
+2001154784667
Cairo, Egypt
engaliyasser7@gmail.com

RA3 RTOS

Table of Contents
Overview ... 3

Meet the Team .. 3

Getting Started .. 4

Installation Instructions ... 4

Setting up the Development Environment ... 4

Quick Start Guide ... 4

Core Concepts ... 4

1. Task Management ... 4

2. Memory Management ... 5

3. Inter-task Communication ... 5

4. Scheduling ... 6

API Reference .. 6

Task Management APIs.. 6

API Function: OS_CreateTask ... 6

API Function: OS_ActivateTask .. 7

API Function: OS_TerminateTask ... 8

API Function: OS_DelayTask... 8

Initialization and OS Control APIs ... 9

API Function: OS_Init ... 9

API Function: OS_StartOS .. 10

Hook APIs .. 10

API Function: OS_SetSysTickHook .. 10

API Function: OS_RegisterIdleHook ... 11

Semaphore APIs ... 11

API Function: OS_InitSemaphore ... 11

API Function: OS_AcquireSemaphore .. 12

API Function: OS_ReleaseSemaphore .. 13

Mutex APIs .. 14

API Function: OS_InitMutex ... 14

API Function: OS_AcquireMutex .. 14

API Function: OS_ReleaseMutex .. 15

Event group APIs.. 16

API Function: OS_InitEventGroup .. 16

API Function: OS_WaitForEventBits .. 16

API Function: OS_SetEventBits .. 17

API Function: OS_ClearEventBits ... 18

Configuration for RA3 RTOS ... 18

Configuration Parameters in config.h .. 18

PREEMPTION ... 18

MAIN_STACK_SIZE ... 19

DEFAULT_TASK_STACK_SIZE .. 19

TICK_TIME_IN_MS ... 19

CPU_CLOCK_FREQ_IN_HZ .. 19

OS_LOWEST_PRIORITY .. 19

OS_HIGHEST_PRIORITY .. 20

IDLE_TASK_HOOK_ENABLED.. 20

TICK_HOOK_ENABLED ... 20

Contributing to RA3 RTOS .. 21

Overview

RA3 RTOS is an open-source real-time operating system designed for embedded systems,

providing a robust foundation for developing applications across various processor architectures.

Currently, RA3 RTOS supports the ARM Cortex-M3 processor, making it an ideal choice for

developers looking to create efficient and responsive applications in this environment.

The kernel of RA3 RTOS employs a preemptive priority round-robin scheduling algorithm,

ensuring that tasks are managed effectively to meet real-time requirements. This approach allows

for smooth task switching and high responsiveness, which are critical in embedded systems.

As part of our commitment to continuous improvement and community involvement, we invite

developers to join us in enhancing RA3 RTOS. Future plans for the project include the

integration of additional scheduling algorithms to cater to a wider range of application needs, as

well as the development of an OSEK-compliant version, expanding its applicability in

automotive and industrial automation contexts.

Whether you are a seasoned developer or new to embedded systems, RA3 RTOS provides the

tools and flexibility needed to bring your projects to life. Join us in shaping the future of this

Egyptian RTOS and contribute to its growth and success.

Meet the Team

Right now, the RA3 RTOS team consists solely of me, Ali Yasser Ali Abdallah. I am a
passionate computer engineering student driven to contribute to the embedded systems industry

by developing RA3 RTOS as an open-source, community-driven project. Through RA3, I aim to

provide accessible, efficient solutions for embedded applications and offer a platform where

developers can learn, innovate, and build together.

This team is open for expansion! If you share a vision for advancing embedded systems through

open-source contributions, we welcome you to join and help enhance RA3 RTOS.

Getting Started
Installation Instructions

1. Download the Latest Version: Visit the Releases page to download the latest release of RA3
RTOS as a ZIP file.

2. Unzip the File: Extract the contents of the downloaded ZIP file into your project directory.
3. Add to Project: Link the RA3 RTOS files into your project setup.

