Evolutionary Testing of Web APIs with
EvoMaster

Prof. Andrea Arcuri

Kristiania University College, Oslo, Norway

In this Talk

*Search-Based Software Testing

*System Testing of Web APIs with EvoMaster
* Advance Topics

* Applications

* Concluding Remarks

Search-Based Software Testing

Search-Based Software Testing (SBST)

* Biology meets Software Engineering (SE)
* Casting SE problems into Optimization Problems

* Genetic Algorithms: one of most famous optimization
algorithm, based on theory of evolution

e Fvolve test cases

Properties of Optimization Problems

* 2 mainh components: Search Space and Fitness Function

* Goal: find the best solution from the search space such that the fitness
function is minimized/maximized

Search Space

* Set X of all possible solutions for the problem

* |If a solution can be represented with 0/1 bit sequence of length N, then
search space is all possible bit strings of size N

e any data on computer can be represented with bitstrings

* Search space is usually huge, eg 2V

e Otherwise use brute force, and so would not be a problem

Fitnhess Function

* f(x)=h
* Given a solution x in X, calculate an heuristic h that specifies how
good the solution is

* Problem dependent, to minimize or maximize:

* Maximize code coverage
* Maximize fault finding
* Minimize test suite size

* etc.

Optimization Algorithms

* Algorithm that explores the search space X
* Only a tiny sample of X can be evaluated

» Use fitness f(x) to guide the exploration to fitter areas of the search space
with better solutions

 Stopping criterion: after evaluating K solutions (or K amount of time is
passed), return best x among the evaluated solutions

* Many different kinds of optimization algorithms...

* But as a user, still need to provide the representation and f(x)

Trivial Example

public String foo(int x) {

e Search space: ~4 billion values

* Only 1 value cover the if branch If(X —-— 42)

e Covering “OK” at random is return ”O K’ -
extremely unlikely . ’”

* Need some heuristics to driver the return “NOPE)

search }

SBST Heuristics: Branch Distance

e Standard technique in the SBST literature
* Example: if(x==42)

* Both 5 and 900 do not solve the constraint, but 5 is heuristically closer
* d(x==42)=|x-42]
e d function to minimize

* Not just for integers, but also all other types, eg strings
* Need to instrument the code to calculate those branch distances
* Trivial example, but there are many more sophisticated heuristics

EvoMaster

EvoMaster

* SBST Tool to automatically generate system tests for Web APIs
e REST, GraphQL and RPC

e White Box

e can exploit structural and runtime information of the SUT

e currently targeting JVM languages (eg Java and Kotlin) and NodelS (JavaScript and
TypeScript)

e Black Box

* can be used regardless of programming language
* worse performance

* Search-based testing technique (SBST)
* Open-source since 2016

& G @ & ! github.com/EMResearc! Mastt Lo o ¢ N o Pa » (3 {\5 @ [Notsyncing :\

Pull requests Issues Marketplace Explore

I EMResearch / EvoMaster Pubiic R Unpin @ Unwatch 17 ~ % Fork 41 Starred 239 =
<> Code () Issues 10 I} Pull requests 7 {3 Discussions (®) Actions 7 projects 0 wiki © Security 92 I~ Insights i3 Settings

oc

master ~ P’ 45 branches)12 tags Go to file Add file ~ m About Gy

The first open-source Al-driven tool for

Q arcuri82 Merge pull request #495 from EMResearch/js-square-length ... v edebdsc yesterday Q) 5,479 commits automatically generating system-level
test cases (also known as fuzzing) for
BB circleci clarification 8 months ago web/enterprise applications. Currently
T targeting whitebox and blackbox testin
B _github disabled NET on Cl 13 days ago arg § 9 % g
of REST APIs.
@8 client-dotnet 1.4.1-SNAPSHOT 2 months ago
kotlin Java testing rest
i S Merge pull request #488 from EMResearch/finedtuned-replacement 3 days age . :
B client-java Merge I 4 m EMRese h/finedtuned-reg mer 13 days ag evolutionary-aigorithms fuzzing api-rest
E C“ent.j_e, fix member exp such as string |pj-(']|j}'h 7 days ago fuzzer api-testing test-case-generation
B core-driver-it Merge pull request #460 from EMResearch/handle-customize-constraints 2 months ago] Readme
88 core-graphgl-it refactoring GQL builder in its own package last month &3 LGPL-3.0 License
- ; _ . Yr 239 stars
B core-it 1.4.1-SNAPSHOT 2 months ago
& 17 watching
[core fix for failing test 5 days ago ;
o \ it A S Y 41 forks
BB dbconstraint 1.4.1-SNAPSHOT 2 months ago
= docs Qecco pape 9 days ago
B docs ge per days ag Releases 12
B e2e-tests fix for instrumentation issue 13 days ago 0 v1.4.0 | Latest
BB report 1.4.1-SNAPSHOT 2 months ago T
il P :

