{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 主題:健康上網AI守門員! 色情圖片辨識\n",
"### 組員:陳怡升、張睿傑、李志恆
\n",
"[發表簡報請點我](https://docs.google.com/presentation/d/19mwSTLK1vLj8kBd4NtedvkfHCA17YikbTqA5CD2D2Tg/edit?usp=sharing)\n",
"
\n",
"### 概述:\n",
"我們打造出一個新型態的健康上網守門員
透過色情圖片辨識,當偵測到使用者在瀏覽色情內容時,將會自動播放歌曲[Big Enough](https://www.youtube.com/watch?v=rvrZJ5C_Nwg)中[牛仔的尖叫片段](https://www.youtube.com/watch?v=Qcp2W1-SFt4),
然後讓滑鼠亂飄移,並按下Alt+F4關閉視窗讓使用者無法正常瀏覽色情內容。\n",
"\n",
"
程式實際使用示範影片:[有碼版本示範影片](https://www.youtube.com/watch?v=AsDYYk-qPA8&feature=youtu.be)\n",
"
同場加映:[上傳到PornHub的無碼版本示範影片](https://www.pornhub.com/view_video.php?viewkey=ph5cfbb88976949) (內含18+畫面,慎入!!)\n",
"\n",
"\n",
"### 目的:\n",
"本來我們想做色情圖片辨識,不過想想辨識出來也要有個用途,靈光一閃就想到這個\"健康上網AI守門員\"的idea
\n",
"我們有空的話,會在暑假將其改良成開機後自動在背景執行,為我國青少年身心健康發展盡一份心力。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 具體做法:\n",
"* **資料取得:**
\n",
"我們將透過github上的[NSFW數據庫](https://github.com/GantMan/nsfw_model)來取得資料進行訓練。
\n",
"將資料集中corrupted image 移除後剩下的**212038**張圖片被分為5種類別,分別為:
\n",
"\n",
"
\n",
"* **模型訓練:**
\n",
"使用Keras中的InceptionV3模型中ImageNet 的權重來進行transfer learning,再加上兩層DenseNet提高辨識度。
\n",
"* **訓練結果:**
\n",
"在經過長時間訓練後,模型實際使用時正確率很高,在將圖片分類上能夠達到90% 以上的正確率。
\n",
"訓練模型建置的github 連結: https://github.com/juichiehchang/NCTS5017-PythonFinalProject
\n",
"* **程式建置:**
\n",
"我們把訓練完成的**模型**與**權重**讀入,打造出一個能夠辨識輸入圖片類別的辨識器。
\n",
"接著使用PIL套件截圖,並將圖片分割為18個小圖片進行辨識,如下圖
\n",
"\n",
"(我們將螢幕分割為3x5共15張圖片,並在影片播放位置的**重點區域**多剪兩張以及整個畫面一張,總共18張)
\n",
"該程式將定期做螢幕截圖並辨識圖片中是否有色情內容。
\n",
"如果色情內容的比例超過一定水準,將會使用winsound套件自動播放歌曲Big Enough中牛仔的尖叫片段,
\n",
"並使用PyAutoGUI讓滑鼠隨機飄移無法操控並在十五秒後按下ALT+F4關閉視窗
\n",
"而如果判斷色情內容比例超過一定水準,但尚未達到該關閉的程度,
\n",
"因為可能會有誤判也會達到該水平,故程式會播放「光頭哥哥的嘿嘿」音效來提醒使用者,並將記錄累加,如持續超過一定水準也會執行關閉程式。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 此程式的缺點:\n",
"使用本模型,有一個缺點,就是**非常耗CPU資源**,因為判讀模型很大
\n",
"當執行判斷時,我們的CPU使用率會衝到100%約3秒,如下方圖片所示。
\n",
"(高峰為程式執行判斷的時候)
\n",
"\n",
"未來如果要改進,需要尋找有無抑制CPU使用率的寫法,
\n",
"或將截圖上傳至雲端,由雲端的伺服器做判斷後,再將結果回傳給用戶端執行。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 程式碼內容\n",
"(歡迎複製過去自行使用,其他檔案請至[雲端硬碟下載](https://drive.google.com/file/d/1nRXHMx9T4MLmZBP2rfjc8G8krewEHhaD/view?usp=sharing)整合好的zip檔案)
後面還有趣事(判斷失敗的例子)喔!"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Public\\ANACONDA3\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n",
"Using TensorFlow backend.\n"
]
}
],
"source": [
"#import predict\n",
"import cv2\n",
"import numpy as np\n",
"from PIL import Image\n",
"from PIL import ImageGrab\n",
"import time\n",
"import pyautogui\n",
"import winsound\n",
"#import sys\n",
"#sys.setrecursionlimit(50)\n",
"import numpy as np\n",
"import os\n",
"os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n",