Setting up the Development Environment

 Compiler Requirements: RA3 RTOS is currently built to support ARM Cortex-M3 processors. Use
a compatible compiler (e.g., GCC for ARM).

 Required Tools: Ensure your development environment includes debugging tools, a JTAG or

SWD interface, and any additional peripherals needed for your specific application.

Quick Start Guide

1. Initialize the OS: Call OS_Init() to initialize RA3 RTOS before creating tasks or semaphores.
2. Create Tasks: Use OS_CreateTask() to define and initialize tasks, setting each task's function,

priority, and stack size.

3. Start the OS: Call OS_StartOS() to start the scheduler and allow tasks to begin running.

For full documentation, refer to the RA3 RTOS Guide.

Core Concepts

Understanding the foundational concepts of RA3 RTOS is essential for effectively utilizing its
features and developing applications. This section outlines the key components and mechanisms

that drive the operating system.

1. Task Management

At the heart of RA3 RTOS is its task management system, which allows for the creation,
scheduling, and control of tasks. The Task Control Block (TCB) is a crucial data structure that

defines each task within the system. It contains essential information, including:

 Priority: Determines the scheduling order of tasks, with lower values indicating higher priority.
 Task Name: A descriptive identifier for the task, aiding in debugging and management.
 Stack Size: Specifies the memory allocated for the task’s stack, which is essential for local

variable storage and function calls.

 Task Function Pointer: A reference to the function that the task will execute.

https://github.com/ENGaliyasser/RA3-RTOS/releases
https://github.com/ENGaliyasser/RA3-RTOS/tree/main/documentation

Tasks can exist in various states, including Ready, Running and Suspended, which are

managed by the scheduler to ensure efficient execution.

2. Memory Management

RA3 RTOS employs a flexible memory management strategy to allocate stacks for tasks
dynamically. This approach allows for efficient use of memory resources, accommodating

varying stack sizes based on the needs of different tasks. Key components include:

 Main Stack: A dedicated stack used by the operating system for handling interrupts and task
switching.

 Task Stacks: Individual stacks allocated for each task, enabling isolated execution environments.

Efficient memory management is crucial for embedded systems, where resources are often

limited.

3. Inter-task Communication

Effective communication between tasks is vital for synchronizing operations and sharing

resources. RA3 RTOS provides several mechanisms for inter-task communication, including:

 Semaphores: Used to manage access to shared resources. A semaphore can signal when a
resource is available or when a task should wait.

 Mutexes: Similar to semaphores, mutexes provide mutual exclusion for tasks needing to access

a shared resource, ensuring that only one task can hold the lock at a time.

These mechanisms facilitate coordinated interactions between tasks, enhancing the overall

functionality of applications.

4. Scheduling

RA3 RTOS employs a preemptive priority round-robin scheduling algorithm, which
dynamically allocates CPU time based on task priorities. The scheduler continually evaluates

task states and prioritizes execution based on their assigned priority levels. This approach allows

high-priority tasks to preempt lower-priority tasks, ensuring timely execution of critical

operations.

As part of our future roadmap, we aim to introduce additional scheduling algorithms and an

OSEK-compliant version to broaden the applicability of RA3 RTOS across various domains.

API Reference

This section provides a detailed reference for the API functions available in RA3 RTOS. Each

function is described with its purpose, parameters, return values, and an example of usage.

Task Management APIs

API Function: OS_CreateTask

Header File: task.h

OS_ErrorStatus OS_CreateTask(OS_TCB* Task);

Creates a new task and adds it to the list of tasks that are ready to run. Each task requires RAM

that is used to hold the task state and is utilized by the task as its stack. The task's stack size and

function are specified in the OS_TCB structure.

Parameters:

 Task

Pointer to an instance of the OS_TCB structure that defines the task's properties, including

its priority, name, stack size, task function, and auto-start option.

