
Evolutionary Testing of Web APIs with
EvoMaster

Prof. Andrea Arcuri

Kristiania University College, Oslo, Norway

In this Talk

•Search-Based Software Testing

•System Testing of Web APIs with EvoMaster

•Advance Topics

•Applications

•Concluding Remarks

Search-Based Software Testing

Search-Based Software Testing (SBST)

• Biology meets Software Engineering (SE)

• Casting SE problems into Optimization Problems

• Genetic Algorithms: one of most famous optimization
algorithm, based on theory of evolution

• Evolve test cases

Properties of Optimization Problems

• 2 main components: Search Space and Fitness Function

• Goal: find the best solution from the search space such that the fitness
function is minimized/maximized

Search Space

• Set X of all possible solutions for the problem

• If a solution can be represented with 0/1 bit sequence of length N, then
search space is all possible bit strings of size N
• any data on computer can be represented with bitstrings

• Search space is usually huge, eg 2𝑁

• Otherwise use brute force, and so would not be a problem

0 0 1 1 1 1 0 1 0 1

Fitness Function

• f(x)=h

• Given a solution x in X, calculate an heuristic h that specifies how
good the solution is

• Problem dependent, to minimize or maximize:
• Maximize code coverage

• Maximize fault finding

• Minimize test suite size

• etc.

Optimization Algorithms

• Algorithm that explores the search space X

• Only a tiny sample of X can be evaluated

• Use fitness f(x) to guide the exploration to fitter areas of the search space
with better solutions

• Stopping criterion: after evaluating K solutions (or K amount of time is
passed), return best x among the evaluated solutions

• Many different kinds of optimization algorithms…
• But as a user, still need to provide the representation and f(x)

Trivial Example

• Search space: ~4 billion values

• Only 1 value cover the if branch

• Covering “OK” at random is
extremely unlikely

• Need some heuristics to driver the
search

public String foo(int x) {
if(x == 42)

return “OK”;
return “NOPE”;

}

SBST Heuristics: Branch Distance

• Standard technique in the SBST literature

• Example: if(x==42)

• Both 5 and 900 do not solve the constraint, but 5 is heuristically closer
• d(x==42)=|x-42|

• d function to minimize

• Not just for integers, but also all other types, eg strings

• Need to instrument the code to calculate those branch distances

• Trivial example, but there are many more sophisticated heuristics

EvoMaster

EvoMaster

• SBST Tool to automatically generate system tests for Web APIs
• REST, GraphQL and RPC

• White Box
• can exploit structural and runtime information of the SUT
• currently targeting JVM languages (eg Java and Kotlin) and NodeJS (JavaScript and

TypeScript)

• Black Box
• can be used regardless of programming language
• worse performance

• Search-based testing technique (SBST)

• Open-source since 2016

RESTful APIs

• Most common type of web services
• others are SOAP, GraphQL and RPC

• Access of set of resources using HTTP

• REST is not a protocol, but just architectural guidelines on how to define
HTTP endpoints
• hierarchical URLs to represent resources

• HTTP verbs (GET, POST, PUT, DELETE, etc.) as “actions” on resources

REST in Microservices

• Common trend in enterprises

• Split application in many small web
services, often REST

• Easier to scale and maintain

Testing of REST APIs

• Do HTTP calls, read responses

• Setup database states

• Specialized libraries, eg in Java the
popular RestAssured

• Specific tools like Postman @Test
public void test0() throws Exception {

given().header("Authorization", "ApiKey user")
.accept("*/*")
.get(”www.foo.com/api/v1/media_files/42”)
.then()
.statusCode(200);

}

REST Testing Challenges

• How to choose query and path parameters?

• How to prepare body payloads (e.g. JSON)?

• How to choose data to insert into SQL databases?

• Goals:
• Finding faults (eg crashes)

• Maximize code coverage (eg, regression tests)

• Writing high coverage tests by hand for every single endpoint is time
consuming

What about Automated Test Generation for
RESTful APIs?
• Automatically write all the test cases

• Not just execution, but choice of all the inputs

• Hard, complex problem

• Using AI techniques

OpenAPI/Swagger

• REST is not a protocol

• Need to know what endpoints are available, and their parameters

• Schema defining the APIs

• OpenAPI is the most popular one

• Defined as JSON file, or YAML

• Many REST frameworks can automatically generate OpenAPI schemas
from code

EvoMaster Core

• From OpenAPI schema, defines set of endpoints that can be called

• Test case structure:
1. setup initializing data in DB with SQL INSERTs
2. sequence of HTTP calls toward such endpoints

• HTTP call has many components:
• Verb (GET, POST, DELETE, etc.)
• Headers
• Query parameters
• Body payload (JSON, XML, etc.)

