgb9++UPWRmLfOEf09HAZOREREREREslFeXg4DAwOsWbOmznXeOkf0alhoIiIiIiIiItlYunQpCgsLeesckZrw6BwRERERERHJhoODAyZPnsxb54jUhMPAiYiIiIiISDYMDQ3RokULsWMQSRYLTURERERERCQbbm5uSE5OFjsGkWRxRhMRERERERHJxoABAxAVFYUNGzagf//+Kvfx1jmiv4czmoiIiIiIiEg2bGxslL8WBKHWOm+dI3o17GgiIiIiIiIi2QgLCxM7ApGksaOJiIiIiIiIZKeqqgrZ2dkoKSmBtbU1jIyMUFVVhaqqKujq6oodj6jB4jBwIiIiIiIikpVt27ZhwIABGDVqFCZOnIgLFy4AAK5duwYHBwfExsaKmo+oIWOhiYiIiIiIiGRjz549+PzzzzF06FCEhITgj4d8bGxs0Lt3byQmJoqYkKhhY6GJiIiIiIiIZGPPnj0YNmwYQkND4ejoWGu9X79+uHr1qgjJiKSBhSYiIiIiIiKSjTt37qBHjx4q1/X09FBcXKzBRETSwkITERERERERyYaRkRGKiopUrl++fBlt2rTRYCIiaWGhiYiIiIiIiGRj8ODBOHjwIPLz82utnTx5EsnJyRg8eLDmgxFJhKD44+QzIiIiIiIiIgkrKirCuHHjUFpaCkdHRyQmJmLo0KF4+vQpjh8/DmNjYxw6dAitWrUSOypRg8RCExEREREREcnKgwcPEB4ejpSUFJSUlAAAGjduDGdnZ8yfPx9t27YVOSFRw8VCExEREREREclWcXExqqur0bJlS2hpcboM0atioYmIiIiIiIiIiOoFy7VERERERERERFQvWGgiIiIiIiIiIqJ6wUITERERERERERHVCxaaiIiIiIiIiIioXrDQRERERERERERE9eL/AW/jZm1YgdCxAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Also Considering & evaluating Feature correlation Using HeatMap\n", "plt.figure(figsize=(20,7))\n", "sns.heatmap(data=df.iloc[:,:].corr(), annot=True, fmt='.2f')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "5426231d", "metadata": {}, "source": [ "### Observation:\n", "From the above, We can see the few Significantly Influencing Features from the thirteen (13);\n", "1. Energy Type\n", "2. Energy Consumption\n", "3. Energy Production\n", "4. GDP\n", "5. Population\n", "6. Energy Intensity per Capita\n", "7. Manufacturing GDP\n", "8. Agricultural GDP\n", "9. Emission_per_capita\n", "\n", "`Also, Considering the Heat Map;` We can see a Heavy correlation between `Energy Consumption & Energy Production` and `GDP & Population vs (Manufacturing GDP, Agricultural GDP, Deforestation)`;\n", "* We won't Drop Energy Production even though it correlates with Energy Consumption, simply because, if a country consumes an energy type, it doesn't mean it is producing it, Hence There may be Countries with Consumption but with Low Production.\n", "* We will be dropping the None Influencing features such as `ei_gdp, pop_growth, pop_density, Deforestation`\n", "* We will be Dropping `Population and Agric_GDP` due to Multi-Collinearlity issues, and then Remodelling" ] }, { "cell_type": "code", "execution_count": 16, "id": "aa784d56", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "XGBRegressor(alpha=6, base_score=0.5, booster='gbtree', callbacks=None,\n", " colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6,\n", " early_stopping_rounds=None, enable_categorical=False,\n", " eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',\n", " importance_type=None, interaction_constraints='',\n", " learning_rate=0.1, max_bin=256, max_cat_to_onehot=4,\n", " max_delta_step=0.699999988, max_depth=3, max_leaves=0,\n", " min_child_weight=1, missing=nan, monotone_constraints='()',\n", " n_estimators=600, n_jobs=0, num_parallel_tree=1,\n", " objective='count:poisson', predictor='auto', random_state=0, ...)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "############# Remodelling with Essential Features ####################\n", "\n", "# Drop Non-Essentials\n", "new_df = df.drop(['Agric_GDP', 'ei_gdp', 'pop_growth', 'pop_density', 'Deforestation', 'Population'], axis=1)\n", "\n", "# Extracting features and label; Readying for Split \n", "X_new = new_df.drop(['CO2_emission'], axis=1)\n", "y_new = new_df['CO2_emission']\n", "\n", "# convert the scaled predictor values into a dataframe\n", "X_scaled_new = pd.DataFrame(scaler.fit_transform(X_new), columns=X_new.columns)\n", "\n", "# splitting data\n", "x_train_new, x_test_new, y_train_new, y_test_new = train_test_split(X_scaled_new, \n", " y_new, test_size=0.15, \n", " shuffle=False, random_state=42)\n", "\n", "# Using Best Linear Reg & Tree Model\n", "\n", "# Creating linear model\n", "lm_new = LinearRegression()\n", "# create Xgboost\n", "\"\"\"\n", "Since your target is a count variable, it's probably best to model this as a Poisson regression. \n", "xgboost accommodates that with objective='count:poisson'\n", "\"\"\"\n", "xgb_reg_new = xgb.XGBRegressor(objective='count:poisson', colsample_bytree=0.6, learning_rate=0.1,\n", " max_depth=3, alpha=6, n_estimators=600, subsample=0.7) #'reg:squarederror'\n", "\n", "# Train Model\n", "lm_new.fit(x_train_new, y_train_new)\n", "xgb_reg_new.fit(x_train_new, y_train_new)" ] }, { "cell_type": "code", "execution_count": 17, "id": "f31c1ae0", "metadata": {}, "outputs": [], "source": [ "######## Adding and Esemble Model to see If we will have an Improved Model #########\n", "from sklearn.ensemble import StackingRegressor\n", "\n", "# Define the models which we'll include in our ensemble. \n", "# We pass a list of tuples, which each have a string identifier for the\n", "# model (arbitrary choice), along the actual instantiated sklearn model. \n", "models = [(\"LR\",lm_new), (\"XGB\",xgb_reg_new)]\n", "\n", "# Instead of choosing model weightings, we now declare the meta learner \n", "# model for our stacking ensemble. \n", "# Here we choose to use a simple linear regression \n", "meta_learner_reg = LinearRegression()\n", "\n", "s_reg = StackingRegressor(estimators=models, final_estimator=meta_learner_reg)" ] }, { "cell_type": "code", "execution_count": 18, "id": "9832e0de", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAD6CAYAAAD+1eovAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkMUlEQVR4nOzdd1wT2RYH8F8SQm8i2FjsCAprR1fXsvZe1957r+vq2t1de0XFir23tWLDhiJ2sACKYhdREYVQQkl9f/AyMqSQQCABzvfz2c973swkhyHMnTlz77kcuVwuByGEEEIIIYQQQgghpFDiGjoAQgghhBBCCCGEEEJI3qEEICGEEEIIIYQQQgghhRglAAkhhBBCCCGEEEIIKcQoAUgIIYQQQgghhBBCSCFGCUBCCCGEEEIIIYQQQgoxSgASQgghhBBCCCGEEFKIUQKQEAMSiUTo2rUr3Nzc0LZtW8TGxho6JELyzOLFi+Hm5obatWvj/fv3hg6HkHzn6+sLNzc3eHh44MKFC4YOh5A88+DBA9SqVQtubm7Ytm2bocPRu5kzZ8LNzQ0DBw40dCikAMvt98jNzQ1ubm44ceKEniMrWN6/f4/atWvDzc0NEydOhFQqNXRIhOSJ5ORk9O3bF25ubujWrRtEIpHO72GSB3EVCj4+PtiwYQOcnZ1x7do1rfdr3rw5oqOjUa9ePezbty8PIyyYFMc1KzMzMxQrVgyVK1dGq1at0L17d5iamhogwvy1bNkyREREwMnJCbt374aTkxPr9RMnTmDWrFlK+5mamsLOzg4VKlTAb7/9ht69e8Pa2lrt57i5uTH/f8yYMZg6darGuPbv34+FCxcy/7569Sp++uknpe1kMhkuX76Mc+fOITw8HN+/f4dUKoWVlRVKly6NypUrw8vLC02aNEHp0qWV9lf8vWhLXRz6oO67qcmLFy9y/B4TJkzAxIkTdfq8mTNn4uTJk1pvr+r89erVK1y9ehXBwcGIjIxEXFwcOBwOSpYsibp166Jfv374+eeftXr/z58/w8/PD4GBgYiKikJcXBx4PB4qVKigMs45c+YgLi4OZ8+exdSpU3H48OEi8XeuMGnSJPj7+8PCwgJnzpxB2bJlNW4/fvx4XLlyBaVKlcKZM2dgZ2encrvw8HBcuHABISEh+PjxIxISEsDlcmFvb49KlSqhZs2a+O2331C9enWlfe/du4dBgwYptXO5XJiYmMDW1hZly5ZFs2bN0K9fP43nmYJCcT5cunQpunfvnm+f+/jxY6xbtw4A8Pfff6Ndu3ZqY8vMxMQEFhYWKFOmDGrXrs1c+KmT+Tzh7OyMS5cuwcRE/eVeXFwcmjVrhrS0NACaz02vXr3CsWPHcP/+fURFRSElJQXm5uYoVqwYKlWqhOrVq6Nhw4aoVasWOBwOa19dz7E5OUfm1vLly7Fz506tPvvjx49o0aKFVu+r67WkQlpaGgICAnD79m2Eh4cjKioKqampsLKygqurK1q1aoU+ffrA3Nxc5f5JSUm4evUqbt++jWfPnuHTp09IT0+Hra0t3N3d0aFDB3Tr1g08Hk9p39z2iV5eXli7di3GjBkDb29vvH79Gm/fvsXbt28hFAphamoKe3t7VKhQAR4eHmjQoAHq1aun9F1VfJ8L03W14u+3W7duWLZsmYGj0U1B+Dsm7L49v/u6/CYSiTB16lQIhULUr18fa9asUTqnqbp+5nA4MDc3h4ODA9zc3NChQwe0b98eXK7q8VFZr5d27tyJX3/9VWNsius+QHM/kJycjFOnTuHatWuIjIyEQCAAl8uFjY0NXFxc4O7ujnr16qFJkyZK12G69EXZxaEvub3XCA0NRUBAAB49eoRXr15BIBDAxMQEZcqUQf369TFw4EBUrFgxT2L39fXF6tWrAQB79+5F/fr1VW736NEjXL9+HY8ePcKbN2+Y35mjoyM8PT3RvXt3/Pbbbzp9tlQqxfjx4xEQEABA+T4TAKytreHr64tevXrh2bNnWL58OebNm6fT51ACUM/4fD5MTU3B5/MNHYrRy3zjn56eji9fvuDLly8ICgrC4cOH4evrixIlShgwwrx17do1HDhwAFwuF2vXrkWpUqU0bp/5eIlEIsTGxiI2Nhb379/HgQMHsG3bNlSqVCnbzz1w4ABGjBgBGxsbla9LJBLs3Lkz2/f59OkTJk2ahLCwMFY7h8OBQCCAQCBAREQE/Pz8wOFwsGbNGrRv317le/F4PJU3IFllvaHUJx6Pp3UySpunLdm9lzY/b1YmJiZaxSiXyyEWi5XaY2Ji0KFDB1Ybl8uFTCbDhw8f8OHDB5w6dQrTpk3DiBEj1L6/TCbDpk2bsG3bNiZpoHgvkUiEV69eqd130aJFCA8Px9OnT+Ht7Y2//vor25+nsPj7778REhKCb9++YdasWdi/f7/a7/TJkydx5coVcDgcLFu2TGXy7/Pnz5g7dy6CgoJY7SYmJhCJRMw59datW9i4cSMqVaqEuXPnomHDhio/k8/nM/HI5XKIRCJ8+/YN3759w8OHD3H06FEcOnRI6UEFyZ5QKMQff/wBiUSCXr16oWfPnhq3NzExYW5CpFIpkpKS8OLFC7x48QJHjx7F7NmzMWDAgGw/Nzo6GqdPn8bvv/+udps9e/aw/o5VkclkWL16NXbt2sUaWcHlciEUCiEUCvHx40fcuHEDPj4++O2337B161a176fNeSwn58icSE9Px6dPn+Dn55fjBFPmvx11r+fE4sWLcfToUVYbl8tFQkICgoODERwcjCNHjmD37t0oWbKk0v6TJ0/GrVu3lPaPi4vD7du3cfv2bRw/fhzbtm1TuqnUR5/YtGlT/PLLL7h9+zbr5pvL5SIlJQUpKSn49OkTbt26BV9fX7i6uuLs2bNafWZBpjiumhLzBYEx/R0TNi6Xy/x+1CW0Cgtvb288ffoUTk5OWLduncbzLYfDYV6Xy+VITU1FdHQ0oqOjce3aNfz333/YuHEjrKyssv3czZs3a0wAvn37FpcvX872fe7cuYPp06ezZoFxuVyIxWKkp6fj27dvePToEQ4dOgQzMzP4+/urHFQBZN8XKbbJS7m913j48CH69u2rtL9YLMbr16/x+vVr/Pfff1iyZAk6deqk19gvXLiANWvWZLtdUFAQhg8fzmrj8XgQi8XM98nf3x/dunXD0qVLtb5/Xbx4MZP808TGxgbr169H9+7dsX//fjRq1AjNmjXT6jMASgDqnSLLTzTL+vQhPT0dHz58wLFjx7B3715ERERg+vTp2LNnjwGjzDsymQyrVq0CAPTv3x9169bNdp/MiTbFzf2ZM2ewdetWREdHY/z48Th79qzGC0obGxskJSVh3759GDdunMptzp8/j+joaNja2iIxMVHlNsnJyRg4cCA+fvwIGxsbDBo0CB07doSzszNMTEwQHx+Pp0+f4s6dOzh9+jTi4uIgFArVxjV27FiDPyEeN26c2mOS2bFjxzB37lyNI6Hy6unaokWLsGjRomy3W7t2LTZv3qwUo1wuB4fDQdOmTdGxY0fUrVsXJUuWhFAoxOPHj7Fy5Uq8ePECK1euZEZkZCWXyzFjxgz4+fnBxMQE/fr1Q5cuXeDu7g4zMzPmd6+OhYUFFi9ejP79+2Pfvn0YOHAgypQpo/vBKIAcHBywcOFCjB07FsHBwdi7dy8GDx6stN3nz5+xePFiAMDQoUNV/h5CQ0MxcuRICAQCmJqaonfv3mjXrh3c3d1hZWUFkUiEqKgo3L17F1euXMHt27fx+vVrhISEqE0AXrx4kTXCViKR4PPnz/jvv/+wZcsWREVFYf369azRwUQ7+/fvR3R0NEqWLKlV0nvhwoXMiA25XA6BQIA7d+5g48aNePXqFRYtWoQqVaqgXr16at9Dcb739fVFt27dVN4ECoVCHDp0iHm4kJKSovK9Vq5cyTwYatWqFQYMGAA3NzcUK1YMycnJ+PDhA+7fv4+zZ88iLCxMbd8B5M/oA23Nnj0bx48fz/X77NixQ+0ogdyQyWQoWbIkunXrhqZNm6Jq1aowNTXFp0+fcOzYMWzbtg1v3rzB1KlTcfDgQZX7ly9fHt27d0ejRo3g6uoKDoeDDx8+YPfu3Th69CgePnyIf/75BytXrmTtq48+cf/+/bh9+zbz765du2LGjBlwcHBgkn8PHjyAv78/7t69q/F7U5hkfXBaEBnT3zFR5uXlVSi+Z9n59OkT8+BmwYIFKFasmMbtvby8WA96UlJS8Pr1a+zbtw+nT5/GnTt3sHjxYixZskTj+9jY2ODBgwcIDg5Wew+3Y8cOyGQyjfdT4eHhGDlyJMRiMcqVK4fhw4ejSZMmKFGiBKRSKWJjY5mRZv7+/khPT9c4CCGv+iJd5PZeQyaTgc/no1WrVmjfvj1q1aqF4sWLQyAQ4O7du1i5ciWio6Mxa9YsVKtWTavBL9p4+PCh1oMSZDIZbGxs0KFDB7Rs2RKenp4oVqwY0tLSEB4ejrVr1+LBgwc4efIk6tSpk+1DXwDYtWsXDhw4AA6HA7lcnu32rq6uGDNmDNavX49Vq1ahadOmWif7C/cjAVJgmJmZwdXVFbNnz2aeBty9e1fjSKKC7OzZs3j9+jVsbGwwYcIEnfc3NTVF2bJlMWHCBMyePRtAxpOmrE/6s+rfvz+AjBEf6m70tm/fztpWlYMHD+Ljx4/g8XjYt28fJk2ahIoVK8LMzAw8Hg+Ojo5o2rQpZs6ciRs3bmDatGmwtLTU+ec0NqmpqfDx8QEADBs2zMDRqBYTE4Pdu3cDUI7R2toaJ0+exNatW9GpUyeULl2amWLQuHFj7NixgxlpdujQIZXvv3//fvj5+cHS0hJ79uzBggULULNmTZibm4PD4cDBwQGNGzfWGGPdunXRqlUriMVibN68Ofc/dAHSvHlzZjSWt7e3Ui1EuVyO2bNnIykpCe7u7iqn68fExGDcuHEQCAQoU6YMjh8/jrlz56JOnTrMU2tTU1NUqlQJ/fv3x65du3D06FGVU4A1MTExgYuLC6ZOnYpatWoByJjGSnSTnJzMJM8mTZqk8zRqDoeDYsWKoX379ti7dy+srKwgl8tx4MABjfv99ttvcHZ2xrt379TWGzxy5AgSEhLQvn17tTdOMTExzMO4YcOGYcOGDfjll1+Y7a2trVGtWjUMGTIE//33H/bv3w9XV1edfkZDkclkhg5Bo969e+Py5cuYOnUqateuDQsLC/B4PLi4uOCPP/7AyJEjAQAhISGIjIxU2n/ixIk4f/48Ro8eDQ8PD2aGSqVKlbBw4UJ07NgRQMaDv5wk3zT1ienp6cyUd8X54/r16zAzMwOHw2GmMffr1w979uzB6dOnUadOHZ1jIIQUXZs2bYJYLGauK3VlaWmJn3/+GStWrGBmKZ05cybb86HiHkndNezXr19x+vRpWFlZoUuXLmrfZ+3atRCLxXBxccGJEyfQu3dvlC5dmhmB7ezsjI4dO2LVqlW4ceMGunfvbvQjOnN7r+Hi4oLz58/D29sbrVq1gqOjI3Md1K5dO/j6+jKj7f777z+9xPzhwweMGzcOIpEI06ZNy3b7qlWr4urVq/jnn3/QuHFj5nrI3NwcdevWxY4dO5jZMtevX8/2/S5fvowVK1bA3t6e6de1MXz4cJQoUQKvXr3CuXPntN7PuL9BBdDAgQPh5uaGmTNnKr3WvHlzuLm5wcfHh7kh6N27N2rXro0aNWqga9euam+6MwsMDMTEiRPRqFEjeHp6ol69eujfvz8OHjyoctofkDHtc+LEiejcuTOzX61atdCuXTvMnj1b7VOijx8/MgVm7927h+/fv8Pb2xvt27eHp6cnfv75Z5w/f163g5SNzNNEX79+rXa7nBwHIOMG28/PDwMHDkSdOnXg6emJJk2aYOrUqVi4cCHz8+YlX19fABkX9/b29rl6L22PFwA0bNgQnp6eEAgEKr9r169fx4sXL1C9enWVo44UHj58CACoVq0aqlatqvEzTU1NMWrUKKXh4Ppy79495nem6u9On3bt2oWYmBg4Ojpi6NChefpZObV+/XqkpqaiSpUq6Ny5M+s1a2trjb8vJycn5kZNVfI9MTGRGRr/999/azVyVR3F0PmTJ0/i69evOX6fgmj27NlwdnZGamoqZs2axUpCHDhwALdv34aZmRlWr16tcorV+vXrERsbCzMzM2zZsgVVqlTJ9jNr1KiBw4cPo2vXrjmK2cHBAUDGwxp1EhISsG7dOnTp0gW1atVCzZo10b59eyxbtizb33FaWhp27NiBnj17om7duqhevTpatWqF+fPn4927d2r3k8vlOHv2LEaMGIGGDRvCw8MDderUQffu3bFo0SLcv3+f2dbHx4d1bp81axZz7lD89/HjRy2PiPYOHz4MgUCAkiVL5vj4KxQvXpx5uv/mzRuN25qYmDB/Z1u2bFF6oiwSibB7925wOByMHj1a7fs8efKEmfaraSqxgpeXF/79999st8spxbWUPvrpZcuWMVOrX7x4AWdnZz1EqD/Vq1fX+DeX+YZX1Tm7Tp06GqdgKvaXSCQa/87U0dQnvnr1irmJHjt2LCpWrAiBQIAjR46ofC93d3d4e3sz/1ZcfyqmDt+/f1/p71WRfAQyvqdz585Fnz590Lx5c9SsWROenp5o3LgxRowYgePHj2e7MEBkZCTmzZuH1q1bo0aNGqhZsyY6duyIxYsX4/nz5zodm8jISNSvXx9ubm4YPHgwa5p95vuBrDIv6vD9+3f4+Piga9euqFmzJmrVqoU+ffrg4sWLGj/bGK5z1cntvZAu5/ysdL1vyHoP9P79e/zzzz9o0aIFPD090bBhQ0ydOpV1Lr5z5w4mT57MfEajRo0wY8YMfPr0KdtjIxKJcOTIEfTv3x9eXl6oXr06OnfujL179+q8qEXW2DPLfN388eNHREZGYv78+cxIpvr162Ps2LF49uyZxs9ISUmBr68vOnfujOrVq6N69epo06YN/v33X4wcOTLPF8mJiYnBqVOnAACjRo3K9fsp7qfEYjE+fPigcdvBgwfD3NwcQUFBKu+hd+3aBZFIhL59+6qt3wz8uJ9q3bp1tg8HHRwcsHTpUri4uGT3o+SI4hopt4vK5PZeo2TJkhprZFeuXJmp/6ePgUICgQAjR45EfHw8/vjjD5X1mbNycnLS+Hs1MzNjpmlnN5ovNDQU06dPB4/Hw4YNG1ChQgWtYzc3N2fKwWgqu5IVTQE2gPv37+Pw4cP49u0bgB/z4iMiIvD333/jw4cPKoegikQizJo1i1UfhcPhsGrBnDt3Dtu3b4eFhQVr3927d7NOZoq59G/evMGbN29w4sQJLFy4UOMQ1VOnTuHSpUtITk4GkDHXXSqVZls7SFeZi1mruvnNzXFISUnB5MmTERgYyLRxuVzExMToPZGpTkREBF6+fAkA6NOnT67fL/PPqE09ltGjR2PixInYtWsXBgwYwLq5UKzUN2bMGI3voUhYfP/+nRnqXdjFxcUxoyPHjRtnlCMaX758ydwsTZs2LUdPCRW/W1X7nj59GikpKShXrpzGJ5raqFWrFqpUqYLIyEicP38eQ4YMydX7FSTW1tZYvnw5Bg0ahJCQEOzduxdDhgzBu3fvmNIAM2bMQOXKlZX2FQgEzAVvr169dLqJU4wc0pVYLEZ4eDgAqK0x8vTpU4wePZpVw4bD4TD1Wo4dOwYfHx+V04+joqIwcuRIvH37lmnjcrlMrZgTJ05gyZIlSgltkUiECRMm4MaNG6z9kpOT8fTpUzx9+hT79u3D8ePH4enpyTxRV0yfyVxnL3PM+ubn5wcA6Nmzp15qfinO+drU8enRowc2bdqEyMhIXL16FS1btmReO3PmDGJiYtCqVSuV3zWFzDeesbGxGrcl+SvzjUVuzveA7t/97PrErN+bXr16YdmyZThz5oxS7SRVOBwOTE1NIZFIIJPJWLW7FDInN2/duoVjx44p/Txfv37F169fcfPmTfj5+WHbtm0q/3Z8fX3h7e3N6gNlMhlevnyJly9fYu/evfD19UXTpk2zjf39+/cYNmwYBAIBvLy8sGXLFrULtahz4cIFLFq0iCmfoojn0aNHePToEebNm6eyDqgxXOdqIyf3Qrqe8zPvl9P7BoU9e/YgMDCQSRRyOBx8//4d58+fR2BgILZs2YIdO3Yw9bsU0/hiY2Nx+vRp3L17F6dPn1Y70vrz58/o0qULk0xUHI8XL15g8eLFCA4Oxtq1a/U++mvFihW4fPky871X1PG+du0abt++jX379qmcPfDu3TuMGDECUVFRTBuHw8G7d+9y9DAhJy5cuACxWIyffvoJTZo0yfX7ZXf/mZmDgwN69uyJffv2YcuWLdi4cSPzWlJSEo4cOQIzMzMMHTpUY0JbcdwVfwdFhaZ7jfzYX0EkEmH8+PF49+4devXqhVGjRunlQXBUVBQiIiIAAG3atFG73cePHzF27FikpqZi5cqV8PLyYv1NaaNnz55Yt24dXr58iYiIiGwH5gA0AtAg7t+/Dw6Hg9mzZyMwMBARERG4cuUKc/LatWsX60ZI4e+//8bZs2dRsmRJLFq0CIGBgXj27BmCgoKwaNEiODg4IDg4WKmOC5AxVHXcuHE4cOAAgoKC8OzZM4SGhuLAgQOoW7cu5HI5Fi1ahO/fv6uN+8SJEyhTpgzWrVuHhw8f4tmzZ7hz545ORSe1kflJWrly5ZRez81xmD9/PgIDA2FmZoZZs2bhzp07ePr0KQIDA7FixQrUqFFDrz+LKjdv3gQAeHh46OUpTnbHK6tWrVqhUqVKiI2NZQ2dfvToEYKDg1GlShU0b95c43t4eHgAyKi9sXHjRqOfRqUPPj4+EAqFcHFxQa9evTRu++XLF+bprWJawoQJE3DmzJk8PVYrV66EVCpF3bp1dV55CsgYBaLosFRN4VMMY2/atCmCgoLwxx9/oEWLFqhduzbq16+P33//HZs3b9ZY7zEzxaplWRexKAq8vLyY+n+KFTJnzpyJ1NRUNG7cWO0CD3fu3IFEIgGAXI8my45IJEJwcDDGjx+PmJgYNGrUSGXB5ri4OCb5V6VKFezcuRNhYWEIDw/H4cOHUatWLSQnJzMXWZmlp6dj7NixePv2LcqUKQMfHx88fvwYT58+xenTp9GsWTOIxWLMnDkTwcHBrH23b9+OGzduwNTUFPPmzcOdO3cQERGB+/fvM6MS+Hw+kyQZN24c60n9woULERYWxvpP3yPAYmNjmZFDrVu31st7Ks755cuXz3ZbMzMz5nu2ZcsWpl0ul2PHjh0AoHH0HwDWjbS3tzcryUsyTJgwATVq1ECtWrXQqFEj9OvXDxs2bMjzm7rM3+ecTLtW7G9iYqLziorZ9Ymurq7MA0ZfX1/mYcXz58+1Oi7Ozs4ICwtjHjYpappl/i9zjUIHBwd0794dPj4+uHTpEkJDQ/H06VNcuXIFY8eOBZBx/lQ1AvHQoUNYvXo1ZDIZOnbsCD8/Pzx9+hRPnjzB/v370b17d/D5fI2zSxQ+f/6MoUOHIjY2FrVq1cLWrVvVJpU0CQwMhKOjI5YsWYK7d+/i2bNn8PPzY1bOXL16NZKSkpT2M4brXG3k5F5I13O+Qm7uGxSuXr0Kd3d3bN68GU+ePMHTp0+xY8cO2NjYIDk5GQMGDEBAQABat26NgwcPIjQ0FGFhYVi+fDlMTEwQExPDnHNViYqKgkAgwLRp03DlyhU8e/YMt2/fZka2+fv7sxLc+uLv74969eph27ZtePLkCcLDw7Ft2zamntnSpUuV9klJScHo0aMRFRXF6rfDwsLg7++Pv/76K9uFDfVBcT/VqlUrvTy8U/St2j4sHT58OPh8Pq5evcoqwXDgwAEIhUL06NEDjo6OGt9DcT914cIFVtK+MMvuXiM7CQkJzKCm3JQbkcvlmDVrFoKDg9GoUSMsWLAgx+8FZFzPvn//Hrt370bfvn0hFosxZMgQtQMmEhMTMWrUKHz79g2TJ09WesitLQcHB9SsWRPAj7+J7NAIQANo2LAh1q9fz1qF1cXFBcuXL0ejRo0glUpx/fp11hDQR48e4fjx4yhWrBgOHDjAOjE5OTmhZ8+eKFmyJEaOHIljx45h2rRprBWM1q9frxSHmZkZ6tati61bt6JZs2ZITEzEzZs31d5U9u7dG/Pnz2eNYFBMC9MXsVjMPFGuXbu20gVpbo7Dw4cPmZEYK1euZGXkS5YsiS5dukAqleLJkyd6/ZmyUtTQUleIX1eK+hPOzs745Zdfst2ew+Fg5MiRmDlzJrZv345evXqBz+czQ4dHjRqVbUfat29fHDx4EAKBAD4+Pjh27BiaNm2KatWqoXLlyqhSpQpsbW11+hkU06I1uXjxotINev369VUuk65Pb9++ZVZinDJlSrYjb6RSKTP1KT09HUlJSfjw4QMuX77MPC0sXry4XmO8e/cu81Rcm/oVqpw5c4a5uVc1ZVsxCuz06dPYu3ev0usCgQDh4eFMcfrsCvPWr1+fuZguiv744w8EBQXh5cuX6NOnDxITE1GsWDGVF9wKiu86n8/X6imfLtq2bctaBTjzza6bmxsWLlyocjqir68vYmNj4eTkhH379rHKGtSqVQt79uzB77//jpcvX8Lb25upCwYAR48excuXL2FhYYE9e/awpn24u7tj06ZNGDFiBG7duoVly5axHlooVtfr1q0bK2FqZ2eHpk2bomnTppgwYYJWq/nlFcV329HRUS9T7q5fv85cOPfo0UOrffr16wdfX1+EhYUhKCgIjRo1wuXLl/HmzRv8+uuvTEJBHRcXF3Ts2BFnz57FkydP0KJFCzRs2BC1a9eGq6srXF1d4ezsrPUNWHR0dLafCWRMG1W1CIUxLjyQuV5USkoKYmNjERISgp07d2LVqlXZPlTLCYlEwtRmdHd317kQemJiIvP31LRpU53+TrTpEy0sLDBkyBBs3boV79+/x8iRI5kRuLt370aPHj1QtmxZvY1o6tOnj8pZFS4uLpgyZQrz0PPy5cus80ViYiIz8rpXr16sRY7Mzc3h5eXFemCjyffv3zFkyBBER0ejevXq2L59e47PP507d8bixYtZI5GqVKmCf//9F926dUNKSgru3LnDerCQn9e5uf07zsm9UE7O+bm9f1IYOXIk/vjjD9b3tVGjRhgwYAA2b94MExMTrF+/nnmwqdC1a1cEBQXBz88PN27cwJ9//qnyOJUvXx6HDx9mjRAsXrw4pk2bhg8fPuDixYvYtWsXevfurXL/nJo/f75Sze8mTZpgzJgxWLp0KR4+fIj4+HhWXHv27MG7d+9gZWWFffv2sRYPK1++PIYNG4bIyEjWyt95ITQ0FIB+7qeSk5Oxf/9+ABlTgbVJ2pcuXRqdOnXCiRMnsHXrVqxevRrp6enYt28fqwSHJmPGjMHIkSMhEokwcuRIuLu7o2HDhnB3d4erqysqVaqksQxEVsOHD8+2Ly5TpozKRUsnTpyYLwsyZnevkZ29e/cy16eZy2Dpau3atTh79izc3Nywbt26XM3QmDRpEuuYtmnTBv3791e7IItYLMaECRPw+vVrdO/eXasFtzSpX78+QkJCtD630whAA6hduzarw1NwcHBgTqJZaw8oLrS6d++u9qlEo0aNYGFhAZFIpNPKT9bW1syF45cvX9Ru16FDB71MX8pKJpMhPj4eN2/exODBg/Ho0SPY2Nhg7ty5Stvm5jgonpx5eHhoHI6b1xRF/3N68y6Xy5GUlITg4GCMHTsWFy9eBJ/Px4IFC7Re2r1Tp05wdnbGp0+fcPr0abx69QrXr19H2bJltTqZlihRArt27WIuzL58+YIjR45gwYIFTO2Sli1bYu7cuQgJCcn2/aRSKUQiUbb/abMqUl5YvXo1JBIJqlatqrGzatq0KbZv347Lly8jODgYYWFhuHLlCrZt28ZcpIeGhmLy5Ml6/VnkcjlWrFgBAMyIPF19/PgRy5cvBwDUq1dP6SI2LS0NAoEAQMbT0fHjx+PIkSO4ffs2QkNDcfnyZUybNg18Ph/R0dEYN24c0tPTNX6mu7s7gIwbsLi4OJ1jLuhMTU2xfPly8Pl8JoGwaNEipnCwKorfgb29vcbaXjkhFouZv7WsI11evHiBFi1aYOHChcwIRIUzZ84AyEg0qappamZmxowcvHLlCmuEqGLfDh06qKz5wuVymdE7YWFhKuucKo6JKuXKlcv2CXxeUox4VHzXcyI9PR1v377F5s2bMXnyZABAly5dtL7psba2VipYrij3kN3oP4VFixYxDwfT09MREBCA1atXY8yYMWjRogW8vLwwYsQIHDt2LNu/ewBane91rXmV3+zt7bFmzRqcPn0at27dQnh4OG7duoX//vsPEydOhJWVFYRCISZNmpQnC5qtWrUK79+/B5fL1bn+rVwux9y5c5GYmAhzc3P88ccfOu2vbZ84efJkDBs2DCYmJpBIJMz0+23btqFNmzaoXbs2Bg4ciD179qgczaZPipFvWa9z/f39kZycDFNTU43Hwd3dXePfcUJCAoYOHYp3797Bw8MDO3bs0HnBn8waNGigchpi1apVmWu9rPcK+X2dm5u/45zcCynocs7X1/1T48aNVSarFd8JqVSqdN2UdRtNU/tKlCihdnqwovbq27dvER0drfY9ckLdlPbMyd2scSseHPTu3ZuV/MtPcXFxzHVTTu+npFIpvn37hsuXL6NPnz748OEDSpUqpXLxNXVGjhwJLpeLCxcu4N27dzh+/Di+ffvG3Gdlp3HjxlixYgVTT+758+fYuXMnZsyYgW7duqFWrVro2rUr1qxZo9XU0MzXcer+02Ykc17J7l4jO2FhYcyAkW7duqFatWo5iuP48ePYsmULSpQoAV9f31ydq4GMh/KZcyS3bt3CiRMn1E4nnjdvHu7du4cGDRropWay4hyTdWFBdWgEoJFRjJrKWldPkUTZs2cPa/nyrBQXV6qmV8TExODSpUt4/Pgx3r59i6SkJAiFQgiFQubz8uukEB0drXY0hLu7OxYvXswMi84sN8dBUWj1119/zXHc+qAohq/r9F91x8vFxQV///03GjVqpPV7KZ5M/fvvv9i2bRt+/vlnyOVyjBw5UuukQrVq1XD27FkEBATg6tWrCAsLw/v375nvUFRUFKKionDs2DF06NABS5cuVfsUa8KECfny1CknHj58yDx1njZtmsYna6rqpLi4uMDFxQVNmjTBsmXLsGvXLjx48AD3799X+2RIV2fPnsXTp0/B4/F0vpEDMi6kRo0aBYFAACcnJ6xZs0bp58x8c/bnn38qLQZQtmxZjBo1CsWLF8fs2bPx7t07nD9/Ht26dVP7ucWKFYOFhQVSU1Px9etXvY8oLgiyJoKzKzytoCk5MmbMGLUrgqsbjQFkTHHKfDEvlUqRmpqKFy9e4Ny5czh06BD279+PxMREZqrUx48fmdIRXl5eamNSLBgjkUjw9OlT1KtXD2KxmCkyrmnfmjVrMtPvQkNDmQdWDRo0wLNnz+Dv74/JkyejU6dOqF27tlF9j3J6vp81axZmzZql1G5qaoqRI0fqdIMCZBQs3717N4KDg7FhwwaEhoaiVq1aWp+DLCwssHz5cowYMQJ+fn4IDg7Gy5cvmRuwpKQk3Lx5Ezdv3sTmzZuxYcMGtRfmzs7ORjmKT1fW1tZKyS9HR0c4Ojri559/xm+//YY+ffowMxuWLVumt88+cOAAdu3aBQAYP368xkW7VFmxYgUzWuGff/7Rqa6jLn0ij8fDX3/9hf79++PMmTM4fPgwYmJimNdTU1Nx//593L9/H1u2bMHKlSt1upbJSiQSITAwELdu3cKrV6/w7ds35jo3JSUFgPJ1ruLa0MPDQ20CJjtCoRAjR47Eixcv4O7ujp07d+o0C0IXHA4HNjY2iIuLU7pXyM/r3Lz8O1Z3L5STc74+7p80UYwW1PRQV5FcSE1N1em9FTKfS1+/fp0vixVlXuAg8+8hJiaGSWroayZTTij6VnNzc40PTbNSLCakipeXF5YsWaLT8a1YsSJatWoFf39/bN68GSEhIeByuTqt5Nq5c2c0a9YMZ8+eRVBQECIiIvDp0yfI5XJIpVJEREQgIiICO3fuxOTJkzW+9969e/V2b6Fv2txraPLhwweMHTsWIpEIVapUwfz583MUx507d7BgwQJYWlrC19dXL9PVV69ezZRlCA8Px86dO5m1E/bt28cqpbJhwwacPHkSrq6u8PHx0XrwjiaKBUcy96+aUALQyCiGHGftSBQnuqwjL9RRdGQK69evh6+vr8oEH4/HY4rV5qfMTzYVRZ6LFSuGPXv2qF0ZNzfHQbGv4o/EUBQXobo+bch8vKRSKaRSKUxNTbFjxw6tav9lpSgOryjYm5MVKk1MTNCqVStmJUHFwjLPnj3DgwcPmCfr586dQ7FixTBv3jyd4zQ0xci6+vXro3Hjxrl6r7FjxzKrud29e1cvnbRIJGJWTuzSpYvOBfrj4+MxbNgwvH79Gvb29ti+fXu2F1Oakk/dunXDypUrER8fj7t372pMAAIZfwepqanM30VRkpqaij///BNisRilSpXCly9f4O3tjcaNG6uta6K40UlMTIRIJFI5QkTxBFgVXUZV8Xg8WFtbo06dOqhTpw6cnJywdu1anDlzBqNGjYKrqyurbqymkXYlSpRg/r/iBishIYE5l2val8/nw97eHrGxsaybs7Fjx+Lhw4d49OgRLl68yKyM6ezsjBo1aqBdu3Z6qw2UU4rvtaqRLppkXqAk83TsMWPGYPz48TrHkblguWLl0ewWe1LF1dWV9ZAhJiYGz549Q1hYGC5evIjXr18jOjoao0aNgr+/v0GnXxuap6cnmjVrhkuXLuHu3bt6e9+jR48y01R79uyp8/dh3bp12LlzJ4CMEXq69vs56RN/+uknjBs3Dmlpadi6dSs6d+6MLl264OnTp7h06RLCw8MRFxeHiRMn4ty5cyhTpoxOMQFAcHAw/vrrL5UjLjgcjtqpxopzSk4+E/hRx/TJkyfgcDhYuXKl2mtYfcnuXsHQ17m5pe7ny8k5P7f3T9nRZvE9bbbRJHMyLnO5gbyUeUGMzL8HxfEEcv43ow+KmQS69q1ZFxMSi8WQy+WoVKkSdu7cmaPf1ejRo+Hv788s0NamTRudSzLY2Nigb9++6Nu3L4CMny8yMhLPnj3DzZs3mQVoVq1ahbJlyxp0JltO5OReI7OoqCgMGTIEsbGxcHZ2hq+vb44XY1y5ciVkMhnWrl2r91I6NjY2aNCgAerXr49evXohLCwMS5YswcGDBwFkTDX38fGBk5MTtm7dqvP3V9PnAto/ZKAEYAGhuGlbsGAB+vXrp9O+mVcnqlKlCn7//XdUr14dzs7OsLOzg7m5OQYOHIj79+/rPW51sj45VBS6jY+Px8SJE7Fjxw6VJ+HcHAdFp66PTLs+6HpTmnlawosXL9CvXz8kJydj3LhxOHTokM5PmxXF4VevXg0AGDZsWK4vUvh8PrOEfLdu3TB16lT0798f79+/x4kTJzBr1qw8mUaeV/z9/fHo0SMAUFu3RRd2dnZwcHBAbGysxgV3dLF//35ER0fD1NQUkyZN0mnfmJgYjBgxApGRkXB0dMSOHTvUTnHKfAGqWAlcFS6Xi3LlyiE+Pl6rJ+mGmtZtDJYtW4a3b9/C2dkZx48fx6BBgxAZGYm//voLR44cUXmuUlxUSiQShIWFoU6dOkrbqCo03rx581xPHerevTvWrl0LIOMpem6KL+tK8T3J/H2xsbHBwYMHERAQgCtXriAkJATv379HdHQ0oqOjcf78eTRq1AibN2/O9bktt3Q93y9cuBDdu3cHkPG7HjVqFG7duoVNmzbB09NTq5VIsxo+fDgOHz4MsVgMd3f3HC0UlFXJkiVRsmRJNGvWDBMmTMCSJUuwb98+xMbGIiAgAB07dsz1ZxRkijIZ+jrf7969G8uWLYNcLkffvn2xYMECrb9bcrkcy5cvZ0YOTps2jVlgQFu57RMVi2CZm5ujUaNGaNSoEUaPHo2dO3di+fLlSElJgZ+fn9ZT0xUUK5KmpqbCysoKPXr0wK+//oqyZcvCyckJVlZWOHnypMpRtYpzSk4fFChqLvF4PEilUsyYMQP79+/P9ZSynDC261x9y8k5Pzf3DcYi84M7Q19DZ06QFsTvmZeXF2sk6MmTJzFz5ky8fv0as2fPxsqVK3U+F3h4eKBRo0bMgnY5ebiWlZWVFWrVqoVatWqhf//+ePjwIQYNGgSxWIyjR48WqASgLvcaqrx69QrDhg1DTEwMypcvj127duXqIYdiEI02/d+gQYMAZJx7si5EpwmXy0W7du0QFhaGhw8fIiUlBZaWlkwfGBsbq1VtYMVo1RYtWmDTpk1qt9N1gUmqAVhAKBYM0HVpaADMxV6zZs1w8uRJDBkyBLVr10bJkiVZT3gMqWHDhvj7778BZNxYzpo1S2ViIDfHQZEdT0hIyHmgeqB4YqEpiZKdzAVLX716hfHjx+v81BLIqNllY2ODYsWKZbuybU4oCiwDGSNhClKdN7FYjDVr1gDIeJqnanpvTiiezuhjZExCQgKzsueAAQN06hBfv36NPn36IDIyEuXKlcPhw4c1dsimpqYoWbIkAPbK06ooRitpU0RZ8XeQ0yd5BVVAQAAOHz4MLpeLZcuWoVixYli2bBlMTEzw9OlT5qFNVg0aNGBGsuR1ge2sMk+PU/zeMk+9yjwyIKvM0xIU53E7Ozum5ICmfUUiEXPezjpSkMvlokWLFli6dCkuXbqE4OBgbNu2jUk8BQUFMYW9DUEf53tFcfkqVapAIpFgypQpzII8ulAULAe0r/2ni8z1GgHovVZVQaQYAZrb85tcLseqVauwdOlSyOVyTJw4EX///bfWN6pisRjTp0/Hrl27YGJigsWLF+uc/NNHn6j4O8jaNwwdOpQ5Rjn53hw6dAipqamwtrbGiRMnMHv2bDRt2hQVKlSAtbW1xuOkOB99/vxZ589V6Nu3L3bv3g0zMzNERETk+Jost4zlOjcv6XrOz819g7HI3D9mHk1vCJkHG2iqxZjXFNfQmWsK50S3bt2Ysih+fn7MOU5Xij61SZMmOa5Lp0nt2rWZUg/q6soZI13vNbIKCQlBv379EBMTg+rVq+PQoUO5Hnlqamqq8b/MiW0+nw9TU1OdFmJRUDwEksvlTN/H4XCy/fzMSX5VMami+DvQdsV5SgAWEIoLrStXrug0hSsuLo45Qffs2dPgT4406dGjB/PU5OzZs8yqbJnl9DgAP0bOKFZQNBRF563tPH11Mi9Zfv/+fcycOVPn0VTW1ta4desWbty4odMNiqab9awUJy0ej8caRWbsjhw5gnfv3oHH42HKlCl6ec8XL14wnYA+LhC2bNmChIQE2NjY6HQzFxwcjH79+uHTp0/w9PTEoUOHtKpRpqjTFhQUpLZeaHp6OpMgzG7V02/fvjG1ZQx9UZufvn//jjlz5gDIqM1Wr149ABlPkRW1XXx9fVWu5uXg4IB27doBAE6dOpWvKyhnvkFWJINdXFyYJOC9e/fU7qt4jcfjMfVdM69krGnfkJAQ5vuWXdLBxsYGTZo0werVq5nva9aFiBRJx/y4QdfX+d7a2hpbt26Fk5MTUlJSMHr06BzdBCxcuBAPHz5kvkPaUKzWp43MF6nGVIvRUDLXl8spkUiEv/76C9u2bQOPx8PChQsxYcIErfdPSkrC6NGj4efnBwsLC2zYsEHrFaQz07VPjIuLU7pOU3xnFeePzBTXp1nr8Gnz9/r27VsAGQ9Iypcvn21smSkWOwgLC8tRQsPDwwN///036tWrh5UrV4LL5eLu3buYMWOGzqMycstYrnPzU3bn/NzcNxgLxQwtc3NzVi0xQyhXrhxznn/+/LnB4lD0rSkpKbleQEhRTxLIuPZSTNfURb169fDo0SONo7SySk9P12lKt+K4F5S+Naf3GgqXLl3CsGHDkJCQgCZNmmDPnj16+dmPHTuGsLAwtf8pSgsAGTNqwsLC1NbV1kRxL2Rqasr0azY2Nho/OywsjLUSvaJt3bp1Gj9LU9+qCiUACwjFVKAPHz4w9XvUCQwMZC6UMk97Ujf66uvXrzoldPLSlClTmKLa27dvx4EDB1iv5/Q4AGBq1QQEBKg9FtqunpMbinp9L168yPV79erVi1ld89y5c0xhfl2YmZnp/GRj0KBB2LJlS7Z121JSUpjVwpo0aZKjJyiGkJyczIzA+v3331GxYsVs93n37h3u3Lmj9nWZTMbU6rOxscn19Lvo6GjmKfeIESO0Ll6uGAUsEAjQunVr7N+/n3lCnh3FTePnz5+ZkcVZ7d+/H6mpqeDxeNmuKK24SbG1tS0wFzT6MGfOHHz//h2VK1dWWsxh/PjxcHNzY6aSZS2CDgBTp06FtbU1xGIxxo0bx0zJy2uKldf4fD6r9pdi5MXBgwdVTvtOTU3F9u3bAWRMY8g8NU5x0X3+/HmVK6VKpVLmgtrDw4NV43L37t0akwKKhELWB1+K75piAZK8pEhG6ON8X6ZMGWzZsgUWFhb49u0bRo4cqXPCwsTEBFZWVjpNcTp8+DBGjBjBJFk02bNnD4CM70hOpikXJCdOnND4/bt48SKePn0KIKPIe07ExcVhyJAhOH36NGxsbLB161adRutHRUWhT58+uHXrFkqUKIH9+/ejWbNmOseRkz7x+vXr6NOnD6t8iSJhkLVu8cmTJ5kb4ZYtW7JeU/y9vnz5Uu3xVlxbqJtqrSikr0qrVq1gamoKkUjElDhQ5e3btypHkWUezd+mTRvm4c6FCxewZMkSte+XF4zlOjev5OScn5v7BmOQlpbGlPVo3769wctZmJqaMg8tT5w4oXLggUgkwqdPn/I0DgcHB2Y0oj761yVLljCLlS1atChHC9xYWlrqNC06NjYW7du3x4ULF7J9WPD69WsmCaWou27McnOvAWRcb06aNAlpaWno168fNm/ebFQzhc6ePavxXBEdHY3jx48DyFhpO6+nyyv6N23XBKAEYDYkEgnev3+f7X957bfffmOWyt68eTMmT56MR48eQSQSQSaTISYmBqdOncLAgQMxcuRIZrSEooA7APj4+ODmzZtITU2FVCrFu3fvsGHDBrRp0wbv3r3L859BGxwOB8uWLUPt2rUBAIsXL8bVq1eZ13N6HICM5IWtrS2EQiHGjBmDp0+fQiaTITU1FUFBQRg5ciQznTIv1axZEwD0VhT8zz//RNu2bQFkPKnImjTNC4qFJ5o2bYpFixYhICAAsbGxkEqlSE9PR1RUFA4cOIBu3brh5cuXsLKywvTp0/Mklnv37jF1B2fOnKmX99y2bRvi4uJgbm6u9UiLmJgYDBkyBP3798fx48cRHR0NqVSK5ORkhISEYPTo0QgICACQ8bRRVeFXHx8f5mc5ceKExs9bs2YNRCIRnJycMHjwYK1i3LdvH2bOnAmxWIzRo0dj/fr1Wg8XBzJGVyhuHr29vbFq1Sq8f/8eMpkMsbGx2LBhA1NTcvDgwdkWQVZczNSoUUPrGAo6Rf0iExMTLF++XCkpzufzmanA7969U5nUd3FxgY+PD8zMzPDt2zf0798fM2bMwM2bN5GQkAC5XI60tDRERUUhMDAQy5Yt03llQyBj2sL3798RFBSEMWPGMMn8kSNHsi7kRo8ejeLFiyM+Ph4DBgxgbqIkEglCQkIwePBgvH37FpaWlkojh3r37o1KlSpBJBJhyJAhOH/+PFJTUyGTyfD8+XOMGTMG9+/fB5fLxV9//cXad8OGDWjZsiU2btyIZ8+eMf3A58+f4ePjw5xjs452U/Qvfn5+uH79OoRCIeLi4nDr1i293/wpvttRUVF6mRLr6emJ1atXg8vl4s2bNxg3bhzS09Nz/b7ZuXnzJtq1a4eRI0fi6NGjePPmDdLS0iCTyfDt2zcEBQVh4sSJ2LBhA4CMRHZejept3rw5c540pA0bNqB58+ZYv349QkNDkZaWBolEgrdv32Lz5s1MjbwaNWqorIX48eNH5ucYOHCg0utJSUno1asXQkJCULZsWRw5ckSnhaiioqLQs2dPvHr1Cp6envjvv/9yPHooJ30iAISGhqJHjx7o168fVq9ezYwmrVGjBuLi4hAcHIxZs2YxSbOePXsyI/IUFH+vQqEQK1euRGxsLFJSUvD8+XPmoUGTJk0AZIy43LBhA5MITEhIwPnz59G1a1fs3btXZYwlS5ZkHqQeOnQIf/31F16+fAmZTIaUlBQ8evQI//zzDzp16qRVUmPAgAHMSO59+/Zh69atWh+v3DKW69y8kpNzfm7uG/JTZGQkdu/ejXfv3jH9Z3BwMAYNGoQ3b97AxsZGp7+9vDR06FAAwKNHjzB79mzm7yIuLg6nTp1Ct27dNI7q1xfF6E593E+Zmppi48aNKF++PKRSKf744w+Ehobm+n2zExsbiylTpqBNmzbYsGEDgoODmSn8ycnJePHiBby9vdGnTx+kpaWhSpUq6N+/f57Eoss9iCa5vddYtmwZVq9eDR6Ph/nz52PBggU6z2AcOHAg87PkxZTpNWvWoGXLlvD29kZwcDCSk5Mhk8nw8eNHHDt2DH369EFSUhIsLCyUHvTnBV3vp4x3PqiRiImJQevWrbPdTh9PH7KzatUqzJo1i1n5SjFElcvlsp4cZF49EADmz5+PAQMGMEU4s+7j5uaGlJQUo6mPoTgJ9+nTB+/fv8e0adOwZ88e5kud0+Pg6OiIpUuXYvLkyXjy5Am6d+/O2ofL5cLDwwNPnz7N00x948aNsXr1aoSEhOD79+86PRFRhcPhYMWKFYiJicGjR4+waNEilCxZUukpuj65u7sjOjoaiYmJ2LdvH1NQN+vvAMgYAbNq1SqNyaDNmzczo4s0uXjxIpydnXMXfDZiYmKwe/duABkdiLbDqRWCg4OZQrFZjweHw8H48eNV3uzp4unTpzh37hyAjBttbTtWxWgUIKM2qLpRfApdunTBokWLWG2rVq3C2LFjcf/+fWzbtg3btm1T+jn79euXbcJXLpfjypUrADKmsxcFb968YVbQHDt2rNqb8WrVqmH06NHYuHEjDhw4gBYtWqBhw4asbRo2bIgTJ05gzpw5ePz4MU6fPo3Tp08DUP13CGQkjxRP7lVp27YtMzIs88qzClwuF0OHDlVabMbR0RFbt27F6NGj8fbtW4wcOZL1PkDGKJl169YpnQcsLCywZcsWjBgxAu/fv2culDL/DHw+HwsXLlRaNdvMzAwxMTFYv3491q9fr/JnHzx4MPOARGHUqFG4du0aM5U2swcPHuh1hIWTkxPc3d3x/PlzXLp0iblxyo0WLVpg5syZWLJkCUJCQjB9+nSsW7cuz1Y7Llu2LCwtLZGSkoLAwEAEBgYyr2U93mZmZpg4cSKTAFElOjpaKcmjytixY5naTHll5cqVuHTpEvNvxVTtffv24cyZM0z7qlWrVF5Yx8bGYuPGjczouKzHo2bNmti4cWOOyq8kJCQw12WfPn3SarXezH3kp0+fEB8fDyDjGlWba4LMo/UUctonli5dGvb29hAIBAgJCWFNy2zSpAnrOPF4PAwdOlRlv9GkSRPUqFEDT548wd69e1mJvFmzZqFy5cro1q0bzp8/j9u3b8PHxwc+Pj6s34WlpSV+/fVXtdO4Jk6cCIFAgIMHD+LUqVM4deqUyvOotteG06ZNw9evX3H69GmsWbMGjo6O+P3337XaNzfy8zrXEH/HOT3n5/S+IT8JBAIsXboUS5cuVdl/bty4Mc+vf7XVuHFjDB8+HDt27MCJEydw4sQJ1rG0trZG+fLl8e7duzy/nwoKCoK/v79ekqP29vbYtm0bevXqhfj4eIwePRpHjhxB2bJl9RCtMktLS5QrVw7v379nRqgqRqmqOv80atQIK1eu1Dibavjw4dleC5QpUwb+/v65/wHUyO29hmJ/qVSKZcuWYdmyZRr3z49rhaw4HA5iYmKwZcsW5qFK1t9ZsWLF4O3trfOK0LqKjo5mZrRo+5CQEoAFiKWlJdatW4d79+7hxIkTePToEb5+/QqJRILixYvD3d0dzZs3R9u2bVkJAXd3d5w4cQLr1q3DrVu3kJiYCBsbG1SvXh2dOnVCx44dMXjwYKNJAAIZQ7t9fX3Ru3dvCAQCjBkzBocPH0a5cuVyfByAjKklR44cwaZNmxASEgKhUAhHR0d4eXlh2LBheP78OebMmZOnq7dVrVoVrq6uePnyJY4dO6aX1aLMzMywadMm9OrVC1FRUUzSVDHaUN82bdqEDx8+4Nq1awgODsbr16/x9etXpKamwtzcHA4ODvDw8ECrVq3Qrl27bG+oFSsyZSc/Voxdu3Yt0tLSYGtrq/EmNqu6deti27ZtCAwMRGhoKD58+IDk5GSYmpqiRIkS8PLywsCBA/Wy5PyKFSsgl8tRrlw5ZpEVXWkz0kkikSi1WVtbY/fu3Thz5gxOnz6NiIgICIVCFC9eHLVr10b//v2VEjWq3Lp1C1FRUeDz+dlOFS4MxGIx/vzzT6SmpsLT0zPbv/uxY8fi6tWreP78OWbNmgU/Pz+llb4rV66MI0eO4OHDh8zqnNHR0UhISICZmRmKFy8ONzc31K1bF82bN8+2NlbWhB+Px4OlpSWcnZ1Ru3Zt9O7dW23x5p9//hnnz5/H7t27ce3aNURFRUEmk6F06dJo2rQphg0bpjZxULZsWZw+fRr79++Hv78/3r59C5FIhBIlSqBhw4YYOnSoyimH586dw/nz53Hjxg1EREQgPj4ecrkcpUuXRs2aNdG7d2+V30VPT08cPHgQPj4+ePz4MVJTU1GsWDFUqVIlT6ZXderUCc+fP8fhw4cxZMgQvSTqFH32vn374O/vj6VLl2L27Nl6iFZZly5d0LJlSwQGBuLOnTuIiIjAx48fmSfednZ2qFChAho2bIiePXuiVKlS2b6nNuef/KjX9f37d3z48EGpPSEhgbWQgqqp+Dt27MClS5fw4MEDvHnzBt+/f4dEIkGxYsVQtWpVdOrUCZ06dWJq2OWGqnOxKur6yNyMasppn9igQQPcvHkTt27dws2bN3H06FGIxWKYmJhALpfDzs4OLi4uqFevHnr27Kl2WjGPx8POnTuxbt06XLlyBV+/foWlpSVcXFyYVZZNTEzg6+uLnTt34sSJE/j48SP4fD7Kly+P5s2bo3///rhx44baBCCXy8WCBQvQvn17HD58GI8ePUJsbCy4XC7Kli2Lxo0bo0ePHlpNfQYybg4XL17MjKCeP38+HBwccjT9Wlf5eZ2b33/HOT3n5+a+Ib/Url0bv/zyC65fv86MAnRyckLjxo0xZswYo0n+KcyYMQOenp7Yu3cvXrx4AalUyvT3w4cPx+rVq/Hu3bs8vZ9q164dVq1ahcjISDx8+JAZLZwbZcuWxaZNmzBkyBDExcVh5MiROHToUJ6UqXFwcMClS5fw+PFjBAYG4smTJ3j79i3i4+ORlpYGKysrlCxZEjVr1kSXLl3wyy+/ZPue2pzr83OUa07vNYCM/sxYrhWyOnr0KK5evYq7d+/ixYsX+PLlC1JTU5nroaZNm6JPnz75Ut7oyJEjkMvlcHV11foekyPPjztqQgqIDRs2wMfHB3Xq1MlREVhtnTlzBtOnT4eTkxMuX75ssAsOQgxl0KBBuHfvHnr37o1///3X0OEQkmeSk5PRokULCAQCbNiwoUDU7yFEn06dOoW//voL9vb2uHr1ap4mBYhm+XWdS4o2xTXe2LFj9baQnipz587FsWPH0Lx5c2zevDnPPocQY5SYmIhWrVpBIBBg9erVKsuNqEI1AAn5P6lUygyJzjrdTt86duyIypUrIzY2Ntuh0YQUNteuXcO9e/fA5/P1MgKWEGNmbW2N4cOHA8ionWmoGlOEGEJKSgqzguHw4cMp+WdA+XmdS4qujx8/4vHjxwDy/ns2btw48Pl8ZkYSIUXJpk2bIBAIULlyZZ1mU1ECkBQphw4dwpYtWxASEsIsGy+RSPD06VNMmjQJkZGRsLGxQe/evfM0Di6XyxQI37x5M16+fJmnn0eIsYiPj8f8+fMBZNSTKlOmjIEjIiTvDRgwAM7Oznj9+jVTL46QomDZsmX49OkTnJ2dMWDAAEOHU+gZy3UuKdyWLl2KgwcP4vnz58xCVIo6sWPHjkV6ejpq1qypse6wPpQpU4apqz1nzhyV5RoIKYyCg4OxZ88eAMD06dN1ql9KU4BJkfLvv/+yVsnl8Xis2gGKQvW6rLSXGwsXLsT+/ftRoUIFHD16VKnGFyGFiVgsxrBhw3D//n14eHjg8OHDeVJzjRBj9PjxY/Tv3x8ymQybNm3Kl3pghBjSsWPHMHfuXJiYmODAgQN5VpeY/GBs17mkcOrYsSNr8IKJiQmrllv58uWxY8cO/PTTT3kei0gkQp8+ffD06VO0b98ea9asybNFsQgxBp8/f0bPnj0RGxuLgQMHYu7cuTrtTwlAUqTcuHEDJ0+eZIoHC4VCWFhYwMXFBQ0bNsSAAQNQunTpfItHJBKhV69eiIiIQK1atbB9+3aaHkMKJalUismTJ+Py5cuwsrLCyZMnUa5cOUOHRUi+2rZtG1atWgVLS0v4+vrCy8vL0CERkicuXLiAadOmQSqV4s8//9RpARGSc8Z2nUsKp7179+LmzZt4/fo1BAIB0tPTYWNjA1dXV7Ro0QK9evWCpaVlvsXz/v17dOvWDUKhMEcJEUIKitjYWAwYMADv3r1D1apVcfToUZ0HU1ACkBBCCCGEEEIIIYSQQszE0AEUdDKZHDK5LEf7isRSmPJ5eo6oYKNjooyOiTI6JsqM8ZiY8IwrHkOhfkK/6Jgoo2OijI6JMmM8JtRPZKB+Qr/omCijY6KMjokyYzwm1E/oFyUAc0kmlyE5JT1H+0a+/4Iq5UrpOaKCjY6JMjomyuiYKDPGY2Jvk3/TP4wZ9RP6RcdEGR0TZXRMlBnjMaF+IgP1E/pFx0QZHRNldEyUGeMxoX5Cv2gVYEIIIYQQQgghhBBCCjFKABJCCCGEEEIIIYQQUojRFGBCCCGEEEIIIYQQkivR4X6IDPBGWsJnmNuVRpVmU+Hs2cnQYZH/owQgIYQQQgghhBBCCMmx6HA/hJ+bB5k4DQCQlvAJ4efmAQAlAY0ETQEmhBBCCCGEEEIIITkWGeDNJP8UZOI0RAZ4GygikhUlAAkhhBBCCCGEEEJIjqUlfNapneQ/mgJMCCGEEEIIyRbVdiKEEKKOuV1ppCV8UtlOjAONACSEEEIIIYRopKjtlHFzJ2dqO0WH+xk6NEIIIUagSrOp4PLNWW1cvjmqNJtqoIhIVpQAJIQQQgghhGhEtZ0IIYRo4uzZCZ4dFsLcrgwADsztysCzw0IaKW5EaAowIYQQQgghRCOq7UQIISSr6HA/PPNfDEmqAADAt7BH1TZzKOlnpCgBSAghhBBCCNGIajsRQgjJLDrcD6FnZgEyCdMmThUgzG8282+qG2tcKAFICCGEEEII0ahKs6kIPzePNQ2YajsRQkjRFRngzUr+KcilYkT4L4ZUksb0GYq6sQAoCWhAVAOQEEKIEjOfdbC3tYK9rRV4t28ZOhxCCCEGxqrtJAe8gsTovfglPBr2Aef7N0OHRwghJJ9pKgEhTYpHg/8+ou+KKPRdEQXI5VQ31gjQCEBCCCEZJBJYTBwPswP7Wc3S+r8YKCBCCCHGxLlCc1SZsxX8gCimTVrZFfLijgaMihBCiCGoKg1hmiJFy0NfYff9x8jAj5XNAQ4HANWNNTRKABJCSBHHEQhg1aUTTB49ZNqkFSsh+dJlyEuUNGBkhBBCDElR3J3/9Rva7I2BhVDGvCZu3ATCI8cAa2sDRkgIIcRQqjSbytQAtP0mRoedX1ivv6tqibvtHSDncZg2qhtrWJQAJISQIor76hVsGtYHJ+1HPSdRx05I2bkbMDc3XGCEEEIMLjrcDx+3/IGee9mjOyLr2EK8dgvA4yJyV2cq7k4IIUWUs2cnWN9+hHJ/Lme1x4zpg28DuyD8/HzIqW6sUaEEICGEFDEmgTdg3bE9qy1t+l9ImzuPGZ5PCCGk6OIf/w8eQwfDI1Pbg1bF8KpWxmg//pWlVNydEEKKMLMNPrCYPRP2mdqEBw9D3LETzAA4AwCHQ6sAGxlKABJCSBFhumsnLCdPZLUJt++EuFdvA0VECCHEaMjlMF+yGObLl7Kar/V2Qkw59qhwcapAaXdFcXe6uSOEkEJKIoHF5Ikw27eX1ZwUdBvS6jWUNnf27ER9gpGhBCAhhBRmMhksZs6A2ZbNrOakq9ch9fIyUFCEEEKMRno6LIcPhemZ00yT3NQUV8a74xs/Xqe3ouLuhBBSCCUkwLprZ5iEBDNN0nLlkHz5KuSlqKZfQUIJQEIIKYySk2HVpyf4gYFMk8zJCUk3giD/6ScDBkYIIcQYcGK/wrpNa/BevWTaJDVrQnj6LOTFiqFMuB++/b+4O2s/Hh88UytIVIwCpOLuhBBSeHDfvMmoF56SwrSJ27WHcPdewMLCgJGRnKIEICGEFCKcqCjYNGkE7vdvTJu4aVMIDx2llRoJIYSA+zQctg3qs9pEffshZcMmgM9n2hTTtp75L2aSfXwLe1RtMwcAEH5uHlMDEKDi7oQQUljwgm7Cpn1bVlvan9ORNm8B1Qsv4CgBSAghhYBV6GPY//w7qy19zFikLlsBcLkGiooQQoixsL9xDfYTRrLaUhcuQvpk9Um77Oo3UXF3QggpPJyOH4H937NZbULf7RD36WugiIi+UQKQEEIKMP6xo7AaPpS1AlfKOh+Ihg4zVEiEEEKMiJnPOljMmc3qJ5IPH4WkfYdcvS8VdyeEkEJAJoP57Jkw37SR1U8kXb4Gaf366vYiBRQlAAkhpKCRy2G+8B+Yr1rJak4+dwGSxk0MFBQhhBCjIZHAYuJ4mB3Yz2pOvH0XMs+fDRQUIYQQoyEUwqpfb/ADApgmcTEHpATdhtzFxYCBkbxECUBCCCko0tJgNWQQ+OfPMU1yS0sk3bqL5yZWqFKulAGDI4QQYmgcgQBWXTrB5NFDpk1asRKSL13Gi1Q59ROEEFLEcaKjYfNbY3BjYpg2ceMmEB45hsjvyajiQv1EYUYJQEIIMXKcrzGwbtkCvHdvmTZJ7ToQnjoDub19RsP7L4YJjhBCiMFxX73KWKkx7ceiHKKOnZCyczdgbp7RQP0EIYQUWbzgYNg0b8pqSx81BqkrVv6oF/492QCRkfxECUBCCDFS3LBQ2P7agNWWPnAQUtf5ACZ0+iaEkKLO5MZ1WHdi1/JLm/4X0ubOo5UaCSGEgP/fMVgNG8JqS/FeB9HwEYYJiBgU3UESQoiRMTl3FtZ9e7PaUpcsRfqESQaKiBBCiDEx3bkDllPYfYJw526Ie/Q0UESEEEKMhlwO8yWLYb58Kas5+cxZSH5rZqCgiDGgBCAhhBgDuRxma9fAYsF8VnPy0eOQtG2bLyFEh/shMsAbaQmfYW5XGlWaTaUVHgkhxFjIZLCYMR1mvltYzUlXr0Pq5WWgoAghhBiN9HRYDh8K0zOnmSa5qSmS7tyHzNXVgIERY0EJQEIIMSSxGJbjxsD0yGFWc+Ld+5BV88jzj/+R9PsEgANADgBIS/iE8HPzAICSgIQQYkjJybDq3RP8m4FMk8zJCUk3giD/6ScDBkYIIcQYcGK/wrpNa/BevWTaJDVrQnj6LOTFihkwMmJsKAFICCEGwImLg1XnDjAJDWXapFXckHzRH3JHp3yJIfzCP4gKOQxF0u/H/2aQidMQenomQk/NoBGBhBCSzzhRUbBp0gjc79+YNvFvv0F48AhgbW3AyAghhBgDbngYbBv+wmoT9e2HlA2bAD7fQFERY0YJQEIIyUfcl5Gwqe8FjkTCtIm6dkPKth2AmVm+xREd7oeokEPZbyiXAqARgYQQkl949+/DpiW7RlPauPFIW7Lsx0qNhBBCiiyTC+dh3Ztd8zV14SKkT55qoIhIQUEJQEIIyQcmAddg3YWdOEudNQfpM2cZZKXGyABvnfeRidMQGeBNCUBCCMkD/COHYTVyOKstZf0GiIYMNVBEhBBCjInZOm9YzJvLaks+fBSS9h3U7EEIGyUACSEkD5lu3wbLP6aw2oS790Lc/XfDBPR/aQmf83U/QgghKsjlMF/4D8xXrWQ1J5+7AEnjJgYKihBCiNGQSGA5fixMDx1kNSfevguZ588GCooUVJQAJIQQfZNKYTH9T5ht92U1JwUEQlqnjoGCYjO3K/3/hT/U4PCY6b9Z9yOEEJJLaWmwGjII/PPnmCa5pSWSbt2FrFIlAwZGCCHEGHDi42HVpSNMHj9m2qSVXZHsfwlypxKGC4wUaFRIhBBC9CUpCdbt2sC+mC2T/JOVLo2E5y8hSBQaTfIPAKo0mwou31yp3aVOX7Sb+xzVuyxTep3LN0eVZlRbhBBCcorzNQY21T1hX6I4k/yT1KmLhA/RSPgSS8k/Qggp4rivXsHOsRjsyv3EJP9EnbtAEBuHpIePKflHcoVGABJCSC5xPnyATeNfwY2PY9rEzVtAePAwYGlpwMjUU9TxiwzwRlrCZ6VVfrN7nRBCiPa4YaGw/bUBqy194CCkrvMBTOhynBBCijqTG9dh3Yldyy/tr1lImz3HIPXCSeGU7RXHgwcPcvzmXl5eOd6XEEKMHe/eXdi0asFqS5swEWmLlhSIlRqdPTtpTOhl93phQ/0dIUTfTM6dhXXf3qy21CVLkT5hkoEiIrlB/QQhRN9Md+6A5RR2nyDcuRviHj3V7EFIzmWbABw4cCA4Ocw4R0RE5Gg/QggxZvyDB2A1ZhSrLWXTZogGDDJQREQfqL8jhOiFXA6ztWtgsWA+qzn56HFI2rY1UFBEH6ifIITohUwGixnTYea7hdWcdO0GpHXrGigoUhRkmwDs2LEjq6OLiorC48eP0a5dO5iomLIQEhKC+Ph4tGzZUr+REkKIIcnlMF8wD+ZrvVnNSRf8If21kYGCIvpE/R0hJFfEYliOGwPTI4dZzYl370NWzcNAQRF9on6CEJIrycmw6t0T/JuBTJOsZEkkBQRC/tNPBgyMFBXZJgBXrVrF+vfMmTMhFArh7e2tcvt79+5h8ODB6NWrl34iJIQQQ0pNhdXA/uBf8mea5NbWGSs1VqhgwMCIvlF/RwjJCU5cHKw6d4BJaCjTJq3ihuSL/pA7OhkwMqJv1E8QQnKCExUFmyaNwP3+jWkTN2sG4cEjgJWVASMjRY3ORaru37+Pn3/+We3r9evXR926dbF169ZcBUYIIYbE+fIZth7usC/pyCT/JPXqQxD1CQmfYij5VwRQf0cI0YQb+QJ2xWxhV96FSf6JunbLWKkx+CEl/4oA6icIIZrw7t2Dva0V7DzcmeRf2rjxEAiSIDx9lpJ/JN/pnAD89u0bLLNZ1dLNzQ2P/79kNSGEFCS8J48zOuoqlcGNigIApA8dBkF8IpKvXAPs7AwcIckv1N8RQlQxuXYV9rZWsK1bGxypFACQOmsOBAnJSNm7HzAzM3CEJL9QP0EIUYV/5DDsba1g06o505bisxGCRCHSlq0oEIsFksIp2ynAWZUoUQKPHj3SuE10dDSk/78gIoSQgoB/5jSsBvRjtaUsXwnR2HEGiogYGvV3hJDMTH23wvLPP1htwt17Ie7+u4EiIoZG/QQhhCGXw3zhPzBftZLVnHzuAiSNmxgoKELYdE49t2/fHs+ePYO3tzfEYrHS64GBgQgKCkK1atX0EiAhhOQZuRxmK1fA3taKlfxLPn4SgkQhJf+KOOrvCCGQSmExdQrsba1Yyb+kgEAIEoWU/CviqJ8ghCAtDVZ9esHezppJ/sktLZH4KBSCRCEl/4hR0XkE4KhRo3DlyhX4+vri9OnTqFu3LkqWLImkpCQ8f/4cYWFh4PF4mDJlSh6ESwgheiASwXL0SJge/4/VnPggBDI3dwMFRYwN9XeEFGFJSbDu0R0md24zTTJnZyRdvQ55mTIGDIwYE+onCCm6ODFfYN2qBXjv3jFtkjp1ITx5GnJ7e4PFRYgmOicAra2tcejQISxduhRnz57F2bNnWa9XrlwZc+fOhZeXl96CJIQQfeB8/w7rDm3Be/aMaZNWq4bkcxcgL+5owMiIMaL+jpCih/v+PawbNwRXIGDaxC1bQbj/IJBNrTdS9FA/QUjRwwt9AptGDVlt6QMHIXWdD2Cic3qFkHyVo2+onZ0dli1bhtmzZyM0NBTx8fGwsLBAxYoVUbFiRX3HSAghucJ98Ry2XnVYbaLfeyBl6zbA1NRAUZGCgPo7QooG3t07sGndktWWNmky0v5dRMXaiUbUTxBSNJicOwvrvr1ZbalLliJ9wiQDRUSI7nKVora1tUWjRo30FQshhOiVyZXLsO7eldWWOm8B0v+cDnA4hgmKFEjU3xFSOPEPHoDVmFGstpRNmyEaMMhAEZGCivoJQgohuRxma9fAYsF8VnPy0eOQtG1roKAIybkcJwAfPnyIoKAgxMbGomHDhmjXrh0A4NatW4iNjUXLli1hbW2tt0AJIURbpps3wfKv6aw24b4DEHfpapiASIFG/R0hhYxcDvMF82C+1pvVnHTxEqQNfzVQUKQgo36CkEJGLIblmFEwPXaU1Zx47wFkVWlRH1Jw6ZwAlMvl+Ouvv+Dn5we5XA4OhwMbGxumoxMKhZg1axZEIhF69eql94AJIUQlqRQWf0yB2a6drOakwCBIa9YyUFCkIKP+jpBCJjUVVgP7g3/Jn2mS29oi6eZtyCpUMGBgpKCifoKQwoUTFwfrju3ACw9n2qTuVZF8/gLkjk4GjIwQ/dC5qMnevXtx5swZdOjQAUePHoVcLme93qpVKzg6OuLy5ct6C5IQQtRKTIR1qxawL2bLJP9kLi5IePEKgkQhJf9IjlF/R0jhwPnyGbYe7rAv6cgk/yT1f4Hg42ckfPxMyT+SY9RPEFI4cCNfwM7eBnblXZjkn6j77xB8i0fS/WBK/pFCQ+cRgCdOnEDFihWxcuVKcFTU0OJwOKhXrx4eP36sj/gIIUQl7rt3sGnUAJzERKZN3LoNhPsOABYWBoyMFBbU3xFSsPGePIZNY/aU3vShw5C6Zi3A4xkmKFKoUD9BSMFmcu0qrLt2ZrWlzpmH9Bl/Ub1wUijpnAB8//49OnbsqLKTU7C3t0dsbGyuAiOEEFV4t2+hXtvWrLa0KVOR9s9C6qiJXlF/R0jBxD9zGvUG9GO1pSxfCdHYcQaKiBRW1E8QUjCZ+m5FvT//YLUJ9+yDuFt3A0VESP7QOQHI5XI1dnIAEB0dDQsagUMI0SPT/XthOW4sq024eSvE/QcYKCJS2FF/R0gBIpfDbNVKWCz8h9WcfPwkJK1aq9mJkNyhfoKQAkQqhcWff8Bsx3ZWc9L1m5DWrm2goAjJXzonACtXrownT56ofT02Nhb37t3Dzz//nKvACCEEMhnM58+F+fp1rOZne46gTLeOBgqKFBXU3xFSAIhEsBw9EqbH/2M1h572R9lmjQwUFCkqqJ8gpABISoJ1j+4wuXObaZI5O+PJnqOoUK+m4eIixAB0XgSka9euiIyMxO7du5Vei4uLw7Rp05CWlobOnTsr70wIIdpISYFV186wt7dhkn+yYg5IDHsGQaIQybXrGjhAUhRQf0eI8eJ8/wab+nVh71iMSf5Jq1VDwtsPECQKkVaxsoEjJEUB9ROEGC/u+/ewLesMe+dSTPJP3LIVBF9ikRgRCXHJUgaOkJD8p/MIwD59+iAgIADLly+Hn58fOBwOrl+/joiICDx69AhpaWlo0KABfv/997yIlxBSiHE+fYJNsybgfv7MtEl+bYTko/8BNjYGjIwURdTfEWJ8uM8jYFuP/RBI9HsPpGzdBpiaGigqUlRRP0GI8eHdvQOb1i1ZbWmTJiPt30UAV+fxT4QUKjr/BXC5XGzZsgXjx4/Hp0+fIJfL8ebNG9y5cwdcLhdDhw7F1q1bs62HQQghCryHD2FvawU7d1cm+Zc+YhQE8YlIvuBPyT9iENTfEWI8TK5chr2tFSv5lzpvAQQJyUjZtYeSf8QgqJ8gxHjwDx6Ava0VK/mXsmlzxqjwRUso+UcIcjACEAB4PB4mTJiA8ePH