Returns:

 OS_OK

If the task was created successfully.
 TASK_CREATION_ERROR

If there was an error during task creation.

Example Usage:

// Task function to be created.

void MyTask(void) {

 for(;;) {

 // Task code goes here.

 }

}

void CreateMyTask(void) {

 OS_TCB myTask;

 myTask.Priority = 1; // Task priority

 strncpy((char*)myTask.TaskName, "MyTask", sizeof(myTask.TaskName)); //

Task name

 myTask.StackSize = 100; // Stack size in words

 myTask.func = MyTask; // Task function

 OS_ErrorStatus status = OS_CreateTask(&myTask); // Create the task

 if (status == OS_OK) {

 // Task was created successfully

 }

}

API Function: OS_ActivateTask

Header File: task.h

OS_ErrorStatus OS_ActivateTask(OS_TCB* Task);

Activates a previously created task and makes it ready to run. The task's state is changed to

ready, allowing it to be scheduled by the RTOS.

Parameters:

 Task

Pointer to the OS_TCB structure of the task to be activated.

Returns:

 OS_OK
If the task was activated successfully.

 TASK_CREATION_ERROR

If the task could not be activated.

Example Usage:

void ActivateMyTask(void) {

 OS_ErrorStatus status = OS_ActivateTask(&myTask); // Activate the task

 if (status == OS_OK) {

 // Task was activated successfully

 }

}

API Function: OS_TerminateTask

Header File: task.h

OS_ErrorStatus OS_TerminateTask(OS_TCB* Task);

Terminates a running task and removes it from the task scheduler. The task cannot be activated

again after termination.

Parameters:

 Task

Pointer to the OS_TCB structure of the task to be terminated.

Returns:

 OS_OK

If the task was terminated successfully.
 TASK_CREATION_ERROR

If the task could not be terminated.

Example Usage:

void TerminateMyTask(void) {

 OS_ErrorStatus status = OS_TerminateTask(&myTask); // Terminate the task

 if (status == OS_OK) {

 // Task was terminated successfully

 }

}

API Function: OS_DelayTask

Header File: task.h

OS_ErrorStatus OS_DelayTask(OS_TCB* Task, uint32_t NoOfTicks);

Delays the execution of the specified task for a given number of ticks.

Parameters:

 Task

Pointer to the OS_TCB structure of the task to be delayed.
 NoOfTicks

Number of ticks to delay the task.

Returns:

 OS_OK

If the task was delayed successfully.
 TASK_CREATION_ERROR

If the task could not be delayed.

Example Usage:

void DelayMyTask(void) {

 OS_ErrorStatus status = OS_DelayTask(&myTask, 10); // Delay the task for

10 ticks

 if (status == OS_OK) {

 // Task was delayed successfully

 }

}

Initialization and OS Control APIs

API Function: OS_Init

Header File: <Your_RTOS_Header_File>.h (Specify your RTOS main header file here)

OS_ErrorStatus OS_Init(void);

Initializes the G RTOS kernel by setting up essential data structures, initializing resources, and

preparing the system for task scheduling and synchronization. This function should be called

before any other RTOS functions to ensure that the RTOS kernel is correctly initialized and

ready for operation.

Parameters:

 None

Returns:

 OS_OK: If the initialization was successful.

 OS_ERROR: If an error occurred during initialization.

Example Usage:

void main(void) {

 OS_ErrorStatus status = OS_Init(); // Initialize the RTOS

 if (status == OS_OK) {

 // Initialization succeeded, proceed with task creation and

scheduling

 OS_StartScheduler(); // Start task scheduling

 } else {

 // Handle initialization error

 }

}

API Function: OS_StartOS

Header File: task.h

OS_ErrorStatus OS_StartOS();

Starts the operating system scheduler. This function must be called after creating and activating

all tasks.

Returns:

 OS_OK

If the OS started successfully.
 TASK_CREATION_ERROR

If there was an error starting the OS.