+ 11 releases

B scripts fix in script 8 days ago

RESTful APls

* Most common type of web services
e others are SOAP, GraphQL and RPC

* Access of set of resources using HTTP

* REST is not a protocol, but just architectural guidelines on how to define
HTTP endpoints
* hierarchical URLs to represent resources
 HTTP verbs (GET, POST, PUT, DELETE, etc.) as “actions” on resources

REST in Microservices

e Common trend in enterprises

* Split application in many small web
services, often REST

e Easier to scale and maintain

ADAPTER

BILLING

PAYMENTS

ADAPTER

Testing of REST APIs

* Do HTTP calls, read responses
e Setup database states

* Specialized libraries, eg in Java the
popular RestAssured

 Specific tools like Postman

Pull requests Issues Marketplace Gist

.. rest-assured / rest-assured ® Watch~ 189 % Unstar 2,216

<> Code Bsues 129 Pull requests 5 Projects O Wiki Insights «

Java DSL for easy testing of REST services

api java groovy test-automation lest son xm nip
(11,622 commits ¥ 6 branches 48 releases AL 45 contributors s Apa
neh master « New pull request Create new file Upload files Find file '~:=
' johanhaleby Updated changelog to reflect latest changes Latest commit 767
i dist [maven-releasa-plugin] prepare for next development teration

@Test
public void testO() throws Exception {

given().header("Authorization", "ApiKey user")
.accept("*/x")
.get("www.foo.com/api/vl/media_files/42")
.then()
.statusCode(200);

REST Testing Challenges

* How to choose query and path parameters?
* How to prepare body payloads (e.g. JSON)?
* How to choose data to insert into SQL databases?

e Goals:
* Finding faults (eg crashes)
 Maximize code coverage (eg, regression tests)

* Writing high coverage tests by hand for every single endpoint is time
consuming

What about Automated Test Generation for
RESTful APIs?

* Automatically write all the test cases

* Not just execution, but choice of all the inputs
* Hard, complex problem

* Using Al techniques

EvoMaster Driver

. Implemented as library
HTTP . Start/Stop/Rest SUT

EvoMaster Core . Bytecode instrumentation

. Command Line

. Search algorithm
. Fitness function . g::fl: atl,r.;o‘ﬁi)ens
. Swagger parsing . :

. JUnit output
. etc.

HTTP

OpenAPl/Swagger

* REST is not a protocol

* Need to know what endpoints are available, and their parameters
* Schema defining the APIs

* OpenAPl is the most popular one

* Defined as JSON file, or YAML

* Many REST frameworks can automatically generate OpenAPI schemas
from code

EvoMaster Core

* From OpenAPIl schema, defines set of endpoints that can be called

* Test case structure:
1. setup initializing data in DB with SQL INSERTs
2. sequence of HTTP calls toward such endpoints

e HTTP call has many components:
* Verb (GET, POST, DELETE, etc.)
* Headers
* Query parameters
e Body payload (JSON, XML, etc.)

* Evolutionary algorithm to evolve such sequences and their inputs
e Qutput: self-contained JUnit tests
* Code language of SUT is irrelevant, as we use HTTP to communicate with it

Fitnhess Function

* Needed to drive the evolution
* Reward code coverage and fault detection

* HTTP return statuses as automated oracles:
e Eg 2xx if OK, 4xx are user errors, but 5xx are server errors (often due to bugs)

* Need guidance to be able to solve constraints in code predicates
e “if(x ==123456 && complexPredicate(y))"

* Unlikely to achieve high code coverage with just random inputs
* using several different kinds of heuristics based on code analysis

Using EvoMaster

* No need to know anything about Search Algorithms nor Al in general
* those are just internal details
* but good to have a general idea of how this kind of tools work

* For White-Box Testing need to write a “driver”
* small class to specify how to start/stop/reset the API
* if using common frameworks like Spring, it is relatively easy

* Need to specify for how long to run the tool
* The longer the better results
* Eg, between 1 and 24 hours

Advance Topics

Dealing With SQL Databases

* Bytecode instrumentation to intercept all JDBC calls
* Find all SQL SELECT queries that return no data

 egdue to WHERE clauses that are not satisfied

* Insert data directly into DB as part of the test case

* Not always possible to create data with REST endpoints (eg POST/PUT)
* using a JDBC connection
* need to analyze DB’s schema

e Goal: insert data such that SELECT are not empty
* Challenges: WHERE clauses might have complex constraints. Need search
* Why? Can have impact on code execution flow

Java Example Using Spring

@RequestMapping(
path =
method = RequestMethod.
produces = MediaType.