• Evolutionary algorithm to evolve such sequences and their inputs

• Output: self-contained JUnit tests

• Code language of SUT is irrelevant, as we use HTTP to communicate with it

Fitness Function

• Needed to drive the evolution

• Reward code coverage and fault detection

• HTTP return statuses as automated oracles:
• Eg 2xx if OK, 4xx are user errors, but 5xx are server errors (often due to bugs)

• Need guidance to be able to solve constraints in code predicates
• “if(x == 123456 && complexPredicate(y))”

• Unlikely to achieve high code coverage with just random inputs
• using several different kinds of heuristics based on code analysis

Using EvoMaster

• No need to know anything about Search Algorithms nor AI in general
• those are just internal details

• but good to have a general idea of how this kind of tools work

• For White-Box Testing need to write a “driver”
• small class to specify how to start/stop/reset the API

• if using common frameworks like Spring, it is relatively easy

• Need to specify for how long to run the tool
• The longer the better results

• Eg, between 1 and 24 hours

Advance Topics

Dealing With SQL Databases

• Bytecode instrumentation to intercept all JDBC calls

• Find all SQL SELECT queries that return no data
• eg due to WHERE clauses that are not satisfied

• Insert data directly into DB as part of the test case
• Not always possible to create data with REST endpoints (eg POST/PUT)

• using a JDBC connection

• need to analyze DB’s schema

• Goal: insert data such that SELECT are not empty

• Challenges: WHERE clauses might have complex constraints. Need search

• Why? Can have impact on code execution flow

Java Example Using Spring

@RequestMapping(
path = "/{x}/{y}",
method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON

)
public ResponseEntity get(@PathVariable("x") int x, @PathVariable("y") int y) {

List<DbDirectIntEntity> list = repository.findByXIsAndYIs(x, y);
if (list.isEmpty()) {

return ResponseEntity.status(400).build();
} else {

return ResponseEntity.status(200).build();
}

}

Generated Test

• Arcuri et al. “Handling SQL Databases in Automated System Test Generation”.
TOSEM’20

@Test @Timeout(60)
fun test_1() {

val insertions = sql().insertInto("DB_DIRECT_INT_ENTITY", 14L)
.d("ID", "-65536")
.d("X", "-67108182")
.d("Y", "0")

.dtos()
val insertionsresult = controller.execInsertionsIntoDatabase(insertions)

given().accept("*/*")
.get("${baseUrlOfSut}/api/db/directint/-67108182/0")
.then()
.statusCode(200)
.assertThat()
.body(isEmptyOrNullString())

}

Taint Analysis

• Inputs can have constraint checks
• eg, strings matching a regex, numbers in a certain range and strings representing dates

• Constraints might be in code and NOT in the OpenAPI schema

• Can evolve inputs till satisfy constraints… eg using SBST heuristics

• … but what if inputs are not modified and used as they are? Can we do
better?

Java Example Using Spring

@GetMapping(
path = "/{date:\\d{4}-\\d{1,2}-\\d{1,2}}/{number}/{setting}",
produces = MediaType.APPLICATION_JSON_VALUE)

public String getSeparated(
@PathVariable("date") String date,
@PathVariable("number") String number,
@PathVariable("setting") String setting

){

LocalDate d = LocalDate.parse(date);
int n = Integer.parseInt(number);
List<String> list = Arrays.asList("Foo", "Bar");

if(d.getYear() == 2019 && n == 42 && list.contains(setting)){
return "OK";

}

return "ERROR";
}

Solution

• Using bytecode instrumentation, check all JDK API usages

• Checking if input from HTTP is used without modification in a JDK call

• If yes, tell the search how input should be evolved
• eg strings only representing valid dates, like for LocalDate.parse(date)