Example Usage:

void StartMyRTOS(void) {

 OS_ErrorStatus status = OS_StartOS(); // Start the RTOS scheduler

 if (status == OS_OK) {

 // RTOS started successfully

 }

}

Hook APIs

API Function: OS_SetSysTickHook

Header File: YourHeaderFile.h

void OS_SetSysTickHook(OS_SysTickHook callback);

Sets a custom callback function to be executed at each SysTick interrupt. This function allows

the user to define specific actions or behaviors that should occur periodically with every SysTick

event.

Parameters:

 callback: A pointer to a function of type OS_SysTickHook that defines the callback to be

executed on each SysTick interrupt. The function must take no parameters and return void.

Returns:

 None.

Example Usage:

// Custom SysTick callback function

void MySysTickHandler(void) {

 // Custom actions to perform at each SysTick

}

// Setting the SysTick hook to the custom handler

void InitSysTickHook(void) {

 OS_SetSysTickHook(MySysTickHandler); // Assign MySysTickHandler to the

SysTick hook

}

API Function: OS_RegisterIdleHook

Header File: task.h

void OS_RegisterIdleHook(OS_IdleHookCallback callback);

Registers a callback function that is called when the system is idle. This is useful for low-power

modes or executing background tasks.

Parameters:

 callback

Pointer to the function to be called when the system is idle.

Returns:

None

Example Usage:

void MyIdleTask(void) {

 // Code to run when the system is idle

}

void RegisterMyIdleHook(void) {

 OS_RegisterIdleHook(MyIdleTask); // Register the idle task

}

Semaphore APIs

API Function: OS_InitSemaphore

Header File: semaphore.h

OS_SemaphoreState OS_InitSemaphore(OS_Semaphore* semaphore, uint8_t

initialCount);

Initializes a semaphore with a specified initial count. This count represents the number of

available resources that the semaphore can manage.

Parameters:

 semaphore

Pointer to the OS_Semaphore structure that will be initialized.
 initialCount

The initial count of the semaphore, representing the number of resources available. It

must be greater than or equal to zero.

Returns:

 OS_SEMAPHORE_INIT_OK

If the semaphore was initialized successfully.
 OS_SEMAPHORE_ALREADY_ACQUIRED

If there was an error initializing the semaphore.

Example Usage:

void InitMySemaphore(void) {

 OS_Semaphore mySemaphore;

 OS_SemaphoreState state = OS_InitSemaphore(&mySemaphore, 1); //

Initialize semaphore with 1 resource

 if (state == OS_SEMAPHORE_INIT_OK) {

 // Semaphore initialized successfully

 }

}

API Function: OS_AcquireSemaphore

Header File: semaphore.h

OS_SemaphoreState OS_AcquireSemaphore(OS_Semaphore* semaphore, OS_TCB* task);

Attempts to acquire the specified semaphore. If the semaphore is available, the task becomes the

owner, and the semaphore count is decremented. If it is busy, the task is added to the waiting

queue.

Parameters:

 semaphore

Pointer to the OS_Semaphore structure that the task is attempting to acquire.
 task

Pointer to the OS_TCB structure of the task attempting to acquire the semaphore.

Returns:

 OS_SEMAPHORE_AVAILABLE

If the semaphore was acquired successfully.
 OS_SEMAPHORE_BUSY

If the semaphore is currently busy and the task is added to the waiting queue.
 OS_SEMAPHORE_ALREADY_ACQUIRED

If the task already owns the semaphore.

Example Usage:

void AcquireMySemaphore(OS_TCB* myTask) {

 OS_SemaphoreState state = OS_AcquireSemaphore(&mySemaphore, myTask); //

Attempt to acquire the semaphore

 if (state == OS_SEMAPHORE_AVAILABLE) {

 // Semaphore acquired successfully

 } else if (state == OS_SEMAPHORE_BUSY) {

 // Semaphore is busy; task is now waiting

 }

}

API Function: OS_ReleaseSemaphore

Header File: semaphore.h

OS_SemaphoreState OS_ReleaseSemaphore(OS_Semaphore* semaphore);

Releases the semaphore, making it available for other tasks. If there are tasks waiting for the

semaphore, one is woken up and allowed to acquire the semaphore.