ResponseEntity get(@PathVariable("x") int x, @PathVariable("y") int y) {

List<DbDirectIntEntity> list = findByXIsAndYIs(x, y)

(list.isEmpty()) {
ResponseEntity.status(400).build()

{
ResponseEntity.status(200).build()

Generated Test

@Test @Timeout(60)
test_1() {
insertions = sql().insertinto(
d()
d()
d()
.dtos()
insertionsresult = controller.execlnsertionsintoDatabase(insertions)

given().accept()
.get("S{baseUrlOfSut
.then()
.statusCode(200)
.assertThat()
.body(isEmptyOrNullString())

* Arcuri et al. “Handling SQL Databases in Automated System Test Generation”.
TOSEM’20

Taint Analysis

* Inputs can have constraint checks

e eg, strings matching a regex, numbers in a certain range and strings representing dates

* Constraints might be in code and NOT in the OpenAPI schema
* Can evolve inputs till satisfy constraints... eg using SBST heuristics

e ... but what if inputs are not modified and used as they are? Can we do
better?

Java Example Using Spring

@GetMapping(
path =
produces = MediaType.
String getSeparated(
@PathVariable() String date
@PathVariable() String number
@PathVariable() String setting

LocalDate d = LocalDate.parse(date)
n = Integer.parselnt(number)
List<String> list = Arrays.asList()

(d.getYear() == && n == 42 && list.contains(setting)){

Solution

* Using bytecode instrumentation, check all JDK APl usages
* Checking if input from HTTP is used without modification in a JDK call
* If yes, tell the search how input should be evolved

* eg strings only representing valid dates, like for LocalDate.parse(date)

e eg strings evolved always matching a particular regex

* Still need search to evolve the inputs
* egto handle constraints like d.getYear() == 2019

e Can dramatically boost the search efforts

Generated Test

@Test @Timeout(60)
test_4() {

given().accept(
.get("S{baseUrlOfSut
then()

.statusCode(
.assertThat()
.contentType(
.body(containsString(

Acr)csu ri et2 ?I. “Enhancing Search-Based Testing With Testability Transformations For Existing APIs”.
TOSEM’

Applications

Open-Source Projects

* Found hundreds of faults in open-source projects

* Many APIs out there are not robust to receive invalid inputs, and so
crashes

* https://github.com/EMResearch/EMB

* Marculescu et al. “On the faults found in REST APIs by Automated Test
Generation”. TOSEM’22

* A. Arcuri et al. “EMB: A Curated Corpus of Web/Enterprise
Applications And Library Support for Software Testing Research”.
ICST’23.

https://github.com/EMResearch/EMB

Tool Comparisons

* Several new approaches have been developed for fuzzing Web APIs in
recent years

* EvoMaster provided best results in tool comparisons

* Only tool doing white-box testing (all others support only black-box
testing)

e Kim et al. “Automated Test Generation for REST APIs: No Time to Rest
Yet”. ISSTA'22

* Zhang et al. “Open Problems in Fuzzing RESTful APIs: A Comparison of
Tools”. arXiv’'22

Industrial Use

* Meituan: a large Chinese e-commerce with more than 600 million
customers

e Tested 54 of their RPC APIs

* 1.4 million LOCs of business code (plus millions for third-party
libraries)

* Found more than 8000 faults/crashes (several have been fixed so far)

* M. Zhang et al. “White-box Fuzzing RPC-based APIs with EvoMaster:
An Industrial Case Study”. TOSEM’23

O B https://tooomm.github.io/github-release-stats/?username=emresearch&repository=EvoMaster

Enter project details...
Downloads

‘ emresearch|

EvoMaster

Show release statistics!