• eg strings evolved always matching a particular regex

• Still need search to evolve the inputs
• eg to handle constraints like d.getYear() == 2019

• Can dramatically boost the search efforts

Generated Test

Arcuri et al. “Enhancing Search-Based Testing With Testability Transformations For Existing APIs”.
TOSEM’21

@Test @Timeout(60)
fun test_4() {

given().accept("application/json")
.get("${baseUrlOfSut}/api/testability/2019-12-10/42/Bar")
.then()
.statusCode(200)
.assertThat()
.contentType("application/json")
.body(containsString("OK"))

}

Applications

Open-Source Projects

• Found hundreds of faults in open-source projects

• Many APIs out there are not robust to receive invalid inputs, and so
crashes

• https://github.com/EMResearch/EMB

• Marculescu et al. “On the faults found in REST APIs by Automated Test
Generation”. TOSEM’22

• A. Arcuri et al. “EMB: A Curated Corpus of Web/Enterprise
Applications And Library Support for Software Testing Research”.
ICST’23.

https://github.com/EMResearch/EMB

Tool Comparisons

• Several new approaches have been developed for fuzzing Web APIs in
recent years

• EvoMaster provided best results in tool comparisons

• Only tool doing white-box testing (all others support only black-box
testing)

• Kim et al. “Automated Test Generation for REST APIs: No Time to Rest
Yet”. ISSTA’22

• Zhang et al. “Open Problems in Fuzzing RESTful APIs: A Comparison of
Tools”. arXiv’22

Industrial Use

• Meituan: a large Chinese e-commerce with more than 600 million
customers

• Tested 54 of their RPC APIs

• 1.4 million LOCs of business code (plus millions for third-party
libraries)

• Found more than 8000 faults/crashes (several have been fixed so far)

• M. Zhang et al. “White-box Fuzzing RPC-based APIs with EvoMaster:
An Industrial Case Study”. TOSEM’23

Downloads

Concluding Remarks

Ongoing Work & Research Challenges

• Support for mocking external APIs
• APIs speak with other APIs

• Improve code/bytecode analysis
• increase code coverage

• Future: handling whole Microservice Architectures
• ie., not just testing services in isolation

• Future: support for Frontend Web GUIs (eg, actions on
browser)

Building Usable Research Tools

• Major challenge

• More than 200 000 LOCs

• More than 6 years (2016)

• Several people worked on same code-base

• Many needed engineering tasks lead to no scientific output (ie. no
publications)
• Difficult to do this kind of work in academia

• A. Arcuri et al. “Building An Open-Source System Test Generation Tool:
Lessons Learned And Empirical Analyses with EvoMaster”. SQJ’23

Q/A
Thanks!

	Slide 1: Evolutionary Testing of Web APIs with EvoMaster
	Slide 2: In this Talk
	Slide 3: Search-Based Software Testing
	Slide 4: Search-Based Software Testing (SBST)
	Slide 5: Properties of Optimization Problems
	Slide 6: Search Space
	Slide 7: Fitness Function
	Slide 8: Optimization Algorithms
	Slide 9: Trivial Example
	Slide 10: SBST Heuristics: Branch Distance
	Slide 11: EvoMaster
	Slide 12: EvoMaster
	Slide 13
	Slide 14: RESTful APIs
	Slide 15: REST in Microservices
	Slide 16: Testing of REST APIs
	Slide 17: REST Testing Challenges
	Slide 18: What about Automated Test Generation for RESTful APIs?
	Slide 19
	Slide 20: OpenAPI/Swagger
	Slide 21: EvoMaster Core
	Slide 22: Fitness Function
	Slide 23: Using EvoMaster
	Slide 24: Advance Topics
	Slide 25: Dealing With SQL Databases
	Slide 26: Java Example Using Spring
	Slide 27: Generated Test
	Slide 28: Taint Analysis
	Slide 29: Java Example Using Spring
	Slide 30: Solution
	Slide 31: Generated Test
	Slide 32: Applications
	Slide 33: Open-Source Projects
	Slide 34: Tool Comparisons
	Slide 35: Industrial Use
	Slide 36: Downloads
	Slide 37: Concluding Remarks
	Slide 38: Ongoing Work & Research Challenges
	Slide 39: Building Usable Research Tools
	Slide 40
	Slide 41: Q/A