Parameters:

 semaphore

Pointer to the OS_Semaphore structure that is to be released.

Returns:

 OS_SEMAPHORE_AVAILABLE

If the semaphore was released successfully.
 OS_SEMAPHORE_ALREADY_ACQUIRED

If the semaphore was not owned by any task at the time of release.

Example Usage:

void ReleaseMySemaphore(void) {

 OS_SemaphoreState state = OS_ReleaseSemaphore(&mySemaphore); // Release

the semaphore

 if (state == OS_SEMAPHORE_AVAILABLE) {

 // Semaphore released successfully

 }

}

Mutex APIs

API Function: OS_InitMutex

Header File: Mutex.h

OS_MutexState OS_InitMutex(OS_Mutex* mutex);

Initializes a mutex, setting its initial state to unlocked. This function prepares the mutex for use

by a task.

Parameters:

 mutex

Pointer to the OS_Mutex structure that will be initialized.

Returns:

 OS_MUTEX_INIT_OK

If the mutex was initialized successfully.

Example Usage:

void InitMyMutex(void) {

 OS_Mutex myMutex;

 OS_MutexState state = OS_InitMutex(&myMutex); // Initialize the mutex

 if (state == OS_MUTEX_INIT_OK) {

 // Mutex initialized successfully

 }

}

API Function: OS_AcquireMutex

Header File: Mutex.h

OS_MutexState OS_AcquireMutex(OS_Mutex* mutex, OS_TCB* task);

Attempts to acquire the specified mutex for the given task. If the mutex is already locked and

owned by another task, the calling task will be blocked and added to the waiting queue.

Parameters:

 mutex

Pointer to the OS_Mutex structure that the task is attempting to acquire.
 task

Pointer to the OS_TCB structure of the task attempting to acquire the mutex.

Returns:

 OS_MUTEX_AVAILABLE

If the mutex was acquired successfully.
 OS_MUTEX_BUSY

If the mutex is currently busy, and the task has been added to the waiting queue.
 OS_MUTEX_ALREADY_ACQUIRED

If the task already owns the mutex.

Example Usage:

void AcquireMyMutex(OS_TCB* myTask) {

 OS_MutexState state = OS_AcquireMutex(&myMutex, myTask); // Attempt to

acquire the mutex

 if (state == OS_MUTEX_AVAILABLE) {

 // Mutex acquired successfully

 } else if (state == OS_MUTEX_BUSY) {

 // Mutex is busy; task is now waiting

 }

}

API Function: OS_ReleaseMutex

Header File: Mutex.h

OS_MutexState OS_ReleaseMutex(OS_Mutex* mutex);

Releases the mutex from the current owner, making it available for other tasks. If there are tasks

waiting for the mutex, one of them is woken up and allowed to acquire the mutex.

Parameters:

 mutex

Pointer to the OS_Mutex structure that is to be released.

Returns:

 OS_MUTEX_AVAILABLE

If the mutex was released successfully.

Example Usage:

void ReleaseMyMutex(void) {

 OS_MutexState state = OS_ReleaseMutex(&myMutex); // Release the mutex

 if (state == OS_MUTEX_AVAILABLE) {

 // Mutex released successfully

 }

}

Event group APIs

API Function: OS_InitEventGroup

Header File: EventGroup.h

void OS_InitEventGroup(OS_EventGroup* eventGroup);

Initializes an event group, clearing all event bits and preparing it for use by tasks.

Parameters:

 eventGroup

Pointer to the OS_EventGroup structure that will be initialized.

Returns:

None.