"import keras\n",
"\n",
"def load_image(img_path, size):\n",
" image = keras.preprocessing.image.load_img(img_path, target_size = size)\n",
" image = keras.preprocessing.image.img_to_array(image)\n",
" image /= 255\n",
" return np.expand_dims(image, axis=0)\n",
"\n",
"class predictor():\n",
"\n",
" model = None\n",
" categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']\n",
" size = None\n",
" \n",
" def __init__(self, model_path):\n",
" if('inceptionV3' in model_path):\n",
" self.size = (299, 299)\n",
" self.model = keras.models.load_model(model_path)\n",
" \n",
" def predict_from_path(self, img_path):\n",
" \n",
" image = load_image(img_path, self.size)\n",
" prediction = self.model.predict(image)\n",
" #print(prediction)\n",
" return self.categories[np.argmax(prediction)]\n",
"\n",
" def predict_from_array(self, img):\n",
"\n",
" image = img/255\n",
" prediction = self.model.predict(np.expand_dims(image, axis=0))\n",
" return self.categories[np.argmax(prediction)]\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Public\\ANACONDA3\\lib\\site-packages\\keras\\engine\\saving.py:327: UserWarning: Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.\n",
" warnings.warn('Error in loading the saved optimizer '\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 10\n",
"hentai: 0\n",
"neutral: 6\n",
"porn: 0\n",
"sexy: 2\n",
"Judge end\n",
"\n",
"Judge start\n",
"母湯喔\n",
"0\n",
"drawings: 1\n",
"hentai: 0\n",
"neutral: 7\n",
"porn: 10\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 1\n",
"hentai: 0\n",
"neutral: 17\n",
"porn: 0\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 9\n",
"hentai: 0\n",
"neutral: 9\n",
"porn: 0\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 12\n",
"hentai: 0\n",
"neutral: 6\n",
"porn: 0\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 7\n",
"hentai: 0\n",
"neutral: 10\n",
"porn: 1\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 2\n",
"hentai: 0\n",
"neutral: 15\n",
"porn: 1\n",
"sexy: 0\n",
"Judge end\n",
"\n",
"Judge start\n",
"讚喔\n",
"1\n",
"drawings: 5\n",
"hentai: 0\n",
"neutral: 13\n",
"porn: 0\n",
"sexy: 0\n",
"Judge end\n",
"\n"
]
}
],
"source": [
"weights_path = \"C:/Users/user/Downloads/pythonF/inceptionV3.299x299.h5\" #請自行修改路徑\n",
"\n",
"p = predictor(weights_path)\n",
"categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']\n",
" \n",
"#截圖程式\n",
"#自動在螢幕產生15個截圖\n",
"def GrabAndCut():\n",
" images = []\n",
" width = 300 \n",
" height = 300\n",
" im=ImageGrab.grab() #截圖\n",
" wid_1 = -300\n",
" hei_1 = -300\n",
" for i in range(3):\n",
" wid_1 = -300\n",
" for i in range(5):\n",
" im_temp = im.crop(( #裁切圖片,裁切出3*5個\n",
" width +wid_1,\n",