4+3btxAIBLC2tkbFihVhYpKjtySEFEH8kydgNXggqy1l1RqIRo02UESEsFF/R4hhmW7eBMu/prPahPsOQNylq2ECIiQL6icIMSC5HOYL5sF8rTerOeniJUgb/mqgoAgxXjr3SqdOnYKrqys8PDzA4XBQsWJFpW2CgoJgaWmJ2rSaDiEkK7kcZsuWwmLpYlZz8qkzkDRvYaCgCFFG/R0hBiKVwmLKJJjt2c1qTrp5C9IaNQ0SEiGqUD9BiIGkpsJqYH/wL/kzTXJbWyQF3YGsfHnDxUWIkdM5AThz5kwMGzYMHh4earc5cOAA3r9/j/Pnz+cqOEJIIZKeDsuRw2F66iTTJDcxQdK9B5C5VjFgYISoRv0dIfksIQHW3bvC5MF9pklarhySL1+FvFRpAwZGiGrUTxCSvzhfPsOmRTNwo6KYNkn9X5B8/CRga2vAyAgpGPJkIryTkxM+ffqUF29NCClgON9iYVO3NuydHJjkn6R6dSS8i0JCXAIl/0iBRv0dIbnHffsWdmVKwt6lDJP8E7dtB0HMNySFPaPkHynQqJ8gJPd4jx9l1AuvUplJ/qUPHZZRL/zyVUr+EaIlvRemEIlEePLkCaytrfX91oSQAoQb8Qy29b1YbaLefZCyaQvA5xsoKkL0h/o7QnKHdysINu3asNrS/piGtAX/ALRoAikEqJ8gJHf4Z07DakA/VlvKilUQjRlroIgIKdi0SgDOmjWL9e+bN28iPj5eaTuxWIyHDx/i8+fPaN++vX4iJIQUKCb+F2Hd83dWW+o//yJ9yh90Q0eMHvV3hOQ90317YDl+HKtNuMUX4n79DRQRIdqjfoKQPCaXw2zFclgsXshqTj55GpIWLdXsRAjRhlYJwJMnf9Ts4nA4ePnyJV6+fKl2+2rVquGvv/7SOgg3Nze1r/3999/o27cvAOD9+/dYsWIF7t+/D7FYDHd3d0yYMAGNGjVS2i8oKAgbNmzA8+fPwefzUa9ePcyYMQPlypVjbSeXy7F3714cOnQIHz9+RLFixdCmTRtMmTKFntYRogOzDT6wmD2T1SY8eBjijp0MFBEhusvr/o6QIksmg/nc2TDf4MNqTrp8FdL6vxgoKEJ0R/0EIXlEJILlqBEwPXGc1Zz4IAQyN3cDBUVI4aJVAnDXrl0AMpJlw4YNQ7t27dCrVy+l7Xg8HkqWLKmUZNNG7dq10blzZ6V2L6+MKYRxcXHo3z/jyfCgQYNgaWmJc+fOYdSoUdi9ezfq1avH7HPv3j2MGjUK7u7umDhxIlJSUnDkyBH0798fZ86cgYODA7Pt5s2bsW7dOrRu3Rp9+vTBx48fcfjwYbx58wY7d+7U+ecgpEiRSGAxeSLM9u1lNScF3Ya0eg0DBUVIzuVHf0dIkZKSAqt+fcC/dpVpkhVzQHJgEGT090MKIOonCNEvzvdvsG7XFrznEUyb1MMDyWcvQF68uAEjI6Tw0SoB2KBBA+b/T5gwAbVr12a16UPFihWZkX6q7NmzB/Hx8Thz5gwqVaoEABgwYAA6duyIdevW4cCBA8y23t7e+Omnn3Do0CGYmZkBANq3b49OnTph3759mDx5MgAgKSkJvr6+6Ny5M1auXMns7+bmhrlz5+LOnTt6/zkJKRQSEmDdtTNMQoKZJmn5Cki+fAXykqUMGBghuZMf/R0hRQHn0yfYNGsC7ufPTJvk10ZIPvofYGNjwMgIyR3qJwjRD+7zCNjWq8tqE/XshZTNWwFTUwNFRUjhpvMqwAMHDsTXr19x48YNla8/fPgQV69eRWpqaq6Dy+zatWuoXbs2k/wDADMzM3Tu3BkhISFM7Y24uDg8fvwYnTp1YpJ/AFCpUiXUqVMHV6/+eAJ9584dpKamokePHqzP6ty5M0xNTVnbEkIA7ps3sCvllLFS4/+Tf+L2HSD4+h1JoeGU/COFiqH6O0IKMt7DhxkrNbq7Msm/9BGjMlZqvOBPyT9SqFA/QYjuTC5fgr2tFSv5l7rgbwgSkpGyYxcl/wjJQzonAI8fP45Zs2apLHYLAF++fMGECRNw5swZnd5XJBIhJiYGycnJSq9JJBK8ffsWFStWVHqtcuXKkMvleP36NQDg1atXkMvlrERh5m3fvHkDqVQKAIiMjAQApW3NzMxQtmxZjfU8CClKTG4GZnTUNX8GJyUFAJD253QIEpIhPHwUMDc3cISE6F9e9XeEFEb8E8dhb2sFm98aM20pq70hSBQidY03wOMZMDpC8gb1E4Roz3TTRtjbWsH6925Mm3D/QQgShUifNp0WCyQkH2g1BTizK1euoFSpUujSpYvK19u3b49Vq1bh7Nmz6N27t9bve+bMGaZztLS0RIsWLTBz5kw4OjoiISEBYrEYNiqeGtvb2wMAvn37xvpfVQt42NvbQywWIyEhAQ4ODsy26t73+/fv2cYtEksR+f6Ldj9kFmkiSY73LazomCgz5DFxOn4EFf6ezWp7vXQNvnf8/9//hxgDREXfE1WM8ZjU81R+aFOQ6Ku/o35Cv+iYKDPYMZHLUWaLD37atI7V/HzrHiQ2/P8CbQb6XdH3RJkxHhPqJzJQP6FfdEyUGeyYSKUov3AuShw/ymoOP3oGKVU9Mv5B/YTRMMZjUtD7CWOjcwLw/fv3aNKkCTgaMvReXl64deuW1u85evRolC1bFnZ2dhAIBLh9+zbOnTuHZ8+e4dSpUxCJRAAAcxWjjPh8PgAgLS0NAJhtLSwslLY1Mcn4cdPT05ltuVwua6pw5m0V76mJKZ+HKuVyNu0x8v2XHO9bWNExUZbvx0Qmg8XMGTDbspnVnHQlANJ69VAcgKHL8dL3RBkdE/3TV39H/YR+0TFRlu/HJD0dliOHw/TUj9VQ5SYmSLr3ADLXKigFwNC/IfqeKKNjon/UTxgnOibK8v2YJCTAuntXmDy4zzRJy5VD8uWrkJcqjZ/yLxK16HuijI5J4adzAjA5ORlWVlYat7GxsUFiYqLW7/nHH3+w/t2zZ09UqlQJPj4+uHHjBmrXrg0AkMlkSvuKxWIAP5KDpv+vGaCY5puZRCIBACbhZ2pqCplMBrlcrtRxSyQSlQlHQgotoRBWfXqCn6mOjczREUk3giB3cTFgYIQYRl70d4QUZJxvsbBu2wa8yBdMm6R6dQjPnIPcwcGAkRFiGNRPEMLGffsWNr/+Ak6msl7itu0g3LMPUDFAhxCSv3SuAfjTTz8hLCxM4zbh4eEoVSp3meOWLVsCAD58+AA7OzuYmJio7DwVNTeK/3+JcMX/qtuWz+fD1taWtW1CQoLKbR3oYpYUAZyPH2FbqTzsS5dgkn/ipk0h+BSDxDfvKflHiqz86u8IMXbciGcZC3tULM8k/0S9+0DwXYDkoDuU/CNFFvUThGTg3QrKqBdew5NJ/qX9MS2jXvjR/yj5R4iR0DkB2KJFC4SGhuLAgQMqXz906BCePHmCxo0bq3xdW0lJSQAynpqZmJigQoUKCA0NVdouLCwMHA6HWcjD1dUVHA5H5bahoaGoUKECMxXY1dWVac/62e/evWNeJ6Qw4j14kHFDV80N3NhYAED6mLEQCJIg9DsPqKijSUhRkl/9HSHGysT/YsYNXX0vpi114SIIEoVI2bYD+H8ZFkKKKuonSFFnum9PxgJQ7dowbcKt2yBIFCLt739pYQ9CjIzOU4CHDx+Os2fPYtGiRfDz80P9+vVRokQJfPv2DXfu3MGTJ09ga2uLkSNHavV+YWFhKF26NBwdHZk2uVyO/fv3w9TUFI0aZRSRbtasGXbs2IF3796hfPnyADJq+F25cgU1a9ZkRus5ODigRo0auHTpEiZNmsRMCX779i0iIiIwatQo5nMaNGgAc3NznD17Fk2aNGHaL168CKlUiubNm+t6eAgxevxjR2E1fCirLWXteoiGDTdQRIQYJ333d4QUFGYb1sNi9ixWW/KhI5B06GigiAgxTtRPkCJJJoP53Nkw3+DDak66fBXS+r8YKChCiDZ0TgDa2dlh7969+PPPP/H48WM8fvwYHA4HcrkcQMaoupUrV2o91P369evYvn07WrZsCQ8PD6Snp+Pq1asICwvDtGnTUKZMGQDA4MGDcfz4cQwePBg9e/aEpaUlzp07h+joaCxcuJD1nlOmTMGwYcMwYMAAtG3bFikpKThy5AiKFy+OwYMHs36WESNGYMOGDRCLxahZsyaio6Nx6NAhNGjQAL/++quuh4cQ4ySXw3zRQpivXM5qTvY7B0nT3wwTEyFGTt/9HSFGTSKBxcTxMDuwn9WceOsOZD9XN1BQhBg36idIkZKSAqt+fcC/dpVpkhVzQNLNW5CXLWvAwAgh2tI5AQhk1Ls4fPgwnj59isePHyMpKQk2NjaoVq0aatasqXElrKyaN2+Od+/e4dmzZwgICIBUKkXlypWxYsUKdOnShdnO0dER+/fvx8qVK7F7926IxWK4u7tj69at+OUX9pOGBg0aYMuWLdi4cSPWrVsHPp+PevXqYcaMGUp1/SZMmAAbGxscOnQIly9fhr29PXr37o0pU6bk5NAQYlzS0mA5bAhMz/oxTXJzcyTdvgdZ5coGDIyQgkGf/R0hxogjEMCqSyeYPHrItEkrVETypcuQl6SkBSHZoX6CFHacT59g06wJuJ8/M22SXxsh+eh/gI2NASMjhOgqRwlABQ8PD3h4eOQqAA8PD6xevVqrbStWrIjNmzdrtW3Tpk3RtGnTbLfjcDgYMmQIhgwZotX7ElIQcGK/wrpVS/DevGbaJLVqQ3jaD3J7e8MFRkgBpY/+jhBjwn3zBjYN6oGTmsq0iTp2QsrO3YC5ueECI6SAon6CFDa8hw9h8xu7fmX6iFFIXbkK4PEMFBUhJDdylQAkhBgXbngYbBuyR8Sm9x+AVJ+NgAn9uRNCSFFnEngD1h3bs9rSpv+FtLnzqFg7IYQQ8E8ch9WQQay2lNXeEI0cpWYPQkhBoVVGYNCgQejQoQN69+6NWbNmZb8DMkbWLVmyJFfBEUK0Y3LhPKx792S1pS5ajPRJUwwTECEFFPV3pLAy3b0LlpMmsNqE23dC3Ku3gSIipGCifoIUSnI5zJcshvnypazm5NN+kDSjhTEJKSy0SgDev38fnp6eAICTJ09q9cbU0RGS98zWecNi3lxWW/KRY5C0a69mD0KIJtTfkUJFJoPFzBkw28Iun5J0JQDSevUMFBQhBRv1E6RQSU+H5cjhMD3147ss5/ORdPc+ZK5VDBgYISQvaJUAXLp0KVxdXQEAu3btytOACCHZEIthOWEcTA8dZDUn3rkHmYengYIipHCg/o4UCkIhrPr0BP/GDaZJ5uSEpBtBkP/0kwEDI6Tgo36CFAac2K+wbtMavFcvmTZJzZoQnj4LebFiBoyMEJKXtEoAduvWjfn/DRo0yLNgCCHqceLjYdWlI0weP2bapJVdkex/CXKnEoYLjJBChPo7UpBxPn6ETdNG4MbGMm3ipk0hPHQUsLY2YGSEFB7UT5CCjPvsKWx/YY8AF/Xth5QNmwA+30BREULyC60KQIiRM3/3FnZ1qoIjEjFtos5dkLJjF2BmZsDICCGEGAOr0Mew//l3Vlv6mLFIXbYC4HINFBUhhBBjYRcYAPvxI1htqQsXIX3yVANFRAgxhGwTgJ8+fcrxm5cpUybH+xJS1JncuA7rTh1gn6ktddYcpM+cRSs1EpIHqL8jBQ3/2FFYDR/K6idS1vlANHSYoUIipFCjfoIUNGY+62AxZzarn0g+fBSS9h0MFRIhxICyTQA2b94cnBwkGzgcDp49e5ajoAgpykx3bIfl1MmsNuHO3RD36KlmD0KIPlB/RwoEuRzmixbCfOVyVnPy2fOQNGlqoKAIKRqonyAFgkQCi4njYXZgP6s58fZdyDx/NlBQhBBjkG0CsFatWqyOLi4uDu/evUP16tVhYqK8++vXr5Geno5q1arpN1JCCjOpFBbT/4TZdl9Wc9K1G4hw+glVypUyUGCEFB3U3xGjlpYGy2FDYHrWj2mSm5sj6fY9POdbUz9BSD6gfoIYM45AAKsunWDy6CHTJq1YCcmXLuNFqpz6CUJI9gnAQ4cOsf7977//QiKR4OjRoyq3v3TpEqZMmYL58+frJ0JCCrOkJFj36gGTW0FMk6xUKSQFBELu7JzR8P6LgYIjpGih/o4YI87XGFi3bgXem9dMm6RWbQhP+0Fub5/RQP0EIfmC+glijLivX8OmQT1w0tKYNlHHTkjZuRswN89ooH6CEAJA58rQQUFBqFu3rtrXW7duDXd3d2zatClXgRFSmHGiomBboRzsnUsxyT9x8xYQfP6KxMjXP5J/hBCDof6OGBI3PAz2tlawq1yRSf6l9x8AQVwCkm/c/JH8I4QYDPUTxJBMAm/A3tYKtrWqM8m/tOl/QZCQjJSDh38k/wgh5P90TgDGxMTAxsZG4zY1a9bEvXv3chwUIYUV797djBs6D3dwv38DAKRNmAiBIAnCU2cAKysDR0gIUaD+jhiCyflzGTd0DX9h2lIXLYYgUYjUzVsBFdMMCSGGQf0EMQTTXTthb2sF647tmTbh9p0QJAqRNm8+LRZICFFL56tIOzs7PH/+XOM23759Q1qmIciEFHX8w4dgNWoEqy1lwyaIBg02UESEkOxQf0fyk9naNbCYP4/VlnzkP0jatTNQRISQ7FA/QfKNTAaLmTNgtmUzqznp6nVIvbwMFBQhpKDReQRgy5YtERwcjGPHjql8PSIiAjdv3kSlSpVyHRwhBZpcDvO/58Pe1oqV/Es6fxGCRCEl/wgxctTfkTwnFsNy9EjY21qxkn+Jd+9DkCik5B8hRo76CZLnhEJYdWoPe3sbJvknc3JCwrMXECQKKflHCNGJziMAx40bh0uXLmH+/Pk4evQoGjZsiJIlSyI5ORkRERG4evUqxGIxxowZkxfxEmL80tJgNWgA+BcvME1ya2skBd2BrGJFAwZGCNEF9Xckr3Di42HVpSNMHj9m2qRV3JB80R9yRyfDBUYI0Qn1EySvcD5+hE3TRuDGxjJt4qZNITx0FLC2NmBkhJCCTOcEoKOjIw4dOoTZs2fjwYMHCAsLA4fDgVwuB5AxFP7ff/9F69at9R4sIcaME/MF1i2bg/f+PdMm8aqH5BOnADs7wwVGCMkR6u+IvnFfvoTNL17giMVMm6hrN6Rs2wGYmRkwMkJITlA/QfSN9+ABbFr8xmpLHzMWqctWAFydJ+8RQghLjipJu7i4YN++fXj58iUePnyI+Ph4mJubo1KlSqhfvz5MTU31HSchRosX+gQ2jRqy2tIHD0Gq9zoq1k5IAUf9HdEHk4BrsO7SidWWOmsO0mfOomLthBRw1E8QfeAfOwqr4UNZbSnrfCAaOsxAERFCCqNcZSdcXV3h6uqqr1gIKVD4Z/1g1a8Pqy116XKkj59goIgIIXmF+juSE6bbt8HyjymsNuHuvRB3/90wARFC8gz1E0RncjnMFy2E+crlrObkcxcgadzEQEERQgqzHCcAP3/+jNu3byM2NhbVq1dHw4YZI6CeP3+OpKQk1KhRg554kcJHLofZmlWw+OdvVnPyfycgad3GMDERQvIU9XdEJ1IpLKb/CbPtvqzmpIBASOvUMVBQhJC8RP0E0UlaGqyGDAL//DmmSW5piaRbdyGjBWMIIXkoR4UE1q1bh1atWmHOnDlYt24dgoKCmNfCw8MxaNAg+Pv76y1IQgxOLIbl8KGwt7NmJf8S7z3IWKmRkn+EFErU3xGtJSXBul0b2BezZZJ/stKlkRARmbFSIyX/CCmUqJ8g2uJ8jYFNdU/YlyjOJP8ktesg4UM0Er7EUvKPEJLndE4Anjp1Cps3b0atWrXg7e3NFLlV6NKlC2xtbamjI4UCJy4ONg3rw764PUyPHQUASN2rIuHtewgShZBVrWbgCAkheYX6O6INzocPsC3nAnvnUjC5lXHjL27eAoLPX5H44hXkzs4GjpAQkleonyDa4IaFwt7WCnaVK4L37i0AIH3gIAjiEpB8PRBye3vDBkgIKTJ0TgAeOnQIZcqUwY4dO9CuXTul1/l8PurXr4+XL1/qJUBCDIEb+QJ29jawK+8CXng4AEDU/XcIvsUj6X4w5MUdDRwhISSvUX9HNOHdu5txQ+dZFdz4OABA2oSJEAiSIDx1BrCyMnCEhJC8Rv0E0cTk/DnY21rB9tcGTFvqkqUQJAqRunEzLRZICMl3OicAIyMjs13RqkSJEvjy5UuuAiPEEEyuXsnoqOvWBkcmAwCkzpkHQUIyUnbvBah+CyFFBvV3RBX+oYOwt7WCTasWTFvKhk0QJAqRtmQZwM1RdRVCSAFE/QRRIpfDzHs17G2tYN2nF9OcfPQ4BIlCpE+YZMDgCCFFnc6PHeRyebZFbGNiYqjQLSlQTLdugeX0aaw24d79EHftZqCICCGGRv0dYcjlMP9nAczXrGY1J52/CGmjxgYKihBiaNRPEIZYDMtxY2B65DCrOfHufciqeRgoKEIIYdM5AViuXDm8ePFC7etJSUl48OABKlERU2LspFJY/PkHzHZsZzUnBQZBWrOWgYIihBgL6u8IUlNhNXgg+BcvME1ya+uMlRorVDBgYIQQY0D9RMEWHe6HZ/6LIUkVAAD4Fvao2mYOnD07af0enLg4WHXuAJPQUKZNWsUNyRf9IXd00nfIhBCSKzrPU2nfvj2ePHmCCxcuKL0mEokwf/58JCQkoG3btnoJkBC9S0qCdZtWGSs1/j/5J3NxQcKLVxkrNVLyjxAC6u+KMk7MF9j8XA32JR2Z5J/Eqx4EUZ+Q8CmGkn+EEADUTxRk0eF+CD0zi0n+AYA4VYAwv9mIDvfLdn/uy5ewc7CDXXkXJvkn6toNgtg4JAU/pOQfIcQo6TwCcMiQIfD398eff/7JdHYhISGYO3cuAgMD8fXrV7i5uaFfv356D5YQhehwP0QGeCMt4RPA4QFyKcztyqBKs6lqn9px372DTeOG4CQkMG3i1m0g3HcAsLDIr9AJIQUE9XdFD+/JY9g0/pXVlj54CFK911GxdkKIEuonCq4I/8WATKLULpeKERngrfZ+wiTgGqy7sF9LnTUH6TNnARxOnsRKCCH6ovPVrJmZGfbu3YvFixfDzy/j6ciTJ0/w5MkTcDgctG7dGv/88w/VuiB6x0r6ZSaXAgDSEj4h/Nw8AGB12rw7t2HTphVrl7QpU5H2z0LqqAkhalF/V7DpMrWL73cGVv37stpSly5H+vgJ+REqIaSAon6iYAq/8A/EmUb+ZZWW8FmpzXT7Nlj+MYXVJty9F+Luv+s5OkIIyTs5epxtbW2NpUuXYubMmQgNDYVAIIC1tTU8PDxQokQJfcdICKLD/RB+bh5k4jSN28nEacxTO9MD+2A5dgzrdeHmrRD3H5CXoRJCChHq7wqm8Av/ICrkEKtNMbUL+P9DIrkcZmtWweKfv1nbJR8/CUmr1vkVKiGkgKN+omBR1T9kZW5XOuP/SKWwmP4nzLb7sl5PCgiEtE6dvAqREELyjM4JwOnTp8PV1RWjRo2CnZ0dGjem1e9I3osM8M42+QcAkMvhfuoZ7OdYsZqT/C9D2qBhHkVHCCmMqL8rmKLD/dTe3MmlYry8shqu3idgeuwo67XE+8GQuVfNjxAJIYUE9RMFi6b+QYHD48O93hhYt2sDk1tBTLusdGkkBQRCXqZMXodJCCF5RucE4Pnz59GnT5+8iIUQtVQNxc+MJ5ah0anvKPP2R5JQZm+P5MBbkJUvn8fREUIKI+rvCqYI/8Uq201TpWhxOBb2sVEAHgAApO5VkXzhIuTFHfMxQkJIYUH9RMESGeCt8XXLRCk6HIyHydKhTJu4eQsIDx4GLC3zOjxCCMlzOicAixcvDolEuWAqIXnJ3K60cu0/ABZJUrTaHwOrJCnTJqzhBvG564CtbT5GSAgpbKi/K3hU1XWy/S5Ghx1fWG2i7j2Q4rsNoLpchJBcoH6iYFE3oMAxOh2tDnxlbzthItIWLQG43PwIjRBC8oXOCcBmzZrhzp07kMvl4NACCiSfVGk2lVUDsNgXEdrujWFt86ZeCaSuXgvnGl0MESIhpJCh/q5gyTq1q9TbVDQ79o21TWiTYuAt3QTnnzvnd3iEkEKI+omCJeuAgvJPhWhwLo61TcqmzRANGJTfoRFCSL7Q+ZHG6NGjERsbix07duRFPISo5OzZCZ4dFqJilBn6rohiJf9eD20JQaIQDlfeUvKPEKI31N8VLIqpXa4hSei7IoqV/LvZpTiOznUDb9lmSv4RQvSG+omCpUqzqeCamKHGDQH6rohiJf+SLvhDkCik5B8hpFDL0SIgZmZm8PHxQUBAgNrtOBwO9u/fn6vgSMEUHe6HyABvpCV8hrldaVRpNjVjxcWcksthtmI5PBYvZDUnnzwNSYuWKJ7LeAkhRBXq7woQqRQ/H32Kyk+SWc0XB5VEfClTmFjYo/W0uwYKjhBSWFE/UYCkpqLK37vgcekV0yQ24+Ht/jUo0WaEAQMjhJD8o3MCMCQkROX/z4qGwRcNWZN9TpWbIjr0JDNVNy3hE8LPzQMA3ZOAIhEsR42A6YnjTJOcy0XS/WDIqrjp7WcghBBVqL8rABITYf17N5jcuwv7/zcJbXm43L8kUm14/2/hoFqbOQYKkBBSmFE/Yfw4Xz7DpkUzcKOimDZJ/V+QfPwkYGuLEgaMjRBC8pvOCcCrV6/mRRykAIoO92PV5UtL+MSqv6QgE6chMsBb6wQg5/s3WLdrC97zCKZN6umJZL/zkBen8X6EkPxB/Z3x4r57B5tGDcBJTGTakhrUgn/jRIghYm3rUqdP7kahE0KIGtRPGC/ek8ewafwrqy196DCkrlkL8HiqdyKEkEJO5wSgs7NzXsRBCqDIAG8m+ZcddatuZcZ9HoF69eqy2kQ9eyFliy/A5+coRkIIySnq74wP7/Yt1GvbmtWWNmUq0v5ZCHA4qKrvEhSEEKIB9RPGh3/mNOoN6MdqS1m+EqKx4wwUESGEGA+dEoCRkZG4d+8exGIxqlevjrp162a/Eym0Mq+ilR1zu9JqXzO55A/rHt1ZbakL/kb6H38CNGWCEGIA1N8ZF9MD+2A5dgyrTbh5K8T9B7DanD07UcKPEJIvqJ8wInI5zFathMXCf1jNycdPQtKqtZqdCCGk6NE6AbhhwwZs3LiR1dawYUOsX78eVlZWeg+MGLfwC/9kv9H/cfnmqNJsqlK76aaNsJw5g9UWuXYzSgyj1bcIIYZD/Z2RkMthPm8OzNevYzU/23MEZbp1NFBQhBBC/UR+0GpRQZEIlqNHwvT4f6zm0NP+KNusUT5GSwghBQNXm42Cg4OxYcMGWFpaomfPnhg4cCAqVaqEW7duYf78+XkdIzEy0eF+Kmv9KePA3K4MPDss/NFhSySwmDge9rZWrORfUtBtCBKFELSgp3SEEMOh/s4IpKTAqntX2NtZM8k/mb09EsOeQZAoRHJtGmVDCDEc6ifynqLOeMZsIzmzqGB0uB8AgPP9O2x+8YK9YzEm+SetVg0Jb99DkChEWsXKBoyeEEKMl1YjAA8dOgQej4cDBw7A3d0dACCRSDB69GicP38eEydORPny5fMyTmJEIvwXa7Vdu7k/FvFAQgKsu3WBSfADpklarhySL1+FvJT66cGEEJKfqL8zHM7nz7Bp3hTc6GimTdKgIZKPHQdsbQ0YGSGE/ED9hP5lHe0nFaUo1RmXidPw+cgSeDTsw2oX/d4DKVu3Aaam+RkyIYQUSFolAB88eAAvLy+mkwMAExMTjB8/Hrdu3cL9+/epoytCxKkCrbflvnkDm4b1wUlJ+bF/u/YQ7t4LWFjkQXSEEJJz1N/ljcw3dyYWdpBJ0iETpwIAnOLN0HLbK9b26cNHIHXVGlqpkRBidKif0J/ocD88818MSaZ7C1U1xku9TUWzY98ARDFtqfMWIP3P6VQvnBBCdKBVAjA+Ph6VKysPpXZzcwMAxMTE6DcqUuCV+CSHvS27Bkran9ORNm8BddSEEKNF/Z3+KaZyKUZzKG70XF6koNHp76xtU1auhmj0mKxvQQghRoP6Cf3I2jeo4hqShLpXBaw24b4DEHfpmrfBEUJIIaVVAlAsFsNUxbBqRZHbtDT1J25iXLQqqJsNEwt71pO6zCqGJqP+xXhWm9B3O8R9+uY0ZEIIyTfU3+Xcj/7lE8DhAXIpzO3KID05FnKpOGMjuRwedxJRPSiRtW9ATyd8qWAOc9FRVAl3ppV8CSFGi/oJ/YgM8FaZ/OPI5Kh7OR6VnwhZ7RcHlYLLmLXUPxBCSC5ovQqwJnK5XB9vQ/KQuiH2oaemI8J/Maq2maN1h1qtzRyEnpkFyCQZDXI5al0TwD0kmbVd0uVrkNavr68fgRBCDI76O9WURnLIpQB+TOXiSuRocO47yr5IZfaRcYHzQ0shqTifaVMUegdAN3mEkAKJ+gntZJ3qa5Iuw2//xcIpWsS0CW15uNy/JFJtMspBxJ+agcgA7xwNYCCEEKJDAvDIkSM4f/68UjuHw1H5GofDQUBAQO4jJLmW3RB7capApxsuxTav/Veh3u5wlHr/431lxR2RFBgEuYuLHiInhJD8R/2d7p75L1bZx5imSNHy0FfYfZcwbfEl+LjW2wkiC9X1/WTiNEQGeNPNHSHEaFE/kTOskeL/ZyWQoO3uLzAV/UicRlc0x60uxSHlc7O8g5weFBFCSC5onQAUCoUQCoU6v0YMT90Q+8x0ueHiREejarfJ8MhU40TcuAmER44B1ta5jpcQQgyJ+jvdRIf7KZWFsP0mRoedX1htb6tZ4l47B8h52deBTUv4rM8QCSFEr6if0F3WAQlOUeloeegra5tn9WzwpKldtvXC6UERIYTkjFYJwOfPn+d1HCQPqVpNS/V2mm+4eMHBsGnelNWWPmoMUlesBLhZn9ARQkjBQ/2d7iIDvJn/X/p1Kn47/o31+uOmdoioZ6PTAlDmdqX1Fh8hhOgT9RO6iw73Q+jpmYBcigphyfjlArte+N32DnjraaVmb9XoQREhhOhOLzUAiZH7fzH27Ki74eIf/w9WQwez2lK810E0fAQA/SwsQgghpGBKS/gMtwdJqB0gYLUHdiuOaFdLtfuZ25VBlWZTlUpUcPnmqNJsal6FSwghJJey1hbnW9irrSceHe6H8LNzUfPad1R9kMR67XK/Evj2k5naz6nedaXSlGEFelBECCG6owRgUaBF8k/phksuh/mSxTBfvpS1XfKZs5D81gyA5oVFQk9NZ27uKBlICCGFkEQCi8kT0XffB1bzhcElISipvEJmVmkJn5n+gR4iEUJIwRAd7sdeDBAZ9cTD/GYDyFKXLyUFxQePRu+XCUxTujkX/oNLQmin+TbUpU5f5r3oQREhhOgHJQANIPOIueh8uNkxtyujehowhwfIZewbrvR0WA4fCtMzp5nN5KamSLpzHzJXV9bPEOY3G3KpWO3nUpFeQggphBISYN21M0xCgpmmZHs+LvdzQpq16oU9VFGM3nD27ER9BCGEFACZp/JmJZeKmbp8nM+fYdO8KbjR0czrX38yw43fHSEx01w2KOtoQnpQRAgh+kMJwHyWNXGWlvBJ9RMzPVI3xcqzw0LmMzmxX2FduyZ4r14y20hq1oTw9FnIixVTes8I/8Uak38KVKSXEEIKFtYqjf8vIWFuVwYern3hOmQ2OCkpzLbi9h0g3L0X0a8uAwHewP9vzjJqM8nVfgaHx6fRG4QQUoAo7mE0zSyyfP4O9rbsWn5v6pfA/camkHNV14HVZsYQPSgihBD9oARgPlOVOJNLxYjwX5xnHZumJ2fcp+GwbVCftX16/wFI9dkImKj/eoizrPioCRXpJYSQgiHrKo2QS+H0IQ0tD98DcI/ZLu3P6Uibt4BZ2CPrzVn4hX8QFXJI5WdoqhVFCCHEOGl6+O/yPAWNznxntaWs9oZo5CikhvuBc24e5BoGIhBCCMkflADMZ+oSZ7ok1HIi682ZyYULsG7IfkKXunAR0ifrf0QGFeklhBDjlzVpV/FJMur7s1dqfNCzElx3hGb7Xp7tFgAAoh4ezRgtwuHBpXYvpp0QQkjBonSvIpfD83Yifr6VyGpOPnUGkuYtmH/TFF5CCDEelAAsYsx81sFizmxWW/Lho5C076DT+5hY2LMW/1CHivQSQojxY5J/cjlqXRPAPSSZ9fql/iXw3dkMgBiuqt9CiWe7BZTwI4SQQoYrkaPBue8o+yKVaZNxgdcH1sCpw2iV+9AUXkIIMQ6UACxgMi8govUTNIkEFhPHw+zAflZz4u27kHn+nKM4qrWZo7QCGLgmcKnVE7GvbjDxOVVuisgAb4SemkFP/AghxEh9unsYzU58Ran36UxbmkXGSo0ptj8uFWhENyGEFE2WMmv8tvMl7OJ+XPvHl+DjxpDK+G1uMJwMGBshhBDtUAIw33GgujC66sK4md3bPxRx7+4w/85ulV2OQACrLp1g8ugh0yat7Ipk/0uQO5XQOfLMtBnOn7WWFK0KTAghxoUTHQ2b3xqjV0wM0xbjYobA3x0hMWWv1EgjugkhpOjhRjyDbX0vdMnU9raaJe61c4Ccz0f1zjTSmxBCCgpKAOY7dasiql8tEQACt3SE8NsrpXZVq+xyX72CTcP64KT9KLYr6twFKTt2AWZmOYpaIesIRKfKTZkRf5EB3gDYycHMKw+ri5cQQoj+hV/450cNPoX/r+pbOtEWv215yto+srY1QlrYMwt7ZKbNKo2EEEIKjozSD4eh7h7E+YMMTQ5Hs9pixvbFbefXSEv8QjN7CCGkAKIEYD4ztyuDtIRPKtvVubd/qMrkn0JawidcWOSOEu/T0OJILPu1v2YhbfYclTd0ulI1oi9zwfisI/zUrf5LqwITQkjeiQ73Q+ip6SpfK/ssCb/6ZVmp0XsdHpaJVrlqr0udvlTHjxBCCpGsM4qycnuQhNoBAlab8OBhiDt2ghmAZnkbHiGEkDxECcB8VqXZVFYSDdA8rSo63E9jJw0AlR4no94l9kqNtzs5wm7WBr0+lXvmv1hpRF9WmUf4mduVVpPspBpShBCSFy4sqgql0RxyOTxvJeLn2+yVGq/1dkJC9YpoNnwEPP/fRqv2EkJI4XVxaQ3IpelK7RyZHF7+8agUJmS1XxhcEmlVyqNZRxrlRwghhQElAPOZNrXzFDQ+oZPLUeeqAFUesldq9B9YAnGlM6b5mutxqm10uJ9Wq/4CP0b46ZrsJIQQkjOqRv1xJXI0PPsdLpE/VmqUmHBwYUhJJDvwMxoyjcimVXsJIaRwYlZ6z4KfLsNvR2Ph+FnEtCXZ83ClX0mkWfMyGmjmDiGEFBqUADSA10FbmZFxaQmf8DpoK5Ooy7iJmwF19ThMRDI0Of4NJaN+PL1LteLi0kD2So0Z762/DltR308bihF+uiQ7CSGE6CY63A+hZ2YDMjGr3UwoRcuDX2Eb/2Olxu+l+AjoVQJic/bCHjQimxBCCp/ocD8881+s9uG9dbwE7XZ/gYn4x/3Gx8rmuNXZETITdtkg6icIIaTwoARgPlO1mIfw2ysEbumISo1Gq63bZJkoQZs9MTBPlTFtX8qZIbCbI6RZVmpU0FeHHR3up3IqrypZR/g5e3aihB8hhOjRhUXuKtvtv4rQbncMq+2NpyXut3WAnKu6DiyNyCaEkMJF3Wg/ACjxIQ0tDrPrhT/9xQahje1U1gvncHjUTxBCSCFCCcB8pm4xD+G3VyqTf8U/paP1/q+stud1rPGoub3GhT301WErFv5Qh2dqCb6FPY3wI4SQPHZppRek6UlK7WVepaLpiW+stke/2eF5PVuN7+dQvgGdrwkhpIDKPKjgNQArx8pq7zMqPklGff8s9cI7OuB9NSu1788ztYRH+3+onyCEkEKEEoAAkpOTsXbtWvj7+yM+Ph4//fQT+vbti0GDBoGjh9Vzc6LcUyEanotjtd1rUwxvalhnuy+XZwrPTov10mFHBnirXfiDyzenCwNCCMljFxZ7ZCzMkYX7vUTUupHAarvR3RGfKltofkNa4IMQQgo0dTOKWORy1LomgHsIu174pQEl8L2Mmcr3pZXfCSGkcKMEIICJEyfiwYMH6NOnD1xcXBAcHIwlS5YgJSUFY8eOzb9A5HJUv5kAj7vsER5X+zjha1nzbHc3tyuj9xF4muoIenZYSMk/QgjJI6qm+nJkctS/EIcKT1NY7eeHlkSCk6mad+KgetcVdL4mhJBCQt1IPwDgiWRocvIbSr3/US88zZIL/0HK9cIzo+QfIYQUfkU+AXjr1i3cvn0bixYtQs+ePQEAgwcPxrRp0+Dr64uBAwfC2jr7UXe5wZXI8euZb/jp1Y+RdhL+/1dqLMbX+n2aTbym99jM7UqrrP9nbleGbiYJISSPZE3+8dNkaH7kKxxifiz4kVjMBFf6lUC6FU/t+5hal0CLKYF5FichhBDjYJkoQet9MbAQZqoXXtYMN7s7QqKmXjg9ICKEkKKlyCcAAwICYGpqii5durDae/XqhbNnz+LOnTto1apVnny2uVCKlgdiYCP4MbXrW2lTXO/ppLRSY3asHCvrOzwAGQXiw8/NY00DzrrQByGEEP3JnPyzjhOj/a4v4GWaARxVxQK3OxZXWqkxK4fyDVB/wK68CpMQQogRUFUv/EUdazzMpl54XswcIoQQYtyKfALwxYsX+Omnn2Bqyp465erqCgCIjIzMkwRgnSvxqPLwR02O1z9b4UGbYmpXatTEyrEymow5q8/wGIqLgsgAb1rogxBC8lGLg19R4uOPKVxhDW0R/qutxhu66l1X0vmZEEKKiB7eH8EXy5l/329dDK9rap65RA+HCCGk6CryCcDv37/DxsZGqd3e3p55XRORWIrI9190/lyuJKOzftjMHi+8lD9fE7OStfFT6zWstpzEoDUbLzh3Psj8U5iHn5cmkuTtz1IA0TFRRsdEmTEek3qeFQ0dglHIaT+hcKtTcXyoaqlxmxK/zoFNxVZ5en42Fsb4XTc0OibK6JgoM8ZjQv1Ehpz2EzITDiCW41pvJ8SU01QvnIdKA68y/zK274G+GeN33dDomCijY6LMGI8J9RP6VeQTgCKRCObmyh0ml8sFl8tFWprqFXAVTPk8VClXSuvPe/3//33Q1gEP2jroEiqA/4/2G3kw+w0LqMj3X3Q6nkUBHRNldEyU0TExXjntJ672K5HttkVxJAd915XRMVFGx0QZHRPjldN+4sRE52y3bTf3eQ6jKrjou66MjokyOibK6JgUfkU+AWhqagqZTKbULpPJIJPJVCYH80v1ritp6i0hhBAltLgHIYQQTaifIIQQklWRTwAWL14cAoFAqT0+Ph4A4OCg+yg9feDyTOHs2YkSfoQQUsS0m/tcaRXgzK8RQggh6lAtWEIIIeoU+QSgq6srjhw5guTkZFhb/yiaGxoayrye7zhceHZanP+fSwghxCgoEn00FYMQQkhW6h4U0UMiQgghmhT5BGCzZs1w4MABXLx4ET169GDaz507BwsLCzRs2DAfo+HQVF9CCCGEEEKIRvSgiBBCiK6KfAKwUaNGqFevHv7991+8fPkSZcqUwcOHD3Hx4kVMmjRJ5QrBucHhmUEuTVfZ3nbWE71+FiGEEEIIIYQQQgghRT4ByOFwsGnTJnh7e+Pc/9q7/9io6zuO46+D/kAEdMBo0ZagjF5xdL1a6FCCUCalq9oCRShLLANliiWMqSDVhCljonOZc2VIRuYEbBBWT4bUMHZl6SzW8bt2SmFAIbNQ+dFf1Lb07vrdH02Pnnc0o/bHvO/zkRCSz/dzd5/vO5/21by/37vLz1dNTY0iIiKUnZ2t+fPnd/nrJWeXaPfaWK8mIM0/AAAAAAAAdBfTNwAlaeDAgVq1apVWrVrVI6/X1uzjln0AAAAAAAB0tz69vQAAAAAAAAAA3YcGIAAAAAAAABDAaAACAAAAAAAAAcxiGIbR24sAAAAAAAAA0D24AxAAAAAAAAAIYDQAAQAAAAAAgABGAxAAAAAAAAAIYDQAAQAAAAAAgABGAxAAAAAAAAAIYDQAAQAAAAAAgABGAxAAAAAAAAAIYDQAe1h9fb3WrFmjSZMmaezYsUpOTtamTZtkGEZvL61Tqqqq9Otf/1pz5szRvffeq7i4OKWlpSk3N1cul8tr7tmzZ5WVlaXx48fLZrMpIyNDRUVFfp+3qKhIGRkZstlsGj9+vLKysnT27FmfeYZhaNOmTUpOTtbYsWM1adIkrVmzRvX19d1yvp3R0tKiRYsWyWq16uDBg17HzFYTp9OpzZs3KyMjQ+PHj9fYsWO1fPlyrzlmqsnFixf14osvatq0aYqNjVVSUpJ++ctfqqqqymeumepiduSE+fY5OXENOeGNnIA/5IT59jk5cQ05cQ0ZgRtlMb6pSfENtWDBAh04cEAZGRmKjIzUwYMHtWfPHi1btkyLFy/u7eXdsH/84x968skndd9998lms0mSCgoKdPToUc2aNUtr166V1BrsqampkqS5c+eqf//+ys/PV1lZmd566y0lJCR4nvOf//ynFixYoOjoaD3wwANqaGjQtm3bJEk7d+7U4MGDPXPXr1+v119/XUlJSYqPj9fnn3+ud955RwkJCXrzzTd7qAode+WVVzxryc3N1bhx4ySZryY1NTVauHChjh8/rqSkJMXGxqqxsVFut1tLliyRZK6aXLp0STNnztTVq1c1a9YshYeH6/jx43r//fcVHh6uHTt2aMCAAZLMVReQE5L59jk50Yqc8EZO4HrICfPtc3KiFTlxDRmBTjHQY4qKioyoqChj+/btXuNPPfWUYbPZjCtXrvTSyjrvP//5j1FRUeE15nK5jPT0dCMqKsqorKw0DMMwfvOb3xh33XWXcfLkSc+8pqYm4/777zd+9KMfeT1+7ty5xrRp04ympibP2MmTJ40xY8YYv/3tbz1jdXV1RmxsrPHMM894PX779u1GVFSU8dFHH3XZeXaW3W43xowZYzz11FNGVFSUceDAAc8xs9Vk8eLFRmxsrHHkyJHrzjFTTXJycoyoqCijpKTEa3zbtm1GVFSUkZeX5xkzU13Mjpww3z4nJ64hJ7yRE/CHnDDfPicnriEnriEj0Bm8BbgH/f3vf1dISIjS0tK8xufMmaOGhgYVFxf30so6LyIiQrfddpvXWN++fT1XEc6fPy9J2rt3r+6++26NGjXKMy80NFSpqak6dOiQqqurJbVenTh69KgeeughhYaGeuaOGjVK8fHxKigo8IwVFxersbFRs2fP9nr91NRUhYSEeM3tDUeOHNGqVau0YsUKTZw40ee4mWpSWlqqgoICPfnkk54ru/6YqSaXLl2SJN15551e43fffbckqaGhwTNmprqYHTlhrn1OTlxDTvgiJ+APOWGufU5OXENOeCMj0Bk0AHvQ8ePHFRERoZCQEK/x0aNHS5JOnDjRG8vqFpWVlZKksLAwuVwulZeX+/xykqTvfOc7MgxDp06dkiSdPHlShmF4/XJqP/f06dNyu92SrtXrq3NDQ0M1YsQI/fvf/+7Sc7oR58+f15IlS/Tggw/qxz/+sc9xs9Xkgw8+kMViUUZGhiSprq5OV69e9Zpjtpq0/VH785//3OtzMj766CMFBQVp8uTJksxXF7MjJ8yzz8kJb+SEL3IC/pAT5tnn5IQ3csIbGYHOCOrtBZjJ5cuXNXDgQJ/xW2+91XM8EFy4cEEFBQUaO3ashg8frsuXL8vpdHZ47m1XMNr+b/u8gq/OdTqdqq2t1eDBgz1zr/e8vVXPxsZGZWVlKTIyUi+++KLfObW1taaqyaeffqpvf/vbysnJ0c6dO1VTUyOpNUiee+45TZw40XQ1SUlJ0alTp/TGG2+oqKhIaWlpioyM1BtvvKGXX35ZI0aMkGS+vWJ25IQ59jk54Yuc8EVOwB9ywhz7nJzwRU54IyPQGTQAe1Bzc7P69evnM96nTx/16dNHTU1NvbCqruVyubR8+XI1Nzfr2WefldR63pL8nntwcLAkec69be5NN93kMzcoqHW7tl3paW5uVp8+fbxuT24/tzfqaRiGVq5cqerqauXl5flcnW1jpppIrX+MVldX6/z58/rpT3+qoUOHqqKiQlu2bNGiRYu0efNm3X777ZLMUxNJGjJkiMLCwjRlyhQ5HA5VVFRo1KhRioyM9Mwx214xO3Ii8Pc5OeEfOeEfOYGvIicCf5+TE/6RE77ICNwoGoA9KCQkRC0tLT7jLS0tamlp8ftD+U3S0tKilStX6uOPP9Zzzz3nuS25LbT8nbvT6ZR07RdS29y2W4vbc7lckuT5JdNWT8MwZLFYfOb2Rj2LiorkcDi0bt06OZ1Oz1sX6urqJEnV1dWqrKz0/LI1Q02k1nOKj4/XunXrvMZTUlI0bdo0bdq0SS+88IIk89Rk+/bteumll5SXl6fo6GgZhqHCwkKtXr1amZmZys3NVUxMjKl+fkBOmGGfkxP+kRO+yAn4Q04E/j4nJ/wjJ7yREegMGoA9aMiQIZ5bldtr+9DN9l+p/U3jdrv1/PPP6/3339eyZcs0f/58z7FbbrlFQUFBntBqr+3chwwZ4vX/9eYGBwdr0KBBXnNra2s9ty+3nzt06NCvf2I36OrVq3K5XHriiSf8Hm/7evri4mLT1ERqvTW8sbHRZzwsLEzR0dEqLy831T6RpI0bN2rixImKjo6WJFksFk2ZMkXDhw9Xamqq3n77bb3yyiumq4vZkROBv8/JCf/ICV/kBPwhJwJ/n5MT/pET3sgIdAZfAtKDRo8erdOnT3t9SKckffLJJ57j30ROp1NPP/20duzYoeeff16LFy/2Oh4UFKQ77rjDc57tlZaWymKxeD48dPTo0bJYLH7nfvLJJ7rjjjs8tx+31eurc69cuaIzZ870Sj1tNps2bNjg86/tD5hnnnlGGzZs0KBBg0xTE0mKiorSqVOnPFeZ2qutrVX//v1NtU+k1g+27tu3r89421sX2j43w2x1MTtyIvD3OTnhHznhi5yAP+RE4O9zcsI/csIbGYHOoAHYgxITE+VyubR7926v8fz8fN1000269957e2llnffll1/q8ccfl8Ph0KuvvqrMzEy/8xITE/Wvf/1LZ86c8Yw1NzfL4XDIZrN5rlYOHjxYsbGx2rNnj+czCCSpvLxcx44d09SpUz1j99xzj/r166ddu3Z5vdbu3bvldru95vaUoUOHKjEx0edf25WZuLg4JSYmKigoyDQ1kaTk5GTV19dr8+bNXuOHDx/W2bNnNWnSJEnm2SeSNGbMGBUXF6u8vNxnXZL0ve99zzNmprqYHTkR+PucnPCPnPBFTsAfciLw9zk54R854Y2MQGdYDMMwensRZmEYhjIzM1VSUqJ58+bptttu0+HDh7V7924tXbpUWVlZvb3EG/bCCy9o69at+uEPf6jvf//7PseHDRumH/zgB7p06ZJSU1MVHByshx9+WP3791d+fr6OHTumN998UxMmTPA8pri4WAsXLlRMTIySk5PV0NCgbdu2yTAM7dy50+utDTk5OVq3bp1SUlJks9lUUVGhrVu3Kj4+Xm+99VZPlOB/YrfblZ2drdzcXI0bN06STFeTpUuX6q9//aumT5+uuLg4nTt3Tnl5eYqIiNDWrVs1YMAAU9XkwIEDWrBggfr166f09HQNHz5cn332mXbt2qWRI0dq27Ztnm/VMlNdzI6cMO8+JyfIia8iJ+APOWHefU5OkBPtkRHoDBqAPezKlSt67bXXtGfPHtXU1CgiIkIZGRmaP3++z4dnfhOsXLlS77333nWPJyQkaMuWLZKk06dP69VXX9WBAwfkdDoVHR2tJUuWeK7WtFdYWKjf//73On78uIKDg5WQkKAVK1Zo5MiRXvMMw9CmTZu0detWVVRU6NZbb1VycrKWLVvm9+vLe4u/wJbMVRO3263NmzcrNzdXlZWVGjx4sKZPn66lS5d6fX28mWpSWlqq9evX6/Dhw6qvr1dYWJiSkpKUlZXlVRPJXHUxO3LCnPucnCAn/CEn4A85Yc59Tk6QE19FRuBG0QAEAAAAAAAAAhifAQgAAAAAAAAEMBqAAAAAAAAAQACjAQgAAAAAAAAEMBqAAAAAAAAAQACjAQgAAAAAAAAEMBqAAAAAAAAAQACjAQgAAAAAAAAEMBqAAG5YTk6OrFar/vznP/f2UgAA/4fICQBAR8gJoOfRAAR6wNNPPy2r1Sqr1SqHw/G1nuvs2bOyWq165JFHumh1AIDeRk4AADpCTgD4umgAAt2svr5eDodDAwYMkCTZ7fZeXhEA4P8JOQEA6Ag5AaAr0AAEull+fr6ampqUlZWl22+/XYWFhbp8+XJvLwsA8H+CnAAAdIScANAVaAAC3cxutysoKEhpaWmaMWOGXC6Xdu7c6XduY2Oj/vCHP2jGjBmy2WxKSEjQ7NmzlZOTo8rKStntdiUlJUmS9u/f73kbgNVqVU5Ojuf1rFarXnvtNZ/n//zzz2W1WjVv3jyv8dLSUv3kJz/R9OnTFR8fr+9+97uaOHGinnjiCR06dKiLKwIAaI+cAAB0hJwA0BWCensBQCA7deqUjh49qqlTp2rIkCGaOXOm1q9fL7vdrgULFnjNra2tVWZmpsrKyjR69GjNmDFDTqdTBw8e1Lp16yRJU6ZM0ezZs5WXl6fw8HClpKR4Hh8XF9fpdZ4+fVolJSWKiYlRQkKCQkNDVVFRoX379unDDz/UH//4R02YMKHTzw8A8I+cAAB0hJwA0FVoAALdqO3zOdLT0yVJkZGRGj9+vPbv36/S0lLFxMR45q5evVplZWVauHChVqxYIYvF4jm2d+9e1dTUKCYmRoMGDVJeXp5GjBihZ599tkvWmZycrNTUVK/XlKSioiI9+uij+tOf/kRgA0A3ICcAAB0hJwB0FRqAQDdxu936y1/+om9961uaPHmyZzw9PV379++X3W73BPbly5f1wQcfaPjw4frZz37mE5xTp07t1rWGhoZKkqqqqlRSUqJz587pyy+/VF1dnSTpzJkz3fr6AGBG5AQAoCPkBICuRAMQ6CYffvihLl68qMzMTAUHB3vGp0+frtWrVys/P1/Z2dkKCQlRaWmpWlpaFB8fr5CQkB5f64ULF7RmzRo5HA653W6f406ns8fXBACBjpwAAHSEnADQlWgAAt2k7Xb9EydOaOXKlV7Hbr75Zl24cEEOh0MpKSmeK2PDhg3r8XW63W49+uijOnHihOLj4zV37lyNGTNGw4YNU//+/b3eVgAA6DrkBACgI+QEgK5EAxDoBtXV1dq7d68k6eOPP77uPLvdrpSUFA0cOFCSdPHixa/92m23+/u78ubPoUOHdOLECdlsNr399tvq0+fal4O7XK6vvR4AgC9yAgDQEXICQFejAQh0g127dsnpdGr58uV67LHHfI4bhqGpU6dq3759+uKLL3TXXXdJag3P5ubmDm/b79u3r6Tr30Z/yy23SJJqamr+p7V+8cUXkiSbzeYV1gCA7kNOAAA6Qk4A6Gr8dALdwG63y2Kx6MEHH/R73GKx6IEHHlBLS4t27NihsLAw3XfffTp37px+97vf+czft2+fHA6HJGno0KEKCgrSsWPHVF1d7TP3zjvv9DymoaHBM15VVaXXX3/dZ35ERISk1j8WWlpaPOMNDQ361a9+dQNnDQD4X5ETAICOkBMAuhp3AAJdrKysTJ999pkSEhIUHh5+3XkPPfSQNm7cKLvdrscff1y/+MUvNG/ePG3cuFGFhYUaN26cmpqadOTIEZWXlys7O1uS1K9fPyUmJupvf/ubHn74Yd1zzz2qra3V5MmTlZ6erpEjR+r++++Xw+HQnDlzNGHCBFVVVamwsFBBQb4/8nFxcUpISND+/fuVlpam+Ph4NTY2qqioSM3Nzd1WJwAwK3ICANARcgJAd+AOQKCLvfvuu5JaA7kjVqtVUVFROnPmjA4dOqTw8HDZ7XYtWrRIbrdb7777rgoKCjRo0CAtX75cqampnse+9NJLmjt3rpqbm7Vjxw59+umnuvnmmz3H165dq1mzZunixYt65513VFZWpscee0xbtmzxu5YNGzbokUceUV1dnd577z2VlJRo5syZys/P74KKAADaIycAAB0hJwB0B4thGEZvLwIAAAAAAABA9+AOQAAAAAAAACCA0QAEAAAAAAAAAhgNQAAAAAAAACCA0QAEAAAAAAAAAhgNQAAAAAAAACCA0QAEAAAAAAAAAhgNQAAAAAAAACCA0QAEAAAAAAAAAhgNQAAAAAAAACCA0QAEAAAAAAAAAth/Af9zKA3IBFVCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Training Models\n", "lm_new.fit(x_train_new, y_train_new)\n", "xgb_reg_new.fit(x_train_new, y_train_new)\n", "s_reg.fit(x_train_new, y_train_new)\n", "\n", "# evaluate one or more ML models [Getting Predictions]\n", "y_pred_lm_new = lm_new.predict(x_test_new)\n", "y_pred_xgb_new = xgb_reg_new.predict(x_test_new)\n", "y_pred_sreg_new = s_reg.predict(x_test_new)\n", "\n", "# Compare model performance\n", "f, ax = plt.subplots(figsize=(20,3), nrows=1, ncols=3, sharey=True) # Create figure and axes\n", "# Create list of titles and predictions to use in for loop\n", "pred = [y_pred_lm_new, y_pred_xgb_new, y_pred_sreg_new]\n", "title = ['Linear Reg','XGBoost', 'Stacking Ensembling']\n", "ax = ax.flatten()\n", "# Loop through all axes to plot each model's results \n", "for i in range(3):\n", " rmse = round(np.sqrt(mean_squared_error(pred[i], y_test_new)), 3)\n", " ax[i].set_title(title[i]+\" (RMSE: \"+str(rmse)+ \")\")\n", " ax[i].set_xlabel('Actual')\n", " ax[i].set_ylabel('Predicted')\n", " ax[i].plot(y_test_new, y_test_new,'r')\n", " ax[i].scatter(y_test, pred[i]) " ] }, { "cell_type": "code", "execution_count": 19, "id": "2e59d9c9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.15950022626436994" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Abs_RMSE_XGB = (np.sqrt(mean_squared_error(y_pred_xgb_new, y_test_new)/ Target_range))\n", "# Divided MSE by Range to get MSE @ 0 to 1, Then got RMSE by sqrt(MSE)\n", "# Range 0 to 9113.56\n", "Abs_RMSE_XGB" ] }, { "cell_type": "markdown", "id": "a44be214", "metadata": {}, "source": [ "XGBoost still performs Best haven narrowed our dataset to the essentials, with an RMSE of 15.227 i.e `RMSE = 0.16 at Range 0 to 1`. This is truly an Excellent result with Just Seven Essential Features `'e_type', 'e_con', 'e_prod', 'GDP', 'ei_capita', 'Manuf_GDP', 'emission_per_cap'`\n", "\n", "Our Model improved from RMSE `0.3` to `0.1`" ] }, { "cell_type": "code", "execution_count": 20, "id": "6d109067", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAFnCAYAAADKeEYiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACD5klEQVR4nO3dd1zU9R8H8NcdHOOY4p6lyEhRcWHuPXNkztI0zRDEmdvUTE0tLTIHamnOcJIpuELNxMi9Fw4kRXEyhDu49f39Qff9cX6ZChzo6/l49DC/78/3e+87Ppz3vu9nyARBEEBERERERESUz+TmToCIiIiIiIheTyw4iYiIiIiIqECw4CQiIiIiIqICwYKTiIiIiIiICgQLTiIiIiIiIioQLDiJiIiIiIioQLDgJKIiq02bNvDw8MCSJUvMnQrRa8nDwwMeHh4ICQkxdypvHI1Gg/fffx8eHh7o1KkTHj9+bO6U6DW2Z88e1KxZEx4eHtizZ4+506E3jKW5EyAiU8ePH8egQYPEvwcGBqJLly75/jhTpkzBb7/9Bh8fH2zYsCHfr0+mRo8ejf3798PW1ha7du1ClSpVsm0fEBCA8PBwlCtXDrt27YKTk1Om7S5duoS9e/fi9OnTuHfvHhITEyGXy+Hs7AxXV1d4e3ujVatWqF27tuTcF/uakVwuh6WlJRwdHVGlShW0bt0aH330Eezt7V/uyRchHh4eAID58+fjgw8+eOnr3Lt3D23btpUct7a2hpOTE9zc3NCmTRv06tULtra2L/045pKxb7zqa/Xi9Q4ePIhKlSpl2m7JkiVYunRpju1eBwsWLMDVq1dRunRprF27FqVLlzaJh4SEYOrUqZLzrKys4OTkhKpVq6JVq1bo169ftr+bxj4PAH5+fhg3bly2eW3cuBFz5swR/57Vz8FgMOCPP/5AWFgYLl26hKdPn0Kv18POzg7ly5dH9erV0bBhQ7Ro0QLly5eXnN+mTRvExsZmm0tGhdUfjhw5gq1bt+L8+fNISEiAo6Mj3nnnHfTs2RNdu3bN18fS6XRo1aoVHj9+nOfnp1KpEBYWhkOHDiEqKgrPnj2DVqtFmTJlsGrVKlSvXt2kfZcuXZCUlIQvv/wSM2bMQK1atVC5cuV8fT5EWWHBSVTE7Ny5U/L3gig4qXDNmjULp0+fxpMnTzB16lRs3LgRMpks07a//fYbwsPDIZPJsGDBgkyLzQcPHmD69OmIiIgwOW5paQmNRoO4uDjExcXh2LFjWLZsGVxdXTF9+nQ0adIk08dUKBRiPoIgQKPR4MmTJ3jy5AnOnDmDrVu3Ijg4WPKhmExfu7S0NDx69AiPHj3CsWPHsGbNGixfvhyenp5mzjJv5HI5rKysxP8vLBYWFuLjZvX78To4dOgQNm3aBLlcjh9++AHlypXLtr3xNQHS74w+fvwYjx8/xokTJ7Bp0yb89NNPcHV1zfFxN23ahGHDhsHBwSHTuE6nw5o1a3K8zv379zF69GhcvHjR5LhMJkNCQgISEhJw9epV7N69GzKZDN9//32W/45ZWFjAwsIix8csjP4wb948rFu3Tvy7XC7H06dPERERgYiICBw4cACBgYG5yjcrgiAgOTkZ169fx9KlS1/qzvb+/fsxd+5cPHr0yCRXg8GA2NhYJCcnZ3pe//79cerUKezevRvjxo3D1q1bC/X3m95cLDiJipDU1FQcOHAAANC6dWscPnwYx44dw5MnT1CqVCkzZ0evwsXFBXPmzIG/vz9OnTqF9evXY/DgwZJ2Dx48wNdffw0AGDJkCBo3bixpc+HCBXz22WdISEiAlZUV+vXrh86dO8PT0xN2dnbQaDS4e/cu/vnnH4SHh+Pvv//GrVu3cPr06SwLzn379pl8u67T6fDgwQNs374dK1aswN27d/Hjjz+a3PmgdKtXr0ajRo0ApN/1uXv3Lnbv3o3Vq1cjNjYWvr6+2L17d5Z3qYuihg0bSoqJwjBixAiMGDGi0B+3MBkMBixatAgAMGDAADRo0CDHczL+LIxfKO3atQsrV65EbGwsAgICEBoaCkvLrD/WOTg44Pnz59iwYUOWr/GePXsQGxsLR0dHJCUlZdomOTkZH3/8Me7duwcHBwcMGjQIXbt2RcWKFWFpaYn4+HhcvnwZkZGR+P333/Hs2TOkpKRkmZe/vz9GjRqV42tQ0H777Tex2BwwYAA+/fRTVKhQAU+ePEFwcDCCgoKwf/9+rFy58pX6aI0aNWAwGF76/M2bN2PWrFkQBAEtWrTAwIED4e3tDScnJyQnJ+PmzZvZ3rmcMWMGjh49iosXL2Lv3r147733XjoXotzi1xpERcgff/yB5ORkODg4YN68ebC1tYVOp0NoaKi5U6N8YBxiCaQPlY6JiTGJC4KAadOm4fnz5/D09Mx06NvDhw8xYsQIJCQkoEKFCtixYwemT5+O+vXrw87ODkD63RBXV1cMGDAAv/zyC7Zu3ZrpkNrsWFpaonLlyhg3bhzq1q0LADh37txLPOs3i1wux1tvvYWRI0eKQ0MfPnyIHTt2mDkzKipCQ0Nx69YtODg4YOTIkXk+38rKClWqVMHIkSMxbdo0AEB0dDSOHTuW7XkDBgwAAKxbtw4qlSrTNj///LNJ28z8+uuvuHfvHiwsLLBhwwaMHj0a1apVg7W1NSwsLFCqVCm0bNkSU6ZMwZEjRzB+/Hgolco8P8/CJAiCuFZAly5dMHPmTFSsWBEymQylS5fG6NGj8cknnwBI/4IpuwI6J69SbF65cgVz5syBIAiYOnUqfvrpJ7Rs2VL8Msve3h7e3t4oWbJkltdwcnJCQEAAAGDp0qWvlA9RbrHgJCpCjMNpO3bsCBcXF3GO2IvDbLMSGxuLefPm4b333kPdunVRu3ZtdOzYEdOnT8fp06cBpM898/DwwG+//QYAOHHihLhwiPG/jIv05Gbhno8//hgeHh6YMmWKJHb06FFMnjwZvXv3FucS1q5dG61bt0ZAQIB4Rzc/zZ8/Hx4eHmjWrBl0Ol2W7eLj4+Hl5QUPDw9JUR8bG4v58+eja9euqFu3Lry8vNCyZUv4+flhw4YNiI+Pf6ncpk2bhooVK0KtVmPq1Kkm/9hv2rQJf//9N6ytrfHdd9+ZDKMz+vHHH/H48WNYW1tjxYoVcHd3z/Ex69Spg82bN+P9999/qZxdXFwApM9PzEpiYiIWL16MHj16oG7duvD29kaXLl2wYMECk2FfmUlNTcXq1avRp08fNGjQALVr10b79u0xc+ZM3LlzJ8vzBEFAaGgohg0bhiZNmqBmzZqoX78+PvjgA8ydOxcnTpwQ2y5ZssRkLtvUqVMl/f7evXu5fEVyp2nTpuJc3fPnz4vHjx8/bvKYd+/exdy5c9GuXTvUrFkT3t7eOHv2rMm1Hjx4gPnz56NLly6oW7cu6tSpg06dOmHu3Lm4f/9+tnlcu3YNEyZMQLNmzVCrVi20bdsWI0eORHh4eJbnGN8nPDw8cPz48UzbaDQa/Prrrxg0aBAaNWoELy8vNGnSBMOGDUNISIhY1Hz88ccmc4Xbtm1r8rq3adNGjIWEhIjHs3L79m3MmDED7dq1Q+3atdGwYUP07dsXv/zyC9LS0jI958Xrnj17FpMmTUKrVq3g5eWFpk2bYvz48fj333+zfiHzyapVqwAA/fr1g7Oz8ytdK+Mw1Vu3bmXbtkmTJvDy8kJCQgKCg4Ml8T///BPXr19H7dq1Mx1ZYXTmzBkA6Xfq3nnnnWwf08rKCr6+vgV2Fy3j71Jm//7k1oULF8T5pJmNPAGATz75BDKZDMnJyZKpDHlx/fp18b/169fn6dy5c+dCp9Ohd+/eYgH8Mvr06QMnJyfcvn27QP4NJnoRh9QSFRGPHj1CZGQkAKBHjx4AgO7duyM0NBRXr17F9evXs/0QtnPnTsyYMQMajQZA+nwXQRBw584d3LlzB9u2bcPMmTPRqlUrWFlZQafTwWAwQCaTQaFQmFzrVeanvGjfvn0mBbNxnsn9+/dx//59hIeHo0ePHvj222/z7TH79OmDtWvX4vHjxzh69Chat26dabvQ0FBotVo4OzujQ4cO4vGjR49i9OjR4gdm49wh47xI41DnFStW5Dk3e3t7fPPNNxg0aBBOnz6N9evX45NPPsGdO3fEYXaTJk2SLPgAAAkJCeJr2bdv32z7w4ssLCxeaoEIrVaLS5cuAUCWr+Ply5cxfPhwk7lIMpkMt27dwq1bt7Bt2zYsWbIk0+G8d+/exWeffYbo6GjxmFwux7///ot///0XISEhmDdvHrp3725ynkajwciRI3HkyBGT85KTk3H58mVcvnwZGzZswI4dO+Dl5SXODTT+flhaWkrmLhXEHDFHR0cAyHJO1c8//4wdO3aIecnlcqjVavHvALB3715MmTIFqampYp6CICA6OhrR0dHYuXMnVqxYkenQzE2bNmHu3LniFxtyuRz37t3DvXv38Mcff7z087p79y78/f1x48YN8ZhxvtvRo0dx9OhR/Prrr9i+fTsUCgUUCgW0Wi0A0zmvxr/n1m+//YYZM2aI15LL5UhLS8P58+dx/vx5bNu2DT///DMqVKiQ5TXGjh2LvXv3Avj/a/nkyROEhoYiIiICO3bsKLDFaa5evSq+Zv3793/l62VckCqzL6heNHz4cIwaNQq//PILBg4caPIl0k8//QQgfWGh7Bj70tOnTyEIwmsx19b4haxCoUDNmjUzbVO2bFlUqlQJd+/exalTp9CxY8fCTBHXr1/H6dOnIZPJxDuUL8vW1hbdu3fHhg0bsGvXLnTq1CmfsiTKHO9wEhURu3btgl6vR4UKFdCwYUMAQLNmzcShMdnd5Txy5AimTJkCjUaDZs2aYdu2bbh06RIuXryI7du3Y/DgwbC1tYVWq0XFihVx8eJFsag1ztXK+F9+zqEqX748BgwYgFWrVuHgwYO4ePEiLl++jD179qBfv34AgN9//x2HDx/Ot8esXr26OAw0u+0ejHd5e/ToIX5YS05OxoQJE6BSqdCoUSNs27YNFy5cwMWLF7Fnzx5MmTIF1apVgyAIL51fw4YNxW/RAwMDcevWLUyZMgVqtRrNmzfHwIEDMz0vMjJSvGP7sncrc0uj0eDUqVMICAjAw4cP0axZMwwbNkzS7tmzZ2Kx6e7ujjVr1uDixYu4dOkSNm/ejLp16yI5ORkBAQGSu5VpaWnw9/dHdHQ0KlSogCVLluDcuXO4fPkyfv/9d7Ru3RparRZTpkzBqVOnTM79+eefceTIEVhZWWHGjBmIjIzE1atXceLECaxatQrdu3eHQqEQf04jRowwmQc3Z84cSb+vWLFivr6Ger1eLKSzunZwcDBq1aqFn3/+GefPn8eVK1dw9OhR8UPv8ePHMX78eGi1Wnz00UcIDQ3FhQsXcObMGQQHB8PHxwfPnz/HmDFjJMMk//rrL8yZMwcGgwHt2rXDrl27cPnyZZw5cwbbt2/P9OeZG8nJyRg2bBhu3LiB0qVL45tvvsGpU6dw5coV/Pnnn5g1axbefvttsShcs2YNVq9eLZ6/b98+k9d9//79uXrcEydOYNq0adBqtSbP59y5c1i8eDHKli2LW7duwc/Pz6Rgf9HevXvRsWNHbNq0Sfzd/u6772BtbY2EhAT88MMPL/W65MbRo0cBADVr1syXFUJv374t/v9bb72VY/v27dvD1dUVjx8/xvbt28XjZ8+exalTp+Du7m5yxzkzxr55//59LFu27LUYkmn8PS1Xrly2X4AYf48zfkFWWP78808A6asOq1QqzJ07F926dUPDhg3RoEEDdO7cGV999VWuR2oYR1BFRkZCr9cXVNpEAHiHk6jI+P333wGk39U0fmNsYWGBLl26YMOGDdi9ezcmTJggufuo0+kwe/ZsCIKA5s2bY+XKlSZtatWqhVq1auHjjz/Gw4cPC+8J/SerOUqurq6YPXs2/v33X0RGRuKPP/7I8g7ay+jTpw/Onj2Lw4cP49mzZ+KwUKOoqChcvnxZbGt0/PhxJCQkAAC+++47k1VZXV1d4erqisGDB+PChQuvlN/nn3+OiIgI3LhxA/3790dSUhJKlCiB+fPnZ3nO9evXAaR/C5/TULa86tSpk8kqtcZiAUj/gDNnzpxMh9SuWrUKjx8/RunSpbFhwwaTIYJ169bFunXr0KtXL9y4cQOBgYFYvHixGN+6dStu3LgBW1tbrFu3zmSrGE9PTyxfvhzDhg3DsWPHsGDBApMPyMa7cz179jQp0J2cnNCyZUu0bNkSI0eOFOe1msOGDRvEuV4Z76BnNGbMGPj7+5vcJSpTpgyA9J/DrFmzoNfrMWPGDJPnaWVlhXr16mHVqlXo2rUr7t27h9DQUPTt2xdA+l2o+fPnQxAEtGrVCkuXLhUfw87OTnxfMM7Zy4vVq1fjzp07UCqV2LBhA6pWrSrGypcvjw8//BC9e/fOdSGZWwsWLIDBYEDz5s1Nno+trS06deoEDw8PvP/++7h+/Tq2bduW5TzEVatWoWXLlibHunbtinPnzmHDhg34888/C+zOnXEedFaLd+VVUFAQgPRC6N13382xvUwmw2effYYpU6bg559/Rt++faFQKLBy5UoAgK+vb47P+8MPP8Svv/6KhIQELFmyBNu2bUPLli1Ro0YNVK9eHe7u7uKd/dw+B+Mw4+zs27dP8sVNo0aNxPfFV/Hs2TMAyHGIszH+9OnTV37MvDL+e3Xv3j1069ZNUug/f/4ct2/fRkhICBYtWoT27dtne7369evD0tISKpUKN27cKHYraVPxwjucREXAlStXEBUVBQCSoYPGO5GPHz/OdFGIEydOiN9oTpo0KcvhsJUrV87VaoiFrU6dOgDSh6vmp86dO8Pe3h5arRa7d++WxI13PuvWrQs3N7dMr2EsPF8kl8vh7e39SvlZWVnhm2++gUKhEFeDnDt3brbbjhjzcXZ2ztdhz0D60FmNRgONRmNSbALphW7btm0xZ84cyZzYXbt2AQA++uijTD+sWVtbi3fSwsPDTRbbMJ773nvvZbovqVwuh7+/P4D0VTozm6OW1c8ISL/jU9irO6elpeHy5cuYPXs2FixYACB9KHKzZs0ybZ/xC6YXnTp1Crdv30apUqXw0UcfZdrG1tYWTZs2BfD/YYFA+jw7492vzz//PF+LJ+MCSP379zcpNjNSKBT5umfhrVu3xA/cfn5+mT6fqlWrinMajV/gZebFYtPIuLDW8+fPX3qOdk6MC4W97BdGgiDg+fPnOHXqFPz9/bFv3z4oFAp8+eWXuR6a3K1bN1SsWBH379/H77//jps3b+LPP/9ElSpVcrUFV5kyZfDLL7+IP/u4uDhs2bIFX375JQYMGICGDRuiXbt2JmsHZEev14vvPdn99yqjSnKiVqsB5Dws2RjPatGlgvTgwQMA6aNPevXqhTVr1uDw4cO4ePEi/vrrLyxatAilS5dGamoqxo0bh5s3b2Z7PSsrK1SrVg0Asp0rT5QfeIeTqAgwDu308vKS7KVWq1YtVKtWDbdv38bvv/+OFi1amMSNCziUKVMmVwvImENKSgoOHz6Mf/75Bzdv3kR8fDxSUlKgUqnEf7hfLHJelVKpxHvvvYctW7YgJCTEZCEInU4nFjvGO0JGdevWhVKphEqlwqeffoqPP/4YzZs3h5ubW74XeS9+gMrtgiXZDX/y8/PLcrVKf3//LIdLv7jpuF6vh1qtxvXr1xEWFobg4GBs3LgRSUlJWLhwIYD0b9qN3/Qbh4FnxvhFh06nw+XLl+Hj4wOtVosrV67keK63t7c4/+/ChQvi70fjxo1x5coV7N+/H2PGjEG3bt1Qr149yZ3swvDpp5+KcwFf7McdOnQQC8+8Mg4jfvr0qfjFTGaM/eHJkyeSc0uXLp2nub45uX//vjhSIqsiuiAYF11SKBTZvhYNGzZESEgIrly5Ap1Ol+02IS/KuG2NsQDJb8YFtPI6nDarn2HlypUxa9asPP0sLC0t8emnn2L27Nn46aefUKtWLQiCgM8++yzX73E1atRAaGgoDh8+LE6ViImJEfv/3bt3cffuXWzbtg3vvfce5s+fn+WiYyNHjjT7tijG9+Kc9qQsyKI3J8+fPweQvlDU3LlzTWJly5ZFt27dUKNGDbz//vvQaDRYvXp1tiNmgPQRCVFRUWYZ/URvFhacRGam0+kQFhYGIH1FWOPQnozatGmD27dvIzw8HMnJybC3txdjxg+Z2S2SYU4HDhzArFmzMh2CJJPJxA/qBaF3797YsmULrl27hitXrqBGjRoA0ue8Pn36FPb29ujcubPJOS4uLvjyyy8xY8YMPHz4EIsWLcKiRYtga2sLd3d3tGjRAh988MErv95qtRoTJkyAVqtFuXLlEBcXh8DAQLG4zYyxmEpKSoJGo8n023jjncrM5GWejoWFBezt7VG/fn3Ur18fpUuXxg8//IBdu3bB19cXbm5uJj/T7O4kGoeIAv/vr4mJieLd0uzOVSgUcHZ2xuPHj00KKn9/f5w5cwZnz57Fvn37sG/fPgDpQwvr1KmDzp07o3379oWyoEnGIlOpVKJUqVKoU6cOevbsKd59fBnG4kQQhGznJBplbGM8N7/fFzL+DMqXL5+v187N4zo7O2d7J884QkCr1SIxMTHb7SFeZGNjI/5/Qb0nGb9gy/genhsZf9f1ej30ej2srKywevXqXM3dfFHv3r2xfPlycVG5smXL5nleuKWlJdq3by8O3dRqtbh9+zauXLmCkydPYv/+/UhOTkZYWBhKlCiBGTNm5DnPwmLctiWnLz6NcXNu85Ldyuuurq5o1aoVDhw4gH/++SfHazk4OAAouC9YiIxYcBKZ2dGjR8UP7j/++CN+/PHHLNumpqZi7969JnMOjR+MiuJKgadOncLYsWOh1+tRsmRJ9OnTB40aNUKlSpVQsmRJ2NnZYcmSJeJ+hfmtdu3a8PT0xLVr1xASEiIWnMY7yl27djVZ5dHo/fffR6NGjbBz505ERkbi4sWLUKlU4kqYq1evRmBgIFq1avXSuS1YsADR0dGoWLEiduzYgUGDBiEqKgqTJ0/Gli1bMv1Qbby7p9PpcPHiRdSvX1/SJuPiLEZt2rQRl/x/WR988IG4mMqJEyeyLIoLgrGPZywCHBwc8Ouvv+Lw4cMIDw/H6dOnERMTg9jYWMTGxmLPnj1o1qwZgoKCcrV656tYv349GjVqlO/XNX5BULt2bWzbti1P5xo/GBfkXfmi+J6TMT9z3o3KSV5fu4wLXl2/fh0fffQRkpOTMWLECAQHB+dpziSQPtR98ODB+O677wAAQ4cOfeXfE4VCIW5R0rNnT4wbNw4DBgxATEwMQkJCMHXq1DzdcS5Mxi/zjHcRs2Icwm+OkRTGO/A57QH69ttvAzD9cigrr8OCT1Q8cA4nkZnldo9NoxfnJhm/wTfO7ygoL7OK3dq1a8WVd0NDQzFu3Dg0adIEVapUKbTFXIzF+e7du6HRaPDs2TNxtb8Xh9NmVL58efj7+2P9+vU4ffo09u7di2nTpqFs2bJQqVSYMmVKlnv+5eTw4cPYvHkz5HI5FixYgBIlSmDBggWwtLTE5cuXsWzZskzPa9y4sTjky1g0F5YSJUqI/2/c4iPjh67s9trMOFzL2F+dnJzEYii7czUaDRITEwFI74TK5XK0bdsW8+fPx4EDB3Dq1Cn89NNP4tzBiIgIbNy4MVfPrygyvlZ3797Nc/FkLEDyey5ixp95fs+7zo7xtUhISMj2bq9xax5LS0uTIbJFhfHOWFbb5OSGh4cHFi9eDEtLS9y8eRMBAQG5ugP+oo8++ggODg4oUaJEtu+FL6t06dLi+69Kpcp09E5RYZzL+ODBg2yLMON6CVnNXS5IxmHYGVcmzozxy6bMvkx9kbEf5qYt0atgwUlkRklJSeJ2IN98843JhtAv/vfVV18BSL9rePfuXfEatWrVApD+4S+nRQIyMn7Yz+mDinGYmfFDf14Yl47v0KGDWb4RBtIXZTFud3Do0CHs3r0bWq0WNWvWzHK/tRfJ5XJUq1YNgwcPFvcLjY+Pf6ml8Z8+fYovvvgCQPoG4z4+PgDStxr47LPPAKSvommcs5aRi4uLOAR4586dmbYpKBm/0ChbtiyA9A9Axp/r8ePHszzXGLOwsBBf84wr7WZ37unTp8UPUMZFXbLi4OCAFi1a4LvvvhPnhb64aElu+31RYJyrGB8fjxMnTuTpXOMd6Lt3775ScfOiSpUqiT9z4xYfuZHxTuvLvPbGn71WqxXnrWfG2JfeeeedPO3vWViMw8tfdc5cs2bN8OWXXwJIH3EwZcqUPH8pYW9vj2PHjuHIkSN5GiKa3RdELzL+DCwsLIrkFwBGxm20VCqVuDjVix4+fCiOFKlXr16h5WZkfE+LiYnJdAE1I+Pc+NzM3TYW0Mb3dKKCwoKTyIz27NmDtLQ02NjY5LiEeefOncV9BTPe5WzcuLH47f/ChQuz/Hb20aNHuHbtmvh344fGGzduZPsB0Lh6aGRkZKbxK1euiCsvvsi4SERWS8inpaWZbBxfEBwdHcUNukNCQsQ7gxmHJWd07NixLD9wADAZEvYyw8O++OILPH36FNWrV8e4ceNMYgEBAfDw8IBer8ekSZOQmpoqOX/cuHHi6rsjRozA2bNn85zDyzBuW6BQKNC8eXPxuPFu4q+//prpEC61Wi1uvdG2bVuTuWvdunUDkP57kNmXJXq9HsuXLweQXpBXr15djK1duzbbfmv82bz4MzL2e+OHsqKsSZMm4gfBOXPmZDvc79GjRyZfQDRt2hQWFhbQ6XRZ3g1/mS8sZDKZuJLp5s2bs1zoymAwICIiQvx7xi+cXua1d3NzE7dtWLZsWaYjLm7evIm9e/cC+P/q3kWNcb5lfmzl0bdvX3EF6LCwMHExr7ywtrbOcjGfrAwaNAgrVqzIcaVWlUolbmXUokWLPD9OYapTp444J3nt2rWZttmwYQMEQYBSqZQs3lcYOnXqJL5/LliwINMvGC5cuCB+OWV8f82KWq0W/+02DsMlKigsOInMyDictm3btjkOMXVychL/kTOusAqk34H8/PPPAaRvDO3n54cLFy5Ar9cjLS0NV69exaJFi9CpUyeTD3rGb2hTUlKwcOFCPH78GCqVCteuXTP58G/cBDw6Oho//vgjkpOTYTAYcPPmTcydOxe9e/fO8tt6Y7579uzBr7/+Kt4lffLkCbZv347OnTvn+159mTEWl3/99ReuXr0KW1vbLP8xvnHjBnr37g1/f3/s378fT548gSAIUKvV+Oeff8Q7ze7u7iYFUG4Y5xxaWlrim2++kXwAUygU4tDaO3fuZPoBsnLlyliyZAmsra3x5MkTDBgwAJMmTcLRo0eRmJgIQRCQmpqKu3fv4q+//sKCBQtyNZfnRYIg4OnTp4iIiICfn5/4wfGzzz4zWYhl+PDhKFmyJOLj4zFw4ED89ddf0Gg00Ol0OH36NAYPHozo6GgolUqMHTvW5DH69esHV1dXaDQafPLJJ9izZw/UajUMBgOuXbsGPz8/nDhxAnK5HJMnTzY5d+nSpWjXrh2WLVuGK1euQKPRwGAw4MGDB1iyZIm4YMaLi0IZ+/3u3bvx559/IiUlBc+ePcOxY8eK3F1PKysrzJgxAzKZDDdu3ECvXr2wa9cucWhicnIy/vnnH8yaNQvt27c3medXunRpsehatGgRtm3bhpSUFOj1ely7dg0zZsxAv379Xiov4888JSUFAwYMwK5du8T3hYcPH2Lbtm3o0aOHuLcjkP6B1thvVqxYgWvXriE1NRUPHjzI1eImADBlyhTI5XKcOHEC/v7+uHbtGgwGA9RqNfbs2YNPPvkEGo0Gbm5uWX6hZG7G7ZRy+5xzMmHCBHTq1AlA+vztTZs25ct1s6PRaBAYGIiWLVti7ty5OHz4MB4/fiz+m3P37l1s2rQJPXv2xI0bN2BnZ4eJEycWSC7Hjx8X541OmTLlpa8jk8nEPaNDQ0Mxb948xMXFQRAEPHv2DEFBQVizZg2A9PmumS36FBISIuayZMmSl84lK05OTmKOf/31F/z9/XHp0iVoNBqkpKSIC7oJgoC6devigw8+yPZ6kZGR0Ov1UCqVhTonn95MRXP2NtEb4N9//xXvTuX0TaRRt27dcPDgQcTExODMmTPih+fevXvjyZMnWLx4MY4cOYIjR46Ii1Jk/BY046IQLVq0QJ06dXD+/HmsX78e69evF2NTp04Vi6mePXtix44dOHfuHJYtW4Zly5ZBLpeLd1Jr1qyJ5OTkTO9yDhs2DIcOHRKHBH/11Vcm57q4uKB+/fq52qvtVfj4+ODtt98W9xoz7tGZGWtraxgMBhw6dAiHDh0CAJOcgfThR4GBgXnK4fbt2+JwXH9/f3h5eWXarkaNGhg+fDiWLVuGTZs2oW3btpJN4ps0aYKQkBB88cUXOHfuHH7//XfxrveLuRp5eXmJw3cz06lTJ5M+8+JqjXK5HEOGDMHo0aNNjpcqVQorV67E8OHDER0djc8++0zS9+zs7LB48WLJlj+2trZYsWIFhg0bhpiYGPGOb8bnoFAoMGfOHMmiPNbW1nj48KHJQlsvPvfBgweLH8aNfH19cejQIahUKgwfPtwkdvLkyQJfYCiv2rdvj/nz52PWrFmIiYkRP7hn9nN+cQjp1KlTceXKFVy7dg3Tp0/H9OnTTc5r0KCBuH1KXpQpUwarVq3CiBEj8PDhwyxzyrhVh1wux4gRIzBnzhzcuHHD5A6kp6dntvtmGjVu3BizZ8/GrFmzxPe5Fx+zatWqCAoKMllxtihp3rw5vvvuO5w+fRpPnz7N0yq6mZHJZPj222/x8OFDnD17FnPnzkXZsmXRrl27fMpYytPTE7GxsUhKSsKGDRuwYcMGAJn3ybfffhuLFi2S/O5nFBQUJI6gyM6+fftQsWLFV0s+G71798bly5fx66+/Yt26dVi3bp3kOXXo0EHcG/hlZRzNlHEUy6BBg8Sh5+XKlRNf14yGDBmCuLg4rF27FocPH8bhw4clOdavXx9Lly7NcQTOH3/8ASD99yq/FxcjehELTiIzMd7ddHZ2zvUeam3atIG9vT2Sk5Oxc+dOk3kkfn5+aNWqFTZu3IiTJ08iLi4OBoMBFSpUQJMmTdCrVy+TIsfCwgJr1qzB4sWLER4ejkePHkGpVKJy5comCyIoFAqsWbMGQUFB2LdvH+Li4mBnZ4caNWrggw8+QJcuXfDJJ59kWnDa29vj119/RVBQEPbu3Yu4uDhYW1vD3d0d7du3R//+/fHLL78UeMEJpH+YWLRoEYCsh9MCwIcffgh3d3fs3bsXp06dwr1796BSqeDg4IBq1aqhTZs2GDBggLicfG5otVpMmDABarUaXl5e8PPzy7a9v78/Dh48iGvXrmHq1KnYvXu3ZBXK6tWrY8uWLThz5gz279+Ps2fPIjY2FomJibC2tkbJkiXh4eGBBg0aoE2bNjkOmXqxwLSwsIBSqUTFihVRr1499OvXTxzS+KJatWphz549WLt2LQ4dOoS7d+/CYDCgfPnyaNmyJYYOHZrlHKEqVarg999/x8aNG7F//35ER0dDo9GgTJkyaNKkCYYMGSIu6JFRWFgY9uzZgyNHjuDq1auIj4+HIAgoX748vL290a9fv0xXjvXy8sKvv/6KJUuW4Ny5c1Cr1ShRogTc3d2LXLFp1LNnTzRp0gTBwcH4+++/cefOHaSkpMDOzg5VqlRB48aN0aVLF8mcZEdHR/z6669YtWoV9u7di/v378POzg5eXl7o1asXOnfunOXPNCdeXl7i/qyHDh3CrVu3oFKpUKJECdSqVQvdunVDhw4dTM4ZOHAgHB0dsW7dOnEURZkyZfK0wm+fPn1Qr149/PLLL4iMjMSjR4/EDew7duyIgQMHFtliE0ifW+rm5oYbN25g27ZtOb4X5Ia1tTWWL1+Ovn374u7duxg/fjzWrVsn3k3Nb8uXL8e///6LQ4cO4dSpU7h16xYePXoEtVoNGxsbuLi4oGbNmmjfvj06d+6c4++VcZuXnBTGqsNffvklWrRogS1btuDixYtITEyEk5MT3nnnHfTs2RPdu3d/5cfIahh6xpXEs3s9pk6dinbt2mHjxo04c+YM4uPj4eDgIK4O3KNHjxwLyKSkJHH4eX48J6KcyISivG44ERER0Wtk165dmDhxIkqXLo0//viDK4RSoVu6dCmWLFkCV1dXhIaGiqufExUU9jAiIiKiQtK1a1dUr14djx8/xi+//GLudOgN8/DhQ3E+6siRI1lsUqFgLyMiIiIqJHK5HBMmTACQPn+xoFfqJjISBAHTpk1DSkoKateuLVlUjaigsOAkIiIiKkStW7fGwIEDodFoMGrUKCQlJZk7JXoD/PDDD4iIiIC9vT2+//57cYE3ooLGgpOIiIiokE2ePBnvvPMOoqOj4evri+TkZHOnRK+xtWvXYsWKFQDS9/WtXLmymTOiNwkXDSIiIiIiIqICwW1RXpHBIMAgSPe8MzeNVg8rBfdVouKJ/ZeKM/ZfKs7Yf6k4Y/81H8tstuNhwfmKDIIByao0c6chERUTB/e3ypk7DaKXwv5LxRn7LxVn7L9UnLH/mo+zgzLLGOdwEhERERERUYFgwUlEREREREQFggUnERERERERFQgWnERERERERFQgWHASERERERFRgWDBSURERERERAWCBScREREREREVCO7DSUREREREZCaxl3Yj6nAgUhMfwMapPNxbj0NFr27mTivfsOAkIiIiIiIyg9hLu3EpbAYM2lQAQGrifVwKmwEAr03RySG1REREREREZhB1OFAsNo0M2lREHQ40U0b5jwUnERERERGRGaQmPsjT8eKIBScREREREZEZ2DiVz9Px4ogFJxERERERkRm4tx4HucLG5JhcYQP31uPMlFH+46JBREREREREZmBcGIir1BIREREREVG+q+jV7bUqMF/EIbVERERERERUIFhwEhERERERFXWCYO4MXgoLTiIiIiIioqIoNRU2c+fA2dEOzk72cHa0M3dGecY5nEREREREREWE7OkT2H4xDVa/bpLEUidMNENGr4YFJxERERERkRnJb96E7bjRUBw5Iolp+vaDev4CCKXLmCGzV8eCk4iIiIiIqJBZ/BMJpb8fLG7dlMRSPx+P1ElTAKXSDJnlLxacREREREREBU0QoAjZAaWfL2RpaZKw6vsfoBn6KSB/vZbZYcFJRERERERUEHQ6WC9bAtsZ0yUhg0tJqIJWQNe5ixkSKzwsOImIiIiIiPJLUhJs58yG9cogSUhXuzbUS5dD713XDImZBwtOIiIiIiKiVyCLjYXtxPGwCt0tiWk7d4Fq4XcQqlQxQ2bmx4KTiIiIiIgojywunIftqABYnj0riaV9NhzqmV8CTk5myKxoYcFJRERERESUC5b790HpPxzyJ08kMfVXs5E2cjSgUJghs6KLBScREREREVFmDAZYrVsL5ZhRkpBgaQnVilXQ9ukLyGRmSK54YMFJRERERERkpFbDZuG3sFn0rSSkf7sqVEEroG/azAyJFU8sOImIiIiI6I0me/oEttOmwir4V0lM16w5VD8shsHdwwyZFX9mLzgfP36M5cuXIyIiAo8ePULZsmXRsmVL+Pv7w8XFxaRtTEwMvv32W5w4cQJarRaenp4YOXIkmjWTfsMQERGBpUuX4tq1a1AoFPDx8cGkSZPw1ltvmbQTBAHr169HcHAw7t27hxIlSqBjx44YO3Ys7O3tC/S5ExERERGRechv3IDt2NFQHP1LEtP0/xDqr+dBKF3mlR8n9tJuRB0ORGriA9g4lYd763Go6NXtla9bXJi14Hzy5Ak++OADpKWl4YMPPkC5cuVw/fp1BAcH4/Dhw9i5c6dY9D179gwDBgwAAAwaNAhKpRJhYWHw9fXF2rVr4ePjI173+PHj8PX1haenJ0aNGgWVSoUtW7ZgwIAB2LVrl0khGxQUhMWLF6NDhw7o378/7t27h82bN+P27dtYs2ZN4b4gRERERERUYCz+Pgalvx8som9LYqkTJiJ14mTA1jbfHi/20m5cCpsBgzY1/TES7+NS2AwAeGOKTrMWnJs3b8ajR4+wbds21K5dWzxet25dzJgxA/v370evXr0AAOvWrUN8fDx27doFV1dXAMDAgQPRtWtXLF68GJs2bRLPDwwMRKVKlRAcHAxra2sAQJcuXdCtWzds2LABY8aMAQA8f/4cq1atQvfu3bFw4ULxfA8PD0yfPh2RkZFo3Lhxgb8ORERERERUAAQBih3bofTzhUyjkYRVgYuhGTIUkMsL5OGjDgeKxaaRQZuKqMOBb0zBWTCvbC49+W854WrVqpkcr1evHgBApVKJxw4dOoR69eqJxSYAWFtbo3v37jh9+jTi4+MBpN8JPXfuHLp16yYWmwDg6uqK+vXr4+DBg+KxyMhIqNVq9O7d2+Txu3fvDisrK5O2RERERERUDGi1sP7hezg72sHZyR52Qz8Ri01DyVJI3roDCUkpSEhKgebTYQVWbAJAauKDPB1/HZm14DQOg/3yyy+RnJwsHv/7779haWmJli1bAgB0Oh2io6MlhSkAVK9eHYIg4NatWwCAmzdvQhAEk8I0Y9vbt29Dr9cDAKKiogBA0tba2hpVqlTBjRs38uFZEhERERFRgUpKwlvzZqUXmSWdYTtzhhjS1amD539FICEpBUnRMdB16lRoadk4lc/T8deRWYfUdunSBbdu3UJQUBAiIiLQo0cPVK5cGUFBQViwYAGqVKkCAEhMTIRWq4WDg4PkGs7OzgD+f7fU+GdmC/44OztDq9UiMTERLi4uYtusrvv06dN8eZ5ERERERJS/ZPfuQTlxPBRhoZKY9r2uUC38DkKlSmbILF3spd3QaVSS43KFDdxbjzNDRuZh9lVqS5YsibJly6JVq1YIDw9HbGwsXF1dUblyZbGN5r9b4DY2NpLzFQoFACA1NdWkrW0mk30tLdOfblpamthWLpebDL3N2NZ4zexotHpExcTl2K6wpWp0RTIvotxg/6XijP2XijP2XyrqlFcvo+qXU2F39bIkFttvIB6MnQCD/X83k/QAzNSfn9/+A4//WQRBn2ZyXG7tiFINRiHFoeFr9bvm4yUdiWpk1oJz69atmDdvHrZv3w5PT08IgoAjR45g9uzZGDRoEDZt2oRatWrBysoKAGAwGCTX0Gq1AP5fjBrbGofNZqTT6QBALDCtrKxgMBggCAJkMpmkbWYF7ousFBZwf6tcbp9yoYmKiSuSeRHlBvsvFWfsv1Scsf9SUWS5fx+UfsMhf/pEElPPnoO0gFGAQoHYItR/D+/6RVJsAoCVjT3qt/7YDBmZj1nncP70009o2rQpPD09AQAymQytWrVCUFAQ0tLSsHHjRgCAk5MTLC0tkZSUJLmGcbGgkiVLmvyZVVuFQgFHR0eTtomJiZm2fXEfUCIiIiIiKmAGA6xW/5w+H9PRDvZ9eonFpmBlhZQ1a5GQmIyEpBSkjf0c+G/EY1HCxYL+z6wFZ1xcHCwsLCTHK1asCADiHEpLS0tUrVoVFy5ckLS9ePEiZDKZuPCPm5sbZDJZpm0vXLiAqlWrikNr3dzcxOMZPX/+HHfu3BHjRERERERUgNRq2Mz+b9EfZwcox40RQ/qq1fB83wEkJKUg8Uk8tL37AC+MTixq8nuxoNhLu3F4SRvsnfsODi9pg9hLu18lvUJl1oLznXfeQWRkJKKjo02O79u3DwBM9uZs3bo1Ll26hDt37ojHNBoNwsPD4e3tLd6NdHFxQZ06dXDgwAFxPicAREdH4+rVq2jTpo14rHHjxrCxsUFoqOlE43379kGv15u0JSIiIiKi/CN78hhK32HpRWbZUrBZtFCMaZu3QNLps0hISsHz8xehb9LUjJnmnXvrcZArTKfnvexiQbGXduNS2AykJt4HICA18T4uhc0oNkWnWedwTpw4EUOGDEGfPn3Qq1cvlC9fHleuXEFoaChcXV0xZMgQse3gwYOxY8cODB48GH369IFSqURYWBhiY2MxZ84ck+uOHTsWQ4cOxcCBA9GpUyeoVCps2bIFJUuWxODBg8V2Tk5OGDZsGJYuXQqtVgtvb2/ExsYiODgYjRs3RtOmxatjExEREREVZfIbUVCOGQ3LiKOSmObDj6D+eh6EUqXNkFn+qujVDQAQdTgQqYkPYONUHu6tx4nH8yLqcCAMWtPFTA3aVEQdDnyp6xU2mSAIgjkTuHjxIpYvX44zZ84gOTkZZcuWRYcOHRAQECDZruT27dtYuHAhTp48Ca1WC09PT4wcORLNmzeXXPfIkSNYtmwZrl+/DoVCAR8fH0yaNAlvv/22STtBELBu3ToEBwcjNjYWzs7O6NSpE8aOHZvp1iov0un1SFZJJwSbGyf9U3HG/kvFGfsvFWfsv1QQLP4+BqXfcFjciZbEUidMQurESUAmO0zk1evaf/fOfQdAZiWbDJ2nXy3sdDLl7KDMMmb2grO4Y8FJlP/Yf6k4Y/+l4oz9l/KFIECxbSuU/sMh+29HiYxUP/wIzSdDAHn+zu57Xfvv4SVt/htOa8rGqQJajzpkhoyksis4zTqHk4iIiIiIXgNaLawDv0ufj+lkD7thQ8Vi01CqFJK37UBCUgoSklKgGfppvhebr7P8nA9qDmadw0lERERERMVUYiJsv5oF659XSUK6unWh/nEp9HW8Cz+v10x+zgc1BxacRERERESUK7K7d6Gc8DkUe/dIYpqu3aBe+B2E/7Y4pPxT0atbsSkwX8SCk4iIiIiIsmRx7ixsR46AZSb73KcN94d6xkzA0dEMmVFxwIKTiIiIiIhMWO7dC6X/cMifPZXE1HO/Rpp/AKBQmCEzKm5YcBIRERERvekMBlitWQ3l52MlIcHaGqoVq6D9oBcgkxV+blSsseAkIiIiInoTqdWw+XYBbL5bJAnpq7lCFbQC+sZNzJAYvU5YcBIRERERvSFkjx/BduoUWG3dIolpW7aEOvBHGKpXN0Nm9LpiwUlERERE9BqT34iCcvQoWB6LkMQ0Hw2A+ut5EEqWMkNm9CZgwUlERERE9JqxiDgKpf9wWMTESGKpk6YgdcJEwMbGDJnRm4YFJxERERFRcScIUGzdAqWfL2R6vSSs+nEpNIMGA3K5GZKjNxkLTiIiIiKi4kirhfWSxbCd9aUkZChdGqqgldB16GiGxIj+jwUnEREREVFxkZgI21lfwnr1T5KQrm49qJYug6FWbTMkRpQ5FpxEREREREWY7N9/oRw/Dor9+yQxTbfuUH+7CELFimbIjChnLDiJiIiIiIoYi7NnoQzwg8WlS5JYmv8IqKfPBBwczJAZUd6w4CQiIiIiKgIs9+6Bcrgv5Anxkpj663lI8w8ALPnxnYoX9lgiIiIiInPQ62G1ZjWU48dJQoKtLVRBK6Ht+QEgk5khOaL8wYKTiIiIiKiwqFSw+WY+bAK/l4T01d2gWh4E/buNzZAYUcFgwUlEREREVIBkjx/BdspkWG3bKolpW7WC+vvFMFSvbobMiAoeC04iIiIionwmv34NyjGjYfn3MUksbeDHSJ0zF0LJUmbIjKhwseAkIiIiIsoHlkf/gtJ/OOT//iuJpU6eitTxEwAbGzNkRmQ+LDiJiIiIiF6GIECxORhKP1/IBEESVi1ZBs3HgwC53AzJERUNLDiJiIiIiHJLo4H1j4thO3uWJGQoWxaqoJXQtWtf6GkRFVUsOImIiIiIsiFLSIDNV1/CevXPkpiuXn2oliyFoVZtM2RGVPSx4CQiIiIieoHs33+h/HwsFAf2S2KaHu9D/c1CCBUqmCEzouKFBScREREREQCLM2egDPCDxeXLkljqiACkfjEDcHAwQ2ZExRcLTiIiIiJ6Y1nuCYPSzxfyhARJTD1vPtL8RgCW/MhM9LL420NEREREbw69HlY//wTlxPGSkKBUQrViFbQ93gdkssLPjeg1xIKTiIiIiF5vKhVsFsyDzQ+BkpDezR2q5UHQN3rXDIkRvf5YcBIRERHRa0f26CFsp0yG1fZtkpi2dRuov/8BBldXM2RG9GZhwUlERERErwX5tatQjh4Fy38iJbG0jwchdfZcCCVLmiEzojcXC04iIiIiKrYs/zoCpf9wyO/elcRSp0xD6ufjARsbM2RGRAALTiIiIiIqTgQBiuBfYefnm2lYtWw5NAM+BuTyQk6MiDLDgpOIiIiIijaNBtaLf4DtnK8kIUO5clAtXwFdu/ZmSIyIcsKCk4iIiIiKHFlCAmxmzYT1mtWSmK5+A6iWLIXBq5YZMiOivGDBSURERERFgjwmBrafj4XijwOSmOb9nlB/sxBC+fJmyIyIXhYLTiIiIiIyG4tTp6AM8IPF1auSWGrASKR+MQOwtzdDZkSUH1hwEhEREVGhUoTuhtLPF7KkJElMPf8bpA33Ayz5MZXodcDfZCIiIiIqWHo9rH5aBeWkCZKQYGcH1YpV0HbvAchkZkiOiAoSC04iIiIiyn8pKbBZMA82i3+QhPQenlAtXQ59o0aFnxcRFSoWnERERESUL2QP42A7eTKsQrZLYto2baH+/gcYqlUzQ2ZEZC5FYkdcrVaL9evXo3///mjYsCG8vLwwceJEkzYxMTEICAhAw4YN4e3tjf79+yMiIiLT60VERKB///7w9vZGw4YNERAQgJiYGEk7QRCwbt06dOrUCV5eXmjevDnmzp2L5OTkAnmeRERERK8b+bWrsG/fFs6OdnByczUpNtMGDUbinbtISEpBys5dLDaJ3kBmv8OZkJCAoUOH4vr16+jQoQM6deoEtVoNvV4vtnn27BkGDBgAABg0aBCUSiXCwsLg6+uLtWvXwsfHR2x7/Phx+Pr6wtPTE6NGjYJKpcKWLVswYMAA7Nq1Cy4uLmLboKAgLF68GB06dED//v1x7949bN68Gbdv38aaNWsK70UgIiIiKkYsj/wJpf9wyO/dk8TU06YjbdzngLW1GTIjoqLG7AXntGnTcPv2bWzatAne3t6Ztlm3bh3i4+Oxa9cuuLq6AgAGDhyIrl27YvHixdi0aZPYNjAwEJUqVUJwcDCs/3uj69KlC7p164YNGzZgzJgxAIDnz59j1apV6N69OxYuXCie7+HhgenTpyMyMhKNGzcuoGdNREREVIwIAhS/boKd//BMw6rlQdAM+JiL/hCRhFmH1F68eBEHDx7EiBEjsiw2AeDQoUOoV6+eWGwCgLW1Nbp3747Tp08jPj4eQPqd0HPnzqFbt25isQkArq6uqF+/Pg4ePCgei4yMhFqtRu/evU0eq3v37rCysjJpS0RERPTG0Whg/c0CODvawdnJ3qTYNFSogOSdu5CQlIKEpBRoBg5isUlEmTJrwblnzx7IZDL0798fAJCUlIS0tDSTNjqdDtHR0aiWyZj/6tWrQxAE3Lp1CwBw8+ZNCIJgUphmbHv79m1xqG5UVBQASNpaW1ujSpUquHHjxqs/QSIiIqJixCIxEbajR6YXmaVKwPbrOWJM19AHSf+cQEJSCpKu3YCuTVszZkpExYVZh9RevnwZpUuXxpIlS7Br1y4kJCQASC8Op02bhqZNmyIxMRFarRYODg6S852dnQEAT548MfnT3t4+07ZarRaJiYlwcXER22Z13adPn+bHUyQiIiIq0uR37sD287FQhP+B+i/END0/gHrBtxDKlzdLbkRU/Jm14Hz69Cni4+Px4MEDjBkzBqVKlUJsbCw2bNiAzz77DOvXr0fFihUBADY2NpLzFQoFACA1NRUAoNFoAAC2traStpaW6U/VeAdVo9FALpebDL3N2NZ4zZxotHpExcTlqm1hStXoimReRLnB/kvFGfsvFQd2F8+j6ozJUN6Sjuh6MPhTxI4YA4PSLv2ABgD7NBUDfP81Hx+vrFegzrHgPHny5Es/cMOGDbONa7Va1K9fH0uXLjU53qVLF7Rv3x7r1q3DrFmzAAAGgyHT84H/F6NWVlYAYLLCrZFOpwMAscC0srKCwWCAIAiQvTDnQKfTZVrgZsZKYQH3t8rlqm1hioqJK5J5EeUG+y8VZ+y/VFQpdu+C0s8XsufPJTHVgm+hGe6HqHuP4f5WOVQ3Q35Er4rvv0VTjgXnxx9/LCnIcuvq1avZxh0cHKBWqyXHy5YtC09PT0RHR8PJyQmWlpZISkqStDMuFlSyZEmTP7Nqq1Ao4OjoaNI2MTFRHJqbsW2pUqVyeHZERERERZheD6tVK6GcPFESEhwcoFqxCtpu3c2QGBG9SXIsOLt27WpScN69exfnzp1D586dxWGqGRlXjW3Xrl2OD+7u7o4DBw5Aq9WKw2ONEhMTxWKzatWquHDhguT8ixcvQiaTiQv/uLm5QSaT4cKFC+jQoYNJ2wsXLqBq1apizm5ubuLxFi1aiO2eP3+OO3fucEsUIiIiKn5SUmAzby5slvwoCek934FqWRD0OYxAIyLKTzkWnIsWLTL5+5QpU5CSkoLAwMBM2x8/fhyDBw9G3759c3zwTp06ISQkBOvXr8enn34qHj9z5gxiYmIQEBAAAGjdujVWr16NO3fu4O233waQPgczPDwc3t7ecHFxAQC4uLigTp06OHDgAEaPHi0OsY2OjsbVq1fh6+srPkbjxo1hY2OD0NBQk4Jz37590Ov1aNOmTY75ExEREZmbLO4BbKdMhlXIDklM27Yd1N//AEPVqmbIjIjoJRYNOnHiBN59990s440aNUKDBg2wcuXKHOdwtmzZEh07dsS3336L8+fPo27durh//z62b98ONzc3DBkyBAAwePBg7NixA4MHD0afPn2gVCoRFhaG2NhYzJkzx+SaY8eOxdChQzFw4EB06tQJKpUKW7ZsQcmSJTF48GCxnZOTE4YNG4alS5dCq9XC29sbsbGxCA4ORuPGjdG0adO8vjREREREhUJ+9QqUIwNgefKEJJb2yRCkzpoN4b8v5ImIzCnPBeeTJ0+gVCqzbePh4YHff/89V9cLDAzE+vXrsWnTJhw6dAguLi7o3bs3Ro8eLW5vUqpUKWzcuBELFy7E2rVrodVq4enpiZUrV0qK38aNG2PFihVYtmwZFi9eDIVCAR8fH0yaNEm8E2o0cuRIODg4IDg4GH/88QecnZ3Rr18/jB07NvcvCBEREVEhsDx8CEr/4ZDfvy+Jqb+YgbSx44BMVt8nIjInmSAIQl5OaNeuHZycnLBjh3TYhpGfnx+OHz+Os2fPvnKCRZ1Or0eyKs3caUhwlS4qzth/qThj/6V8Iwiw+nUjlP5+mYZVQSug+Wgg8JKLO2aG/ZeKM/Zf83F2yPqGpDyvF+vSpQuuXLmCwMBAcVuSjP766y9ERESgRo0aeb00ERER0ZstLQ3WC+bD2dEOzk72JsWmoWJFJP++GwlJKUhISoFmwMf5WmwSERWEPA+p9fX1RXh4OFatWoXff/8dDRo0QNmyZfH8+XNcu3YNFy9ehIWFBYelEhEREeWCLD4eNjOnw3rdWklM59MIqh+XwFCjZuEnRkSUD/JccNrb2yM4OBjz589HaGgoQkNDTeLVq1fH9OnTc1wwiIiIiOhNJY+Ohu3nY6E4GC6JaT7oBfWCbyCUK2+GzIiI8leeC04gfYXXBQsWYNq0abhw4QLi4+Nha2uLatWqoVq1avmdIxEREVGxZ3HiBJQB/rC4fk0SSx09BqlTvwDs7MyQGRFRwXmpgtPI0dERzZo1y69ciIiIiF4fggDFrt+h9POFLCVFElZ9sxAa3+GAhYUZkiMiKhwvXXCeOXMGERERePz4MZo0aYLOnTsDAI4dO4bHjx+jXbt24rYmRERERG8EvR7WK4JgO3WyJCQ4OkK1YhW0XbuZITEiIvPIc8EpCAImT56M3bt3QxAEyGQyODg4iAVnSkoKpk6dCo1Gg759++Z7wkRERERFSnIybObNhc3SJZKQ/p13oFoaBD3XtiCiN1Set0VZv349du3ahffeew9bt27Fi9t4tm/fHqVKlcIff/yRb0kSERERFSWyuAdQDhqYvn1JhbImxaa2fQckXbiMhKQUPD9+isUmEb3R8nyHMyQkBNWqVcPChQshy2TvJ5lMBh8fH5w7dy4/8iMiIiIqEuSXL0E5aiQsT52UxNKGDEXqrNkQSpQwQ2ZEREVXngvOmJgYdO3aNdNi08jZ2RmPHz9+pcSIiIiIzM3y8CEo/Xwhf/BAElNPn4m0MWMBa+vCT4yIqJjIc8Epl8uzLTYBIDY2Fra2ti+dFBEREZFZCAKsNq6HMmBEpuGUFaug/fAjIIfPQkRElC7PBWf16tVx/vz5LOOPHz/G8ePHUatWrVdKjIiIiKhQpKXB+vvvYDv/a0nIUKkSVMtXQNeqtRkSIyIq/vK8aND777+PqKgorF27VhJ79uwZxo8fj9TUVHTv3j0/8iMiIiLKd7Jnz2Ab4J++6E9pF5NiU/duYyQdP4mEpBQkXbnOYpOI6BXk+Q5n//79cfjwYXzzzTfYvXs3ZDIZ/vzzT1y9ehVnz55FamoqGjdujF69ehVEvkREREQvRX77NmzHjYHi8CFJTNOrN9QLvoFQtpwZMiMien291BzOFStWICgoCJs2bYIgCLh9+zZu374NpVKJIUOGYNy4cTnO8yQiIiIqaBYnTkA5wg8WUdclsdQxY5E6ZRpgZ2eGzIiI3gx5LjgBwMLCAiNHjkRAQACio6ORkJAAe3t7VKtWDZaWL3VJIiIiolcnCFD8vhNKP1/IVCpJWLXwO2iGfQZYWJghOSKiN0+eq8OdO3fCzc0NNWvWhEwmQ7Vq1SRtIiIioFQqUa9evXxJkoiIiChLOh2sVyyH7bSpkpDg5ARV0Epou3YzQ2JERJTngnPKlCkYOnQoatasmWWbTZs2ISYmBnv27Hml5IiIiIgylZwMm7mzYbN8mSSkr1kTqqVB0Nevb4bEiIgoowIZ/1q6dGlERkYWxKWJiIjoDSV78AC2kybA6vedkpi2Q0eovwuE4a23Cj8xIiLKUr4XnBqNBufPn4e9vX1+X5qIiIjeMPLLl6AcGQDL06cksbShnyL1y68glChhhsyIiCg3clVwTp1qOifi6NGjiI+Pl7TTarU4c+YMHjx4gC5duuRPhkRERPRGsTwYDqWfL+QPH0pi6pmzkDZ6DGBlZYbMiIgor3JVcP7222/i/8tkMty4cQM3btzIsn2NGjUwefLkV8+OiIiIXn+CAKsN66EcOUIaksmgWrEK2v4fAtxyjYio2MlVwfnLL78AAARBwNChQ9G5c2f07dtX0s7CwgJly5bFW5w/QURERNlJTYXN99/BZsE8SchQpQpUy1dA16KlGRIjIqL8lKuCs3HjxuL/jxw5EvXq1TM5RkRERJQT2dOnsJnxBaw3bpDEdI2bQPXjEhg8PM2QGRERFRR5Xk/4+OOP8ejRIxw5ciTT+JkzZ3Dw4EGo1epXTo6IiIiKN/nt27Dr0RXOjnZwqlrFpNjU9O6DxBu3kJCUguT9f7DYJCJ6DeW54NyxYwemTp2a6aJBABAXF4eRI0di165dr5wcERERFT8Wx/+BQ/26cHa0g6N3LSgOHxZjqeM+R0LcYyQkpUC1Zi2EsuXMmCkRERW0PBec4eHhKFeuHHr06JFpvEuXLihfvjxCQ0NfOTkiIiIqBgQBit9C4FS2FJwd7eDQvi0sbkSJYdWi75EQn4SEpBSkfjUHUCrNmCwRERWmPO/DGRMTgxYtWkCWzUpxDRs2xLFjx14pMSIiIirCdDpYBy2D7RfTJCGDcwmoglZA915XMyRGRERFSZ4LzuTkZNjZ2WXbxsHBAUlJSS+dFBERERVBz5/Ddu5sWActl4T0Xl5QLQ2Cvl49MyRGRERFVZ4LzkqVKuHixYvZtrl06RLKleOcDCIiouJOdv8+bCdNgNWu3yUxbcdOUC/6HgZuh0ZERFnI8xzOtm3b4sKFC9i0aVOm8eDgYJw/fx7Nmzd/5eSIiIio8MkvXYR9y+bpK8t6upkUm2mffobEf2ORkJSClG07WGwSEVG28nyH89NPP0VoaCjmzp2L3bt3o1GjRihTpgyePHmCyMhInD9/Ho6Ojvjss88KIl8iIiIqAJZ/HIDSfzjkjx5JYuovZyFt1BjAysoMmRERUXGW54LTyckJ69evx4QJE3Du3DmcO3cOMpkMgiAAANzc3LBw4UIOqSUiIirKDAZYbVgP5agASUiwsIBqxSpo+/YDslkkkIiIKCd5LjiB9HmcmzdvxuXLl3Hu3Dk8f/4cDg4OqFGjBry9vbNdwZaIiIjMJDUVNosWwubbBZKQ/q23oF6+ArrmLcyQGBERva5equA0qlmzJmrWrJlfuRAREVE+kz19Cpvp02C9aaMkpmvSFKrFP8Lg4WmGzIiI6E3wSgUnERERFT3ymzdhO240FEeOSGKavv2gnjcfQpmyZsiMiIjeNLkqOAcNGoT33nsP/fr1w9SpU3N1YZlMhnnz5r1SckRERJQ7Fv9EQunvB4tbNyWx1M/HI3XSFECpNENmRET0JstVwXnixAl4eXkBAH777bdcXZgFJxERUQESBCh+C4HSzxey1FRJWPVdIDRDPwUsLMyQHBERUbpcFZzz58+Hm5sbAOCXX34p0ISIiIgoCzodrJcvhe30LyQhQwkXqFashK5zFzMkRkRElLlcFZw9e/YU/79x48YFlgwRERG9ICkJtnNmw3plkCSkr1ULqqVB0Neta4bEiIiIcsZFg4iIiIoYWWwsbCeOh1XobklM27kLVAu/g1ClihkyIyIiypscC8779++/9MUrVKiQ53MMBgOGDx+Ov/76C5s2bUKDBg3EWExMDL799lucOHECWq0Wnp6eGDlyJJo1aya5TkREBJYuXYpr165BoVDAx8cHkyZNwltvvWXSThAErF+/HsHBwbh37x5KlCiBjh07YuzYsbC3t8/7kyYiInoJFhfOw3ZUACzPnpXE0ob5Qv3lLMDJqfATIyIiegU5Fpxt2rSBTCbL84VlMhmuXLmS5/MWLlyIv/76S3L82bNnGDBgAID0VXOVSiXCwsLg6+uLtWvXwsfHR2x7/Phx+Pr6wtPTE6NGjYJKpcKWLVswYMAA7Nq1Cy4uLmLboKAgLF68GB06dED//v1x7949bN68Gbdv38aaNWvynD8REVFuWR7YD6WfL+RPnkhi6llfIW3UGEChMENmRERE+SPHgrNu3bomBeezZ89w584d1K5dG5aW0tNv3bqFtLQ01KhRI8/J/Pbbb1i3bh26du2K0NBQk9i6desQHx+PXbt2wdXVFQAwcOBAdO3aFYsXL8amTZvEtoGBgahUqRKCg4NhbW0NAOjSpQu6deuGDRs2YMyYMQCA58+fY9WqVejevTsWLlwonu/h4YHp06cjMjKSc1aJiCj/GAywWrcWyjGjJCHB0hKqFaug7dMXeIkveomIiIqiHAvO4OBgk7/Pnj0bOp0OW7duzbT9gQMHMHbsWMycOTNPiZw9exYzZ87EpEmT4OjoKCk4Dx06hHr16onFJgBYW1uje/fuWLZsGeLj41GiRAk8e/YM586dQ0BAgFhsAoCrqyvq16+PgwcPigVnZGQk1Go1evfubfJY3bt3x+zZs3Hw4EEWnERE9GpSU2Gz8FvYLPxGEtK//TZUy1dA36y5GRIjIiIqePK8nhAREWEyr/JFHTp0gKenJ5YvX57raz548AAjR45E165d8cknn0jiOp0O0dHRqFatmiRWvXp1CIKAW7duAQBu3rwJQRBMCtOMbW/fvg29Xg8AiIqKAgBJW2tra1SpUgU3btzI9XMgIiIykj19AqWfL5wd7eBcpqRJsalr1hxJp84gISkFzy9cZrFJRESvtTyvUvvw4UM4ODhk28bb2xthYWG5up5arUZAQAAqV66Mr776KtM2iYmJ0Gq1mT6us7MzAODJf/NfjH9mtuCPs7MztFotEhMT4eLiIrbN6rpPnz7N1XMgIiKS37gB23Gj4ZPJOgSafv2hnjcfQukyZsiMiIjIfPJccDo5OeHatWvZtnny5AlSU1NzvJYgCJgyZQri4+Oxfft2WFlZZdpOo9EAAGxsbCQxxX+LKRgfz9jW1tZW0tY45zQtLU1sK5fLTYbeZmybm+eg0eoRFROXY7vClqrRFcm8iHKD/ZeKC/szp1BtxiTY/Bsjid0f5o/7vgEwGP89UhkA9msq4vj+S8UZ+6/5+HhJR6Ia5bngbNeuHYKDg7Ft2zb06dNHEr969SqOHj2a6ZDWF0VERCA8PBxLly6FVqtFXFx6B0lKSgIAxMfHIy4uTiwqDQaD5BparRbA/4tRY9FqHDabkU6nAwCxwLSysoLBYIAgCJKVeHU6XaYF7ousFBZwf6tcju0KW1RMXJHMiyg32H+pyBIEKHZsh9J/OGT/fXmZkSpwMS616QL3qhWgBFC98DMkeiV8/6XijP23aMpzwTlixAgcOHAAM2fOxNatW9GkSROULVsWycnJuHr1Kg4ePAitVgs/P78cr5WWlgadTpdl25EjRwJIX9zH0tJSLEQzio+PBwCULFnS5M+s2ioUCjg6Opq0TUxMFIfmZmxbqlSpHJ8DERG95rRaWC9fCtsZ0yUhg0tJqIJWQte58/8P8tt1IiIiUZ4LzlKlSiE4OBjTpk3DyZMncfHiRchkMgiCACB9yO3s2bPRoUOHHK/l7e2NFStWSI5HRkZi3bp1mDBhAqpXrw5HR0dUrVoVFy5ckLQ1Pr7xjqqbmxtkMhkuXLggyeHChQuoWrWqOLTWzc1NPN6iRQux3fPnz3Hnzh2uUEtE9KZKSoLt7K9gvUr6b5SuTh2olyyD3ruuGRIjIiIqXvJccAJA5cqVsWHDBty4cQNnzpxBfHw8bGxs4OrqikaNGmU5F/NFpUqVQuvWrSXHjXct69atK66I27p1a6xevRp37tzB22+/DSB9DmZ4eDi8vb3h4uICAHBxcUGdOnVw4MABjB49WswlOjoaV69eha+vr/g4jRs3ho2NDUJDQ00Kzn379kGv16NNmzZ5f3GIiKhYkt27B+XE8VCEhUpi2i7vQbXwOwiVK5shMyIiouLrpQpOIzc3N/EuYUEbPHgwduzYgcGDB6NPnz5QKpUICwtDbGws5syZY9J27NixGDp0KAYOHIhOnTpBpVJhy5YtKFmyJAYPHiy2c3JywrBhw8Q5pN7e3oiNjUVwcDAaN26Mpk2bFspzIyIi87C4cB62I0fA8tw5SSzts+FQz/wScHIq/MSIiIheEy9dcD548AB///03Hj9+jNq1a6NJkyYAgGvXruH58+eoU6dOru905kapUqWwceNGLFy4EGvXroVWq4WnpydWrlyJd99916Rt48aNsWLFCixbtgyLFy+GQqGAj48PJk2aJN4JNRo5ciQcHBwQHByMP/74A87OzujXrx/Gjh2bb7kTEVHRYbl/H5R+wyF/+kQSU8+eg7SAUcB/i9URERHRq5EJxsmXebB48WL89NNP0Ol0kMlkGDJkCCZNmgQA2L59O2bMmIFvv/0W3bp1y/eEixqdXo9klXSlQnPjKl1UnLH/Ur4yGGC19hcox46WhASFAqoVq6Dt3Qd4YbXyl8X+S8UZ+y8VZ+y/5uPsoMwyJs/rxXbu3ImgoCDUrVsXgYGBeLFe7dGjBxwdHbF///68Z0pERJQf1GrYzP4Kzo52cHZ2MCk29VWr4fne/UhISkHi0wRo+/TNt2KTiIiITOV5SG1wcDAqVKiA1atXw8rKCuPGjTOJKxQKNGrUCNevX8+3JImIiHIie/IYttOmwmpzsCSmbd4C6h8Ww+DmbobMiIiI3lx5LjijoqLQqVOnbOdnlilTBkeOHHmlxIiIiHIiv3EDtmNHQ3H0L0lM0/9DqOfNh1CqtBkyIyIiIuAlCk5BEHJcDOjhw4f5umAQERGRkcXfx6D0Gw6LO9GSWOqESUidOAmwtTVDZkRERPSiPBecb731VrbDZZ8/f46TJ0/C1dX1lRIjIiICAAgCFNu3QennC5lWKwmrfvgRmk+GAPI8L0tAREREBSzP/zp36dIF58+fx969eyUxjUaDmTNnIjExEZ06dcqXBImI6A2k1cL6h+/TF/1xsofdp0PEYtNQqhSSt+5AQlIKEpJSoBn6KYtNIiKiIirPdzg/+eQT7N+/HxMmTBCLztOnT2P69On466+/8OjRI3h4eOCjjz7K92SJiOg1lpgI29lfwfqnlZKQztsb6iXLoK/jXfh5ERER0UvLc8FpbW2N9evX4+uvv8bu3bsBAOfPn8f58+chk8nQoUMHfPXVV5zDSUREOZLdvQvlhM+h2LtHEtO+1xWqhd9BqFTJDJkRERFRfshzwQkA9vb2mD9/PqZMmYILFy4gISEB9vb2qFmzJsqUKZPfORIR0WvE4vw52Ab4w/LCBUksbbg/1DNmAo6OZsiMiIiI8lueC86JEyfCzc0Nvr6+cHJyQvPmzQsiLyIieo1Y7tsHpZ8v5M+eSmLqOXORNmIkoFCYITMiIiIqSHkuOPfs2YP+/fsXRC5ERPS6MBhgtWY1lJ+PlYQEa2uoglZC26s3IJMVfm5ERERUaPJccJYsWRI6na4gciEiouJMrYbNtwtg890iSUhfzRWqoBXQN25ihsSIiIjIXPJccLZu3RqRkZEQBAEyfjNNRPRGkz15DNupU2C1ZbMkpm3RAurAH2FwczNDZkRERFQU5HnjsuHDh+Px48dYvXp1QeRDRERFnPxGFOw7d4Szox2cqr1tUmxqPhqAxNt3kJCUgpTQvSw2iYiI3nAvtWiQtbU1lixZgsOHD2fZTiaTYePGja+UHBERFQ0WEUehHOEHizt3JLHUiZOROmEiYGtb+IkRERFRkZbngvP06dOZ/v+LONyWiKgYEwQotm6B0s8XMr1eElb9uBSaQYMBeZ4HyhAREdEbJM8F58GDBwsiDyIiMjetFtZLFsN21peSkKF0aaiCVkLXoaMZEiMiIqLiKs8FZ8WKFQsiDyIiMofERNh+NQvWP6+ShHR160K9ZBn0teuYITEiIiJ6HeSp4IyKisLx48eh1WpRu3ZtNGjQoKDyIiKiAiK7exfK8eOg2LdXEtN06w71t4sg8MtFIiIiyge5LjiXLl2KZcuWmRxr0qQJfvzxR9jZ2eV7YkRElH8szp6FcqQ/LC5elMTS/PyhnvEl4OBghsyIiIjodZargvPUqVNYunQp7Ozs8N5778HGxgZ///03jh07hpkzZ+K7774r6DyJiCiPLPfuhdLPF/L4Z5KYeu7XSPMPABQKM2RGREREb4pcFZzBwcGwsLDApk2b4OnpCQDQ6XQYPnw49uzZg1GjRuHtt98uyDyJiCgnBgOsVv8M5fhxkpBgYwPVilXQ9vwA4CriREREVEhytZ79yZMn0bBhQ7HYBABLS0sEBARAEAScOHGiwBIkIqJsqFSw+XIGnB3t4OzsYFJs6l2r4/n+P5CQlILER0+h/aAXi00iIiIqVLm6wxkfH4/q1atLjnt4eAAAHj58mL9ZERFRlmSPH8F2ymRYbdsqiWlbtYL6+8UwZPKeTURERFTYclVwarVaWFlZSY4bFwtKTU3N36yIiMiEPOo6lKNHwfLvY5JY2oCBSJ37NYSSpcyQGREREVHW8rwPZ2YEQciPyxARUQYWEUeh9B8Oi5gYSSx10hSkTpgI2NiYITMiIiKi3Ml1wbllyxbs2bNHclwmk2Uak8lkOHz48KtnSET0phAEKLZshtLPFzKDQRJWLVkGzceDAHmupt8TERERmV2uC86UlBSkpKTkOUZERNnQamH94w+w/WqWJGQoUwaqoJXQte9Q+HkRERER5YNcFZzXrl0r6DyIiN4YsoQE2Hw1C9arf5LEdPXqQ7VkKQy1apshMyIiIqL8lS9zOImIKHuyf/+Fcvw4KPbvk8Q03XtA/e0iCBUqmCEzIiIiooLDgpOIqIBYnDkDZYAfLC5flsTS/EdAPX0m4OBghsyIiIiICgcLTiKifGS5JwxKP1/IExIkMfW8+UjzGwFY8q2XiIiI3gz81ENE9Cr0elit/hnKCZ9LQoKtLVQrVkH7fk9AJjNDckRERETmxYKTiCivVCrYLJgHmx8CJSG9mztUy4Ogb/SuGRIjIiIiKlpYcBIR5YLs0UPYTpkMq+3bJDFt69ZQf78YBldXM2RGREREVHSx4CQiyoL8+jUoR4+CZeTfkljax4OQOnsuhJIlzZAZERERUfHAgpOIKAPLv45A6T8c8rt3JbHUKdOQ+vl4wMbGDJkRERERFT8sOInozSYIUGwOhtLPFzJBkIRVS5dDM/BjQC43Q3JERERExRsLTiJ682g0sF78A2znfCUJGcqVg2r5CujatTdDYkRERESvFxacRPRGkCUkwGbWTFivWS2JqWq4IrKtEo9sE2HjVB6ltX/j8ZL5SE18ABun8nBvPQ4VvbqZIWsiIiKi4o0FJxG9tuQxMbAdPw6KA/slMU2P96H+ZiEunv8Jd09vBpAAAEhNvI+7p4PFdqmJ93EpbAYAsOgkIiIiyiNOSiKi14rF6dNweLchnB3t4FirhkmxmRowEgmxcUhISoFqwybce3b6v+JSOnczI4M2FVGHpXtuEhEREVH2zH6H89mzZ1izZg1OnDiBe/fuQa1Wo0qVKujbty/69esHS8v/pxgTE4Nvv/0WJ06cgFarhaenJ0aOHIlmzZpJrhsREYGlS5fi2rVrUCgU8PHxwaRJk/DWW2+ZtBMEAevXr0dwcDDu3buHEiVKoGPHjhg7dizs7e0L/PkT0atThO6G0n84ZImJkph63gKk+fkDlqZvd7GXduPC71Ny/RipiQ9eOU8iIiKiN43ZC85Lly5h7dq1aNGiBdq1awcAOHjwIGbPno1Lly5h/vz5ANIL0wEDBgAABg0aBKVSibCwMPj6+mLt2rXw8fERr3n8+HH4+vrC09MTo0aNgkqlwpYtWzBgwADs2rULLi4uYtugoCAsXrwYHTp0QP/+/XHv3j1s3rwZt2/fxpo1awrxlSCiXNPrYfXTKignTZCEBDs7qFasgrZ7D0AmE4/HXtqNqMOBSE18AEtbJ+g1KYCgz/VD2jiVz5fUiYiIiN4kZi84q1WrhgMHDqBChQrisU8//RT9+vVDSEgIxo4di7Jly2LdunWIj4/Hrl274OrqCgAYOHAgunbtisWLF2PTpk3i+YGBgahUqRKCg4NhbW0NAOjSpQu6deuGDRs2YMyYMQCA58+fY9WqVejevTsWLlwonu/h4YHp06cjMjISjRs3LoyXgYhykpICmwXzYLP4B0lI7+4B1bIg6Bs1yvTU2Eu7cSlsBgzaVACATp2Qp4eWK2zg3npcXjMmIiIieuOZfQ5npUqVTIpNALCwsBDvWD54kD6M7dChQ6hXr55YbAKAtbU1unfvjtOnTyM+Ph5A+p3Qc+fOoVu3bmKxCQCurq6oX78+Dh48KB6LjIyEWq1G7969TR6/e/fusLKyMmlLRIVP9jAOyk8Gw9nRDs7ly5gUm9rWbZB07iISklLw/NSZLItNAIg6HCgWm7nh8nZj2DhVACCDjVMFeL03hwsGEREREb0Es9/hzEpcXBwAoGzZstDpdIiOjkavXr0k7apXrw5BEHDr1i00aNAAN2/ehCAIJoVpxrbbtm2DXq+HhYUFoqKiAEDS1traGlWqVMGNGzcK4JkRUXbk167iHV9fOJw7I4mlDRqM1K/mQChZMk/XzPX8S5kFavdYwOKSiIiIKJ8UyYLz0aNHOHjwILy8vFC+fHk8ffoUWq0WDg4OkrbOzs4AgCdPnpj8mdmCP87OztBqtUhMTISLi4vYNqvrPn36NMdcNVo9omLicv3cCkuqRlck8yLKjMPxv1Ft+iRYx0kLw3sjxuDBp8MhWP03YiFZCyTnrW9b2pWBLuVhtm1kFtYo/e4EpDg05O8OvRK+/1Jxxv5LxRn7r/n4eFXLMlbkCk6dToeJEydCo9Fg8uTJAACNRgMAsLGxkbRXKBQAgNTUVJO2tra2krbGFW/T0tLEtnK53GTobca2xmtmx0phAfe3yuXYrrBFxcQVybyIAACCAMWvm2DnPzzT8O3ZC+AyOgCQy2EPwO0VH86u/QSTOZwAALklFNb20KoTYeNUHu6tx/HOJuULvv9Sccb+S8UZ+2/RVKQKToPBgClTpuCff/7BtGnTxHmcVlZWYvxFWq0WwP+LUWNbvV66+qROpwMAscC0srKCwWCAIAiQZVjN0tg2swKXiF6SRgPrHwJhO3e2JGQoXx6qoJXQtWkLAHgSEwcXef5NMTcWksZVallgEhERERWOIlNw6vV6fPHFF9i9ezfGjh2LwYMHizEnJydYWloiKSlJcp5xsaCS/83pMv6ZVVuFQgFHR0eTtomJieLQ3IxtS5Uq9epPjOgNJouPh82smbD+RbrFkK5BQ6iWLIWhpleh5FLRqxsLTCIiIqJCZvZVaoH0u5Tjx4/Hzp078cUXX8Df398kbmlpiapVq+LChQuScy9evAiZTCYu/OPm5gaZTJZp2wsXLqBq1ari0Fo3NzfxeEbPnz/HnTt3xDgR5Z78zh3Y9eoJZ0c7OL1VyaTY1PT8AInXbyIhKQXJh/4stGKTiIiIiMzD7AVnSkoKhg8fjvDwcCxcuBCDBg3KtF3r1q1x6dIl3LlzRzym0WgQHh4Ob29vuLi4AABcXFxQp04dHDhwQJzPCQDR0dG4evUq2rRpIx5r3LgxbGxsEBoaavJY+/btg16vN2lLRFmzOHUKDo0awNnRDo61a0LxxwExljpyFBLuP0RCUgpU6zZAKF/ejJkSERERUWEy+5DahQsX4tixY+jcuTOSk5MRHBxsEi9Tpgzatm2LwYMHY8eOHRg8eDD69OkDpVKJsLAwxMbGYs6cOSbnjB07FkOHDsXAgQPRqVMnqFQqbNmyBSVLlpQM1R02bBiWLl0KrVYLb29vxMbGIjg4GI0bN0bTpk0L5TUgKo4Uu3dB6ecL2fPnkph6/jdIG+4HWJr9LYaIiIiIzMjsnwaNK8Hu3bsXe/fulcR9fHzQtm1blCpVChs3bsTChQuxdu1aaLVaeHp6YuXKlXj33XdNzmncuDFWrFiBZcuWYfHixVAoFPDx8cGkSZPEO6FGI0eOhIODA4KDg/HHH3/A2dkZ/fr1w9ixYwvsORMVS3o9rFathHLyRElIsLeHasUqaLt1B15YgIuIiIiI3lwyQRAEcydRnOn0eiSr0sydhgSXhaZ8kZICm/lfw+bHxZKQ3sMTqqXLoW/UKN8flv2XijP2XyrO2H+pOGP/NR9nB2WWMbPf4SSiokX2MA62kyfBKmSHJKZt2w7q73+AoWpVM2RGRERERMUNC04igvzqFShHjYTlieOSWNrgT5D61RwILwxHJyIiIiLKCQtOojeU5Z+HofQfDnlsrCSm/mIG0saOA6ytzZAZEREREb0uWHASvSkEAVa/boTS3y/TcOwXfjhhewapSXGwUR6A+42aqOjV7f/xS7sRdTgQqYkPYONUHu6tx5nEiYiIiIhexIKTqBjJS9EXe2k3bv7xHar+EYXaEYmSuKFCBfw76ROcTTmI1MT7gHYPoE1fQyw18T4uhc0AAFT06obYS7txKWwGDNrUTONERERERJmRmzsBIsodY9GXmngfgCAWfbGXdpu0k8XHQxjQDTWb9EePL0+aFJtJ7hWQ9M8JJCSl4Or273H88bb/rgcApgtWG7SpiDocCACIOhwoFpuZxYmIiIiIMsM7nETFRHZFX2U7L9h+PhaKg+GS82I8bHGmbQmk2lsAkKG24TYqomam13tRauIDkz+zihMRERERZYYFJ1Ex8WJxV/J+GhrtfQanp3eBL7xMYlcbOuBSU0forF4cxCAg6nAgKnp1y1WxaONUXvzz/3dCpXEiIiIiosyw4CQqJmwcy6HUqVt4N+wZFFpBEj/d1hk36tpDkMuyvY6x0MyqiDSSK2zg3nocAMC99TiTOZwvxomIiIiIMsOCk6gIiz3/O/Tzp6D2nn/R84WY1kqG493K4YFXKejUCbm+pvGuZGZF5P/bVDBZkMj4J1epJSIiIqK8YMFJVNQkJ8Nm3lzYLF0C5xdCCaUUON2jCh6V1MLGqTxKV28J3engPF2+dPWWAPJeRFb06sYCk4iIiIjyhAUnURYKc99JWdwD2E6eBKvfQiSx+1VtcKp9CaQ4p/+62jiVQudRh8RVa/Mq9sJvKFG5nlhAsogkIiIiooLCgpMoE4Wx76T88iUoR42E5amTkljaJ0MQ6nAAGlvpzkXGOZi5WWU2M8aVbVloEhEREVFBY8FJlInstiB5lULN8vAhKP18IX8gXSH24Wd98U+laKhSHsLG6QoMGhcgk7mZxjmYr7IlCbczISIiIqLCIL19QkT5t++kIMBq43o4O9rB2dEO9j26mRSbKUErkZCYjMt/b8afZc5ClRIHQEBq4n3oNSmA3PQ7oYwrw77KliTczoSIiIiICgPvcBL9J+OcTcjkgKCXtMlVoZaWBuvvv4Pt/K8lIUOlSlAtXwFdq9YmxzO7oyrotVDYOsPCSpnpPNLsVpnNDrczISIiIqLCwoKTCNI5m5kVm9kVarJnz2Azczqs16+TxHSN3oXqxyUwvFMjy8fP6s6pVp2IduP/yTRmLDyv7P8619uiKGyd8U7HLzh/k4iIiIgKBQtOImSzAI/MAhAMma5SK4+Ohu24MVAcOig5TfNBb6gXLIBQLndDV22cyiM18X6mx7NjXGX20t6vcDeH7VEq1/8QXp2/zFU+RERERET5gQUnEbKZmykY0Hn6VfGvFidOQDnCDxZR16XXGDMWqVOmAXZ2eX78zIbH5mXoq1fnL1Gicj1xSLClrRNkSL9DWtBbuhARERERZYUFJxGyucPoWA6K33dC6ecLWUqKJK76dhE0n/kCFhav9PjGYvBV9v3knppEREREVNSw4CSC6R1GmUGA++lk1DucAOAugAFiO8HJCaqgldB2zf/CjgUjEREREb1uWHDSGyn20m5c3f81tP8ttmNt4YBmF5xQMeyGpK2+Rg2olgZB36BBIWdJRERERFS8seCkN07spd24uHsabBJS4XMoHlWuqyVttO07QP1dIAxvv134CRIRERERvSZYcNIbRX75Esr3/RQ170nnY96oY4fr3TzRbNJfZsiMiIiIiOj1w4KTXnuWB8Oh9B8OeVycJHa+uROu+TjAYCFLP6B5XMjZERERERG9vlhw0utHEGC1YT2UI0dIQzIZTveqihtVNYBMJonntO8lERERERHlntzcCRDli7Q02Mz7Gs6OdnB2sjcpNg2VKyN5dxgSklKQmJgM28/nQWZpJb2G3DLX+14SEREREVHOeIeTii3Z06ewmfEFrDdukMR07zaG6sclMHi+I4kZtx7JuEqtpa0zanT8gtuSEBERERHlIxacVKzIb9+G7bjRUBw+LIlpeveBev4CCGXL5Xgd7nlJRERERFTwWHBSoXtxD0y5whZyS2vo1ImwcSqP0tVb4vHNI0hNfAAbp/KoU+o9vLVoIyxuREmulTp2HFKnTAOUykJ+FkRERERElBMWnFSojHtgCnqteMygVcOgTd8LMzXxPu6e+hWVo9R4d88zWGr/BXDc5BoPPv8EtjN+BCwsCjN1IiIiIiLKIxacVKBevJsJyAAIknYygwD308modzhBEtNYy/BPl5KIdbMFAMgVx+B1dQ+HxBIRERERFXEsOKnAZHY3M2OxaZlmQO2IRHicTpacm1BageOdSuBZeWtJzKBNRdThQBacRERERERFHAtOynfHNw7BszuRmcZsn+tQ/2ACKkepJbHYajY43b4EUpxy7papiQ9eOU8iIiIiIipYLDjplfy1oitSntzMto3zIw189sWjZJxGErvhbYfzLZyhtcnblrA2TuXz1J6IiIiIiAofC87XTOyl3Yg6HIjUxAeIdSoP99bjCmToaeyl3biwc2KW8XLR6Yv+2KYYJLHzzZ1wzccBBgvZSz66DO6tx73kuUREREREVFhYcL5GYi/txqWwGTBoUwGkr/h6KWwGALx00fn/AvY+IJMBgnTBHwCAIKDahRQ02h8vCRlkwPEuLrhTQ5l+jVdUuX5/zt8kIiIiIioGWHC+RqIOB4rFplFeF9iJvbQbV/Z/DZ24qmwGLxSbcp2AGv8kodbfSZKmyY4WON7ZBY/essl1/v+/sCVkMtkLiw0BCltnvNPxCxabRERERETFBAvO10hq4v08HX9R+jDZSchs2xIjK7UedQ8noNollST2qJI1TnYsgaSSilw9npHL242hio9BauID2Pw3DBiAODTYpgCHBhMRERERUcFhwUk5Fpr28Vo0PBCPcjFpktidd5Q428YZqXYWeXpMCyslanb5KtsikgUmEREREVHxxoLzDRN7aTeu7v8a2syGzGZQ6l4aGu19Bsd4nSR2pZEDLjVxhF6R15VlK/BOJRERERHRG4QFJ4Dk5GT88MMP2L9/P+Lj41GpUiV8+OGHGDRoEGT5sMhNUXHwhxbQJD/KPCgIqHw9fWVZS530TufJ9s64Vccegjzvr4fL243RaOAveT6PiIiIiIiKNxacAEaNGoWTJ0+if//+qFy5Mk6dOoV58+ZBpVLB39/f3Onli71zPSXHZAYBHqeeo+6fiZJYmo0cxzu7INbNNtePIVPYotZ7s3kHk4iIiIiIALDgxLFjx/D3339j7ty56NOnDwBg8ODBGD9+PFatWoWPP/4Y9vb2Zs4y/1imGVA7IhEep5MlsfgyCpzo6IJn5a3ycEUZar//LYtMIiIiIiKSeOMLzsOHD8PKygo9evQwOd63b1+EhoYiMjIS7du3N1N2+cP2uQ71wxNQ+YZaEot1tcGpdiWgcsp7V7C0dUYNblNCRERERERZeOMLzuvXr6NSpUqwsjK9q+fm5gYAiIqKKpYFp/MjDXz2PUPJOK0kdsPbDudbOENrk/tFf3KzqiwREREREVFGb3zB+fTpUzg4OEiOOzs7i/HipsGBZ3A7l2Jy7FwLJ1xv6ACDRe4X/an9/kIWmERERERE9NLe+IJTo9HAxsZGclwul0MulyM1NTX787V6RMXEFVR6L+VODTuUj07FhWZOiKmhBPK40q7c2hGlGoxCikPDIvfc6M2QqtGx71Gxxf5LxRn7LxVn7L/m4+NVLcvYG19wWllZwWAwSI4bDAYYDIZMi1GT8xUWcH+rXEGllye3/vvzSSVr7B5eIdfn2ZWqjhZ+oQWTFNFLiIqJKzK/V0R5xf5LxRn7LxVn7L9F0xtfcJYsWRIJCQmS4/Hx8QAAFxeXQs6o4HH7EiIiIiIiKgxvfMHp5uaGLVu2IDk52WT7kwsXLojx4qLz9GuZ7rcJAJXrfwivzl8WckZERERERPQme+MLztatW2PTpk3Yt28fevfuLR4PCwuDra0tmjRpYsbs8q7z9GsAOKSAiIiIiIjM740vOJs1awYfHx/Mnj0bN27cQIUKFXDmzBns27cPo0ePznQFWyIiIiIiIsrZG19wymQyLF++HIGBgQgLC0NCQgIqVaqEqVOnYvDgweZOj4iIiIiIqNh64wtOAHBwcMDMmTMxc+ZMc6dCRERERET02pCbOwEiIiIiIiJ6PbHgJCIiIiIiogLBgpOIiIiIiIgKBAtOIiIiIiIiKhAsOImIiIiIiKhAyARBEMydBBEREREREb1+eIeTiIiIiIiICgQLTiIiIiIiIioQLDiJiIiIiIioQLDgJCIiIiIiogLBgpOIiIiIiIgKBAtOIiIiIiIiKhAsOImIiIiIiKhAsOB8jSQnJ2Pu3Llo3rw5vLy80KlTJ6xbtw7capUK2rNnz7Bo0SL07dsXTZo0Qd26ddGjRw9s2rQJOp3OpG1MTAwCAgLQsGFDeHt7o3///oiIiMj0uhEREejfvz+8vb3RsGFDBAQEICYmRtJOEASsW7cOnTp1gpeXF5o3b465c+ciOTm5QJ4vvd4MBgM+++wzeHh44NSpUyYx9l8qqrRaLdavX4/+/fujYcOG8PLywsSJE03asP9SUfT48WN89dVXaN++PerUqYMOHTrg66+/xrNnzyRt2YeLJ5nAauS1MWTIEJw8eRL9+/dH5cqVcerUKRw4cABjx46Fv7+/udOj19hff/2FESNGoEWLFvD29gYAHDx4EOfOncMHH3yA+fPnA0gvTLt37w4A6NevH5RKJcLCwnDt2jWsXbsWPj4+4jWPHz+OIUOGwNPTE++99x5UKhW2bNkCANi1axdcXFzEtsuXL8fixYvRoUMH1K9fH/fu3cPmzZvh4+ODNWvWFNKrQK+Lb775Ruw3mzZtQoMGDQCw/1LRlZCQgKFDh+L69evo0KED6tSpA7VaDb1ej5EjRwJg/6Wi6cmTJ+jZsyfS0tLwwQcfoFy5crh+/Tp2796NcuXKYefOnbC3twfAPlysCfRaiIiIENzd3YWtW7eaHP/8888Fb29v4fnz52bKjN4Ed+/eFWJjY02O6XQ6oVevXoK7u7sQFxcnCIIgfP/990KNGjWEmzdviu1SU1OFdu3aCR999JHJ+f369RPat28vpKamisdu3rwpvPPOO8IPP/wgHktKShLq1KkjTJgwweT8rVu3Cu7u7sLff/+db8+TXn8hISHCO++8I3z++eeCu7u7cPLkSTHG/ktFlb+/v1CnTh3h7NmzWbZh/6WiaMmSJYK7u7tw/vx5k+NbtmwR3N3dhe3bt4vH2IeLLw6pfU0cPnwYVlZW6NGjh8nxvn37QqVSITIy0kyZ0ZugUqVKqFChgskxCwsL8dvGBw8eAAAOHTqEevXqwdXVVWxnbW2N7t274/Tp04iPjweQ/i3muXPn0K1bN1hbW4ttXV1dUb9+fRw8eFA8FhkZCbVajd69e5s8fvfu3WFlZWXSlig7Z8+excyZMzFp0iQ0bdpUEmf/paLo4sWLOHjwIEaMGCGOMMkM+y8VRU+ePAEAVKtWzeR4vXr1AAAqlUo8xj5cfLHgfE1cv34dlSpVgpWVlclxNzc3AEBUVJQ50qI3XFxcHACgbNmy0Ol0iI6OlvyjAgDVq1eHIAi4desWAODmzZsQBMHkH5WMbW/fvg29Xg/g/337xbbW1taoUqUKbty4ka/PiV5PDx48wMiRI9G1a1d88sknkjj7LxVVe/bsgUwmQ//+/QEASUlJSEtLM2nD/ktFlfGL6S+//NJkzuTff/8NS0tLtGzZEgD7cHFnae4EKH88ffoUDg4OkuPOzs5inKgwPXr0CAcPHoSXlxfKly+Pp0+fQqvVZttPjd90Gv80ztt4sa1Wq0ViYiJcXFzEtlldl32fcqJWqxEQEIDKlSvjq6++yrRNYmIi+y8VSZcvX0bp0qWxZMkS7Nq1CwkJCQDSP1hPmzYNTZs2Zf+lIqtLly64desWgoKCEBERgR49eqBy5coICgrCggULUKVKFQB8Dy7uWHC+JjQaDWxsbCTH5XI55HI5UlNTzZAVval0Oh0mTpwIjUaDyZMnA0jvowAy7acKhQIAxH5qbGtraytpa2mZ/rZl/AZfo9FALpebDJvJ2JZ9n7IjCAKmTJmC+Ph4bN++XTJKxIj9l4qqp0+fIj4+Hg8ePMCYMWNQqlQpxMbGYsOGDfjss8+wfv16VKxYEQD7LxVNJUuWRNmyZdGqVSuEh4cjNjYWrq6uqFy5stiG78HFGwvO14SVlRUMBoPkuMFggMFgyPQXlKggGAwGTJkyBf/88w+mTZsmDpcxfpDPrJ9qtVoA//+HxNjWOOQlI+M2K8Z/HIx9XxAEyGQySVv2fcpOREQEwsPDsXTpUmi1WnEYeFJSEgAgPj4ecXFx4gca9l8qarRaLerXr4+lS5eaHO/SpQvat2+PdevWYdasWQDYf6no2bp1K+bNm4ft27fD09MTgiDgyJEjmD17NgYNGoRNmzahVq1a/AxRzLHgfE2ULFlSHEaTkXECdcbln4kKil6vxxdffIHdu3dj7NixGDx4sBhzcnKCpaWl+EE+I2M/LVmypMmfWbVVKBRwdHQ0aZuYmCgOq8nYtlSpUq/+xOi1lZaWBp1OBz8/v0zjxi0lIiMj2X+pSHJwcIBarZYcL1u2LDw9PREdHc33XyqyfvrpJzRt2hSenp4AAJlMhlatWqF8+fLo3r07Nm7ciG+++YZ9uJjjokGvCTc3N9y+fVuySe2FCxfEOFFB0mq1GD9+PHbu3IkvvvhCsverpaUlqlatKvbJjC5evAiZTCZO2ndzc4NMJsu07YULF1C1alVxWIyxb7/Y9vnz57hz5w77PmXL29sbK1askPxn/LJkwoQJWLFiBRwdHdl/qUhyd3fHrVu3xLs8GSUmJkKpVPL9l4qsuLg4WFhYSI4bh4Eb51CyDxdvLDhfE61bt4ZOp8O+fftMjoeFhcHW1hZNmjQxU2b0JkhJScHw4cMRHh6OhQsXYtCgQZm2a926NS5duoQ7d+6IxzQaDcLDw+Ht7S3eiXdxcUGdOnVw4MABcS4GAERHR+Pq1ato06aNeKxx48awsbFBaGioyWPt27cPer3epC3Ri0qVKoXWrVtL/jN+2163bl20bt0alpaW7L9UJHXq1AnJyclYv369yfEzZ84gJiYGzZs3B8D3Xyqa3nnnHURGRiI6OtrkuPHzbO3atcVj7MPFl0wQBMHcSdCrEwQBgwYNwvnz5/Hhhx+iQoUKOHPmDPbt24fRo0cjICDA3CnSa2zWrFkIDg5G586d0ahRI0m8TJkyaNu2LZ48eYLu3btDoVCgT58+UCqVCAsLw9WrV7FmzRq8++674jmRkZEYOnQoatWqhU6dOkGlUmHLli0QBAG7du0yGSa+ZMkSLF26FF26dIG3tzdiY2MRHByM+vXrY+3atYXxEtBrJiQkBFOnTsWmTZvQoEEDAGD/pSJr9OjR2L9/Pzp27Ii6devi/v372L59OypVqoTg4GDY29uz/1KRdPLkSQwZMgQ2Njbo1asXypcvjytXriA0NBRvv/02tmzZIq4gyz5cfLHgfI08f/4cgYGBOHDgABISElCpUiX0798fgwcPlkyEJspPU6ZMwW+//ZZl3MfHBxs2bAAA3L59GwsXLsTJkyeh1Wrh6emJkSNHit/CZ3TkyBEsW7YM169fh0KhgI+PDyZNmoS3337bpJ0gCFi3bh2Cg4MRGxsLZ2dndOrUCWPHjs10WXSinGRWcALsv1Q06fV6rF+/Hps2bUJcXBxcXFzQsWNHjB492mS7B/ZfKoouXryI5cuX48yZM0hOTkbZsmXRoUMHBAQESLYrYR8unlhwEhERERERUYHgHE4iIiIiIiIqECw4iYiIiIiIqECw4CQiIiIiIqICwYKTiIiIiIiICgQLTiIiIiIiIioQLDiJiIiIiIioQLDgJCIiIiIiogLBgpOIiIhyZcmSJfDw8MC2bdvMnQoRERUTLDiJiIgKyPjx4+Hh4QEPDw+Eh4e/0rViYmLg4eGBjz/+OJ+yIyIiKngsOImIiApAcnIywsPDYW9vDwAICQkxc0ZERESFjwUnERFRAQgLC0NqaioCAgJQsWJFHDlyBE+fPjV3WkRERIWKBScREVEBCAkJgaWlJXr06IH3338fOp0Ou3btyrStWq3GqlWr8P7778Pb2xs+Pj7o3bs3lixZgri4OISEhKBDhw4AgBMnTojDdD08PLBkyRLx8Tw8PBAYGCi5/r179+Dh4YEPP/zQ5PjFixfh6+uLjh07on79+qhZsyaaNm0KPz8/nD59Op9fESIiehNZmjsBIiKi182tW7dw7tw5tGnTBiVLlkTPnj2xfPlyhISEYMiQISZtExMTMWjQIFy7dg1ubm54//33odVqcerUKSxduhQA0KpVK/Tu3Rvbt29HuXLl0KVLF/H8unXrvnSet2/fxvnz51GrVi34+PjA2toasbGxOHbsGI4ePYrVq1fj3XfffenrExERseAkIiLKZ8b5mr169QIAVK5cGQ0bNsSJEydw8eJF1KpVS2w7e/ZsXLt2DUOHDsWkSZMgk8nE2KFDh5CQkIBatWrB0dER27dvR5UqVTB58uR8ybNTp07o3r27yWMCQEREBD799FP88ssvLDiJiOiVsOAkIiLKR3q9Hr///jtKlCiBli1bisd79eqFEydOICQkRCw4nz59ij179qB8+fIYN26cpPBr06ZNgeZqbW0NAHj27BnOnz+P+/fvIyUlBUlJSQCAO3fuFOjjExHR648FJxERUT46evQoHj9+jEGDBkGhUIjHO3bsiNmzZyMsLAxTp06FlZUVLl68CIPBgPr168PKyqrQc3306BHmzp2L8PBw6PV6SVyr1RZ6TkRE9HphwUlERJSPjMNpo6KiMGXKFJOYnZ0dHj16hPDwcHTp0kW8k1imTJlCz1Ov1+PTTz9FVFQU6tevj379+uGdd95BmTJloFQqTYb9EhERvSwWnERERPkkPj4ehw4dAgD8888/WbYLCQlBly5d4ODgAAB4/PjxKz+2cThuZncqM3P69GlERUXB29sbGzduhFz+/4XrdTrdK+dDREQEsOAkIiLKN6GhodBqtZg4cSKGDRsmiQuCgDZt2uDYsWN4+PAhatSoASC9+NNoNNkOq7WwsACQ9TBXJycnAEBCQkKucn348CEAwNvb26TYJCIiyk/8F4aIiCifhISEQCaToWvXrpnGZTIZ3nvvPRgMBuzcuRNly5ZFixYtcP/+ffz444+S9seOHUN4eDgAoFSpUrC0tMTVq1cRHx8vaVutWjXxHJVKJR5/9uwZFi9eLGlfqVIlAOnFrsFgEI+rVCp8++23eXjWREREWeMdTiIionxw7do1XLlyBT4+PihXrlyW7bp164affvoJISEhGD58OObMmYMPP/wQP/30E44cOYIGDRogNTUVZ8+eRXR0NKZOnQoAsLGxQevWrfHHH3+gT58+aNy4MRITE9GyZUv06tULb7/9Ntq1a4fw8HD07dsX7777Lp49e4YjR47A0lL6z33dunXh4+ODEydOoEePHqhfvz7UajUiIiKg0WgK7HUiIqI3C+9wEhER5YMdO3YASC8os+Ph4QF3d3fcuXMHp0+fRrly5RASEoLPPvsMer0eO3bswMGDB+Ho6IiJEyeie/fu4rnz5s1Dv379oNFosHPnTly+fBl2dnZifP78+fjggw/w+PFjbN68GdeuXcOwYcOwYcOGTHNZsWIFPv74YyQlJeG3337D+fPn0bNnT4SFheXDK0JERATIBEEQzJ0EERERERERvX54h5OIiIiIiIgKBAtOIiIiIiIiKhAsOImIiIiIiKhAsOAkIiIiIiKiAsGCk4iIiIiIiAoEC04iIiIiIiIqECw4iYiIiIiIqECw4CQiIiIiIqICwYKTiIiIiIiICgQLTiIiIiIiIioQ/wMw+cNymVQioAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "([], None)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Blowwing Up the Plot of BEST model\n", "f, ax = plt.subplots(figsize=(15,5)) # Create figure and axes\n", "# Plot on axes\n", "ax.set_title('Actual vs XGBoost Prediction'+\" (RMSE: \"+str(round(Abs_RMSE_XGB, 2))+ \")\")\n", "ax.set_xlabel('Actual'), ax.set_ylabel('Predicted')\n", "ax.scatter(y_test, y_pred_xgb)\n", "ax.plot(y_test, y_test,'r'), plt.show()" ] }, { "cell_type": "markdown", "id": "7285f75c", "metadata": {}, "source": [ "### Observation\n", "As you can see, Our models prediction below 1000(MMtonnes CO2) will give lower variation as compared to above 8000 (MMtonnes CO2). This means, `Our model’s variation from the Actual will tend to increase with an increase in the Target Outcome (CO2 Emission)`. This Statement is not Absolute as we can see some variations going contrary. This means Our Model is doing well to capture possible variation in the INPUT VALUES from the Features." ] }, { "cell_type": "code", "execution_count": 