Example Usage:

void InitMyEventGroup(void) {

 OS_EventGroup myEventGroup;

 OS_InitEventGroup(&myEventGroup); // Initialize the event group

}

API Function: OS_WaitForEventBits

Header File: EventGroup.h

uint8_t OS_WaitForEventBits(OS_EventGroup* eventGroup, OS_EventGroupBits

eventBits, uint8_t waitForAllBits, uint32_t timeout);

Waits for specific bits in an event group to be set. If the bits are not set, the task waits until either

they are set or the timeout period expires.

Parameters:

 eventGroup

Pointer to the OS_EventGroup structure to check.
 eventBits

Bit pattern specifying the event bits to wait for.
 waitForAllBits

Flag indicating whether to wait for all specified bits (1) or any of them (0).
 timeout

Maximum number of ticks to wait; set to 0 for no timeout.

Returns:

 OS_EVENT_GROUP_OK

If the requested event bits were set.
 OS_EVENT_GROUP_TIMEOUT

If the timeout period expired.
 OS_EVENT_GROUP_ERROR

If an error occurred.

Example Usage:

void WaitForMyEventBits(void) {

 OS_EventGroup myEventGroup;

 uint8_t result = OS_WaitForEventBits(&myEventGroup, 0x03, 1, 100); //

Wait for bits 0 and 1

 if (result == OS_EVENT_GROUP_OK) {

 // Event bits set successfully

 } else if (result == OS_EVENT_GROUP_TIMEOUT) {

 // Timeout occurred

 }

}

API Function: OS_SetEventBits

Header File: EventGroup.h

void OS_SetEventBits(OS_EventGroup* eventGroup, OS_EventGroupBits eventBits);

Sets specified bits in an event group, potentially releasing tasks waiting for these bits.

Parameters:

 eventGroup

Pointer to the OS_EventGroup structure where bits are to be set.
 eventBits

Bit pattern specifying the event bits to set.

Returns:

None.

Example Usage:

void SetMyEventBits(void) {

 OS_EventGroup myEventGroup;

 OS_SetEventBits(&myEventGroup, 0x01); // Set bit 0

}

API Function: OS_ClearEventBits

Header File: EventGroup.h

void OS_ClearEventBits(OS_EventGroup* eventGroup, OS_EventGroupBits

eventBits);

Clears specified bits in an event group, effectively resetting them.

Parameters:

 eventGroup

Pointer to the OS_EventGroup structure where bits are to be cleared.
 eventBits

Bit pattern specifying the event bits to clear.

Returns:

None.

Example Usage:

void ClearMyEventBits(void) {

 OS_EventGroup myEventGroup;

 OS_ClearEventBits(&myEventGroup, 0x01); // Clear bit 0

}

Configuration for RA3 RTOS

Header File: config.h

This configuration file allows you to customize RA3 RTOS for specific system needs by setting

key parameters. These configurations define the stack size, timing, priority levels, CPU

frequency, and more to optimize the RTOS for various embedded applications.

Configuration Parameters in config.h

PREEMPTION

// Define macro for OS preemption control

#define OS_PREEMPTION_ENABLED 1

Description: Enables or disables OS preemption. If set to 1, preemption is enabled, allowing the

OS to switch tasks based on priority. If set to 0, the PendSV trigger for task switching will be

removed, disabling preemption.

MAIN_STACK_SIZE

// Size of the main stack in bytes

#define OS_MAIN_STACK_SIZE 3072

Description: Sets the size of the main stack used by the RTOS in bytes. Adjust this according to

your system’s memory requirements, especially if the main stack handles intensive or recursive

tasks.

DEFAULT_TASK_STACK_SIZE

// Default stack size for tasks in bytes

#define OS_DEFAULT_TASK_STACK_SIZE 1024

Description: Specifies the default stack size for tasks. Increase this value if tasks require more

stack space (e.g., tasks involving deep function calls or large local variables).