" height + hei_1,\n",
" width +wid_1 + 300,\n",
" height + hei_1 + 300))\n",
" images.append(im_temp.resize((299,299)))\n",
" wid_1+=300\n",
" hei_1+=300 \n",
" images.append(im.crop(( #多剪兩張在平常的播放位置的內容\n",
" 100,\n",
" 200,\n",
" 800,\n",
" 800)).resize((299,299))) #將圖片大小設定為299x299\n",
" images.append(im.crop((\n",
" 500,\n",
" 200,\n",
" 1100,\n",
" 800)).resize((299,299)))\n",
" images.append(im.resize((299,299)))\n",
" return images\n",
"\n",
"def CheckImages(images): #分類函式 將圖片分類\n",
" result = []\n",
" for i in range(len(images)):\n",
" result.append(p.predict_from_array(np.array(images[i])))\n",
" return result\n",
" #判斷時要使用np.array判斷,所以我們將圖片轉換成array\n",
" #然後將判斷結果連接到一個叫result的陣列\n",
"\n",
"\n",
"def Judge(result, beforehand): #根據結果做出判斷的程式\n",
" testing = result.count(\"porn\")*2 + result.count(\"hentai\")\n",
" #使用自訂的判斷權重,因為在看動漫時較容易判斷出hentai故hentai需要比較高的權重\n",
" if testing >=9 or (testing + beforehand) >=11:\n",
" winsound.PlaySound(\"AHHH.wav\", winsound.SND_FILENAME|winsound.SND_ASYNC)\n",
" #使用winsound播放音樂, winsound.SND_FILENAME 是指播放該檔名的檔案\n",
" #winsound.SND_ASYNC 是指播放後就繼續執行剩下的程式碼\n",
" for i in range(40): #亂動滑鼠的部分\n",
" pyautogui.moveTo(np.random.randint(1,1910), np.random.randint(1,1070),0.25)\n",
" pyautogui.keyDown(\"ALT\") #使用PyAutoGUI的套件,模擬按下ALT+F4\n",
" pyautogui.keyDown(\"F4\")\n",
" pyautogui.keyUp(\"ALT\")\n",
" #x, y =pyautogui.size() #移動到右上角關閉視窗\n",
" #pyautogui.moveTo(x-10, 10, 10) #後來選擇ALT+F4,故此段註解\n",
" #pyautogui.click() \n",
" print(\"母湯喔\")\n",
" Judges = 0\n",
" elif testing >=5:\n",
" print(\"嘿嘿\") #播放光頭哥哥的「嘿嘿」音效,警告使用者\n",
" winsound.PlaySound(\"hehe.wav\", winsound.SND_FILENAME|winsound.SND_ASYNC)\n",
" Judges = 1\n",
" beforehand = testing #將結果回傳,如果重複出現危險內容將會執行關閉程式\n",
" else:\n",
" print(\"讚喔\")\n",
" Judges = 1\n",
" beforehand = 0\n",
" return Judges, beforehand\n",
"\n",
"beforehand = 0\n",
"#while(1): #正式程式,將內容串在一起\n",
"for i in range(8): #本來是使用while迴圈,不過因為要呈現不想出現KeyboardInterrupt\n",
" #所以使用for迴圈做八次\n",
" print(\"Judge start\")\n",
" images = GrabAndCut()\n",
" result = CheckImages(images)\n",
" Judges, beforehand = Judge(result, beforehand)\n",
" print(Judges)\n",
" for i in range(len(categories)): #打印出分類模型究竟分類出來的結果\n",
" print(\"%s: %d\"%(categories[i], result.count(categories[i])))\n",
" print(\"Judge end\\n\")\n",
" time.sleep(1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 趣聞 (判斷失敗的例子) :\n",
"此程式準確率還是有待加強,比方會將一些新聞的圖片判斷為porn\n",
"(如下方圖片)
\n",
"推測可能是因為原先training data **並沒有文字**,同時切割過的圖片較不易判斷
所以我們使用指定公式,當porn分類超過5個,才執行關閉程式。\n",
""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "165px"
},
"toc_section_display": true,
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 2
}