21, "id": "7e196649", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAFpCAYAAADQsrrqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNzElEQVR4nO3deVxVdeL/8fdlV1AUUFxwl8Tcl0jRVNxS09y30sxJJce1mlJrtHJMp2zGyt2yxjS13MolsNRSc18ql0pM3HdkExHZ7u8Pf97vMICACOceeD0fj3k88nzOufd950jxvuecz8ditVqtAgAAAACYloPRAQAAAAAAeUOxAwAAAACTo9gBAAAAgMlR7AAAAADA5Ch2AAAAAGByTkYHyKm0NKvSrGlGxygwScmpcnF2NDoG8gHntnDj/BZenNvCjfNbuHF+C6+idm6dHLP+rOYpdtY0xSfcMTpGgQk/e0WPVClndAzkA85t4cb5Lbw4t4Ub57dw4/wWXkXt3JYqUTzLMW7FBAAAAACTy1Gxi4+P17Rp0/TEE0+obt266tSpk5YsWaIHWds8LS1Nw4cPV61atXTw4MFcHw8AAAAASC9Ht2KOGTNGBw4c0IABA1SpUiUdPHhQ06dPV0JCgkaOHJmrN5w5c6Z27NjxQGEBAAAAABlle8Vu165d2r17t9588039/e9/15AhQzR79mx17dpVixYtUnx8fI7fbN26dVqyZIm6du2ap9AAAAAAgP+TbbH74Ycf5OLiou7du6fb3q9fPyUkJGjPnj05eqOff/5ZU6ZM0WuvvaYWLVo8WFoAAAAAQAbZFrsTJ07Iz89PLi4u6bb7+/tLksLDw7N9k8uXL2v06NHq2rWrnn/++QdLCgAAAADIVLbP2N24cUMlSpTIsL1UqVK28fu5ffu2Ro0apUqVKuntt99+sJS6u0ZF+NkrD3y82SQmpRSpz2uEKxFHZLVaDHnvy6eOFvh7WixWlatev8Dft6jhZ7fw4twWbpzfwo3zW3gVtXMbWLd6lmPZFrukpCS5ubll2O7g4CAHBwclJiZmeazVatXEiRMVHR2t1atXZ7jqlxsuzo5Fao2KorYmhxEunzqqhN1jjI5RYIoHzebvVAHgZ7fw4twWbpzfwo3zW3hxbv9PtsXOxcVFaWlpGbanpaUpLS0t09J3z08//aQtW7Zozpw5Sk5O1pUrd9t0XFycJCk6OlpXrlyRr6+vLBZjrpwAAADA3JKTk3QzLlaJt28rLTU1w7hzSqounD1tQDLkN7OfWydnZ5X0LKXi7h55f63sdvD29lZMTEyG7dHR0ZIkLy+vLI+9c+eOUlJS9OKLL2Y6Pnr0aEnSgQMHVLJkyZzkBQAAAGySk5N0/eoVeZQoqbLlSsnR0SnDBYPEO8lyc3U2KCHyk5nPrdVqVdKdRN2IvC4nZ5c83d0o5aDY+fv768svv1R8fLw8PP6vSR45csQ2npWGDRtqwYIFGbbv2bNHS5Ys0d/+9jfVrFlTxYsXf5DsAAAAKOJuxsXKo0RJlfQsZXQUIFcsFotc3YqppGcpxcVEyads3m4pzbbYBQcH64svvlBYWJj69Olj275p0yYVK1ZMQUFBkqTk5GSdO3dOzs7Oqly5siTJx8dHwcHBGV7z3tW+Ro0aqWnTpnn6AAAAACi6Em/fVtlypYyOATwwt2LFFRcbk+fXybbYtWzZUoGBgZo6dapOnjypChUq6PDhwwoLC9PYsWNtM2ZevXpVXbp0UcWKFbVt27Y8BwMAAACyk5aaKkfHbH+lBeyWo6Njps+G5la2PwUWi0Xz5s3TrFmztGnTJsXExMjPz0+TJk3SkCFD8hwAAAAAyAsm4YOZPay/vzn6eqNEiRKaMmWKpkyZkuU+fn5+OnHiRI7etFevXurVq1fOEgIAAAAA7svB6AAAAAAAgLyh2AEAAACAyfGkKQAAAAqt3Tu2KDnFanSMDJydLApq1f6Bjx85YpgOHz6Ublvjxk00f9EneY1mNzZuWK9/vP2m/vbqBPXtP8DoOHaPYgcAAIBCKznFqoTdY4yOkUHxoNl5Or59x44KePRRrVm1Sk5OTures6f8/PweUjqYEcUOAAAAMJneffpJkjZt2KDixYtp3PiXDU4Eo1HsAAAAgELk0MGD+uuLw/XMoMFq0aKlFn+8SL/9dlxubm5q2669xo5/Wbdv39bn//lUP2zbqhs3bqiin5/+OmqMWrcJTvdaPbp1UULCbf1n6Rf69JNF2rXrJ8XfvKnqNWror6PG6vFmzTK8/47tP+qLZZ8r/MQJWa1W1fT31zPPDlbbdulvPf144QJ98vFCvf/vDxQTE6NVX65URMQpeXp6qkfP3vrk44WSpPdnvqv3Z75rO27fwZ8lSevWrtHGDet19eoVxURHy8nJSVWqVlXXrk+rT7/+6ZYRuPdeM/81S3FxcVr11UqdjohQ8eLF1eHJThozdrxcXFzS5UtNTdXa1au0YcN6nTl9Wg4OFvk/UktPduqsp7p2U7FixSRJd+7c0fJlSxUW9q0uXbwoV1dX1avfQMNHvKhH69TJw5nMHYodAAAAUAht2rBBX65YrsebNdfT3Xto//59Wrtmtc6cOaOIU3/K4uCgVq1aKyUlRd9tDtPrE1/Tmq/Xq1y58uleJz7+pvr36aly5cqrdes2io6O1u5dP+nl8WM0f+HHqt+goW3flSuWa9a/ZqpUqVJq0fIJOTo6at++vZo04VWNGj1Wzz0/NEPOd2e8o9jYWAW1aKkGjRrp1q1bqteggZoHBWnP7t16LDBQ/o/UynDcoYMHFBsTowYNGsrLy0u3b9/WoUMH9f7Md3Xjxg29+NdRGY555x9v6/bt22oe1EK1agVo//59+mrlCrm5uWnU6LG2/dLS0jTxtb9px/YfVaVKVXXt1k2Jd+5o/769mvnuDFWrVl1NmjZVYmKiRv81REePHFHjxk3UpElTxcTE6KedO3XwwF80b+HHqlevfh7OYs5R7AAAAIBCyMPDQ//64ENbsbh586Z69eimw4cO6qluT+uVv70md3d3SVLtR+vo/ff+qY3r12vYiJB0r2OxWDTupVfUq3cfOTjcnVR/966f9NK4MZo/d45twpZLFy9q9oezVLVaNc2dv1A+PmUkSVFRURoz6kUtmD9Xrdq0UdWq1dK9vk+ZMpq34GNVrlIl3fbI69e1Z/dutW4dnOnkKX+f8pZkcZSbq7Nt2+3btzWgby99+eUKDRsRIien9HWnRk1//X3ym6pQsaIkKTY2Vv1699DqVV/pr6PG2K7yrf7qS+3Y/qM6de6iKW9NlaOjoyQpJSVFX69bq+LF716tW/zxQh0/dkzvvf/vdFc7T5+O0JBBz2ru7A+1YNHi+56nh4XlDgAAAIBCqHVwcLqrRSVKlJC//yOSpJCQkbZSJ0lNmjaVJJ0/fz7D67i7e6hP3362UidJQS1aqlatAP3882HFx8dLksJCv1VKSoqGDQ+xlTpJ8vLy0osjRyk1NVXfbtqY4fWHDQ/JUOpyws3NTZIUHn5C327coBVfLNOyz5fI2cVFCbduKTo6KsMxzzw7yFbqJMnT01OP1qmrhFu3dONGpG37mjWr5OrqpnEvvWIrdZLk5OSkPn37qfajdZSWlqZ1a9eoRYuWGW5hvXdF78ivv+rOnTu5/mwPgit2AAAAQBHh4eEhSUpNS/uf7SUk3b3tMqeq16ihEyf+0IUL5xUQUFsnTvwhSapXP+Oth/XrN5AknfjjjwfKnZnDhw5qxvR3dO7smUzHk5NTcvQ6JUuWlCTFxcbJx6eMEhISdOb0aQXUri0vL68sjzt79oxu3rypnTt36PGmjbLcLyYmRr6+vjnKkhcUOwAAAKCI+O+rbv/N8f9vt1pzvubfvZJ4J/HuFalbt+5euSte3D3Dvu4ed7flpjjez7lzZzV+7BilpqbomUGD1bJlK/n5+alU6dJ6c/Ib+mHb1hy/1r0rcvc++70rkP991TEzcbFxkqRaAbVtVzwzc2+SlfxGsQMAAACQa9evX5cklfS8e8XL3f1u0YuKumG7CnZPZOTd2xzvXRnMq82hobpzJ1Fjx7+iZwcNeiiveU/x4sUlKd2tmZnu5353v2rVqtnFchM8YwcAAAAgV5KTk3X8+DGVKFFCVapUlSQ9UuvuzJVHfv01w/5HjxxJt09O3LuSlpycnGEsKuqGJOnRuvVylTsnPDw8VL58eZ2OiFBMTHSW+1WtWk1ubm7av39fgT1Hdz8UOwAAAABZslrTlJKS/nm1L5Z+ruvXrqnb091tt3d26tRFjo5OWvLZp7p27Zpt36ioKH3y8UI5ODioy1Ndc/y+ZcrcvRXy8KGDGcYqVaosSTp2JH2J3LH9R/18+FCO3yMrT3V9WomJifrog1lK+6/nEa1Wq8JCv9WJP/6Qs7OznuraTVE3bmj6tKlKSEhI9xo3btzQp598nOcsOcWtmAAAAIDJrFn9lS5cuKDExESlpKToww/+LT8/P/Xu0++hv1dcXJy6PdVJgYGPq2TJkgoPP6Fffv5ZNWv6a3jISNt+Ff38NGrMGH30wSwNGthfjzdrJgcHR+3fv1dRN25o5F9Hq1q16jl+33r1G8jL21s7d+7QmFEjVb58eV2+dEmz5y3QU127acl/PtX8uR/p2NFf5eNTRuHhJ3T0yK+ZPuOXW889P1T79+3Vpo0bdPzYMTV57DElJibq58OHdOniRc1bcLewjRozTsePH1NY6Lc6sH+/GjVurFKlSuvc2TP6+efD8vHx0V+GDc9znpyg2AEAAKDQcnayqHjQbKNjZODsZMnT8Vu++06H//+VqTt3pOXLlqpx4yb5Uuzc3T3U7enu+mHrVl29ekUlSpRQ/4HPaPiIF23Po93z7KDn5OdXSV8sW6od23+UJNX099ffXp2gdu075Op9XV1dNXvufH3w7/d1/NgxHT92TLX+/62cnqVKaf6iT/T+e+9q/769cnFxUb169TV/0Sf6csXyXE2ektV7z5m/UMuXLdX3323WxvXfyM2tmKpVr6bnhgxVnbp1////N+5a9Mln+urLldry/Wbt+mmnJKl8+Qp6quvTubpCmVcWa26mvjFQSmqq4hOMv3e1oISfvaJHqpQzOkahtn3b90rYPcboGAWmeNBstW6bu3+hIvf42S28OLeFG+fXvC6cPS2/KtXuu0/ineR0i1gj53p066KEhNv6busPRkfJVGE5tzn5eyxJpUoUz3KMZ+wAAAAAwOQodgAAAABgchQ7AAAAADA5Jk8BAAAAkKmvN3xrdATkEFfsAAAAAMDkKHYAAAAAYHIUOwAAAJiaSVbvAjL1sP7+UuwAAABgWg6OjkpNTTE6BvDAUlNT5eDomOfXodgBAADAtNyKFVPCrVtGxwAeWOLtBLm4uOT5dZgVEwBgOrt3bFFySsHfenX51NECf09nJ4uCWrUv8PcFzKJESU9dv3pFklTc3V2Ojk6yWCwGpwKyZ7ValXQnUXGxMfIpWy7Pr0exAwCYTnKKVQm7xxgdo0AUD5ptdATArjk7u6iMbzndjIvVtSuXlZaammGf5JRUOTvl/VY32B+zn1snZ2eVKu3FFTsAAADA2dlFXt5lshwPP3tF1ark/YoI7A/n9v/wjB0AAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJUewAAAAAwOQodgAAAABgchQ7AAAAADA5ih0AAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJUewAAAAAwOQodgAAAABgchQ7AAAAADA5ih0AAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJUewAAAAAwOQodgAAAABgchQ7AAAAADA5ih0AAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJUewAAAAAwOQodgAAAABgchQ7AAAAADA5ih0AAAAAmBzFDgAAAABMjmIHAAAAACbnlJOd4uPj9cEHH2jz5s2Kjo6Wn5+fBg4cqOeee04Wi+W+x0ZFRenTTz/V/v37deHCBd2+fVuVK1dWv3791L9/fzk55SgCAAAAACALOWpVY8aM0YEDBzRgwABVqlRJBw8e1PTp05WQkKCRI0fe99hjx47pP//5j1q1aqX27dtLkrZu3aqpU6fq2LFjmjFjRt4/BQAAAAAUYdkWu127dmn37t2aNm2a+vbtK0kaMmSIXnnlFS1atEiDBw+Wh4dHlsdXr15d3333nSpUqGDb9sILL6h///5au3atxo8fL19f34fwUQAAAACgaMr2GbsffvhBLi4u6t69e7rt/fr1U0JCgvbs2XPf4/38/NKVOklydHRUYGCgJOny5cu5zQwAAAAA+C/ZFrsTJ07Iz89PLi4u6bb7+/tLksLDwx/oja9cuSJJXK0DAAAAgDzK9lbMGzduqESJEhm2lypVyjaeW9euXdPWrVtVt25dlS9fPkfHJCWnKvzslVy/l1klJqUUqc+LgsHfqfzHzy7yA3+n8h8/u4Ub57fwKmrnNrBu9SzHsi12SUlJcnNzy7DdwcFBDg4OSkxMzFWYlJQUvfrqq0pKStKECRNyfJyLs6MeqVIuV+9lZuFnrxSpz2uEy6eOGh2hwPF3Kv/xs1switrPL3+n8h8/u4Ub57fw4tz+n2xvxXRxcVFaWlqG7WlpaUpLS8u09GUlLS1NEydO1N69ezVx4kTbc3YAAAAAgAeXbbHz9vZWbGxshu3R0dGSJC8vrxy9UWpqql5//XVt2LBB48eP15AhQ3IZFQAAAACQmWyLnb+/vyIiIhQfH59u+5EjR2zj2UlOTtYrr7yir7/+Wm+88Ua2a98BAAAAAHIu22IXHByslJQUhYWFpdu+adMmFStWTEFBQZLulrdTp07p3Llz6fa7deuWQkJCtGXLFs2cOVPPPffcQ4wPAAAAAMh28pSWLVsqMDBQU6dO1cmTJ1WhQgUdPnxYYWFhGjt2rG3GzKtXr6pLly6qWLGitm3bZjt+5syZ2rVrlzp37qz4+HitWLEi3euXLVtW7dq1e8gfCwAAAACKjmyLncVi0bx58zRr1ixt2rRJMTEx8vPz06RJk3L0nNy9WTNDQ0MVGhqaYTwwMJBiBwAAAAB5kG2xk6QSJUpoypQpmjJlSpb7+Pn56cSJExm2//Of/9Q///nPB08IAAAAALivbJ+xAwAAAADYN4odAAAAAJgcxQ4AAAAATI5iBwAAAAAmR7EDAAAAAJOj2AEAAACAyVHsAAAAAMDkKHYAAAAAYHIUOwAAAAAwOYodAAAAAJgcxQ4AAAAATI5iBwAAAAAmR7EDAAAAAJOj2AEAAACAyVHsAAAAAMDkKHYAAAAAYHIUOwAAAAAwOYodAAAAAJgcxQ4AAAAATM7J6AAAkB9279ii5BSrIe99+dTRAn9PZyeLglq1L/D3BQAA9oFiB6BQSk6xKmH3GKNjFJjiQbONjgAAAAzErZgAAAAAYHIUOwAAAAAwOYodAAAAAJgcxQ4AAAAATI5iBwAAAAAmR7EDAAAAAJOj2AEAAACAyVHsAAAAAMDkKHYAAAAAYHIUOwAAAAAwOYodAAAAAJgcxQ4AAAAATI5iBwAAAAAmR7EDAAAAAJOj2AEAAACAyTkZHQAAAABFw+4dW5ScYjXkvS+fOlqg7+fsZFFQq/YF+p4o2ih2AAAAKBDJKVYl7B5jdIwCUTxottERUMRwKyYAAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJUewAAAAAwOQodgAAAABgchQ7AAAAADA5ih0AAAAAmBzFDgAAAABMjmIHAAAAACZHsQMAAAAAk6PYAQAAAIDJORkdwN7t3rFFySlWQ9778qmjBf6ezk4WBbVqX+DvCwAAAODBUeyykZxiVcLuMUbHKDDFg2YbHQEAAABALnErJgAAAACYHMUOAAAAAEyOYgcAAAAAJkexAwAAAACTY/IUAAAAAHnCTPLGo9gBAAAAyBNmkjcet2ICAAAAgMlR7AAAAADA5Ch2AAAAAGByFDsAAAAAMLkcFbv4+HhNmzZNTzzxhOrWratOnTppyZIlslpzNvNNXo8HAAAAAGQtR7NijhkzRgcOHNCAAQNUqVIlHTx4UNOnT1dCQoJGjhyZ78cDAAAAALKWbbHbtWuXdu/erWnTpqlv376SpCFDhuiVV17RokWLNHjwYHl4eOTb8QAAAACA+8v2VswffvhBLi4u6t69e7rt/fr1U0JCgvbs2ZOvxwMAAAAA7i/bK3YnTpyQn5+fXFxc0m339/eXJIWHh6tDhw75djwAACg6du/YouQUY57Bv3zqaIG/p7OTRUGt2hf4+wIofCzWbGYw6dKlizw8PPTVV1+l256WlqbatWvr2Wef1ZQpU/LteAAAAADA/WV7K2ZSUpLc3NwyHujgIAcHByUmJubr8QAAAACA+8u22Lm4uCgtLS3D9rS0NKWlpWVa2h7m8QAAAACA+8u22Hl7eys2NjbD9ujoaEmSl5dXvh4PAAAAALi/bIudv7+/IiIiFB8fn277kSNHbOP5eTwAAAAA4P6yLXbBwcFKSUlRWFhYuu2bNm1SsWLFFBQUJElKTk7WqVOndO7cuQc6HgAAAADwYLJd7qBly5YKDAzU1KlTdfLkSVWoUEGHDx9WWFiYxo4dqxIlSkiSrl69qi5duqhixYratm1bro8HAAAAADyYbJc7kKSbN29q1qxZ+u677xQTEyM/Pz8NGDBAQ4YMkcVikSRduHBB7dq1y1Dscno8AAAAAODB5KjYAQAAAADsV7bP2AEAAAAA7BvFDgCA/xETE5PpUj0AANirbCdPQcG5ceOGjh49qtjYWDVr1ky+vr6KjY1VVFSUKlasKBcXF6Mj4gHEx8drx44dunjxou7cuZNh3GKxaNSoUQYkQ24dPnz4gY5r3LjxQ06C/LJt2zbNmDFDFy5ckCTVqFFDEyZM0BNPPGFwMjxsZ86c0bp16xQZGam0tLQM4xaLRdOnTzcgGYDsnD9/XgcPHtT169fl7OysatWqqXnz5nJ1dTU6mqF4xs4OpKWladq0afrqq6+UkpIii8WiBQsWqHXr1jp//rw6d+6sSZMm6dlnnzU6KnLp559/1osvvqi4uDhl9aNmsVj0+++/F3AyPIiAgIAHmvCJ82sOR44c0cCBA+Xi4qJGjRrJ1dVVhw4d0s2bN/Wvf/1LXbp0MToiHpJDhw5p+PDhSkhIkMVisf1PuvvfZKvVKicnJx07dszgpMito0eP6v3339fRo0dlsVjUtGlT/e1vf2Pd5EIiISFBb7zxhsLCwjL8XuXp6akJEyaoV69eBqUzHlfs7MDcuXO1cuVKjRkzRnXr1tXw4cNtY5UqVVLLli21efNmip0J3fu2d9asWfL395e7uzszwZrYjBkz0v1569atOn78uMaOHZth32PHjmnFihV6/fXXCyoe8uiTTz6Rp6enli9frqpVq0qSoqKiNGTIEM2YMUOdO3fm57eQmDdvnqpWraoPP/xQHTp00IcffqiOHTtKkrZs2aLx48dr7dq1BqdEbp06dUrPPfecEhMTVblyZbm6umrXrl3atWuXPv74YzVv3tzoiMijd955R6Ghoerdu7e6deumcuXKKSkpSREREVqyZIneeOMNFS9eXJ06dTI6qiEodnbg66+/Vvfu3TVy5EhdvXo1w3iTJk20ZMkSA5Ihr06ePKkXXnihyP4LprDp2bNnuj8vX75cnTp1yrBdkrp3766DBw/q8uXLBRUPeXTgwAH16NHDVuokycvLSy+//LL++te/Kjw8XLVq1TIuIB6aP/74Q0OGDFGFChUk3V2W6Z727durTZs2mjdvnj744AODEuJBfPzxx7JYLFq2bJmaNGki6W7ZGz58uN566y1t3rzZ4ITIq82bN+upp57SO++8k277I488ovbt26t///6aP39+kf29i8lT7MDVq1ez/WUhLi6ugNLgYSpTpgzPRhZif/75p8qXL5/pmIODg7p06aKNGzcWcCo8qNjYWFWqVCnD9po1a8pqtSoyMtKAVMgPcXFxcnd3l6Ojo0qUKKFz586lG2/atKn27t1rUDo8qJ9++kndu3e3lTrp7nOyr7zyis6dO6eIiAgD0+FhsFqtqlevXqZjTk5OevLJJ3XmzJmCDWVHKHZ2oGzZsrYH9TNz+PBh27eKMJfevXvrm2++UUpKitFRkA/c3Nx06tSpLMeTkpIUHR1dgImQF2lpaXJ0dMyw/d6XM/wcFx6lS5e2/WzWrl1b33//vVJTU23jV69eTfdnmEN0dLRq1qyZYXu9evVktVozvSsK5hIYGKjjx4/fdx9vb+8CSmN/uBXTDjz55JNauXKlevTooTJlyqQbW7t2rX788cd0z93BPLy9vXXhwgW9/fbbCgwMzHK/bt26FWAqPCwdO3bUmjVr9MQTT6h9+/bpxs6fP6/Vq1fzwL7JrF+/PsOEGbdv35bFYtHSpUu1ZcsW23aLxaKpU6cWdEQ8BJUqVVJ4eLiku1/ATZgwQSNGjFCnTp108eJFrVixQm3atDE2JHItNTVVTk4Zf7W9N1NiUlJSQUfCQzZu3Dj17dtXQ4cO1aOPPpphfOfOnerQoYMByewDs2LagVu3bmnw4ME6efKkGjZsqIMHD6px48a6efOmwsPD5e/vr5UrV8rd3d3oqMilgICAbPdhVkzziouL0+DBgxUeHq7q1aurZs2acnZ21pUrV/TLL7/I0dFRn3zyiR577DGjoyIHcvLz+t/42TWvgwcPKioqyjZhyrRp07RixQrbVbpmzZrp3//+t7y8vIyMiVwKCAhQu3btMtyqFx8fr8WLF+vpp59WtWrVbNstFotCQkIKOibyoE6dOkpNTZWDg4McHDLeeJiSkiJHR8cME10VlRluKXZ2IikpSZ999plCQ0N15swZpaWlqWLFiurYsaOGDx8uDw8PoyPiAezfvz9H+93vah7s2507d7RkyRKFhobq9OnTSklJUdmyZfX444/rhRdeyPS2IAD2JyoqSufPn1eZMmV4/MGk+HKm8Js4ceIDzU78v7NaF1YUOwAAUKTMmTNHwcHBqlOnTqbjP/zwg27fvs3ahSZz8eLFXB9TsWLFfEgCGINn7OzMxYsXFRkZKScnJ1WpUoUrdYXIH3/8ofPnz8tiscjPzy/X3yzCvsXFxenChQuyWCyqUKGCPD09jY6EPLp+/br+/PNPRUdHy8vLS4888gi35hUSc+bMUZkyZbIsdsePH9eXX35JsTMZShqKOoqdnVixYoUWLVqkK1eu2LY5ODioefPmmjBhAhMwmNiOHTv0j3/8wzbzqdVqlcViUcWKFTV58mS1bt3a4ITIiz/++EPvvPOODh06pP++AaJp06Z6/fXXVbt2bQPT4UH8+eefmj59uvbt26e0tDTbdkdHR7Vq1UoTJkxQlSpVDEyI/GaxWNKtbQdzSklJ0aVLl2xfzlSoUCHTmW9hLsnJyTpw4ICuX7+urG487NGjR8GGshPcimkHPv74Y/3rX/9S9erV1alTJ5UrV05JSUmKiIjQhg0blJKSohUrVnCFx4T279+vv/zlL6pQoYIGDBhg+2Xw9OnTWrlypa5cuaJPP/2UZ+xM6o8//tDAgQPl5OSkp59+Ot353bBhg1JTU/nZNZmdO3dq1KhRslqtatWqlRo2bKhSpUopLi5Ov/zyi7Zv3y5HR0fNnz9fzZo1MzoucuHSpUu2W/UGDx6soUOHqm3btun2SUtL05kzZzRr1ixVqFBBa9euNSIq8ujGjRv64IMPFBYWpvj4eNt2T09PdevWTaNHj+auCpO6dOmSQkJC9Oeff9q23asy//3sXVF9dpJiZwdat26tChUq6PPPP5ezs3O6sWvXrqlPnz7y9/fX4sWLDUqIBzV48GBFRUVp9erVKlasWLqx+Ph49e3bVz4+Plq6dKlBCZEXISEhCg8P1+rVqzOsm3PvZ7d27dpauHChQQmRG9euXVPnzp3l5eWlBQsWqEaNGhn2OXPmjEaMGKGYmBiFhoYW6fWSzGbOnDmaM2dOthMvWK1WeXp66sMPP6S8m9Dx48f1wgsvKCYmRgEBAWrYsKE8PT118+ZN/fLLL/rtt9/k4+OjxYsXq1atWkbHRS5NmjRJO3fu1N/+9jdNnDhRL7/8sm1B+i1btmjp0qX64IMPMixBVFRwK6YdiI6O1nPPPZeh1El3Fy/v2bOnlixZYkAy5NWxY8c0fPjwDKVOkjw8PNS1a1d98sknBiTDw3Do0CENGjQo01/u7/3sfvHFFwYkw4NYsWKFEhMTNXfu3ExLnSRVrVpV8+fPV/fu3bVs2TKNGzeugFPiQXXo0EGVK1eW1WrVhAkT1KtXrwzFzdHRUT4+PqpTpw7PuJvQzZs3FRISIovFos8++0zNmzfPsM+BAwc0btw4hYSEaOPGjZxnk9m7d6969+6tLl26aOLEifL19bUVu0aNGmnfvn06cOAAxQ7GCQgI0PXr17McL1WqFGvYmZSDg8N9F0RNTk7OdB0WmENqaqpcXFyyHHdxcbGtiwX7t2fPHgUFBemRRx657341atTQE088oZ07d1LsTKRWrVq2KzRpaWlq2LBhujXNYH4rVqzQjRs39Pnnn2e5fuhjjz2m2bNna9CgQVqxYoWGDx9ewCmRFzdu3FDZsmXl4uIiV1fXDHNTdO7cWcuXL9ekSZMMTGkcfqO0A8OHD9fatWt148aNTMePHj3KAscm1ahRI61fv16xsbEZxqKjo/XNN9+oUaNGBiTDw1C7dm2FhoZmWt5v376t0NBQPfroowYkw4M4c+aMGjRokKN969atq/Pnz+dzIuSXnj17UuoKoZ07d6pJkybZ/s7UpEkTNWvWTNu2bSugZHhY3N3dbc9N1qhRQ7t27Uo3npKSoujoaCOi2QWu2NmB5cuX69atWxo0aJDKly+fYfzgwYOqVKmS/vKXv9i2WSwWnrkzgfHjx2vQoEHq1KmTevToocqVK8tisej06dP65ptvlJiYqPHjxxsdEw9o1KhRGj58uHr37q0BAwaoUqVKtvO7cuVKnT17VosWLTI6JnLo1q1bKl26dI72LVWqlG7dupXPifAwTZo0ST179lRgYKAmT56c7f4Wi0VTp04tgGR4WCIiItS3b98c7duoUSOtWLEinxPhYStfvrzOnj0r6e7t1R999JHmzp2rbt266eLFi1q5cmWRnrCMYmcHzp49K19fX925c0dnzpzJMO7j46Pbt29nOgb7VrduXS1ZskTTp0/XZ599lm6sQYMGmjRpkurWrWtQOuRVixYt9NFHH+kf//iH/vGPf9gmZbBarfL19dWsWbPUokULg1Mip5KTk+XklLP/LDo6OnKbrcmsW7dODRs2VGBgoFatWpXt/hQ787l586Z8fHxytK+Xl1e6GTNhDn379tW1a9ckSUOHDtWWLVs0e/ZszZkzR9LdL92mTJliZERDUezsALcCFG4NGjTQl19+qaioKNutW35+fsymV0i0b99ebdu21bFjx2xrFfr5+alOnTqsl2RCO3bsyNFtPEeOHCmANHiYtm7dqlKlSkm6u1QJCp+kpKRMJ6LLjJOTk1JSUvI5ER62gQMH2v7Zzc1NK1as0I8//qgzZ86obNmyCg4OLtJLWVDs7EBiYqLc3NyMjoF8cP36de3atUsBAQEKCAiQl5eXbezkyZM6fvy4WrZsmeNvGGFfnnnmGXXt2lXPPPOM6tevr/r16xsdCXm0detWbd26NUf7ZjdtPuxLxYoVjY6AAnDkyBEVL148R/vBfJKTk3X9+nV5eHioZMmScnFxUceOHSVJcXFxio+Pl7u7e47vvihsiuantjMtW7bUU089pd69e/OLYSHz6aefauXKlQoLC8sw5u3trWnTpql///569dVXDUiHvDp69Kieeuopo2PgIclpoUPhcf78eR08eFDXr1+Xs7OzqlWrpubNm8vV1dXoaHhAa9as0Zo1a3K0L1/OmM+yZcs0c+ZMLV++XA0bNkw3dunSJfXp00evvvqqhgwZYkxAg1Hs7EDr1q31zTff6KuvvlLNmjXVt29fPf3007ZbRmBeO3fuVOfOneXr65thzMvLS507d9a2bdsodiZVp04dXbx40egYeEi4olN0JCQk6I033lBYWJisVmu6MU9PT9s6dzCXzz//3OgIyGehoaFq2bJlhlIn3V0+rE2bNtqwYQPFDsb517/+pfj4eG3cuFHr1q3T9OnT9f7776tdu3bq27evgoKCjI6IB3T+/Pn7ztBVo0YNrV+/vgAT4WEaNmyY3njjDQ0ZMiTT8g7APr3zzjsKDQ1V79691a1bN5UrV05JSUmKiIjQkiVL9MYbb6h48eLq1KmT0VGRC4GBgUZHQD6LiIjQqFGjshxv3Lix5s6dW4CJ7AvFzk54eHhowIABGjBggE6dOqU1a9Zo/fr1CgsLU/ny5dWrVy/16tVLFSpUMDoqcqFkyZL3XevqwoULKlGiRAEmwsO0fft2JScna8SIEVneRs3MeuZx5coV22Q4H330kSTp6tWratOmTYZ9XVxctGvXLnl4eBRwSjwMmzdv1lNPPaV33nkn3fZHHnlE7du3V//+/TV//nyKHWBnLBaLYmJishyPjY0t0rfYUuzsUI0aNfTaa68pKChIb775pi5evKg5c+Zo3rx5at68ufr06aP27dvneOYnGCc4OFhr1qxRjx49Mixr8Ntvv2nNmjVq3769QemQV/emTD9x4oROnDiR6T4UO/NYt26dJGW4NdpqtapFixa2dUZTU1P19ddfKzQ0NMdrZsG+WK1W1atXL9MxJycnPfnkk0X6W3+zio6O1oABA9S4cWPNmDFDkhQZGan+/ftn2NfNzU1r167leUqTadKkiTZu3Khhw4Zl+GL85s2b2rBhQ5Y/20UBxc7OnD9/XmvXrtU333yjy5cvy9XVVd26dVPXrl11/PhxrV69Wi+99JJKly6tPXv2GB0X2Rg7dqx27typ/v37q2XLlqpRo4YsFotOnTqlnTt3qmTJkho3bpzRMfGAmDK9cNm9e7caN26sSpUqZRh77rnn1Lp1a9ufz549q++//55iZ1KBgYE6fvz4ffdhSRrz+eabb3T+/Hl9+OGHtm2pqam6ePGiAgICVLp0aUlSWlqa9u/fry1btjABlsmMHj1azz77rLp3765BgwapRo0aku7eorls2TJdu3ZN//znPw1OaRyKnR24deuWQkNDtW7dOh0+fFhWq1X169dXSEiInnrqKdutPq1bt9bIkSP1448/6ssvvzQ4NXLCx8dHa9as0fvvv6/vv/9e27dvlyQVK1ZMHTt21Msvvyw/Pz+DUwKQpIsXL6pr16452rdJkya2K3wwn3Hjxqlv374aOnSoHn300QzjO3fuVIcOHQxIhrzYuXOn6tWrp4CAgAxjL730UrovZ3r27Gm7JRfmUbduXS1atEiTJ0/We++9Z7vt0mq1ytfXVx988EGRftaSYmcHWrZsqcTERHl7e2vo0KHq3bu37RuI/2WxWBQcHKzg4OACTokH5eXlpenTp+udd95RVFSUJKl06dJycHAwOBkelj179ujQoUPppkxv166dypUrZ3Q05ML169czrCnp4OAgHx8fubi4pNtetmzZ+z7nAfvWu3dvpaamqk+fPpn+uzglJUWHDx/WF198kW77sWPHCioiHsC5c+dyXMibNWum0NDQfE6E/PD4449r8+bN+u2333T27FlJkp+fn+rUqSNHR0eD0xmLYmcHgoKC1Lt3b7Vu3brI/4UszCwWS5a39tyboGHBggXpvlGEfYuMjNTo0aP166+/ZpgyfcaMGQoJCdGYMWMMSofccnd3V2JiYrptZcqU0U8//ZRh37i4OLm7uxdUNDxk3bp1K9ITLBRWV69eVdmyZXO0b7ly5RQZGZnPiZBfLBaL6tSpozp16mQ6HhUVpfHjx+uVV15RgwYNCjidcSh2dqBDhw6qXr16lqXul19+UUpKipo2bVrAyVCQ/rcYwP5NnTpVR44c0ZgxYzJMmf7pp59q3rx58vb21jPPPGN0VOTAI488on379mnEiBHZ7vvTTz+pZs2aBZAK+aEoP4NTmBUrVkypqanptvn6+urIkSMZJpxLTExUsWLFCjIeClBycrL2799f5O6s4F4wOzBp0iTt27cvy/EffvhBr732WgEmApATO3fuVN++ffXXv/5VlSpVkrOzs9zd3VWvXj3NmjVLgYGBWrJkidExkUMdO3bU7t27bc/CZuXbb7/VL7/8onbt2hVQMgA5Ua1aNf36668Ztru4uGS4QnvgwAFVrVq1gJIBBYMrdnYguys17u7uunHjRgGlAZBTLi4uqlatWpbjrVq1sq2HBvvXr18/LV++XOPGjdPYsWM1YMAAFS9e3DZ+8+ZNLV26VPPnz1fFihUznUId5pGcnKwDBw7o+vXrWf53uEePHgUbCnnSpk0bzZkzR8eOHcuwxNB/27t3r3bt2nXfha4BM6LYGSQ+Pl5xcXG2P8fGxurSpUvp9klLS9OZM2e0cuVKVaxYsaAjAshGq1attG/fPj3//POZjicmJjKBiom4uLho4cKFCgkJ0XvvvadZs2apevXq8vDwUFxcnE6fPq2UlBRVrFhRCxcu5Bk7E7t06ZJCQkL0559/2rbdK3f/fWWHYmcugwYN0hdffKFhw4bp7bff1pNPPplu3Gq1av369Zo2bZpKlSrFbfIodCh2BvnPf/5jW/zUYrFo1qxZmjVrVob9rFarnJyc9N577xV0RADZ6N+/v4YMGaItW7ZkuiDq1q1b1aJFC129ejXddl9f34KKiFyqVKmS1q1bp6+++kqbN2/WyZMndevWLbm7u6tBgwZq165dhit5MJ/Zs2crOjpaM2bM0MSJE/Xyyy+rSZMmkqQtW7Zo6dKl+uCDD4wNiVzz8PDQ/PnzFRISovHjx6tMmTKqW7eu7cuZo0ePKioqSiVLltTs2bPl5eVldGTgoaLYGaRZs2ZydHSU1WrVRx99pLZt22b4xdDR0VE+Pj567LHHMl0wF4CxBg0aJElZznxptVr1+++/a8WKFem2//777/meDQ/O1dVVgwcP1uDBg42Ognyyd+9e9e7dW126dNHEiRPl6+trK3aNGjXSvn37dODAAbVv397gpMitunXrav369fr444/13Xffadu2bbaxcuXK6ZlnntGIESP4gg2FEsXOIE2bNrXNcpmWlqbg4OAsp2wFYJ9GjRrFlOmACd24cUNly5aVi4uLXF1ddeXKFduYg4ODOnfurOXLl2vSpEkGpsSD8vb21sSJEzVx4kTdunVL8fHx8vDw4PZpFHoUOzswevToHO3HWmeAfWGNOsCc3N3dFR8fL0mqUaOGdu3apZCQENt4SkqKoqOjjYqHh8jd3f2+hS4yMlL9+/fX9OnT9fjjjxdgMuDhY7kDk2GtM8B8rl69qtq1a2c7jT6AglG+fHmdPXtW0t21ZA8cOKC5c+fq3Llz2rNnj1auXKmAgACDU6IgpKam6uLFi0pMTDQ6CpBnXLEDCkBqaqoiIiIUGxsrf39/eXp6Ki0tTSkpKXJxcZGjo6MqVKggNzc3o6Min/ClDGA/+vbtq2vXrkmShg4dqi1btmj27NmaM2eOJKlUqVKaMmWKkREBINcodkA+W7x4sRYtWmRb3uLerbTh4eHq1auXpk+frh49eqR7wBsAkH8GDhxo+2c3NzetWLFCP/74o86cOaOyZcsqODhYnp6eBiYEkJnWrVvr2Wef1YgRI+67X5kyZbR161b5+PgUUDL7QLED8tGyZcs0c+ZM9enTRw0aNNDkyZNtYwEBAXrssce0adMm1koCgAKUnJys69evy8PDQyVLlpSLi4s6duwoSYqLi1N8fLzc3d3l5MSvSYA9iY2NzdEkOA4ODkVyDWiesQPy0bJly9SxY0dNmzZNrVq1yjDerFkzhYeHG5AMAIquZcuWqX379oqIiMgwdunSJXXs2FFffPGFAckA3E/jxo116tQpo2PYLYodkI8uXryoxo0bZznu6uqqqKioAkwEAAgNDVXLli3VsGHDDGMBAQFq06aNNmzYUPDBANzXyJEjtW7dOspdFrjHAMhHnp6eioyMzHL8+PHjKlu2bAEmAgBERERo1KhRWY43btxYc+fOLcBEAHJi3rx5kqQXXnhB1atXz3Qfi8WixYsXF2Qsu0GxA/JRmzZttGrVKj377LNycEh/gXzPnj0KCwvTgAEDDEoHAEWTxWJRTExMluOxsbGyWCwFFwhAjpw9e1alS5eWJJ05c8bYMHaIYgfko/Hjx2v37t3q3r27WrVqJYvFojVr1mjlypXasWOHvL29NXLkSKNjAkCR0qRJE23cuFHDhg1TiRIl0o3dvHlTGzZsUL169QxKByArzCB+fzxjZ0dSU1N18uRJHTx4ULGxsZKktLQ0JSUlSRJrnZmQj4+P1qxZo06dOmnnzp2yWq367rvvtHfvXnXq1ElfffVVkZuKFwCMNnr0aEVGRqp79+769NNPtX37dm3fvl2fffaZevTooWvXrvGlm8ksWLBAoaGhRscADGWxsmquXchqrbM//vgj3VpnMLeoqCilpaXJy8srw62ZMK/sFqCPjIxUv379NGPGDD3++ONGxwUgad++fZo8ebLOnTtnu+3SarXK19dXkydPVvv27Q1OiNxo1KiRRo0apWHDhkmSateurbfeekv9+/c3OBketps3b2r16tX6+eefFRcXp5deekkNGjRQeHi4Nm7cqN69e6tKlSpGxzQEt2LaAdY6Kzq8vLyMjoCHjAXoAXN6/PHHtXnzZv322286e/asJMnPz0916tSRo6OjwemQW87OzrY7nKS7JR2Fz/nz5zV48GDduHFDlStXVkREhO152apVq2rt2rVKSkrSxIkTjQ1qEIqdHfjvtc6uXr2aYbxZs2ZauXKlAckA3A9fygDmZrFYVKdOHdWpUyfT8aioKI0fP16vvPKKGjRoUMDpkBsNGzbUl19+qdq1a6tGjRqS7paAw4cP3/e4+y1JBPvz3nvvKTU1Vd9++62cnZ3Vpk0b25iLi4vat2+v3bt3GxfQYBQ7O3Dx4sX7zozIWmeAfeJLGaBwS05O1v79++87gybsw5QpU/Tiiy9q5MiRslgstinvs5r23mq1ymKx6Pfffy/gpMiLvXv3atCgQapUqVKm/92tXr26vvnmGwOS2QeKnR1grTPAnPhSBgDsg5+fnzZs2KCjR4/q/PnzeuWVV9SjRw+eay5kkpKS5OHhkeX4jRs3ivSt1BQ7O8BaZ4A58aUMANgPi8Wi+vXrq379+kpKSlLDhg1VrVo1o2PhIfL399fu3bv1wgsvZBhLSUlRWFiYateubUAy+8C0fHZg/Pjxcnd3V/fu3TVz5kzbWmcjR47UsGHDWOsMsFP3vpS5fPlyhrF7X8r89/3/AICC0bNnT0pdIfSXv/xFu3bt0j//+U/bF6vJycn67bffFBISonPnzunZZ581OKVxWO7ATkRHR2vWrFnavHmzbQ27YsWKqW3btnr11VdVrlw5gxMC+F/3ljGIj49Xq1attGnTJnXo0EHJycm2BejXrl3LWoWASV29elWtW7fWwoUL1bp1a6PjIBfmzJmT7T4Wi0WjRo0qgDR4mBYvXqxZs2YpNTXV9qzkPS+++KLGjRtnYDpjUezsEGudAebBlzJA4UWxM6+AgID7jt8rA0yeYk5XrlxRWFiYzp49q7S0NFWsWFHt27dX9erVjY5mKIodADwkfCkDFC4UO/PKbMbEe3bs2KG3335bS5YsUZMmTQowFZC/mDwFAB4SFqAHAPvg6+ub5Vjfvn21ceNGrV69mmJnUnv27NGhQ4d0/fp1OTs7q1q1amrXrl2Rv0uGYgcAAIAiJTg4WAsXLjQ6BnIpMjJSo0eP1q+//qr/velwxowZCgkJ0ZgxYwxKZzyKHQAAAIqUa9euKTU11egYyKWpU6fqyJEjGjNmjLp166Zy5copKSlJERER+vTTTzVv3jx5e3vrmWeeMTqqIXjGDgAAIBNpaWm6fPmyfHx85OrqanQc5MKGDRsy3Z6YmKijR49qzZo1Cg4OztHsmbAfjRo10tNPP62333470/EhQ4boypUr2rx5cwEnsw9csQMAAIXe119/rYYNG6pq1apZ/tL/v7p166aKFSvmczLkh1dffVUWiyXD7Xr3BAYG6s033yzgVMgrFxeX+65P2KpVK3300UcFmMi+UOwAAEChN3HiRL399tuqWrVqtr/0S3enw+/WrVsBJsTD9Pnnn2e63dXVVeXLl1fZsmULOBEehlatWmnfvn16/vnnMx1PTEws0hOoUOwAAEChN2PGDDVq1EhS1r/0o/AIDAw0OgLyQf/+/TVkyBBt2bJF9erVyzC+detWtWjRIsNyF/ebJbUw4Rk7AABQJKWmpioiIkKxsbHy9/eXp6en0tLSlJKSIhcXF6PjAfgf9xaev7fA/P+yWq2ZjhWVhei5YgcAAIqcxYsXa9GiRYqLi5MkLViwQK1bt1Z4eLh69eql6dOnq0ePHsaGRJ4cPHhQGzZs0KVLl3Tnzp0M4xaLRUuWLDEgGR7UqFGjsix1oNgBAIAiZtmyZZo5c6b69OmjBg0aaPLkybaxgIAAPfbYY9q0aRPFzsRWrVqlKVOmSJK8vLxUvHhxCkEhUJTXqMsJih0AAChSli1bpo4dO2ratGkZnsWRpGbNmmnlypUGJMPD8sknn8jf31+fffaZvL29jY6DAnb16lW1adPGdiW+qHAwOgAAAEBBunjxoho3bpzluKurq6KiogowER62K1euqFu3bpS6IqwoTiNCsQMAAEWKp6enIiMjsxw/fvw40+GbXM2aNRUTE2N0DKBAUewAAECR0qZNG61atUqXL1/OMLZnzx6FhYWpTZs2BR8MD82wYcO0Zs0arryiSOEZOwAAUKSMHz9eu3fvVvfu3dWqVStZLBatWbNGK1eu1I4dO+Tt7a2RI0caHRN5sGvXLiUkJGjEiBGqXbt2pvtYLBZNnTq1gJMB+Yd17AAAQJETHR2tWbNmafPmzYqNjZUkFStWTG3bttWrr76qcuXKGZwQeXFvvbP7sVgsRWZ9s6Lm6tWrat26tRYuXFikJk+h2AEAgCItKipKaWlp8vLykoMDT6kAZldUix23YgIAgCLNy8vL6AgAkGd8LQUAAAAAJscVOwAAABQqVqtVCxcu1PLlyxUZGZnpmmYWi0W//fabAemA/EGxAwAAQKGyZMkSffTRRwoKCtK1a9fUokULlS9fXpJ05MgRRUREqEePHsaGRL5xdHRUhQoV5ObmZnSUAkWxAwAAQKGyZs0ade3aVW+++aaaNGmi3r17q0uXLpKkK1euqHv37mrcuLHBKZFffHx8tG3bNqNjFDiKHQAAAAqVS5cuqW/fvnJ3d5ejo6Oio6NtY+XKlVOvXr30xRdfqFevXgamxIO4cOGCvv32W126dEl37tzJMG6xWDR9+nQDkhmPYgcAAIBCxWq1Ki0tTZLk6+ub4Vk6X19fRUREGBENebBt2zaNHTtWKSkpku7ecvm/KHYAAABAIVGmTBldvXpVkvTYY48pNDRUw4YNU7Vq1WS1WvXTTz+pdOnSBqdEbs2aNUtly5bVhx9+qEceeUSurq5GR7IrFDsAAAAUKjVr1tTRo0clSS+88IJCQ0PVs2dPPfroo7py5YouX76sCRMmGJwSuXXu3DmNHDlS9erVMzqKXbJYM5v/FQAAADApq9Uqq9UqB4e7SzYfPnxYixYt0tmzZ1WmTBn17t1b3bt3Nzglcqtr167q2LGjxo4da3QUu0SxAwAAAGD3Vq5cqYULF2rTpk0qXry40XHsDrdiAgAAwPQmT56cq/0tFoumTp2aT2mQHyIjI3Xjxg29/PLLatiwYab7WCwWhYSEFGwwO8EVOwAAAJheQECALBaLcvqrrcVi0e+//57PqfAwBQQEZLtPUT6vXLEDAACA6VWpUkXnz59X+/btNXToUBYgL4S2bt1qdAS7xhU7AAAAFAo//PCDPv/8c+3du1cNGjTQ888/ryeffFIWi8XoaEC+o9gBAACgUDl58qSWLFmijRs3ytvbW88995z69Okjd3d3o6PhIbh165b27NmjCxcuSJL8/PzUrFkzeXh4GJzMWBQ7AAAAFEoxMTFavny5FixYIDc3N82aNUstWrQwOhbyYNWqVXr33Xd169atdM9Turu767XXXlP//v0NTGcsnrEDAABAoXPnzh19++23+vrrr5WUlKRHH31U3t7eRsdCHnz33XeaPHmymjRpoueee05VqlSRJJ0+fVpLlizRW2+9pVKlSunJJ580OKkxuGIHAACAQiMqKkpLly7VihUrdPPmTbVr105Dhw5Vo0aNjI6GPOrTp48cHR21fPlyOTo6phtLSUlR//79ZbFYtHr1aoMSGosrdgAAADC9U6dO6bPPPtOGDRvk5OSk3r1767nnnpOfn5/R0fCQnDx5UqNGjcpQ6iTJyclJTz75pObOnWtAMvtAsQMAAIDpde3aVQ4ODgoODlbfvn1VokQJXbt2TdeuXcvyGJZEMBc3NzfdvHkzy/HY2Fi5ubkVYCL7QrEDAACA6VmtVqWmpmrLli3ZrndmtVqL9ELWZvX4449r1apV6tu3rypXrpxu7PTp01q9erWaNWtmUDrj8YwdAAAATG/dunW5PqZnz575kAT55dy5c+rbt68SEhIUHBysypUry2Kx6PTp0/rxxx/l7u6ur776yjapSlFDsQMAAABgChcuXNC///1v/fjjj0pISJAkFStWTMHBwXrppZdUqVIlgxMah2IHAAAAwFTS0tIUFRUlSfLy8pKDg4PBiYxHsQMAAAAAk2PyFAAAAAB2ac6cOQoODladOnW0YMGCbPe3WCwKCQkpgGT2hyt2AAAAAOxSQECA3n77bfXv318BAQHZ7l+UZzul2AEAAACwS/v371fVqlVVtmxZXbx4MUfHVKxYMZ9T2SeKHQAAAACYHM/YAQAAALB7sbGxCg8PV+XKleXr6ytJunTpklatWqWkpCT16NFD/v7+Bqc0DlfsAAAAANi9d999V1988YW+//57+fr6KiYmRl27dlVkZKSku+vZrVy5UrVq1TI4qTFY8AEAAACA3du3b5/atm1ru1q3YcMGRUZGauHChfrpp5/k5+enefPmGZzSOBQ7AAAAAHbv7Nmzatiwoe3PBw4cUOXKldW6dWv5+Pioa9eu+uWXXwzLZzSKHQAAAAC7V6xYMSUnJ9v+/Msvv6h+/frpxqOiooyIZhcodgAAAADs3qOPPqoNGzbo5s2b2rRpk65fv65mzZrZxsPDw+Xj42NgQmMxKyYAAAAAuzd69GgNHjxYgYGBkqRy5cqpc+fOkqSoqCiFhoaqbdu2RkY0FMUOAAAAgN2rX7++vvzyS61fv17Ozs7q37+/3N3dJd2dWKVZs2YaNGiQwSmNw3IHAAAAAGByXLEDAAAAYPcuX76sffv2qVGjRqpSpYok6ejRo1q6dKmSk5PVr18/NW/e3OCUxuGKHQAAAAC799Zbb2nDhg364YcfVLJkSV29elWdO3dWUlKSXF1dlZiYqM8//1xNmjQxOqohmBUTAAAAgN07dOiQOnbsqJIlS0qSvvnmG92+fVurV6/W3r17Va9ePc2fP9/glMah2AEAAACwexcuXFBAQIDtz4cPH1bNmjUVEBAgZ2dndejQQX/88YeBCY1FsQMAAABg9zw9PRUfHy9Jslqt+vXXX1WvXj3buKOjo2JjY42KZzgmTwEAAABg9xo2bKh169apXbt22rlzp2JiYtSiRQvb+LFjx1S+fHkDExqLYgcAAADA7o0bN04DBw5Uz549ZbVa5e/vrw4dOkiSLl68qM2bN6tnz54GpzQOs2ICAAAAMIVr165py5YtcnJyUpcuXeTh4SFJ2r59u3bt2qX+/furRo0aBqc0BsUOAAAAAEyOyVMAAAAAwOR4xg4AAACAXapdu7befvtt9evXT3Xq1JHFYsn2mGPHjhVAMvtDsQMAAABgl5o2baoyZcpIkrp165ajYldU8YwdAAAAAJgcz9gBAAAAgMlxKyYAAAAA04iKitLly5d1586dTMcbN25cwInsA8UOAAAAgN27cuWKJkyYoP3792c6brVaZbFY9PvvvxdwMvtAsQMAAABg9yZPnqxDhw6pf//+8vf3V/HixY2OZFeYPAUAAACA3WvatKmeffZZvfTSS0ZHsUtMngIAAADA7rm5ualUqVJGx7BbFDsAAAAAdq9t27bavHmz0THsFrdiAgAAALB7V69e1dNPP62hQ4fq8ccfV1Y1hlkxAQAAAMBOJSQkyN3dXR9++GGm48yKCQAAAAB27s0339S1a9eYFTML3IoJAAAAwO41bNhQQ4YMYVbMLDB5CgAAAAC75+HhodKlSxsdw25R7AAAAADYvS5duigsLMzoGHaLZ+wAAAAA2L2goCCtXLlSc+fOVfPmzbPcr6jOiskzdgAAAADsXkBAgO2fLRZLhnFmxQQAAAAAOzdjxgyjI9g1rtgBAAAAMI3U1FRFREQoNjZW/v7+8vT0VGpqqlJTU+Xi4mJ0PMMweQoAAAAAU1i8eLGCgoL09NNPa/Dgwfrll18kSSdPnlTDhg319ddfG5rPSBQ7AAAAAHZv2bJlmjlzpjp06KCpU6fqv288DAgI0GOPPaZNmzYZmNBYFDsAAAAAdm/ZsmXq2LGjpk2bplatWmUYb9asmcLDww1IZh8odgAAAADs3sWLF++7lIGrq6uioqIKMJF9odgBAAAAsHuenp6KjIzMcvz48eMqW7ZsASayLxQ7AAAAAHavTZs2WrVqlS5fvpxhbM+ePQoLC1ObNm0KPpidYLkDAAAAAHYvMjJS/fr1U3x8vFq1aqVNmzapQ4cOSk5O1o4dO+Tt7a21a9fKx8fH6KiGoNgBAAAAMIXo6GjNmjVLmzdvVmxsrCSpWLFiatu2rV599VWVK1fO4ITGodgBAAAAMJ2oqCilpaXJy8tLDg48YUaxAwAAAACTo9oCAAAAgMlR7AAAAADA5Ch2AAAAAGByTkYHAAAgM7Vq1cp2n7lz56p9+/b5muPs2bPq2LGjAgMDtXTp0nx9LwAAHhTFDgBgt4oXL64BAwZkOV6lSpUCTAMAgP2i2AEA7FaJEiU0YcIEo2MAAGD3eMYOAFAoHDlyRGPHjlVQUJDq1q2rVq1a6fXXX9fly5cz7Dtx4kT16NFDLVq0UJ06ddS4cWP16tVL//nPf5Sammrbb+3aterYsaMkaf/+/apVq5btf7Nnz7btU6tWLc2aNSvD+1y4cEG1atXSwIEDM7x/rVq1tGvXLq1fv14DBgxQ/fr1Vb9+fZ08efKBPhMAoGjjih0AwPS+/vprvf7663J3d1dQUJC8vLx07tw5rV27Vtu3b9eaNWtUrlw52/7ffvutatWqpaCgIJUqVUrx8fHau3evZsyYoZMnT+qdd96RJPn7+6tPnz5avXq1ypUrpy5dutheo1GjRnnO/frrr+vGjRtq2bKl+vXrp7i4OLm6uj7QZwIAFG0UOwCA3bp586befffdTMcGDhyoypUr68yZM/r73/+uBg0aaMGCBfL09LTts337doWEhGj27Nm2siZJ+/btU7FixdK9XkJCgnr06KE1a9bo5Zdflre3t+rVq6eSJUtq9erVqly58kO/LbRs2bJavHixatasmW77g3wmAEDRRrEDANithIQEffrpp5mOtWnTRpUrV9aKFSuUnJyst956K10BkqTWrVurevXq+umnn9JtL1asmJKTk3X06FFFRETo5s2bio+Pl6Ojo6xWq86ePStvb+98+1z3vPTSSxlKnaQH+kwAgKKNYgcAsFu+vr7asWPHfff5+eefJUlPP/10lvs4Ojqm+/PixYu1aNEixcTEZLp/cnJy7oI+ZA/ymQAARRvFDgBgavfK2ZAhQ3JUdj7++GO9//77Kl26tF566SUFBgaqYsWKKlWqlN544w1t2LAhnxNnL7efCQAAih0AwNQ8PDwkSUOHDlX58uWz3X/FihWyWCxaunSp/P398/z+FotFktLNpplXuf1MAACw3AEAwNTq1q0rSfr+++9ztP+1a9dUsmTJHJe6e1fMsro9894zcFnd1vkgcvuZAACg2AEATG3gwIFycHDQBx98oJ07d2YYj4iI0OLFi21/rlixomJjY3XixIl0+33//ffavXt3huN9fHzk5OSk33//XdHR0RnGq1evLknatWuXEhISbNujoqL04YcfFshnAgCAWzEBAKZWu3ZtTZ48WdOmTdOwYcNUv3591apVSxaLRb/99puOHz+uxx57TC+88IIkacSIEXr99df1zDPPqF27dnJ3d9fRo0d19OhRlShRIsPru7m5KTg4WN9//7369u2r5s2bKzY2Vq1bt1bv3r1VtWpVtW/fXlu2bFG/fv3UrFkzRUVFafv27XJyerD/zOb2MwEAQLEDAJjeM888o3r16unzzz/XgQMH9Pvvv8vd3V1+fn564YUX0s0u2bt3bxUvXlzz589XWFiYSpQooSZNmmjSpElasWJFppOnTJ8+XV5eXvrxxx/19ddfq2zZsukWK58xY4ZKliypbdu2aeXKlapcubKGDRumdu3aqVu3bvn+mQAAsFitVqvRIQAAAAAAD45n7AAAAADA5Ch2AAAAAGByFDsAAAAAMDmKHQAAAACYHMUOAAAAAEyOYgcAAAAAJkexAwAAAACTo9gBAAAAgMlR7AAAAADA5P4f0czAWX00shEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Graphical Representation of FEATURE IMPORTANCE\n", "imp_df_new = pd.DataFrame(\n", " {'Feature': X_scaled_new.columns,\n", " 'Importance': xgb_reg_new.feature_importances_\n", " })\n", "# plotting a bar graph\n", "imp_df_new.plot(x=\"Feature\", y=\"Importance\", kind=\"bar\", figsize=(15, 3 ))" ] }, { "cell_type": "markdown", "id": "bd0d898a", "metadata": {}, "source": [ "We can see also From the Most Influencing Feature by Weightage to the least and how our model will tend to attribute importance to the Features. \n", "* Energy Consumption: Proves to be the Highest Influencer, which makes sense, as if an Energy is in its unused state (Potential Energy), It will definitely not be oozing out CO2 except when Used/Exspended (Kinetic)\n", "* There is also bound to be more Economic activity with places of High GDP and by that, more energy is more likely to be consumed within that vicinity, Thus our Model is doing Just right paying attention to this as its second most important requirement.\n", "* The rest in their Order; `Energy Production, Manufacturing Contribution to GDP of a Place, Energy Type & Emission per Capita Index of a place` clearly shows our model is clearly in order.\n", "\n", "##### Let's Visualise in comparison the Actual Target Value and our Model Prediction\n" ] }, { "cell_type": "code", "execution_count": 22, "id": "ae93d57b", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ActualPredicted ValueVarience
00.000.0000000.00
10.000.0000000.00
2375.21360.52999914.68
39.329.680000-0.36
486.8681.0700005.79
50.000.0000000.00
60.000.0000000.00
70.000.0000000.00
80.000.0000000.00
91.622.070000-0.45
100.000.0000000.00
110.000.0000000.00
1244.7954.590000-9.80
1355.4255.740002-0.32
14174.35181.270004-6.92
150.000.0000000.00
160.000.0000000.00
173.995.670000-1.68
180.000.0000000.00
1915.4817.350000-1.87
\n", "
" ], "text/plain": [ " Actual Predicted Value Varience\n", "0 0.00 0.000000 0.00\n", "1 0.00 0.000000 0.00\n", "2 375.21 360.529999 14.68\n", "3 9.32 9.680000 -0.36\n", "4 86.86 81.070000 5.79\n", "5 0.00 0.000000 0.00\n", "6 0.00 0.000000 0.00\n", "7 0.00 0.000000 0.00\n", "8 0.00 0.000000 0.00\n", "9 1.62 2.070000 -0.45\n", "10 0.00 0.000000 0.00\n", "11 0.00 0.000000 0.00\n", "12 44.79 54.590000 -9.80\n", "13 55.42 55.740002 -0.32\n", "14 174.35 181.270004 -6.92\n", "15 0.00 0.000000 0.00\n", "16 0.00 0.000000 0.00\n", "17 3.99 5.670000 -1.68\n", "18 0.00 0.000000 0.00\n", "19 15.48 17.350000 -1.87" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get list of Models prediction for Test dataset\n", "f = []\n", "for x in range(len(y_test_new)):\n", " f.append(y_pred_xgb_new[x])\n", "# Place in Dataframe\n", "f_df = pd.DataFrame(list(zip(y_test_new, [round(num, 2) for num in f])), \n", " columns =['Actual', 'Predicted Value'])\n", "# Cal varience of Prediction from Actual\n", "f_df['Varience'] = round((f_df['Actual'] - f_df['Predicted Value']), 2)\n", "f_df.head(20) # print first 20 Observation" ] }, { "cell_type": "markdown", "id": "e9afad63", "metadata": {}, "source": [ "NOW: How did our Model come to it's decision i.e answering questions 2 & 3 on our Data explanation\n", "\n", " 2. Which is influencing what\n", " 3. Which Feature is important for class A or Class B. \n", " \n", "We will be doing this using the SHAP method since our Best Model is a Tree-Based Regressor\n", "\n", "### Explaining predictions using SHapley Additive exPlanations (SHAP)\n", "\n", "Here we will be using the Tree SHAP implementation integrated into XGBoost to explain the Model with Complete Features (Entire Dataset) & then on our Enhanced BEST Model (data containing the selected features of importance). \n", "\n", "`NOTE: Since we train split the data, and we will be using the X_train Samples (19362 Train samples).`\n", "\n", "SHapley Additive exPlanations (SHAP) is a practical method based on `Shapley values which is an instance-based explaining method derived from coalitional game theory.`\n", "\n", " Assume playing a game of predicting the score of a student. Each feature value of such student ‘plays’ the game by contributing to the model. How do we know the contribution of each feature to the prediction result? We can calculate the Shapley values to distribute the ‘payout’ among the feature values fairly. https://www.justintodata.com/explainable-machine-learning-with-python/\n", " \n", "This is what we hope to do, and as you can imagine, as the number of features increases, the number of possible coalitions increases exponentially, resulting in a computation increase. Hence, approximating the Shapley values, rather than applying the exact calculations is preferred. This is one of the major reasons why we choose to apply SHAP. \n", "\n", "SHAP includes an estimation approach of Shapley values, but more than that. Besides being an instance-based method to explain one instance, SHAP also contains methods of combining the Shapley values of all instances to summarize the model predictions. Let’s use the TreeExplainer function from shap and make a summary plot since our best Model in terms of accuracy is the XGBoost – an ensemble of trees.. \n", "\n", "The explainable machine learning methods can be of two main categories:\n", "* Summary-based: explain the average behavior of the model\n", "* Instance-based: explain the individual instance’s prediction\n" ] }, { "cell_type": "code", "execution_count": 26, "id": "6e6fce81", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import shap\n", "# print the JS visualization code to the notebook\n", "shap.initjs()" ] }, { "cell_type": "markdown", "id": "f0815004", "metadata": {}, "source": [ "### Summary-based Explanation\n", "\n", "So on the below SHAP beeswarm summary plot, we can see both feature importances and the effects on the predictions. Each point marks a SHAP value for a feature per CO2 Emitted:\n", "\n", "Along the y-axis, the features are sorted from top to down by the sum of SHAP value magnitudes of all instances\n", "Along the x-axis, for each feature, you can also see the distribution of the impacts each feature has on the model’s predictions\n", "\n", "The color of dots represents the values of the features: red high and blue low" ] }, { "cell_type": "code", "execution_count": 31, "id": "97a692a2", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAHHCAYAAAD9BCF3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACJi0lEQVR4nOzdd3gU5drH8e/sbpJNIY2EJBAgdKQLSGhCRASVIkUFDypFCFUQiQgigoh4lKYoAnIExRcREQRsiCB2qYpIjQQIJQVCOinb5v0jsBKSQAKbbOH+XNeeM7sz88xv1w258zzPzCiqqqoIIYQQQtiQxt4BhBBCCOF6pMAQQgghhM1JgSGEEEIIm5MCQwghhBA2JwWGEEIIIWxOCgwhhBBC2JwUGEIIIYST6NKlC7GxsYVe69evH7t27WL+/Pn83//93w3bmDJlSqm2u1W6cj+CEEIIIcrdpEmT7B2hECkwhBBCCBfw+uuv4+XlxdNPP43BYOD111/n559/Rq/Xc+nSJYYOHcrjjz8OwJ49e/jmm29ISkqiUaNGLFy4EJ3OtiWBFBjCptKzcsq1/R3bt+IVEEZky6blepzyciYpleqhgfaOcVMku31I9opXmtz+lbxse1ClX9HX1A3Fbjp69Gjc3NyszxMSEops8/7775Oens4333yDRqNhwoQJhdbrdDqWL1+Oh4cHDz/8MD/++CP33nvvrb2Ha0iBIZyOzt3D3hFuWm6+wd4Rbppktw/JXvEcPfeSJUuoX7++9Xm/fkWLkx07dvDcc8+h1WoB8PIqXBDdeeed1tfq1q1LUlKSzXNKgSGEEELYnWLT1nJzc/HwKN0fY1qtlvK4LZmcRSKEEEK4mObNm7N9+3YAsrKyiI+Pr/AM0oMhhBBC2J1tezAmTJhATEwM3bp1o3LlyuTn5+Pj42PTY9yIFBhCCCGE3ZWuwPj++++LvLZhQ8Fk0MjISOtrfn5+rFixAq1WS25uLo899hhNmjQB4L///W+h/a99bitSYAghhBAu5p9//mH8+PHodDrc3d35z3/+Q926dSs0gxQYQgghhN3ZdoikcePG1jkY9iKTPIUQQghhc1JgCCGEEMLmZIhECCGEsDvbDpE4AikwhBBCCLtzvQJDhkiEEEIIYXPSgyGEEELYnfRgCCGEEELckPRgCCGEEHYnPRhC2E3GJeh3qAMbt1mwmC32jiOEEDakFPNwblJgCKcQ8KZKxCo38AjgHX1Tms/JY9uiE/aOJYQQogRSYAjnoNOBChjMYLJwNtiPI9+l2zuVEELYiOv1YMgcDOFctJdr4jwTeW7y9RVCuAa1mILC2UsM6cEQzsldi2duvr1TCCGEKIH8CSicgwKo6lXPFZR8s93iCCGEuD4pMIRzuPakEa1KtrfeLlGEEML2nH1ApCgZIhFOQi381KLiblaL31QIIYTdSQ+GcA4WCpXDSq4Rd4PBbnGEEMKWZJKnEPaiUf79aVMKpmNkBFayayQhhBAlkwJDOAcF0CqgUwr+X1UxKipuvk/BoVP2TieEELdIroMhhH1YLGBWIccIigIWC49//ws6wKvdi6VrQ6sUtHGFuw7VTQveHljqVSX3lcdQK1fCc9x76H6PBbPFOvXDUkmP4uWBkpmDarKgGAufwaL6eqHk5IGp+EuYq8G+ZO7+L1UXf4vvZztRvTywhAWguZCJuWE18mMewmPGGtx+PmrdJ2/oPeS/9VSJb8d9/iY8Z62zZjT2akXO6omgqvi0m4r28FkAzHdUQw2shG7/STCZMdcIJv/FhzH2jSzd53ar8gzoX/4UbWwihsFRGHvfVa6H0207gMfSb7FUDyJ31kCo5Fmux7uuzBw8X/oEzdmL5I99ANM9Tcr1cLqfD+Ox6Gssof7kvfIYqr83mn8S0L/wMdrDZ7DUCSVvxqOYW9UpvxBmC/pX16Pdf5KgznfAhF433MXt099wX/sr5sbVyZv+MNjgGjfKhQw8p3+CkpaNoV9b3DbtBk8Pcl8ZCKqK18SVaPefwtwonNyFw7DUqnLLx7zFxHY+vu0pqqrKTDlhM+lZOeXSbsA7Wsj8d86FFpVV67bTM+4rfEm1yTEs/t6o1QLRHjpjk/auZa7ih+Z8RrH/jKg+epTsvMKvAZnH3kYNCyiyvXZfHD73zCjSVu60/ijJ6ej/t/26WVSNQtbO/2JpWK3U+WPjk6hfM7TU21+hn7kW/YIvCo6r05K1679Y6oWVuZ3SUBLT8G3+LEqeEYD8p+4ld+HQm85+qzzHLsfjox8BUD3dyTy4EDXYr0xtlDa7kpqNb+MJKJcKrg9jGNCBnOWjqdQyBu3xJOt2lkAfMo+9DR5uZcpRWh7vfI3nCx9bn2dtm4m5Td0St9f+dQqfTtNRLv8qyn3pEfJjHrrlHN6Pzsdty58AqIpibd/UsSFYVHS/HbNua25SnazfXrM+L81n7l/J65YzXs2iDC3ymkZdadNjVDTpwShH6enpvPXWW+zcuRODwUCbNm2YPHkyAQFFf2FcKy0tjUWLFrFz505yc3Np2LAhEydOpEGDBuzfv5+33nqLuLg4goODeeKJJ+jTpw8AX3zxBUuXLqV37958/fXXpKen07FjR2bMmIG7u3s5v2M4efY8xss3IrNYLGg0GpssQ3ih46iKQr6HG/nY7q9TTfolTAaTzdorIj275L9RrikuoODvmfg//yHPUAMo/Jn47/2H+sU0c2nvcdxTsrjRCbyKRSVx3z+keSil/m+RZzBx9GRCmf/b1TtyxppHMZlJ+OM46TrVZt+Nq5d9jibQ5HJxAZB79CxHTyZgMFmIjU+y6bFKs3xH7Dk8rrz3XAOn95/gUt2QMrWTZzASG590w+29Tl+k2aV/Lz6XH3uOoycTaBN/odB/e01qNscPncJSuVK5vPcaB08X+qlM2htLWohPidv7/3Gc+lf9nZt5MJ74UrzfGy03OZ7IlRJKuap9c1wSqIV/+aknzxf6bpfmM2/TpDa2VNwkT2cnBUY5UVWVmJgYwsLCWLNmDYqiMHv2bObMmcPcuXOvu6/FYuHZZ58lPDycjz/+GI1Gw48//khqaipJSUmMGzeOKVOm0LVrV2JjY5k0aRK+vr506dIFKChOvL29+fDDD8nJyWHYsGFs3ryZhx9+uNzfd63wcupmtABeOsgxgQJ6jUr4uYt4kWmzQxgGdMBcJxTdnPVF1qncWgemChhG3Ifbqh/QZeUVac/4YEvcvv6j0GuqAjW6tQKdtmiDj3XC8vI6NNn5hbZ3f+lRlJx81PtmFW7rmuOZmkcQ0q89IZ6lLzpvthdAO74n6o9HUHLyMd1Vl9CHIgnVl1OxWz0E4z1NcNtxENVdh25CTxrWqmq3HgztM71Qn1yEYjRjvK851bs0//dy96VU6uw1Q63fI1WnRfNMLxrWqoph/IPo539h3czwn7up27JeWd9KqWnGPoDl6z/QpOeQUyeE4EFRBPtd56/9R/wxvb8D3YF4VF9PvMb1sM1/q4m9UJ/+H4pFxVwnFG1cEqqiYJ7QE0UFpv6fdVPj5e/JFfb5vkiBIUrpyJEjHDlyhHfeeQe9vuDvt2HDhjF06FDMZjNabTG/NC47fPgwR44cYfHixXh5Ffxg9u7dG4CVK1fSqFEjevbsCUCzZs3o378/n3/+ubXAqFKlCo8//jgA/v7+tGjRgri4uHJ7rxVCqwF3DXjoQFHIM5qopCbiQVaRa3BB4atmmO+qg7lDQ8yt6+L+6mcoJjPGIfegurmhBvmAtx41LABz8whQFIx926D7ah+K2YLy/UF0ialkfzkN3Z7jkGdAMVnQfLkH3e/HwNMD40N3Yb63GUpmLm7vfI32bCrGLk3Q/nESJT8f873NMT7cHvPdd3Bw8N00+iMec90wFK0GcvJRAythaVwd5XQK7rM/xe3rPzC1rE3ehueLLy4AfL3IPP4ubou/Qff9QSyta2MY84B1OCXz7wXoX/4US2gApofboQZ4o/35COQZsDSpUTAGX05d5Ncyd2hI5v55aM6lYm5aE9zL8Z8dnZZL659DeyAeS4gfarXK5XesUjD1aEXmXwvQnM8o+H6VsbgoE42GSx8/g3b/KSxBvqg1ggDImzEAwyPtURLTIMi3IEc5sjStSdaf89GcPM8xHzfqXq+4APDRk71tBtqDZ7DUDCrzEFJJDE90xtTxDpSMS5ibR6A5eBr07tbhOWO35mgOn8HSsBqWBqUfKhSlJwVGOUlISMBgMFh/6V+hqippaWkEBQWVuG9iYiKBgYHW4uJqycnJhISEFHotNDSU7dtLHnPX6/UYXOWaEUpBlW/Ravi6TRQNN4wv0+6mUkwwtDSohuHKPzjP9fl33/Crflk90Zni7oRieqT9ddtWPT0w/qdT8etqBJH/3phi2y2WlwfG5/pgvCqjta2aVchdMa7Qa5ZaIUW2qyhqaADm0BsPDdqETou5pW27r2+FGl4Zc3gFFToaTbHv3dKoOjSqXjEZALVyJcyVK2GJT7rxxgB6d8ytbT/x9OqJm5amNQuvqxdWbnOBboYrToaUAqOchISE4OnpyY4dO67bW1GcsLAwUlNTycnJKVJkhISE8OuvvxZ6LSEhgdDQiu/+rVjX/PgpCmZN2T5XIYQQFUeug1FOGjVqREREBLNmzSIpKQmTycTp06dZv77o+P61GjZsSO3atXnttddITU0lLy+P7du3s2fPHu6//36OHj3K5s2byc/P56+//mLDhg307du3At6VHV3uubh6mFJjKscJmUIIUaFc7zoYUmCUE61Wy8KFC3F3d2f48OF07tyZCRMmcPbs2Rvuq9PpWLhwIaqq8thjj9G9e3c+++wz/Pz8CAsL4+2332bDhg3cd999zJo1i7FjxxYZinE5SuEreWpUFc/8omdeCCGEM1JRijycnVwHQ9hUuV0HY7G2YILc5Z6Myhm5jNh1mOfXNy2X45UXe53NYAuS3T4ke8Wzx3UwjMqIIq+5qctteoyKJnMwKtjOnTuZMGHCdbf54Ycf8PS049UHHZGiUPViDmmVPPDKNxGSnsdFXx97pxJCCBtx/h6La0mBUcHatm3Lrl277B3D+VhUcj101EsouO7FmcpeuJ8u/rLcQgjhbFxhSORaUmAI56CqpPm4k+7jDqpK5fRcKmVdsncqIYQQJZACQzgJFYxmNCoE5BlocjGToIwse4cSQggbcb0eDDmLRDiFtKdV0IDeYsHDZKb66QSe+qGDvWMJIYRNuOJZJNKDIZxG2lgLO7ZvxTckglYvONfZI0IIcbuRHgwhhBBC2JwUGEIIIYSwORkiEU6l39HucFQhtpqF4Aq6d5YQQpQ3V5hzcS3pwRBOI+BdN9DoQKOl/idu5BvtnUgIIWxF7kUihP1c87MXuszOeYQQQpRIhkiEk7lS1cstdIQQrsMVh0ikwBDOQynxiRBCODnX+zdNhkiE8zLbO4AQQoiSSA+GcB4qoKgUVPoyRCKEcB2uOEQiPRjCeSiAovzbkyjfXiGEcFjyT7RwTlcXGkIIIRyOFBjCOakqXMi0dwohhLAJV7zZWYUXGLNmzWL06NG31Mby5cvp06ePbQIJp/DUJgqmXVyZeqFCJbR2TCSEEOJ6KnyS50svvXTLbYwYMYIRI0bYII1wBCczoOcXOpIuKWgUMF1VRADozGbeW7WeDUMf/XdYRIFJ+/7gUsA3eJjzqUxyoTYNEcHkHlhYYe9BCCFujfP3WFyrVAVGeno6b731Fjt37sRgMNCmTRsmT55Mbm4uvXv3ZvTo0Xz77becO3eO1q1bM2rUKFasWMEff/yBh4cHzzzzDN26dQPglVdewWw2M3PmTADWrVvHmjVrSE5OJigoiG7dujF27FgMBgNvvvkmO3bsICsri+rVqzNkyBC6d+/O//73P3bv3s17770HQFJSEvPmzePPP/9Er9fTtWtXxowZg4eHBwkJCfTu3Ztx48axdetWzpw5Q7169Zg1axbh4eGl+pBmzpzJ+fPn8fPzY+/evbi7uzN06FAefvhhAEwmE6tWreKLL77g4sWL1KtXj+eee46GDRsC0KtXL6Kiojhx4gQHDx6kR48eTJ48+YbHjY2N5a233uLw4cO4u7vTsmVLpk2bRkpKCjExMVy4cAGLxUKtWrV4+umnueuuu0qV19E8/aOOhEsFnWmWq08OufzzNvi3fWhVCuZdXOV0YFXyPXww5fgQdE2B4X7qArnlmFkIIWzJFYZErnXDAkNVVWJiYggLC2PNmjUoisLs2bOZM2cOEydOBODChQu8/fbbuLu7M2TIEGJiYnjuueeYNWsWGzduZM6cOXTp0gWdrvDh9u/fz6JFi1i2bBl16tTh1KlT/PbbbwCsWrWKv//+mxUrVuDr68vBgwe5cOFCkXxms5mJEyfSvHlzNm3aRFZWFtOmTWPRokU899xz1u3OnDnDG2+8QUBAAJMnT2bx4sW89tprpf6gzp07x6BBg5gxYwZ//fUXEyZMoEmTJjRs2JBly5bx66+/snDhQkJDQ/nkk0+YNGkS69evR6/XA3DgwAEmTZpEo0aNMJlMNzxeSkoKI0eOJDo6mnnz5pGRkcHGjRvJy8ujcuXKvP7664SHh6PT6diyZQvPP/8827ZtQ6PR3DBveTp59jxGswUAi8VizXO95bRLoYC+xDY9jSZMmqKjeaFpGSiKgoKl2P1i45NKnaGilvMMRmLjkxwmT1mW8wwmjp5McJg8ZVk2mCwO+X2Q74xjLpfmM2/TpDbi+m5YYBw5coQjR47wzjvvWH9ZDhs2jKFDhzJhwgQAhg4dSkhICADNmjVDp9MRFRUFQOfOnZk/fz4pKSmEhoYWajsvLw+LxUJKSgq1a9emQYMGNGjQAID8/Hxyc3NJT0+nSpUqREZGFpvv0KFDxMfHs3LlSvR6PT4+PowePZpnnnmGmJgY63bR0dHWjFFRUaxbt64snxOtW7emQ4cOAERGRtKqVSt+/PFHGjRowNq1a1mwYAEREREADB48mJUrV3L48GFatmwJwIABA2jWrBlAkUKrOF999RURERE89thjAHh6ejJq1CgAjEYjv/76K7/88gvx8fFkZ2eTn5/PhQsXrO+xpLzlXWDUCq9S5n3e8VF4cJNK3rUXzrrca7GiQ2vWHFqDxmLBcvmHW2e2gEbFPTcHLRauXB3jym4WTzfq1wzF0cTGJzlkrtKQ7PYh2SuePXLflj0YCQkJGAwGunTpUuh1VVVJTU0tsr27uztms7nQcyj4pXittm3bEh0dzZtvvsm5c+eoU6cOw4YNo2vXrgwePJiMjAyeeeYZsrOzad68Oc8++yx169Yt1EZycjIBAQHW4gcgNDSU/Px80tLSin1Per0eg8Fwo7d+XYGBgaSlpZGenk5OTg7jx48vtN5sNhfb41JaiYmJJQ7hvPnmm/zyyy8899xzNG7cmLy8PHr16lXocy8pryO6M1gl4Skjl4zg7QZ5ZsgzFjzeP6jSwA8eUvrjblExXO7IMOm0/B0Wgvp+T/QNQsmoURmS0+CTXyHmIfD0tO+bEkKI29wNC4yQkBA8PT3ZsWMHWm3hWfsJCQm3HGDw4MEMHjyY7Oxs1q1bx4svvki7du3w8fHhhRde4IUXXiA5OZn58+cze/ZsPvjggyL5UlNTycvLsxYZCQkJeHh4EBAQQGJi4i1nLM6ZM2fo2rUr/v7+6PV6li5dSpMmTWzWfmhoKD/++GOx63bt2sWTTz5Jx44dgYIiq7R5HZWigE9BLYqnruCBJ7zYvqCqf7iRB1WW/Lt90KU8jvh64tP/qp4tXx+YPrDiQgshhCjRDU9TbdSoEREREcyaNYukpCRMJhOnT59m/fr1t3zwH374gc8++4wLFy6g1+sJCgpCr9fj4eHBhx9+yE8//URWVhZ+fn74+fnh6+tbpI3GjRsTERHBggULyM7OJjExkSVLltCnTx8UxXZdTsnJyaSmppKfn89nn33GqVOneOCBB1AUhX79+vHGG29w9OhRTCYTycnJbNmyhfPnz9/08bp160ZcXBxr1qwhNzeX1NRUVq9eTUpKCjVr1uSPP/4gLy+P8+fPs3jx4lLndVaKQsE8DFUFVSXDXcfxGpXtHUsIIWzCFa+DccMeDK1Wy8KFC1m6dCnDhw8nLS2NKlWqWOdY3IqQkBDWrFnDkiVLMBgM1KtXjzfffBOdTkeVKlVYunQpZ86csZ5B8eKLL5aYb968efTu3dt6FsnYsWNvOd/VEhISGD58OMnJydSrV4933nmHypULfsE9/fTTrF69mhdffJHExER8fX1p0aIFbdu2venjVa1alXfeeYfFixezbNky3N3dad26NQ899BDPPvss06dPp0uXLlSrVq3Ynonr5XVql4tGo5sObnGYSwghHIfzFxTXUlRVlbtG3cDMmTPRarVMnz7d3lFKxZ5507Nyyq3tgKVuhU9VNRhIe7rcDlcunHXSG0h2e5HsFa80uf0redn0mJlKTJHXfNV5Nj1GRbut76ZqMBi4++67r7vN/PnzbX7cxYsXs2rVqhLX33HHHUXmmohrSF0shHAhrjAkcq3busBwd3dn165dN9xu27ZtNj3u2LFjbT6Ec9ux4fwaIYQQtndbFxildeWqo87C2fIKIcTtTnowhBBCCFEOXK/AkNu1C+ekqvz5H3uHEEIIURIpMITTOPOkEcxmsFhoqRiJcIGzboUQAgpucXDtw9nJEIlwGj5esKHBN/iGRNCqSX17xxFCCJtxxTkY0oMhhBBCCJuTHgwhhBDC7lyvB0MKDOE0Mi8ZGbXnHsxaheBVqfz+RqC9IwkhhE3IEIkQdtTkPR1plfRkeXkQVyOI0fMu2DuSEEKIEkgPhnAaCmDUaQFwM5nZmelu30BCCGEjrtiDIQWGcBpaVaXN6VTcLCpHg7zp88dhoJ29YwkhhCiGFBjCaTQ+n4VfvhmAVgkZ3HnmnJ0TCSGEKIkUGMJpeBnM1mU3i4pJkSESIYRrcMUhEpnkKZxG9fOp1tu0B2Zm4Wax2DmREEKIkkgPhnAaPfbspn3SEbzUDAz4cLKSF9DH3rGEEOKWuWIPhhQYwmlEJh8jRD15+Vkq2qwgu+YRQgjbcb0CQ4ZIhNM4GBFW6LkWcwlbCiGEsDfpwbCz6Oho2rRpw/Dhw+0dxW5yTXAqA+oHQL4ZUvPBTbWwL87Azi3nOXIcvDIuUr9BGyIT/sQv7xJZ7l6kq5VwrzIeQ0RdAtXTUCMI08KnUM5cxNKwGvh5oTlxHlWngE6LWj0IFNf7K0EI4fxc4e6p15ICQ9jVbwkKD32pw6QqeGpVzCoYLAr+2XlM+HIfedVC8AgORKP3YLenG2P7TaX2xbMk6wN5cfMn6I06qhzdXdC5eCwJmkwELv+werqj5BqsxzLfUY2sHbPAy8Meb1UIIW4rMkRiA+np6bz88ss88MAD3HvvvUydOpW0tLQb7rdo0SL++OMP3nvvPSIjI4mKiuK3337j7rvvJjs727pddnY2HTt25K+//gKgdevWLFy4kMGDB9OpUyeGDh3KqVOnrNsnJiby3HPP0bVrV7p3785rr71Gbm6uzd+3LbzwuxaTWtCrkGtWMFgKliNPJqHRakkILrjfiNHNjWy9B0eCg9lWrzl7qoUSXymCfCoVO3KpQKHiAkB75Bxum/aU59sRQoiboqIUeTg76cG4RaqqEhMTQ1hYGGvWrEFRFGbPns2cOXOYO3fudfcdP348Bw8eLDREoqoqgYGBbNmyhYcffhiAL7/8kho1atC8eXPrvhcuXODll1+mSpUqvPXWW7zwwgusXr2a/Px8xowZQ1RUFDNmzCAnJ4cpU6awdOlSJk6cWH4fxGUnz57HaC44fdRisaDRaK67rLMEA55F2sl216E1mwtOS708rFEp34iPsaBtVVXJ1+ko68Soc0YD6fFJpcpWHst5BiOx8UkVflxbLOcZTBw9meAwecqybDBZiLXjf3f5zjhGHlt+5m2a1MaWXKGguJYUGLfoyJEjHDlyhHfeeQe9Xg/AsGHDGDp0KGazGa1WW6b2FEWhb9++bNiwwVpgbNiwgYEDBxba7tFHHyUiIgKA4cOH88ADD5CQkMCRI0ewWCyMHz8eRVHw8fFh0KBBLFq0qEIKjFrhVcq0/doq0HWjSkI23BGgotHAsVSFY1Ur0yg+icZxpzkTGoxnvgE3H09CctNpmvgPx4JrompMeJOMCR1aTIXaVT3dsTQKR/tXPJjN4O6G4YlOVHmyC2VLaFux8UnUrxlqxwQ3T7Lbh2SveM6a29FIgXGLEhISMBgMdOnSpdDrqqqSlpZGUFDZT6Xs3bs3y5Yt4+DBgxiNRs6fP88DDzxQ4vYBAQEApKWlkZCQQGJiIh06dCiU5UrV7Wgqe8KfjxmLWaMFmhV65X/3f8ug33dhUj3xZCepeneMmUsobm8hhHAu0oMhrhESEoKnpyc7duwoc28FUOw+gYGBREVFsWHDBgwGAz169MDTs+gwwhVnz54FoHr16pw7d44aNWrw2WeflTmLo3vw7wMkeYaQrXenRqob/ga5F4kQwjW44hCJY/5Z60QaNWpEREQEs2bNIikpCZPJxOnTp1m/fn2p9g8NDWXPnj1kZmaSlJRkfb1///5s3bqVHTt2WIdKrnb8+HEMBgMXLlxg/vz5dOvWDT8/Pzp27Eh+fj6LFi3i4sWLGAwGjh8/zpdffmmz92wvXzRqStsXR9Np6kgmP3I/WotcB0MIIRyVFBi3SKvVsnDhQtzd3Rk+fDidO3dmwoQJ1l6FGxk6dCi5ubl0796dMWPGWF9v3bo1YWFhNG3alFq1ahXZb8uWLTzwwAMMHDiQ4OBgXnjhBQC8vb1ZsmQJiYmJPP7449xzzz288MILpTqrxdG9G9UJg1tBp9unbZqxrn6HG+whhBDOQS3m4exkiMQGKleuzLRp025q3xo1arBq1aoir5vNZnJzc4vtvQAYN24cLVq0KHZdeHg4r7322k3lcWSVcv497dTdaCLZO9iOaYQQwnZccYhECoxysnPnTiZMmHDdbX744YcS51bs2LEDs9lMVFRUOaRzTu2PncbDZCLT04Mef/yDl1GmdwohhKOSAqOctG3bll27dt30/mvWrKFPnz7odPKf6Iq/IsIYse0P3CwW4oP80FmkwBBCuArpwRAV5P333y9x3d69eyswieM4Fh7M9IH3UDkrlxMhAbz6ybf2jiSEEKIEMslTOI0G57NI9/bkWLUgqmfk8n7rZjfeSQghnIBcKlwIO7rorqHL8fOoikK6u5av3ij7RcyEEMIRucJZI9eSHgzhNPbO9OaQF/zlr2PzDG/c3OTrK4QQjkp6MIRTefuevfiGRKDX17d3FCGEsBlXGBK5lhQYQgghhJ25YoEhfcxCCCGEsDnpwRBOI2B+Jv5qF3SoVPm/0/w2yQ812M/esYQQwgakB0MIu/HU+ZJeyYuUSt4cjqjDyPF/2DuSEELYhCvei0QKDOE0ct3d/n2iKOyu3wyMJvsFEkIIUSIpMIRTqZSXS8szp/DJzSFLp3ONMl8IcduTC20JYUfh6an8+u6rVM9II96/MlFDJoLWx96xhBBCFEN6MITT+M/+nVTPSAOgZvpF+h37C7Jy7ZxKCCFunfRgCGFH8QGVCz1P8KkEPsXf7l4IIZyJKxQU15ICQziNtS0iqZWawj1xR9hWrzHb69wBOq29YwkhhCiGDJHcBpKTk2ndujUJCQn2jnLL/ntvT7pHP8fcqAfQqGZ7xxFCCJuQ01SFsCeTBYyWgv83WOh64giYpMgQQrgCpZiHc5MhEuE03PPNGNz+/cp2O7qfSoHvFtkuf1B7FP9KuL/3HapGA+46lKw86/rcxcMxPRFVEZELXMpDt/MfLDWC8N15FM/fv8DQvTlue+KweLtjiHkI3Gz/o6gkpaE9eAZziwjUIN8b76Cq6DbtRpOYjvGRdmh/OYLmbCrGQZ1QA7xtnk8I4dqkwLCB9PR03nrrLXbu3InBYKBNmzZMnjyZgICAG+7bq1cv2rZty+nTpzl69ChhYWFMnTqV5s2bW9dHRUVx4sQJDh48SI8ePZg8eTIbNmxg9erVXLhwgTp16jBhwgRatGgBgNFoZMmSJXz99dfk5ubSoEGD8nz7FWLf3xkYdYFXvaLwadPODP77tyLbeq7+7ara3wL5hS/G5TP2f+Rv/5vcD54ur7j/ysnHp/sr6A7Eo2oUGlgKpnJ5/N+P1k08/redrNh3QGu7DkVNbAI+XV9Gk34JS7Av2d+/jKVm8HX38Rq4APdv/gRAfWE1itlSsPzaBjL3z7NZNiFEUa44yVOGSG6RqqrExMRgMplYs2YNGzZswGQyMWfOnFK3ce7cOSZOnMi3335Lt27dmDx5Mnl5//7FfeDAAUaOHMn27dsZP34827ZtY+nSpcyYMYOtW7fSv39/xo8fT1JSEgBLlixh165dLFu2jO3btzN48GCbv++K9v77caiawj+AZ70Di922ND+m7l/utUGqG9P+cQLdgXgAFEvx/4RoL2SiOZls0+O6fb4LTfolADQXMtF9te/6O+QZrMUFYC0uAJSsXHTfHbBpPiFEYXKaqijiyJEjHDlyhHfeeQe9Xg/AsGHDGDp0KGazGa32xmc59OzZk4YNGwLw5JNPsmLFCg4ePEjr1q0BGDBgAM2aNQNAp9OxceNG+vfvb32tZ8+ebNq0iS1btjBkyBDWr1/Pa6+9Rs2aNQGoW7euzd93SU6ePY/x8i8ni8WCRqOxybJ/fd+CWU+KAqoKWgW9Keemc+YH+BAbn2TznNcuu+ugmYcOTX7JlzRXFTialws2zBMQ6EW9q44R76cn6wbt3xngjVvapaL5gFO+HuQZTBw9mVBun1V5LhtMFmLjkxwmT1mW8wzGCvmulseys35nSvOZt2lSG3F9UmDcooSEBAwGA126dCn0uqqqpKWlERQUVKb2dDodfn5+pKWllbhNcnIyXbt2LfRaaGgoSUlJpKamcunSJWrUqFGm49pKrfAq5dLunDGwZAmg+Xfyk96SW+JMa1UDiqX4dRYvN/J/eZX6If7lkPQaNUPJ+ew53Ff9iKVGZYzf/IH3qRTUoEoo6ZfAXUfO4mjq2/ofqxGh5Gh06H49ivHepoQN6kTYDXbJ3TELZfi7KGnZ5D/WEfct+1FSs8l7pifVerbhUnwS9WuG2jZnBYmV7HbhrNntkdsVzhq5lhQYtygkJARPT0927NhRqt6KG8nJySElJYXq1atf95iJiYmFXktISODuu+/G19cXrVZLamoq4eHht5zHsRTuMvQz5pNxfgXo3e2Up3RMnRtj6twYgNghnSvsHy7DU/dieOreUm9vqR1C9vcv/7v/5L7lEUsIcZuQORi3qFGjRkRERDBr1iySkpIwmUycPn2a9evXl7qNU6dOkZeXR0ZGBnPnzqVx48bXnZjZp08f1q9fz19//UV+fj6bN28mNjaW+++/H51OR4cOHfjggw/IzMwkOTmZjz/+2BZv1f6uGZL8K6QmuEuNLIRwfjIHQxSh1WpZuHAhS5cuZfjw4aSlpVGlShWioqJK3cauXbvYtGkTeXl5tGnThjfeeANFKfnL1bVrVzIyMnj55ZdJSUmhTp06vP3224SGFvxl/MILL/DKK6/Qs2dPgoODiwzfODWLWvDQKiT5BYLB5PA9GEIIcSOuUFBcSwoMG6hcuTLTpk276f0HDBjAgw8+WOy6L774otjX+/fvT//+/YtdFxQUxFtvvVXotbFjx950PodhUi9P9AQMFgxaDVhKmGghhBDCrqTAKCc7d+5kwoQJ193mhx9+qJgwrkJV4fIMbjSASZEhEiGES5BJnqLU2rZty65du+wdw7VcPWykKAU9GTaYWCuEEPYmQyTC5koaAhHF0FAw/0JRABVUc8G9SaQXQwghHI78yyych6KAtcNCQaMoNr28thBC2Isr9mDIv87CeVgKj1I+tedHKTCEEC5BbtcuhB35p6YX3CNDVQnJyGLR4a/tHUkIIUQJpMAQTuPkdB/W3/ENs6v/zdHJ7uT98Ya9IwkhhE244oW2pMAQTqdtLe2/p6sKIYRwSDLJUwghhLAzV+ixuJYUGEIIIYSducKkzmtJgSGcRsA8E3g9CLEK7DCT9rRcJlwIIRyVDGQL5+Gl//dqnjotAQulwBBCuAZXnOQpPRjCeaiX/0dRCq6JodPimh2LQojbj/MXFNeSHgzhXK70YGgUqS2EEMKBSQ+GcB6uV+ALIQTgmmeRSA+GcB6F7qaKFBxCCOHApAdDOA+FokWGEEK4AFcc8ZUCQzgVJc+IYrJg0etc8ydSCHFbcsUhEikwhNPQZeejycgHQNUoGAM8kG4MIYRwTFJgOJD4+Hg++OADdu/eTWpqKr6+vtSuXZuoqCj69u3LuHHj2L9/P4qi4ObmRkhICJGRkQwePJiQkBBrO9HR0dbtPDw8aNGiBaNHj+aOO+6w47u7dbpcE1eufKFYVKqk5wDe9owkhBA24YodsjLJ00EcOHCAJ598En9/f5YtW8bPP//MJ598wmOPPcZPP/3ExYsXgYLiYdeuXWzZsoXp06dz8eJFBg0axPHjxwu1d2W7L7/8koYNGzJq1CjS0tLs8dZuyad3beP3sE856zcfk8e/9bCqQERGGr6+jxf78Kk/xo6phRCibCwoRR7OTgoMBzF79mz69evHhAkTCA8PR6fTERAQQKdOnVi8eDFhYWGFtvfx8aFFixa8/vrrtGrVilmzZhXbrq+vL2PGjEGj0bBv376KeCs2s7rTDhrEnqfSJRNm1QOtpxZTgCfmSh6Ygr2pmZqKBop96JIy8WnxrD3jCyHEbU2GSBzAmTNnOHHiBAsWLLip/R955BFGjRpFYmJikUIEwGQyYTab8fPzu9WoN3Ty7HmM5oKBDIvFgubybdVvZtk7Ix/t5X5DP1IJyLhEUmW/gmkXZpXqFzKvm0Vz8jxHTybcUgZbL+cZjMTGJzlMnrIs5xlMDvd5lnbZYLIQG5/kMHnkO+PYy6X5zNs0qY0tySRPUS6uDH9cPY/ipZdeYtu2bQCYzWY2btxY4v7BwcEApKSkFCkw0tPTWbx4McHBwTRr1szGyYuqFV7FZm3t8z2GWVHQqioZVCZH61ZwiXAAi0qOh/m6+1tqh9CwVlWb5bGF2Pgk6tcMtXeMmyLZ7UOyVzx75JY5GKJcBAQEAHDu3Dnra7NmzeK3337j888/x2w2o6olf/0uXLgA/FtoACxfvpz27dvTv39/cnNzWbZsGR4eHuX0DsrHoJ/v4ViDYLK8dWiVPNwUpeAS4RoFHXA8pAYWKPZhqupH9p/z7ZheCCFub9KD4QBq1qxJ9erVWbt2Lc8//3yZ91+/fj3NmzcnNPTfinvEiBEMHz7cljHt4tHdXa3Lqe/++3U16TQcqBZCZub/2SOWEELYlAyRiHIzbdo0JkyYAMCAAQMIDw8nOzubnTt3Frt9Tk4OcXFxrF69mr1797J8+fKKjGsXqlL4BzDN07l6ZIQQ4nYiBYaDaN26NR9++CErVqxg1KhRpKenExgYSK1atXj++ecJCgoC4L333mP58uXodDpCQkLo3Lkzq1evLjR/w2WZLKD7d1TP6K7DNUcuhRC3G+nBEOWqbt26zJkzp8T17733XqnaKe12Tkd71Q+geuW5FBhCCOfniv+SySRP4ZwU/j2jRAghhMORHgzhPCyA9vKyqmK9brgQQjg5GSIRwp6u/vlTXO+HUQhx+3LFAkOGSIQQQghhc9KDIZyHWf23F8OsgmpGamQhhCtwxRllUmAI52EygOJufZr2jBQXQgjX4IpDJFJgCKeR9qyWHdu/wTckglZN6ts7jhBCiOuQAkMIIYSwM1ccIpE+ZiGEEELYnBQYwul8fUS+tkII16KiFHk4OxkiEU4j4A0jvm7dsGgUls23sH+omaBA+QoLIZyfKxQU15I/BYXT8NXqyPRyJ1vvxiVvdxovd8VRSyGEcA1SYAinkafT/vtEUXBX5esrhHANlmIe9pKVlcVLL71E586dadasGQCff/45S5cuLVM78i+0cBqq0VJwDxIAk4Ucl5x3LYS4HakapcjDXmbMmEFmZiZvv/229bVmzZrx+eefl6kdGcAWTsOo10GWETQKKGDxdMM1T+4SQgj7+fXXX/n+++/x9vZGuXzfpxo1anD+/PkytSM9GMJpeJrNUMkNvHXgpcMr12DvSEIIYROqUvRhL76+vmRmZhZ67dSpU1SpUqVM7UiBIZxG03Op1g4LT4OZNqfLVk0LIYSjcqQhkkceeYQJEyawa9cuVFVl3759TJs2jYcffrhM7cgQiXAaf1avbL1Ne667jhOB3nZOJIQQrmfEiBG4u7vz8ssvo9FoeOGFF+jfvz/Dhg0rUztSYAinYbz6LBIgKdDXTkmEEMK2HOmkOEVRGDJkCEOGDLmldqTAsDGTycSrr77Kjh07UFWVTz/9lJCQEHvHcg2qau3BANAZ5XbtQghha3v27Clx3V133VXqdlymwIiOjuaPP/5gyZIlhT6A7777jqlTp9KzZ09mzpxZ7jm+/PJL4uLi2LhxIxqNBi8vr1LtFx8fzwcffMDu3btJTU3F19eX2rVrExUVRd++fXF3dyc6Opr9+/ejKApubm6EhIQQGRnJ4MGDCxUxV2/n4eFBixYtGD16NHfccUd5ve0K4WZWue+fs/gYTJz38uCMl4qf7zPFbps3sQf4eKE9fAbDgA6gKHiOXY4mJRM0CqqfF6Z2Dcj5aAJopUgRQtiXqnWcK3nGxMQUee3ixYv4+/vzyy+/lLodlykwAKpVq8by5csLFRgrV64kPDy8wjIcPXqUyMhI/P39S73PgQMHePrpp+nXrx/Lli0jNDSUrKws/v77b9auXUunTp0ICwsDCoqH4cOHk52dzfHjx1mzZg2DBg1i6dKl1K1b19rmle0yMzP5v//7P0aNGsXGjRsJCAiw9VuuMJ3iE2ickgVAzcwcOmbHlXhxXf3Cr6zr3DbuBlVFsVyeIWpRUS5m4/7lPtRxy8ldMrLcswshxPVY7Dip81o//vhjkddWrVrFxYsXy9SOSxUYDzzwAF988QV79+6ldevW/PLLL+j1eu644w7MZjMAU6ZMYe/eveTk5BAQEECvXr0YNWoUAHv37mXs2LGMHz+ejRs3kpycTIsWLZg1a5a1YGjdujX/+9//aNGiRaF9du3axSeffML69euBgv8YnTp1Yu7cuTfMPXv2bPr168eECROsrwUEBNCpUyc6depU7D4+Pj60aNGCFi1a8PzzzzNr1ixWrVpVZDtfX1/GjBnDunXr2LdvH127di3153kzTp49j9FccA06i8WCRqOxybLXb0exKM0KHcvg5lFijqt/VBVzydfEM+4/ydGTCTbLeaPlPIOR2PikCjmWrZfzDKYK/axsuWwwWYiNT3KYPPKdcezl0nzmbZrU5nbSr18/evTowcSJE0u9j0sVGDqdjsGDB7N8+XJat27NihUrGD58ONu3b7duM2TIEKZOnYqfnx8JCQmMHDmShg0bEhUVBYDZbCY9PZ13330XNzc3Ro0axapVqxg/fvwNjz9w4ECOHj2KVqtl+vTppcp85swZTpw4wYIFC27qPUPBKUWjRo0iMTHR2tNxNZPJhNlsxs/P76aPUVq1wst2nnTpG67K7vMqNTNzCc7JJy7Ah3h9jRI3VxXA3Q0l34i5bhjk5KFNSCu8DcCzvWlYq2r5ZC5GbHwS9WuGVtjxbEmy24dkr3j2yO1IkzyLc+zYMfLz88u0j0sVGAB9+vRhxYoVLFu2DJPJRPv27QsVGOnp6Xz44YccOnSIzMxMcnJyOH78uLXA0Gq1jB071rp9u3btiIuLK7e8V7qcrp5D8dJLL7Ft2zagoODZuHFjsYXDFcHBwQCkpKQU2S49PZ3FixcTHBxsvaa8s7rk6c4HLeugtVgwazRgNGO+vM6sAa2loGgwP9yWvHlDUDJz0JxIxnRXXdBqcP/oR3Tf/YW5RmUIC8TUpSnmVnXs+ZaEEALArte9uFbnzp2tV/AEMBgMZGZm8vzzz5epHZcrMNzd3XniiSdYuHBhkV6BQ4cO8cwzzxAdHc24ceMICgpi4sSJ1uGT4uj1eoxGY7nlvTIn4ty5c0RERAAwa9YsZs2aRXJyMj169EBVr3857AsXLgD/FhoAy5cvZ8WKFXh6etKuXTuWLVuGh0fJQwrOIDgrgw8/fZc6F5NZ1OF+FrfuSlbm/5W4vRrogyXi3x4Vw8huGEZ2q4ioQgjhtK4d2ndzc6NmzZoEBgaWqR2XKzAA+vfvT25ubpH5C3v27OGOO+4o88VCrqbT6TAYbHeJ6po1a1K9enXWrl1b5urwivXr19O8eXNCQ//t0hsxYgTDhw+3VUyH8No3H/PAsf0ALNr8AduqNwSq2TWTEELYgj0vDX6tNm3a2KQdlyww9Hp9sb9cIyIi+Oijjzh79izBwcF88803HDp0iObNm5e67bp167Jt2zZatmzJqVOnWL169S3nnTZtmnWC54ABAwgPDyc7O5udO3eWuE9OTg5xcXGsXr2avXv3snz58lvO4eh88nJoM+5V4gOCGf/L14RdumTvSEIIYROOMETy3HPPFRoaKc4bb7xR6vZcssAoSefOndm3bx+DBg3Czc2Ne+65p8ynsE6dOpVXXnmFe+65h7p169KqVSt+++23W8rVunVrPvzwQ1asWMGoUaNIT08nMDCQWrVq8fzzzxMUFGTd9r333mP58uXodDpCQkLo3Lkzq1evvi0u5jV44NPkXx7mefGBx3DPLtuEIyGEECWrWbOmTdtT1BsN8AtRBulZOeXWdsASt4JbtV+mz8kncaL9q/6ycNZZ9SDZ7UWyV7zS5PavVLqLKJbW+uA1RV7rf+Exmx6jot1WPRgVbefOnYWubVGcH374AU9PzwpK5NzcDSYMHrqCy4WrKkEX04CyTToSQghxY3///TdxcXGYTKZCr5fljqpSYJSjtm3bsmvXLnvHcBm1EpI5GRaCSadBn5tPznUutCWEEM7EEeZgXLF8+XJWr17N+fPnadWqFVBwFmaNGjWkwBCu6XiVYMyqAkaVfEVLjo9tuyiFEMJeHOkskjVr1rBmzRp69+7NypUr0el0bNiwgT///LNM7Tj4tcOE+JdZq4BWAS2YPbRgKL/rkwghxO3q4sWLhIWFERgYyPnz5wHo1asXW7duLVM7UmAIp9FPnwFYAAWtwUTaVHd7RxJCCJtQFaXIw14qVapEamoqLVu2tN7j6siRI9b7sJSWDJEIp/H+KD8e3/4tviERtGpS395xhBDCZiwONEQycOBAMjIyGDZsGE888QSff/45eXl5TJs2rUztSIEhhBBCCKtx48ZZl7///nuOHz9O1apVC12TqTRkiEQIIYSwM1WjFHnYS79+/Vi9ejUZGRl4eXnRrFmzMhcXIAWGcDL9dt3NfV/Uoseb5XdBLyGEuJ0NHz6cn3/+mXvuuYdnnnmGn3766YY33SyOFBjCaQS8YUan9UDR6diX50HAzAx7RxJCCJtQlaIPe3nwwQdZunQp27Zt46677uKdd94hKiqKhQsXlqkdKTCE03C3gMldh0WnJd/DDW83vb0jCSGETTjSWSRXBAYG8sADD9CzZ0+0Wi1r164t0/4yyVM4jWvHJL0NJkCu5imEELZkMBjYvn07mzZtYufOnbRt25bJkyfTpUuXMrUjBYZwGqpWwT3fhM5iwaDVYNFKB5wQwjU40mmq7du3JywsjD59+jB79uybmuAJUmAIJ6IDArLyADBrFNIryddXCOEaHGFI5IqVK1fStGnTW25H/gQUTsMj99+7+mktKnqj2Y5phBDCNdmiuADpwRBOxNdk4kqJoQLasp81JYQQDsmRbnZmK1JgCKdROycPfZ6JVA83amflsCfU396RhBDCJiwONERiKzJEUs6WLVvGmDFj7B3DJcQFeIPOTCUlB4ObSkIlOU1VCCEc1W1TYERHR9OmTRsiIyPp1KkT48eP58iRI/aOVUhCQgKtW7cmOTm50OuRkZF8+eWXdkrlOAxaA3vCgjjiV5kfalQh8FKmvSMJIYRNONKFtgBycnL4/fff+eKLLwBITEzk4sWLZWrjthoiiY6OZvjw4WRmZvJ///d/jBo1io0bNxIQEGDvaNe1a9cue0ewL4MJz/ZT8Oj9MucDPcETPIwmup76Cz/fN//dzk2LWrkS5sbVyVk8Av3rG3Fb/ROKyYylflWyts0AXy+7vQ0hhHAGe/bsYfz48QQGBhIfH0+vXr04cOAAX3zxBe+8806p27ltejCu5uvry5gxY9BoNOzZs4f333+fhx56iM6dOzNmzBhOnDhh3TY6OpopU6bwzDPP0KVLF/r27csPP/xQaP3//ve/Qu23bt2a/fv3F3vsKVOm0LVrV9q3b0+PHj1YunSpdd3QoUMB6N27N5GRkcybNw8o6MHYu3evdbsNGzbQv39/OnXqxNChQwsda+bMmYwfP54ZM2bQvXt37rvvPj744IOb/KQcg/v724m7oKCz/DurM99Nh6dRgwL/PoxmNEnpuG3/G+/H38Jj5fdoDCYUi4r26Dm8xq+w11sQQojrcqQreb766qvMmDGDr776Co2moExo1aoVf/zxR5naua16MK5mMpkwm80kJCTw1VdfsXDhQsLCwlizZg1jx45l/fr1eHkV/LV79uxZYmJiaNiwIdu3b2fatGls2rTppi4+MmTIEKZOnYqfnx8JCQmMHDmShg0bEhUVxcqVK+nduzebN28mJCSk2P23bdvG0qVLmTdvHvXr12fbtm2MHz+eTz/9lNDQUADi4uKYNGkSU6ZM4a+//uLpp5+mU6dO1K5d++Y/sFI6efY8RrMFAIvFYv1y3spy2Kkk8nU6IlIucjKooLfJNzeftifjSsxhTM0q8uXOSbhIbHySTbOVdTnPYLR7hptdzjOYOHoywWHylGXZYLIQG5/kMHnkO+PYy6X5zNs0se2/p450HYzTp09br9qpXM5VqVIljEZjmdq5LQuM9PR0Fi9eTHBwMJs3b2bIkCHWX75Dhw5lw4YN/Pzzz3Tv3h2AqKgoWrRoAUCPHj14//33+e233+jdu/dNHfvDDz/k0KFDZGZmkpOTw/Hjx4mKiirV/hs3bqR///40a9YMgJ49e7Jp0ya2bNnCkCFDAGjbtq31y9G2bVv8/f05ceJEhRQYtcKr2LxNZVIfvJaMxT89jyG7dnG+kh89D+3hx+qNGH2gYJsrfRsKYPH3xrxgKKbnV6E7lliw3l2H5s2nqF8z1Ob5yiI2PsnuGW6WZLcPyV7xnDW3rdSvX5/ff/+dzp07W1/7/vvvqV+/fpnaua0KjOXLl7NixQo8PT1p164dy5Yt46GHHrL+5Q8F1VpISAhJSUklthMYGEhaWlqZj3/o0CGeeeYZoqOjGTduHEFBQUycOBGzufQXjEpOTqZr166FXgsNDb1uXr1ej8FgKHNeR6FW8UObtoqNb2rp9fc/1D2TwcdN7mZPeBWya3ZD7dgIyx3VUH08UXRaVB89eLiRvet1lOR0lPRLWOqEgrubvd+KEEIUy96TOq82ZcoURo4cyT333IPJZOLFF1/ku+++49133y1TO7dVgTFixAiGDx9e6LWQkBASEhKsz1VVJSkpqVDRcTWLxcK5c+eoXr06AG5ubqXuNtqzZw933HEHw4YNK3b9la43VS35ClIhISEkJiYWei0hIYG77767VBmcllaDarKwuWk90ChgtIBqwfTfJwttVuiT02hQwwJRwwIrNKoQQpTVtTdztKcWLVqwefNmNm/ezKOPPkpISAifffaZ9fdead2Wkzyv1qdPH1atWkVcXBy5ubm8//77WCwWOnbsaN3m3LlzZGdnk5OTw5IlS3B3d6d9+/YA1K1bl19++YVLly5x/vx5Fi9eXOKxIiIiOH36NGfPniU/P5+NGzdy6NAh6/qgoCDc3d355ZdfyMnJISUlpdi869ev56+//iI/P5/NmzcTGxvL/fffb8NPxUHpNOCuBTcteGgLxkOEEELY1FNPPYW/vz8jRoxgxowZjBo1qszFBdxmPRjFGTRoEEajkWeffZb09HQaN27M4sWL8fb2tm5z9OhRBgwYQGZmJk2bNmXRokXo9QUXeRoyZAgnTpzg/vvvp0qVKvTr16/EY3Xu3Jl9+/YxaNAg3NzcuOeeewgPD7eu1+l0PPfccyxdupQFCxYwdOhQRowYUaiNrl27kpGRwcsvv0xKSgp16tTh7bffLrHHxaVoFbgyEUqrAZ1UGEII1+BIkzyPHTt23Z700lJUW7Tiwq5coOvaoRVRvPSsnHJrO2C+Ah5X1cS5BtKec5wfytJw5sljkt0+JHvFK01u/0q2vabO0sabi7w26lDZTySwhdmzZ9OkSRP69OlzS+3c9j0YwomYLk+G1SqQZ0KrARknEUII29q7dy+ff/4569atK7Ju9erVpW5HCgzhNLQeWsyay8Mkeh3+OXmAu71jCSHErXOgIZLBgwfbpB0pMG7gvffes3cEcZnFTcvlbgtwU8k0y2mnQghha3379rVJO1JgCKdR+DQuBaNOwzUnpgohhFNypNNUN27cWOK6sszLkAJDOA+DueD0VBRAhaxLgNy8TAjh/BzpLJJPP/20yGuxsbFUq1ZNCgzhmtImWAiYb0Fx06Dm5JP2ohQXQghhax9//HGR1zZt2lTmm53d9hfaEs5lQ4utfNflKGlTZP6FEMJ1qIqmyMORdOvWjW3btpVpH+nBEEIIIezMkeZgWCyWQs8NBgPbt29Hq9WWqR0pMIQQQghh1ahRI+tt2q/w9fVl5syZZWpHCgzhVBavrY+7Rke8WxK/vu18VwgUQojiONIkz+3btxd67ubmRnBwcJGi40Yca5BHiOvoP+Yc3p4+VHLzINTDg45jTts7khBC2IZSzMNO3nzzTapVq2Z9VKlShYsXL/Lqq6+WqR0pMITTyPathN5ScN2LoHwTOl8/OycSQgjX88033xR5zdPTk7Vr15apHRkiEU4j95rnqe7y9RVCuAZHGCL57LPPAFBV1bp85fmuXbuoWbNmmdqTf6GF00hVVZLcdPiYLZzz0OFxKQ/wtncsIYRwCZs2bQLAbDZblwG0Wi1hYWG8+eabZWpPCgzhNGrl5HPex5vzl5+HZ2bZNY8QQtiKI5ym+tFHHwGwePFixo4de8vtSYEhnEam3o04Hw9UFHSogK+9IwkhhE04whDJFWPHjkVVVRITEzGbzYXWVa9evdTtSIEhnMZRv0oYdQVfWZOqkuwuV/MUQghb+/HHH3n22WfJyclBVQsm1l85RfXIkSOlbkcKDOE0zIoC6r93T811k6+vEMI1OFIPxvz581myZAmjRo1i7969aDQa5s6di69v2XqN5TRV4TSUq2/NroLeaLJfGCGEsCFVUYo87OXMmTO0adMGX19f0tPTARg5cmSZT1OVAqMUEhMTiYyMZN++ffaOwujRo5k1a5b1eevWrdm/f7/9AlWgponJ/z5RoHp6GmlpBvsFEkIIF+Th4cGlS5do3Lix9aqeRqORtLS0MrUjfcylEBYWxq5du+wdA4AlS5bYO4JdfFtjI33DAvirZjUsWg1+WbkM3vUnrz/XDMVby2tvVbV3RCGEuGmONETSrFkzzpw5Q//+/Zk0aRI//fQTsbGx9OrVq0ztSIFxlfT0dN566y127tyJwWCgTZs2TJ48GYPBQI8ePdi8eTNVq5buF9nevXt59913iYuLw8fHh8jISF566SX27t3L7NmzSUlJQavV0qBBA2JiYqhfvz4A0dHRBAYGkpeXx4EDB/Dz82PChAlERUUBMGbMGJo3b87IkSMZMmQIUNB1BdChQwcWLFjA/Pnz2bp1K1lZWVSqVIl77rmHSZMm4ebmnJMiVYvKhaqVOVK9Mha3grv5Zfh5ERcQTKX0RLIJ4+ypfMIjPOycVAghbo4jFRjvvfceAA0bNmTFihXs3buXnj170q1btzK1IwXGZaqqEhMTQ1hYGGvWrEFRFGbPns2cOXOIiYkpU1v//PMPEyZMYMaMGXTq1Ink5GTr2FVERASLFi2iatWqqKrKRx99xMyZM/n444+t+589e5aYmBgaNmzI9u3bmTZtGps2bSIoKKjQcT744ANat27NsmXLaNGihfX1hx56iKFDhxIQEEBaWhrPPPMM69at4z//+c/Nf0CldPLseYzmglv9WiwWNBrNLS+bzWa0ZgsWN7XQsfK8tXi6uaMCZy9cIEfR2fS45bGcZzASG5/kMHnKspxnMHH0ZILD5CnLssFkITY+yWHyyHfGsZdL85m3aVIbV3fmzBksFgsjRowgNzcXo9GIu7t7qfeXAuOyI0eOcOTIEd555x30ej0Aw4YNY+jQoTz77LNlamv9+vV07tzZWu3VrFmTyZMnA6DX6/nss8/YuXMnCQkJXLp0CZOp8GTFqKgoa8HQo0cP3n//fX777Td69+5dquMbDAYWLVrEgQMHSE9P59KlS9SrV69M7+Fm1QqvUi7tnk34jccvneLXujU5G+hHVGwcVXIvke5fhUpV3Wl7V0i5HNfWYuOTqF/TOe8CK9ntQ7JXPHvkdqQejCt/JCcmJmIymfj777/55ptv+P3335k7d26p25EC47KEhAQMBgNdunQp9LqqqmW+RW1CQgINGzYsdt306dM5f/48kyZNok6dOsTFxREdHX3d9gIDA0s9uSYpKYno6Gj69u3LwoULCQkJYe7cuUUuluJs7jv3CJ2nXKDBxfOEZmeQ7aNnWftITk6TYREhhLCll156iUcffZTBgwfTvHlzANq1ayeXCr9ZISEheHp6smPHDrRabaF1ycnJJexVvLCwMM6ePVvsut27dzNv3jxatmwJYO1uK4nFYuHcuXMlXj1No9FYL4QCcODAAby9vZk0aVKZMjuDg1VDsVj+/atCb5HTVIUQrsERLhV+xbFjx/jwww9RFMX6B3blypXJzs4uUztymupljRo1IiIiglmzZpGUlITJZOL06dOsX7++zG316tWLH374ga1bt5Kfn09SUhJLly4FCoZLdu/ebW3//fffL7L/uXPnyM7OJicnhyVLluDu7k779u2LPVZYWBi//fYbOTk5nD9/nho1apCRkcHhw4cxmUzs2LGDX375pczvwRF55Juuee7cvTJCCHGFI10Ho0aNGhw6dKjQa3v37qVWrVplakcKjMu0Wi0LFy7E3d2d4cOH07lzZyZMmFBiT8T1NGnShDfeeIPVq1dz3333MWzYMC5cuAAUdD39/vvvdOrUiRdeeIE6deoU2f/o0aMMGDCA7t27c+jQIRYtWmSdF3KtSZMmsWXLFrp06cKyZcto2LAhY8aM4emnn6Zr165s3bqVunXrlvk9OKLK+YWveVHJINfAEEIIW3vmmWcYO3Ysb7/9NmazmSVLlhATE1PmG6Ap6tX968LuoqOjadOmDcOHD7d3lJuSnpVTbm3XnmsmzdsDVECBoPRL/POCc83BcNZJbyDZ7UWyV7zS5Pav5GXTY/73nqI9zVN2dLTpMcri0KFDrFu3joSEBEJCQujXrx933nlnmdqQORhl9OKLL/Ldd9+VuL5Lly689tprFZjo9pGhUeCqbkOvnDzAuQoMIYQojiOcRfLss8+yYMECABo3bkydOnVK7D0vDSkwymj27NnMnj3b3jFuTx5uXH07krPBfvbLIoQQLmbr1q2FnkdGRvLXX3/ddHtSYDiYK1dQE0XpTRZy3P+dNuRjNAPakncQQggn4Qg9GNfOmLjVGRQyyVM4jYYX0q23a3czW6ieXn7zPYQQ4nZz7TWfynoNqGtJD4ZwGufddDx6KJ58Nx35GoUtGoBK9o4lhBC3zBF6MCwWCzt37rT2XFz7HAouuFVaUmAIp/H3TG9qvWjE5O0NaRdJe8P5ZqcLIURxHKHACA0N5YUXXrA+Dw4OLvRcURTr7dtLQwoM4VRW3LMb35AIWjWpb+8oQgjhUr7//nubticFhhBCCGFnqv07MGxOCgwhhBDCzhxhiMTWpMAQTiM9PYeHd3VBRUGzPo+UGTd/ARghhBDlS05TFU6j1jvuaMygmFU0Wh1VXrpk70hCCGETjnSzM1uRHgzhNNxVFYNGA4qCRVXRucnXVwjhGiwuUFBcS/6FFk7DqNWA5nKnmwqKXMVTCCEclhQYwmmoigI6paDIMFkwWsz2jiSEEDah4no9GDIHQzgNrQ5w14JGAb0Wr1u8Tr4QQojyIz0YwmmoGg3kXu61UMAdKTCEEK7BFSZ1XksKDOE0tEYLFuXfORgm+8YRQgibccUCQ4ZIhNNwN5jAXQOeWtCCp0HmYAghhKOSAsMGvv76a3r16mXvGC4vX68DT13BPAxvN7Ld5CwSIYRrcMXrYEiB4UQSExOJjIxk3759AHzxxRf06dPHvqEqksdVX1dFwU0x2C+LEELYkKoUfTg7KTCcSFhYGLt27aJVq1b2jlLhdv+SQcNzKWjNFgCCMy7ROCmdFN+37JxMCCFEcZx2kmevXr1o27Ytp0+f5ujRo4SFhTF16lSaN29OUlIS8+bN488//0Sv19O1a1fGjBmDh4cHCQkJ9O7dmxEjRrBjxw4SExNp2rQpM2fOJCgoqFTHTklJ4Y033mD37t14eHgQEhJSaH16ejpvvfUWO3fuxGAw0KZNGyZPnkxAQID1+OPGjWPr1q2cOXOGevXqMWvWLMLDwwHYtm0b77//PqdPn8bf3582bdowY8YMkpOT6dGjB5s3byY3N5dXXnkFi8VCZGQkAHPmzGH+/PmMHDmShx56yJrnxRdfxNPTk2nTptno0694X3+YzIQDJzhdOZBkXy/qJaeiNRlxw2LvaEIIccvkSp4O5ty5c0ycOJGIiAg+/vhjJk+ezMaNG5k4cSLNmzdn06ZNZGVlMW3aNBYtWsRzzz1n3Tc7O5s333wTb29vZsyYwZw5c1iwYMENj6mqKpMnTyY8PJyNGzei1+tZuXIlX3/9tXV9TEwMYWFhrFmzBkVRmD17NnPmzGHu3LnWds6cOcMbb7xBQEAAkydPZvHixbz22mskJiYybdo03nrrLe68804SExP55ptviuSoU6cO06dP5/3332fjxo3W148fP86GDRusBUZ6ejrff/89K1euvNmPuUxOnj2P8XIvg8ViQXP5ypu3uuzppwEFQjMvEZp5+R4kqhEVhdj4JJseqzyX8wxGYuOTHCZPWZbzDCaOnkxwmDxlWTaYLE71PZHvjON/5m2a1MaWXGHOxbWcusDo2bMnDRs2BODJJ59kxYoVfPLJJ8THx7Ny5Ur0ej0+Pj6MHj2aZ555hpiYGOu+jz/+uLXnYfDgwURHR2MymdDprv+RHD16lMOHD/P222/j7e0NQM2aNa3rjxw5wpEjR3jnnXfQ6wvu9jls2DCGDh2K2fzvWQ/R0dHW40dFRbFu3ToADAYDZrOZCxcuYDQaiYiIYPTo0aX+TPr27cuKFSuIjY2lfv36bN68mYYNG9KgQYNSt3EraoVXKZd267+h8syALNompIGioDWbiPPTo4xoQv2aoeVyzPIQG5/kVHmvJtntQ7JXPGfN7WicusC4mk6nw8/Pj/DwcAICAqy/3AFCQ0PJz88nLS2t2H0rV66M2WwmMzOTwMDA6x7n7NmzVK5c2VpcXCshIQGDwUCXLl0Kva6qaonH1+v1GAwFExZr1qzJSy+9xMcff8zs2bMJDw9n4MCBPPLII9fNdUWVKlXo2LEjGzZs4Pnnn+fzzz9nxIgRpdrXkWk0Clvq1mF31Vzqp2XwS9UQaly6xAvzq9o7mhBC3DLpwXBgOTk5pKSkEBwcTGpqKnl5edYiIyEhAQ8PDwICAkhMTCyy7+nTp/H29r5hcQEQEBBARkZGib0dISEheHp6smPHDrTaoqdRJiQk3PAYvXv3pnfv3uTl5bFt2zZmzpzJXXfdhaenZ6HtNBoNajGXy+7fvz9Tp06lbdu2ZGVl0bVr1xse0xkobm6EuFm4VKUKdVWF8yUUeUIIIezPqc8iOXXqFHl5eWRkZDB37lwaN25M06ZNiYiIYMGCBWRnZ5OYmMiSJUvo06cPylUV4j///IPJZOLMmTO8++67pe4haNKkCd7e3qxatYq8vDz++ecf6/wLgEaNGhEREcGsWbNISkrCZDJx+vRp1q9fX6r2Dxw4wMqVK0lISMDNzY2QkBC0Wm2xPSZhYWEkJSVx9OhRsrKyyMrKAqBdu3b4+/vzyiuv8NBDD+Hu7l6qYzu6MLPZWhFXMlvwdMGKXwhxe7IoSpGHs3PqAmPXrl089NBD9O7dm+zsbN544w20Wi0LFy4kNTWV3r1789RTT9GsWTPGjx9faN+PPvqIe++9l+HDh3PXXXcxcuTIUh1Tr9czb948tm3bRrdu3XjttdcKnUVy5fju7u4MHz6czp07M2HCBM6ePVuq9gMDA9m/fz9DhgyhU6dOLFy4kNdff53g4OAi27Zs2ZLevXszcuRIevbsyaFDhwBQFIW+ffuSlZVF//79S3VcZ5DlriPdQ8c5Hw9ytRouerpG4SSEEK54HQxFLa6P3Qn06tWL0aNH8+CDD5ZpvyuniX711VdFTi91JYsXL+aff/7hzTffrNDjpmfllFvbgQtVVJ0OFAWNRcU3LZuTMzxvvKMDcebJY5LdPiR7xStNbv9KXjY95qR+fxd5bf6GpjY9RkVzmTkYtrBz504mTJhw3W1++OGHInMhHE1+fj6ff/45M2fOtHcUm1ItClzuNrRoFHKKmeMihBDOSMUFuiyuIQXGVdq2bcuuXbvsHeOWffPNN3h7e9O+fXt7R7EptzwjRo/LX1mLStWMS4AMkwghnJ8rzLm4ltMWGF988cVN7Ve1alX27t1r4zSOpU+fPi55j5Ja6dnE6rQFvRgqBBnkhu1CCOGonLbAELefND8fcHezPo8P9LFjGiGEsB1XvA6GU59FIm4vObk5eJrMaCwqfnn5PN30kr0jCSGETcjt2oWwo7Ov+vFyle+ol36OU1N1PN2vdDenE0IIUfFkiEQ4lbrhKotbZQFh9o4ihBA2Y3H+DosipAdDCCGEEDYnPRhCCCGEnbnCnItrSYEhnEa1qecwhHTDdESL11e5nHteroEhhHANFhe80JYMkQinkRcWjkmnAxRyvL2o8UquvSMJIYQogfRgCKdh0Vy+NLgCqJDl61WwIIQQTs4Vh0ikB0M4DQ+jEXQK6DQF/2+x2DuSEELYhEUp+nB2UmAIp1H3fLr1ZmcoCg0TU+2aRwghRMlkiEQ4jUKDIaqKRecCJb4QQiA3OxPCro4EB4LJAhoFjBZiQ4IAGSYRQjg/mYMhhB2pbpqC+RcaBTy06ORuqkII4bCkB0M4DTdUjFc91ylyBokQwjW4wqTOa91WBcbrr7/OunXrGDduHEOGDLmltpYvX85XX33Fxo0bbZItPj6eDz74gN27d5Oamoqvry+1a9cmKiqKvn374u7uTnR0NPv370dRFNzc3AgJCSEyMpLBgwcTEhJibevq7Tw8PGjRogWjR4/mjjvusElWewnINXBeoymYjKGoVL2UB3jbO5YQQohi3DZDJPn5+Xz77bcMGDCAzZs333J7I0aMsFlxceDAAZ588kn8/f1ZtmwZP//8M5988gmPPfYYP/30ExcvXrRuGx0dza5du9iyZQvTp0/n4sWLDBo0iOPHjxdq88p2X375JQ0bNmTUqFGkpaXZJK+9ZBsthGXkUj8lC98sA/kms70jCSGETagoRR7O7rYpMHbs2EH16tV5+umnSU1NZf/+/dZ1p0+fZuzYsXTq1Inu3bvTv39/oqOjretbt27N0qVLeeqpp+jQoQP/93//x//+979C26SlpfHyyy/zwAMPEBUVxahRozh27Fipss2ePZt+/foxYcIEwsPD0el0BAQE0KlTJxYvXkxYWNE7h/r4+NCiRQtef/11WrVqxaxZs4pt29fXlzFjxqDRaNi3b18pPy3HVCv3Es1SsqmVmUfHxFQsmFE++N7esYQQ4pZZFKXIw9ndNgXG5s2b6devH3q9ngcffJBNmzYBkJeXx9NPP039+vX5+uuvWbt2LY0aNSqy/+HDh5kyZQo///wzDz/8cKF1FouFZ599FpPJxMcff8ymTZt48MEHSU298XUazpw5w4kTJ+jfv/9Nv7dHHnmEw4cPk5iYWOx6k8mE2WzGz8/vpo9hd78dJvLcaetTs1ZH65REfF5db8dQQgghSnJbzMFISkri6NGjLFiwAIB+/foxbNgwJk+ezO+//05+fj7jxo1Dqy24FHXNmjVJTk4u1MawYcOoV68eAHq9vtC6w4cPc+TIERYvXoyXlxcAvXv3LlW2K8MfV8+heOmll9i2bRsAZrOZjRs3FtuLcUVwcDAAKSkpRbZLT09n8eLFBAcH06xZs1JluhUnz57HaC44ddRisaDRaGyzXC0QD2NcwfQLwKSo1ExL5Fy/NiTFJ9n2WOW4nGcwEhuf5DB5yrKcZzBx9GSCw+Qpy7LBZCHWib4n8p1x/M+8TZPa2JIr9Fhc67YoML744gsuXbpEjx49rK/l5OTw3XffkZaWRnh4uLW4uBmJiYkEBgZai4uyCAgIAODcuXNEREQAMGvWLGbNmkVycjI9evRAVa9/tsSFCxeAfwsNKJiEumLFCjw9PWnXrh3Lli3Dw8OjzPnKqlZ4lXJre+2d/pi1enzyTaR4exDv3YTXZ92Lb7kd0fZi45OoXzPU3jFuimS3D8le8eyRW84icUKqqvLll1/y+uuvFzqL4ptvvmHz5s306tWL9PT0WzpGWFgYqamp5OTklLnIqFmzJtWrV2ft2rU8//zzN3X89evX07x5c0JD//2BGDFiBMOHD7+p9hxVuqc3Fq2WDM+C27QfD6kKyERPIYRwRC4/B2Pv3r3k5ubSqVMnQkJCrI8ePXpw4MABwsPDSUhI4Ntvv8VgMHD06FF+/fXXMh2jYcOG1K5dm9dee43U1FTy8vLYvn07e/bsKdX+06ZNY/Pmzbz++uucOnUKk8lEeno6O3fuLHGfnJwc/v77b6ZMmcKePXt48cUXy5TZGVlUBa705qgqyFkkQggXYUEp8nB2Lt+DsXnzZjp37mwdN7siODiYJk2a8PvvvzNnzhwWLVrEzJkzadSoEUFBQeTk5JT6GDqdjoULF/L222/z2GOPkZeXR6NGjZg4cWKp9m/dujUffvghK1asYNSoUaSnpxMYGEitWrV4/vnnCQoKsm773nvvsXz5cnQ6HSEhIXTu3JnVq1cXmsPhyiLOJxOWlcrBkBoYNDpugxpZCCGckqLeaID/NrRgwQJycnJui14BW0vPKn1hVlZ9Jx6l64lDHK1Sjc4nDjG1y6P8M61SuR2vPDjrmDRIdnuR7BWvNLn9K5V9zt31DBgSX+S1tR/UtOkxKprL92CUxq+//krNmjUJDQ3l6NGjfPvtt8ycOfOW2925cycTJky47jY//PADnp6et3ys20GVnExefOAxANY2b0/Xw/uB8j8zRgghyptM8nRRP/zwA1u3bsVoNFKtWjVGjhxJu3btbrndtm3bsmvXLhskFADHqlSzLht1OhIqBdoxjRBCiOuRAoOCSZbTpk2zdwxxA6d8Q9CazZi1Wrzy80j1cOILhwkhxFVc8ToYMkNOOA3VAmZFAxaVHDcPcMEfSCHE7ckVzyKRAkM4DYt6+X9UwKySo8jXVwghHJX8Cy2chufZRLR5RtxyDbjlGzg+07azuIUQwl7MStGHs5M5GMJpxL5TnR3bt+IbEkGrJvXtHUcIIWxG5mAIIYQQQpSC9GAIIYQQduaK18GQHgwhhBBC2Jz0YAin0Tn6FGnVOqGxgNvabPa84mPvSEIIYROucFrqtaQHQziN1PBQtPlmDCYLqkkhKibF3pGEEMImzIpS5OHspAdDOI1MVSFTpwVFQVFVqrh72zuSEEKIEkiBIZxGlgXr1TtVRcFoNts3kBBC2IgrTvKUAkM4DXdU8q+MU6oq3maLfQMJIYSNmGUOhhD2E6oFNJd/CD10VFakwBBCCEclPRjCaQTkGwg1GAnMyyPZ24t8i2rvSEIIYROucGnwa0kPhnAa+pxcqqfnoFi0tDx7gRytfH2FEK7BoihFHs5O/oV2AWPGjGHZsmX2jlHu6qVmEahCjXwDRi8vWiUk2TuSEEKIEkiBUc4SExOJjIxk37599o7i9LzQUD0xmdonz1LtYhrVcvLsHUkIIWxCroMhyiwsLIxdu3bZO4bzM5qonZCMb9YlAHwu5ZBSSW7XLoQQjkp6MGwkPT2dl19+mQceeIB7772XqVOnkpaWRnJyMq1btyYhIaHUbf3666889thjdOjQgT59+tC9e/dCQyBXrx84cCAnT560rtu7dy+RkZG8//779OvXj6ioKKZOnUp2drZN329F86jyHEHp6dbnClA/ufSfqRBCODJTMQ9nJz0YNqCqKjExMYSFhbFmzRoURWH27NnMmTOHmJiYMrV1/PhxJk+ezMyZM+ncuTPnz59n0qRJhdY///zzzJw5k06dOpGamsqzzz5bqA2z2YxWq2X58uWoqsqkSZNYunRpmbPcjJNnz2O8fH0Ki8WCRqOxyXJzs4XgnLMketfEotHgk5eLTpNObHySzY9Vnst5BqPTZb6ynGcwcfRkgsPkKcuywWQhNj7JYfLId8axl0vzmbdpUhtbcoUhkWtJgWEDR44c4ciRI7zzzjvo9XoAhg0bxtChQ4v88r+Rzz//nE6dOnHfffcBEB4eTuXKla3rN2zYwN13303Xrl0BCA0Nxd/fv1AbWq2WIUOGWJ8/9thjvPPOOxVSYNQKr1I+DYf7k+yn49Ejm0l3CyQkL4G19TtTv2Zo+RyvnMTGJzld5isku31I9ornrLkdjRQYNpCQkIDBYKBLly6FXldVFaWMVemZM2e44447Slx/9uzZ664vTmBgIGlpaWXax9HkH36ZvQ8fwKyo1Mo8z6dBDxAf0og+9g4mhBA2YHK9DgwpMGwhJCQET09PduzYgVarLbQuOTm5TG35+/uTftVcg2sFBASQmppapjZPnz5N9erVy7SPI/LLNjC/y8OcCAnggT+OE3Ipx96RhBDCJkxyqXBRnEaNGhEREcGsWbNISkrCZDJx+vRp1q9fX+a2OnfuzPfff8+xY8fIy8vj559/Ji4uzro+KiqK77//nsOHD5OTk8O2bds4fvx4oTZUVeWff/7BZDJx7NgxVq1axSOPPHLL79Pefq1fjX+qVsas1fDlXfVJ8vS0dyQhhBAlkB4MG9BqtSxcuJClS5cyfPhw0tLSqFKlClFRUWVuq0uXLsTFxTF+/HhycnLo2LEjgYGBuLm5AQUFRlxcHM8++yxms5n27dsTFBRUqA1VVVmwYAEHDx7Ez8+PRx55hH79+tnirdpVsp9PoeeJgZXslEQIIWzL6HodGFJg2ErlypWZNm1asev27t1b6nYURSE6Opro6Gjra4MGDSIsLMy6fvjw4QwfPrzENjQaDUuWLCn1MZ1FvL8P3jn5GNx1uOebSK4kPRhCCNdglLNIxK148cUX+e6770pc36VLF1577TW+++47WrZsiY+PDzt27ODcuXO0bdu2ApM6JqNGg9FdCxoFo6qQ7y0FhhBCOCopMCrQ7NmzmT179g23+9///sfZs2fR6XTUqVOHhQsXEhAQUAEJHZxOU/AA8NCiy5W7qQohXIPR3gHKgRQYDmjt2rU3vW/r1q1d9tLkikbh6pLCS27XLoQQDksKDOE0tAYTJp37Vc+NgJv9AgkhhI3kuOAcDDlNVTiNgNRsyDeDyQI5RuqePW/vSEIIYRO5StGHs5MeDOE0HqmaxpenLWR4elA/6SJfL4+wdyQhhBAlkAJDOI1XR1en6/at+IZE0KpJfXvHEUIImzG44JU8pcAQQggh7M316guZgyGEEEII25MeDOFUhvzQBLTezEjKYFhXP3vHEUII25CzSISwn1ZTUwl2q4yPuxfv/eJOzZdO2zuSEEKIEkgPhnAamb6+pLjpwKyCrzsR6XJ1UyGEcFRSYAinkeKmBa3G2u+W6ONl30BCCGErMkQihB1ptVx9rXCDRr6+QgjhqORfaOE0NBZLoedeRpOdkgghhI0pxTycnBQYwmm4o/77jdUpmNzk6yuEcBWuV2HIv9DCafgZDeCpA28deGgJyrlk70hCCCFKIAWGcBohWdmgFkzC0JotVM9Mt28gIYSwFdfrwHDtAuP48eM88cQTtG/fnmeffdbeccQtig0JtM60Nms1/Fmtqp0TCSGEjbhggeGwp6lGR0ezf/9+FEXBzc2NkJAQIiMjGTx4MCEhIaVq47///S/33HMPK1asICsrq5wTFzVz5ky0Wi3Tp0+/pX2WL1/OV199xcaNG8shpfMwK9pCz4OycgBf+4QRQghxXQ7dgxEdHc2uXbvYsmUL06dP5+LFiwwaNIjjx4+Xav8jR45w77334ubmRmBgYDmnLT8jRoy47YsLVJVqKReZsm09Y3/9hkk7NuGTk2/vVEIIYSOu14XhsD0YV/Px8aFFixa0aNGC559/nlmzZrFq1SrS09N566232LlzJwaDgTZt2jB58mQCAgJ44oknyM/P59FHHwXgjTfeoGPHjnzwwQds3ryZ9PR0GjduTExMDLVr1wYKCpqwsDBycnLYt28fzZs3Z+HChfz555+8/fbbxMXF4e/vz8CBA3nssccASEhIYN68eezfvx9VValXrx4xMTH89ddffPXVVwB8+eWXAHz77bccP36c2bNnk5KSglarpUGDBsTExFC/fn3WrVtX7D6fffYZu3fv5r333gMgKSmJefPm8eeff6LX6+natStjxozBw8ODhIQEevfuzbhx49i6dStnzpyhXr16zJo1i/Dw8Ir7j2Zj7rM+5cm/PZjVveC/p5chj+G/fA90tW8wIYQQxXKKAuNqjzzyCKNGjSIxMZHp06cTFhbGmjVrUBSF2bNnM2fOHObOnctHH31E69atWbZsGS1atABg1apVfPXVVyxcuNC639ixY1m/fj1eXgVXhfz777+ZPHkyr776KhaLhbi4OJ5++mleeuklOnfuzIkTJ3j66aepVq0anTp1Yvbs2VSrVo0NGzZgNpvZuXMnOTk5PPLIIxw6dKjIcEdERASLFi2iatWqqKrKRx99xMyZM/n4449L3OdqZrOZiRMn0rx5czZt2kRWVhbTpk1j0aJFPPfcc9btzpw5wxtvvEFAQACTJ09m8eLFvPbaa+X3H+ayk2fPYzQXXK/CYrGguXwxrFtdrrv7H+Kq/VtM5Ljr8TbnEBufZPNjledynsHodJmvLOcZTBw9meAwecqybDBZiI1Pcpg88p1x7OXSfOZtmhT8YWozzt9hUYTTFRjBwcEAJCcnc+TIEd555x30ej0Aw4YNY+jQoZjNZrRabZF9N27cyJAhQ6w9FkOHDmXDhg38/PPPdO/eHYAHH3yQtm3bWvf57LPP6Nq1K926dQPgjjvuoFu3buzYsYNOnTqRl5dHRkYGly5dolq1avTo0eO6+fV6PZ999hk7d+4kISGBS5cuYTKV/oJRhw4dIj4+npUrV6LX6/Hx8WH06NE888wzxMTEWLeLjo62zlWJiopi3bp1pT7GragVXqVc2lU+eBrztKMoFguqRkNATjb7q1Rncs3QcjleeYmNT6K+k2W+QrLbh2SvePbJ7XoVhtMVGBcuXADg7NmzGAwGunTpUmi9qqqkpaURFBRUZN/k5GRCQ//90iiKQkhICElJSSUeLyEhgZ07d7J161braxaLhTZt2gAwffp0Fi1axH/+8x+0Wi133303kyZNwte3+MmH06dP5/z580yaNIk6deoQFxdHdHR0qd9/cnIyAQEB1qIKIDQ0lPz8fNLS0ordR6/XYzAYSn0MR6QG+7G5USvcjUZ0ZjNZOne+rX+nvWMJIYQogdMVGOvXr6d58+bUrFkTT09PduzYUWxvRXFCQkJISEiwPldVlaSkpEJFR3H79OnTh6lTpxa7vlatWixcuBBVVYmLi2Py5Ml8+OGHPP3002g0GlRVLbT97t27mTdvHi1btgSwdrddUdw+1+ZJTU0lLy/PWmQkJCTg4eFBQEAAiYmJ1/8QnJgRNwLPX0KjgtHNRJqvB65Y9QshbkMu+E+ZQ59FckVOTg5///03U6ZMYc+ePbz44os0atSIiIgIZs2aRVJSEiaTidOnT7N+/foS2+nTpw+rVq0iLi6O3Nxc3n//fSwWCx07dixxn379+rFlyxa+/vprcnJyuHTpEn/99Re//fYbAK+//joHDx7EYDAQGBiIt7e3tfciLCyMAwcOkJKSwoULFzCZTNSsWZPdu3db877//vuFjlfcPldr3LgxERERLFiwgOzsbBITE1myZAl9+vRBccG78V3NOzsfzeXay81owS8n176BhBDCVlzvJBLH7sF47733WL58OTqdjpCQEDp37szq1autcwsWLlzI0qVLGT58OGlpaVSpUoWoqKgS2xs0aBBGo5Fnn33WehbJ4sWL8fb2LnGfhg0bMn/+fN577z3mz5+P2Wymdu3aDBs2DABPT09efPFFLly4gK+vL/fddx+DBg0C4OGHH2bfvn307t0bHx8f1q9fz0svvcTMmTNZu3YttWvXpnXr1vz+++/W4xW3z9W0Wi0LFy5k3rx59O7d23oWydixY2/2Y3Ya/vkmrpyYqgL+efmA3LJdCCEckaJerz9eiDJKz8opt7YHPHuRVK2WDJ2Wmjn5JPp68MsrlcrteOXBWSe9gWS3F8le8UqT27+Sbf+4UaZmF3lNfc3HpseoaA7dgyHE1fIUlWaZ2Sgo5CuQYHSKET4hhLgxFxgSuZYUGMJp6NKz2VwtBH+jiQwFQvLz7B1JCCFECaTAEE4j001HirsbKe5uANTMzLRzIiGEsBEXnKQvfczCafia/z2jxjvfQGh+xd/ATgghROlID4ZwGt66HAYeO06Kh56m6Ul8XreOvSMJIYQogfRgCKexakkjjlTzpZIui88b1OXP/wbbO5IQQtiGXAdDCPuacd9BfEMiaNWk6KXghRBCOA4pMIQQQgi7c4Eui2tIgSGEEELYm+vVFzIHQzgXt+Gn8e3+NetrrbR3FCGEENchBYZwGjsbvM+RJo3Z0aotau2qfF7j/RvvJIQQzkAmeQphP6eqVWX0L+vQm02cqRTIzzXutHckIYSwEReoKK4hPRjCaXQ4cQD95YttVc9KRWsqvxurCSGEuDXSgyGchleegYRKwaR4+VMz7Rx+l3LtHUkIIWzD9TowpMAQzmNTg0gsnn6gKLiZDAQlJ9o7khBCiBLIEIlwGqeqhFlvCGTUuXOoenU7JxJCCFESKTCE0/A2XbIua81GTgb72TGNEELYkJxFIoT9/GfPVnTukOJVmfoXj6Pm3g3cYe9YQgghiiEFhouJjo6mTZs2DB8+3N5RbO4Sep69rxenvYN5MP4PHvrztL0jCSGEbSgu0GVxDRkicWK9evXi66+/tneMCrOkTVf6H0/nmcMniEj1ZU/NGvaOJIQQogTSgyGcgsmk0jQjD5OXBwBaNy2eWfL1FUIIR+X0PRi9evXi1VdfZeTIkXTu3JmBAwfy119/AZCUlERMTAz33nsvPXr0YOHCheTn5wOQkJBA69atWbZsGQMHDqRz586MGzeOlJSUUh87JSWFyZMnExUVxb333suAAQPo1atXoWzz589n7NixdO7cmTfeeAOADRs20L9/fzp16sTQoUPZv38/AOnp6dx1112cOHECgIyMDCIjI9mzZw8AJpOJjh07cujQIaZOnUpiYiIzZ84kMjKS//znP9bjnj17lilTpnDvvffy4IMP8tVXX938B+wg6r+SQ2B+4eteVDYYOP5D6f97CSGEw5JJno7p3LlzTJw4kYiICD7++GMmT57Mxo0bmThxIs2bN2fTpk1kZWUxbdo0Fi1axHPPPWfdNzs7mzfffBNvb29mzJjBnDlzWLBgwQ2PqaoqkydPplq1amzcuBGdTseKFSv47rvvCm134MABJk2aRKNGjTCZTGzbto2lS5cyb9486tevz7Zt2xg/fjyffvopoaGh1KtXjz///JPatWvz448/otfr+e6777jrrruIjY3Fzc2Nhg0b8tprr3Hw4EFGjx7Ngw8+WOiYhw8fZtKkScycOZMtW7YwZ84c7r77bnx9fW3zgV/HybPnMZotAFgsFjQajU2WUf0ITzlPtpcnuR4ehF1M5ayXO4mp6VjiTTY9Vnku5xmMxMYnOUyesiznGUwcPZngMHnKsmwwWYiNT3KYPPKdcezl0nzmbZrUxrZcoKK4hksUGD179qRhw4YAPPnkk6xYsYJPPvmE+Ph4Vq5ciV6vx8fHh9GjR/PMM88QExNj3ffxxx8nJCQEgMGDBxMdHY3JZEKnu/5Hc+zYMQ4dOsSiRYvw8fEBoG7dukUKjAEDBtCsWTMAdDodGzdupH///tbXevbsyaZNm9iyZQtDhgwhMjKS/fv3079/f7Zv38748eNZtmwZzz//PAcOHKBVq1ZotdrrZuvWrRuRkZEA3H///cyePZszZ87QuHHj0n6kN61WeJVyafefGSpbvnXngX17MWjd8DHmsCqyNXf3q1suxysvsfFJ1K8Zau8YN0Wy24dkr3jOmtvROP0QybV0Oh1+fn6Eh4cTEBCAXq+3rgsNDSU/P5+0tLRi961cuTJms5nMzMwbHufMmTMEBQVZi4vSSk5OthY0V+dKSiqoltu0acOff/5JdnY2sbGxPPTQQ4SGhrJv3z7++usv2rRpU6bjXXn/RqOxTPs5Gq1WYUmnSMweRsLyLrA/ogpHQ/3tHUsIIWzDBYdIXK7AyMnJISUlheDgYFJTU8nLy7OuS0hIwMPDg4CAgGL3PX36NN7e3gQGBt7wOP7+/mRmZmI2m8uULyQkhMTEwpe4TkhIIDS0oFq+8847SU1N5dNPP6VDhw7odDruu+8+tm3bxoEDBwoVGBqNBlVVy3R8ZxYbVJneI0YweOAghjz+H3T5JntHEkIIUQKXKDBOnTpFXl4eGRkZzJ07l8aNG9O0aVMiIiJYsGAB2dnZJCYmsmTJEvr06YNy1fnG//zzDyaTiTNnzvDuu+/yyCOPlOqYTZs2xdPTk9WrV5Ofn8+pU6eKDI8Up0+fPqxfv56//vqL/Px8Nm/eTGxsLPfffz9Q0OPQtGlTPvjgA7p27QrAfffdx7fffouqqkRERFjbCgsLY+fOnWRnZ1t7QFxZ20PnmLn2Rwb9eJg5/7edbJ23vSMJIYQogUvMwdi1axebNm0iLy+PNm3a8MYbb6DValm4cCHz5s2jd+/e6PV6unbtytixYwvt+9FHHzFt2jT0ej0PPvggI0eOLNUx9Xo9c+fO5fXXX2fJkiVERETQoEED3Nzcrrtf165dycjI4OWXXyYlJYU6derw9ttvW3swACIjI4mLi+Ouu+4CCoZQateuTY0aha/7MHbsWF5++WW6du1Ky5Yteffdd0uV3Vl1PXwKzeUOm4CcfFrFJwEN7ZpJCCFswgWGRK6lqE7ex96rV69iz6S4kYSEBHr37s1XX31VZE7Ezfrkk0/46aefXP4X/fWkZ+WUW9tvd/iReikF82OMGoWEADdG/ta93I5XHpx58phktw/JXvFKk9u/kpdNj6nMzi/ymvqih02PUdFcogfD1nbu3MmECROuu80PP/zAoUOHCAoKolq1apw9e5b169czcODACkp5+9lRuxq/1qhKeEY2u2uEcG9cvL0jCSGEKIEUGMVo27Ytu3btuuF2+/fvZ82aNeTk5BASEkKvXr3o06dP+Qe8TdXITmdNk4JTbd3MZh47dOkGewghhJNwwXuROH2B8cUXX9zUflWrVmXv3r23dOzhw4e75E3FHFXblHM03pHE0aAgHoo9xraG9e0dSQghRAmcvsAQt4+PW9/JRx99go/BwKHQEP4Kr2rvSEIIYRuu14EhBYZwHq2Pn6b9pHGEZ2Rwxs+PiSs/BYbYO5YQQohiSIEhnMZLX3SkRst1GH08MaVkMCJ2iL0jCSGEKIEUGMKp1Jzrh29IBK2ayPwLIYQLccEhEpe4kqcQQgghHIv0YAghhBB253pdGFJgCCGEEPbmevWFDJEIIYQQwvakwBBCCCGEzckQiRBCCGFvMkQihBBCCHFjUmAIIYQQwuZkiEQIIYSwNxkiEUIIIYS4MSkwhBBCCGFzUmAIIYQQwuakwBBCCCHsTVGKPorRpUsXYmNjKzjczZFJnkIIIYS9ySRPIYQQQjiSI0eOMHDgQO6//34effRRDhw4AMD8+fNZtGgRAEePHuXOO+8kLy8PgOjoaH788cdyzSU9GMKm/Ct5lWv7ffv0IS0trdyPU17qVQuQ7HYg2e3DWbPbI7cac3O/jo1GI+PGjWP27Nm0a9eO/fv3M378eLZs2UL79u1ZsmQJAN999x2BgYH89NNP3HfffRw6dIjWrVvb8i0UIT0YwumMHz/e3hFummS3D8luH86a3ZlynzhxAq1WS7t27QBo0aIFfn5+HDt2jJYtW3Ls2DGMRiM//fQTL730Et9++y0nTpygRo0aeHt7l2s2KTCEEEIIF6IoCqqq4uHhQcOGDfn6668JCwvj7rvv5uDBg+zcuZO2bduWew4pMIQQQggnVatWLUwmE7t27QLgzz//JDU1lQYNGgDQvn17Fi5cyP33349Go6F9+/YsX77c2uNRnmQOhnA6ffv2tXeEmybZ7UOy24ezZnf03IMGDUKj+bd/YMmSJbzxxhukp6dTqVIl3n77bTw9PQFo164d7777LlFRUQA88MADbNiwgRYtWpR7TkVVVbXcjyKEEEKI24oMkQghhBDC5qTAEEIIIYTNSYEhnMqpU6cYNmwY/fr1Y9iwYZw6dcrekUhPT6dPnz4cP37c+tr1ct7sOlt76aWXeOihh+jfvz8jRozgxIkTTpP91VdfpW/fvvTr14+BAweye/dup8kOBacWdu7cmZ9//tlpcs+cOZPu3bvTv39/6yMuLs4psgOsW7eOAQMG0LdvX+bOnXtL+Rzx3yGHpArhRB5++GH1l19+UVVVVX/++Wf1ySeftGueVatWqffdd5961113qf/884/19evlvNl1trZ9+3bVaDSqqqqqGzduVIcNG+Y02X/77Tdr9p9//ll9+OGHnSZ7enq6+p///Eft3bu3+tNPPzlN7hkzZqiffPJJkdedIfuHH36oRkdHq6mpqaqqqqrJZHKa7M5MejCE00hMTCQzM5MOHToA0LFjR5KSkkhJSbFbpieeeIKtW7cSEhJife16OW92XXno0qULOl3BiWR33HHHLeWr6Ozt2rVDp9Ohqirx8fE0aNDAKbKbTCamTp3K6NGjrd8ZZ8hdEmfIbjKZ+PDDD3n55ZcJCAgAQKvVOkV2ZyenqQqncf78eQIDAwu9FhAQwIULFwgKCrJTqqKul9NgMNzUuvJ+fxs2bKBDhw5OlX3//v1MnjyZgIAAFi1aRFJSksNnnzdvHm3atKFjx46sWrUKcK7vy4oVK/jkk08IDg5m+PDheHh4OHz2pKQkLBYL8+fPJz4+Hp1Ox9ChQ6lSpYrDZ3d2UmAIp3L1ud9XGI1GOyS5vuvlvNl15eWzzz7jwIEDvPfee8TFxTlN9hYtWrB161Z+/fVXRo8ezYwZMxw6+1dffcWlS5cYMmRIkXWOnPuKKVOmoNfrAdizZw/PPfccb731lsNnv3jxIv7+/rzwwgsEBAQQHx/PiBEj+O9//+vw2Z2dFBjCaQQHBxfphkxLSyM4ONhOiYp3vZyqqt7UuvKyatUqtm3bxrvvvouPj49TZb+iQ4cOTJ48GXd3d4fOHh8fz99//03//v2Bgr+s//vf/zJ06FCHzn3FleIC4K677qJy5cp4eHg4fHZ/f39UVbUOj9SsWZOGDRty+PBhh8/u7GQOhnAaVatWxdfXl19//RWAn376CT8/P8LCwuycrLDr5bzZdbZmNpt5/fXX2bNnD0uWLMHf399psmdmZvLzzz9jsViAgrtEhoSEcMcddzh09jFjxrBx40bWr1/P+vXrady4MVOmTOHhhx926NxX/Pzzz5jNZqBgeOrSpUtEREQ4fPYaNWrg7u7O9u3bAUhOTiYuLo57773X4bM7O7mSp3AqJ0+e5JVXXiE9PR1/f3+mT59OrVq17JZn7dq1fPnllxw/fpzq1avTsGFDZs2add2cN7vOlhISEujduzfVq1cv1N378ssv4+3t7dDZMzIymDp1KvHx8ej1eoKDg4mJiaFu3boO/7lfLTo6mieeeIK7777bKXJPnjyZQ4cOodfr8fX1ZeLEiTRr1swpsp86dYrXXnuNixcv4uHhwejRo+nYsaNTZHdmUmAIIYQQwuZkiEQIIYQQNicFhhBCCCFsTgoMIYQQQticFBhCCCGEsDkpMIQQQghhc1JgCOGEnnjiCd59991yP86LL77Io48+Sl5eXrkfS5TsvvvuY8OGDaXadsqUKUybNq2cE1WMhQsX0qtXLwwGg72jiJsgBYZwWampqcyaNYt77rmHpk2b0rFjRx5//HHWrVtn3aZLly5s2rSpyL7FvW4wGIiMjKRRo0YkJycXWrdr1y4aNGhAo0aNaNy4MV26dOHdd9/FZDKVz5urAL/88gvffPMNixcvtl7FcfDgwbzwwgt2Tla8Bg0asHfvXnvHcHkbNmzgvvvus3m7xf3MTZw4EX9/fxYvXmzz44nyJ5cKFy4rOjqaevXqsWbNGqpUqcKFCxf45Zdf2L9/P4888kiZ29u2bRuhoaHUq1ePzz//nFGjRhVar9VqOXz4MCaTidjYWMaNG0dubi6TJk2y1VuqUIsWLWLkyJGFLoH84Ycf2jGRuB1NmzaNxx57jMGDBxe5yZhwbNKDIVxSeno6f//9N0899RShoaFoNBpCQkLo378/r7zyyk21uX79egYMGMCAAQOu212t0+lo1KgRTz75JN9//32x28ydO5fHH3+80Gu///47rVu3Jjc3l507d3LffffRokULWrVqxRNPPMHRo0eLbWvXrl00atSo0Gtvv/12oZtqnTt3jqeffpq2bdvSoUMHZsyYQU5OTonvIS4ujoMHD/Lwww8Xen3IkCG8/fbbAJw9e5YGDRqwZMkSevbsSbNmzYiOjubgwYOMGzeOyMhIOnXqxNdff23df8qUKQwdOpSJEyfSrl07oqKiWLNmjXX9F198QZcuXWjWrBlt2rRh5MiRJCQkWNenpqYydepU7r77blq3bs2TTz7JkSNHePTRRwF48sknadSoEaNHjy7xvW3bto3evXtz55138tBDD1kvIX3lc+vXrx+zZ88mKiqKNm3aMHv27BLbuvKehg8fzqRJk4iMjKRDhw58/fXXfPTRR/Ts2ZM777yTkSNHkp2dbd1n7969DBgwgDvvvJP777+/UK8awMaNG+nevTstWrTgkUceITU1tdD67777jr59+3LnnXfywAMP8NVXX10349XMZjNLliyha9eutGrViiFDhnD8+HHr+uKG3670Dv3zzz9MmzaN06dP06hRIxo1asTWrVut38ElS5bQvXt3WrduzcSJE63v+Ubf0WeeeYZz584xZcoUGjVqxEMPPWTdrmHDhtSqVYutW7eW+j0KxyAFhnBJ/v7+1KlTh5kzZ7JlyxZOnz7NrVy0NjExkf3799O7d2+6d+9ORkYGe/bsue4+BoPBeo+Paw0cOJB9+/Zx8uRJ62vr1q2jT58+eHp6UqdOHZYvX86ePXv4/fff6dChA88///xNZc/Ly2Po0KGEh4ezbds2NmzYwLFjx1i0aFGJ+/z++++0bNmyVH8xJicn87///Y8ffviBEydOMHbsWPr06cOOHTt46qmneOmllwoNFZ05c4Y+ffrw/fffM2fOHF599VUOHToEwJ133smqVav4448/+PHHHwkLC7P+grdYLIwePRqj0cimTZvYtm0bDz30ECkpKXz66adAwc3bDh8+zJIlS4rNeuDAAWJiYpg0aRI7d+7k2WefZdKkSfz999+F8t1xxx188cUXrFq1irVr1/Ljjz9e9zM4fvw4vXv35scff2TEiBFMnDiRo0ePsmzZMrZt28bJkydZu3YtUHCZ9uHDh/PYY4/x+++/89prr7FgwQLrL9CffvqJV199lZkzZ7Jnzx7mzp2Lp6en9Vi//vorU6dOJSYmhl27djF9+nReeOGFEgvQa61cuZKNGzeydOlSfv75Z9q2bcvQoUO5dOnSDfetV68er776KjVq1ODw4cMcPnyYbt26AQWFi1arZfXq1XzzzTecPXuWN998s1SZ3nzzTapVq8Z///tfDh8+XGSopEuXLvz222+laks4DikwhMtauXIltWvX5vXXX+e+++6jZcuWjB49mtjY2ELbTZs2jaZNmxZ6nDt3rtA2n3/+OQ888AA+Pj64u7vTr1+/EnsxzGYzO3fu5MMPP7TeOfNa1atXp3379ta/XNPT09m2bRuPPfYYAJ6enmzatIlBgwYRFRXFu+++yz///HNTn8MPP/yA2Wxm8uTJ+Pj4EBISwtChQ/nuu+9K3OfcuXPUqFGjVO2PGjWK0NBQAgMDadGiBe3bt6dr1654eXlx7733kpWVxfnz563bR0ZG0rlzZzw9PWnfvj1t2rSx9iJ4eHjw0Ucf8fDDD3PPPffw2WefWd/3wYMHOXToEC+//DKBgYH4+/vTv39/7r777lJ/Fp999hndu3enc+fOeHh40LlzZ7p161aoB6Fx48b079+fSpUq0bBhQxo0aHDDz75Dhw507twZvV7PPffcAxTc3KxatWpUrlyZli1bWnsJvvjiC5o0aUKfPn3Q6/XceeedDBw40FqAfPzxxwwYMIB27drh5uZGREREoQJj1apVDB48mA4dOuDu7k779u1p164d27ZtK9VnsG7dOqKjo6lbty5eXl6MHDkSnU7HDz/8UOrPsTharZbo6GiCgoIIDg7mySefLNQ7dCuqV69eqCdLOAeZgyFcVkhICLNmzQIgOzubo0ePsnLlSoYNG8aPP/6IVqsF4NVXXy3UJQsFfzFdoaoqn3/+OSkpKdZfykajEVVVefHFF/H29gYKCoumTZui0WioVq0azz//PL179y4x38CBA5kxYwYTJ05k48aNNG/enDp16gAQExNDcnIyL7zwAvXq1eOff/4pMqRSWmfPniUhIYFmzZoVek9X3n9xsrKyqFy5cpmP5eHhYb3j5pXnUPB5laRy5cqkpqaiqipPPfUUlStX5pVXXiEiIoLt27dbe1rOnj1LYGCg9fO+GYmJiTRu3LjQa2FhYRw+fLjEfTw9Pct0FsOV93x1j5m7u7t1SCoxMbHInTerVq3Kt99+C8Dp06e59957S2z/7Nmz/Prrr7z33nvW11RVJSQkpFT5kpKSqFq1qvW5oiiEhoba/Bd4UFBQkaGdmxUYGEhWVpZN2hIVRwoM4ZKMRiM6ne7/27u/0KTeMIDj3+W8c5DSheKNRYwg2kVlbdRwtEjWPyus0dYfvIkYDMqr6Cb6Z1DNLmKj2CpGUIySughHGwwrTCrWblq1imHNsiitias0zS7G75Bsbsvs1x+eD3jhOZ73vK++4uNznlcpKioCQKPRsHDhQrRaLStXrmR4eHjKBWN3794lnU7T2dmZtb2hoQGv16sUjKpUqqxU+2SWLVvGwYMH6enpwePxZNUN3L59m+bmZsxmM4AyjvGo1WrS6TSpVIri4rFvaYPBgMlkGtP/iZSUlPD+/fspP/5nPH/+nJqaGiKRCAMDA3R2djJr1iwge9xGo5FoNMrIyMi4Qcb3/wqbi8FgGJOdevny5f/6V9sGg2HMJZdQKKT0QafTTfjBrNfrsdls7NixI6/z6/V6QqGQcj+TyRAOh5WgQ61WTxhQTZs2bUqXG4PBoJIFm2yOTtZuJBKhpKRk0nOKP4tcIhH/pGfPnmGz2fB6vUSjUb5+/crQ0BAnT56kqqrqh6rRPR4PVqsVvV6fdbNarXg8nrz7qFKpsNvtHD16lGg0mrX0b+bMmQQCAb58+UIwGMxZUwBgMplQq9V4vV6SySR+vz8rmLBYLCQSCY4dO8a7d+9IJpM8efKEq1ev5mzTaDQyNDSU99gm8vr1ayKRCIlEgosXLzI4OMiaNWvQarVMnz4dv99PKpWiv7+f8+fPK8fNnTuX2bNns2/fPiKRCJ8+feL69esEAgFgNAtw8+ZNRkZGxiwj/o/dbqerqwufz0cikcDn89Hd3Z3XqqJ8rV69mocPH+LxeEgkEty/f5+Ojg5qa2sBWL58OZcvXyYYDBKLxbh06RJv375Vjq+rq+PMmTP4fD4+f/7Mhw8fCAQC9Pb2Tun8GzdupK2tjadPn/Lx40daWlpIp9NYLBYASktLuXHjBvF4nDdv3uB2u7OONxqNhMNh+vv7icVixGIxYDRQefz4MalUikePHtHa2kp9fT0w+RyF0dfP7/cTj8cJh8NZ+168eJGVdRF/BwkwxD/JaDRisVhobW2lpqaGsrIytm/fjslk4sSJE1NuJx6P09XVpRSyfW/FihX09fUxODiYdz83bdpEOBzGbrejVquV7S6Xi1u3bjF//nycTielpaU529DpdOzfv5/jx4+zdOlSLly4wJw5c5T9Go2G9vZ2Xr16xfr16zGbzezevZtIJJKzzYqKCnp7exkeHs57bLmEQiHq6upYtGgRV65c4ezZs8yYMQOVSkVTUxPt7e0sWLAAl8uVtfKguLiYU6dOkclksNlsyli1Wi0wWktz7do1Fi9enLOAtaysjKamJtxuN+Xl5bjdbtxuN/PmzSv4OHMxGo20tbXR0dFBeXk5e/fuxel0KnOsvr4ei8VCbW0tq1atYmBgIOvbe3V1NQcOHKC5uZklS5ZgtVo5ffp01vyZiMPhYN26dezcuZPKykru3bvHuXPn0Gg0wOjybp1OR2Vl5bhLQ81mMxs2bGDr1q1UVVUpWbtMJsORI0cwm800NDSwefNmJWiabI4COJ1OHjx4oDwn3+vu7qaiouIHnmXxJyjK/ExpvRDin2W321m7di3btm0rWJt79uxBpVJx+PDhgrUpfr87d+7gcDgmrGXJV19fHw6Hg56eHvkdjL+MZDCEEONqbGykpaXll2QxhJiKdDrNoUOH2LJliwQXfyEJMIQQ47JYLFRXV7Nr164JV4EI8au4XC6SySSNjY2/uysiD3KJRAghhBAFJxkMIYQQQhScBBhCCCGEKDgJMIQQQghRcBJgCCGEEKLgJMAQQgghRMF9AzaE3lthGeeGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "'''\n", "For