TICK_TIME_IN_MS

// Time duration of each tick in milliseconds

#define OS_TICK_TIME_IN_MS 1

Description: Sets the duration of each OS tick. This tick frequency controls the RTOS's task
switching and timing functions. A lower tick duration means more frequent task switching but

higher CPU load.

CPU_CLOCK_FREQ_IN_HZ

// CPU clock frequency in hertz

#define OS_CPU_CLOCK_FREQ_IN_HZ 7200000

Description: Defines the CPU clock frequency in MHz. Accurate setting is essential for precise
timing in the RTOS scheduler. Ensure this matches your processor’s actual frequency for optimal

performance.

OS_LOWEST_PRIORITY

// Lowest priority level for tasks

#define OS_LOWEST_PRIORITY 255

Description: Specifies the lowest priority level available for tasks, where higher numbers

represent lower priorities. Setting this higher allows for a more granular priority system.

OS_HIGHEST_PRIORITY

// Highest priority level for tasks

#define OS_HIGHEST_PRIORITY 0

Description: Sets the highest priority level for tasks. Lower numbers represent higher priorities

in RA3 RTOS. Set this to define the top priority available for critical tasks.

IDLE_TASK_HOOK_ENABLED

// Enable/disable the idle task hook

#define OS_IDLE_TASK_HOOK_ENABLED 1

Description: Enables or disables the idle task hook. If enabled (1), the RTOS will execute a

user-defined callback whenever the idle task runs, allowing low-priority background operations.

TICK_HOOK_ENABLED

// Enable/disable the tick task hook
#define OS_TICK_HOOK_ENABLED 1

Description: Enables or disables the tick hook. If enabled (1), the RTOS will execute a user-
defined callback function at each tick, useful for periodic background tasks.

Note: Ensure you review and adjust these parameters based on the specific needs of your

embedded system for optimal performance. Misconfiguration can lead to unexpected behavior in

task timing, scheduling, and memory utilization.

Contributing to RA3 RTOS

We welcome contributions from the community to help improve RA3 RTOS! If you're interested

in contributing, please follow these guidelines:

1. Fork the Repository

Start by forking the RA3 RTOS repository to your own GitHub account. This creates a copy of

the repository where you can make your changes.

 Navigate to the RA3 RTOS GitHub Repository.

 Click on the Fork button in the top right corner of the page.

2. Clone Your Fork

Clone your forked repository to your local machine to begin making changes.

git clone https://github.com/ENGaliyasser/RA3-RTOS.git

cd RA3-RTOS

3. Create a New Branch

Before making changes, create a new branch for your feature or bug fix. This keeps your

modifications organized and separate from the main codebase.

git checkout -b feature/my-new-feature

4. Implement Your Changes

Make the necessary changes or add the new feature. Please adhere to the following coding rules

to ensure consistency across the project:

 Follow the existing coding style (indentation, naming conventions).
 Comment your code adequately for clarity.
 Keep your changes focused on a single feature or bug fix.

5. Test Your Changes

Before submitting your contributions, test your code to ensure it works as expected. Ensure that

you run any existing tests and add new tests if applicable.

6. Commit Your Changes

Once you're satisfied with your changes, commit them with a clear and descriptive message.

git add .

git commit -m "Add my new feature"

7. Push Your Changes

Push your changes to your forked repository.

git push origin feature/my-new-feature

8. Create a Pull Request

Navigate to the original RA3 RTOS repository and click on the Pull Requests tab. Then, click

on the New Pull Request button.

 Select your branch from the dropdown.
 Provide a descriptive title and description for your pull request, explaining the changes you've

made and why they should be merged.

9. Address Feedback

Once you submit your pull request, the maintainers will review your changes. Be prepared to

discuss your code and make adjustments based on feedback.

10. Celebrate Your Contribution!

After your pull request is merged, you’ll be recognized as a contributor to RA3 RTOS! Thank

you for your efforts to improve the project!