® Total Downloads 1,815

W Latest Release: v1.6.0

© Release Info:

#@ Published on: 2023-01-31
4 Release Author: arcuri82
® Downloads: 105

® Download Info:

. evomaster.deb.zip (71.66 MiB)

Last updated on 2023-01-31 — Downloaded 22 times
1 evomaster.dmag.zip (89.12 MiB)

Last updated on 2023-01-31 — Downloaded 16 times
2 evomaster.jar.zip (37.81 MiB)

Last updated on 2023-01-31 — Downloaded 42 times
1 evomaster,msl.zip (83.23 MiB)

Last updated on 2023-01-31 — Downloaded 25 times

Concluding Remarks

Ongoing Work & Research Challenges

* Support for mocking external APIs
* APls speak with other APIs

* Improve code/bytecode analysis
* increase code coverage

* Future: handling whole Microservice Architectures
* je., not just testing services in isolation

 Future: support for Frontend Web GUIs (eg, actions on
browser)

Building Usable Research Tools

* Major challenge

* More than 200 000 LOCs

* More than 6 years (2016)

* Several people worked on same code-base

 Many needed engineering tasks lead to no scientific output (ie. no
publications)
 Difficult to do this kind of work in academia

* A. Arcuri et al. “Building An Open-Source System Test Generation Tool:
Lessons Learned And Empirical Analyses with EvoMaster”. SQJ’'23

O B8 =2 https:/github.com/EMResearch/EvoMaster/blob/master/docs/publications.md B nex 9@

es (136 sloc) 7.12 KB <> [J Raw Blame

Recent arXiv Technical Reports, not Peer-Reviewed (Yet)

» A. Golmohammadi, M. Zhang, A. Arcuri. Testing RESTful APIs: A Survey. [arxiv]
 A. Belhadi, M. Zhang, A. Arcuri. White-Box and Black-Box Fuzzing for GraphQL APIs. [arXiv] [Script 0] [Script 1]

e M. Zhang, A. Arcuri, Y. Li, K Xue, Z Wang, J. Huo, W Huang. Fuzzing Microservices In Industry: Experience of Applying EvoMaster at Meituan.
[arXiv]

e M. Zhang, A. Arcuri. Open Problems in Fuzzing RESTful APIs: A Comparison of Tools. [arXiv] [Script 0] [Script 1]

Peer-Reviewed Publications

2023

 A. Arcuri, M Zhang, A. Belhadi, B. Marculescu, A. Golmohammadi, J. P. Galeotti, S. Seran. Building An Open-Source System Test Generation
Tool: Lessons Learned And Empirical Analyses with EvoMaster. Software Quality Journal (SQJ). (to appear) [PDF]

e M. Zhang, A. Arcuri, Y. Li, Y. Liu, K. Xue. White-box Fuzzing RPC-based APIs with EvoMaster: An Industrial Case Study. ACM Transactions on
Software Engineering and Methodology (TOSEM). (to appear) [PDF]

e A. Arcuri, M. Zhang, A. Golmohammadi, A. Belhadi, J. P. Galeotti, B. Marculescu, S. Seran. EMB: A Curated Corpus of Web/Enterprise
Applications And Library Support for Software Testing Research. |IEEE International Conference on Software Testing, Validation and
Verification (ICST). (to appear) [PDF]

LY. T

Q/A

	Slide 1: Evolutionary Testing of Web APIs with EvoMaster
	Slide 2: In this Talk
	Slide 3: Search-Based Software Testing
	Slide 4: Search-Based Software Testing (SBST)
	Slide 5: Properties of Optimization Problems
	Slide 6: Search Space
	Slide 7: Fitness Function
	Slide 8: Optimization Algorithms
	Slide 9: Trivial Example
	Slide 10: SBST Heuristics: Branch Distance
	Slide 11: EvoMaster
	Slide 12: EvoMaster
	Slide 13
	Slide 14: RESTful APIs
	Slide 15: REST in Microservices
	Slide 16: Testing of REST APIs
	Slide 17: REST Testing Challenges
	Slide 18: What about Automated Test Generation for RESTful APIs?
	Slide 19
	Slide 20: OpenAPI/Swagger
	Slide 21: EvoMaster Core
	Slide 22: Fitness Function
	Slide 23: Using EvoMaster
	Slide 24: Advance Topics
	Slide 25: Dealing With SQL Databases
	Slide 26: Java Example Using Spring
	Slide 27: Generated Test
	Slide 28: Taint Analysis
	Slide 29: Java Example Using Spring
	Slide 30: Solution
	Slide 31: Generated Test
	Slide 32: Applications
	Slide 33: Open-Source Projects
	Slide 34: Tool Comparisons
	Slide 35: Industrial Use
	Slide 36: Downloads
	Slide 37: Concluding Remarks
	Slide 38: Ongoing Work & Research Challenges
	Slide 39: Building Usable Research Tools
	Slide 40
	Slide 41: Q/A