Our Models Behaviour when all Features are present \n", "'''\n", "explainer_entire_data = shap.TreeExplainer(xgb_reg)\n", "shap_values_entire = explainer_entire_data.shap_values(x_train)\n", "shap.summary_plot(shap_values_entire, x_train)# Plotting Summary Plot" ] }, { "cell_type": "markdown", "id": "9bb6a156", "metadata": {}, "source": [ "On the General scale, we can see that `Energy Consumption` is the most important relevant feature for our model. The higher values of Energy Consumption[e_con] (red dots) tend to contribute absolute positively to the prediction while the lower values (blue dots) have a near ZERO contribution. This makes sense since the more Energy Consumed especially for non-renewables & fossil fuels, the more chances of emitting CO2." ] }, { "cell_type": "code", "execution_count": 32, "id": "4f74d8b0", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAEaCAYAAACmWqU2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABpD0lEQVR4nO3dd3gUVdvA4d9sS0J6KEmooQdQulQVRAR8KaKo2CkiXamigooiYgUUpYmi4Ie8iCDY8EWqioCAIh2kE1IgvWfbfH9ssmRTYAOb7CY893Ut7E4588zuZueZc86cUVRVVRFCCCGEuEEadwcghBBCiIpBkgohhBBCuIQkFUIIIYRwCUkqhBBCCOESklQIIYQQwiUkqRBCCCGES0hSIYQQQni4bt26ceLECYdpDzzwALt372b27Nn83//93zXLePHFF51a7kboSrV0IYQQQpSqSZMmuTsEO0kqhBBCiHLsnXfeoVKlSjz77LMYjUbeeecdfvvtN7y9vcnIyGDIkCE88cQTAOzZs4cNGzYQGxtL06ZNmTt3Ljqd61IBSSqESyWnZZbZti7EJlIrLKTMtucJZJ8rvq2bN1IpOJz2rW91dyhlqrx9zkH+lVxboPLAlefq2iIXGTVqFHq93v46Ojq60DKfffYZycnJbNiwAY1Gw7hx4xzm63Q6lixZgpeXFw8++CDbt2/n7rvvds0+IEmFKMeycozuDqHMyT7fHHQGL3eHUOZuxs/ZkXLNJRYuXEijRo3srx944IFCy2zdupXnn38erVYLQKVKjslPq1at7NMaNGhAbGzsjQRdiCQVQgghhNtdO6lwRlZWFl5eziWlWq0WV9/+S67+EEIIIdxOyfe4fi1atGDz5s0ApKWlce7cuRsPrQSkpkIIIYRwO9fUVIwbN47JkyfTo0cPKleuTE5ODn5+fi4p2xmSVAghhBAebsuWLYWmrV1r69DZvn17+7TAwECWLl2KVqslKyuLRx99lFtuuQWAt99+22H9gq9dQZIKIYQQwu1cU1Px77//8txzz6HT6TAYDDz22GM0aNDAJWU7Q5IKIYQQwu1c08WxWbNm9j4V7iBJhRBCCOF2rqmpcDdJKoQQQgi3k6RCCCGEEC4hSYUQQgghXEDNl1SU5/RCBr8SQgghhEtITYUQQgjhduW5fuIKSSqEEEIIN6sozR+SVAghhBBuV55TiSskqRAVUkoO9FyrcDxVQ6BW5feBVmr6uzsqIYQomlpBujhWjL0QIp+oVIj4Qs/xVD2gJcWi49av9Ly9u2KcCQghKiLX3KXU3SSpEBXOrSt1FP7DVHhnv1TMCSE8k5rvUZ5JUiFuKsGL9by4o3yfCQghKiKpqRCinLH9wS4+JDUWQgjPoqLYH+WZJBWiQvnmhDN/kAqZplIPRQghSqBi1FTIKZuoMD7Yp/D63qL6UxSkUklfFhEJUTpMFpWl27L5cks2/tkmXuiup+u9we4OS9yA8l5DkUeSClFhOJdQ2KgqKBXjb1jcZDJyrES+aSRdowGdD3ofb6ZsMTJgx0VemFnDYdmcP6Ow7juDIciAZmA7FI186T1XxfhsJKkQ5daK077M+/n6qhwkoRDl1T1vppGu9UGjKFi1GnRmM9Gqlh0pejZ9HkP3IeFYc8zoqk4ihBR0mFGAjFE+ZMwfjeHxVu7eBVEEqakQwoVUFf6Kg+7rtRTs6nNbiIkF90CDIMd15p0I4Xqz++DFesBKDR+Vf56wopXeRaKMnU2El36Dk8nQpSZU84GP/taQbu4BBzXwC7Y/DFTbdYZGC5gt4O0LFhWrooCqkqXT0TQjm8D0DE59GU3G23upmpFFgH9TItOPclZtihkdda3HCBk1B171J+PkfMmsPYwkFddpxowZxMTEsHDhwusuY8mSJfz444+sW7fOdYEJt0nIggbL9RSXIOxJNHDbqqKu3r7eP8K89bRczIIqS1ROPmWiss91FidcSlXBqoJGAYsK2SYwW22PU0lwKAEiQ6BpZbBYQauARkOJE0NVhaRs2BkNxxPhyaZQuZJtu86un5YD3jr4/SL46qFOIIT5QnwWxKXZyvrhtMLbf6lY0QIKqEpu+1teQQonj+butKJcOdgr5A5akNt5zwBoNVQymclWVaz5YtEoCjVQiKkZToOzl8nw8SaDcHKygtCbbUueoAUdiUNzOZXAwCcByOzZHLV3a8yD7pYkw+0qxvuvqKpa3sfaEB4kOS2zRMs/8zN8c674hKKsvHKbmYmtrdde8BpOp8CwzTpiMxQmtbbwdDPnyzybCn2+03ExQ0EDPBVpZW4Xi8MyJ87F0qhOGAlZ8PRmHceSFB5uYOVCOvzvnAYVuKumSr1AlW9OamgSrPJZdzMh3rArVmHMVh0xGbaDtUW1Hds8e8Ad+5GVwt+R64zaYTUXlWmPMzdhcGrb2BKJ/HHkZVQOReeWac73Xcox2zIqwMuq0jg9k7tiLhN+OYE6Zy+jzS0jJCETvTmvPJVObESHuciwLJX9SD/0Afh6X3t3S0Hed7u8CPKv5NLyspSx9uc+6scuLbssOVVTkZyczIcffsiuXbswGo20a9eOKVOmkJWVRb9+/Rg1ahT/+9//uHjxIm3btmXkyJEsXbqUv/76Cy8vL8aPH0+PHj0AeOONN7BYLLz22msArF69mpUrVxIXF0eVKlXo0aMHY8aMwWg08sEHH7B161bS0tKoVasWgwcPpmfPnnz66af8+eeffPLJJwDExsby/vvv8/fff+Pt7U337t0ZPXo0Xl5eREdH069fP8aOHcvGjRu5cOECDRs2ZMaMGdSsWdOpN+m1117j0qVLBAYGsnfvXgwGA0OGDOHBBx8EwGw2s3z5cr7//nsSEhJo2LAhzz//PJGRkQD07duXrl27cvr0aQ4dOkTv3r2ZMmXKNbd74sQJPvzwQ44cOYLBYKB169ZMmzaN+Ph4Jk+ezOXLl7FardStW5dnn32W2267zal4PYknJBQA3lrXlDP1Dx1/X7adMk/ZoaVXHSs1/Jxb94UdOi5m2Na1Al8c0/JgQyudqxc+SL3/l5btF23LfnTAMfgN5668n3GZCu//pWVWJwtjtuo4ner+97rkiov5Ovclf55SqBjFnhuUPL/Iq2FQHHsC5yUZSm6hDttW8r3OfaLB9gVQczM/KFx9olEgN99slpJO67h4Ii7FA5AQFkiVmGQ0KmRU0hOSlomqaqjLMbRFJBR5kesS0vH6bDM5z/Uu6Y4LlyiPf5uFXTOpUFWVyZMnEx4ezsqVK1EUhZkzZzJr1iwmTJgAwOXLl/noo48wGAwMHjyYyZMn8/zzzzNjxgzWrVvHrFmz6NatGzqd4+b279/PvHnzWLx4MfXr1+fs2bP88ccfACxfvpyDBw+ydOlSAgICOHToEJcvXy4Un8ViYcKECbRo0YL169eTlpbGtGnTmDdvHs8//7x9uQsXLvDuu+8SHBzMlClTmD9/Pm+99ZbTb9TFixd5/PHHmT59Ov/88w/jxo3jlltuITIyksWLF7Njxw7mzp1LWFgY//3vf5k0aRJr1qzB29uW9R84cIBJkybRtGlTzOai/7Dzi4+PZ8SIEQwfPpz333+flJQU1q1bR3Z2NpUrV+add96hZs2a6HQ6fv75Z1544QU2bdqERqO5Zryl6UzUJUy5Z1BWq9UeT3HPoVapxuOs389l0z0o0amYr/Y8KSMUsLWjWFWFExcuk+ZtcmrdxPQwwPEs8cTFRKqacuzLGM1WTpyLJTY5GHDuDmlxyZkcO5NAurEm0o3KTa7atJAvy1By/1FUyLE4VtJolCsJi6pSPdtI0+RUOsQnA5Dh44NvVhYmg46Q7AxSvCpxqaYvvY58jz63s+a1XEpIIe5cLHB93/8beZ733S7r7V7v83a31HPiHXXeTdOn4ujRoxw9epSPP/7YfoAcOnQoQ4YMYdy4cQAMGTKE0NBQAJo3b45Op6Nr164AdOnShdmzZxMfH09YmGPVVnZ2Nlarlfj4eOrVq0fjxo1p3LgxADk5OWRlZZGcnEy1atVo3759kfEdPnyYc+fO8fnnn+Pt7Y2fnx+jRo1i/PjxTJ482b7c8OHD7TF27dqV1atXl+R9om3btnTu3BmA9u3b06ZNG7Zv307jxo1ZtWoVc+bMISIiAoBBgwbx+eefc+TIEVq3bg3AwIEDad68OUCh5KooP/74IxERETz66KMA+Pj4MHLkSABMJhM7duzg999/59y5c6Snp5OTk8Ply5ft+1hcvKWdVNStWa1Eyzf0N/NvmvOXgpaWbK2PS6pe3/ZTePRnlctZML6llbuaVHV63TkBCr3WqWSaARS61LAwqG2ww0lqXhXx6yFw6EeVkykK/etZiEpX2HvJ9mPXLMRK/UCV785oaRCoMv0OL2r7V2cOKsO3XCnf8ZTc3sCf+39Rn0dRyxecV7CMopYtqtzitulKebUE+eNUiq6RUAvuQ/71nN2c6vhcyZcU5FHIrZXAsX+yUiCuvOcWK1qrldBsEy2SUmiTkGJfxGjQ45uVhd5sJpA0TKpKvyPrMBRTO+EQKmD11hH4/AME+knzh7h+1zy6RUdHYzQa6datm8N0VVVJTEwstLzBYMBisTi8BtuBsKAOHTowfPhwPvjgAy5evEj9+vUZOnQo3bt3Z9CgQaSkpDB+/HjS09Np0aIFEydOpEGDBg5lxMXFERwcbE94AMLCwsjJySEpKanIffL29sZoNF5r168qJCSEpKQkkpOTyczM5LnnnnOYb7FYiqxZcVZMTEyxzTMffPABv//+O88//zzNmjUjOzubvn37OrzvxcXraf58TOX9XSbe/MeZZpCCv/6uOgipvNa++PeuJFpVVTn2pAmTBfQlbFK5tbLKxadNZJkBFXyucrVsbX/Y84gJowUMudsx5u7CldcW+3OA3nVVLgw1OdSqK9iOX5a8pnwVMo2QaoaDlyAlG+oFg78BKnvnNhMpkJBt60BpUuGPi9Ctlq0cDaBooJIWojIgIgCyzbmHbwWOXIL21UHRgtUKlQy2dfRa+DfpSo3/sXj4PQY6h8JPx9NpXtOP06lwKF7hYjo0rgytq6lEpULzKrbYa/lBq3DQAlYFUrOhqi94ayDDDLUDIM0IWSY4lwYxyfDpCYUTCQpeGuhYw4q3Fu4Ih151bf0p001Q1Qd0Wlsn0SOXbeVczoaD8XAiETLNkJStEJsJTYJU+jaCHBP8HQdrTiqkWTS2lgprvuYRa+6bb1UL511q7gStUviD0ipYNBpifaBLRpZDM4vGasUKZHl58WuzllS+lIZyqfB3J/9fkQUwt69H9jdTINDJdjpRKm6amorQ0FB8fHzYunUrWq3jr2R0dPQNBzBo0CAGDRpEeno6q1ev5uWXX6Zjx474+fkxdepUpk6dSlxcHLNnz2bmzJl88cUXheJLTEwkOzvbnlhER0fj5eVFcHAwMTExNxxjUS5cuED37t0JCgrC29ubRYsWccstt7is/LCwMLZv317kvN27d/PUU09x++23A7bEytl4PdHkDvBMKxPjtimsP5t71HJg5fmWFqbmq6xKzYE6Xxiuc4uqw/9HHjMT7lxLgtNKmlDk51OCFor8SYNBW/y8PJrcCwkKzsq/SR89VAbqBha/3cr5+qi1KebkslZQ4Wl1i5iWp0nlK89vrQoPNbE9b+mXTqM6eQe86+tIWSX3/wAv2yPUDwiH+5pcvZuqv9eV5/WDbY883SPyL1m4jMebwfvdVOydH/IvrcJ9a+H3WA2qBrwUlRwroGpsCQeqLalQFFv2ZbbaNqFVqJGSzpPHz+FnMqMCZq0WxWpFsVpJ8fYiIjqBTF8fghPTiKMGNTkLQBY+WNDhpc0kI2nZNd8zUdZukqSiadOmREREMGPGDEaNGkWVKlWIjo5mz549dOzY8YY2vm3bNuLj4+nSpQvBwcFUqVIFb29vvLy8WLZsGXXr1qVVq1YEBgYSGBhIdnZ2oTKaNWtGREQEc+bM4bnnniMtLY2FCxfSv39/FBdeIhUXF0diYiK+vr58//33nD17lnvvvRdFUXjggQd49913mTp1Kg0aNCAhIYG///6b1q1bU61ayZoD8vTo0YOlS5eycuVK+vfvT1ZWFhs2bKBnz57UqVOHv/76i969e5Oamsr8+fOdjtdTBXrBFz1VcKKqFmwHhqZ+2RxJz19V60xVu03CcJPTlw4K4WqKAt8NACh4dZCFrZs3EhAaQZtbGuUtTf40sMPEbLxy+y0pgN5iISrAH21WNre28eH+F9qQses86T32cIZIkqmMDjPZ+FB54V34P96s9HdQlNhNU1Oh1WqZO3cuixYtYtiwYSQlJVGtWjV7n4kbERoaysqVK1m4cCFGo5GGDRvywQcfoNPpqFatGosWLeLChQv2Kx9efvnlYuN7//336devn/3qjzFjxtxwfPlFR0czbNgw4uLiaNiwIR9//DGVK9tOrZ599llWrFjByy+/TExMDAEBAbRs2ZIOHTpc9/aqV6/Oxx9/zPz581m8eDEGg4G2bdty3333MXHiRF555RW6detGjRo1iqyBuFq8FcXnt18iuGoYW89B1UrwwHWOrilEeTLhsQDWf5JJu4Rk9FaVBG8D6QpUaebPwBdsHZ99O9TG58xwvAf+H14nkjGFVqHyukHoa7i4Sk64TEVJKmScCie89tpraLVaXnnlFXeH4hR3xlvScSpuRMGOXRFLtaSYnGt3iBpqxLcc5iA3Y2e2m22fC9dUFPa/oybGrMqhSpoRM/D8XTCwT0jZBVkKytvn7OpxKlKVSfbnAepsl5Zdlm7q68uMRiN33HHHVZeZPdv1H+78+fNZvnx5sfObNGlSqO+IuLazQy00Xw4XshQKDvXtSEVbMU4KxE2qZxM9J18rh1mxuIqK8aN0UycVBoOB3bt3X3O5TZs2uXS7Y8aMcXnzjLA58JSF4MXX/lp739TffCGEp6kozR/y0+qEvNE/y4vyFm/ZUnmrXeHLm4UQwp0kqRDCYxXXTUglaYQkFEIIT1Qxkgq54bOocLb2s1A4sVDx1974DcOEEKI0qPke5ZkkFaLCaRkOW+8zYRsDwPZ4tJ6Z88NcM2qmEEK4mopif5Rn0vwhKqSWYZA0wrmBtIQQwv3KdzKRR5IKIYQQws2sFaThoGLshRBCCCHcTmoqhBAOunyt4UCSBlTQKXDwCTNhvu6OSoiKrbz3pcgjNRVCCLuQxVoOJOkADSgazKqGJl/qictwd2RCVGzSUVMIUeGoBc8zFNs/kV/ahoROGinjfAhROsp3MpFHaiqEqEAGfKcQvFiX+9ByOsVFBSsKoDBtR8X44RPC08g4FUIIj1J3iZYtMblNF2gALW3+qycqzQWF5/7S/REtSYUQpaGiNH9IUiFEBZFs1VC4ClXh1q90zP7LyUKKO03KLfbf5PL9gyeEp5KkQghRTmiYuUfPnH03XlKmDEoqRClR8j3KL0kqhLgpKLyx98b7ZQfoy3uLrxCeyYpif5RnklQIIZyWYtLyn7XysyGEq1WU5g+5pFSIcqbt/2k4laG9rnXPJkFE8DUWUrlKDazCzkta3tip8krH4mstfr0Ag35USFYL/MSoeXeKVelVS+XTHip3r1Y4nqpgUODt263c3wCCfK6sYrTApXQ4lQyfHQK9Ak82g0414VIm/B0Nlbygc03QFIj7ji8VDiXYtle9ErzdBW6pCrWDID0H7v4/OJV0ZX//Hga1g1QUFNsFL9fBaLJg0Bf9+ZiyzaReNhJcwwdNwWDFTa5ifB8UVVWlPlO4THJaZplt68S5WBrVCSuz7XmCw2diuX1jLa7/ByjvojWFK70yFRRUVFSgmGSl0K+Ela7hZkY3B0UDQV6w/xJM3aHFVFS7sKKAql75315eERlMwZ8kNXf9/BOK+tVSC8xXi5iXV7aa+481N6a88i0WsOROd9wBW0Jktl4pQ1HwN1vwsapYFchWVVQVdIpCgFWlmtmMv8VK5ewc/EwmcrRajFotPiYTwWnpGL0MaBQNWlUlJC2N6onxmDRaQjOSyNbpuewfBFkm9FbQmixgtuKdkUVgejre2VAl+zI1iSWZUEwYqEocKl4oigafZj5oTsWhzbKgxYyWHHRkosGIJcAL0nPQWB3febO3gi67+MNB3iel5Htt1YA5Mhx8DJieuAtreBDas/GYn7gDxWRF9dGj/WEPmpOXMN/VBO2nm9F6e5Ez6h70izdhevJODPN/xtK9Bacr+1H/z39Rjkej/eM45rE9MU/oD7rc72RyBto1u7A0rYkmNRNOxkHrulg7NrbNt1pREtJAVVF1Ots3XKcBowUlLRM1xA/FaEYN9kNJzkDVadD8fRpr41pQ/VqZdmFB/pVKvM7VXFDetD+vpU5zadllSZIK4VKSVJSu4MV63HZGUzAXcZiXL2EoTv7EoNBBu8B2uMq28oqxUniB/MlDUUkFxcy3x2W1JRVq7vO8uBXFlnCYr6xkMFsIt1jwVm0V1mbApChYgcq5+6eoKs0Sk6mSnUNUgD85elvNjcFiITQrG1QVb5MZraqisVp5+tfvqJESD8CWhq046R+OX2omSm5I3pkmQhKNANxm3MEltQ7JVAEgmEtUJx4jlfAjDiu+aK68IWjIxouEMvn25P+qKAWmOTM/fzkZXz6H93vr0B04X+Ry1qBKpO2fjV+ft9Aeclym4FdJAVRvPUq2yWGZnKHdyP5gaIn20dVJxfl8SUXtcpxUSOOoEOXExTRwS0KRv3KjuBCKayvIOyA705agFHgUta38r5V8WYF9O/liLm49+/J5y6qOC2py5xWM2exYqEWj4KOq6LG1I3sBOlXFkG8xVVHwMZkIyMnBqLtSC2TSaOxxmLW258EZqfaEAqDx5QvozFb7biqARa+xx1xFvUQKIfblUwihEpdRUDDji4LjfmnJKrNvT1EfX1HPi5uff1qlMUvsCUVRy2mSM/GesdqeUBQsv+C2lGxToWW8Pt9SzJ6UHelTIa4pOTmZDz/8kF27dmE0GmnXrh1TpkwhOPjaVW1JSUnMmzePXbt2kZWVRWRkJBMmTKBx48bs37+fDz/8kFOnTlG1alWefPJJ+vfvD8D333/PokWL6NevHz/99BPJycncfvvtTJ8+HYPBUMp7DGeiLmGy2M7wrFYrmtwfz9J4nm00ceJcbJlsyxOeX0hXgFrOfxglVVxNxPX+xuU/KOfVZOQ9dwX7aegN/gjnNYU4lKc6xllEzBZFKXRQtGCrsfDPnaZRVUKycwAIzsomsZKts4iP2VxoP9J8fEk3eONnzAYgzj8Es07rmM9ZVft7maBUJUiNJ4lqtvKJR81tvlKwkP+csTxXR5v0Wryuscxlg5aaN7ANVaPh2JnoEv09trul3g1ssYgYynkykUeSilKiqiqTJ08mPDyclStXoigKM2fOZNasWbz33ntXXddqtTJx4kRq1qzJV199hUajYfv27SQmJhIbG8vYsWN58cUX6d69OydOnGDSpEkEBATQrVs3wJaQ+Pr6smzZMjIzMxk6dCjfffcdDz74YKnvd92a1Up9G3lutuaPRgC/WymdCsa8vgb5ftiKSjDUYl5cq0lEUa7e5JG/jKsNwFVU4lNkX42rrJ+/X4Wa168ibxnlyjSw1VoUOXaybeIlrYbw3CQ6U1G4qNUQYFUxWlS8rFYap6aharVgtVI7OQWN1UpIegZWrZYcb9uh0gpozSZUK3zVrgdtzh8n3eDD37UaoZgt6KwWtEYzOosZv/RMcrx1eGVZiFNCaaT+Qxw1AYUQ4kklDNs3JBsNFlR8UVHQYAasDs0BRe3R1Q5rxTVPFPdeW2tXQROVYGtOuk6qAtkbX4G5P6L/v1+LjM/UtRl+bz1JjgX063ZDtgl0GtSASqCqaBLTwWhG9dajBvqiBvigZGSjXExEMVlAqyHzi7FE1q1+3XG6hiQV4iqOHj3K0aNH+fjjj/H29gZg6NChDBkyBIvFglZbfO/9I0eOcPToUebPn0+lSrZ2u379+gHw+eef07RpU/r06QNA8+bNGTBgAN9++609qahWrRpPPPEEAEFBQbRs2ZJTp06V2r6KsrO7VxTtf76xjpphOguXzbazaj0QqIdp7a3M3afhfKa28Jl/kTUYVpJGminolT8UPv4nd2RPNV8zgqoW00eiwKGqqFqMgslGkX0hChz5lQLL2zeRL/FQ8yUOeUmEqoLFWnTNipbcA6RKRACcjbeQoNeRrrX1h6iaY8ILSNUoBFoshBpNZGm0XPTzRWO1YFWhekISfiYTZp0OrcWCPstE7YREfDPTiQkNIdug5deIpvgYjVTKyqBapDeXD6hYUDGE6Kk2pAnGHZfI3JNKQnZ1DqZ5o1oM+JCDSfFF92QzvAa3xtimOqz4C81za9CZM9CSioIJc91qZPzyKpr4VNh/Gv2ybej+PoupSzOMX41H/+KXGFbuwBRRGWuXW9F//QeK1YxaNQhzz5ZofzmI9nQcitWKpVMjsj4dDdVK3smxKFc7SchaMJysBcOvun7W7EFkzR7kkljcoTzXJuUnSUUpiY6Oxmg02g/0eVRVJSkpiSpVqhS7bkxMDCEhIfaEIr+4uDhCQ0MdpoWFhbF58+Ziy/P29sZoNJZwD4SnmtbGxJv79PmmqBgA4zVH47Ny5HEz4X5Fzx3czErwogLJrv3sPv9ElQV3Fk4oAN7opPJGJ9uwmxk5UPMzre3ykFzPtzQz6FaVbBPUCbR17M80QXwG+Oihqm/hMm+kRirDCD/9C4E+0KOI2uqTiTD+fxCVYrvU9KNeEOxbXE3QtS7j9bnGfIDa11xi6+aNBIRG0OaWRkUvMNqJzQA80Qb1iTaYgIL3lrVWC4Kmtcl5rCs5+aabZg/FNPtKh0XzW086rGd6w8ltixKzVpAujpJUlJLQ0FB8fHzYunXrVWslihIeHk5iYiKZmZmFEovQ0FB27NjhMC06OpqwsJunGeBmN7ktTG5b+BbktitDrq64hMLumhUgFtb+x8Jd1z424usFSaMt2OpEildJbxs3ojT4GuChZsXPbxACPzxaOtsWoiQqSp+KipEaeaCmTZsSERHBjBkziI2NxWw2c/78edasWXPNdSMjI6lXrx5vvfUWiYmJZGdns3nzZvbs2UOvXr04duwY3333HTk5Ofzzzz+sXbuW+++/vwz2SlR4V7uEE6jjqzqVUAghSkaliErBckiSilKi1WqZO3cuBoOBYcOG0aVLF8aNG0dUVNQ119XpdMydOxdVVXn00Ufp2bMn33zzDYGBgYSHh/PRRx+xdu1a7rnnHmbMmMGYMWMKNbMI4Ujl/Q5FN1kUs7ij3MQix1poSSGESxS8nrp8ksGvhEvJ4Fel62r7XNzAWAoWfu5noV34tcsPXpRbRsGRg3KFeZs5OqhsM4ub7XO+Zp+KCqq8fc6uHvzqhDLb/ryROsmlZZcl6VNRxnbt2sW4ceOuusy2bdvw8XGm05cQV4xtZuLjwwUTC5XEEddxv/Jirh+8tfL1xyeEKF5F6VMhSUUZ69ChA7t373Z3GKICeuN2GNXSxMd/K/wRDb3rqTx/23UWVuTvm8rSHtL+IURpqChNBpJUCFGBVPeDWXe48OfJPkaFyvCmJvxKf1BWIW5KUlMhhKhwetUy8/MFnePImsUMdCWEcB1JKoQQFc7K3ipnkk08skEBi8Lbd1rlElIhyoBVkgohREVUNwh2P1oRrpgXovyQmgohhBBCuERFSeElqRBCCCHcTGoqhBBClJn0Lw9iGXPlxoF+MaPR+srlOBVFRUkqZJhuIYTwcKZjCQ4JBUB6+AI3RSNKQ0W594fUVAghhIfL7PaVu0MQpayi1FRIUiGEEJ4us+ih1r1um4T38TgAjBEhZB2YV5ZRCZdyf1KRlpbGe++9x/bt20lKSuLAgQN8++23xMXFMXLkSKfKkOYPIYTwANkpOazv8QuJr1oxZZgcZ3oVtYaK9/E4+30tvc4mEhjwBF4PvlP6wQqXU1HsD3eZPn06qampfPTRR/ZpzZs359tvv3W6DKmpEEJ4hHd/yOSXEwqvdIM7WxZ9Q72MHJXfjuRQP1xHw7Dy//N1YeNF/nzhYKHpF0deIO3H2vhX97dNyCl6/YKHHwXw3niwuMWFB/OEwa927NjBli1b8PX1RVFs8dSuXZtLly45XUb5/6sUQpR7t76RhUanJzDHxJNbfbh1dTI/vBnksMxrP2azfZeFsIwcMvRaTvt7cWCqFxqN+3+Mr4fVYi0yocizsfcOBvzdC0u2CYq5j1tRN5MV5ZMndNAMCAggNTUVX19f+7SzZ89SrVo1p8uQ5g8hhFvtOGOmbmoODRMzqJphpH1UEhajleEL0hyWW/8XaFXYVz2Is8GV8FIUen1aPu9Jknw2jW/v2njN5axmK+nV5hc7v6J07hO2moq8h7s89NBDjBs3jt27d6OqKvv27WPatGk8+OCDTpchNRVCCLd6c7OJSip4W2yn4yoQbIXkU2Y6Ts+gupcPa6bafqyiAr257WIyCpCl03BI9QL0boy+5C7tT+C3IXucWvaHe7fQpZh5CiqaIs5vFcC35UQy9s+5/iBFmfOEBPGZZ57BYDDw+uuvo9FomDp1KgMGDGDo0KFOlyFJhRDCZcI/UNGhQVWt5GgUnmluYXhLha//NnPqkpV1l7ww6XTU8jHRsIoGX1R2ZXjTwsdKWHoOWrB3PDRYVeqm5pDkpeXxCYlkhQUQnp5j/+n1MVtpkpzNrK9NTH04wH07XULOJhQApvjia2LyUoqiDkW60863gQvP4AnNH4qiMHjwYAYPHnzdZUhS4WbDhw+nXbt2DBs2zN2hiJtAlhnm7dew/5LKxjMqt8alo1oh26DBgooWDf6ZRi5U9kWxqviaLMT5GdCbrVRNz8FgAZNOg8VqpUZGDtH+3iR7G0j10WPSaVG9FVAUUFUCMnNYuV/Dl/sVAo0a4vwrYfbSgKpy3ujN+Yu5P6NesL+mFz2Px4Hq+NOqASrnWIjz9SLDoCNbr6VGajYAFgUyvfXs2mOCh8v4jSxDaTo9/mZTEXM84TAkXMUTair27Ck+4b3tttucKkOSCiFuEiYLNPlST4rRdtC/5/QljDoNf9SujElnO9ijKBjMFm4/m4DOqhLna6Dq5Uz2Vg9Eh0K6twFFVel6Op6DYQFEBVUqvCFVJTjLRJZeR7ZBB6pKeqV8w0nn9iq3/58rJsCbWilZjkUBqV469tYMsi9/IDSAuonppBn0HKgeyJ0nK/ZZeZx/AP5JCfmm2OonqnLyqochr0lfkDN7cOkGJ1zGE5KKyZMnF5qWkJBAUFAQv//+u1NlSFLhAsnJyXz44Yfs2rULo9FIu3btmDJlCsHBwVddb968efz111/s37+fJUuW4OPjw6xZs3jhhRfYsGEDfn5+AKSnp9OrVy/mz59PixYtaNu2LY8//jj79+/nzJkz1K9fn+nTpxMREQFATEwMc+bM4e+//0ar1dK1a1fGjx+Pj0/Rl+mJm8PvMdgSCsDLYsVgVTkT4GNLKMB+0DbqtFz29aJ2ShZ+JgtB2Wa0gEWrIVuvpWlsCqpC0QlFbjntLyRiVRR21Q4h1du5Pg8HwgIIzDLhbzSjcOXKhjQvnUMColNV/E1W/E05+J1L8ICf4tKlKaJCwkA6PqQUu44CeH2xRZKKcsQT6p22b99eaNry5ctJSEgoYumiSVJxg1RVZfLkyYSHh7Ny5UoURWHmzJnMmjWL995776rrPvfccxw6dMih+UNVVUJCQvj555/tPW5/+OEHateuTYsWLezrXr58mddff51q1arx4YcfMnXqVFasWEFOTg6jR4+ma9euTJ8+nczMTF588UUWLVrEhAkTSu+NyHUm6hKm3A53VqsVjUZTas+zjSZOnIstk215ynOj2cqJc7HXta7OqANqAAomja093tdYRJu9qhKQY5uuUSFTp8GkUew/emneejTJWRhMFox6baHVQ9Oy0aqgVVVqpGQ5lVRUTc+hZkqWPaEA7IlF1fRsvMwWcnRaNFaVKulXRmEIMFpI1ivX/Z6443lJ+eVkFZiiYMSPHHzxJqPY9XKqBHDsTLTb97csvtvueN7ulnrFvvfXwxNqKorywAMP0Lt3b6ePH5JU3KCjR49y9OhRPv74Y7y9vQEYOnQoQ4YMwWKxoNUW/tG9GkVRuP/++1m7dq09qVi7di2PPPKIw3IPP/ywvWZi2LBh3HvvvURHR3P06FGsVivPPfcciqLg5+fH448/zrx588okqahb0/nrmW/UiXOxNKoTVmbb8wQ3ss+RwELMTNupIzEHjgdXokFyJlmX0oj3NWDUKmhUCMg2o7NaSfHSkq7XcqaaP745ZqpkGPE2W0k36Ej01tPuQhKHw/xJ9jbYEg4FKhnNtL6YbN9mpl5rb1YBHPtM5E7zyTHTLC4Vg8WKRQFd/kUAvRXuOJPAhUAf/q3sS4aXDjKNgK1fxfEQXxrVuXqtoCcpfmSKogVkZxc5PZ661ORQkfNUIOfgXCIN5efKmJvx7zk/T00qjh8/Tk6O88OpSVJxg6KjozEajXTr1s1huqqqJCUlUaVKlRKX2a9fPxYvXsyhQ4cwmUxcunSJe++9t9jl85pZkpKSiI6OJiYmhs6dOzvEcr1nSaJieaSxyiON8zr9eec+CtIBgUVMzz9WtH++5yasVpXb3s8kTfHmQFgA4Wk56KxW/DOyqW0yc76qvy2hUFVQNGgtVvSqSrZOg8ZsIVOnwdtsQVtMHbCXxUqGQYtVq+FYVdu2w1OzORfkQ3CAZ/4Yu4q3WvTIVxb0Vx/8qhwlFMIzRtTs0qWLfSRNAKPRSGpqKi+88ILTZUhScYNCQ0Px8fFh69atJa6VAIpcJyQkhK5du7J27VqMRiO9e/e+an+IqKgoAGrVqsXFixepXbs233zzTYljEeJ6aTQK+6b45ptS8KclfzNL/oOkhfs/TOKUvx+Vs0y5U2xL6LGdcZuALL1CkpetTKtG4Ug1f0IyjWRpFQ6NLl8Hz3qP1eD0VxddUFLxJwqe0D4vSsYTPrOCTfZ6vZ46deoQEhLidBly+nqDmjZtSkREBDNmzCA2Nhaz2cz58+dZs2aNU+uHhYWxZ88eUlNTiY2NtU8fMGAAGzduZOvWrUWOZnby5EmMRiOXL19m9uzZ9OjRg8DAQG6//XZycnKYN28eCQkJGI1GTp48yQ8//OCyfRbClZo18qF2SjbbI0L4rXYIZ4IroQJJQEhjeHO8kR/eDUZvsaKxWgnONHJrbAqZei3Z5fAXrNXzt1K5XZBTyzZ+uu5V5ipYijgvVIHU5OXXFZtwH0+4oVi7du0cHq1atSpRQgFSU3HDtFotc+fOZdGiRQwbNoykpCSqVatG165dnVp/yJAhvPzyy/Ts2ZPw8HDWrl0LQNu2bQkPD6dy5crUrVv4h+Xnn39m4cKFgK3KauLEiQD4+vqycOFC5s+fzxNPPEFqaio1atSgb9++rtlhIVzs1R4+DN6YxV1nEwEwK7aaih/n2n7M8jrjeqsWUlBIqmQgyUdPpWwT6/9TdH8DT9d1cQcsJgvr2v1y1eVuGduYlB1H4cezxSxRzPmtNHeWO+5MJp5//nmHZo+ivPvuu06VJUmFC1SuXJlp06Zd17q1a9dm+fLCZxUWi4WsrKxix1wfO3YsLVu2LHJezZo1eeutt64rHiHKmkELo4f58tGnGegAkwpfv1+44+XRyXo6L87khMkL/2wjr7c107ZRUX1CygetXmtr4ylqXCugyh229yBwZX9SAj4oYgkLOiylFZ4oY8XcM65M1KlTx2VlSVJRSnbt2sW4ceOuusy2bduK7SuxdetWLBaL0zUeQpRntzfz4va5XtdcbscIPbafXx0V4edrwJ+9AMjJyOGH27demREGXea1v/JaCwXzB6WYWgpPaJsXJae68W67Y8eOdVlZ5f+v0kN16NCB3bt3X/f6K1eupH///uh08hEJUdF5+Xox4G9bgrF180YCQiMcFyiiQkJFWyiBMFX1I/PUolKJUZQu1f0XfwBw8OBBTp06hdnsOIaNs3cqlSOWh/rss8+Knbd3794yjEQI4Xb+CqQVTCEUUlL/zy3hCNdzZ01FniVLlrBixQouXbpEmzZtADh8+DC1a9eWpEIIISoKw6r7Mf5nrbvDEKVI9YC+tStXrmTlypX069ePzz//HJ1Ox9q1a/n777+dLsMDdkMIIcTV+Nxeu/DEZ24p+0BEqbHoNfaHuyQkJBAeHk5ISAiXLtlu1Ne3b182btzodBlSUyGEEOVAYOp4rFYrqsmC1qt8Dfglrs0Tair8/f1JTEykdevWLF++nBdffJGjR4+WaERmSSqEEKKc0Gg04OUBRx/hcp7Qp+KRRx4hJSWFoUOH8uSTT/Ltt9+SnZ1doiETJKkQQggh3MwTrv7If2npli1bOHnyJNWrVy/RPawk5RVCCCHcTNUo9oe7PPDAA6xYsYKUlBQqVapE8+bNS3xTTEkqhBCilPT6GoIX6m2PBVIxLIpnVa483GXYsGH89ttv3HXXXYwfP55ff/0VVS3ZcGqSVAghRCnIMMLuBD0oiv0RvKDkdzIWNwdPqKn4z3/+w6JFi9i0aRO33XYbH3/8MV27dmXu3LlOlyFJhRBClILvTxYx0RMazoVHUpUrD3cLCQnh3nvvpU+fPmi1WlatWuX0ulIfJ4QQpcBc1B2iPOCAITyTeo27hJYFo9HI5s2bWb9+Pbt27aJDhw5MmTKFbt26OV2GJBVCCFEKLme5OwJRnli07k8qOnXqRHh4OP3792fmzJkl7qQJklQIIYTLWKxQZZHO1ocir39b3rEid9rpZKgX5J74hOfyhGaPzz//nFtvvfWGypCkQgghXKTK4gIJBYDFsfd8m2VaXutoYVw7CH49B51Oi2KxcEtCKqFZ2aRrb+GlEellG7hwO09o/rjRhAKko6YQQpRYxBINwYv1BC/Ws+KIbdrEzQAFEoqiaBRe26Ul+C0L6LWYAYtWx9kgf84HBxFgtfLmkoDS3QHhcTzhklJXkKRCCCEK2HASe9LQ4b+Ov/KDf4AUqxZbu4bC2N/01PlE4fPjztyPQwVVBavVoUbDCpg0GsJMZoy+vhh0OrZsS3HxXglPpiqK/VGeSfOHBzl37hxffPEFf/75J4mJiQQEBFCvXj26du3K/fffz9ixY9m/fz+KoqDX6wkNDaV9+/YMGjSI0NBQeznDhw+3L+fl5UXLli0ZNWoUTZo0cePeCeGZNp2BuoFQP8T2WlXhsc168jpDHE/REbzYCiiEaKwk2hOKXKpCqqrLzTEU2/+qWnSNhZq7jFktcHmISkS2EU3uAUWn0/HrvHO0rhxKeOeX0GBCi4qCFjNWsj8eiqVTJDQId/XbIdzEE/pUuIIkFR7iwIEDPPvsszzwwAMsXryYsLAw0tLSOHjwIKtWreLOO+8EbAnDsGHDSE9P5+TJk6xcuZLHH3+cRYsW0aBBA3t5eculpqbyf//3f4wcOZJ169YRHBzsrl0UwuMEL85LHgpmAEqB57ZBqxKtCkVfF5ovmShYRN5gRhb1StKh19qSCovVobYivzZHLnCsz0HOBt5Bp9TtKKoZsKAHdGM/u+a+FdkKk7urSoHljCPvIfu1R6CS1zXLFaXD6iE1FJmZmfzzzz/Ex8fTt29fYmJiMBgMVK5c2an1pfnDQ8ycOZMHHniAcePGUbNmTXQ6HcHBwdx5553Mnz+f8HDHMxI/Pz9atmzJO++8Q5s2bZgxY0aR5QYEBDB69Gg0Gg379u0ri10RolyouTh/gqAUeBSniHlOHQtU28OaW0NhUcGgA2+9LenQKvxbyYs0RcGQY+LWUxewGBQu+weRXMkHvWpGQUFBA2hynxeOOv9DU9RDtf1fcDnvRb/g1+sNZ3ZElBJPGPxqz5493H333cycOZOXXnoJsJ3wTp8+3ekyJKnwABcuXOD06dMMGDDgutZ/6KGHOHLkCDExMUXON5vNWCwWAgMDbyRMISqUjNIYiSr/2Wb+S0oVW+KAgi2xyL+8lw689Fh8DASdv8zQ9TuIvBiDJnc5rWrOjbR0jza6/WfBbCnVbYjieUKfijfffJPp06fz448/otHY0oM2bdrw119/OV2GNH94gISEBACHfhGvvvoqmzZtAsBisbBu3bpi169atSoA8fHxhWo0kpOTmT9/PlWrVqV58+YujrywM1GXMFlsFblWq9X+xSyN59lGEyfOxZbJtjzludFs5cS5WI+JpyyeZxvNHDsT7fLyvahMzo3+BKoUPtYrypU+FUqB6Ypqq5mwFEgsAKtG4XyNEPRGK6gqFq2CzqKSbAgm2lCN6sbLRWzMdTIbhnHsQpx8t5183u6Wetf/ZhfB6sZ7fuQ5f/68ffRMJfd76e/vj8lkcroMSSo8QF4/h4sXLxIREQHAjBkzmDFjBnFxcfTu3fuqd4q7fPkycCW5AFiyZAlLly7Fx8eHjh07snjxYry8Sr+9tG7NaqW+jTwnzsXSqE5YmW3PE8g+u07sCAhenHfkv1qfimsouGr+v1U193X+REOj2GorCqynqCpVULlcNZDA+Ewy/XUEZ6VQL/0s1YyJuTmKNa8hxakI81eW5N9cwT4VpvvbY/x4GJH+Pk6UWjpuxu92fu68kVieRo0asXPnTrp06WKftmXLFho1auR0GZJUeIA6depQq1YtVq1axQsvvFDi9desWUOLFi0IC7vyB/nMM88wbNgwV4YpRIWTNMLEB39BZDD0qmubZrFAlU+vXP1h7w8BaLBiJd/VH/ajde5hPi+hUPOtagGw5rsyBFvDc46tqaFKtgmNArXTsmiWlsFf7RuQDkSciaHDE9UIH78DFRUToFIJMGEeezeWjo2w9m1XOm+MKHOecCnpiy++yIgRI7jrrrswm828/PLL/PLLLyxYsMDpMiSp8BDTpk1j3LhxAAwcOJCaNWuSnp7Orl27ilw+MzOTU6dOsWLFCvbu3cuSJUvKMlwhKozxrR1fa7XwelsT0/faxp2o7WPmn6eunOcP+sHKdxfzJR2Kio9qJkst8HOavw+ofdncWgqNBnQq5FiI1+t46HwMVU22JENVFPxMJupNakx472AY2oYMl+6x8ESeUFPRsmVLvvvuO7777jsefvhhQkND+eabb6hVq5bTZUhS4SHatm3LsmXLWLp0KSNHjiQ5OZmQkBDq1q3LCy+8YL+xyyeffMKSJUvQ6XSEhobSpUsXVqxY4dAfQwhxY55rA8+1KbodeVkfqLnYRAa2pGPirSZe6QQf7DPx+p+5A2AVdXxQuXLdqFWFHDNYwQuVbK0O8pIKIF2j4b7ecvn3TcUDaiqefvppFixYwDPPPHPdZUhS4UEaNGjArFmzip3/ySefOFWOs8sJIa5P1AgAx6RjfBt4fTeFOywo+V6ogFXl0cYWFvTSEvyGiRyNhl+qBHLX5WTCcoykoDJ8nLEM9kJ4Ek+oqTh+/PhV++85Q5IKIYRwkX8Hm2j4hQ7HETfzniigUdn/lIU6uVd3J72SN7S3FrD1idq6eSM6XUSZxCs8hyf0qejVqxc///wz/fv3v+4yJKkQQggXqVIJkkabAZizG97YV+B+IAr2hEKI/FTF/cNG7d27l2+//ZbVq1cXmrdixQqnypCkQgghSoG54LjbQlyFJzR/DBo06IbLkKRCCCFKQatQHAeIUCh8gw8hcnlCUnH//fffcBmSVAghRCm4J2/ARYdjhWQVomie0KfiaiM3O9vPQpIKIYQoJc38zBxO09nvYJo0RpIKUTRPqKn4+uuvC007ceIENWrUkKRCCCHc7fcnVQpeeipEUTyhpuKrr74qNG39+vUluqGY+7ubCiGEEDc5T7hLaVF69Ohhv7mlM6SmQgghhHAzT0gmrFbH5jmj0cjmzZvRarVOlyFJhRBCuEHezUuFAM9IKpo2bWq/5XmegIAAXnvtNafLkKRCCCHKWPBC3ZWMQlVJGmV2b0DC7Twhqdi8ebPDa71eT9WqVQslGlcjfSqEEKIMRS42594G/cojWW5DetPzhD4VH3zwATVq1LA/qlWrRkJCAm+++abTZUhSIYQQZSguR+vY7qEojPrBffEIz2DVauwPd9mwYUOhaT4+PqxatcrpMqT5QwghypKm8EGjkpze3fTcWUPxzTff2GJQVfvzvNe7d++mTp06TpclSYUQQpQlfeFJuxLLPgzhWdyZVKxfvx4Ai8Vifw6g1WoJDw/ngw8+cLosSSqEEKJMFT54RKMDpLPmzcydScWXX34JwPz58xkzZswNlSVJhRBClCWrKr3ZRCGecPXHmDFjUFWVmJgYLBaLw7xatWo5VYYkFUIIUZaUIjIKi8r8P4yM6WQo+3iER/CEpGL79u1MnDiRzMxMVNV2e928y0mPHj3qVBmSL98E4uLiaNu2LdHR0e4ORQhR8GdXVcGsMntLNiEvS+eKm5WqXHm4y+zZs1m4cCE+Pj4cOXKEY8eOMXToUMaPH+90GZJUCCGEu6gqqKBXFAx4M/jUUXa+ke7uqIQbeMI4FRcuXKBdu3YEBASQnJwMwIgRI+SSUiGE8CQ7LkKfH3Iv+yg4PrcCVbJyqGY0EZJlYNKBPzDcvpnYIB9CsjNQVJUqWQUSDZ2GtPUvYr2jaaFtKRcTqDR8EZrz8VjDg0EB7c4TKIDV34e0C4uLvKxVuJcnNH94eXmRkZFBs2bN2Lx5Mw899BAmk4mkpCSny5CkwgWSk5P58MMP2bVrF0ajkXbt2jFlyhSCg4OvuW7fvn3p0KED58+f59ixY4SHh/PSSy/RokUL+/yuXbty+vRpDh06RO/evZkyZQpr165lxYoVXL58mfr16zNu3DhatmwJgMlkYuHChfz0009kZWXRuHHj0tx9IcQ12BIK20GjzcV49tWscmVETaB6Wg7VMnI4Uq8+F04E0zYqluDEFPv6FsDhlk5mK/69Z5GS+n+FtuXXYwbaCwkAaM9ddpinTcvCr8VE0g9+4MK9E65gKaqvTRlr3rw5Fy5cYMCAAUyaNIlff/2VEydO0LdvX6fLkKTiBqmqyuTJkwkPD2flypUoisLMmTOZNWsW7733nlNlXLx4kQkTJhAREcFXX33FlClTWL9+Pd7e3gAcOHCASZMm0bRpU8xmM5s2bWLRokW8//77NGrUiE2bNvHcc8/x9ddfExYWxsKFC9m9ezeLFy+mRo0a7N69m7/++qs03wa7M1GXMFlsd7qzWq1ocs+ISuN5ttHEiXOxZbItT3luNFs5cS7WY+Ipi+fZRjPHzkR7TDzX8xyu9JwPT8uioAuBPlTLyAHgTEh12kY5door7h6R/x47j+pjuLItVeW2qKv3y1Cikzzy/Sxv3+12t9S76vtcUp5QU/HJJ58AEBkZydKlS9m7dy99+vShR48eTpchScUNOnr0KEePHuXjjz+2JwFDhw5lyJAhWCwWp24Z26dPHyIjIwF46qmnWLp0KYcOHaJt27YADBw4kObNmwOg0+lYt24dAwYMsE/r06cP69ev5+eff2bw4MGsWbOGt956yz4KWoMGDVy+38WpW7NamW3rxLlYGtUJK7PteQLZ5/JKJa+m4kB4iK2GIl8zSFIl21UfXiYjHc4dBMCkaNCr1tznCvrc3vj2Ev28aBhZu9CWTL1bY/hhX7FRGB/sSGTd6q7YKZeqGJ/z9fOEpCLPhQsXsFqtPPPMM2RlZWEymTAYnLsySZKKGxQdHY3RaKRbt24O01VVJSkpiSpVqpSoPJ1OR2Bg4FXbsOLi4ujevbvDtLCwMGJjY0lMTCQjI4PatQv/2Agh3CNphJm6n2pItiicD/K1Tcx3ELGoKlGKQsfkZPZUb0uc9ji+ahpp3pWoEx9LVVM2VmxJAYC5fzuyvhhb5LYyV4zHuHon2lMxWOuFYQ32xeuVlWgvJJA9oS+m5+8r3Z0V18UTkop///2XcePGERMTg9ls5uDBg2zYsIGdO3c6XfMuScUNCg0NxcfHh61btzpVK3EtmZmZxMfHX3WgkdDQUGJiYhymRUdHc8cddxAQEIBWqyUxMZGaNWvecDxCCNc4M8xW6xC8uHDbudVk4aCvD6ZqIUS0DCKw5+M0uKUR4bnzU0uyIUXB/HAnh/E5M3u0vM6oRVlx56WkeV599VUefvhhBg0aZO/X17FjxxIN0+3+niHlXNOmTYmIiGDGjBnExsZiNps5f/48a9ascbqMs2fPkp2dTUpKCu+99x7NmjW7aufK/v37s2bNGv755x9ycnL47rvvOHHiBL169UKn09G5c2e++OILUlNTiYuL46uvvnLFrgohXEItNMUvy0xlDXz3cmUiW8q53s3Iqij2h7scP36cxx57DEVR7INeVa5cmfR05y9zlm/vDdJqtcydO5dFixYxbNgwkpKSqFatGl27dnW6jN27d7N+/Xqys7Np164d7777rv0DLUr37t1JSUnh9ddfJz4+nvr16/PRRx8RFmZrj5w6dSpvvPEGffr0oWrVqoWaZoQQ7mSl4PlceqAXF0bLz/HNzBOaP2rXrs3hw4dp1aqVfdrevXupW7eu02XIt9gFKleuzLRp0657/YEDB/Kf//ynyHnff/99kdMHDBjAgAEDipxXpUoVPvzwQ4dpN3qTGCFEKfKAA4pwL09IKsaPH8+YMWN49NFHsVgsLFy4kC+//JKZM2c6XYYkFaVk165djBs37qrLbNu2rWyCEUJ4No3V3REIN3Nns0eerl27smTJElavXk2nTp2Ijo5m/vz5DjUX1yJJRSnp0KEDu3fvdncYQgiPU7hPxfDaklTc7NyZVEycOJE5c+YA0KxZM+rXr28fIqGkJKlws+KaN4QQN48M87WXERWbO5OKjRs3Orxu3749//zzz3WVJUmFEEK4WViguyMQ7ubOPhVqwYHV1MK1ac6SS0qFEKIM9QlVcWwCUXn5TndFIzyFO+9SWvBqw6tdfXgtUlMhhBBl6Mv+ELzYTN7Przcmt8YjPIPVjf00rVYru3btstdQFHwNtkGwnCFJhRBClLGkESpIMiHycWfzR1hYGFOnTrW/rlq1qsNrRVHYvHmzU2VJUiGEEEK4mRX3JRVbtmxxWVmSVAghhBBu5gmDX7mCdNQUQggPYrGC0QI/HbPw+zmLu8MRZcSqXHmUZ1JTIYQQHqLvpHj8Mm/lvK83/wZaMHnpQVVJeqGcH2nENVk0FeMcv2LshRBClHNZWWZy0HIqyB+TXk+dLBNaixVUMJqvf9wAUT5ITYUQQgiXSUs34me20D4xBYADAX6cDKwEgMWqghs78onSp1aQz1dqKoQQwgPo9FqapKWjwfbD3Dw1Hf8cE1jVGxqMSJQPVkWxP8ozSSqEEMIDKBprocsK2yWlgaIQvkBD8Mc6wuYrfH3MTQGKUiVJhRBCCJc4+eZv/HnHBjL1WiyKwt6QAL6qG87hQF8wKKDVAQo56BixTU/wQj3BC/Qs3u/uyIWrVJQ+FZJUCCGEmx1an0ZscFU0Gg1HA/34o1owiV4GYn28wFTgXiF5d0nXwIs79e4IV5QCK4r9UZ5JUiGEEG4UFfAuWTovNECsXscRv0pXZuo14K8HRc195F9TAQUeWle28YrS4c4birmSJBVCCOEm50Pe5d+QBlSLSaPG2QQiTkYTZLYQlpkD5CYRRiuYAWtubYVGgXwHnk3RWneELlxMmj9uIjExMbRv3559+/a5OxRGjRrFjBkz7K/btm3L/v373ReQEMJ5ViuaRRvwD3gCr4BBXKpUHatGC4qCSafheN3qeKsQlmOmZqYRW21E7lHGStFXlSoatp0tu10QpcOsaOyP8kzGqXBCeHg4u3fvdncYACxcuNDdIQghSsA/7Gk0mTkO0xTAGwvdUjdywqcRh31vJdXHmyT/K00fPmarY0FaxVZLkUfNK0nl/g16+tWzsKxngXVEuWEp5zUUeSSpyCc5OZkPP/yQXbt2YTQaadeuHVOmTMFoNNK7d2++++47qlev7lRZe/fuZcGCBZw6dQo/Pz/at2/Pq6++yt69e5k5cybx8fFotVoaN27M5MmTadSoEQDDhw8nJCSE7OxsDhw4QGBgIOPGjaNr164AjB49mhYtWjBixAgGDx4MwIgRIwDo3Lkzc+bMYfbs2WzcuJG0tDT8/f256667mDRpEnq9dOoSoizpNvyFtkBCkUcBFKxEZh3jvKEW1nSomZhEVEgwAMk6je0mIAZt7sLFHHVseQXfndby/WmVvvVk9M3yqLxfSppHkopcqqoyefJkwsPDWblyJYqiMHPmTGbNmsXkyZNLVNa///7LuHHjmD59OnfeeSdxcXGsWrUKgIiICObNm0f16tVRVZUvv/yS1157ja+++sq+flRUFJMnTyYyMpLNmzczbdo01q9fT5UqVRy288UXX9C2bVsWL15My5Yt7dPvu+8+hgwZQnBwMElJSYwfP57Vq1fz2GOPXf8b5KQzUZcwWWxnS1arFU3uePal8TzbaOLEudgy2ZanPDearZw4F+sx8ZTF82yjmWNnoj0mnpI8r7b/FH5cW/uU41gw0HbdMV7t0Z/vG9YlxaCz1Ubk5N5UTKOAVrUlF2r+ETZzswrgcFQqDZU0j9j3iv7dbndLvat9pCVW3vtS5JGkItfRo0c5evQoH3/8Md7e3gAMHTqUIUOGMHHixBKVtWbNGrp06UKPHj0AqFOnDlOmTAHA29ubb775hl27dhEdHU1GRgZms9lh/a5du9qThN69e/PZZ5/xxx9/0K9fP6e2bzQamTdvHgcOHCA5OZmMjAwaNmxYon24XnVrViuT7QCcOBdLozphZbY9TyD7XM482xf1rfXFXiSoonCBCNIIx5sc4nMCiYyK56vI+kUtnJs7qFdqLfJVSlTSqYxq70+gl79r96GMlOvP2QXK+6WkeSSpyBUdHY3RaKRbt24O01W15EPkRkdHExkZWeS8V155hUuXLjFp0iTq16/PqVOnGD58+FXLCwkJISkpyaltx8bGMnz4cO6//37mzp1LaGgo7733HhaL3EJZiDLn501K4jIMT3+Mbv0eNFZbvUJeV7yDXrdx2VINvVkllChuU7fR+u9fCbHE8sFtXYgKCiDToLddWqrT2DprFrrYQyUIM/8+raIr3338bmoWaf6oWEJDQ/Hx8WHr1q1otY5/tXFxcSUqKzw8nKioqCLn/fnnn7z//vu0bt0awF6VVhyr1crFixepVatWkfM1Gg2qeuV05cCBA/j6+jJp0qQSxSyEKCU6LcZl4zAWnG61Yqj2Fpk+NQhIy6EBh9BgRaNaefLIRr66tQMnvPWgaGxJhaoW3a/CqnJmtPSjKO8qSvOH5LW5mjZtSkREBDNmzCA2Nhaz2cz58+dZs2ZNicvq27cv27ZtY+PGjeTk5BAbG8uiRYsAW1PIn3/+aS//s88+K7T+xYsXSU9PJzMzk4ULF2IwGOjUqVOR2woPD+ePP/4gMzOTS5cuUbt2bVJSUjhy5Ahms5mtW7fy+++/l3gfhBClTKMh5OhzaDFyqXIlzJorJzPZej1nA/whxwxGE1jyXdVhwTZmRW5TSFWtuWDJohyyoNgf5ZkkFbm0Wi1z587FYDAwbNgwunTpwrhx44qtcbiaW265hXfffZcVK1Zwzz33MHToUC5fvgzAq6++ys6dO7nzzjuZOnUq9esXbjs9duwYAwcOpGfPnhw+fJh58+bZ+3kUNGnSJH7++We6devG4sWLiYyMZPTo0Tz77LN0796djRs30qBBgxLvgxCi9Bmq+tPh7EOg0fBLeBcuVQomwSeY/zW8h2EnzhCZmmFLIDRcuZw0/zFHhb2D3BG5cDWLcuVRnilq/rpz4XbDhw+nXbt2DBs2zN2hXJfktMwy29bN2LFL9rli+jVyJWqKF9/ffSsNU1Lt049UCWF5vZoQ6G3rU6FiSzBUFTQKXpiJHVkxfsLL2+cclG9MEVfoMPpKM/uuBaEuLbssSZ+KEnr55Zf55Zdfip3frVs33nrrrTKMSAhR3t157FE2vn2Y+H/1ZIQEEV3Jh4YpaSQacseW0Sj2Ybo1qsrU9hYGN4XKPm4MWrhURWnEkqSihGbOnMnMmTPdHYYQooK5/bkGjJhpRs3tvP1PSBDpei3+ZgsnR5ow6Mp5vbi4Krn6Q5SKTz75xN0hCCHcwGjE8Q6VikIVoxl/VcWsGjCU8w584urMFeTjlY6aQgjhAQIDDEQmp+WOlmlr5gi1WIjz8XK45YeomMwo9kd5JkmFEEJ4AEWjEKhAi4wsAiwWvDQKp/18SNNq8JZRrSo8k3LlUZ7JN1UIITzEqo9DqaOPp4UxkbhKBnIMGmKmlPOjjHCKSVHsj/JM+lQIIYQHub/XOQJCI/jylkLjcYsKzOTuAFxEkgohhBDCzTLLeQ1FHkkqhBBCCDdLqSBJhfSpEEIIN/r9HAQv0BK6UH6Ob2pKvkc5Jt9iIYRwk2OXoO9PetBoMaIleL5UHt+0FOXKoxyTpEIIIdyk40quHEQUBRmQQpR3khYLIYTbKPbBrvKYLW4KRbhXOa+hyCM1FUII4S6aAkmFWeXho3e5Lx7hPtKnQgghxA3J346uKKBTAL27oxJuUTGyCmn+EEIIdypY7a0WvZio4Mp3LmEnNRVCCOEuauE+FSjw59TLLH3sD/fEJNyjYlRUSFIhhBBlLccMwR/lqyhWVfujWVwKCf5VuaCtyrsD9rgvSFG2KsglpdL8IYQQpSw5E97cA/89Bunoc5s48tVQKApYVTCr3H7xEr4m250g0nwC2VN9KS0PPYQ+xN8tsYuyUr6TiTySVLiY2WzmzTffZOvWraiqytdff01oaKi7wxJClKHmyxUuZOW/IVhevbZq+18BtFzJKyxWMNtefN68Ia//+jv1EmNoEnOM85UjONNsMW0z9qMCFiBz4zRo0xD08hNeYVSMnKLiJBXDhw/nr7/+YuHChdx222326b/88gsvvfQSffr04bXXXiv1OH744QdOnTrFunXr0Gg0VKpUyan1zp07xxdffMGff/5JYmIiAQEB1KtXj65du3L//fdjMBgYPnw4+/fvR1EU9Ho9oaGhtG/fnkGDBjkkLvmX8/LyomXLlowaNYomTZqU1m4LIXIFL9ZRfON47jRVvTJbBSxXai2MOi2HQuuQ7lOFtJyqdL+wkZqZUfa2ai1g6PGmfdXU32eiNo8ohT0RZaqCJBUVqk9FjRo1WLJkicO0zz//nJo1a5ZZDMeOHaN9+/YEBQUREBCATnftvO3AgQM89dRTBAUFsXjxYn777Tf++9//8uijj/Lrr7+SkJBgX3b48OHs3r2bn3/+mVdeeYWEhAQef/xxTp486VBm3nI//PADkZGRjBw5kqSkJJfvrxCiICd62+WNnqnNrbWwXpnlYzJTNTMbAItOyzki0arWoosB/Hu84ZKohbtVjJ6aFaamAuDee+/l+++/Z+/evbRt25bff/8db29vmjRpgsViG6buxRdfZO/evWRmZhIcHEzfvn0ZOXIkAHv37mXMmDE899xzrFu3jri4OFq2bMmMGTMICgoCoG3btnz66ae0bNnSYZ3du3fz3//+lzVr1gCwfPly7rzzTt57771rxj1z5kweeOABxo0bZ58WHBzMnXfeyZ133lnkOn5+frRs2ZKWLVvywgsvMGPGDJYvX15ouYCAAEaPHs3q1avZt28f3bt3d/r9vB5noi5hsth+AK1WKxqNptSeZxtNnDgXWybb8pTnRrOVE+diPSaesniebTRz7Ey0x8RzredQhxLJG5pbBZ3FwoCj5/A1W9BYrFSPTsBgNl91dStquXp/Ksp3u90t9a76uZRY+c4l7CpUUqHT6Rg0aBBLliyhbdu2LF26lGHDhrF582b7MoMHD+all14iMDCQ6OhoRowYQWRkJF27dgXAYrGQnJzMggUL0Ov1jBw5kuXLl/Pcc89dc/uPPPIIx44dQ6vV8sorrzgV84ULFzh9+jRz5sy5rn0GeOihhxg5ciQxMTGEh4cXmm82m7FYLAQGBl73NpxVt2a1Ut9GnhPnYmlUJ6zMtucJZJ/Lg7ymDCePEuYrtRAWFdaHVmXoX8fpvf8UvtlZNLPuw4QWHRaHFpM8GTtnEVm3PL0/RSt/n7OLlfOrPvJUqKQCoH///ixdupTFixdjNpvp1KmTQ1KRnJzMsmXLOHz4MKmpqWRmZnLy5El7UqHVahkzZox9+Y4dO3Lq1KlSizevaSN/n4hXX32VTZs2AbYkZ926dUUmC3mqVq0KQHx8fKHlkpOTmT9/PlWrVqV58+auDl8IUUDSCDP918H2uPwdNTU4dNQEW78Kk9XWBKK1jVehWCy0j/2Xfhd+omvmcZIN/pwzhBNnCKRr4p8AGOtXJeenVyA8pGx3TAgnVLikwmAw8OSTTzJ37txCZ/+HDx9m/PjxDB8+nLFjx1KlShUmTJhgbxopire3N6bcy7tKQ3BwMAAXL14kIiICgBkzZjBjxgzi4uLo3bs3asHBcQq4fPkycCW5AFiyZAlLly7Fx8eHjh07snjxYry8vEpnJ4QQDtb1B9t1GjZmi4UNZ+DjffBnsv5K50wV2xmq3pZoWPXefLjtvzSNjwLgXHANogw1uf3QU6RVkDNZUYwK8vFWuKQCYMCAAWRlZRXqj7Bnzx6aNGnC0KFDr7tsnU6H0Wi80RDt6tSpQ61atVi1ahUvvPDCdZWxZs0aWrRoQVjYlarDZ555hmHDhrkqTCHEDdBpoW8D2wNsJynBH+fWZORPFlQYfv9YJv3xP7J0XsRVCmXI/+4p83iFG1SQpLFCXf2Rx9vbu8gDakREBOfPnycqKoqcnBzWrVvH4cOHS1R2gwYN2LRpE2azmZMnT7JixYobjnfatGl89913vPPOO5w9exaz2UxycjK7du0qdp3MzEwOHjzIiy++yJ49e3j55ZdvOA4hRNlJGmux1VRY89VEWlV21a7BxaA6ZDRuKAnFzaRiXPxRMWsqitOlSxf27dvH448/jl6v56677irx5aYvvfQSb7zxBnfddRcNGjSgTZs2/PHHjY3R37ZtW5YtW8bSpUsZOXIkycnJhISEULduXV544QWqVKliX/aTTz5hyZIl6HQ6QkND6dKlCytWrJABtoQojzSA0XrlFuhaW6tIk/dq0+aWRu6OTpSpcp5N5FLUazXYC1ECyWmZZbatm7G3uOxzxRL8kTY3oeDKMcVsYtPd/950SUV5+5yD/J0b2NBZyvQs+3P1dR+Xll2WbqqairK2a9cuh7EnirJt2zZ8fMrvF0gIcQOsqi2pyKupsKgo2mx3RyXEdZOkohR16NCB3bt3uzsMIYTHUnOvAsmtMNbAqka/ARHuDEq4Q8Vo/ZCkQggh3EZRr4yoCaAo6LTFLy4qMLn6QwghxI34dxi2g0neA+niJso3SSqEEMJNqlSCf540odFYCdSbSRpz9ft8iApMLikVQghxo2oHQMKo4kf1FTcJaf4QQgghhLhCaiqEEEIId6sYFRVSUyGEEEII15CaCiGEEMLdKkifCkkqhBBCCHerGDmFNH8IIYQQwjWkpkIIIYRwtwpSUyFJhRBCCOF2FSOrkKRCCCGEcLeKkVNIUiGEEEK4XQVJKqSjphBCCCFcQmoqhBBCCHeTmgohhBBClIVu3bpx4sQJd4dxTVJTIYQQQrhbBRlRU2oqhBBCCHdT8j2cdPToUR555BF69erFww8/zIEDBwCYPXs28+bNA+DYsWO0atWK7OxsAIYPH8727dtdHPwVUlMhXCrIv1KZbathjeAy3Z4nkH2u+O7v35+kpKSbap/h5vucC1Inl+xwbDKZGDt2LDNnzqRjx47s37+f5557jp9//plOnTqxcOFCAH755RdCQkL49ddfueeeezh8+DBt27YtjV0ApKZClGPPPfecu0Moc7LPNwfZZ3Etp0+fRqvV0rFjRwBatmxJYGAgx48fp3Xr1hw/fhyTycSvv/7Kq6++yv/+9z9Onz5N7dq18fX1LbW4JKkQQgghKgBFUVBVFS8vLyIjI/npp58IDw/njjvu4NChQ+zatYsOHTqUagySVAghhBDlTN26dTGbzezevRuAv//+m8TERBo3bgxAp06dmDt3Lr169UKj0dCpUyeWLFlir9koLdKnQpRb999/v7tDKHOyzzcH2WdRlMcffxyN5kpdwMKFC3n33XdJTk7G39+fjz76CB8fHwA6duzIggUL6Nq1KwD33nsva9eupWXLlqUao6KqqlqqWxBCCCHETUGaP4QQQgjhEpJUCCGEEMIlpE+FqBBWr17NN998g9FopFOnTjz//PPuDqnUnT59miFDhjBz5kzuuOMOd4dTql599VX++ecfdDodISEhvPTSS9SrV8/dYbnc2bNnmTFjBsnJyQQFBfHqq68SERHh7rBK1c3y2d4spE+FKPeWL1/Ojh07ePvttwkODsZisaDVat0dVqlKSUlh9OjRpKenM3ny5AqfVGzZsoU777wTnU7H+vXr+e677/jss8/cHZbLPfTQQ4wfP57OnTvz+++/s2TJEpYtW+busErVzfLZ3iyk+UOUa2azmWXLlvH6668THBwMUOETCrPZzEsvvcSoUaMIDQ11dzhlolu3buh0torVJk2aEB8f7+aIXC8mJobU1FQ6d+4MwO23305sbGyF3Nf8bobP9mYiSYUo12JjY7FarcyePZuHH36Yxx57jF9++cXdYZWq999/n3bt2nH77be7OxS3WLt2rf3AW5FcunSJkJAQh2nBwcFcvnzZTRGVvYr62d5MpE+F8HgvvfQSR48eLTS9WrVqjBkzhqCgIKZOnUpwcDDnzp3jmWeeoVGjRtSpU8cN0d64q+3vfffdR0ZGBoMHDy77wErR1fb5k08+sb/+5ptvOHDggMO0iiT/GAR5TCaTGyIpexX9s71ZSFIhPN5bb71V7Lxz586hqqq96aNOnTpERkZy6tSpcptUXG1/FyxYwMGDBxkwYABgq6l5++23iYuL48EHHyyrEF3uavucZ/ny5WzatIkFCxbg5+dXBlGVrapVqxaq+k9KSqJq1apuiqjsVPTP9mYiSYUo12rXro3BYGDz5s3cfffdxMXFcerUKZo0aeLu0ErF6NGjGT16tP318OHDefLJJyt0R02LxcL7779PVFQUCxcuLNWbIblT9erVCQgIYMeOHXTu3Jlff/2VwMBAwsPD3R1aqblZPtubiVz9Icq9s2fP8tZbb5GQkICXlxejRo26afob3AxJRXR0NP369aNWrVoOzQOvv/46t9xyixsjc70zZ87wxhtv2C8pfeWVV6hbt667wyo1N9Nne7OQpEIIIYQQLiFXfwghhBDCJSSpEEIIIYRLSFIhhBBCCJeQpEIIIYQQLiFJhRBCCCFcQpIKIcqhJ598kgULFpT6dl5++WUefvhhsrOzS31bonj33HMPa9eudWrZF198kWnTppVyRGVj7ty59O3bF6PR6O5QhJMkqRAVVmJiIjNmzOCuu+7i1ltv5fbbb+eJJ55g9erV9mW6devG+vXrC61b1HSj0Uj79u1p2rQpcXFxDvN2795N48aNadq0Kc2aNaNbt24sWLAAs9lcOjtXBn7//Xc2bNjA/Pnz8fb2BmDQoEFMnTrVzZEVrXHjxuzdu9fdYVR4a9eu5Z577nF5uUX9zU2YMIGgoCDmz5/v8u2J0iEjaooKa/jw4TRs2JCVK1dSrVo1Ll++zO+//87+/ft56KGHSlzepk2bCAsLo2HDhnz77beMHDnSYb5Wq+XIkSOYzWZOnDjB2LFjycrKYtKkSa7apTI1b948RowY4TBMdEW/DbfwPNOmTePRRx9l0KBBhW64JjyP1FSICik5OZmDBw/y9NNPExYWhkajITQ0lAEDBvDGG29cV5lr1qxh4MCBDBw48KpV0TqdjqZNm/LUU0+xZcuWIpd57733eOKJJxym7dy5k7Zt25KVlcWuXbu45557aNmyJW3atOHJJ5/k2LFjRZa1e/dumjZt6jDto48+crjp2MWLF3n22Wfp0KEDnTt3Zvr06WRmZha7D6dOneLQoUOF7icyePBgPvroIwCioqJo3LgxCxcupE+fPjRv3pzhw4dz6NAhxo4dS/v27bnzzjv56aef7Ou/+OKLDBkyhAkTJtCxY0e6du3KypUr7fO///57unXrRvPmzWnXrh0jRowgOjraPj8xMZGXXnqJO+64g7Zt2/LUU09x9OhRHn74YQCeeuopmjZtyqhRo4rdt02bNtGvXz9atWrFfffdx+bNmx3etwceeICZM2fStWtX2rVrx8yZM4stK2+fhg0bxqRJk2jfvj2dO3fmp59+4ssvv6RPnz60atWKESNGkJ6ebl9n7969DBw4kFatWtGrVy+H2jOAdevW0bNnT1q2bMlDDz1EYmKiw/xffvmF+++/n1atWnHvvffy448/XjXG/CwWCwsXLqR79+60adOGwYMHc/LkSfv8oprW8mqB/v33X6ZNm8b58+dp2rQpTZs2ZePGjfbv4MKFC+nZsydt27ZlwoQJ9n2+1nd0/PjxXLx4kRdffJGmTZty33332ZeLjIykbt26bNy40el9FO4jSYWokIKCgqhfvz6vvfYaP//8M+fPn+dGBo+NiYlh//799OvXj549e5KSksKePXuuuo7RaCQoKKjIeY888gj79u3jzJkz9mmrV6+mf//++Pj4UL9+fZYsWcKePXvYuXMnnTt35oUXXriu2LOzsxkyZAg1a9Zk06ZNrF27luPHjzNv3rxi19m5cyetW7d26swwLi6OTz/9lG3btnH69GnGjBlD//792bp1K08//TSvvvqqQzPQhQsX6N+/P1u2bGHWrFm8+eabHD58GIBWrVqxfPly/vrrL7Zv3054eLj9oG61Whk1ahQmk4n169ezadMm7rvvPuLj4/n6668B242pjhw5wsKFC4uM9cCBA0yePJlJkyaxa9cuJk6cyKRJkzh48KBDfE2aNOH7779n+fLlrFq1iu3bt1/1PTh58iT9+vVj+/btPPPMM0yYMIFjx46xePFiNm3axJkzZ1i1ahVgG5p62LBhPProo+zcuZO33nqLOXPm2A+av/76K2+++SavvfYae/bs4b333sPHx8e+rR07dvDSSy8xefJkdu/ezSuvvMLUqVOLTToL+vzzz1m3bh2LFi3it99+o0OHDgwZMoSMjIxrrtuwYUPefPNNateuzZEjRzhy5Ag9evQAbMmKVqtlxYoVbNiwgaioKD744AOnYvrggw+oUaMGb7/9NkeOHCnUDNKtWzf++OMPp8oS7iVJhaiwPv/8c+rVq8c777zDPffcQ+vWrRk1ahQnTpxwWG7atGnceuutDo+LFy86LPPtt99y77334ufnh8Fg4IEHHii2tsJisbBr1y6WLVtmv5toQbVq1aJTp072M9Tk5GQ2bdrEo48+CoCPjw/r16/n8ccfp2vXrixYsIB///33ut6Hbdu2YbFYmDJlCn5+foSGhjJkyBB++eWXYte5ePEitWvXdqr8kSNHEhYWRkhICC1btqRTp050796dSpUqcffdd5OWlsalS5fsy7dv354uXbrg4+NDp06daNeunb22wMvLiy+//JIHH3yQu+66i2+++ca+34cOHeLw4cO8/vrrhISEEBQUxIABA0p035NvvvmGnj170qVLF7y8vOjSpQs9evRwqClo1qwZAwYMwN/fn8jISBo3bnzN975z58506dIFb29v7rrrLsB287caNWpQuXJlWrduba8N+P7777nlllvo378/3t7etGrVikceecSedHz11VcMHDiQjh07otfriYiIcEgqli9fzqBBg+jcuTMGg4FOnTrRsWNHNm3a5NR7sHr1aoYPH06DBg2oVKkSI0aMQKfTsW3bNqffx6JotVqGDx9OlSpVqFq1Kk899ZRDLdCNqFWrlkONlfBc0qdCVFihoaHMmDEDgPT0dI4dO8bnn3/O0KFD2b59O1qtFoA333zToboVbGdGeVRV5dtvvyU+Pt5+IDaZTKiqyssvv2y/s6LFYuHWW29Fo9FQo0YNXnjhBfr161dsfI888gjTp09nwoQJrFu3jhYtWlC/fn0AJk+eTFxcHFOnTqVhw4b8+++/hZpLnBUVFUV0dDTNmzd32Ke8/S9KWloalStXLvG2vLy8sFgsDq/B9n4Vp3LlyiQmJqKqKk8//TSVK1fmjTfeICIigs2bN9trVKKioggJCbmhO1nGxMTQrFkzh2nh4eEcOXKk2HV8fHxKdPVB3j7nrxkzGAz25qaYmJhCdx6tXr06//vf/wA4f/48d999d7HlR0VFsWPHDj755BP7NFVVCQ0NdSq+2NhYqlevbn+tKAphYWEuP2hXqVKlULPN9QoJCSEtLc0lZYnSJUmFqJBMJhM6nQ5FUQDw8/Ojbdu2BAcH85///IeUlBSnO339+eefWCwWNmzY4DB99OjR/PTTT/ZOn1qt1qEa/Vq6devGG2+8wZYtW1izZo1DP4A//viD+fPnc9tttwHY96Moer0ei8WC2WxGpyv8Jx0eHk5ERESh+K/G39+fpKQkp5e/EefOnePee+8lISGB48ePs2HDBurVqwc47neNGjVITEwkIyOjyMQi/10uixMeHl6oFurixYtlenvx8PDwQs0pUVFR9hhCQkKuejAOCwvjvvvuY/jw4de1/bCwMKKiouyvVVUlJibGnmjo9fqrJlEajcappsSzZ8/aa7uu9R29VrkJCQn4+/tfc5vC/aT5Q1RIJ0+e5L777uOnn34iMTERq9XKhQsX+Oijj+jatWuJepGvWbOGnj17EhYW5vDo2bMna9asue4YtVotDz74IO+++y6JiYkOl+nVrVuXnTt3YjKZOHv2bLF9BAAiIiLQ6/X89NNPGI1GduzY4ZBAdOnShZycHN577z3i4+MxGo2cOHGCdevWFVtmjRo1uHDhwnXv29XExsaSkJBATk4OK1eu5PTp0/Tt25fg4GCCgoLYsWMHZrOZw4cP8+WXX9rXa9asGQ0aNGD69OkkJCSQlZXF//73P3bu3AnYzvZ//fVXMjIyCl3ym+fBBx9k48aNbNu2jZycHLZt28Yvv/xyXVcDXa8+ffpw5MgR1qxZQ05ODn/99RerVq1i4MCBAHTv3p1vvvmGs2fPkpqayurVq7l8+bJ9/ccee4zPPvuMbdu2kZ2dTXJyMjt37mTfvn1Obf+hhx7i008/5d9//yUzM5MFCxZgsVjo0qULAI0aNWL79u2kp6cTFxfHnDlzHNavUaMGMTExHD58mNTUVFJTUwFbcnLs2DHMZjNHjx5lyZIlPP7448C1v6Ng+/x27NhBeno6MTExDvPOnz/vULsiPJckFaJCqlGjBl26dGHJkiXce++9NG/enEGDBhEREcHcuXOdLic9PZ2NGzfaO6Pl16NHD/7++29Onz593XE+/PDDxMTE8OCDD6LX6+3TZ82axW+//Ubr1q2ZOHEijRo1KraMkJAQXn/9dd5//31uv/12vvrqKyIjI+3z/fz8WLZsGdHR0dx///3cdtttTJgwgYSEhGLL7NixI/v27SMlJeW69604UVFRPPbYY7Rr145vv/2WpUuXUqVKFbRaLbNnz2bZsmW0adOGWbNmOVwxoNPpWLRoEaqqct9999n3NTg4GLD1jfnhhx9o3759sZ1QmzdvzuzZs5kzZw4dOnRgzpw5zJkzh1tvvdXl+1mcGjVq8Omnn7Jq1So6dOjA1KlTmThxov079vjjj9OlSxcGDhxI7969OX78uMNZ+t13382MGTOYP38+nTt3pmfPnixevNjh+3M1Q4YMoX///owcOZI77riDPXv28Pnnn+Pn5wfYLsUOCQnhjjvuKPIyzttuu40HHniAJ598kq5du9pr51RV5a233uK2225j9OjRPProo/ZE6VrfUYCJEydy6NAh+3uS3y+//ELHjh1L8C4Ld1HUG+kSL4SosB588EH69evHU0895bIyX3zxRbRaLW+++abLyhTut3v3boYMGXLVvinX6++//2bIkCFs2bJFxqkoB6SmQghRpGeffZYFCxaUSm2FEM6wWCzMnDmTJ554QhKKckKSCiFEkbp06cLdd9/N+PHjr3r1hhClZdasWRiNRp599ll3hyKcJM0fQgghhHAJqakQQgghhEtIUiGEEEIIl5CkQgghhBAuIUmFEEIIIVxCkgohhBBCuMT/A9MTJLMqoKi8AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "'''\n", "For Our Enhanced BEST Model Behaviour for essential Features \n", "'''\n", "explainer_selected_feature = shap.TreeExplainer(xgb_reg_new)\n", "shap_values = explainer_selected_feature.shap_values(x_train_new)\n", "# Plotting Summary Plot\n", "shap.summary_plot(shap_values, x_train_new)" ] }, { "cell_type": "markdown", "id": "a5065f70", "metadata": {}, "source": [ "### Observation:\n", "Explaining how of final Model sees Features in order of Impact per CO2 Emitted;\n", "* `Emission per Capita` is the most critical of the Pack. This makes sense but we might question the use of `Emission per Capita` as this feature was derived by a direct division of our Target Variable by the Corresponding countries’ Populations. However, Countries still can make an estimate or even apply their current standings, as this very feature plays a very vital role in the ability of our model to rationalize the combination of other normal features such as Energy Consumption and GDP to make a more precise prediction.\n", "* After which, Energy Consumption remains the next crucial Feature as `The higher values of Energy Consumption[e_con] (red dots) tend to contribute absolutely positively to the prediction while the lower values (blue dots) tend to contribute negatively to the prediction` This makes sense since the more Energy Consumed especially for non-renewables & fossil fuels, the more chances of emitting CO2.\n", "* We can see the Glove between the Red dot and Blue Dot for `Energy Type`. This reveals that our Model understands that they are energy types such as Renewables and Nuclear which no matter Consumption will give a negative contribution and others such as Coal, Petroleum which will give a positive prediction.\n", "* The seems to be a Balance in contribution for GDP, Agric_GDP, e_prod, and Maunfacturing_GDP. `The higher values (red dots) tend to contribute absolutely positively to the prediction while the lower values (blue dots) tend to contribute negatively to the prediction`\n", "\n", "So we can say; On a General scale, our Model is performing adequately.\n", "\n", "### Instanced-based Explanation" ] }, { "cell_type": "code", "execution_count": 33, "id": "28ec7a64", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "'\\nTried plotting the scatter plot of each individual feature \\nso that can see also the focus on one feature’s effect across the entire dataset\\n'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "Tried plotting the scatter plot of each individual feature \n", "so that can see also the focus on one feature’s effect across the entire dataset\n", "\"\"\"\n", "\n", "# shap.plots.scatter(shap_values[:, \"GDP\"], color=shap_values)\n", "\n", "# I keep getting this error\n", "# IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices" ] }, { "cell_type": "code", "execution_count": 34, "id": "eb5b6b3b", "metadata": {}, "outputs": [], "source": [ "# The Instance Approach for explaining our Model\n", "\n", "# shap.plots.waterfall(shap_values[20])\n", "\n", "# AttributeError: 'numpy.ndarray' object has no attribute 'base_values'" ] }, { "cell_type": "markdown", "id": "ac46f1e5", "metadata": {}, "source": [ "Let's Do a bit of Confirmation by applying our Enhanced Dataset to the Explainable Boosting Machine (or EBM for short), a package developed by Microsoft\n", "\n", "### Explainable Boosting Machine\n", "\n", "\n", "The [Explainable Boosting Machine](https://towardsdatascience.com/think-outside-the-black-box-7e6c95bd2234) (or EBM for short) included in the interpretml package developed by Microsoft. It is built on the old technique of Generalized Additive Models with newly added machine learning techniques such as bagging and gradient boosting. During training the EBM only looks at one feature at a time in a round-robin fashion while using a very low learning rate. This way the order of the features does not matter. This process is repeated for many iterations where at the end of training all feature trees are added together. Because the EBM is an additive model each feature contributes separately to the final prediction, it allows us to see which features are important and which are less important. In other words, [Explanable AI](https://towardsdatascience.com/explainable-ai-in-practice-6d82b77bf1a7)\n", "\n", "[Explainable Boosting Machine (EBM)](https://interpret.ml/docs/ebm.html) is a tree-based, cyclic gradient boosting Generalized Additive Model with automatic interaction detection. EBMs are often as accurate as state-of-the-art blackbox models while remaining completely interpretable." ] }, { "cell_type": "code", "execution_count": 35, "id": "c44c1c37", "metadata": {}, "outputs": [], "source": [ "# Incase you don't have the module, UnHash & Install\n", "# !pip install interpret " ] }, { "cell_type": "code", "execution_count": 36, "id": "3806057a", "metadata": {}, "outputs": [], "source": [ "from interpret import set_visualize_provider\n", "from interpret.provider import InlineProvider\n", "set_visualize_provider(InlineProvider())\n", "\n", "from interpret.glassbox import ExplainableBoostingRegressor\n", "from interpret import show" ] }, { "cell_type": "code", "execution_count": 37, "id": "a27e9cce", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training time: 62.733511209487915s\n" ] } ], "source": [ "# Create ebm Model\n", "ebm = ExplainableBoostingRegressor(learning_rate=0.1, min_samples_leaf=3, max_leaves=5, random_state=42, max_rounds=5000)\n", "\n", "start = time.time()\n", "ebm.fit(x_train_new, y_train_new) # Fit Model\n", "print(f\"Training time: {(time.time()) - start}s\")" ] }, { "cell_type": "code", "execution_count": 52, "id": "24d16ace", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAFnCAYAAADKeEYiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB+A0lEQVR4nO3dd1zU9R8H8Ncd3AHHDMy9lWGi4sJcKZZ7lrOh5MJtmDlTSzNNsdDcmiWmoWZmKqbmyNRI3GAO3ClKomwOuPX9/cHvLs4v2zuO8Xo+Hj7U7/tz33vf+QF532dJBEEQQERERERERGRiUksnQERERERERGUTC04iIiIiIiIyCxacREREREREZBYsOImIiIiIiMgsWHASERERERGRWbDgJCIiIiIiIrNgwUlEBKBTp07w9PTEypUrLZ0KEVauXAlPT0906tTJ0qmUSwcOHICnpyc8PT2xefNmS6dDZVhqairefvtteHp64s0334RKpbJ0SkQmZ23pBIjIcs6cOYNhw4YZ/h4cHIwePXqY/HlmzpyJn3/+Gb6+vvj+++9Nfn8SW7lyJVatWlXg9hMnTsSkSZMMf9f/mz3P2toacrkcL730Ery9vdGvX79ci6Ldu3dj1qxZAACpVIqwsDDUrVs3zzz69++PK1euAECR+0tOuUulUigUClStWhVNmzbFwIED0ahRo0LfuyQYOnQoIiIiUK1aNRw7dsxk93vzzTfxxRdf5NrO09MTAPJtV9o9ePAAc+fOBQCMHz8e77//vqhNp06dEBMTY3TNysoKtra2qFy5Mpo0aYIBAwagefPmuT5P9q9RhUKB48ePw8XFJdf2KpUKr7/+Op48eQIg73+HmJgY7Ny5E3/99Rfu3r2LtLQ0yOVyuLi4oE6dOmjYsCFat24NX19fWFsb/yiY/eu2ICzRH7Zt24YFCxYUy3N/8skn2L59OwDg6NGjqF69eo7t9F8fBXHjxg3Dnx0cHLBhwwYMGjQIV69exZIlSwz9j6is4AgnUTm2Z8+ePP9OZYNcLs/3l5WVVY6PlUgkRu0EQYBSqURMTAwOHTqEcePG4dNPP803B51Oh/Xr1+fZ5s8//zQUm6aQPXepVIrU1FRER0djx44dGDBgABYvXgxBEEz2fMVFJpNBLpdDJpMV6/Pq38vnC5SyRKfTYcqUKUhNTUW7du0wefLkPNtbWVkZ3heJRIK0tDTcvn0bu3fvxjvvvIOgoKACPa9SqcSWLVvybPPLL78Yis28bN68Gd27d8e6detw6dIlJCUlQafTQalU4tGjRzh9+jQ2bNiA4cOHo1+/fnneqyDfO4qrP6hUKjx8+BAhISFYtmxZsTznpk2bDMVmQek/lMvr1/McHR3x9ddfQy6XY+vWrTh+/LipXgJRiVB2/9cgojxlZGTg8OHDAAA/Pz8cP34cp0+fxtOnT1GhQgULZ0em8qKjYC1bthSNMiqVSly7dg1ffvklzp8/j9DQUPTp0wfNmjXL8R4KhQKZmZnYv38/Jk6ciBo1auTYbuPGjQAAJycnJCcnFznn3HJPS0tDREQENm3ahLNnz2Lz5s2oUKECRo8e/cLPVZy+/fZbizxvVFSURZ63OB04cABRUVFQKBT4/PPPIZFI8mw/btw4o5kBSUlJuHTpEtauXYuLFy/im2++gbu7e56FnaOjI1JSUrB161aMGDECDg4OojY6nQ7ffPMNgLy/PrZu3YrFixcDAFq1aoXhw4ejcePGcHV1NRScZ8+exaFDh/DXX3/l+3VWUv7NV69eja+//rpYn/PQoUMICgqCRCIp1AdTn332Gd56661CP5+7uzvGjh2Lr7/+GsuWLUOHDh0glXJciMoG9mSicuq3335DamoqHB0dsWjRItjZ2UGj0WD//v2WTo1KOIVCgebNm+Pzzz83XLt06VKu7V966SV0794dGo3GUFQ+78qVK/jzzz9RrVo1dOjQwdQpAwDs7e3h5+eHkJAQtGjRAgDwzTffcM0UAcgq6lavXg0AeP/991G5cuVC38PZ2RkdOnRASEgIqlWrBiCrCMxLgwYN0KxZMyQlJeGHH37Isc1vv/2Ge/fuoXnz5vDy8sqxTWZmJlasWAEA6Nq1K0JCQuDn5wc3NzdIJBLY29vD3d0d77zzDkJCQvDLL7/kOeW3JNHpdMX6fJcuXcL06dMhk8nyHeU2pZEjR6JixYq4desWwsLCiu15icyNBSdROaWfPtu1a1e4urri9ddfN7qen5iYGCxatAg9e/ZE06ZN0bhxY3Tt2hVz5szB+fPnAQAPHz6Ep6enYT1dRESEYSMO/a/sm/QUZOOeoUOHwtPTEzNnzhTFTp48iRkzZmDAgAHo2LEjGjdujMaNG8PPzw8TJkwwjOia0uLFi+Hp6Yl27dpBo9Hk2i4hIQHe3t7w9PQUFfUxMTFYvHgxevXqhaZNm8Lb2xsdOnTA2LFj8f333yMhIcHkeZuCm5ub4c82NjZ5th0zZgwkEgl+/vln/Pvvv6L4hg0bAACjRo0y+xQ9KysrDBo0CACQmJiIf/75xxDL3r+0Wi327dsHf39/tGjRAg0aNMC4ceOM7iUIAsLCwjB69Gi0adMG3t7eePXVVzFixAjs378/z5ERlUqFkJAQ9O/fHz4+PmjVqhXeeustrFy5ErGxsbk+bubMmfD09MTQoUNzbRMdHY25c+eiS5cuaNKkCXx8fNCrVy98/vnnuH79OoCsNdyenp6IiIgAAPz888+ir8/du3cb7pnf16dGo8HOnTsxdOhQtGrVCt7e3ujYsSOmTZuW51Tp7PdNTU3Ft99+i8GDB6NZs2Zo0qQJ+vXrh9DQ0FwfbyqHDh3CnTt3YGtrC39//xe6l42NjWFt8+3bt/NtP2bMGABZ02HT09NFcf0HNfp2Obl165ZhxLJ///75js56eXkhODg439yKSv+15OnpiYcPH77QvSZNmoQbN24Yfvn6+pooS7EHDx5g/PjxyMzMxBdffFGsRbmtrS3ee+89AMh3CQJRacIptUTl0JMnTxAeHg4A6Nu3LwCgT58+2L9/P65du4YbN27kuQHCnj17MHfuXMPIkH7K0b1793Dv3j38+OOPmDdvHjp27Ai5XA6NRgOdTgeJRCJad5bb2sGiOHjwoFHBLJVKodPp8OjRIzx69AhHjhxB3759sXTpUpM958CBA7F582bExcXh5MmT8PPzy7Hd/v37oVar4eLigi5duhiunzx5EpMnT4ZSqQQAww+JsbGxiI2NNUx1XrdunclyNpWLFy8CyFqz9Nprr+XZ1sPDAx07dsTx48exadMmzJ492xC7f/8+fvvtN7z88ssYMGAAIiMjzZo3kDUSpZeamiqK//PPPxg4cCD+/vtvAFn9VKfTGbVNTk7G5MmTDV9LQNa/X0JCAk6fPo3Tp0/jt99+Q3BwsGhqXFxcHEaPHo1r164ZrmVmZiIxMdHwnEW1YcMGBAcHG0aF9F8HN2/exM2bN7FlyxZs2LABCoUCcrkcarUagiBAKpWKiv2CTulLSEjAuHHjDH1C/9jHjx9j79692LdvH6ZOnZrn9OWIiAhs374dT58+Ncr72rVr+PTTT/HPP/9gxowZhX07Cmzfvn0AgO7du+e5eU9B2dnZAUCOa/ae17FjR3h5eeH69evYuXOnUcEbHh6OqKgovPLKK+jQoYNhau3ztFqt4c9xcXEvmH35lJSUhICAADx79gxTpkxBz549cebMmWLNYeDAgVixYgVu3ryJa9euoUGDBsX6/ETmwBFOonJo79690Gq1qFq1Klq2bAkAaNeunWHEKq9RzhMnTmDmzJlQqVRo164dfvzxR1y5cgVRUVHYtWsX/P39YWdnB7VajWrVqiEqKspQ1LZs2RJRUVFGv8aPH2+y11WlShW8++672LBhA44ePYqoqCj8/fffOHDgAAYPHgwga+MNU27IUL9+fTRt2hQAjEaDnqcf5e3bt6/hB9DU1FR89NFHUCqVaNWqFX788UdERkYiKioKBw4cwMyZM1G3bt0St7FNYmIidu/ejTlz5sDKygqffvpprusysxs7diwAYOfOnYiPjzdc/+abb6DT6TB8+PAC/XBuCjdv3jT8uUqVKqL4+fPncffuXUyaNAnHjh3D33//jcjISMP6OJ1Oh8DAQISHh6Nu3bpYvnw5Tp8+jatXr+LEiROYPn06FAoFDh48iO+++87o3lqtFpMnT8a1a9fg7OyMzz//HOfOncPff/+NP/74A0uWLCnyD5mhoaH48ssvodPp0KtXL+zbtw9///03Ll++jK1bt+Ktt96CTCaDWq02fD3qvwf07dtX9PWZ36YyQNYo74cffoiLFy/C2dkZixYtwrlz53D16lUcPnwY/fv3hyAIWLZsWZ7TBCMiIiCRSDB79mz88ccfuHbtGo4cOWL4MOO7777D3bt3i/S+5Eer1Ro+OMj+gdCLuHPnDgCgdu3aBWofEBAAIGujmuzTvAsyuglkrQHUzzTYsGED7t27V8iMyzeVSoWJEyfizp07GDBggOH7VWF9/vnn8PHxgY+PD9q0aYNBgwZh6dKlRjMp8uLq6gofHx8AWR9IEpUFHOEkKod++eUXAFmjmvoRNSsrK/To0QPff/899u3bh48++kg0+qjRaLBgwQIIgoD27dtj/fr1Rm0aNWqERo0aYejQoTlOmzS3iRMn5ni9Xr16WLBgAf755x+Eh4fjt99+y3UksigGDhyIixcv4vjx44iPj4erq6tRPDo62jBqNXDgQMP1M2fOIDExEQDw5Zdf4uWXXzbKuV69evD393+hEb+YmJgCHf8xbty4HIv/s2fPGj1ep9MZTR0ePXq04QOF/Pj4+MDX1xcRERHYvHkzPvzwQ8TFxWHPnj1wcXHBkCFDCnSfF5WUlGSYotm0aVNUqlRJ1KZ27drYuHEjatasabhmY2NjOBLhwIEDOH36NGrXro3Q0FCjEbHKlStj5MiRUCgU+PTTTxESEoKRI0ca4gcOHMCFCxdgZWWF9evXGz6wAIBKlSqhX79+ePDggdHoZ0EkJycbdu8cNGgQPvvsM0PM1tYWLVu2RMuWLV94uujzjh8/jj///BMSiQRr1641moJYq1YtLFq0CADw008/YcmSJejSpUuOO+y2adMGX3/9NRwdHQ3XatSogSVLlqBdu3bQarX4/fffUadOHZPmD2R9jSqVSkilUrz66qsvfL9r167h999/BwAMGDCgQI/p1q0bVqxYgfv37+Pnn3/G4MGD8ffff+P06dOoU6dOvoWwnZ0d3n//faxfvx73799Hz5490bJlS7Ro0QKenp5wd3dHzZo1C7URTUG+d/Tt2xcLFy4UXS9tR2B9/PHHiIiIQNu2bTF//vwi3yf7LIj09HQ8e/YMly9fxpYtWzB37lzDh595adWqFc6fP4/Lly8XOQ+ikoQjnETlzNWrVxEdHQ0gq+DMTl84xMXF4fTp06LHRkREGNbiTJ8+PdfpsDVq1DBsylKSNGnSBADyXB9XFN27d4eDgwPUarVhWl52+pHPpk2bwt3dPcd76AvP50mlUsOn3UWlUqny/ZV9Ol52giAYtXt+nerGjRvRvn17nDhxokC56EcNtm3bhuTkZGzevBkqlQrvvfce7O3tX+h15kUQBMTFxSEsLAyDBg1CTEwMZDJZrlM0mzZtalRsPm/nzp0AgGHDhuU6/fKNN94AAPz777948OCB4fquXbsAAK+//rpRsfmiDh06hNTUVMjlcnz44Ye5tvPy8sp145mi2Lt3LwDg1VdfzXW924QJEwBkvRfZpyBn16xZM6NiU8/V1dVQ6Bd0lKiw9KOBtWrVgkKhKNI99Md2bNu2Df7+/tBoNHj11VcLNEoMZH3oN2rUKABZI5TZN9kKCAgoUKH4wQcfYMSIEbC2toZGo0F4eDhWrlyJiRMnomvXrmjWrBmGDh2KkJAQpKSkFOg15fcrr7XrpcWKFSuwd+9eeHh44Ouvvy7SOvIlS5Zg9+7dOHnyJKKiovDXX3/hl19+waxZs1ChQgWo1WrMmzcv1/6fnf7r8/79+4XOg6gk4ggnUTmjn9rp7e2NevXqGcUaNWqEunXr4s6dO/jll19E6/IuXLgAAKhYsSI8PDyKJ+FCSktLw/Hjx/HXX3/h1q1bSEhIQFpaGpRKpWGdpFqtNulzKhQK9OzZEzt27MDu3buNRpA0Go3hB3L9RjV6TZs2hUKhgFKpxMiRIzF06FC0b98e7u7uJlvb+qLHovj6+opGKtRqNRISEnDu3Dls3rwZly9fxtixY7Fx40a0a9cuz/u1bdsW3t7euHLlCtasWYMff/wRCoUizw1wiir76Kx+naKek5MTgoKCilTwabVaw668ixcvLtDB80+fPkWNGjWg0+kM6xzbtm1b6OfOi/7rs2HDhnjppZdMeu+86Efg8/qQqVq1aqhWrRpiYmIQGRmZ75rf5zk5OQHIOs7JHPTnWxZkanh2q1atwqpVq0TXpVIp+vfvj3nz5hXqvNR+/fph1apVePjwIdasWYPDhw+jWrVq6N27d4Eeb2VlhRkzZuDdd9/F3r17cebMGdy4ccOw8Vh6ejoiIiIQERGBdevWISgoKM+v2Rs3bhQ499Lq559/xpo1a/Dyyy9jw4YNOR5LUxDPf7Agl8vx0ksvwcvLC126dEHfvn2RnJyMNWvWoHXr1nneSz/N3xIzhYjMgSOcROWIRqMxrKHq1KkT4uPjRb/0OyseOXJEtJmKfjOPqlWrFm/iBXT48GF07twZU6dOxY8//oiLFy/i3r17iIuLg1KpzHfXxhehnzZ3/fp1XL161XD9xIkTePbsGRwcHNC9e3ejx7i6uuKTTz6BXC7Hv//+i2XLlqFv375o3rw5Bg0ahFWrVuHRo0dmy7moZDIZKlasiB49emDr1q1wd3eHTqfD8uXLC/R4/Vq07777DqmpqRgyZIhJNml5XvbRWWtra7i6uqJ58+b44IMPcPjwYXTs2LFI901KSkJmZiaArEI2r9EfPf2fExMTDY819deRpb4+9c+bfUp4TvRxffvC0G/AY671zPoPo3IaYc2LlZUV5HK54Zfem2++iUWLFsHW1rZQ95PL5Rg+fDiArLMntVotRo4cWaiiFQCqV6+O8ePHIyQkBH/99RfCw8OxadMmfPjhh/D29gYAxMfHY9KkSSXye0xx+uKLL6BQKLB+/foc13ObQtWqVdG/f38AwLlz5/L90FPfD3PasZioNOIIJ1E5cvLkSTx79gwA8PXXX+d5kHZGRgZ+/fVXozWH+h/2zFm4FdW5c+cQGBgIrVYLNzc3DBw4EK1atUL16tXh5uYGe3t7rFy5MsfRCFNo3LixYZfJ3bt345VXXgHw34hyr169DD80Z9evXz+0atUKe/bsMexGqVQqcfnyZVy+fBmbNm1CcHBwkYsjc5PL5ejZsyeWL1+OK1euIC0tLd+psZ07d0a9evVw+/Ztox+wTS2n0VlTyD79eMOGDYU6NzT7D5qmPv6lJH99Av/lV9I2wcqusO/duHHjMGnSJMPfZ82ahd27d+Onn35CkyZNCrRe73mDBw/GunXrkJiYiAoVKhR4DWheXF1d0a5dO7Rr1w5jxozBt99+iyVLlkCpVGLfvn35bkhUlmm1WiiVSrz11lv5ttUfH+bl5WXYC6Gg9GuPdTodEhMT8/yAprjPHSUyN45wEpUjBT1jU+/5/1D1u9g+fvzYVCnlKLf1hHnZvHmzYefd/fv3Y8qUKWjTpg1q1qxp1rWB2emL83379kGlUiE+Pt6wccjz02mzq1KlCsaNG4ctW7bg/Pnz+PXXXzF79mxUqlQJSqUSM2fONIyKlUT6TZIEQUBaWlq+7SUSieF4jP79+6NixYpmzc/UXFxcDFOes6/NLAj91FAAJj9ftbi+PnN7Xv201Nzoj+qoUKGC2XMqLP26zZyOyCmMBQsWGDYdmj9/vuHrv7C56KeYv//++/mecVsUw4cPN7zmmJgYk9+/NLGxsTEapX7+V/bRZZlMJhrNLqjso5X5rRPWfx/N6UNKotKIBSdROZGcnGw4DmTJkiVGh2g//0u/Q9+5c+eMfqDWr4eLjY3FrVu3Cvzc+h/Os08xzIl++llSUlLBX9j/6Y9L6NKli2iX2OLSp08f2NjYIDExEceOHcO+ffugVqvRsGFDNGzYsED3kEqlqFu3Lvz9/Q3nhSYkJJjtOAhT0E/Jk8lkBX7v+/XrhwsXLmDOnDnmTM0sZDKZ4diSQ4cOFeqxdnZ2hg1wsk+9NgX912dUVFSum1DlpKBfn/k9b17nFT548MDQTxo3blyk5zEn/YceL7pmTiaTYeXKlahfvz60Wi2mTJmCqKioQt9n/PjxuHDhgtHuxvmJj48v1Id1+hH24lzvWxKdPn1adBxQ9l+bNm0ytD148CCioqLw448/Fvp5zp8/DyBrB+z8PgTVb86X0w7aRKURC06icuLAgQPIzMyEra0tOnfunGfb7t27QyaTQRAEo1HO1q1bG0YzgoKCcp328+TJE1y/ft3wd30RcvPmzTx/qNXvCprbLn5Xr17Nddc+/SiAfsrw8zIzM43OXjQHJycndO3aFUDWzrT66bTZpyVnd/r0acNxKTnJPuXS1NMvTeXZs2f46aefAACvvfZagfOUSCSwt7cvsa8rP/rpdxEREfn+8HnkyBGjv+s3zNm3b1+Om+BkZGQUabOWzp07Qy6XQ6VS5bme9u7du0YfJOm/PvPqi3nR73Z99uzZXL92V65cCSBrHWd+G6ZYgv6szNu3b7/wrqtOTk5Yv349KlSoAKVSibFjxxZ6JFwqlcLe3r5QR5j8/vvvGDJkSIEK3J9//hnJyckA/ttNmYpu//79eY6OX7p0CUePHgWAAm0ApT8SqVatWqZJkMjCWHASlRP66bSvv/56vp+uOjs7G34o1u+wCmSNQOqPW/j9998xduxYREZGQqvVIjMzE9euXcOyZcvQrVs3o9GbZs2aAciaJhQUFGTYxOf69etGI6X6DYvu3r2Lr7/+GqmpqdDpdLh16xYWLlyIAQMG5DoCoc/3wIED+OGHHwyjpE+fPsWuXbvQvXv3Qo9GFYW+uNQfXG9nZ5frDxg3b97EgAEDMG7cOBw6dAhPnz6FIAhIT0/HX3/9ZRhp9vDwQP369c2ee0GpVCr8888/2LlzJwYOHIi4uDjY2tpiypQplk6t2AwcONAwUjd37lx88sknuHbtGjQaDTQaDR48eIDQ0FC8+eab+Pjjj40eO2zYMMNGUePHj8etW7cgCAKSk5Oxd+9e9OzZE7/99luhc6pUqZLhWI3Q0FDMmDEDN2/ehE6ng1KpxMWLFzF//nz07t3baKMY/dfnvXv3sHHjRiQkJCA1NRWRkZEFmm7ZqVMn+Pr6Asg6C3fnzp1ISUmBIAi4d+8eZsyYYfjg6qOPPirSdERz8/DwgEKhgEqlMuz2+yKqV6+OtWvXwtbWFk+fPsXo0aNNPoU6J5GRkRgwYADeeecdfP/997h+/TqUSiUEQUB8fDzOnTuHWbNmGfrkwIEDC3TWZlEMHToUnp6e8PT0NIzYWUqnTp0MuZjDjh070KlTJ3zxxRc4e/Ys0tLSoNPp8ODBA2zbtg0jR46EVqtF9erVC3QOrv5YMv1RXkSlXen8aJmICuWff/4xHMVQ0O31e/fujaNHj+L+/fu4cOGC4YfSAQMG4OnTp1ixYgVOnDiBEydOGDbayL4ZSPYfKl977TU0adLEcPj1li1bDLFZs2YZiqk333wTP/30Ey5duoTVq1dj9erVkEqlhpHUhg0bIjU1NcdRzlGjRuHYsWOGKcHz5883eqx+h1L9tCZz8fX1Re3atQ3n+unP6MyJjY0NdDodjh07Zji6JHvOQFYRERwcXOR8YmJiCvQD5bhx4zB+/HjR9exHiwBZm1k8PwL08ssvIygoKNczRssiuVyOdevWITAwEBEREdi+fTu2b98OIGv0NvvXwvObg9SpUwfz5s3D3Llzcfr0afTs2dPo393Ozg4NGzYs0ojjpEmTkJiYiB9++AF79uzBnj17RH0KgNG6tH79+uG7777Dw4cPsWzZMixbtswQW716NapVq5bnc0qlUqxYsQJjxoxBZGQk5s6di7lz5xo9r0QiQWBgYIHPpCxuVlZWaN26NY4ePYrDhw8bCugX0bhxYyxbtgyTJ0/G3bt3MX78eGzevNksazKBrLXgLi4uSExMxPnz542+1z3fB6ysrDB8+HBMmzYtz3sW5HtH3759sXDhwqInXgBbtmwx2gBM/8Hj4cOHjV7ntGnT0KVLF7PmkpukpCR89913+O677wCI3/M6depg7dq1+e6EHBMTY/jAtn379uZLmKgYseAkKgf0o5suLi75npOo16lTJzg4OCA1NRV79uwxFJwAMHbsWHTs2BFbt27F2bNnERsbC51Oh6pVq6JNmzbo37+/Yet9IOuHm2+//RYrVqzAkSNH8OTJEygUCtSoUcOwcx+Q9UPwt99+i7Vr1+LgwYOIjY2Fvb09XnnlFbz11lvo0aMH3n///RwLTgcHB/zwww9Yu3Ytfv31V8TGxsLGxgYeHh7o3LkzhgwZgu+++87sBSeQVZTrf2jPbTotALz99tvw8PDAr7/+inPnzuHhw4dQKpVwdHRE3bp10alTJ7z77ruFPqrheQVZm5fb2i/90SLZyeVyODs7o27duvDz88OAAQNeOMfSyM3NDVu2bMHRo0exf/9+REZG4unTp9DpdKhQoQIaNmyIzp075zhlceDAgahVqxbWr1+Py5cvIzMzE9WqVUPHjh3h7++PXbt2FanglEql+OSTT9CjRw9s374dFy9eRFxcHKRSKWrWrIn27dtjwIABqFu3ruEx+q+d5cuX4+TJk0hISICDgwPq1KmDypUrF+h5XV1dERoail27dmH//v24ceMG0tPTUbFiRbRo0QL+/v4lcu1mdvoP2X755Rd8+OGH+W7sUhCdO3fG9OnT8cUXX+DChQuYNm0ali9fXqipsgXVunVrnDx5EqdPnzZM13/w4AFSUlKgVqvh7OyMGjVqwNfXFwMHDjTqA7kpyPeOF52CXBBJSUn4559/RNfT0tKMNip70U2fiiooKAgHDx5EREQEbt26hSdPnkClUsHFxQUeHh7o0qULBg0aVKAPG3bs2AFBEODu7m5YK05U2kmEkrw/OREREVEx0Ol06NmzJ+7cuYNZs2bh/ffft3RKVM4kJyejc+fOSExMxJdffolevXpZOiUik+AaTiIiIir3pFIpJk6cCABYt26dYVMdouKyZs0aJCYmon79+ujRo4el0yEyGRacRERERMhac924cWMkJCTgs88+s3Q6VI6cO3cOISEhALLWoppj2jWRpbA3ExERESFrlPOrr76Cg4MD9u7dix9++MHSKVE58PjxYwQGBkKn02Ho0KHo2LGjpVMiMikWnERERET/V6NGDcPo5sKFC3HgwAELZ0RlWVxcHN5//33ExcWhQYMGmD59uqVTIjI5bhpEREREREREZsFjUV6QTidAJ+jyb1jMVGot5DIrS6dBVCTsv1Sasf9Sacb+S6UZ+6/lWFvl/r6z4HxBOkGHVGWmpdMQib4fC49aBTs/jaikYf+l0oz9l0oz9l8qzdh/LcfFMfezi7mGk4iIiIiIiMyCBScRERERERGZBQtOIiIiIiIiMgsWnERERERERGQWLDiJiIiIiIjILFhwEhERERERkVmw4CQiIiIiIiKzYMFJREREREREZsGCk4iIiIiIiMyCBScREREREVFJptHAZuUKyLZttXQmhWZt6QSIiIiIiIjoOUolbL9YBNvlwUaXE999z0IJFQ1HOImIiIiIiEoASXw87MaPhYuTPVwqv2xUbKq7dkPS9ZsWzK5oOMJJRERERERkIZKHD6GY8gFkhw6KYpnvDUXGwkUQXF0tkJlpsOAkIiIiIiIqRtJrV6GYMB7W586KYhmBU5AxczagUFggM9NjwUlERERERGRmVuF/QjFmNKzu3RPF0hd+jszxEwHrsleelb1XREREREREVAJYh+2HfcAoSFJSRLG0dRugfvsdQCKxQGbFhwUnERERERGRKQgC5FtCoJg0QRTSubpBuX4DNF27WSAxy2HBSUREREREVFRqNWy+Xg67+Z+KQlp3DyjXrofW17f48yohWHASEREREREVRmoqbBcugO2a1aKQpk1bKFeugs7dwwKJlTwsOImIiIiIiPIheRoHu5kzIN+5QxRT9e6D9KAvIVStaoHMSjYWnERERERERDmQ3rsHu8DJkB07KopljhiJjE8XQHBxKf7EShEWnERERERERP8njYqEYvxYWF++LIplTJuBjGnTAVtbC2RWOrHgJCIiIiKics36jxNQBIyC9NEjUUy5JAiqgDGAlZUFMiv9LF5wxsXFYc2aNTh16hSePHmCSpUqoUOHDhg3bhxcXV2N2t6/fx9Lly5FREQE1Go1vLy8MHHiRLRr105031OnTmHVqlW4fv06ZDIZfH19MX36dNSqVcuonSAI2LJlC0JDQ/Hw4UO89NJL6Nq1KwIDA+Hg4GDW105ERERERBYgCJD9sgeK0SMhycw0DllZQblxE9T9B5T5MzKLg0ULzqdPn+Ktt95CZmYm3nrrLVSuXBk3btxAaGgojh8/jj179hiKvvj4eLz77rsAgGHDhkGhUCAsLAwBAQHYvHkzfLNtNXzmzBkEBATAy8sLkyZNglKpxI4dO/Duu+9i7969RoXs2rVrsWLFCnTp0gVDhgzBw4cPsX37dty5cwfffvtt8b4hRERERERkHjod5Ju+gWLqFHGoUiUo12+EptPrFkisbLNowbl9+3Y8efIEP/74Ixo3bmy43rRpU8ydOxeHDh1C//79AQAhISFISEjA3r17Ua9ePQDAe++9h169emHFihXYtm2b4fHBwcGoXr06QkNDYWNjAwDo0aMHevfuje+//x4ffPABACAlJQUbNmxAnz59EBQUZHi8p6cn5syZg/DwcLRu3drs7wMREREREZlBZiZsvvoSdos/F4W0DRtCuWY9tE2bWiCx8kNqySd/+vQpAKBu3bpG15s1awYAUCqVhmvHjh1Ds2bNDMUmANjY2KBPnz44f/48EhISAGSNhF66dAm9e/c2FJsAUK9ePTRv3hxHj/63w1R4eDjS09MxYMAAo+fv06cP5HK5UVsiIiIiIioFkpNhN/VDuDjZw+VlV6NiU92hA5IvRiIxOQ0p4REsNouBRQtO/TTYTz75BKmpqYbrf/75J6ytrdGhQwcAgEajwd27d0WFKQDUr18fgiDg9u3bAIBbt25BEASjwjR72zt37kCr1QIAoqOjAUDU1sbGBjVr1sTNmzdN8CqJiIiIiMicJP/Got7USVlFZvUqsNm43hBTvTUASbfuIDE5DWn7DkCXQ51A5mPRKbU9evTA7du3sXbtWpw6dQp9+/ZFjRo1sHbtWnzxxReoWbMmACApKQlqtRqOjo6ie7j8/9wb/Wip/vecNvxxcXGBWq1GUlISXF1dDW1zu++zZ89M8jqJiIiIiMi0pLduwe6DSZCd/EMUyxwzDunzPgFy+DmfipfFd6l1c3NDpUqV0LFjRxw5cgQxMTGoV68eatSoYWijUqkAALY5nHcjk8kAABkZGUZt7ezsRG2trbNebub/d6JSqVSQSqVGU2+zt9XfMy8qtRbR92PzbVfcMlSaEpkXUUGw/1Jpxv5LpRn7L5V09n9Hos6c6VDcEs9EvDdmEuICxkGQ//9n+/i0rF9kdr7e4pmoehYtOHfu3IlFixZh165d8PLygiAIOHHiBBYsWIBhw4Zh27ZtaNSoEeRyOQBAp9OJ7qFWqwH8V4zq2+qnzWan0WgAwFBgyuVy6HQ6CIIAyXNbHms0mhwL3OfJZVbwqFW5oC+52ETfjy2ReREVBPsvlWbsv1Sasf9SSWR99EjWGZlxcaKYMngFVMNHAFIpnrD/lkgWXcO5ceNGtG3bFl5eXgAAiUSCjh07Yu3atcjMzMTWrVsBAM7OzrC2tkZycrLoHvrNgtzc3Ix+z62tTCaDk5OTUdukpKQc2z5/DigREREREZmZIEC2cwecnR3g4mQPhzf7GopNwc4OaVt/QGJyGhKT06AaOQqQWrSkoXxY9F8nNjYWVlZWouvVqlUDAMMaSmtra9SpUweRkZGitlFRUZBIJIaNf9zd3SGRSHJsGxkZiTp16him1rq7uxuuZ5eSkoJ79+4Z4kREREREZEZaLWxWr8ra9MfZAfajRkAiCAAAXfXqSA37FYnJaUj69ynUffpaOFkqDIsWnA0aNEB4eDju3r1rdP3gwYMAYHQ2p5+fH65cuYJ79+4ZrqlUKhw5cgQ+Pj6G0UhXV1c0adIEhw8fNqznBIC7d+/i2rVr6NSpk+Fa69atYWtri/3794ueX6vVGrUlIiIiIiITysiA7YL5WUXmS06wmzXDENI0bYrkP/9CYnIakq/egKb9axZMlF6ERddwTps2DcOHD8fAgQPRv39/VKlSBVevXsX+/ftRr149DB8+3NDW398fP/30E/z9/TFw4EAoFAqEhYUhJiYGn332mdF9AwMDMWLECLz33nvo1q0blEolduzYATc3N/j7+xvaOTs7Y9SoUVi1ahXUajV8fHwQExOD0NBQtG7dGm3bti2294KIiIiIqKyTJCbCdt4c2Gz+ThRTv9EZ6cEroKtVywKZkblIBOH/Y9UWEhUVhTVr1uDChQtITU1FpUqV0KVLF0yYMEF0XMmdO3cQFBSEs2fPQq1Ww8vLCxMnTkT79u1F9z1x4gRWr16NGzduQCaTwdfXF9OnT0ft2rWN2gmCgJCQEISGhiImJgYuLi7o1q0bAgMDczxa5XkarRapyswXeg/MgYv+qTRj/6XSjP2XSjP2XzIHyaNHUEydAlnYflFMNeRtpC/+AoJbhRd+HvZfy3FxVOQas3jBWdqx4CQyPfZfKs3Yf6k0Y/8lU5FG34Bi4gRY/xUuimVMnISM2XOAAgzuFAb7r+XkVXBa/BxOIiIiIiIq/azOnIFibACsbt8SxdI/nY/MSR8AMpkFMiNLYsFJRERERERFYn3wYNYZmYkJophy9Rqo3hsGPHfePRVezJV9iD4ejIykx7B1rgIPvymo5t3b0mkVCAtOIiIiIiIqGEGA/IetUIwbKw45OyNt/UZoevS0QGJlV8yVfbgSNhc6dQYAICPpEa6EzQWAUlF08pRUIiIiIiLKnUYDm+VfGc7IzF5sauvURcrhI1lnZD54xGLTDKKPBxuKTT2dOgPRx4MtlFHhcISTiIiIiIiMKZWwXfw5bFcsF4U0vq2gXLUaOq8GxZ9XKfLfNNhHgMQKELSwda4qmg6b33TZjKTHOd4/t+slDQtOIiIiIiKC5Nkz2H08C/Iftoli6u49oPwyGEL16hbIrPR5fhosBC0A8XTYgkyXtXWuklW0PsfWuYq5X4ZJcEotEREREVE5JfnnH9j3fxMuTvZwrlPTqNjMHOaPpHsPkJichrQdP7LYLIScpsHqZZ8OW5Dpsh5+UyCV2Rq1kcps4eE3xcRZmwdHOImIiIiIyhHp1b+hGD8O1hfOi2IZH05FxoxZgJ2dBTIrO/Kb7qqPF2S6rH6kk7vUEhERERFRiWR1+hTsx4yG9J9/RLH0RYuROXY8YM3SwFRymwabPZ5Xu+eny1bz7l1qCszncUotEREREVEZJNu3F85VKsLFyR6O3bsaFZtpG75BYlIqEpPTkDlxMotNE8tpGqxe9umwpX26bEGwZxERERERlQU6HeQhm6H4YJI45FYByvUboOnS1QKJlT/G02Bz36W2tE+XLQgWnEREREREpZVKBZsVy2H32XxRSOvpBeXa9dC2aGGBxKig02BL83TZgmDBSURERERUmqSmwu6z+bBZu0YU0rRrD+WKldC5u1sgMSIxFpxERERERCWcJO4J7GZMh3zXj6KYqm8/pActg1C5dJzLSOULC04iIiIiohJIevcu7AInQXb8uCiWOXI00j+dDzg7WyAzooJjwUlEREREVEJYXb4ExfixsIqKEsUyZsxCxtSPANucdz8lKolYcBIRERERWZD178ehCBgFaWysKKYM+hKqUaMBKysLZEb04lhwEhEREREVJ0GA7OfdUIweCYlabRySyaDcuAnqN98CJBILJUhkOiw4iYiIiIjMTaeDfOMGKKZNFYeqVIFy3QZo/DpZIDEi82LBSURERERkDpmZsF0WBNsli0UhbaNGUK5ZB20Tn+LPi6gYseAkIiIiIjKVpCTYffoJbDZtFIXUfn5ID/4aurp1LZAYkWWw4CQiIiIiegGS2Mewm/YR5L/sEcVUAwYifclSCC9XLP7EiEoAFpxERERERIUkvXULiskTYX3qpCiWOW480ufMAxwdLZAZUcnCgpOIiIiIqACszp+HYmwArG5cF8XS58xDZuAUQC63QGZEJRcLTiIiIiKiXFj/dhiKgNGQPnsqiilXrITK/31AKi3+xIhKCRacRERERER6ggDZju2wDxglDtnbQ7nhG6h797FAYkSlEwtOIiIiIirftFrYrF0Nu9mzRCFdzZpIW78R2rbtLJAYUenHgpOIiIiIyp/0dNgu/QK2Xy4ThTTNmkO5eg10Db0tkBhR2cKCk4iIiIjKBUlCAmznfgybLSGimLpLVyi/Wg6hZk0LZEZUdrHgJCIiIqIySxITA8WHgZD9ekAUU73zLtI/XwzBzc0CmRGVDyw4iYiIiKhMkV6/BsXECbCOOCOKZUz+ABmzPgbs7S2QGVH5w4KTiIiIiEo9qzN/QREwGlZ374hi6Qs+Q+aESYBMZoHMiMo3FpxEREREVCpZ/3oA9gGjIElKEsWUa9dB9c57gERigcyISI8FJxERERGVDoIA+dYtUEwYLwrpXF6Ccv1GaLp3t0BiRJQbFpxEREREVHKp1bBZuQJ2n34iCmnr1Ydy3QZoW7WyQGJEVBAsOImIiIioZElLg+2ihbBd+bUopHm1NZQrV0Hn6WWBxIiosFhwEhEREZHFSZ49hd2smZBvDxXF1D17QbnsKwjVqlkgMyJ6ESw4iYiIiMgipPfvw27KB5Ad+U0Uy3x/ODLmfwbhpZcskBkRmQoLTiIiIiIqNtIrUVBMGAfrixdFsYypHyFj+kzAzs4CmRGRObDgJCIiIiKzsjp1EvYBoyB9+FAUS1+8BJljxwFWVhbIjIjMjQUnEREREZmcbO8vUIweCUl6utF1QSKBcuMmqAcO4hmZROUAC04iIiIienE6HeTffQvFlA/EoZdfzjoj843OFkiMiCxJaukEAECtVmPLli0YMmQIWrZsCW9vb0ybNs2ozf379zFhwgS0bNkSPj4+GDJkCE6dOpXj/U6dOoUhQ4bAx8cHLVu2xIQJE3D//n1RO0EQEBISgm7dusHb2xvt27fHwoULkZqaapbXSURERFSmqFSwWfIFXJzs4eLiaFRsahs0QMrxP5CYnIbk2/dYbBKVUxYf4UxMTMSIESNw48YNdOnSBd26dUN6ejq0Wq2hTXx8PN59910AwLBhw6BQKBAWFoaAgABs3rwZvr6+hrZnzpxBQEAAvLy8MGnSJCiVSuzYsQPvvvsu9u7dC1dXV0PbtWvXYsWKFejSpQuGDBmChw8fYvv27bhz5w6+/fbb4nsTiIiIiEqLlBTYLZgPm/VrRSH1a68hfflK6OrXt0BiRFQSWbzgnD17Nu7cuYNt27bBx8cnxzYhISFISEjA3r17Ua9ePQDAe++9h169emHFihXYtm2boW1wcDCqV6+O0NBQ2NjYAAB69OiB3r174/vvv8cHH2R98paSkoINGzagT58+CAoKMjze09MTc+bMQXh4OFq3bm2mV01ERERUekie/Au76dMh371LFFO9+RbSlwZBqFTZApkRUUln0Sm1UVFROHr0KMaPH59rsQkAx44dQ7NmzQzFJgDY2NigT58+OH/+PBISEgBkjYReunQJvXv3NhSbAFCvXj00b94cR48eNVwLDw9Heno6BgwYYPRcffr0gVwuN2pLREREVN5Ib9+Gfe8ecHGyh3P9ukbFZuboMUh8+BiJyWlQhnzPYpOIcmXRgvPAgQOQSCQYMmQIACA5ORmZmZlGbTQaDe7evYu6deuKHl+/fn0IgoDbt28DAG7dugVBEIwK0+xt79y5Y5iqGx0dDQCitjY2NqhZsyZu3rz54i+QiIiIqBRRXL0Cx9a+cHGyh1PTxpCdOGGIZcycjcS4eCQmpyH9y68AJycLZkpEpYVFp9T+/fffePnll7Fy5Urs3bsXiYmJALKKw9mzZ6Nt27ZISkqCWq2Go6Oj6PEuLi4AgKdPnxr97uDgkGNbtVqNpKQkuLq6Gtrmdt9nz56Z4iUSERERlWjWx49BETAK0n//hctzMeWXwVCNHAVIS8Q+k0RUClm04Hz27BkSEhLw+PFjfPDBB6hQoQJiYmLw/fffY/To0diyZQuqVasGALC1tRU9XiaTAQAyMjIAACqVCgBgZ2cnamttnfVS9SOoKpUKUqnUaOpt9rb6e+ZHpdYi+n5sgdoWpwyVpkTmRVQQ7L9UmrH/UoknCHA9uB/1Zk2FJNsmjQCgk8txe/FXSOjc7b8zMh88sUCSRIXH77+W4+stno2qZ9GCU61Wo3nz5li1apXR9R49eqBz584ICQnBp59+CgDQ6XQ5Ph74rxiVy+UAYLTDrZ5GowEAQ4Epl8uh0+kgCAIkzx06rNFocixwcyKXWcGjVslbtxB9P7ZE5kVUEOy/VJqx/1KJpNVCvmE9FDOmiUK6qlWzzsjs0NHQf1+2QIpEL4rff0smixacjo6OSE9PF12vVKkSvLy8cPfuXTg7O8Pa2hrJycmidvrNgtzc3Ix+z62tTCaD0//XG+jbJiUlGabmZm9boUKFor8wIiIiIkvLyIDtsiDYLv1CFNI0aYL01WuhbdzEAokRUXli0Qn5Hh4euH37tmGkMrukpCQoFApYW1ujTp06iIyMFLWJioqCRCIxbPzj7u4OiUSSY9vIyEjUqVPHMLXW3d3dcD27lJQU3Lt3zxAnIiIiKjWSkmAXOBkuTvZwqehmVGyqO72O5MtXkJichtSTf7LYJKJiYdGCs1u3bkhNTcWWLVuMrl+4cAH3799H+/btAQB+fn64cuUK7t27Z2ijUqlw5MgR+Pj4wNXVFQDg6uqKJk2a4PDhw4b1nABw9+5dXLt2DZ06dTJca926NWxtbbF//36j5z548CC0Wq1RWyIiIqKSSvL4MRTvvp1VZNaoCptvNxliqkGDkXTnHhKT05C2Zy90depYMFMiKo8sOqW2Q4cO6Nq1K5YuXYrLly+jadOmePToEXbt2gV3d3cMHz4cAODv74+ffvoJ/v7+GDhwIBQKBcLCwhATE4PPPvvM6J6BgYEYMWIE3nvvPXTr1g1KpRI7duyAm5sb/P39De2cnZ0xatQorFq1Cmq1Gj4+PoiJiUFoaChat26Ntm3bFut7QURERFRQ0pvRUEyaCOs/T4tiGeMnIGPOPCCHXfuJiIqbRBAEwZIJaLVabNmyBdu2bUNsbCxcXV3RtWtXTJ482ejIkjt37iAoKAhnz56FWq2Gl5cXJk6caBgFze7EiRNYvXo1bty4AZlMBl9fX0yfPh21a9c2aicIAkJCQhAaGoqYmBi4uLigW7duCAwMzPFolZxotFqkKjPzb1jMuGiaSjP2XyrN2H/JXKzOnoVibACsbkaLYunzPkXmB4HA/3fwLyr2XyrN2H8tx8VRkWss34Lz7NmzRX7ili1bFvmxpQULTiLTY/+l0oz9l0zJ+tBBKAJGQ5oQL4opV66Gaugwk56Ryf5LpRn7r+XkVXDmO6V26NChomNDCuratWtFehwRERFRuSQIkIX+APuxAeKQoyOU6zdC3au3BRIjIiqafAvOXr16GRWcDx48wKVLl9C9e3fDjq/ZnT9/HgkJCXjjjTdMmykRERFRWaTRwGbNKtjN+VgU0tauDeW6DdC24d4SRFQ65VtwLlu2zOjvM2fORFpaGoKDg3Nsf+bMGfj7+2PQoEGmyZCIiIiorElPh+0Xi2Ab/JUopGnREspVq6F7paEFEiMiMq1CT/qPiIhAo0aNco23atUKLVq0wPr1618oMSIiIqKyRBIfD7vxY7OOL6lUwajYVHfthqS/r2edkXnsdxabRFRmFPpYlKdPn0KhyH1RKAB4enril19+KXJSRERERGWB5OFDKKZ8ANmhg6JY5ntDkbFwEYT/nydORFQWFbrgrFixIi5evJhnm5iYGGi12iInRURERFRaSa9dhWLCeFifE+/0nxE4BRkzZwP5fHhPRFRWFHpKbY8ePXD16lUEBwdDrVaL4n/88QdOnTqFV155xSQJEhEREZV0VuF/wrFxQ7g42cOpVUujYjN94edIjE9CYnIaMhYsZLFJROVKoUc4AwICcOTIEWzYsAG//PILWrRogUqVKiElJQXXr19HVFQUrKysEBgYaIZ0iYiIiEoG67D9sA8YBUlKiiiWtm4D1G+/AxTxaDkiorKi0AWng4MDQkNDsXjxYuzfvx/79+83itevXx9z5sxBy5YtTZYkERERkcUJAuRbQqCYNEEU0rm6Qbl+AzRdu1kgMSKikqvQBScAODs744svvsDs2bMRGRmJhIQE2NnZoW7duqhbt66pcyQiIiKyDLUaNl8vh938T0UhrbsHlGvXQ+vrW/x5ERGVEkUqOPWcnJzQrl07U+VCREREZHlpabBduAC2q1eJQpo2baFcuQo6dw8LJEZEVPoUueC8cOECTp06hbi4OLRp0wbdu3cHAJw+fRpxcXF444034ODgYLJEiYiIiMxF8jQOdjNnQL5zhyim6t0H6UFfQqha1QKZERGVboUuOAVBwIwZM7Bv3z4IggCJRAJHR0dDwZmWloZZs2ZBpVJh0KBBJk+YiIiIyBSk9+7BLnAyZMeOimKZI0Yi49MFEFxcij8xIqIypNDHomzZsgV79+5Fz549sXPnTgiCYBTv3LkzKlSogN9++81kSRIRERGZgjQqEg7t22QdX9K4oVGxmfHRdCQ+eYbE5DSkL/+axSYRkQkUeoRz9+7dqFu3LoKCgiDJYatviUQCX19fXLp0yRT5EREREb0Q6z9OQBEwCtJHj0Qx5ZIgqALGAFZWFsiMiKjsK3TBef/+ffTq1SvHYlPPxcUFcXFxL5QYERERUZEIAmS/7IFi9EhIMjONQ1ZWUG7cBHX/ATwjk4ioGBS64JRKpXkWmwAQExMDOzu7IidFREREVCg6HeSbvoFi6hRxqFIlKNdvhKbT6xZIjIiofCt0wVm/fn1cvnw513hcXBzOnDmDRo0avVBiRERERHnKzITNV1/CbvHnopC2YUMo16yHtmlTCyRGRER6hd40qF+/foiOjsbmzZtFsfj4eEydOhUZGRno06ePKfIjIiIi+k9yMuymfggXJ3u4vOxqVGyqO3RA8sVIJCanISU8gsUmEVEJUOgRziFDhuD48eNYsmQJ9u3bB4lEgt9//x3Xrl3DxYsXkZGRgdatW6N///7myJeIiIjKGcm/sbCbPg3yn3eLYqq3BiB96VIIFStZIDMiIspPoUc4pVIp1q1bhwkTJuDRo0cQBAF37txBeHg4pFIphg8fjvXr1+e7zpOIiIgoN9Jbt2DfsztcnOzh7F7PqNjMHDMOiTGxSExOg3JzCItNIqISrNAjnABgZWWFiRMnYsKECbh79y4SExPh4OCAunXrwtq6SLckIrKYmCv7EH08GBlJj2HrXAUv1++AuFsnDH/38JuCat69LZ0mUZlndeECFOMCYHXtmiiWPnsOMqd8CNjYWCAzIiIqqkJXh3v27IG7uzsaNmwIiUSCunXritqcOnUKCoUCzZo1M0mSRETmEnNlH66EzYVOnQEAyEh6hAfnQw3xjKRHuBI2FwBYdBKZgfXRI1lnZOZwnJoyeAVUw0cA0kJPyCIiohKi0N/BZ86cibCwsDzbbNu2DXPmzClyUkRExSX6eLCh2MyNTp2B6OPBxZQRURknCJDt3AFnZwe4ONnD4c2+hmJTsLND2tYfkJichsTkNKhGjmKxSURUypll/uvLL7+M8PBwc9yaiMikMpIem7QdEeVAq4XNurWwmzVDFNJVr551Rmb71yyQGBERmZvJC06VSoXLly/DwcHB1LcmIjI5W+cqyEh6VKB2RFQIGRmwXboEtsuWikKapk2hXL0WOm+e2U1EVNYVqOCcNWuW0d9PnjyJhIQEUTu1Wo0LFy7g8ePH6NGjh2kyJCIyIw+/KUZrOHMildnCw29KMWZFVDpJEhNhO28ObDZ/J4qp3+iM9OAV0NWqZYHMiIjIUgpUcP7888+GP0skEty8eRM3b97Mtf0rr7yCGTPE02aIiEoa/UZA3KWWqGgkjx7B7qMPId+/TxRTDXkb6Yu/gOBWwQKZERFRSVCggvO777I+qRQEASNGjED37t0xaNAgUTsrKytUqlQJtfjpJRGVItW8e7OgJCoEafQNKCZOgPVf4v0aMiZOQsbsOQCX1hAREQpYcLZu3drw54kTJ6JZs2ZG14iIiKhsszpzBoqxAbC6fUsUS/90PjInfQDIZBbIjIiISrJC7zU+dOhQPHnyBCdOnMgxfuHCBRw9ehTp6ekvnBwRERFZjvXBg3CqWR0uTvZw7NzJqNhUrl6DxKRUJCanIfPDj1hsEhFRjgpdcP7000+YNWtWjpsGAUBsbCwmTpyIvXv3vnByREREVIwEAfJt38PFyT7rjMxB/SFNzPr/XnB2Rur2nf+dkTnUH5BILJwwERGVdIUuOI8cOYLKlSujb9++OcZ79OiBKlWqYP/+/S+cHBEREZmZRgOb5V9lFZnODlCMG2sIaevURcrhI0hMTkPSg0fQ9OhpwUSJiKg0KvQ5nPfv38drr70GSR6farZs2RKnT59+ocSIqHjFXNlntFMrd2YlKsOUStgu/hy2K5aLQhrfVlCuWg2dV4Piz4uIiMqcQhecqampsLe3z7ONo6MjkpOTi5wUERWvmCv7jM6izEh6hCthcwGARSdRGSF59gx2H8+C/Idtopi6ew8ovwyGUL26BTIjIqKyrNAFZ/Xq1REVFZVnmytXrqBy5cpFToqIilf08WBDsamnU2cg+ngwC06iUkzyzz9QfBgI2eFDoljmMH9kLFgIwdXVApkREVF5UeiC8/XXX8fGjRuxbds2vPvuu6J4aGgoLl++jHfeecckCRJRwWSfEiuR2UJQZwAQAABSmR28ey7ItXjMSHpcqOtEVHJJr/4NxfhxsL5wXhTL+HAqMmbMAuzsLJAZERGVR4UuOEeOHIn9+/dj4cKF2LdvH1q1aoWKFSvi6dOnCA8Px+XLl+Hk5ITRo0ebI18iysHzU2IFtfGxRDp1OiJ/mQEg5ymyts5VkJH0KMfrRFTyWZ0+BfsxoyH95x9RLH3RYmSOHQ9YF/q/fCIiohdW6P99nJ2dsWXLFnz00Ue4dOkSLl26BIlEAkHIGklxd3dHUFAQp9QSFaOcpsSKCLpcp8h6+E0xKlgBQCqzhYffFFOnSkQmItu3F4qAUZCkpYliaRu+gXrwEB5bQkREFlekjzurV6+O7du34++//8alS5eQkpICR0dHvPLKK/Dx8clzB1siMr2CTn3NrZ2+COUutUQlmE4HechmKD6YJA65VYBy/QZounS1QGJERES5e6H5NQ0bNkTDhg1NlQsRFVFuU2Jzapebat69WWASlTQqFWxWLIfdZ/NFIa2nF5Rr10PbooUFEiMiIioYqaUTIKIX5+E3BVKZbd6NJFJOkSUqDVJTYTdjGlyc7OFS4SWjYlPTrj2Sz19CYnIaUs6eZ7FJREQlXoFGOIcNG4aePXti8ODBmDVrVoFuLJFIsGjRokInpNPpMGbMGPzxxx/Ytm0bWmT7z/T+/ftYunQpIiIioFar4eXlhYkTJ6Jdu3ai+5w6dQqrVq3C9evXIZPJ4Ovri+nTp6NWrVpG7QRBwJYtWxAaGoqHDx/ipZdeQteuXREYGAgHB4dC509kCc9PiS3sLrVEZFmSuCewmzEd8l0/imKqvv2QHrQMQmVu4kVERKVPgQrOiIgIeHt7AwB+/vnnAt24qAVnUFAQ/vjjD9H1+Ph4wzEsw4YNg0KhQFhYGAICArB582b4+voa2p45cwYBAQHw8vLCpEmToFQqsWPHDrz77rvYu3cvXLOdObZ27VqsWLECXbp0wZAhQ/Dw4UNs374dd+7cwbffflvo/IkshVNiiUoX6d27sAucBNnx46JY5sjRSP90PuDsbIHMiIiITKdABefixYvh7u4OAPjuu+/MlszPP/+MkJAQ9OrVC/v37zeKhYSEICEhAXv37kW9evUAAO+99x569eqFFStWYNu2bYa2wcHBqF69OkJDQ2FjYwMA6NGjB3r37o3vv/8eH3zwAQAgJSUFGzZsQJ8+fRAUFGR4vKenJ+bMmYPw8HC0bt3abK+XiIjKF6vLl6AYPxZWUVGiWMb0mcj4aBpgm8/0eCIiolKkQAXnm2++afizuQqwixcvYt68eZg+fTqcnJxEBeexY8fQrFkzQ7EJADY2NujTpw9Wr16NhIQEvPTSS4iPj8elS5cwYcIEQ7EJAPXq1UPz5s1x9OhRQ8EZHh6O9PR0DBgwwOi5+vTpgwULFuDo0aMsOImI6IVY/34cioBRkMbGimLKoC+hGjUasLKyQGZERETmVyI2DXr8+DEmTpyIXr164f333xfFNRoN7t69i7p164pi9evXhyAIuH37NgDg1q1bEATBqDDN3vbOnTvQarUAgOjoaAAQtbWxsUHNmjVx8+bNF31pRERU3ggCZLt/grObC1yc7OHQp5eh2BRkMqRt3oLEpFQkJqdBNWYsi00iIirT8h3hfPQo/6MWclO1atV826Snp2PChAmoUaMG5s8Xb/sOAElJSVCr1XB0dBTFXFxcAABPnz41+j2nDX9cXFygVquRlJQEV1dXQ9vc7vvs2bN88yciIoJOB/nGDVBMmwrf50NVqkC5bgM0fp0skhoREZEl5VtwdurUCRKJpNA3lkgkuHr1ap5tBEHAzJkzkZCQgF27dkEul+fYTqVSAQBsc1jXIpPJAAAZGRlGbe3s7ERtra2zXm5mZqahrVQqNZp6m72t/p55Uam1iL4vniZlaRkqTYnMi6gg2H+pNJCoMlF141pUW7dSFEvzbIC7ny2BskG2s6rZp6kU4PdfKs3Yfy3H11s8E1Uv34KzadOmRgVnfHw87t27h8aNGxsKuOxu376NzMxMvPLKK/kmdurUKRw5cgSrVq2CWq1G7P+nHCUnJwMAEhISEBsbaygqdTqd6B5qtRrAf8WovmjVT5vNTqPRAIChwJTL5dDpdBAEQVRUazSaHAvc58llVvCoVTnfdsUt+n5sicyLqCDYf6nESk6G3SfzYLNpoyik9vNDevDXuG6lgEetyqhugfSIXhS//1Jpxv5bMuVbcIaGhhr9fcGCBdBoNNi5c2eO7Q8fPozAwEDMmzcv3yfPzMyERqPB2LFjc4xPnDgRQNbmPtbW1oZCNLuEhAQAgJubm9HvubWVyWRwcnIyapuUlGSYmpu9bYUKFfJ9DUREVLZJYh/DbtpHkP+yRxRTDRiI9CVLIbxc8b+L/HSdiIjIoEC71GZ36tQptGjRItd4ly5d4OXlhTVr1uDrr7/O814+Pj5Yt26d6Hp4eDhCQkLw0UcfoX79+nByckKdOnUQGRkpahsVFQWJRGLY+Mfd3R0SiQSRkZHo0qWLUdvIyEjUqVPHMDKrP+olMjISr732mqFdSkoK7t27xx1qiYjKKemtW1BMngjrUydFscxx45E+Zx6Qw/p/IiIiMlbogvPff//NcZOd7Hx8fBAWFpbvvSpUqAA/Pz/Rdf2oZdOmTQ3FrZ+fHzZt2oR79+6hdu3aALLWYB45cgQ+Pj5wdXUFALi6uqJJkyY4fPgwJk+ebJhie/fuXVy7dg0BAQGG52ndujVsbW2xf/9+o4Lz4MGD0Gq16NSJGzwQEZUXVufPQzE2AFY3roti6XPmITNwCpDLXgNERESUs0IXnM7Ozrh+XfyfcXZPnz4t0IY7heHv74+ffvoJ/v7+GDhwIBQKBcLCwhATE4PPPvvMqG1gYCBGjBiB9957D926dYNSqcSOHTvg5uYGf39/o9cyatQowxpSHx8fxMTEIDQ0FK1bt0bbtm1N+hqIiKhksf7tMBQBoyF99lQUU65YCZX/+4C0RJwgRkREVCoVuuB84403EBoaih9//BEDBw4Uxa9du4aTJ0/meA7mi6hQoQK2bt2KoKAgbN68GWq1Gl5eXli/fj1effVVo7atW7fGunXrsHr1aqxYsQIymQy+vr6YPn26YSRUb+LEiXB0dERoaCh+++03uLi4YPDgwQgMDDRp/kREVAIIAmQ7tsM+YJQ4ZG8P5YZvoO7dxwKJERERlU0SQRCEwjzg6dOn6NevH549ewZvb2+0adMGlSpVQmpqKq5du4ajR49CrVZjxYoVojWUZZFGq0WqMtPSaYhwly4qzdh/yaS0WtisXQ272bNEIV3NmkhbvxHatu1M9nTsv1Sasf9Sacb+azkujopcY4Ue4axQoQJCQ0Mxe/ZsnD171rBpj75udXZ2xoIFC8pFsUlERCVUejpsl34B2y+XiUKaZs2hXL0GuobeFkiMiIiofCl0wQkANWrUwPfff4+bN2/iwoULSEhIgK2tLerVq4dWrVoZNuohIiIqLpKEBNjO/Rg2W0JEMXWXrlB+tRxCzZoWyIyIiKj8KlLBqefu7m44WoSIiKi4SWJioJg6BbID4p3RVe+8i/TPF0P4/5nLREREVPyKXHA+fvwYf/75J+Li4tC4cWO0adMGAHD9+nWkpKSgSZMmHOkkIiKTk16/BsXECbCOOCOKZUz+ABmzPgbs7S2QGRERET2vSAXnihUrsHHjRmg0GkgkEgwfPtxQcF65cgVz587F0qVL0bt3b5MmS0RE5ZPVmb+gCBgNq7t3RLH0BZ8hc8IkQCazQGZERESUl0IfLrZnzx6sXbsWTZs2RXBwMJ7f5LZv375wcnLCoUOHTJYkERGVP9a/HoBzjapwcbKHY+fXjYpN5dp1SExKRWJyGjIDP2SxSUREVEIVeoQzNDQUVatWxaZNmyCXyzFlyhSjuEwmQ6tWrXDjxg2TJUlEROWAIEC+dQsUE8aLQjqXl6BcvxGa7t0tkBgREREVVaFHOKOjo/PdibZixYqIjY19ocSIiKgcUKth89UyuDjZw8XZwajY1Narj5TfjiExOQ3J/zxksUlERFQKFXqEUxCEfDcD+vfff7lhEBER5SwtDbaLFsJ25deikObV1lCuXAWdp5cFEiMiIiJTK3TBWatWrTyny6akpODs2bOoV6/eCyVGRERlh+TZU9jNmgn59lBRTN2zF5TLvoJQrZoFMiMiIiJzKvSU2h49euDy5cv49ddfRTGVSoV58+YhKSkJ3bp1M0mCRERUOknv34f9W/3g4mQP5zq1jIrNzPeHI+n+QyQmpyEtdAeLTSIiojKq0COc77//Pg4dOoSPPvrIUHSeP38ec+bMwR9//IEnT57A09MT77zzjsmTJSKikk16JQqKCeNgffGiKJYx9SNkTJ8J2NlZIDMiIiKyhEIXnDY2NtiyZQs+//xz7Nu3DwBw+fJlXL58GRKJBF26dMH8+fO5hpOIqJywOnUS9gGjIH34UBRLX7wEmWPHAVZWFsiMiIiILK3QBScAODg4YPHixZg5cyYiIyORmJgIBwcHNGzYEBUrVjR1jkREVMLI9v4CxeiRkKSnG10XJBIoN3wD9aDBgERioeyIiIiopCh0wTlt2jS4u7sjICAAzs7OaN++vTnyIiKikkSng/y7b6GY8oE49PLLWWdkvtHZAokRERFRSVboTYMOHDiAf//91xy5EBFRSaJSwWbJF1lnZLo4GhWb2gYNkHL8j6wzMm/fY7FJREREOSr0CKebmxs0Go05ciEiIktLSYHdgvmwWb9WFFK/9hrSl6+Ern59CyRGREREpVGhC04/Pz+Eh4dDEARIuD6HiKjUkzz5F3bTp0O+e5copnrzLaQvDYJQqbIFMiMiIqLSrtBTaseMGYO4uDhs2rTJHPkQEVExkN65A/s+PbPOyKxf16jYzBw9BokPHyMxOQ3KkO9ZbBIREVGRFWnTIBsbG6xcuRLHjx/PtZ1EIsHWrVtfKDkiIjIdq0sXoRg3BlZ//y2KZcycjYypHwE2NhbIjIiIiMqqQhec58+fz/HPz+N0WyIiy7M+fgyKgFGQ5rDZm/LLYKhGjgKkhZ7sQkRERFQghS44jx49ao48iIjIFAQBsp92ZZ2RqdUah2xsoNy4Ceq+/XhGJhERERWLQhec1apVM0ceRERUVFot5BvWQzFjmiikq1o164zMDh2LPy8iIiIq9wpVcEZHR+PMmTNQq9Vo3LgxWrRoYa68iIgoLxkZsF0WBNulX4hCmiZNkL56LbSNm1ggMSIiIqL/FLjgXLVqFVavXm10rU2bNvj6669hb29v8sSIiOg5SUmw+2QubL4V7xKu7vQ60oNXQFenjgUSIyIiIspZgQrOc+fOYdWqVbC3t0fPnj1ha2uLP//8E6dPn8a8efPw5ZdfmjtPIqJySfL4Mew++hDyfXtFMdWgwUj/YgmECi9bIDMiIiKi/BWo4AwNDYWVlRW2bdsGLy8vAIBGo8GYMWNw4MABTJo0CbVr1zZnnkRE5Yb0ZjQUkybC+s/ToljG+AnImDMPcHCwQGZEREREhVOgvfDPnj2Lli1bGopNALC2tsaECRMgCAIiIiLMliARUXlgdfYsHJs3hYuTPZyaNzUqNtPnfYrEZ4lITE5DxhdLWWwSERFRqVGgEc6EhATUr19fdN3T0xMA8G8O57sREVHerA8dhCJgNKQJ8aKYcuVqqIYO4xmZREREVKoVqOBUq9WQy+Wi6/rNgjIyMkybFRFRWSQIkIX+APuxAeKQoyOU6zdC3au3BRIjIiIiMo9Cn8OZE0EQTHEbIqKyR6OBzZpVsJvzsSikrV0bynUboG3T1gKJEREREZlfgQvOHTt24MCBA6LrEokkx5hEIsHx48dfPEMiotImPR22XyyCbfBXopCmRUsoV62G7pWGFkiMiIiIqHgVuOBMS0tDWlpaoWNEROWBJD4etnNmw2br96KYums3KL9aDqFGDQtkRkRERGQ5BSo4r1+/bu48iIhKHcnDh1B8GAjZwV9Fscz3hiJj4SIIrq4WyIyIiIioZDDJGk4iovJCeu0qFBPGw/rcWVEsI3AKMmbOBhQKC2RGREREVPKw4CQiyodV+J9QjBkNq3v3RLH0hZ8jc/xEwJrfTomIiIiex5+QiIhyYB22H/YBoyBJSRHF0tauh/qddwGJxAKZEREREZUeLDiJiABAECDfEgLFpAmikM7VDcr1G6Dp2s0CiRERERGVXiw4iaj8Uqth8/Vy2M3/VBTSuntAuXY9tL6+xZ8XERERURnBgpOIype0NNguXADb1atEIU2btlCuXAWdu4cFEiMiIiIqe1hwElGZJ3kaB7uZMyDfuUMUU/Xug/SgLyFUrWqBzIiIiIjKNhacRFQmSe/dg13gZMiOHRXFMkeMRManCyC4uBR/YkRERETliMULzvj4eHz77beIiIjAw4cPkZ6ejpo1a2LQoEEYPHgwrLMdNXD//n0sXboUERERUKvV8PLywsSJE9GuXTvRfU+dOoVVq1bh+vXrkMlk8PX1xfTp01GrVi2jdoIgYMuWLQgNDcXDhw/x0ksvoWvXrggMDISDg4PZXz8RmY40KhKK8WNhffmyKJbx0XRkTJ8B2NpaIDMiIiKi8sniBeeVK1ewefNmvPbaa3jjjTcAAEePHsWCBQtw5coVLF68GEBWYfruu+8CAIYNGwaFQoGwsDAEBARg8+bN8M22sceZM2cQEBAALy8vTJo0CUqlEjt27MC7776LvXv3wtXV1dB27dq1WLFiBbp06YIhQ4bg4cOH2L59O+7cuYNvv/22GN8JIioK6z9OQBEwCtJHj0Qx5ZIgqALGAFZWFsiMiIiIiCSCIAiWTODhw4eQSqWomm39lFarxeDBgxEVFYU//vgDlSpVQnBwML755hvs3bsX9erVAwBkZmaiV69eqFixIrZt22Z4/JAhQxAfH499+/bBxsYGAHD79m307t0bY8aMwQcffAAASElJQfv27dG5c2cEBQUZHv/jjz9izpw52Lx5M1q3bp1n/hqtFqnKTJO9H6YSfT8WHrUqWzoNoiLJs/8KAmS/7IFi9EhIMo2/9gQrKyg3fAP1gIE8I5Msht9/qTRj/6XSjP3XclwcFbnGLD7CWb16ddE1Kysr+Pr6IioqCo8fP0alSpVw7NgxNGvWzFBsAoCNjQ369OmD1atXIyEhAS+99BLi4+Nx6dIlTJgwwVBsAkC9evXQvHlzHD161FBwhoeHIz09HQMGDDB6/j59+mDBggU4evRovgUnUUkVc2Ufoo8HIyPpMWydq8DDbwqqefe2dFpFo9NBvukbKKZOEYcqVYJy/UZoOr2e5y2efz9ert8BcbdOICPpESCxAgQtbJ2rlu73iYiIiKiEkVo6gdzExsYCACpVqgSNRoO7d++ibt26onb169eHIAi4ffs2AODWrVsQBMGoMM3e9s6dO9BqtQCA6OhoABC1tbGxQc2aNXHz5k2Tviai4hJzZR+uhM3NKqYgICPpEa6EzUXMlX2WTq3gMjNhs3gRXJzs4eLiaFRsahs2RMqJU0hMTkPyzTsFKjaffz8enA/9/98BCFnfE0rl+0RERERUgpXIgvPJkyc4evQovL29UaVKFSQlJUGtVsPR0VHU1uX/u0w+ffrU6PecNvxxcXGBWq1GUlKSUdvc7vvs2TOTvB6i4hZ9PBg6dYbRNZ06A9HHgy2UUQElJ8Nu6ofwbVQPLi+7wm7x54aQukMHJF+MRGJyGlLCI6Bt2rTAt83p/chNqXifiIiIiEoJi0+pfZ5Go8G0adOgUqkwY8YMAIBKpQIA2Oawu6RMJgMAZGRkGLW1s7MTtdXveJv5/3VfKpUKUqnUaOpt9rb6e+ZFpdYi+n5svu2KW4ZKUyLzouKRkfQ41+slrV/Insah5hcL4HbogCj2rFtP3J8xD5oKFf67WIT8c3s/8mpf0t4nKj34/ZdKM/ZfKs3Yfy3H11s8E1WvRBWcOp0OM2fOxF9//YXZs2cbdp6Vy+WG+PPUajWA/4pRfVv9tNnsNBoNABgKTLlcDp1OB0EQIHlugxGNRpNjgfs8ucyqRC5O5qLp8i3Gucp/00WzsXWuUiL6hfT2bdh9MBGyP/4QxTLHjEPU8LGo/0p9WAHI/dtXweX2fuSmpLxPVDrx+y+VZuy/VJqx/5ZMJWZKrVarxezZs7Fv3z4EBgbC39/fEHN2doa1tTWSk5NFj0tISAAAuLm5Gf2eW1uZTAYnJyejtvopts+3zX58ClFp4uE3BVKZ+AMTrUppsfWJVhcuwLFVC7g42cOpaWOjYjN99hwkxsUjMTkN6UHLoLM37Rm4ub0fOZHKbOHhJ96ciIiIiIgKr0QUnGq1GlOnTsWePXvw8ccfY9y4cUZxa2tr1KlTB5GRkaLHRkVFQSKRGDb+cXd3h0QiybFtZGQk6tSpY5ha6+7ubrieXUpKCu7du2eIE5U21bx7w7vnZ7C2czG6rk5PLNZNcayPHoFTvdpwcbKHY8f2sLp2zRBTBq9AYmIKEpPTkDlzFpDD1HZT0b8fts5VAUhg61wVNZq//f+/I2uXWgC2zlXh3fMz7lJLREREZCIWn1KblpaGSZMmISIiAkFBQejdO+cf9Pz8/LBp0ybcu3cPtWvXBpC1BvPIkSPw8fExjEa6urqiSZMmOHz4MCZPnmyYYnv37l1cu3YNAQEBhnu2bt0atra22L9/P1577TXD9YMHD0Kr1aJTp05metVE5lfNuzeijwdDk55odF2/KY5ZiipBgOzHnVlnZD53xK9gZ5d1RmafvhY5I7Oad28WkkRERETFzOIFZ1BQEE6fPo3u3bsjNTUVoaGhRvGKFSvi9ddfh7+/P3766Sf4+/tj4MCBUCgUCAsLQ0xMDD777DOjxwQGBmLEiBF477330K1bNyiVSuzYsQNubm6iqbqjRo3CqlWroFar4ePjg5iYGISGhqJ169Zo27ZtsbwHROaS1+ZBJqPVwmbdWtjNmiEK6apXzzojs/1rOTyQiIiIiMo6ixec+p1gf/31V/z666+iuK+vL15//XVUqFABW7duRVBQEDZv3gy1Wg0vLy+sX78er776qtFjWrdujXXr1mH16tVYsWIFZDIZfH19MX36dNG6zIkTJ8LR0RGhoaH47bff4OLigsGDByMwMNBsr5mouNjmsXnQC8nIgO3SJbBdtlQU0jRtCuXqtdB5N3qx5yAiIiKiUk8iCM/Ne6NC0Wi1SFVmWjoNEe7SRQAQc2UfroTNNTqDUiqzLdI6RUliImznzYHN5u9EMfUbnZEevAK6WrVeOGeA/ZdKN/ZfKs3Yf6k0Y/+1HBdHRa4xi49wEpH56IvK6OPByEh6nHXch9+UAhebkkePYPfRh5DvF28ypBryNtIXfwHBrUIOjyQiIiIiYsFJVOYVdrMcafQNKCZOgPVf4aJYxsRJyJg9B3Aw7bElRERERFQ2seAkKqNiruwr8Mim1ZkzUIwNgNXtW6JY+qfzkTnpA0AmM3fKRERERFTGsOAkKkUKWkQ+v3YzI+kRroTNBfDfNFvrgwehCBgFaWKC6PHK1Wugem+YRY4vISIiIqKygwUnUSlRkCJSL/p4sNFGQQCgU6Uj48vZcPlpiOjegpMT0tZvhKZnLzNlT0RERETlEQtOolIixyJSnYHIX2Yics90oxFP/TmbEp0Ar7Mp8DmRJLqftk5dKNdvgPbV1sWSPxERERGVPyw4iXJRmDWQxUFfRIoI2v/Hs0Y8JRmZaB6uhsdJcftnNR0g2/U7dF4NzJkqEREREREAFpxEBtkLTGs7Z2hVaRC0agB5T18trpwgkRqKy+fJ07VoejwRda8ogc/9jWIP69nifOeXkOHmkHX+JotNIiIiIiomLDiJIF4fqUlPFLXRqTMQfTy42ArO53N6vthUJGvQ4nACqt3JED02c5g/7r7THtfObzSM0HpbeISWiIiIiMofFpxULj0/XVarUorWR+Yk12mtZpDTmk3nOBVaHUyA22OVqP3VVo640sYJsgrV4TdpDSoDqNzm7WLKloiIiIhIjAUnlTs57fZaULbOVcyVloi+uH35QQZeDYuHQ7J4Ou3FNyrgho8tBGnW8SVSmS08/KYUW45ERERERHlhwUnlTk4jhwVRnMWcbN9eDFz+ENYqnSh2bkBd1N8UCUgkkF/ZB5vjwYaiWafOQOSeaYjcMw22zlXxcv0OiLt1IteNjwqzMVJJ20SJiIiIiEo+FpxU7hR4WqzUGjIbB6jTk8xfYOl0kIdshuKDSaJQhp0Uf/V0xeO6dpDKbOHd8zNAkjWiWc27NxIeXMCD86HixyU9Mrr+/MZHhTnXszBtiYiIiIj0WHCWMdlHoWI4CpUjW+cqOU6jtbZzgbVcUXwjeCoVbFYsh91n80UhracXlGvX4x/bx/mOKj64sLPAT5l946PczvXMaWOkwrQlIiIiItJjwVmGxFzZh8i9swCdBkDWKFTk3lkAOAqVnYffFOPdX5E1XfaVrh+b/31KTYXdZ/Nhs3aNKKRp1x7KFSuhc3c3XKuGAvzb5XJUSm70I7y5jfTmdL0wbYmIiIiI9KSWToBM5+qhzw3FpoFOk3WdDKp594Z3z89g61wVgAS2zlWzzqc0U7EpiXsCxYj34eJkD5eqlYyKTVXffkiKvoXE5DTcWDoBRw+Owa8LG+D4yk6IubKvgE9gVah89Bsf5bYBUk7XC9OWiIiIiEiPI5xlSE5nR+Z1vTyr5t3brKOZ0rt3YRc4CbLjx0WxzJGjkf7pfMDZ2XDtRdZI1mg2KMc1nDnmlW3jo9xGenPaGKkwbYmIiIiI9FhwEpmI1eVLUIwfC6uoKFEsY/pMZHw0DbC1zfGxL7JG0rv7JwD+v5Yz2/Ta/Hap1f9ekJ1nC9OWiIiIiEiPBWcZIrNzgTqH0UyZnUux51JeWP9+HIqAUZDGxopiyqAvoRo1GrDKf8rri66R9O7+iaHwLIzCjPSae1SYiIiIiMoeruEsQyq/0r1Q16kIBAGy3T/B2c0FLk72cOjTy1BsCjIZ0r4LQWJSKhKT06AaM7ZAxSbANZJEREREVDZxhLMMibt1olDXy7vsR8jkOUVUp4N84wYopk0Vh6pUgXLdBmj8Or1QLlwjSURERERlEQvOMoRHVxRcvpv0ZGbCdlkQbJcsFj1W26gRlGvWQdvEx2T5cI0kEREREZVFLDjLEFvnKshIepTjdTKW0yY90lQl7AInwyViiKi92s8P6cFfQ1e3rtly4hpJIiIiIiprWHCWIWVlWmaBp7q+AP2or22qFs2PJqDmjXRRG9WAgUhfshTCyxVN+txEREREROUFC84ypCxMy3yR8ygLSnrrFt74MQEv300RxW61qYwKP14CHB1N8lxEREREROUZC84yRj8tM/p+LDxqVbZ0OoX2IudR5sXq/HkoxgbA6sZ1USyynROutXICbO3g3fMzFptERERERCbCgpNKFFNufGT922EoAkZD+uypKKZcsRJ3m7sh+sSKUjsaTERERERU0rHgLGOyr3+MKYVF1AttfCQIkO3YDvuAUeKQQgHlhm+g7tPXcK0agGqN+4raEhERERGRaUgtnQCZjn79Y1bBJhjWP8Zc2Wfp1ArMw28KpDJbo2t5bnyk1cJm1ddwcbKHi7ODUbGpq1kTKb8eQmJyGpJi44yKTSIiIiIiMj+OcJYh5lr/WJye3/hIZucMjSYTkXumIXLPNMjsXPBKx2mouz8Stl8uEz1e06w5lKvXQNfQu7hTJyIiIiKi57DgLENMuf7xRfyxrhfSnt4y/N2+Qn28NnZ/gR+v3/go5so+RO6dBeg0kGXo0PR4IupFPQDmDzNqr+7SFcqvlkOoWdNkr4GIiIiIiF4cC84y5IXWP5pAzJV9iNo7C4JOY3Q97ekt/LGuV6GKTgD4Z88StN8di+q3xGdk3m9aAS67L0Bwc3uhnImIiIiIyHxYcJYhHn5TjM6wBPJZ/2hC+vWjzxebetlHPLNvbPT87rDS69egmDgB1hFn0P25e1xr6Yiotk7QyqUAJOjOYpOIiIiIqERjwVmGPL/+sbBHfeRVCOYnp/WjObny63w8OB9q+HtG0iM8Wj0ZtQ4Mg0OCStT+UgdnXG/hCMFKYnS9uEZtiYiIiIio6FhwljH69Y/R92PhUatygR+nH6HUF436HW7198xPQdaJxlzZZyg2q95KR+uwZ5BnCqJ2f/WogHuNHXMdLZVYyYpl1JaIiIiIiF4MC04C8OI73MrsnKFOT8y9gSAgdcE4vH0wQRRS2UgQ3tMNj+rbZXvynItNmZ0LGnT9uNTsuktEREREVJ6x4CQARd/h9szW4Yi/F55jTKIV4HU2BT5/JIliyS9Z468ernhWzaYQWUrwxtS/CtGeiIiIiIgsiQUnASjaDrdHl78GVeoTo2tWKh0anU5Gg7MpovZx1eSI6OaKZDdZkXMkIiIiIqLSgwUnAch5h1sgay3nrwu9nmstAfDf2ku5UotmxxNR52+l6L4P69vhXGcXpDsWrqtJJFYQBK3h78W12y4REREREZkOC04CkLUxUMKDC3hwfjuyF5M5E6BI0qDlbwmoeke8M+2txva41NEFaltpkfOxsnWEtVxRpB1ziYiIiIioZGDBWU7kdOQJ8N8RKpBIgWwjijlxeaKC76/xcPtXLYr9/aoj/m7tBK2s6EVmdpr0JHTmek0iIiIiolKNBWcZk30Tn9sAXGu3RnWftxD5ywxA0AHImiYbuWea8QNzKTZf/icDrcPiYZ8ijl/o5ILoZg4QpJIcHllAEqscn5vrNYmIiIiISj8WnGVITjvGxt8Lz3UX2dxUj1ai9f54WGuMp9YKAMJ7uuL+KwpA8gJFptFNxcUm12sSEREREZUNLDgBpKamYvny5Th06BASEhJQvXp1vP322xg2bBgkpiqsikFhC0sDQUD9S2lo+Zv4jMwMhRThPV0RW8cuhweaUtZGRLbOVblek4iIiIiojGDBCWDSpEk4e/YshgwZgho1auDcuXNYtGgRlEolxo0bZ+n0zEKqFdDgTDIan0oWxRIrWONMd1fEVynMGZkvSoDMzgV+k44V43MSEREREZE5lfuC8/Tp0/jzzz+xcOFCDBw4EADg7++PqVOnYsOGDRg6dCgcHBwsnKVpWGfq0PhkEjwvpIpi/9a0QUSXl5DqWrQzMk1BnZ6ImCv7OLpJRERERFRGlPuC8/jx45DL5ejbt6/R9UGDBmH//v0IDw9H586dLZTdi7NN06LZ0QTUup4uiv3jaYfzr7+EDAerF34emZ0LGnT92FAs/rqwAfI/XkUs+ngwC04iIiIiojKi3BecN27cQPXq1SGXy42uu7u7AwCio6NLXcFppdbhtd1PUfl+pigW3dQBl19zhsbmRY8vkaD7nGu5Rm2dqyAj6VGh75qR9PhFkiIiIiIiohKk3Becz549g6Ojo+i6i4uLIV7aPF9sRrVxwtVXnaCzNt0GSPkdW+LhN0V89IoJ7ktERERERKVHuS84VSoVbG1tRdelUimkUikyMjLyfrxai+j7seZKr0hOvlkBFf/JxKN6tkU/vkRiDQiaXMNO3sPzft2OLeHo3hcpN38p+FNa2eR/XyoXMlQa9gMqtdh/qTRj/6XSjP3Xcny96+YaK/cFp1wuh06nE13X6XTQ6XQ5FqNGj5dZwaNWZXOlVyi3//+7Ri7Fo/pFP8akcb8gVPPujeMrO+U4LVZm54LmfkPzvY9HrSWIudIOVw99Dk16olFMKrNFtcZvIu7WCWQkPYatcxUeh0IG0fdjS8zXFVFhsf9Sacb+S6UZ+2/JVO4LTjc3NyQmJoquJyRknUnp6upazBlZnr7o8/Cbgithc6FT/zfKK5XZokHXjwt1r2revRFzZR+ijwezuCQiIiIiKkfKfcHp7u6OHTt2IDU11ej4k8jISEO8rJHZuUCdnoScdpG1kisMf9YXhKYoFPWFJxERERERlR/lvuD08/PDtm3bcPDgQQwYMMBwPSwsDHZ2dmjTpo0FszO97COUUb/MhCBoDTGJxAoNe8w3as9CkYiIiIiIiqrcF5zt2rWDr68vFixYgJs3b6Jq1aq4cOECDh48iMmTJ+e4g21JVaP523hwPlR03UqugFaVnuMIJae5EhERERGRuZT7glMikWDNmjUIDg5GWFgYEhMTUb16dcyaNQv+/v6WTq9QvLt/AgB4cGEnIGgBiRVqNBtkuP48jl4SEREREZE5SQRBEC/kowLTaLVIVWbm37CYcZcuKs3Yf6k0Y/+l0oz9l0oz9l/LcXFU5BqTFmMeREREREREVI6w4CQiIiIiIiKzYMFJREREREREZsGCk4iIiIiIiMyCBScRERERERGZBQtOIiIiIiIiMgsWnERERERERGQWLDiJiIiIiIjILCSCIAiWToKIiIiIiIjKHo5wEhERERERkVmw4CQiIiIiIiKzYMFJREREREREZsGCk4iIiIiIiMyCBScRERERERGZBQtOIiIiIiIiMgsWnERERERERGQWLDjLkNTUVCxcuBDt27eHt7c3unXrhpCQEPCoVTK3+Ph4LFu2DIMGDUKbNm3QtGlT9O3bF9u2bYNGozFqe//+fUyYMAEtW7aEj48PhgwZglOnTuV431OnTmHIkCHw8fFBy5YtMWHCBNy/f1/UThAEhISEoFu3bvD29kb79u2xcOFCpKammuX1Utmm0+kwevRoeHp64ty5c0Yx9l8qqdRqNbZs2YIhQ4agZcuW8Pb2xrRp04zasP9SSRQXF4f58+ejc+fOaNKkCbp06YLPP/8c8fHxorbsw6WTRGA1UmYMHz4cZ8+exZAhQ1CjRg2cO3cOhw8fRmBgIMaNG2fp9KgM++OPPzB+/Hi89tpr8PHxAQAcPXoUly5dwltvvYXFixcDyCpM+/TpAwAYPHgwFAoFwsLCcP36dWzevBm+vr6Ge545cwbDhw+Hl5cXevbsCaVSiR07dgAA9u7dC1dXV0PbNWvWYMWKFejSpQuaN2+Ohw8fYvv27fD19cW3335bTO8ClRVLliwx9Jtt27ahRYsWANh/qeRKTEzEiBEjcOPGDXTp0gVNmjRBeno6tFotJk6cCID9l0qmp0+f4s0330RmZibeeustVK5cGTdu3MC+fftQuXJl7NmzBw4ODgDYh0s1gcqEU6dOCR4eHsLOnTuNrn/44YeCj4+PkJKSYqHMqDx48OCBEBMTY3RNo9EI/fv3Fzw8PITY2FhBEAThq6++El555RXh1q1bhnYZGRnCG2+8IbzzzjtGjx88eLDQuXNnISMjw3Dt1q1bQoMGDYTly5cbriUnJwtNmjQRPvroI6PH79y5U/Dw8BD+/PNPk71OKvt2794tNGjQQPjwww8FDw8P4ezZs4YY+y+VVOPGjROaNGkiXLx4Mdc27L9UEq1cuVLw8PAQLl++bHR9x44dgoeHh7Br1y7DNfbh0otTasuI48ePQy6Xo2/fvkbXBw0aBKVSifDwcAtlRuVB9erVUbVqVaNrVlZWhk8bHz9+DAA4duwYmjVrhnr16hna2djYoE+fPjh//jwSEhIAZH2KeenSJfTu3Rs2NjaGtvXq1UPz5s1x9OhRw7Xw8HCkp6djwIABRs/fp08fyOVyo7ZEebl48SLmzZuH6dOno23btqI4+y+VRFFRUTh69CjGjx9vmGGSE/ZfKomePn0KAKhbt67R9WbNmgEAlEql4Rr7cOnFgrOMuHHjBqpXrw65XG503d3dHQAQHR1tibSonIuNjQUAVKpUCRqNBnfv3hX9pwIA9evXhyAIuH37NgDg1q1bEATB6D+V7G3v3LkDrVYL4L++/XxbGxsb1KxZEzdv3jTpa6Ky6fHjx5g4cSJ69eqF999/XxRn/6WS6sCBA5BIJBgyZAgAIDk5GZmZmUZt2H+ppNJ/MP3JJ58YrZn8888/YW1tjQ4dOgBgHy7trC2dAJnGs2fP4OjoKLru4uJiiBMVpydPnuDo0aPw9vZGlSpV8OzZM6jV6jz7qf6TTv3v+nUbz7dVq9VISkqCq6uroW1u92Xfp/ykp6djwoQJqFGjBubPn59jm6SkJPZfKpH+/vtvvPzyy1i5ciX27t2LxMREAFk/WM+ePRtt27Zl/6USq0ePHrh9+zbWrl2LU6dOoW/fvqhRowbWrl2LL774AjVr1gTA78GlHQvOMkKlUsHW1lZ0XSqVQiqVIiMjwwJZUXml0Wgwbdo0qFQqzJgxA0BWHwWQYz+VyWQAYOin+rZ2dnaittbWWd+29J/gq1QqSKVSo2kz2duy71NeBEHAzJkzkZCQgF27dolmieix/1JJ9ezZMyQkJODx48f44IMPUKFCBcTExOD777/H6NGjsWXLFlSrVg0A+y+VTG5ubqhUqRI6duyII0eOICYmBvXq1UONGjUMbfg9uHRjwVlGyOVy6HQ60XWdTgedTpfjFyiROeh0OsycORN//fUXZs+ebZguo/9BPqd+qlarAfz3H4m+rX7KS3b6Y1b0/zno+74gCJBIJKK27PuUl1OnTuHIkSNYtWoV1Gq1YRp4cnIyACAhIQGxsbGGH2jYf6mkUavVaN68OVatWmV0vUePHujcuTNCQkLw6aefAmD/pZJn586dWLRoEXbt2gUvLy8IgoATJ05gwYIFGDZsGLZt24ZGjRrxZ4hSjgVnGeHm5maYRpOdfgF19u2ficxFq9Xi448/xr59+xAYGAh/f39DzNnZGdbW1oYf5LPT91M3Nzej33NrK5PJ4OTkZNQ2KSnJMK0me9sKFSq8+AujMiszMxMajQZjx47NMa4/UiI8PJz9l0okR0dHpKeni65XqlQJXl5euHv3Lr//Uom1ceNGtG3bFl5eXgAAiUSCjh07okqVKujTpw+2bt2KJUuWsA+Xctw0qIxwd3fHnTt3RIfURkZGGuJE5qRWqzF16lTs2bMHH3/8sejsV2tra9SpU8fQJ7OLioqCRCIxLNp3d3eHRCLJsW1kZCTq1KljmBaj79vPt01JScG9e/fY9ylPPj4+WLduneiX/sOSjz76COvWrYOTkxP7L5VIHh4euH37tmGUJ7ukpCQoFAp+/6USKzY2FlZWVqLr+mng+jWU7MOlGwvOMsLPzw8ajQYHDx40uh4WFgY7Ozu0adPGQplReZCWloYxY8bgyJEjCAoKwrBhw3Js5+fnhytXruDevXuGayqVCkeOHIGPj49hJN7V1RVNmjTB4cOHDWsxAODu3bu4du0aOnXqZLjWunVr2NraYv/+/UbPdfDgQWi1WqO2RM+rUKEC/Pz8RL/0n7Y3bdoUfn5+sLa2Zv+lEqlbt25ITU3Fli1bjK5fuHAB9+/fR/v27QHw+y+VTA0aNEB4eDju3r1rdF3/82zjxo0N19iHSy+JIAiCpZOgFycIAoYNG4bLly/j7bffRtWqVXHhwgUcPHgQkydPxoQJEyydIpVhn376KUJDQ9G9e3e0atVKFK9YsSJef/11PH36FH369IFMJsPAgQOhUCgQFhaGa9eu4dtvv8Wrr75qeEx4eDhGjBiBRo0aoVu3blAqldixYwcEQcDevXuNpomvXLkSq1atQo8ePeDj44OYmBiEhoaiefPm2Lx5c3G8BVTG7N69G7NmzcK2bdvQokULAGD/pRJr8uTJOHToELp27YqmTZvi0aNH2LVrF6pXr47Q0FA4ODiw/1KJdPbsWQwfPhy2trbo378/qlSpgqtXr2L//v2oXbs2duzYYdhBln249GLBWYakpKQgODgYhw8fRmJiIqpXr44hQ4bA399ftBCayJRmzpyJn3/+Ode4r68vvv/+ewDAnTt3EBQUhLNnz0KtVsPLywsTJ040fAqf3YkTJ7B69WrcuHEDMpkMvr6+mD59OmrXrm3UThAEhISEIDQ0FDExMXBxcUG3bt0QGBiY47boRPnJqeAE2H+pZNJqtdiyZQu2bduG2NhYuLq6omvXrpg8ebLRcQ/sv1QSRUVFYc2aNbhw4QJSU1NRqVIldOnSBRMmTBAdV8I+XDqx4CQiIiIiIiKz4BpOIiIiIiIiMgsWnERERERERGQWLDiJiIiIiIjILFhwEhERERERkVmw4CQiIiIiIiKzYMFJREREREREZsGCk4iIiIiIiMyCBScREREVyMqVK+Hp6Ykff/zR0qkQEVEpwYKTiIjITKZOnQpPT094enriyJEjL3Sv+/fvw9PTE0OHDjVRdkRERObHgpOIiMgMUlNTceTIETg4OAAAdu/ebeGMiIiIih8LTiIiIjMICwtDRkYGJkyYgGrVquHEiRN49uyZpdMiIiIqViw4iYiIzGD37t2wtrZG37590a9fP2g0GuzduzfHtunp6diwYQP69esHHx8f+Pr6YsCAAVi5ciViY2Oxe/dudOnSBQAQERFhmKbr6emJlStXGp7P09MTwcHBovs/fPgQnp6eePvtt42uR0VFISAgAF27dkXz5s3RsGFDtG3bFmPHjsX58+dN/I4QEVF5ZG3pBIiIiMqa27dv49KlS+jUqRPc3Nzw5ptvYs2aNdi9ezeGDx9u1DYpKQnDhg3D9evX4e7ujn79+kGtVuPcuXNYtWoVAKBjx44YMGAAdu3ahcqVK6NHjx6Gxzdt2rTIed65cweXL19Go0aN4OvrCxsbG8TExOD06dM4efIkNm3ahFdffbXI9yciImLBSUREZGL69Zr9+/cHANSoUQMtW7ZEREQEoqKi0KhRI0PbBQsW4Pr16xgxYgSmT58OiURiiB07dgyJiYlo1KgRnJycsGvXLtSsWRMzZswwSZ7dunVDnz59jJ4TAE6dOoWRI0fiu+++Y8FJREQvhAUnERGRCWm1Wvzyyy946aWX0KFDB8P1/v37IyIiArt37zYUnM+ePcOBAwdQpUoVTJkyRVT4derUyay52tjYAADi4+Nx+fJlPHr0CGlpaUhOTgYA3Lt3z6zPT0REZR8LTiIiIhM6efIk4uLiMGzYMMhkMsP1rl27YsGCBQgLC8OsWbMgl8sRFRUFnU6H5s2bQy6XF3uuT548wcKFC3HkyBFotVpRXK1WF3tORERUtrDgJCIiMiH9dNro6GjMnDnTKGZvb48nT57gyJEj6NGjh2EksWLFisWep1arxciRIxEdHY3mzZtj8ODBaNCgASpWrAiFQmE07ZeIiKioWHASERGZSEJCAo4dOwYA+Ouvv3Jtt3v3bvTo0QOOjo4AgLi4uBd+bv103JxGKnNy/vx5REdHw8fHB1u3boVU+t/G9RqN5oXzISIiAlhwEhERmcz+/fuhVqsxbdo0jBo1ShQXBAGdOnXC6dOn8e+//+KVV14BkFX8qVSqPKfVWllZAch9mquzszMAIDExsUC5/vvvvwAAHx8fo2KTiIjIlPg/DBERkYns3r0bEokEvXr1yjEukUjQs2dP6HQ67NmzB5UqVcJrr72GR48e4euvvxa1P336NI4cOQIAqFChAqytrXHt2jUkJCSI2tatW9fwGKVSabgeHx+PFStWiNpXr14dQFaxq9PpDNeVSiWWLl1aiFdNRESUO45wEhERmcD169dx9epV+Pr6onLlyrm26927NzZu3Ijdu3djzJgx+Oyzz/D2229j48aNOHHiBFq0aIGMjAxcvHgRd+/exaxZswAAtra28PPzw2+//YaBAweidevWSEpKQocOHdC/f3/Url0bb7zxBo4cOYJBgwbh1VdfRXx8PE6cOAFra/F/902bNoWvry8iIiLQt29fNG/eHOnp6Th16hRUKpXZ3iciIipfOMJJRERkAj/99BOArIIyL56envDw8MC9e/dw/vx5VK5cGbt378bo0aOh1Wrx008/4ejRo3BycsK0adPQp08fw2MXLVqEwYMHQ6VSYc+ePfj7779hb29viC9evBhvvfUW4uLisH37dly/fh2jRo3C999/n2Mu69atw9ChQ5GcnIyff/4Zly9fxptvvomwsDATvCNERESARBAEwdJJEBERERERUdnDEU4iIiIiIiIyCxacREREREREZBYsOImIiIiIiMgsWHASERERERGRWbDgJCIiIiIiIrNgwUlERERERERmwYKTiIiIiIiIzIIFJxEREREREZkFC04iIiIiIiIyCxacREREREREZBb/A4U/9teGfcrQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pred = ebm.predict(x_test_new)\n", "# Create figure and axes\n", "f, ax = plt.subplots(figsize=(15,5))\n", "rmse_ebm = round(np.sqrt(mean_squared_error(pred, y_test_new)/Target_range), 3)\n", "# Plot on axes\n", "ax.set_title('Actual vs EBM Prediction'+\" (RMSE: \"+str(rmse_ebm)+ \")\")\n", "ax.set_xlabel('Actual')\n", "ax.set_ylabel('Predicted')\n", "ax.scatter(y_test_new, pred)\n", "ax.plot(y_test_new, y_test_new,'r')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "8ef469a7", "metadata": {}, "source": [ "So we see the EBM is not as Accurate as the XGBoost (Our Best Model), but let's see if it will see our Features differently from what XGBoost is doing" ] }, { "cell_type": "code", "execution_count": 39, "id": "77055917", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", "
\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ebm_global = ebm.explain_global()\n", "show(ebm_global)" ] }, { "cell_type": "markdown", "id": "1997efd2", "metadata": {}, "source": [ "As you can see it's quite similar in comparison of the feature relevance to making decision with Energy Consumption and Emission_per_Capital leading the Pack" ] }, { "cell_type": "code", "execution_count": 40, "id": "ccfa1072", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "'''\n", "RUN: Select what observation you wish to Probe & Interrogate using EBM\n", "'''\n", "ebm_local = ebm.explain_local(x_test_new[:10], y_test_new[:10])\n", "show(ebm_local)" ] }, { "cell_type": "markdown", "id": "8ff06f4c", "metadata": {}, "source": [ "As you can see EBM did poorly with Zero Emission predictions But Comparing it with the test prediction by XGBoost, You'll see why we've concluded on XGboost is our top Model." ] }, { "cell_type": "code", "execution_count": 41, "id": "0ab9af8b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ActualPredicted ValueVarience
00.000.0000000.00
10.000.0000000.00
2375.21360.52999914.68
39.329.680000-0.36
486.8681.0700005.79
50.000.0000000.00
60.000.0000000.00
70.000.0000000.00
80.000.0000000.00
91.622.070000-0.45
100.000.0000000.00
110.000.0000000.00
1244.7954.590000-9.80
1355.4255.740002-0.32
14174.35181.270004-6.92
150.000.0000000.00
160.000.0000000.00
173.995.670000-1.68
180.000.0000000.00
1915.4817.350000-1.87
\n", "
" ], "text/plain": [ " Actual Predicted Value Varience\n", "0 0.00 0.000000 0.00\n", "1 0.00 0.000000 0.00\n", "2 375.21 360.529999 14.68\n", "3 9.32 9.680000 -0.36\n", "4 86.86 81.070000 5.79\n", "5 0.00 0.000000 0.00\n", "6 0.00 0.000000 0.00\n", "7 0.00 0.000000 0.00\n", "8 0.00 0.000000 0.00\n", "9 1.62 2.070000 -0.45\n", "10 0.00 0.000000 0.00\n", "11 0.00 0.000000 0.00\n", "12 44.79 54.590000 -9.80\n", "13 55.42 55.740002 -0.32\n", "14 174.35 181.270004 -6.92\n", "15 0.00 0.000000 0.00\n", "16 0.00 0.000000 0.00\n", "17 3.99 5.670000 -1.68\n", "18 0.00 0.000000 0.00\n", "19 15.48 17.350000 -1.87" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Pint XGBoost Results per Observation\n", "f_df.head(20)" ] }, { "cell_type": "code", "execution_count": null, "id": "52b4c90a", "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "Extract / Save Best Model as Pickle File\n", "\"\"\"\n", "\n", "# save the model\n", "# pickle.dump(xgb_reg_new, open(\"data/CO2_Emission_Prediction_model.pkl\", \"wb\"))" ] }, { "cell_type": "markdown", "id": "b6327b69", "metadata": {}, "source": [ "### Measuring of Bias and Variance of our BEST Model\n", "Practically it is very difficult and expensive to obtain population data. Without the knowledge of population data, it is not possible to compute the exact bias and variance of a given model. Although the changes in bias and variance can be realized on the behavior of train and test error of a given model.\n", "\n", "So, to perform this experiment, we will consider a large dataset to be population. Based on this assumption we will proceed in calculating the bias and variance of the various model on this dataset.\n", "\n", "https://www.analyticsvidhya.com/blog/2020/12/a-measure-of-bias-and-variance-an-experiment/\n", "\n", "Our Approach to this experiment (Pseudocode) involves:\n", "1. Considering a data set of 22779 Observation as Population_Data\n", "2. Extracting Test_Data of 1.5% records from Population_Data. So, the remaining data is considered to be Training_Data (\n", "3. Build Population_Model using Training_Data and Collect predictions from the Population_Model using Test_Data\n", "\n", " **All Done Above Up to this Point. We will only Declare as Variables**\n", " \n", "4. Build Mean_Model: `30 random samples extracted from Training_Data. Models are built on each of these samples. The mean predictions using Test_Data of these models are collected.`\n", "5. Compute Model_Bias: `The bias of the model = Mean (abs(Prediction of Population_Model – Prediction of Mean_Model))`\n", "6. Compute Model_Variance: `Model_Variance = Var (Prediction of Mean_Model, Prediction of Sample_Model)`" ] }, { "cell_type": "code", "execution_count": 50, "id": "52646411", "metadata": {}, "outputs": [], "source": [ "# Declaring already built variables\n", "Pop_Model = xgb_reg_new # Population Model\n", "Pop_pred = y_pred_xgb_new # Population Prediction\n", "Test_data = x_test_new # 1.5% of Pop data extracted during train/test split\n", "\n", "# Join X_train and Y_train prior to getting sample\n", "s_df = pd.concat([x_train_new, y_train_new], axis=1, join='inner')\n", "\n", "# Extracting Mean Sample (30 Observation) from Pop training data\n", "mean_sample = s_df.sample(n=30, replace=True)\n", "# Extracting features and label \n", "X_mean = mean_sample.drop(['CO2_emission'], axis=1)\n", "y_mean = mean_sample['CO2_emission']" ] }, { "cell_type": "code", "execution_count": 51, "id": "abf394b5", "metadata": {}, "outputs": [], "source": [ "# Building Mean Model\n", "xgb_reg_mean = xgb.XGBRegressor(objective='count:poisson', colsample_bytree=0.6, learning_rate=0.1,\n", " max_depth=3, alpha=6, n_estimators=600, subsample=0.7)\n", "# Train Model\n", "xgb_reg_mean.fit(X_mean, y_mean)\n", "# Get Prediction\n", "Mean_pred = xgb_reg_mean.predict(Test_data)" ] }, { "cell_type": "code", "execution_count": 64, "id": "c481d758", "metadata": {}, "outputs": [], "source": [ "No_of_Test_Data = len(Test_data)\n", "Model_bais = (abs(Pop_pred - Mean_pred))/No_of_Test_Data\n", "Model_Variance = Pop_pred - Mean_pred" ] }, { "cell_type": "code", "execution_count": 99, "id": "4b052534", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ActualPopulation PredSample PredModel BaisModel Varience
00.000.0005450.3409770.000100-0.340431
10.000.0005100.3409770.000100-0.340467
2375.21360.52948016.7582360.100606343.771240
39.329.6769021.2474590.0024678.429443
486.8681.06936614.5294760.01947366.539886
50.000.0008150.4724540.000138-0.471639
60.000.0007420.3407860.000100-0.340044
70.000.0022160.2927870.000085-0.290572
80.000.0012010.2859490.000083-0.284748
91.622.0726500.4006250.0004891.672024
\n", "
" ], "text/plain": [ " Actual Population Pred Sample Pred Model Bais Model Varience\n", "0 0.00 0.000545 0.340977 0.000100 -0.340431\n", "1 0.00 0.000510 0.340977 0.000100 -0.340467\n", "2 375.21 360.529480 16.758236 0.100606 343.771240\n", "3 9.32 9.676902 1.247459 0.002467 8.429443\n", "4 86.86 81.069366 14.529476 0.019473 66.539886\n", "5 0.00 0.000815 0.472454 0.000138 -0.471639\n", "6 0.00 0.000742 0.340786 0.000100 -0.340044\n", "7 0.00 0.002216 0.292787 0.000085 -0.290572\n", "8 0.00 0.001201 0.285949 0.000083 -0.284748\n", "9 1.62 2.072650 0.400625 0.000489 1.672024" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Place in Dataframe\n", "result = pd.DataFrame(list(zip(y_test_new, Pop_pred, Mean_pred, Model_bais, Model_Variance)), \n", " columns =['Actual','Population Pred', 'Sample Pred', 'Model Bais', 'Model Varience'])\n", "result.head(10)" ] }, { "cell_type": "code", "execution_count": 81, "id": "baff46e9", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "variable=Actual
x=%{x}
value=%{y}", "legendgroup": "Actual", "line": { "color": "#636efa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "Actual", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ], "xaxis": "x", "y": [ 6.99, 2.27, 37.82, 0, 0, 0.35, 6.75, 31.74, 0, 0, 4.1, 0.14, 2.63, 0, 0, 1.13, 2.5, 7.86, 0, 0, 57.11, 98.42, 148.14, 0, 0, 0, 0.01, 3.98, 0, 0, 0, 0, 0.53, 0, 0, 0.6, 0.09, 1.57, 0, 0, 0, 0, 0.15, 0, 0, 0.01, 10.55, 14.76, 0, 0, 0, 0, 5.87, 0, 0, 113, 58.05, 31.46, 0, 0, 4.59, 143.04, 126.42, 0, 0, 33.6, 159.18, 218.39, 0, 0, 1262.56, 1626.41, 2388.23, 0, 0, 0, 0.11, 7.2, 0, 0, 7.67, 79.92, 11.8, 0, 0, 159.99, 16, 65.82, 0, 0, 2.89, 0, 4.2, 0, 0, 4.59, 0, 4.38, 0, 0 ], "yaxis": "y" }, { "hovertemplate": "variable=Population Pred
x=%{x}
value=%{y}", "legendgroup": "Population Pred", "line": { "color": "#EF553B", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "Population Pred", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ], "xaxis": "x", "y": [ 7.852268218994141, 2.377229690551758, 38.80563735961914, 0.0016581055242568254, 0.001808678382076323, 0.4584030508995056, 9.344709396362305, 36.003150939941406, 0.0013690536143258214, 0.001410466036759317, 3.069883108139038, 0.20623163878917694, 2.62032413482666, 0.0002722686913330108, 0.0009345349972136319, 0.6438577771186829, 2.869239330291748, 7.57926082611084, 0.000375699601136148, 0.0006408277549780905, 59.25663375854492, 95.37822723388672, 142.32235717773438, 0.0003652158775366843, 0.0017180534778162837, 0.0011974682565778494, 0.07485149800777435, 3.218883991241455, 0.00023528198653366417, 0.00023528198653366417, 0.0013501286739483476, 0.001223690458573401, 0.711064875125885, 0.00033828962477855384, 0.00033828962477855384, 0.9220297336578369, 0.11118440330028534, 1.6254392862319946, 0.000366069347364828, 0.000366069347364828, 0.000906779314391315, 0.00047419877955690026, 0.16643495857715607, 0.0002203902549808845, 0.0002203902549808845, 0.03131340071558952, 8.907632827758789, 13.496023178100586, 0.000259086285950616, 0.00042062217835336924, 0.003272509900853038, 0.001733157318085432, 5.528542995452881, 0.0003800417762249708, 0.0008383603417314589, 81.84081268310547, 46.02191925048828, 30.568498611450195, 0.0018325711134821177, 0.0008916995720937848, 4.569150924682617, 130.379638671875, 123.24658203125, 0.00023727504594717175, 0.00047259562416002154, 31.79579734802246, 175.65943908691406, 256.1349182128906, 0.002087914850562811, 0.0020296196453273296, 1355.443603515625, 1558.4627685546875, 2534.389404296875, 0.014271139167249203, 0.01673656515777111, 0.0020205967593938112, 0.20716862380504608, 7.831995010375977, 0.00024196940648835152, 0.0007266479660756886, 6.927489757537842, 78.1266098022461, 11.646088600158691, 0.0002876819344237447, 0.0007109296275302768, 137.0045166015625, 16.72815704345703, 65.56256103515625, 0.0003819815756287426, 0.0018360365647822618, 3.6834232807159424, 0.0015550774987787008, 5.229220867156982, 0.00033613209961913526, 0.0009663765667937696, 3.558217763900757, 0.0011477712541818619, 3.6362574100494385, 0.00029879348585382104, 0.0008250050595961511 ], "yaxis": "y" }, { "hovertemplate": "variable=Sample Pred
x=%{x}
value=%{y}", "legendgroup": "Sample Pred", "line": { "color": "#00cc96", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "Sample Pred", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ], "xaxis": "x", "y": [ 2.7208685874938965, 0.514220118522644, 15.186234474182129, 1.1784635782241821, 1.1784635782241821, 0.45631924271583557, 6.308796405792236, 14.529476165771484, 0.989952564239502, 1.1735817193984985, 0.5693085193634033, 0.30950435996055603, 0.3925189673900604, 0.28493326902389526, 0.8444308638572693, 0.3486553430557251, 0.39118510484695435, 0.5312654376029968, 0.28493326902389526, 0.334285169839859, 9.986931800842285, 10.426762580871582, 13.337756156921387, 0.2893889546394348, 1.1691960096359253, 0.3574923872947693, 0.3631412386894226, 2.876835823059082, 0.2906368374824524, 0.2906368374824524, 0.29278725385665894, 0.30371928215026855, 0.4643758535385132, 0.28493326902389526, 0.28493326902389526, 0.3197087347507477, 0.30950435996055603, 0.3771854639053345, 0.28493326902389526, 0.28493326902389526, 0.29278725385665894, 0.2859492599964142, 1.9985474348068237, 0.28493326902389526, 0.28493326902389526, 0.32768359780311584, 5.593251705169678, 7.849964141845703, 0.28493326902389526, 0.28493326902389526, 0.29359471797943115, 0.2859492599964142, 0.3782256841659546, 0.28493326902389526, 0.334285169839859, 13.32811450958252, 10.426762580871582, 9.707839012145996, 1.1691960096359253, 0.8979312777519226, 0.8161242008209229, 13.702794075012207, 17.528404235839844, 0.29168277978897095, 0.34220367670059204, 2.2739646434783936, 12.038622856140137, 16.770355224609375, 1.1735817193984985, 1.1735817193984985, 17.515737533569336, 13.702794075012207, 17.528404235839844, 1.2833601236343384, 1.2833601236343384, 0.3055301010608673, 0.30950435996055603, 2.7850635051727295, 0.28493326902389526, 0.8444308638572693, 0.46593767404556274, 11.354856491088867, 1.9709264039993286, 0.2893889546394348, 0.33951255679130554, 13.32811450958252, 1.4674158096313477, 9.994155883789062, 0.2893889546394348, 1.1691960096359253, 0.4445507526397705, 0.3331727087497711, 0.44487226009368896, 0.28733012080192566, 0.884736180305481, 0.3769128918647766, 0.2859492599964142, 0.3771854639053345, 0.28493326902389526, 0.334285169839859 ], "yaxis": "y" }, { "hovertemplate": "variable=Model Bais
x=%{x}
value=%{y}", "legendgroup": "Model Bais", "line": { "color": "#ab63fa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "Model Bais", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ], "xaxis": "x", "y": [ 0.0015017265686765313, 0.0005452178884297609, 0.006912321783602238, 0.0003443972673267126, 0.0003443532041274011, 6.098355811445799e-07, 0.0008884732378646731, 0.006284364964812994, 0.00028931329143233597, 0.0003430410288274288, 0.0007318041170947254, 3.0223212888813578e-05, 0.000651976908557117, 8.330728451255709e-05, 0.0002468528982717544, 8.639228326501325e-05, 0.0007252134382724762, 0.002062626648694277, 8.32770238048397e-05, 9.764247079147026e-05, 0.014418994076550007, 0.024861417710781097, 0.037747908383607864, 8.458405500277877e-05, 0.0003416675317566842, 0.00010427126835566014, 8.436924690613523e-05, 0.00010010188998421654, 8.49872812977992e-05, 8.49872812977992e-05, 8.529034676030278e-05, 8.852666360326111e-05, 7.219461986096576e-05, 8.328796684509143e-05, 8.328796684509143e-05, 0.00017627188935875893, 5.8039204304805025e-05, 0.0003653069434221834, 8.327983960043639e-05, 8.327983960043639e-05, 8.542009891243652e-05, 8.354552846867591e-05, 0.0005361757357604802, 8.332246943609789e-05, 8.332246943609789e-05, 8.673403499415144e-05, 0.0009699681540951133, 0.0016523438971489668, 8.331114804605022e-05, 8.326386887347326e-05, 8.496406371705234e-05, 8.317708852700889e-05, 0.001507262815721333, 8.327575051225722e-05, 9.758466330822557e-05, 0.020050540566444397, 0.010417078621685505, 0.00610496336594224, 0.000341634004143998, 0.00026252257521264255, 0.0010983396787196398, 0.034145988523960114, 0.0309388879686594, 8.529279875801876e-05, 0.00010000909242080525, 0.008639693260192871, 0.04788434877991676, 0.07005108892917633, 0.00034284277353435755, 0.0003428598283790052, 0.3915504515171051, 0.45208078622817993, 0.736570417881012, 0.0003714044578373432, 0.00037068294477649033, 8.882338443072513e-05, 2.994900023622904e-05, 0.0014770064735785127, 8.331615390488878e-05, 0.00024691372527740896, 0.00189100147690624, 0.019541045650839806, 0.002831478603184223, 8.460675599053502e-05, 9.915177361108363e-05, 0.036194439977407455, 0.004466122481971979, 0.016262337565422058, 8.457915828330442e-05, 0.00034163298550993204, 0.0009478701977059245, 9.704934927867725e-05, 0.0014001604868099093, 8.399004582315683e-05, 0.0002586391055956483, 0.0009310228051617742, 8.334840094903484e-05, 0.0009537816513329744, 8.329952106578276e-05, 9.758857049746439e-05 ], "yaxis": "y" }, { "hovertemplate": "variable=Model Varience
x=%{x}
value=%{y}", "legendgroup": "Model Varience", "line": { "color": "#FFA15A", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "Model Varience", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ], "xaxis": "x", "y": [ 5.131399631500244, 1.8630095720291138, 23.619403839111328, -1.1768054962158203, -1.1766549348831177, 0.002083808183670044, 3.0359129905700684, 21.473674774169922, -0.988583505153656, -1.1721712350845337, 2.5005745887756348, -0.10327272117137909, 2.2278051376342773, -0.2846609950065613, -0.8434963226318359, 0.29520243406295776, 2.4780542850494385, 7.047995567321777, -0.284557580947876, -0.3336443305015564, 49.26970291137695, 84.95146179199219, 128.98460388183594, -0.2890237271785736, -1.1674779653549194, -0.3562949299812317, -0.28828972578048706, 0.34204816818237305, -0.29040154814720154, -0.29040154814720154, -0.2914371192455292, -0.3024955987930298, 0.24668902158737183, -0.28459498286247253, -0.28459498286247253, 0.6023210287094116, -0.1983199566602707, 1.2482538223266602, -0.2845672070980072, -0.2845672070980072, -0.2918804883956909, -0.28547507524490356, -1.832112431526184, -0.28471288084983826, -0.28471288084983826, -0.2963702082633972, 3.3143811225891113, 5.646059036254883, -0.28467419743537903, -0.28451263904571533, -0.2903222143650055, -0.28421610593795776, 5.150317192077637, -0.2845532298088074, -0.33344680070877075, 68.5126953125, 35.595157623291016, 20.860660552978516, -1.1673634052276611, -0.8970395922660828, 3.7530267238616943, 116.67684173583984, 105.71817779541016, -0.2914454936981201, -0.34173107147216797, 29.521833419799805, 163.62081909179688, 239.36456298828125, -1.1714937686920166, -1.171552062034607, 1337.9278564453125, 1544.760009765625, 2516.861083984375, -1.2690889835357666, -1.266623616218567, -0.30350950360298157, -0.10233573615550995, 5.046931266784668, -0.28469130396842957, -0.8437042236328125, 6.461552143096924, 66.7717514038086, 9.675162315368652, -0.2891012728214264, -0.33880162239074707, 123.67639923095703, 15.260741233825684, 55.56840515136719, -0.2890069782733917, -1.1673599481582642, 3.238872528076172, -0.3316176235675812, 4.784348487854004, -0.28699398040771484, -0.8837698101997375, 3.181304931640625, -0.2848014831542969, 3.2590718269348145, -0.28463447093963623, -0.33346015214920044 ], "yaxis": "y" } ], "layout": { "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Bais vs Varience Trade-off" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "title": { "text": "x" } }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "value" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Multiple line graph\n", "fig = px.line(result.tail(100), x=range(0, len(result.tail(100))), y=['Actual','Population Pred', 'Sample Pred', \n", " 'Model Bais', 'Model Varience'], \n", " title='Bais vs Varience Trade-off')\n", "\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 97, "id": "7fbf9088", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "93 % of Sample has CO2 Emission as Zero\n" ] } ], "source": [ "print(f\"{round((len(mean_sample[mean_sample['CO2_emission'] < 10])/len(mean_sample))*100)} % of Sample has CO2 Emission as Zero\")" ] }, { "cell_type": "markdown", "id": "2e36c431", "metadata": {}, "source": [ "### Observations:\n", " Our Smaple Model is performing Poorly with Large Emission Prediction and this can be liken to the fact that about 77% of our main dataset is Zero emission and 93% below 10 MMtonnes of CO2 Emission, hence contributing to why we are experiencing a near 100% varience with the sample model for Large Emission Prediction.\n", " \n", " The Rest Observation (i.e below 10 MMtonnes prediction) performs at about 3% less than Our Pouplation Model." ] }, { "cell_type": "markdown", "id": "6b530251", "metadata": {}, "source": [ "\n", "## 5. Conclusion\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n", "| ⚡ Description: Conclusion ⚡ |\n", "| :--------------------------- |\n", "| This section, we will be giving our judgement or decision reached by reasoning of the above experimental analysis. |\n", "\n", "---\n" ] }, { "cell_type": "markdown", "id": "2934a97d", "metadata": {}, "source": [ "Conclusively from the Analysis, we can say;\n", " * CO2 Emission has been increasing throughout the period globally and has seen a decline since 2014.\n", " * The top CO2 emitters over the entire time period have been China and The United States But in contrast to CO2 Emitted per head/capita, China & the US are doing much better as compared to the UAE, Singapore, and Qatar. \n", " * Hence it's entirely wrong to state that the larger the population, the more CO2 the country will be likely to emit. It's more dependent on the Activity, Culture, and policies of a place to reduce the CO2 Emitted per head/capita index.\n", " * The larger the Energy Consumption of a country, the larger the CO2 emission, which is dependent on the prevalent Energy type being consumed in that region.\n", " * The larger the GDP, the more likely the country will have a high CO2 emission, This Is NOT entirely true as the GDP of a place has many contributing factors and the essentials that correlate to CO2 Emission are the Manufacturing and Agricultural activities of the Place.\n", " * Coal and Petroleum/other liquids have been the dominant energy source contributing to CO2 Emitted globally.\n", " * A high or low Energy Intensity by GDP of Energy Intensity per capita isn’t necessarily predictive of a large CO2 emission, but generally speaking the lower it is the better (the more energy conserved means less CO2 emitted).\n", "\n", "And Now; We have a well-explained Model with an Accuracy rate of about 99% i.e with an RMSE of 0.01. This Model will be integrated and made available at this [PLATFORM]()\n", "The Projected Features required by the Model for Prediction are;\n", "1. Est. CO2 Emission per Capita Index of the Place/Country/Region\n", "2. Est. Energy Consumption of the Place/Country/Region\n", "3. Est. Energy Production of the Place/Country/Region\n", "4. Est. Energy Type of the Place/Country/Region\n", "5. Est. GDP of the Place/Country/Region\n", "6. Est. Manufacturing Contribution to GDP of the Place/Country/Region\n", "7. Est. Agricultural Contribution to GDP of the Place/Country/Region" ] }, { "cell_type": "markdown", "id": "a8ad0c0d", "metadata": {}, "source": [ "\n", "## References\n", "\n", "Back to Table of Contents\n", "\n", "---\n", " \n" ] }, { "cell_type": "markdown", "id": "73ef9d4e", "metadata": {}, "source": [ "\n", "1. W\n", "2. W" ] }, { "cell_type": "code", "execution_count": null, "id": "7c3ddde4", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }