An ontology of core ecological entities
2022-03-09
editor preferred label
editor preferred label
editor preferred term
editor preferred term
editor preferred term~editor preferred label
The concise, meaningful, and human-friendly name for a class or property preferred by the ontology developers. (US-English)
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
editor preferred label
editor preferred label
editor preferred term
editor preferred term
editor preferred term~editor preferred label
example
example of usage
A phrase describing how a term should be used and/or a citation to a work which uses it. May also include other kinds of examples that facilitate immediate understanding, such as widely know prototypes or instances of a class, or cases where a relation is said to hold.
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
IAO:0000112
uberon
example_of_usage
true
example_of_usage
example of usage
example of usage
has curation status
PERSON:Alan Ruttenberg
PERSON:Bill Bug
PERSON:Melanie Courtot
OBI_0000281
has curation status
has curation status
definition
definition
textual definition
The official OBI definition, explaining the meaning of a class or property. Shall be Aristotelian, formalized and normalized. Can be augmented with colloquial definitions.
The official definition, explaining the meaning of a class or property. Shall be Aristotelian, formalized and normalized. Can be augmented with colloquial definitions.
2012-04-05:
Barry Smith
The official OBI definition, explaining the meaning of a class or property: 'Shall be Aristotelian, formalized and normalized. Can be augmented with colloquial definitions' is terrible.
Can you fix to something like:
A statement of necessary and sufficient conditions explaining the meaning of an expression referring to a class or property.
Alan Ruttenberg
Your proposed definition is a reasonable candidate, except that it is very common that necessary and sufficient conditions are not given. Mostly they are necessary, occasionally they are necessary and sufficient or just sufficient. Often they use terms that are not themselves defined and so they effectively can't be evaluated by those criteria.
On the specifics of the proposed definition:
We don't have definitions of 'meaning' or 'expression' or 'property'. For 'reference' in the intended sense I think we use the term 'denotation'. For 'expression', I think we you mean symbol, or identifier. For 'meaning' it differs for class and property. For class we want documentation that let's the intended reader determine whether an entity is instance of the class, or not. For property we want documentation that let's the intended reader determine, given a pair of potential relata, whether the assertion that the relation holds is true. The 'intended reader' part suggests that we also specify who, we expect, would be able to understand the definition, and also generalizes over human and computer reader to include textual and logical definition.
Personally, I am more comfortable weakening definition to documentation, with instructions as to what is desirable.
We also have the outstanding issue of how to aim different definitions to different audiences. A clinical audience reading chebi wants a different sort of definition documentation/definition from a chemistry trained audience, and similarly there is a need for a definition that is adequate for an ontologist to work with.
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
definition
definition
textual definition
editor note
An administrative note intended for its editor. It may not be included in the publication version of the ontology, so it should contain nothing necessary for end users to understand the ontology.
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obfoundry.org/obo/obi>
GROUP:OBI:<http://purl.obofoundry.org/obo/obi>
IAO:0000116
uberon
editor_note
true
editor_note
editor note
editor note
term editor
Name of editor entering the term in the file. The term editor is a point of contact for information regarding the term. The term editor may be, but is not always, the author of the definition, which may have been worked upon by several people
20110707, MC: label update to term editor and definition modified accordingly. See https://github.com/information-artifact-ontology/IAO/issues/115.
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
term editor
term editor
alternative term
An alternative name for a class or property which means the same thing as the preferred name (semantically equivalent)
PERSON:Daniel Schober
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
alternative term
alternative term
definition source
Formal citation, e.g. identifier in external database to indicate / attribute source(s) for the definition. Free text indicate / attribute source(s) for the definition. EXAMPLE: Author Name, URI, MeSH Term C04, PUBMED ID, Wiki uri on 31.01.2007
formal citation, e.g. identifier in external database to indicate / attribute source(s) for the definition. Free text indicate / attribute source(s) for the definition. EXAMPLE: Author Name, URI, MeSH Term C04, PUBMED ID, Wiki uri on 31.01.2007
PERSON:Daniel Schober
Discussion on obo-discuss mailing-list, see http://bit.ly/hgm99w
Discussion on obo-discuss mailing-list, see http://bit.ly/hgm99w
GROUP:OBI:<http://purl.obolibrary.org/obo/obi>
definition source
definition source
has axiom id
Person:Alan Ruttenberg
Person:Alan Ruttenberg
A URI that is intended to be unique label for an axiom used for tracking change to the ontology. For an axiom expressed in different languages, each expression is given the same URI
has axiom label
has axiom label
An assertion that holds between an OWL Object Property and a temporal interpretation that elucidates how OWL Class Axioms that use this property are to be interpreted in a temporal context.
temporal interpretation
temporal interpretation
https://oborel.github.io/obo-relations/temporal-semantics/
https://github.com/oborel/obo-relations/wiki/ROAndTime
If R <- P o Q is a defining property chain axiom, then it also holds that R -> P o Q. Note that this cannot be expressed directly in OWL
is a defining property chain axiom
If R <- P o Q is a defining property chain axiom, then (1) R -> P o Q holds and (2) Q is either reflexive or locally reflexive. A corollary of this is that P SubPropertyOf R.
is a defining property chain axiom where second argument is reflexive
http://purl.org/dc/elements/1.1/creator
uberon
dc-creator
true
dc-creator
creator
uberon
dcterms-license
true
dcterms-license
license
database_cross_reference
has_exact_synonym
has_narrow_synonym
has_related_synonym
in_subset
label
label
is part of
is part of
my brain is part of my body (continuant parthood, two material entities)
my brain is part of my body (continuant parthood, two material entities)
my stomach cavity is part of my stomach (continuant parthood, immaterial entity is part of material entity)
my stomach cavity is part of my stomach (continuant parthood, immaterial entity is part of material entity)
this day is part of this year (occurrent parthood)
this day is part of this year (occurrent parthood)
a core relation that holds between a part and its whole
a core relation that holds between a part and its whole
Everything is part of itself. Any part of any part of a thing is itself part of that thing. Two distinct things cannot be part of each other.
Everything is part of itself. Any part of any part of a thing is itself part of that thing. Two distinct things cannot be part of each other.
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See https://code.google.com/p/obo-relations/wiki/ROAndTime
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See https://code.google.com/p/obo-relations/wiki/ROAndTime
Parthood requires the part and the whole to have compatible classes: only an occurrent can be part of an occurrent; only a process can be part of a process; only a continuant can be part of a continuant; only an independent continuant can be part of an independent continuant; only an immaterial entity can be part of an immaterial entity; only a specifically dependent continuant can be part of a specifically dependent continuant; only a generically dependent continuant can be part of a generically dependent continuant. (This list is not exhaustive.)
A continuant cannot be part of an occurrent: use 'participates in'. An occurrent cannot be part of a continuant: use 'has participant'. A material entity cannot be part of an immaterial entity: use 'has location'. A specifically dependent continuant cannot be part of an independent continuant: use 'inheres in'. An independent continuant cannot be part of a specifically dependent continuant: use 'bearer of'.
Parthood requires the part and the whole to have compatible classes: only an occurrent can be part of an occurrent; only a process can be part of a process; only a continuant can be part of a continuant; only an independent continuant can be part of an independent continuant; only an immaterial entity can be part of an immaterial entity; only a specifically dependent continuant can be part of a specifically dependent continuant; only a generically dependent continuant can be part of a generically dependent continuant. (This list is not exhaustive.)
A continuant cannot be part of an occurrent: use 'participates in'. An occurrent cannot be part of a continuant: use 'has participant'. A material entity cannot be part of an immaterial entity: use 'has location'. A specifically dependent continuant cannot be part of an independent continuant: use 'inheres in'. An independent continuant cannot be part of a specifically dependent continuant: use 'bearer of'.
part_of
part_of
BFO:0000050
external
plant_ontology
protein
quality
uberon
part_of
part_of
part of
part of
part_of
http://www.obofoundry.org/ro/#OBO_REL:part_of
has part
has part
my body has part my brain (continuant parthood, two material entities)
my body has part my brain (continuant parthood, two material entities)
my stomach has part my stomach cavity (continuant parthood, material entity has part immaterial entity)
my stomach has part my stomach cavity (continuant parthood, material entity has part immaterial entity)
this year has part this day (occurrent parthood)
this year has part this day (occurrent parthood)
Q1 has_part Q2 if and only if: every instance of Q1 is a quality_of an entity that has_quality some Q2.
a core relation that holds between a whole and its part
a core relation that holds between a whole and its part
Everything has itself as a part. Any part of any part of a thing is itself part of that thing. Two distinct things cannot have each other as a part.
Everything has itself as a part. Any part of any part of a thing is itself part of that thing. Two distinct things cannot have each other as a part.
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See https://code.google.com/p/obo-relations/wiki/ROAndTime
Occurrents are not subject to change and so parthood between occurrents holds for all the times that the part exists. Many continuants are subject to change, so parthood between continuants will only hold at certain times, but this is difficult to specify in OWL. See https://code.google.com/p/obo-relations/wiki/ROAndTime
Parthood requires the part and the whole to have compatible classes: only an occurrent have an occurrent as part; only a process can have a process as part; only a continuant can have a continuant as part; only an independent continuant can have an independent continuant as part; only a specifically dependent continuant can have a specifically dependent continuant as part; only a generically dependent continuant can have a generically dependent continuant as part. (This list is not exhaustive.)
A continuant cannot have an occurrent as part: use 'participates in'. An occurrent cannot have a continuant as part: use 'has participant'. An immaterial entity cannot have a material entity as part: use 'location of'. An independent continuant cannot have a specifically dependent continuant as part: use 'bearer of'. A specifically dependent continuant cannot have an independent continuant as part: use 'inheres in'.
Parthood requires the part and the whole to have compatible classes: only an occurrent have an occurrent as part; only a process can have a process as part; only a continuant can have a continuant as part; only an independent continuant can have an independent continuant as part; only a specifically dependent continuant can have a specifically dependent continuant as part; only a generically dependent continuant can have a generically dependent continuant as part. (This list is not exhaustive.)
A continuant cannot have an occurrent as part: use 'participates in'. An occurrent cannot have a continuant as part: use 'has participant'. An immaterial entity cannot have a material entity as part: use 'location of'. An independent continuant cannot have a specifically dependent continuant as part: use 'bearer of'. A specifically dependent continuant cannot have an independent continuant as part: use 'inheres in'.
has_part
has_part
BFO:0000051
chebi_ontology
external
plant_ontology
protein
quality
uberon
has_part
false
has_part
We use the has_part relation to relate complex qualities to more primitive ones. A complex quality is a collection of qualities. The complex quality cannot exist without the sub-qualities. For example, the quality 'swollen' necessarily comes with the qualities of 'protruding' and 'increased size'.
has part
has part
has_part
Q1 has_part Q2 if and only if: every instance of Q1 is a quality_of an entity that has_quality some Q2.
PATOC:CJM
realized in
this disease is realized in this disease course
this fragility is realized in this shattering
this investigator role is realized in this investigation
is realized by
realized_in
[copied from inverse property 'realizes'] to say that b realizes c at t is to assert that there is some material entity d & b is a process which has participant d at t & c is a disposition or role of which d is bearer_of at t& the type instantiated by b is correlated with the type instantiated by c. (axiom label in BFO2 Reference: [059-003])
Paraphrase of elucidation: a relation between a realizable entity and a process, where there is some material entity that is bearer of the realizable entity and participates in the process, and the realizable entity comes to be realized in the course of the process
realized in
realizes
this disease course realizes this disease
this investigation realizes this investigator role
this shattering realizes this fragility
to say that b realizes c at t is to assert that there is some material entity d & b is a process which has participant d at t & c is a disposition or role of which d is bearer_of at t& the type instantiated by b is correlated with the type instantiated by c. (axiom label in BFO2 Reference: [059-003])
Paraphrase of elucidation: a relation between a process and a realizable entity, where there is some material entity that is bearer of the realizable entity and participates in the process, and the realizable entity comes to be realized in the course of the process
realizes
preceded by
The assertion P preceded_by P1 tells us something about Ps in general: that is, it tells us something about what happened earlier, given what we know about what happened later. Thus it does not provide information pointing in the opposite direction, concerning instances of P1 in general; that is, that each is such as to be succeeded by some instance of P.
X preceded_by Y iff: end(Y) before_or_simultaneous_with start(X)
X preceded_by Y iff: end(Y) before_or_simultaneous_with start(X).
x is preceded by y if and only if the time point at which y ends is before or equivalent to the time point at which x starts. Formally: x preceded by y iff ω(y) <= α(x), where α is a function that maps a process to a start point, and ω is a function that maps a process to an end point.
An example is: translation preceded_by transcription; aging preceded_by development (not however death preceded_by aging). Where derives_from links classes of continuants, preceded_by links classes of processes. Clearly, however, these two relations are not independent of each other. Thus if cells of type C1 derive_from cells of type C, then any cell division involving an instance of C1 in a given lineage is preceded_by cellular processes involving an instance of C. The assertion P preceded_by P1 tells us something about Ps in general: that is, it tells us something about what happened earlier, given what we know about what happened later. Thus it does not provide information pointing in the opposite direction, concerning instances of P1 in general; that is, that each is such as to be succeeded by some instance of P. Note that an assertion to the effect that P preceded_by P1 is rather weak; it tells us little about the relations between the underlying instances in virtue of which the preceded_by relation obtains. Typically we will be interested in stronger relations, for example in the relation immediately_preceded_by, or in relations which combine preceded_by with a condition to the effect that the corresponding instances of P and P1 share participants, or that their participants are connected by relations of derivation, or (as a first step along the road to a treatment of causality) that the one process in some way affects (for example, initiates or regulates) the other.
is preceded by
preceded_by
http://www.obofoundry.org/ro/#OBO_REL:preceded_by
Laurel_Cooper
2013-07-09T14:29:15Z
BFO:0000062
is preceded by
takes place after
external
plant_ontology
uberon
preceded_by
preceded_by
Note that an assertion to the effect that P preceded_by P1 is rather weak; it tells us little about the relations between the underlying instances in virtue of which the preceded_by relation obtains. Typically we will be interested in stronger relations, for example in the relation immediately_preceded_by, or in relations which combine preceded_by with a condition to the effect that the corresponding instances of P and P1 share participants, or that their participants are connected by relations of derivation, or (as a first step along the road to a treatment of causality) that the one process in some way affects (for example, initiates or regulates) the other.
preceded by
preceded by
preceded_by
The assertion P preceded_by P1 tells us something about Ps in general: that is, it tells us something about what happened earlier, given what we know about what happened later. Thus it does not provide information pointing in the opposite direction, concerning instances of P1 in general; that is, that each is such as to be succeeded by some instance of P.
POC:Laurel_Cooper
is preceded by
SIO:000249
takes place after
Allen:precedes
precedes
x precedes y if and only if the time point at which x ends is before or equivalent to the time point at which y starts. Formally: x precedes y iff ω(x) <= α(y), where α is a function that maps a process to a start point, and ω is a function that maps a process to an end point.
Laurel_Cooper
2015-06-04T17:18:40Z
BFO:0000063
external
plant_ontology
uberon
precedes
precedes
precedes
precedes
occurs in
b occurs_in c =def b is a process and c is a material entity or immaterial entity& there exists a spatiotemporal region r and b occupies_spatiotemporal_region r.& forall(t) if b exists_at t then c exists_at t & there exist spatial regions s and s’ where & b spatially_projects_onto s at t& c is occupies_spatial_region s’ at t& s is a proper_continuant_part_of s’ at t
occurs_in
unfolds in
unfolds_in
BFO:0000066
external
occurs_in
occurs_in
Paraphrase of definition: a relation between a process and an independent continuant, in which the process takes place entirely within the independent continuant
occurs in
occurs in
site of
[copied from inverse property 'occurs in'] b occurs_in c =def b is a process and c is a material entity or immaterial entity& there exists a spatiotemporal region r and b occupies_spatiotemporal_region r.& forall(t) if b exists_at t then c exists_at t & there exist spatial regions s and s’ where & b spatially_projects_onto s at t& c is occupies_spatial_region s’ at t& s is a proper_continuant_part_of s’ at t
BFO:0000067
uberon
contains_process
contains_process
Paraphrase of definition: a relation between an independent continuant and a process, in which the process takes place entirely within the independent continuant
contains process
contains process
x anterior to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that extends through an organism from head end to opposite end of body or tail.
x anterior_to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail: bearer
x anterior_to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail: bearer.
cjm
2009-07-31T02:15:46Z
BSPO:0000096
uberon
anterior_to
anterior_to
anterior to
anterior_to
x anterior to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that extends through an organism from head end to opposite end of body or tail.
BSPO:cjm
x anterior_to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail: bearer
x anterior_to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail: bearer.
x anterior_to y iff x is further along the antero-posterior axis than y, towards the head. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail: bearer.
http://orcid.org/0000-0002-6601-2165
x distal to y iff x is further along the proximo-distal axis than y, towards the appendage tip. A proximo-distal axis extends from tip of an appendage (distal) to where it joins the body (proximal).
x distal_to y iff x is further along the proximo-distal axis than y, towards the appendage tip. A proximo-distal axis extends from tip of an appendage (distal) to where it joins the body (proximal).
BSPO:0000097
uberon
distal_to
distal_to
distal to
distal_to
x distal to y iff x is further along the proximo-distal axis than y, towards the appendage tip. A proximo-distal axis extends from tip of an appendage (distal) to where it joins the body (proximal).
BSPO:cjm
x distal_to y iff x is further along the proximo-distal axis than y, towards the appendage tip. A proximo-distal axis extends from tip of an appendage (distal) to where it joins the body (proximal).
x distal_to y iff x is further along the proximo-distal axis than y, towards the appendage tip. A proximo-distal axis extends from tip of an appendage (distal) to where it joins the body (proximal).
http://orcid.org/0000-0002-6601-2165
x dorsal to y iff x is further along the dorso-ventral axis than y, towards the back. A dorso-ventral axis is an axis that extends through an organism from back (e.g. spinal column) to front (e.g. belly).
x dorsal_to y iff x is further along the dorso-ventral axis than y, towards the back. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
BSPO:0000098
uberon
dorsal_to
dorsal_to
dorsal to
dorsal_to
x dorsal to y iff x is further along the dorso-ventral axis than y, towards the back. A dorso-ventral axis is an axis that extends through an organism from back (e.g. spinal column) to front (e.g. belly).
BSPO:cjm
x dorsal_to y iff x is further along the dorso-ventral axis than y, towards the back. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
x dorsal_to y iff x is further along the dorso-ventral axis than y, towards the back. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
http://orcid.org/0000-0002-6601-2165
x posterior to y iff x is further along the antero-posterior axis than y, towards the body/tail. An antero-posterior axis is an axis that extends through an organism from head end to opposite end of body or tail.
x posterior_to y iff x is further along the antero-posterior axis than y, towards the body/tail. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail.
BSPO:0000099
caudal_to
uberon
posterior_to
posterior_to
posterior to
posterior_to
x posterior to y iff x is further along the antero-posterior axis than y, towards the body/tail. An antero-posterior axis is an axis that extends through an organism from head end to opposite end of body or tail.
BSPO:cjm
x posterior_to y iff x is further along the antero-posterior axis than y, towards the body/tail. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail.
x posterior_to y iff x is further along the antero-posterior axis than y, towards the body/tail. An antero-posterior axis is an axis that bisects an organism from head end to opposite end of body or tail.
http://orcid.org/0000-0002-6601-2165
x proximal to y iff x is closer to the point of attachment with the body than y.
x proximal_to y iff x is closer to the point of attachment with the body than y.
BSPO:0000100
uberon
proximal_to
proximal_to
proximal to
proximal_to
x proximal to y iff x is closer to the point of attachment with the body than y.
BSPO:cjm
x proximal_to y iff x is closer to the point of attachment with the body than y.
x proximal_to y iff x is closer to the point of attachment with the body than y.
http://orcid.org/0000-0002-6601-2165
x ventral to y iff x is further along the dorso-ventral axis than y, towards the front. A dorso-ventral axis is an axis that extends through an organism from back (e.g. spinal column) to front (e.g. belly).
x ventral_to y iff x is further along the dorso-ventral axis than y, towards the front. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
BSPO:0000102
uberon
ventral_to
ventral_to
ventral to
ventral_to
x ventral to y iff x is further along the dorso-ventral axis than y, towards the front. A dorso-ventral axis is an axis that extends through an organism from back (e.g. spinal column) to front (e.g. belly).
BSPO:cjm
x ventral_to y iff x is further along the dorso-ventral axis than y, towards the front. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
x ventral_to y iff x is further along the dorso-ventral axis than y, towards the front. A dorso-ventral axis is an axis that bisects an organism from back (e.g. spinal column) to front (e.g. belly).
http://orcid.org/0000-0002-6601-2165
Further away from the surface of the organism. Thus, the muscular layer is deep to the skin, but superficial to the intestines.
BSPO:0000107
uberon
deep_to
deep_to
deep to
deep_to
Further away from the surface of the organism. Thus, the muscular layer is deep to the skin, but superficial to the intestines.
Further away from the surface of the organism. Thus, the muscular layer is deep to the skin, but superficial to the intestines.
BSPO:cjm
Near the outer surface of the organism. Thus, skin is superficial to the muscle layer.
BSPO:0000108
uberon
superficial_to
superficial_to
superficial to
superficial_to
Near the outer surface of the organism. Thus, skin is superficial to the muscle layer.
Near the outer surface of the organism. Thus, skin is superficial to the muscle layer.
BSPO:cjm
X in left side of Y <=> if Y is subdivided into two left and right portions, X is part of the left portion.
X in_left_side_of Y <=> if Y is subdivided into left and right portions, X is part_of the left portion.
BSPO:0000120
uberon
in_left_side_of
in_left_side_of
in left side of
in_left_side_of
https://github.com/obophenotype/uberon/wiki/Modeling-paired-structures-Design-Pattern
X in left side of Y <=> if Y is subdivided into two left and right portions, X is part of the left portion.
BSPO:PATO_mtg_2009
X in_left_side_of Y <=> if Y is subdivided into left and right portions, X is part_of the left portion.
BSPO:PATO_mtg_2009
X in right side of Y <=> if Y is subdivided into two left and right portions, X is part of the right portion.
X in_right_side_of Y <=> if Y is subdivided into left and right portions, X is part_of the right portion.
BSPO:0000121
uberon
in_right_side_of
in_right_side_of
in right side of
in_right_side_of
https://github.com/obophenotype/uberon/wiki/Modeling-paired-structures-Design-Pattern
X in right side of Y <=> if Y is subdivided into two left and right portions, X is part of the right portion.
BSPO:PATO_mtg_2009
X in_right_side_of Y <=> if Y is subdivided into left and right portions, X is part_of the right portion.
BSPO:PATO_mtg_2009
X posterior side of Y <=> if Y is subdivided into two anterior and posterior portions, X is part of the posterior portion.
X posterior_side_of Y <=> if Y is subdivided into two anterior and posterior portions, X is part_of the posterior portion.
BSPO:0000122
uberon
in_posterior_side_of
in_posterior_side_of
in posterior side of
in_posterior_side_of
X posterior side of Y <=> if Y is subdivided into two anterior and posterior portions, X is part of the posterior portion.
BSPO:PATO_mtg_2009
X posterior_side_of Y <=> if Y is subdivided into two anterior and posterior portions, X is part_of the posterior portion.
BSPO:PATO_mtg_2009
X anterior side of Y <=> if Y is subdivided into two anterior and posterior portions, X is part of the anterior portion.
X anterior_side_of Y <=> if Y is subdivided into two anterior and posterior portions, X is part_of the anterior portion.
BSPO:0000123
uberon
in_anterior_side_of
in_anterior_side_of
in anterior side of
in_anterior_side_of
X anterior side of Y <=> if Y is subdivided into two anterior and posterior portions, X is part of the anterior portion.
BSPO:PATO_mtg_2009
X anterior_side_of Y <=> if Y is subdivided into two anterior and posterior portions, X is part_of the anterior portion.
BSPO:PATO_mtg_2009
X proximal_side_of Y <=> if Y is subdivided into distal and proximal portions, X is part_of the proximal portion.
x in proximal side of y <=> if y is subdivided into two proximal and distal portions, y is part of the proximal portion.
BSPO:0000124
uberon
in_proximal_side_of
in_proximal_side_of
in proximal side of
in_proximal_side_of
X proximal_side_of Y <=> if Y is subdivided into distal and proximal portions, X is part_of the proximal portion.
BSPO:PATO_mtg_2009
x in proximal side of y <=> if y is subdivided into two proximal and distal portions, y is part of the proximal portion.
BSPO:PATO_mtg_2009
X distal_side_of Y <=> if Y is subdivided into distal and proximal portions, X is part_of the distal portion.
x in distal side of y <=> if y is subdivided into two proximal and distal portions, y is part of the distal portion.
BSPO:0000125
uberon
in_distal_side_of
in_distal_side_of
in distal side of
in_distal_side_of
X distal_side_of Y <=> if Y is subdivided into distal and proximal portions, X is part_of the distal portion.
BSPO:PATO_mtg_2009
x in distal side of y <=> if y is subdivided into two proximal and distal portions, y is part of the distal portion.
BSPO:PATO_mtg_2009
X in lateral side of Y <=> if X is in left side of Y or X is in right side of Y. X is often, but not always a paired structure
X in_lateral_side_of Y <=> if X is in_left_side_of Y or X is in_right_side_of Y. X is often, but not always a paired structure
X in_lateral_side_of Y <=> if X is in_left_side_of Y or X is in_right_side_of Y. X is often, but not always a paired structure.
BSPO:0000126
uberon
in_lateral_side_of
in_lateral_side_of
in lateral side of
in_lateral_side_of
https://github.com/obophenotype/uberon/wiki/Modeling-paired-structures-Design-Pattern
X in lateral side of Y <=> if X is in left side of Y or X is in right side of Y. X is often, but not always a paired structure
UBERON:cjm
X in_lateral_side_of Y <=> if X is in_left_side_of Y or X is in_right_side_of Y. X is often, but not always a paired structure
X in_lateral_side_of Y <=> if X is in_left_side_of Y or X is in_right_side_of Y. X is often, but not always a paired structure.
X in_lateral_side_of Y <=> if X is in_left_side_of Y or X is in_right_side_of Y. X is often, but not always a paired structure.
https://orcid.org/0000-0002-6601-2165
X proximalmost part of Y <=> X is in proximal side of Y and X is adjacent to the proximal boundary of Y
X proximalmost_part_of Y <=> X is part_of Y and X is adjacent_to the proximal boundary of Y
X proximalmost_part_of Y <=> X is part_of Y and X is adjacent_to the proximal boundary of Y.
BSPO:0001106
uberon
proximalmost_part_of
proximalmost_part_of
proximalmost part of
proximalmost_part_of
X proximalmost part of Y <=> X is in proximal side of Y and X is adjacent to the proximal boundary of Y
X proximalmost part of Y <=> X is in proximal side of Y and X is adjacent to the proximal boundary of Y
https://orcid.org/0000-0002-6601-2165
X proximalmost_part_of Y <=> X is part_of Y and X is adjacent_to the proximal boundary of Y
X proximalmost_part_of Y <=> X is part_of Y and X is adjacent_to the proximal boundary of Y.
X proximalmost_part_of Y <=> X is part_of Y and X is adjacent_to the proximal boundary of Y.
https://orcid.org/0000-0002-6601-2165
This relation holds when both the deep_to and ajdacent_to relationship similarly hold.
x immediately deep to y iff x deep_to y and x is contiguous with y.
BSPO:0001107
uberon
immediately_deep_to
immediately_deep_to
immediately deep to
immediately_deep_to
This relation holds when both the deep_to and ajdacent_to relationship similarly hold.
This relation holds when both the deep_to and ajdacent_to relationship similarly hold.
http://orcid.org/0000-0002-6601-2165
x immediately deep to y iff x deep_to y and x is contiguous with y.
BSPO:curators
x immediately superficial to y iff x superficial to y and x is contiguous with y.
BSPO:0015014
uberon
immediately_superficial_to
immediately_superficial_to
immediately superficial to
immediately_superficial_to
x immediately superficial to y iff x superficial to y and x is contiguous with y.
BSPO:curators
GOREL:0002003
external
results_in_distribution_of
results_in_distribution_of
results_in_distribution_of
GOREL:0002004
external
results_in_fission_of
results_in_fission_of
results_in_fission_of
This document is about information artifacts and their representations
A (currently) primitive relation that relates an information artifact to an entity.
7/6/2009 Alan Ruttenberg. Following discussion with Jonathan Rees, and introduction of "mentions" relation. Weaken the is_about relationship to be primitive.
We will try to build it back up by elaborating the various subproperties that are more precisely defined.
Some currently missing phenomena that should be considered "about" are predications - "The only person who knows the answer is sitting beside me" , Allegory, Satire, and other literary forms that can be topical without explicitly mentioning the topic.
person:Alan Ruttenberg
Smith, Ceusters, Ruttenberg, 2000 years of philosophy
is about
inheres in
this fragility inheres in this vase
this fragility is a characteristic of this vase
this red color inheres in this apple
this red color is a characteristic of this apple
a relation between a specifically dependent continuant (the characteristic) and any other entity (the bearer), in which the characteristic depends on the bearer for its existence.
a relation between a specifically dependent continuant (the dependent) and an independent continuant (the bearer), in which the dependent specifically depends on the bearer for its existence
A dependent inheres in its bearer at all times for which the dependent exists.
inheres_in
Note that this relation was previously called "inheres in", but was changed to be called "characteristic of" because BFO2 uses "inheres in" in a more restricted fashion. This relation differs from BFO2:inheres_in in two respects: (1) it does not impose a range constraint, and thus it allows qualities of processes, as well as of information entities, whereas BFO2 restricts inheres_in to only apply to independent continuants (2) it is declared functional, i.e. something can only be a characteristic of one thing.
characteristic of
inheres in
bearer of
this apple is bearer of this red color
this vase is bearer of this fragility
Inverse of characteristic_of
a relation between an independent continuant (the bearer) and a specifically dependent continuant (the dependent), in which the dependent specifically depends on the bearer for its existence
A bearer can have many dependents, and its dependents can exist for different periods of time, but none of its dependents can exist when the bearer does not exist.
bearer_of
is bearer of
RO:0000053
external
uberon
bearer_of
bearer_of
bearer of
bearer of
has characteristic
participates in
this blood clot participates in this blood coagulation
this input material (or this output material) participates in this process
this investigator participates in this investigation
a relation between a continuant and a process, in which the continuant is somehow involved in the process
participates_in
RO:0000056
external
plant_ontology
uberon
participates_in
participates_in
participates in
participates in
participates_in
has participant
this blood coagulation has participant this blood clot
this investigation has participant this investigator
this process has participant this input material (or this output material)
a relation between a process and a continuant, in which the continuant is somehow involved in the process
Has_participant is a primitive instance-level relation between a process, a continuant, and a time at which the continuant participates in some way in the process. The relation obtains, for example, when this particular process of oxygen exchange across this particular alveolar membrane has_participant this particular sample of hemoglobin at this particular time.
has_participant
http://www.obofoundry.org/ro/#OBO_REL:has_participant
RO:0000057
external
plant_ontology
has_participant
has_participant
has participant
has participant
has_participant
this catalysis function is a function of this enzyme
a relation between a function and an independent continuant (the bearer), in which the function specifically depends on the bearer for its existence
A function inheres in its bearer at all times for which the function exists, however the function need not be realized at all the times that the function exists.
function_of
is function of
This relation is modeled after the BFO relation of the same name which was in BFO2, but is used in a more restricted sense - specifically, we model this relation as functional (inherited from characteristic-of). Note that this relation is now removed from BFO2020.
function of
this red color is a quality of this apple
a relation between a quality and an independent continuant (the bearer), in which the quality specifically depends on the bearer for its existence
A quality inheres in its bearer at all times for which the quality exists.
is quality of
quality_of
This relation is modeled after the BFO relation of the same name which was in BFO2, but is used in a more restricted sense - specifically, we model this relation as functional (inherited from characteristic-of). Note that this relation is now removed from BFO2020.
quality of
this investigator role is a role of this person
a relation between a role and an independent continuant (the bearer), in which the role specifically depends on the bearer for its existence
A role inheres in its bearer at all times for which the role exists, however the role need not be realized at all the times that the role exists.
is role of
role_of
This relation is modeled after the BFO relation of the same name which was in BFO2, but is used in a more restricted sense - specifically, we model this relation as functional (inherited from characteristic-of). Note that this relation is now removed from BFO2020.
role of
this enzyme has function this catalysis function (more colloquially: this enzyme has this catalysis function)
a relation between an independent continuant (the bearer) and a function, in which the function specifically depends on the bearer for its existence
A bearer can have many functions, and its functions can exist for different periods of time, but none of its functions can exist when the bearer does not exist. A function need not be realized at all the times that the function exists.
has_function
has function
this apple has quality this red color
a relation between an independent continuant (the bearer) and a quality, in which the quality specifically depends on the bearer for its existence
A bearer can have many qualities, and its qualities can exist for different periods of time, but none of its qualities can exist when the bearer does not exist.
has_quality
RO:0000086
protein
uberon
has_quality
false
has_quality
has quality
has quality
this person has role this investigator role (more colloquially: this person has this role of investigator)
a relation between an independent continuant (the bearer) and a role, in which the role specifically depends on the bearer for its existence
A bearer can have many roles, and its roles can exist for different periods of time, but none of its roles can exist when the bearer does not exist. A role need not be realized at all the times that the role exists.
has_role
RO:0000087
chebi_ontology
has_role
false
false
has_role
has role
has role
a relation between an independent continuant (the bearer) and a disposition, in which the disposition specifically depends on the bearer for its existence
has disposition
inverse of has disposition
This relation is modeled after the BFO relation of the same name which was in BFO2, but is used in a more restricted sense - specifically, we model this relation as functional (inherited from characteristic-of). Note that this relation is now removed from BFO2020.
disposition of
is location of
my head is the location of my brain
this cage is the location of this rat
a relation between two independent continuants, the location and the target, in which the target is entirely within the location
Most location relations will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
location_of
RO:0001015
uberon
location_of
location_of
location of
location_of
contained in
Containment is location not involving parthood, and arises only where some immaterial continuant is involved.
Containment obtains in each case between material and immaterial continuants, for instance: lung contained_in thoracic cavity; bladder contained_in pelvic cavity. Hence containment is not a transitive relation. If c part_of c1 at t then we have also, by our definition and by the axioms of mereology applied to spatial regions, c located_in c1 at t. Thus, many examples of instance-level location relations for continuants are in fact cases of instance-level parthood. For material continuants location and parthood coincide. Containment is location not involving parthood, and arises only where some immaterial continuant is involved. To understand this relation, we first define overlap for continuants as follows: c1 overlap c2 at t =def for some c, c part_of c1 at t and c part_of c2 at t. The containment relation on the instance level can then be defined (see definition):
Intended meaning:
domain: material entity
range: spatial region or site (immaterial continuant)
contained_in
contained in
contains
RO:0001019
uberon
contains
contains
contains
contains
located in
my brain is located in my head
this rat is located in this cage
a relation between two independent continuants, the target and the location, in which the target is entirely within the location
Location as a relation between instances: The primitive instance-level relation c located_in r at t reflects the fact that each continuant is at any given time associated with exactly one spatial region, namely its exact location. Following we can use this relation to define a further instance-level location relation - not between a continuant and the region which it exactly occupies, but rather between one continuant and another. c is located in c1, in this sense, whenever the spatial region occupied by c is part_of the spatial region occupied by c1. Note that this relation comprehends both the relation of exact location between one continuant and another which obtains when r and r1 are identical (for example, when a portion of fluid exactly fills a cavity), as well as those sorts of inexact location relations which obtain, for example, between brain and head or between ovum and uterus
Most location relations will only hold at certain times, but this is difficult to specify in OWL. See http://purl.obolibrary.org/obo/ro/docs/temporal-semantics/
located_in
http://www.obofoundry.org/ro/#OBO_REL:located_in
RO:0001025
uberon
located_in
located_in
located in
located_in
This is redundant with the more specific 'independent and not spatial region' constraint. We leave in the redundant axiom for use with reasoners that do not use negation.
This is redundant with the more specific 'independent and not spatial region' constraint. We leave in the redundant axiom for use with reasoners that do not use negation.
the surface of my skin is a 2D boundary of my body
a relation between a 2D immaterial entity (the boundary) and a material entity, in which the boundary delimits the material entity
A 2D boundary may have holes and gaps, but it must be a single connected entity, not an aggregate of several disconnected parts.
Although the boundary is two-dimensional, it exists in three-dimensional space and thus has a 3D shape.
2D_boundary_of
boundary of
is 2D boundary of
is boundary of
RO:0002000
uberon
boundary_of
boundary_of
2D boundary of
boundary of
my body has 2D boundary the surface of my skin
a relation between a material entity and a 2D immaterial entity (the boundary), in which the boundary delimits the material entity
A 2D boundary may have holes and gaps, but it must be a single connected entity, not an aggregate of several disconnected parts.
Although the boundary is two-dimensional, it exists in three-dimensional space and thus has a 3D shape.
David Osumi-Sutherland
has boundary
has_2D_boundary
RO:0002002
uberon
has_boundary
has_boundary
has 2D boundary
has boundary
David Osumi-Sutherland
http://www.ncbi.nlm.nih.gov/pubmed/22402613
RO:0002005
nerve supply
uberon
innervated_by
innervated_by
http://code.google.com/p/obo-relations/issues/detail?id=6
innervated_by
innervated_by
nerve supply
FMA:85999
X outer_layer_of Y iff:
. X :continuant that bearer_of some PATO:laminar
. X part_of Y
. exists Z :surface
. X has_boundary Z
. Z boundary_of Y
has_boundary: http://purl.obolibrary.org/obo/RO_0002002
boundary_of: http://purl.obolibrary.org/obo/RO_0002000
David Osumi-Sutherland
RO:0002007
external
uberon
bounding_layer_of
bounding_layer_of
A relationship that applies between a continuant and its outer, bounding layer. Examples include the relationship between a multicellular organism and its integument, between an animal cell and its plasma membrane, and between a membrane bound organelle and its outer/bounding membrane.
A relationship that applies between a continuant and its outer, bounding layer. Examples include the relationship between a multicellular organism and its integument, between an animal cell and its plasma membrane, and between a membrane bound organelle and its outer/bounding membrane.
bounding layer of
bounding layer of
A relationship that holds between a process that regulates a transport process and the entity transported by that process.
David Osumi-Sutherland
regulates transport of
A 'has regulatory component activity' B if A and B are GO molecular functions (GO_0003674), A has_component B and A is regulated by B.
dos
2017-05-24T09:30:46Z
RO:0002013
external
has_regulatory_component_activity
has_regulatory_component_activity
has regulatory component activity
A relationship that holds between a GO molecular function and a component of that molecular function that negatively regulates the activity of the whole. More formally, A 'has regulatory component activity' B iff :A and B are GO molecular functions (GO_0003674), A has_component B and A is negatively regulated by B.
dos
2017-05-24T09:31:01Z
RO:0002014
external
has_negative_regulatory_component_activity
has_negative_regulatory_component_activity
By convention GO molecular functions are classified by their effector function. Internal regulatory functions are treated as components. For example, NMDA glutmate receptor activity is a cation channel activity with positive regulatory component 'glutamate binding' and negative regulatory components including 'zinc binding' and 'magnesium binding'.
has negative regulatory component activity
A relationship that holds between a GO molecular function and a component of that molecular function that positively regulates the activity of the whole. More formally, A 'has regulatory component activity' B iff :A and B are GO molecular functions (GO_0003674), A has_component B and A is positively regulated by B.
dos
2017-05-24T09:31:17Z
By convention GO molecular functions are classified by their effector function and internal regulatory functions are treated as components. So, for example calmodulin has a protein binding activity that has positive regulatory component activity calcium binding activity. Receptor tyrosine kinase activity is a tyrosine kinase activity that has positive regulatory component 'ligand binding'.
has positive regulatory component activity
dos
2017-05-24T09:44:33Z
A 'has component activity' B if A is A and B are molecular functions (GO_0003674) and A has_component B.
has component activity
w 'has process component' p if p and w are processes, w 'has part' p and w is such that it can be directly disassembled into into n parts p, p2, p3, ..., pn, where these parts are of similar type.
dos
2017-05-24T09:49:21Z
has component process
dos
2017-09-17T13:52:24Z
Process(P2) is directly regulated by process(P1) iff: P1 regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding regulates the kinase activity (P2) of protein B then P1 directly regulates P2.
directly regulated by
Process(P2) is directly regulated by process(P1) iff: P1 regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding regulates the kinase activity (P2) of protein B then P1 directly regulates P2.
GOC:dos
Process(P2) is directly negatively regulated by process(P1) iff: P1 negatively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding negatively regulates the kinase activity (P2) of protein B then P2 directly negatively regulated by P1.
dos
2017-09-17T13:52:38Z
directly negatively regulated by
Process(P2) is directly negatively regulated by process(P1) iff: P1 negatively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding negatively regulates the kinase activity (P2) of protein B then P2 directly negatively regulated by P1.
GOC:dos
Process(P2) is directly postively regulated by process(P1) iff: P1 positively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding positively regulates the kinase activity (P2) of protein B then P2 is directly postively regulated by P1.
dos
2017-09-17T13:52:47Z
directly positively regulated by
Process(P2) is directly postively regulated by process(P1) iff: P1 positively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding positively regulates the kinase activity (P2) of protein B then P2 is directly postively regulated by P1.
GOC:dos
A 'has effector activity' B if A and B are GO molecular functions (GO_0003674), A 'has component activity' B and B is the effector (output function) of B. Each compound function has only one effector activity.
dos
2017-09-22T14:14:36Z
This relation is designed for constructing compound molecular functions, typically in combination with one or more regulatory component activity relations.
has effector activity
A 'has effector activity' B if A and B are GO molecular functions (GO_0003674), A 'has component activity' B and B is the effector (output function) of B. Each compound function has only one effector activity.
GOC:dos
David Osumi-Sutherland
<=
Primitive instance level timing relation between events
before or simultaneous with
Relation between occurrents, shares start and end boundaries.
David Osumi-Sutherland
RO:0002082
coincides_with
is_equal_to
uberon
simultaneous_with
simultaneous_with
t1 simultaneous_with t2 iff:= t1 before_or_simultaneous_with t2 and not (t1 before t2)
simultaneous with
simultaneous_with
Relation between occurrents, shares start and end boundaries.
Allen:is_equal_to
Relation between occurrents, shares start and end boundaries.
Allen:is_equal_to
https://orcid.org/0000-0002-6601-2165
David Osumi-Sutherland
RO:0002086
ends_after
X ends_after Y iff: end(Y) before_or_simultaneous_with end(X)
ends after
X immediately_preceded_by Y iff: end(X) simultaneous_with start(Y)
X immediately_preceded_by Y iff: end(X) simultaneous_with start(Y).
David Osumi-Sutherland
starts_at_end_of
A non-transitive temporal relation in which one process immediately precedes another process, such that there is no interval of time between the two processes[SIO:000251].
RO:0002087
directly preceded by
is directly preceded by
is immediately preceded by
starts_at_end_of
external
uberon
immediately_preceded_by
immediately_preceded_by
X immediately_preceded_by Y iff: end(X) simultaneous_with start(Y)
immediately preceded by
immediately_preceded_by
A non-transitive temporal relation in which one process immediately precedes another process, such that there is no interval of time between the two processes[SIO:000251].
SIO:000251
is immediately preceded by
SIO:000251
David Osumi-Sutherland
ends_at_start_of
meets
RO:0002090
external
immediately_precedes
immediately_precedes
X immediately_precedes_Y iff: end(X) simultaneous_with start(Y)
immediately precedes
immediately_precedes
Relation between a neuron and an anatomical structure that its soma is part of.
David Osumi-Sutherland
<http://purl.obolibrary.org/obo/BFO_0000051> some (
<http://purl.obolibrary.org/obo/GO_0043025> and <http://purl.obolibrary.org/obo/BFO_0000050> some ?Y)
has soma location
Every B cell[CL_0000236] has plasma membrane part some immunoglobulin complex[GO_0019814]
Holds between a cell c and a protein complex or protein p if and only if that cell has as part a plasma_membrane[GO:0005886], and that plasma membrane has p as part.
Alexander Diehl
Chris Mungall
Lindsay Cowell
<http://purl.obolibrary.org/obo/BFO_0000051> some (<http://purl.obolibrary.org/obo/GO_0005886> and <http://purl.obolibrary.org/obo/BFO_0000051> some ?Y)
has plasma membrane part
x overlaps y if and only if there exists some z such that x has part z and z part of y
BFO_0000051 some (BFO_0000050 some ?Y)
http://purl.obolibrary.org/obo/BFO_0000051 some (http://purl.obolibrary.org/obo/BFO_0000050 some ?Y)
RO:0002131
external
uberon
overlaps
overlaps
overlaps
overlaps
true
Relation between a 'neuron projection bundle' and a region in which one or more of its component neuron projections either synapses to targets or receives synaptic input.
T innervates some R
Expands_to: T has_fasciculating_neuron_projection that synapse_in some R.
David Osumi-Sutherland
<http://purl.obolibrary.org/obo/RO_0002132> some (<http://purl.obolibrary.org/obo/GO_0043005> that (<http://purl.obolibrary.org/obo/RO_0002131> some (<http://purl.obolibrary.org/obo/GO_0045202> that <http://purl.obolibrary.org/obo/BFO_0000050> some Y?)))
RO:0002134
uberon
innervates
innervates
http://code.google.com/p/obo-relations/issues/detail?id=6
innervates
innervates
X continuous_with Y if and only if X and Y share a fiat boundary.
David Osumi-Sutherland
connected to
The label for this relation was previously connected to. I relabeled this to "continuous with". The standard notion of connectedness does not imply shared boundaries - e.g. Glasgow connected_to Edinburgh via M8; my patella connected_to my femur (via patellar-femoral joint)
RO:0002150
uberon
continuous_with
continuous_with
continuous with
continuous_with
FMA:85972
lactation SubClassOf 'only in taxon' some 'Mammalia'
S only_in_taxon T iff: S SubClassOf in_taxon only T.
U only_in_taxon T: U is a feature found in only in organisms of species of taxon T. The feature cannot be found in an organism of any species outside of (not subsumed by) that taxon. Down-propagates in U hierarchy, up-propagates in T hierarchy (species taxonomy). Implies applicable_to_taxon.
x only in taxon y if and only if x is in taxon y, and there is no other organism z such that y!=z a and x is in taxon z.
The original intent was to treat this as a macro that expands to 'in taxon' only ?Y - however, this is not necessary if we instead have supplemental axioms that state that each pair of sibling tax have a disjointness axiom using the 'in taxon' property - e.g.
'in taxon' some Eukaryota DisjointWith 'in taxon' some Eubacteria
Chris Mungall
RO:0002160
never_outside_taxon
specific_to
specific_to_taxon
plant_ontology
protein
uberon
only_in_taxon
false
only_in_taxon
Down-propagates. The original name for this in the paper is 'specific_to'. Applicable to genes because some genes are lost in sub-species (strains) of a species.
only in taxon
only_in_taxon
S only_in_taxon T iff: S SubClassOf in_taxon only T.
S only_in_taxon T iff: S SubClassOf in_taxon only T.
PMID:20973947
U only_in_taxon T: U is a feature found in only in organisms of species of taxon T. The feature cannot be found in an organism of any species outside of (not subsumed by) that taxon. Down-propagates in U hierarchy, up-propagates in T hierarchy (species taxonomy). Implies applicable_to_taxon.
ROC:Waclaw
x is in taxon y if an only if y is an organism, and the relationship between x and y is one of: part of (reflexive), developmentally preceded by, derives from, secreted by, expressed.
Chris Mungall
Jennifer Deegan
RO:0002162
uberon
in_taxon
in_taxon
Connects a biological entity to its taxon of origin.
in taxon
A is spatially_disjoint_from B if and only if they have no parts in common
There are two ways to encode this as a shortcut relation. The other possibility to use an annotation assertion between two classes, and expand this to a disjointness axiom.
Chris Mungall
Note that it would be possible to use the relation to label the relationship between a near infinite number of structures - between the rings of saturn and my left earlobe. The intent is that this is used for parsiomoniously for disambiguation purposes - for example, between siblings in a jointly exhaustive pairwise disjointness hierarchy
BFO_0000051 exactly 0 (BFO_0000050 some ?Y)
spatially disjoint from
https://github.com/obophenotype/uberon/wiki/Part-disjointness-Design-Pattern
https://github.com/obophenotype/uberon/wiki/Part-disjointness-Design-Pattern
a 'toe distal phalanx bone' that is connected to a 'toe medial phalanx bone' (an interphalangeal joint *connects* these two bones).
Binary relationship: x connected_to y if and only if there exists some z such that z connects x and y in a ternary connected_to(x,y,z) relationship.
a is connected to b if and only if a and b are discrete structure, and there exists some connecting structure c, such that c connects a and b
RO:0002170
uberon
connected_to
connected_to
Connection does not imply overlaps.
connected to
connected to
https://github.com/obophenotype/uberon/wiki/Connectivity-Design-Pattern
https://github.com/obophenotype/uberon/wiki/Modeling-articulations-Design-Pattern
Binary relationship: x connected_to y if and only if there exists some z such that z connects x and y in a ternary connected_to(x,y,z) relationship.
Binary relationship: x connected_to y if and only if there exists some z such that z connects x and y in a ternary connected_to(x,y,z) relationship.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
The M8 connects Glasgow and Edinburgh
a 'toe distal phalanx bone' that is connected to a 'toe medial phalanx bone' (an interphalangeal joint *connects* these two bones).
Binary relationship: z connects x if and only if there exists some y such that z connects x and y in a ternary connected_to(x,y,z) relationship.
c connects a if and only if there exist some b such that a and b are similar parts of the same system, and c connects b, specifically, c connects a with b. When one structure connects two others it unites some aspect of the function or role they play within the system.
this is currently used for both structural relationships (such as between a valve and the chamber it connects) and abstract relationships (anatomical lines and the entities they connect)
RO:0002176
uberon
connects
connects
connects
connects
https://github.com/obophenotype/uberon/wiki/Connectivity-Design-Pattern
https://github.com/obophenotype/uberon/wiki/Modeling-articulations-Design-Pattern
https://github.com/obophenotype/uberon/wiki/Connectivity-Design-Pattern
https://github.com/obophenotype/uberon/wiki/Modeling-articulations-Design-Pattern
Binary relationship: z connects x if and only if there exists some y such that z connects x and y in a ternary connected_to(x,y,z) relationship.
Binary relationship: z connects x if and only if there exists some y such that z connects x and y in a ternary connected_to(x,y,z) relationship.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
a is attached to part of b if a is attached to b, or a is attached to some p, where p is part of b.
attached to part of (anatomical structure to anatomical structure)
RO:0002177
uberon
attaches_to_part_of
attaches_to_part_of
attached to part of
attaches_to_part_of
true
true
Relation between an arterial structure and another structure, where the arterial structure acts as a conduit channeling fluid, substance or energy.
relation between an artery and the structure is supplies with blood.
Individual ontologies should provide their own constraints on this abstract relation. For example, in the realm of anatomy this should hold between an artery and an anatomical structure
RO:0002178
arterial supply of
uberon
supplies
supplies
source: FMA
supplies
supplies
arterial supply of
FMA:86003
Relation between an collecting structure and another structure, where the collecting structure acts as a conduit channeling fluid, substance or energy away from the other structure.
Individual ontologies should provide their own constraints on this abstract relation. For example, in the realm of anatomy this should hold between a vein and an anatomical structure
RO:0002179
drains blood from
drains from
uberon
drains
drains
source: Wikipedia
drains
drains
w 'has component' p if w 'has part' p and w is such that it can be directly disassembled into into n parts p, p2, p3, ..., pn, where these parts are of similar type.
The definition of 'has component' is still under discussion. The challenge is in providing a definition that does not imply transitivity.
For use in recording has_part with a cardinality constraint, because OWL does not permit cardinality constraints to be used in combination with transitive object properties. In situations where you would want to say something like 'has part exactly 5 digit, you would instead use has_component exactly 5 digit.
RO:0002180
external
protein
uberon
has_component
false
has_component
has component
has component
x develops from y if and only if either (a) x directly develops from y or (b) there exists some z such that x directly develops from z and z develops from y
Chris Mungall
Chris Mungall
David Osumi-Sutherland
David Osumi-Sutherland
Melissa Haendel
Terry Meehan
Terry Meehan
RO:0002202
plant_ontology
uberon
develops_from
develops_from
This is the transitive form of the develops from relation
develops from
develops_from
inverse of develops from
Chris Mungall
David Osumi-Sutherland
Terry Meehan
RO:0002203
uberon
develops_into
develops_into
develops into
develops_into
Candidate definition: x directly_develops from y if and only if there exists some developmental process (GO:0032502) p such that x and y both participate in p, and x is the output of p and y is the input of p, and a substantial portion of the matter of x comes from y, and the start of x is coincident with or after the end of y.
Chris Mungall
David Osumi-Sutherland
has developmental precursor
FBbt
RO:0002207
uberon
directly_develops_from
directly_develops_from
TODO - add child relations from DOS
directly develops from
directly_develops_from
inverse of directly develops from
developmental precursor of
directly develops into
process(P1) regulates process(P2) iff: P1 results in the initiation or termination of P2 OR affects the frequency of its initiation or termination OR affects the magnitude or rate of output of P2.
process(P1) regulates process(P2) iff:Â P1 results in the initiation or termination of P2 OR affects the frequency of its initiation or termination OR affects the magnitude or rate of output of P2.
We use 'regulates' here to specifically imply control. However, many colloquial usages of the term correctly correspond to the weaker relation of 'causally upstream of or within' (aka influences). Consider relabeling to make things more explicit
Chris Mungall
David Hill
Tanya Berardini
GO
Regulation precludes parthood; the regulatory process may not be within the regulated process.
regulates (processual)
false
RO:0002211
external
regulates
regulates
regulates
regulates
Process(P1) negatively regulates process(P2) iff: P1 terminates P2, or P1 descreases the the frequency of initiation of P2 or the magnitude or rate of output of P2.
Chris Mungall
negatively regulates (process to process)
RO:0002212
external
negatively_regulates
negatively_regulates
negatively regulates
negatively regulates
Process(P1) postively regulates process(P2) iff: P1 initiates P2, or P1 increases the the frequency of initiation of P2 or the magnitude or rate of output of P2.
Chris Mungall
positively regulates (process to process)
RO:0002213
external
positively_regulates
positively_regulates
positively regulates
positively regulates
mechanosensory neuron capable of detection of mechanical stimulus involved in sensory perception (GO:0050974)
osteoclast SubClassOf 'capable of' some 'bone resorption'
A relation between a material entity (such as a cell) and a process, in which the material entity has the ability to carry out the process.
Chris Mungall
has function realized in
For compatibility with BFO, this relation has a shortcut definition in which the expression "capable of some P" expands to "bearer_of (some realized_by only P)".
RO_0000053 some (RO_0000054 only ?Y)
RO:0002215
external
protein
uberon
capable_of
false
capable_of
capable of
capable of
c stands in this relationship to p if and only if there exists some p' such that c is capable_of p', and p' is part_of p.
Chris Mungall
has function in
RO_0000053 some (RO_0000054 only (BFO_0000050 some ?Y))
RO:0002216
external
uberon
capable_of_part_of
capable_of_part_of
capable of part of
capable of part of
true
OBSOLETE x has participant y if and only if x realizes some active role that inheres in y
Chris Mungall
has agent
obsolete has active participant
true
x surrounded_by y if and only if (1) x is adjacent to y and for every region r that is adjacent to x, r overlaps y (2) the shared boundary between x and y occupies the majority of the outermost boundary of x
x surrounded_by y iff: x is adjacent to y and for every region r adjacent to x, r overlaps y
x surrounded_by y iff: x is adjacent to y and for every region r adjacent to x, r overlaps y.
Chris Mungall
RO:0002219
uberon
surrounded_by
surrounded_by
surrounded by
surrounded by
surrounded_by
x surrounded_by y iff: x is adjacent to y and for every region r adjacent to x, r overlaps y
x surrounded_by y iff: x is adjacent to y and for every region r adjacent to x, r overlaps y.
x surrounded_by y iff: x is adjacent to y and for every region r adjacent to x, r overlaps y.
https://orcid.org/0000-0002-6601-2165
A caterpillar walking on the surface of a leaf is adjacent_to the leaf, if one of the caterpillar appendages is touching the leaf. In contrast, a butterfly flying close to a flower is not considered adjacent, unless there are any touching parts.
The epidermis layer of a vertebrate is adjacent to the dermis.
The plasma membrane of a cell is adjacent to the cytoplasm, and also to the cell lumen which the cytoplasm occupies.
The skin of the forelimb is adjacent to the skin of the torso if these are considered anatomical subdivisions with a defined border. Otherwise a relation such as continuous_with would be used.
x adjacent to y if and only if x and y share a boundary.
x adjacent_to y iff: x and y share a boundary
x adjacent_to y iff: x and y share a boundary.
This relation acts as a join point with BSPO
Chris Mungall
RO:0002220
external
uberon
adjacent_to
adjacent_to
adjacent to
adjacent to
adjacent_to
A caterpillar walking on the surface of a leaf is adjacent_to the leaf, if one of the caterpillar appendages is touching the leaf. In contrast, a butterfly flying close to a flower is not considered adjacent, unless there are any touching parts.
inverse of surrounded by
inverse of surrounded_by
inverse of surrounded_by.
Chris Mungall
RO:0002221
uberon
surrounds
surrounds
surrounds
surrounds
inverse of surrounded_by
inverse of surrounded_by.
inverse of surrounded_by.
https://orcid.org/0000-0002-6601-2165
Chris Mungall
Do not use this relation directly. It is ended as a grouping for relations between occurrents involving the relative timing of their starts and ends.
https://docs.google.com/document/d/1kBv1ep_9g3sTR-SD3jqzFqhuwo9TPNF-l-9fUDbO6rM/edit?pli=1
RO:0002222
temporally_related_to
A relation that holds between two occurrents. This is a grouping relation that collects together all the Allen relations.
temporally related to
Relation between occurrents, shares a start boundary with.
inverse of starts with
Chris Mungall
Allen
RO:0002223
uberon
starts
starts
starts
starts
Relation between occurrents, shares a start boundary with.
Allen:starts
Relation between occurrents, shares a start boundary with.
Allen:starts
https://orcid.org/0000-0002-6601-2165
Every insulin receptor signaling pathway starts with the binding of a ligand to the insulin receptor
x starts with y if and only if x has part y and the time point at which x starts is equivalent to the time point at which y starts. Formally: α(y) = α(x) ∧ ω(y) < ω(x), where α is a function that maps a process to a start point, and ω is a function that maps a process to an end point.
Chris Mungall
started by
RO:0002224
external
uberon
starts_with
starts_with
starts with
starts with
x develops from part of y if and only if there exists some z such that x develops from z and z is part of y
Chris Mungall
RO:0002225
uberon
develops_from_part_of
develops_from_part_of
develops from part of
develops_from_part_of
x develops_in y if x is located in y whilst x is developing
Chris Mungall
EHDAA2
Jonathan Bard, EHDAA2
RO:0002226
uberon
develops_in
develops_in
This relation take from EHDAA2 - precise semantics yet to be defined
develops in
develops_in
Relation between occurrents, shares an end boundary with.
inverse of ends with
Chris Mungall
RO:0002229
finishes
uberon
ends
ends
ends
ends
Relation between occurrents, shares an end boundary with.
Allen:starts
ZFS:finishes
Relation between occurrents, shares an end boundary with.
Allen:starts
ZFS:finishes
https://orcid.org/0000-0002-6601-2165
x ends with y if and only if x has part y and the time point at which x ends is equivalent to the time point at which y ends. Formally: α(y) > α(x) ∧ ω(y) = ω(x), where α is a function that maps a process to a start point, and ω is a function that maps a process to an end point.
Chris Mungall
finished by
RO:0002230
external
uberon
ends_with
ends_with
ends with
ends with
x 'has starts location' y if and only if there exists some process z such that x 'starts with' z and z 'occurs in' y
Chris Mungall
starts with process that occurs in
RO:0002231
external
has_start_location
has_start_location
has start location
has start location
x 'has end location' y if and only if there exists some process z such that x 'ends with' z and z 'occurs in' y
Chris Mungall
ends with process that occurs in
RO:0002232
external
has_end_location
has_end_location
has end location
has end location
p has input c iff: p is a process, c is a material entity, c is a participant in p, c is present at the start of p, and the state of c is modified during p.
Chris Mungall
consumes
RO:0002233
external
has_input
has_input
has input
has input
p has output c iff c is a participant in p, c is present at the end of p, and c is not present at the beginning of p.
p has output c iff c is a participant in p, c is present at the end of p, and c is not present in the same state at the beginning of p.
Chris Mungall
produces
RO:0002234
external
has_output
has_output
has output
has output
Mammalian thymus has developmental contribution from some pharyngeal pouch 3; Mammalian thymus has developmental contribution from some pharyngeal pouch 4 [Kardong]
x has developmental contribution from y iff x has some part z such that z develops from y
Chris Mungall
RO:0002254
uberon
has_developmental_contribution_from
has_developmental_contribution_from
has developmental contribution from
has developmental contribution from
inverse of has developmental contribution from
Chris Mungall
RO:0002255
uberon
developmentally_contributes_to
developmentally_contributes_to
developmentally contributes to
developmentally_contributes_to
t1 developmentally_induced_by t2 if there is a process of organ induction (GO:0001759) with t1 and t2 as interacting participants. t2 causes t1 to change its fate from a precursor tissue type T to T', where T' develops_from T.
t1 induced_by t2 if there is a process of developmental induction (GO:0031128) with t1 and t2 as interacting participants. t2 causes t1 to change its fate from a precursor anatomical structure type T to T', where T' develops_from T
Chris Mungall
David Osumi-Sutherland
Melissa Haendel
induced by
Developmental Biology, Gilbert, 8th edition, figure 6.5(F)
GO:0001759
We place this under 'developmentally preceded by'. This placement should be examined in the context of reciprocal inductions[cjm]
RO:0002256
uberon
developmentally_induced_by
developmentally_induced_by
sources for developmentally_induced_by relationships in Uberon: Developmental Biology, Gilbert, 8th edition, figure 6.5(F)
developmentally induced by
developmentally_induced_by
t1 developmentally_induced_by t2 if there is a process of organ induction (GO:0001759) with t1 and t2 as interacting participants. t2 causes t1 to change its fate from a precursor tissue type T to T', where T' develops_from T.
GO:0001759
Inverse of developmentally induced by
Chris Mungall
developmentally induces
Candidate definition: x developmentally related to y if and only if there exists some developmental process (GO:0032502) p such that x and y both participates in p, and x is the output of p and y is the input of p
X developmentally related to y if and only if there exists some developmental process (GO:0032502) p such that x and y both participates in p, and x is the output of p and y is the input of p.
false
Chris Mungall
In general you should not use this relation to make assertions - use one of the more specific relations below this one
Laurel_Cooper
2013-06-27T13:16:56Z
RO:0002258
plant_ontology
uberon
developmentally_preceded_by
developmentally_preceded_by
This relation groups together various other developmental relations. It is fairly generic, encompassing induction, developmental contribution and direct and transitive develops from
developmentally preceded by
developmentally preceded by
developmentally_preceded_by
X developmentally related to y if and only if there exists some developmental process (GO:0032502) p such that x and y both participates in p, and x is the output of p and y is the input of p.
RO:0002258
A faulty traffic light (material entity) whose malfunctioning (a process) is causally upstream of a traffic collision (a process): the traffic light acts upstream of the collision.
c acts upstream of p if and only if c enables some f that is involved in p' and p' occurs chronologically before p, is not part of p, and affects the execution of p. c is a material entity and f, p, p' are processes.
acts upstream of
A gene product that has some activity, where that activity may be a part of a pathway or upstream of the pathway.
c acts upstream of or within p if c is enables f, and f is causally upstream of or within p. c is a material entity and p is an process.
affects
acts upstream of or within
x developmentally replaces y if and only if there is some developmental process that causes x to move or to cease to exist, and for the site that was occupied by x to become occupied by y, where y either comes into existence in this site or moves to this site from somewhere else
This relation is intended for cases such as when we have a bone element replacing its cartilage element precursor. Currently most AOs represent this using 'develops from'. We need to decide whether 'develops from' will be generic and encompass replacement, or whether we need a new name for a generic relation that encompasses replacement and development-via-cell-lineage
Chris Mungall
replaces
RO:0002285
uberon
developmentally_replaces
developmentally_replaces
developmentally replaces
developmentally_replaces
Inverse of developmentally preceded by
Chris Mungall
RO:0002286
developmentally_succeeded_by
developmentally succeeded by
'hypopharyngeal eminence' SubClassOf 'part of precursor of' some tongue
Chris Mungall
part of developmental precursor of
p results in the developmental progression of s iff p is a developmental process and s is an anatomical structure and p causes s to undergo a change in state at some point along its natural developmental cycle (this cycle starts with its formation, through the mature structure, and ends with its loss).
This property and its subproperties are being used primarily for the definition of GO developmental processes. The property hierarchy mirrors the core GO hierarchy. In future we may be able to make do with a more minimal set of properties, but due to the way GO is currently structured we require highly specific relations to avoid incorrect entailments. To avoid this, the corresponding genus terms in GO should be declared mutually disjoint.
Chris Mungall
RO:0002295
external
results_in_developmental_progression_of
results_in_developmental_progression_of
results in developmental progression of
results in developmental progression of
every flower development (GO:0009908) results in development of some flower (PO:0009046)
p 'results in development of' c if and only if p is a developmental process and p results in the state of c changing from its initial state as a primordium or anlage through its mature state and to its final state.
Chris Mungall
http://www.geneontology.org/GO.doc.development.shtml
RO:0002296
external
results_in_development_of
results_in_development_of
results in development of
results in development of
an annotation of gene X to anatomical structure formation with results_in_formation_of UBERON:0000007 (pituitary gland) means that at the beginning of the process a pituitary gland does not exist and at the end of the process a pituitary gland exists.
every "endocardial cushion formation" (GO:0003272) results_in_formation_of some "endocardial cushion" (UBERON:0002062)
Chris Mungall
GOC:mtg_berkeley_2013
RO:0002297
external
results_in_formation_of
results_in_formation_of
results in formation of
results in formation of
an annotation of gene X to cell morphogenesis with results_in_morphogenesis_of CL:0000540 (neuron) means that at the end of the process an input neuron has attained its shape.
tongue morphogenesis (GO:0043587) results in morphogenesis of tongue (UBERON:0001723)
The relationship that links an entity with the process that results in the formation and shaping of that entity over time from an immature to a mature state.
Chris Mungall
GOC:mtg_berkeley_2013
RO:0002298
external
results_in_morphogenesis_of
results_in_morphogenesis_of
results in morphogenesis of
results in morphogenesis of
an annotation of gene X to cell maturation with results_in_maturation_of CL:0000057 (fibroblast) means that the fibroblast is mature at the end of the process
bone maturation (GO:0070977) results_in_maturation_of bone (UBERON:0001474)
The relationship that links an entity with a process that results in the progression of the entity over time that is independent of changes in it's shape and results in an end point state of that entity.
Chris Mungall
GOC:mtg_berkeley_2013
RO:0002299
external
results_in_maturation_of
results_in_maturation_of
results in maturation of
results in maturation of
Hydrozoa (NCBITaxon_6074) SubClassOf 'has habitat' some 'Hydrozoa habitat'
where
'Hydrozoa habitat' SubClassOf overlaps some ('marine environment' (ENVO_00000569) and 'freshwater environment' (ENVO_01000306) and 'wetland' (ENVO_00000043)) and 'has part' some (freshwater (ENVO_00002011) or 'sea water' (ENVO_00002149)) -- http://eol.org/pages/1795/overview
x 'has habitat' y if and only if: x is an organism, y is a habitat, and y can sustain and allow the growth of a population of xs.
Pier Buttigieg
adapted for living in
A population of xs will possess adaptations (either evolved naturally or via artifical selection) which permit it to exist and grow in y.
has habitat
has habitat
cjm
RO:0002304
external
causally_upstream_of,_positive_effect
causally_upstream_of,_positive_effect
holds between x and y if and only if x is causally upstream of y and the progression of x increases the frequency, rate or extent of y
causally upstream of, positive effect
cjm
RO:0002305
external
causally_upstream_of,_negative_effect
causally_upstream_of,_negative_effect
holds between x and y if and only if x is causally upstream of y and the progression of x decreases the frequency, rate or extent of y
causally upstream of, negative effect
Holds between p and c when p is a localization process (localization covers maintenance of localization as well as its establishment) and the outcome of this process is to regulate the localization of c.
Chris Mungall
regulates localization of
RO:0002313
external
transports_or_maintains_localization_of
transports_or_maintains_localization_of
transports or maintains localization of
transports or maintains localization of
q characteristic of part of w if and only if there exists some p such that q inheres in p and p part of w.
Because part_of is transitive, inheres in is a sub-relation of characteristic of part of
Chris Mungall
inheres in part of
characteristic of part of
true
an annotation of gene X to cell differentiation with results_in_maturation_of CL:0000057 (fibroblast) means that at the end of the process the input cell that did not have features of a fibroblast, now has the features of a fibroblast.
The relationship that links a specified entity with the process that results in an unspecified entity acquiring the features and characteristics of the specified entity
Chris Mungall
GOC:mtg_berkeley_2013
RO:0002315
external
results_in_acquisition_of_features_of
results_in_acquisition_of_features_of
results in acquisition of features of
results in acquisition of features of
A relationship that holds via some environmental process
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, all involving the process of evolution.
evolutionarily related to
A relationship that is mediated in some way by the environment or environmental feature (ENVO:00002297)
Awaiting class for domain/range constraint, see: https://github.com/OBOFoundry/Experimental-OBO-Core/issues/6
Chris Mungall
Do not use this relation directly. It is intended as a grouping for a diverse set of relations, all involving ecological interactions
ecologically related to
A mereological relationship or a topological relationship
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, all involving parthood or connectivity relationships
RO:0002323
mereotopologically_related_to
mereotopologically related to
A relationship that holds between entities participating in some developmental process (GO:0032502)
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, all involving organismal development
RO:0002324
developmentally_related_to
developmentally related to
a particular instances of akt-2 enables some instance of protein kinase activity
Chris Mungall
catalyzes
executes
has
is catalyzing
is executing
This relation differs from the parent relation 'capable of' in that the parent is weaker and only expresses a capability that may not be actually realized, whereas this relation is always realized.
This relation is currently used experimentally by the Gene Ontology Consortium. It may not be stable and may be obsoleted at some future time.
enables
A grouping relationship for any relationship directly involving a function, or that holds because of a function of one of the related entities.
Chris Mungall
This is a grouping relation that collects relations used for the purpose of connecting structure and function
RO:0002328
uberon
functionally_related_to
functionally_related_to
functionally related to
functionally related to
this relation holds between c and p when c is part of some c', and c' is capable of p.
Chris Mungall
false
RO:0002329
uberon
part_of_structure_that_is_capable_of
part_of_structure_that_is_capable_of
part of structure that is capable of
part of structure that is capable of
true
c involved_in p if and only if c enables some process p', and p' is part of p
Chris Mungall
actively involved in
enables part of
involved in
inverse of enables
Chris Mungall
enabled by
inverse of regulates
Chris Mungall
regulated by (processual)
RO:0002334
external
regulated_by
regulated_by
regulated by
regulated by
inverse of negatively regulates
Chris Mungall
RO:0002335
external
negatively_regulated_by
negatively_regulated_by
negatively regulated by
negatively regulated by
inverse of positively regulates
Chris Mungall
RO:0002336
external
positively_regulated_by
positively_regulated_by
positively regulated by
positively regulated by
A relationship that holds via some process of localization
Chris Mungall
Do not use this relation directly. It is a grouping relation.
related via localization to
This relationship holds between p and l when p is a transport or localization process in which the outcome is to move some cargo c from some initial location l to some destination.
Chris Mungall
RO:0002338
external
has_target_start_location
has_target_start_location
has target start location
has target start location
This relationship holds between p and l when p is a transport or localization process in which the outcome is to move some cargo c from a an initial location to some destination l.
Chris Mungall
RO:0002339
external
has_target_end_location
has_target_end_location
has target end location
has target end location
Holds between p and l when p is a transportation or localization process and the outcome of this process is to move c from one location to another, and the route taken by c follows a path that is aligned_with l
Chris Mungall
RO:0002341
external
results_in_transport_along
results_in_transport_along
results in transport along
results in transport along
'pollen tube growth' results_in growth_of some 'pollen tube'
Chris Mungall
RO:0002343
external
results_in_growth_of
results_in_growth_of
results in growth of
results in growth of
'mitochondrial transport' results_in_transport_to_from_or_in some mitochondrion (GO:0005739)
Chris Mungall
RO:0002344
external
results_in_transport_to_from_or_in
results_in_transport_to_from_or_in
results in transport to from or in
results in transport to from or in
An organism that is a member of a population of organisms
is member of is a mereological relation between a item and a collection.
is member of
member part of
SIO
RO:0002350
uberon
member_of
member_of
member of
member of
has member is a mereological relation between a collection and an item.
SIO
RO:0002351
uberon
has_member
has_member
has member
has member
inverse of has input
Chris Mungall
RO:0002352
uberon
input_of
input_of
input of
input of
inverse of has output
Chris Mungall
RO:0002353
external
protein
uberon
output_of
false
output_of
output of
output of
Chris Mungall
formed as result of
a is attached to b if and only if a and b are discrete objects or object parts, and there are physical connections between a and b such that a force pulling a will move b, or a force pulling b will move a
Chris Mungall
attached to (anatomical structure to anatomical structure)
RO:0002371
uberon
attaches_to
attaches_to
attached to
attaches_to
m has_muscle_insertion s iff m is attaches_to s, and it is the case that when m contracts, s moves. Insertions are usually connections of muscle via tendon to bone.
m has_muscle_insertion s iff m is attaches_to s, and it is the case that when m contracts, s moves. Insertions are usually connections of muscle via tendon to bone.
Chris Mungall
Wikipedia:Insertion_(anatomy)
RO:0002373
uberon
has_muscle_insertion
has_muscle_insertion
The insertion is the point of attachment of a muscle that moves the most when the muscle shortens, or the most distal end of limb muscles
has muscle insertion
has_muscle_insertion
We need to import uberon muscle into RO to use as a stricter domain constraint
m has_muscle_insertion s iff m is attaches_to s, and it is the case that when m contracts, s moves. Insertions are usually connections of muscle via tendon to bone.
m has_muscle_insertion s iff m is attaches_to s, and it is the case that when m contracts, s moves. Insertions are usually connections of muscle via tendon to bone.
Wikipedia:Insertion_(anatomy)
A relationship that holds between two material entities in a system of connected structures, where the branching relationship holds based on properties of the connecting network.
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, all involving branching relationships
This relation can be used for geographic features (e.g. rivers) as well as anatomical structures (plant branches and roots, leaf veins, animal veins, arteries, nerves)
in branching relationship with
https://github.com/obophenotype/uberon/issues/170
Deschutes River tributary_of Columbia River
inferior epigastric vein tributary_of external iliac vein
x tributary_of y if and only if x a channel for the flow of a substance into y, where y is larger than x. If x and y are hydrographic features, then y is the main stem of a river, or a lake or bay, but not the sea or ocean. If x and y are anatomical, then y is a vein.
Chris Mungall
drains into
drains to
tributary channel of
http://en.wikipedia.org/wiki/Tributary
http://www.medindia.net/glossary/venous_tributary.htm
This relation can be used for geographic features (e.g. rivers) as well as anatomical structures (veins, arteries)
RO:0002376
uberon
drains into
tributary_of
tributary_of
tributary of
tributary_of
http://en.wikipedia.org/wiki/Tributary
drains into
dbpowl:drainsTo
A lump of clay and a statue
x spatially_coextensive_with y if and inly if x and y have the same location
Chris Mungall
This relation is added for formal completeness. It is unlikely to be used in many practical scenarios
spatially coextensive with
In the tree T depicted in https://oborel.github.io/obo-relations/branching_part_of.png, B1 is a (direct) branching part of T. B1-1, B1-2, and B1-3 are also branching parts of T, but these are considered indirect branching parts as they do not directly connect to the main stem S
x is a branching part of y if and only if x is part of y and x is connected directly or indirectly to the main stem of y
we need to check if FMA branch_of implies part_of. the relation we intend to use here should - for example, see vestibulocochlear nerve
Chris Mungall
RO:0002380
uberon
branching_part_of
branching_part_of
branching part of
branching_part_of
FMA:85994
x has developmental potential involving y iff x is capable of a developmental process with output y. y may be the successor of x, or may be a different structure in the vicinity (as for example in the case of developmental induction).
Chris Mungall
RO:0002384
has_developmental_potential_involving
has developmental potential involving
x has potential to developmentrally contribute to y iff x developmentally contributes to y or x is capable of developmentally contributing to y
x has potential to developmentrally contribute to y iff x developmentally contributes to y or x is capable of developmentally contributing to y
x has potential to developmentrally contribute to y iff x developmentally contributes to y or x is capable of developmentally contributing to y.
Chris Mungall
RO:0002385
uberon
has_potential_to_developmentally_contribute_to
has_potential_to_developmentally_contribute_to
has potential to developmentally contribute to
has potential to developmentally contribute to
x has potential to developmentally induce y iff x developmentally induces y or x is capable of developmentally inducing y
Chris Mungall
has potential to developmentally induce
x has the potential to develop into y iff x develops into y or if x is capable of developing into y
x has the potential to develop into y iff x develops into y or if x is capable of developing into y
x has the potential to develop into y iff x develops into y or if x is capable of developing into y.
Chris Mungall
RO:0002387
uberon
has_potential_to_develop_into
has_potential_to_develop_into
has potential to develop into
has potential to develop into
x has potential to directly develop into y iff x directly develops into y or x is capable of directly developing into y
x has potential to directly develop into y iff x directly develops into y or x is capable of directly developing into y.
Chris Mungall
RO:0002388
uberon
has_potential_to_directly_develop_into
has_potential_to_directly_develop_into
has potential to directly develop into
has potential to directly develop into
inverse of upstream of
Chris Mungall
RO:0002404
external
causally_downstream_of
causally_downstream_of
causally downstream of
causally downstream of
Chris Mungall
RO:0002405
external
immediately_causally_downstream_of
immediately_causally_downstream_of
immediately causally downstream of
immediately causally downstream of
This relation groups causal relations between material entities and causal relations between processes
This branch of the ontology deals with causal relations between entities. It is divided into two branches: causal relations between occurrents/processes, and causal relations between material entities. We take an 'activity flow-centric approach', with the former as primary, and define causal relations between material entities in terms of causal relations between occurrents.
To define causal relations in an activity-flow type network, we make use of 3 primitives:
* Temporal: how do the intervals of the two occurrents relate?
* Is the causal relation regulatory?
* Is the influence positive or negative
The first of these can be formalized in terms of the Allen Interval Algebra. Informally, the 3 bins we care about are 'direct', 'indirect' or overlapping. Note that all causal relations should be classified under a RO temporal relation (see the branch under 'temporally related to'). Note that all causal relations are temporal, but not all temporal relations are causal. Two occurrents can be related in time without being causally connected. We take causal influence to be primitive, elucidated as being such that has the upstream changed, some qualities of the donwstream would necessarily be modified.
For the second, we consider a relationship to be regulatory if the system in which the activities occur is capable of altering the relationship to achieve some objective. This could include changing the rate of production of a molecule.
For the third, we consider the effect of the upstream process on the output(s) of the downstream process. If the level of output is increased, or the rate of production of the output is increased, then the direction is increased. Direction can be positive, negative or neutral or capable of either direction. Two positives in succession yield a positive, two negatives in succession yield a positive, otherwise the default assumption is that the net effect is canceled and the influence is neutral.
Each of these 3 primitives can be composed to yield a cross-product of different relation types.
Chris Mungall
Do not use this relation directly. It is intended as a grouping for a diverse set of relations, all involving cause and effect.
RO:0002410
causally_related_to
causally related to
p is causally upstream of q if and only if p precedes q and p and q are linked in a causal chain
Chris Mungall
RO:0002411
external
causally_upstream_of
causally_upstream_of
causally upstream of
causally upstream of
p is immediately causally upstream of q iff both (a) p immediately precedes q and (b) p is causally upstream of q. In addition, the output of p must be an input of q.
Chris Mungall
RO:0002412
external
immediately_causally_upstream_of
immediately_causally_upstream_of
immediately causally upstream of
immediately causally upstream of
p 'causally upstream or within' q iff (1) the end of p is before the end of q and (2) the execution of p exerts some causal influence over the outputs of q; i.e. if p was abolished or the outputs of p were to be modified, this would necessarily affect q.
We would like to make this disjoint with 'preceded by', but this is prohibited in OWL2
Chris Mungall
influences (processual)
RO:0002418
external
affects
causally_upstream_of_or_within
causally_upstream_of_or_within
causally upstream of or within
inverse of causally upstream of or within
Chris Mungall
RO:0002427
external
causally_downstream_of_or_within
causally_downstream_of_or_within
causally downstream of or within
c involved in regulation of p if c is involved in some p' and p' regulates some p
Chris Mungall
involved in regulation of
c involved in regulation of p if c is involved in some p' and p' positively regulates some p
Chris Mungall
involved in positive regulation of
c involved in regulation of p if c is involved in some p' and p' negatively regulates some p
Chris Mungall
involved in negative regulation of
c involved in or regulates p if and only if either (i) c is involved in p or (ii) c is involved in regulation of p
OWL does not allow defining object properties via a Union
Chris Mungall
involved in or reguates
involved in or involved in regulation of
A protein that enables activity in a cytosol.
c executes activity in d if and only if c enables p and p occurs_in d. Assuming no action at a distance by gene products, if a gene product enables (is capable of) a process that occurs in some structure, it must have at least some part in that structure.
Chris Mungall
executes activity in
enables activity in
is active in
true
c executes activity in d if and only if c enables p and p occurs_in d. Assuming no action at a distance by gene products, if a gene product enables (is capable of) a process that occurs in some structure, it must have at least some part in that structure.
GOC:cjm
GOC:dos
p contributes to morphology of w if and only if a change in the morphology of p entails a change in the morphology of w. Examples: every skull contributes to morphology of the head which it is a part of. Counter-example: nuclei do not generally contribute to the morphology of the cell they are part of, as they are buffered by cytoplasm.
Chris Mungall
RO:0002433
uberon
contributes_to_morphology_of
contributes_to_morphology_of
contributes to morphology of
A relationship that holds between two entities in which the processes executed by the two entities are causally connected.
Considering relabeling as 'pairwise interacts with'
This relation and all sub-relations can be applied to either (1) pairs of entities that are interacting at any moment of time (2) populations or species of entity whose members have the disposition to interact (3) classes whose members have the disposition to interact.
Chris Mungall
Note that this relationship type, and sub-relationship types may be redundant with process terms from other ontologies. For example, the symbiotic relationship hierarchy parallels GO. The relations are provided as a convenient shortcut. Consider using the more expressive processual form to capture your data. In the future, these relations will be linked to their cognate processes through rules.
in pairwise interaction with
interacts with
http://purl.obolibrary.org/obo/MI_0914
http://purl.obolibrary.org/obo/ro/docs/interaction-relations/
http://purl.obolibrary.org/obo/MI_0914
https://github.com/oborel/obo-relations/wiki/InteractionRelations
An interaction relationship in which the two partners are molecular entities that directly physically interact with each other for example via a stable binding interaction or a brief interaction during which one modifies the other.
Chris Mungall
binds
molecularly binds with
molecularly interacts with
http://purl.obolibrary.org/obo/MI_0915
http://purl.obolibrary.org/obo/MI_0915
An interaction relationship in which at least one of the partners is an organism and the other is either an organism or an abiotic entity with which the organism interacts.
Chris Mungall
interacts with on organism level
biotically interacts with
http://eol.org/schema/terms/interactsWith
An interaction relationship in which the partners are related via a feeding relationship.
Chris Mungall
trophically interacts with
A wasp killing a Monarch larva in order to feed to offspring [http://www.inaturalist.org/observations/2942824]
Baleen whale preys on krill
An interaction relationship involving a predation process, where the subject kills the target in order to eat it or to feed to siblings, offspring or group members
Chris Mungall
Jorrit Poelen
Katja Shulz
is subject of predation interaction with
preys upon
preys on
http://eol.org/schema/terms/preysUpon
http://www.inaturalist.org/observations/2942824
A biotic interaction in which the two organisms live together in more or less intimate association.
Chris Mungall
http://www.ncbi.nlm.nih.gov/pubmed/19278549
We follow GO and PAMGO in using 'symbiosis' as the broad term encompassing mutualism through parasitism
symbiotically interacts with
An interaction relationship between two organisms living together in more or less intimate association in a relationship in which association is disadvantageous or destructive to one of the organisms (GO).
Chris Mungall
http://www.ncbi.nlm.nih.gov/pubmed/19278549
This relation groups a pair of inverse relations, parasite of and parasitized by
interacts with via parasite-host interaction
Pediculus humanus capitis parasite of human
Chris Mungall
parasitizes
direct parasite of
parasite of
http://eol.org/schema/terms/parasitizes
Chris Mungall
has parasite
parasitised by
directly parasitized by
parasitized by
http://eol.org/schema/terms/hasParasite
Porifiera attaches to substrate
A biotic interaction relationship in which one partner is an organism and the other partner is inorganic. For example, the relationship between a sponge and the substrate to which is it anchored.
Chris Mungall
semibiotically interacts with
participates in a abiotic-biotic interaction with
Axiomatization to GO to be added later
Chris Mungall
An interaction relation between x and y in which x catalyzes a reaction in which a phosphate group is added to y.
phosphorylates
The entity A, immediately upstream of the entity B, has an activity that regulates an activity performed by B. For example, A and B may be gene products and binding of B by A regulates the kinase activity of B.
A and B can be physically interacting but not necessarily. Immediately upstream means there are no intermediate entity between A and B.
Chris Mungall
Vasundra Touré
molecularly controls
directly regulates activity of
The entity A, immediately upstream of the entity B, has an activity that negatively regulates an activity performed by B.
For example, A and B may be gene products and binding of B by A negatively regulates the kinase activity of B.
Chris Mungall
Vasundra Touré
directly inhibits
molecularly decreases activity of
directly negatively regulates activity of
The entity A, immediately upstream of the entity B, has an activity that positively regulates an activity performed by B.
For example, A and B may be gene products and binding of B by A positively regulates the kinase activity of B.
Chris Mungall
Vasundra Touré
directly activates
molecularly increases activity of
directly positively regulates activity of
Chris Mungall
The term host is usually used for the larger (macro) of the two members of a symbiosis (GO)
host of
X 'has host' y if and only if: x is an organism, y is an organism, and x can live on the surface of or within the body of y
Chris Mungall
has host
http://eol.org/schema/terms/hasHost
Chris Mungall
Intended to be used when the target of the relation is not itself consumed, and does not have integral parts consumed, but provided nutrients in some other fashion.
acquires nutrients from
inverse of preys on
Chris Mungall
has predator
is target of predation interaction with
preyed upon by
http://eol.org/schema/terms/HasPredator
http://polytraits.lifewatchgreece.eu/terms/PRED
Chris Mungall
This property or its subproperties is not to be used directly. These properties exist as helper properties that are used to support OWL reasoning.
helper property (not for use in curation)
Chris Mungall
provides nutrients for
Chris Mungall
is subject of eating interaction with
eats
Chris Mungall
eaten by
is target of eating interaction with
is eaten by
'otolith organ' SubClassOf 'composed primarily of' some 'calcium carbonate'
x composed_primarily_of y if and only if more than half of the mass of x is made from y or units of the same type as y.
x composed_primarily_of y iff: more than half of the mass of x is made from parts of y
x composed_primarily_of y iff: more than half of the mass of x is made from parts of y.
Chris Mungall
RO:0002473
uberon
RO:0002473
composed_primarily_of
composed_primarily_of
composed primarily of
p has part that occurs in c if and only if there exists some p1, such that p has_part p1, and p1 occurs in c.
Chris Mungall
has part that occurs in
true
Chris Mungall
is kinase activity
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, typically connecting an anatomical entity to a biological process or developmental stage.
relation between physical entity and a process or stage
Relation between continuant c and occurrent s, such that every instance of c comes into existing during some s.
x existence starts during y if and only if the time point at which x starts is after or equivalent to the time point at which y starts and before or equivalent to the time point at which y ends. Formally: x existence starts during y iff α(x) >= α(y) & α(x) <= ω(y).
Chris Mungall
RO:0002488
begins_to_exist_during
uberon
RO:0002488
existence_starts_during
existence_starts_during
existence starts during
Relation between continuant c and occurrent s, such that every instance of c comes into existing during some s.
Relation between continuant c and occurrent s, such that every instance of c comes into existing during some s.
https://orcid.org/0000-0002-6601-2165
Relation between continuant and occurrent, such that c comes into existence at the start of p.
x starts ends with y if and only if the time point at which x starts is equivalent to the time point at which y starts. Formally: x existence starts with y iff α(x) = α(y).
Chris Mungall
RO:0002489
uberon
existence_starts_with
existence_starts_with
existence starts with
Relation between continuant and occurrent, such that c comes into existence at the start of p.
Relation between continuant and occurrent, such that c comes into existence at the start of p.
https://orcid.org/0000-0002-6601-2165
x existence overlaps y if and only if either (a) the start of x is part of y or (b) the end of x is part of y. Formally: x existence starts and ends during y iff (α(x) >= α(y) & α(x) <= ω(y)) OR (ω(x) <= ω(y) & ω(x) >= α(y))
Chris Mungall
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence overlaps
x exists during y if and only if: 1) the time point at which x begins to exist is after or equal to the time point at which y begins and 2) the time point at which x ceases to exist is before or equal to the point at which y ends. Formally: x existence starts and ends during y iff α(x) >= α(y) & α(x) <= ω(y) & ω(x) <= ω(y) & ω(x) >= α(y)
Chris Mungall
RO:0002491
exists during
uberon
existence_starts_and_ends_during
existence_starts_and_ends_during
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence starts and ends during
Relation between continuant c and occurrent s, such that every instance of c ceases to exist during some s, if it does not die prematurely.
x existence ends during y if and only if the time point at which x ends is before or equivalent to the time point at which y ends and after or equivalent to the point at which y starts. Formally: x existence ends during y iff ω(x) <= ω(y) and ω(x) >= α(y).
Chris Mungall
RO:0002492
ceases_to_exist_during
uberon
RO:0002492
existence_ends_during
existence_ends_during
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence ends during
Relation between continuant c and occurrent s, such that every instance of c ceases to exist during some s, if it does not die prematurely.
Relation between continuant c and occurrent s, such that every instance of c ceases to exist during some s, if it does not die prematurely.
https://orcid.org/0000-0002-6601-2165
Relation between continuant and occurrent, such that c ceases to exist at the end of p.
x existence ends with y if and only if the time point at which x ends is equivalent to the time point at which y ends. Formally: x existence ends with y iff ω(x) = ω(y).
Chris Mungall
RO:0002493
uberon
existence_ends_with
existence_ends_with
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence ends with
Relation between continuant and occurrent, such that c ceases to exist at the end of p.
Relation between continuant and occurrent, such that c ceases to exist at the end of p.
https://orcid.org/0000-0002-6601-2165
x transformation of y if x is the immediate transformation of y, or is linked to y through a chain of transformation relationships
Chris Mungall
RO:0002494
transforms from
uberon
transformation_of
transformation_of
transformation of
transforms from
SIO:000657
x immediate transformation of y iff x immediately succeeds y temporally at a time boundary t, and all of the matter present in x at t is present in y at t, and all the matter in y at t is present in x at t
Chris Mungall
RO:0002495
direct_transformation_of
immediately transforms from
uberon
immediate_transformation_of
immediate_transformation_of
immediate transformation of
direct_transformation_of
direct_transformation_of
https://orcid.org/0000-0002-6601-2165
immediately transforms from
SIO:000658
x existence starts during or after y if and only if the time point at which x starts is after or equivalent to the time point at which y starts. Formally: x existence starts during or after y iff α (x) >= α (y).
Chris Mungall
RO:0002496
uberon
existence_starts_during_or_after
existence_starts_during_or_after
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence starts during or after
x existence ends during or before y if and only if the time point at which x ends is before or equivalent to the time point at which y ends.
Chris Mungall
RO:0002497
uberon
existence_ends_during_or_before
existence_ends_during_or_before
The relations here were created based on work originally by Fabian Neuhaus and David Osumi-Sutherland. The work has not yet been vetted and errors in definitions may have occurred during transcription.
existence ends during or before
A relationship between a material entity and a process where the material entity has some causal role that influences the process
RO:0002500
causal_agent_in_process
causal agent in process
p is causally related to q if and only if p or any part of p and q or any part of q are linked by a chain of events where each event pair is one of direct activation or direct inhibition. p may be upstream, downstream, part of or a container of q.
Chris Mungall
Do not use this relation directly. It is intended as a grouping for a diverse set of relations, all involving cause and effect.
RO:0002501
causal_relation_between_processes
causal relation between processes
Chris Mungall
depends on
The intent is that the process branch of the causal property hierarchy is primary (causal relations hold between occurrents/processes), and that the material branch is defined in terms of the process branch
Chris Mungall
Do not use this relation directly. It is intended as a grouping for a diverse set of relations, all involving cause and effect.
causal relation between entities
A coral reef environment is determined by a particular coral reef
s determined by f if and only if s is a type of system, and f is a material entity that is part of s, such that f exerts a strong causal influence on the functioning of s, and the removal of f would cause the collapse of s.
The label for this relation is probably too general for its restricted use, where the domain is a system. It may be relabeled in future
Chris Mungall
determined by (system to material entity)
Chris Mungall
Pier Buttigieg
determined by
inverse of determined by
Chris Mungall
determines (material entity to system)
determines
s 'determined by part of' w if and only if there exists some f such that (1) s 'determined by' f and (2) f part_of w, or f=w.
Chris Mungall
determined by part of
true
Forelimb SubClassOf has_skeleton some 'Forelimb skeleton'
A relation between a segment or subdivision of an organism and the maximal subdivision of material entities that provides structural support for that segment or subdivision.
A relation between a subdivision of an organism and the single subdivision of skeleton that provides structural support for that subdivision.
Chris Mungall
has supporting framework
The skeleton of a structure may be a true skeleton (for example, the bony skeleton of a hand) or any kind of support framework (the hydrostatic skeleton of a sea star, the exoskeleton of an insect, the cytoskeleton of a cell).
RO:0002551
uberon
has sekeletal support
has supporting framework
has_skeleton
has_skeleton
has skeleton
This should be to a more restricted class, but not the Uberon class may be too restricted since it is a composition-based definition of skeleton rather than functional.
A relation between a subdivision of an organism and the single subdivision of skeleton that provides structural support for that subdivision.
A relation between a subdivision of an organism and the single subdivision of skeleton that provides structural support for that subdivision.
http://orcid.org/0000-0002-6601-2165
p results in the end of s if p results in a change of state in s whereby s either ceases to exist, or s becomes functionally impaired or s has its fate committed such that it is put on a path to be degraded.
Chris Mungall
results in ending of
x is a hyperparasite of y iff x is a parasite of a parasite of the target organism y
Note that parasite-of is a diret relationship, so hyperparasite-of is not considered a sub-relation, even though hyperparasitism can be considered a form of parasitism
Chris Mungall
http://eol.org/schema/terms/hyperparasitoidOf
https://en.wikipedia.org/wiki/Hyperparasite
hyperparasitoid of
epiparasite of
hyperparasite of
inverse of hyperparasite of
Chris Mungall
has epiparasite
has hyperparasite
hyperparasitoidized by
hyperparasitized by
Chris Mungall
causally influenced by (entity-centric)
causally influenced by
Chris Mungall
interaction relation helper property
http://purl.obolibrary.org/obo/ro/docs/interaction-relations/
https://github.com/oborel/obo-relations/wiki/InteractionRelations
Chris Mungall
molecular interaction relation helper property
The entity or characteristic A is causally upstream of the entity or characteristic B, A having an effect on B. An entity corresponds to any biological type of entity as long as a mass is measurable. A characteristic corresponds to a particular specificity of an entity (e.g., phenotype, shape, size).
Chris Mungall
Vasundra Touré
causally influences (entity-centric)
causally influences
A relation that holds between elements of a musculoskeletal system or its analogs.
Chris Mungall
Do not use this relation directly. It is ended as a grouping for a diverse set of relations, all involving the biomechanical processes.
biomechanically related to
inverse of branching part of
Chris Mungall
RO:0002569
uberon
has_branching_part
has_branching_part
has branching part
x lumen_of y iff x is the space or substance that is part of y and does not cross any of the inner membranes or boundaries of y that is maximal with respect to the volume of the convex hull.
Chris Mungall
GOC:cjm
RO:0002571
uberon
lumen_of
lumen_of
lumen of
s is luminal space of x iff s is lumen_of x and s is an immaterial entity
Chris Mungall
RO:0002572
uberon
luminal_space_of
luminal_space_of
luminal space of
Chris Mungall
participates in a biotic-biotic interaction with
inverse of has skeleton
Chris Mungall
RO:0002576
uberon
skeleton_of
skeleton_of
skeleton of
Process(P1) directly regulates process(P2) iff: P1 regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding regulates the kinase activity (P2) of protein B then P1 directly regulates P2.
Chris Mungall
directly regulates (processual)
directly regulates
gland SubClassOf 'has part structure that is capable of' some 'secretion by cell'
s 'has part structure that is capable of' p if and only if there exists some part x such that s 'has part' x and x 'capable of' p
Chris Mungall
has part structure that is capable of
p results in breakdown of c if and only if the execution of p leads to c no longer being present at the end of p
results in breakdown of
RO:0002588
external
results_in_assembly_of
results_in_assembly_of
results in assembly of
results_in_assembly_of
RO:0002590
external
results_in_disassembly_of
results_in_disassembly_of
results in disassembly of
results_in_disassembly_of
p results in organization of c iff p results in the assembly, arrangement of constituent parts, or disassembly of c
RO:0002592
external
results_in_organization_of
results_in_organization_of
results in organization of
A relationship that holds between a material entity and a process in which causality is involved, with either the material entity or some part of the material entity exerting some influence over the process, or the process influencing some aspect of the material entity.
Do not use this relation directly. It is intended as a grouping for a diverse set of relations, all involving cause and effect.
Chris Mungall
RO:0002595
causal_relation_between_material_entity_and_a_process
causal relation between material entity and a process
pyrethroid -> growth
Holds between c and p if and only if c is capable of some activity a, and a regulates p.
capable of regulating
Holds between c and p if and only if c is capable of some activity a, and a negatively regulates p.
capable of negatively regulating
renin -> arteriolar smooth muscle contraction
Holds between c and p if and only if c is capable of some activity a, and a positively regulates p.
capable of positively regulating
Inverse of 'causal agent in process'
RO:0002608
external
process_has_causal_agent
process_has_causal_agent
process has causal agent
Process(P1) directly postively regulates process(P2) iff: P1 positively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding positively regulates the kinase activity (P2) of protein B then P1 directly positively regulates P2.
directly positively regulates (process to process)
directly positively regulates
Process(P1) directly negatively regulates process(P2) iff: P1 negatively regulates P2 via direct physical interaction between an agent executing P1 (or some part of P1) and an agent executing P2 (or some part of P2). For example, if protein A has protein binding activity(P1) that targets protein B and this binding negatively regulates the kinase activity (P2) of protein B then P1 directly negatively regulates P2.
directly negatively regulates (process to process)
directly negatively regulates
A sub-relation of parasite-of in which the parasite lives inside the host, beneath the integumental system
lives inside of
endoparasite of
has endoparasite
a produces b if some process that occurs_in a has_output b, where a and b are material entities. Examples: hybridoma cell line produces monoclonal antibody reagent; chondroblast produces avascular GAG-rich matrix.
Melissa Haendel
RO:0003000
external
uberon
produces
produces
Note that this definition doesn't quite distinguish the output of a transformation process from a production process, which is related to the identity/granularity issue.
produces
produces
a produced_by b iff some process that occurs_in b has_output a.
Melissa Haendel
RO:0003001
external
uberon
produced_by
produced_by
produced by
produced by
produced_by
p 'has primary input ot output' c iff either (a) p 'has primary input' c or (b) p 'has primary output' c.
cjm
2018-12-13T11:26:17Z
RO:0004007
external
has_primary_input_or_output
has_primary_input_or_output
has primary input or output
p has primary output c if (a) p has output c and (b) the goal of process is to modify, produce, or transform c.
cjm
2018-12-13T11:26:32Z
RO:0004008
external
has_primary_output
has_primary_output
has primary output
p has primary output c if (a) p has output c and (b) the goal of process is to modify, produce, or transform c.
GOC:cjm
GOC:dph
GOC:kva
GOC:pt
PMID:27812932
A relationship between a realizable entity R (e.g. function or disposition) and a material entity M where R is realized in response to a process that has an input stimulus of M.
cjm
2017-12-26T19:45:49Z
realized in response to stimulus
Holds between an entity and an process P where the entity enables some larger compound process, and that larger process has-part P.
cjm
2018-01-25T23:20:13Z
enables subfunction
cjm
2018-01-26T23:49:30Z
acts upstream of or within, positive effect
cjm
2018-01-26T23:49:51Z
acts upstream of or within, negative effect
c 'acts upstream of, positive effect' p if c is enables f, and f is causally upstream of p, and the direction of f is positive
cjm
2018-01-26T23:53:14Z
acts upstream of, positive effect
c 'acts upstream of, negative effect' p if c is enables f, and f is causally upstream of p, and the direction of f is negative
cjm
2018-01-26T23:53:22Z
acts upstream of, negative effect
cjm
2018-03-13T23:55:05Z
causally upstream of or within, negative effect
cjm
2018-03-13T23:55:19Z
causally upstream of or within, positive effect
A drought sensitivity trait that inheres in a whole plant is realized in a systemic response process in response to exposure to drought conditions.
An inflammatory disease that is realized in response to an inflammatory process occurring in the gut (which is itself the realization of a process realized in response to harmful stimuli in the mucosal lining of th gut)
Environmental polymorphism in butterflies: These butterflies have a 'responsivity to day length trait' that is realized in response to the duration of the day, and is realized in developmental processes that lead to increased or decreased pigmentation in the adult morph.
r 'realized in response to' s iff, r is a realizable (e.g. a plant trait such as responsivity to drought), s is an environmental stimulus (a process), and s directly causes the realization of r.
Austin Meier
Chris Mungall
David Osumi-Sutherland
Marie Angelique Laporte
triggered by process
realized in response to
https://docs.google.com/document/d/1KWhZxVBhIPkV6_daHta0h6UyHbjY2eIrnON1WIRGgdY/edit
triggered by process
RO:cjm
The entity A has an activity that regulates an activity of the entity B. For example, A and B are gene products where the catalytic activity of A regulates the kinase activity of B.
Vasundra Touré
regulates activity of
p acts on population of c iff c' is a collection, has members of type c, and p has participant c
pg
2020-06-08T17:21:33Z
RO:0012003
external
acts_on_population_of
acts_on_population_of
acts on population of
acts on population of
pg
2021-02-26T07:28:29Z
RO:0012008
external
results_in_fusion_of
results_in_fusion_of
results in fusion of
results in fusion of
q1 different_in_magnitude_relative_to q2 if and only if magnitude(q1) NOT =~ magnitude(q2). Here, magnitude(q) is a function that maps a quality to a unit-invariant scale.
different in magnitude relative to
q1 different_in_magnitude_relative_to q2 if and only if magnitude(q1) NOT =~ magnitude(q2). Here, magnitude(q) is a function that maps a quality to a unit-invariant scale.
https://orcid.org/0000-0002-6601-2165
q1 increased_in_magnitude_relative_to q2 if and only if magnitude(q1) > magnitude(q2). Here, magnitude(q) is a function that maps a quality to a unit-invariant scale.
This relation is used to determine the 'directionality' of relative qualities such as 'increased strength', relative to the parent type, 'strength'.
increased in magnitude relative to
q1 increased_in_magnitude_relative_to q2 if and only if magnitude(q1) > magnitude(q2). Here, magnitude(q) is a function that maps a quality to a unit-invariant scale.
https://orcid.org/0000-0002-6601-2165
s3 has_cross_section s3 if and only if : there exists some 2d plane that intersects the bearer of s3, and the impression of s3 upon that plane has shape quality s2.
Example: a spherical object has the quality of being spherical, and the spherical quality has_cross_section round.
has cross section
s3 has_cross_section s3 if and only if : there exists some 2d plane that intersects the bearer of s3, and the impression of s3 upon that plane has shape quality s2.
https://orcid.org/0000-0002-6601-2165
A diagnostic testing device utilizes a specimen.
X utilizes Y means X and Y are material entities, and X is capable of some process P that has input Y.
Asiyah Lin
https://orcid.org/0000-0001-9625-1899 Bill Duncan
A diagnostic testing device utilizes a specimen means that the diagnostic testing device is capable of an assay, and this assay a specimen as its input.
See github ticket https://github.com/oborel/obo-relations/issues/497
2021-11-08
utilizes
A relationship that holds between a process and a characteristic in which process (P) regulates characteristic (C) iff:Â P results in the existence of C OR affects the intensity or magnitude of C.
regulates characteristic
A relationship that holds between a process and a characteristic in which process (P) positively regulates characteristic (C) iff:Â P results in an increase in the intensity or magnitude of C.
positively regulates characteristic
A relationship that holds between a process and a characteristic in which process (P) negatively regulates characteristic (C) iff:Â P results in a decrease in the intensity or magnitude of C.
negatively regulates characteristic
p has anatomical participant c iff p has participant c, and c is an anatomical entity
cjm
2018-09-26T01:08:58Z
results in changes to anatomical or cellular structure
chebi_ontology
has_functional_parent
false
false
has functional parent
chebi_ontology
is_conjugate_acid_of
true
false
is conjugate acid of
chebi_ontology
is_conjugate_base_of
true
false
is conjugate base of
chebi_ontology
is_substituent_group_from
false
false
is substituent group from
http://purl.obolibrary.org/obo/BFO_0000051 exactly 0 ?Y
lacks_part
http://purl.obolibrary.org/obo/BFO_0000051 exactly 0 (http://purl.obolibrary.org/obo/GO_0005886 and http://purl.obolibrary.org/obo/BFO_0000051 some ?Y)
lacks_plasma_membrane_part
has_participant
protein
has_gene_template
false
has_gene_template
x anteriorly_connected_to y iff the anterior part of x is connected to y. i.e. x connected_to y and x posterior_to y.
anteriorly_connected_to
uberon
anteriorly_connected_to
anteriorly_connected_to
anteriorly connected to
x anteriorly_connected_to y iff the anterior part of x is connected to y. i.e. x connected_to y and x posterior_to y.
x anteriorly_connected_to y iff the anterior part of x is connected to y. i.e. x connected_to y and x posterior_to y.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
carries
channel_for
uberon
channel_for
channel_for
channel for
channels_from
uberon
channels_from
channels_from
channels_from
channels_into
uberon
channels_into
channels_into
channels_into
x is a conduit for y iff y passes through the lumen of x.
conduit_for
uberon
conduit_for
conduit_for
conduit for
x distally_connected_to y iff the distal part of x is connected to y. i.e. x connected_to y and x proximal_to y.
distally_connected_to
uberon
distally_connected_to
distally_connected_to
distally connected to
x distally_connected_to y iff the distal part of x is connected to y. i.e. x connected_to y and x proximal_to y.
x distally_connected_to y iff the distal part of x is connected to y. i.e. x connected_to y and x proximal_to y.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
uberon
extends_fibers_into
extends_fibers_into
Relationship between a fluid and a material entity, where the fluid is the output of a realization of a filtration role that inheres in the material entity.
filtered_through
uberon
filtered_through
filtered_through
Relationship between a fluid and a filtration barrier, where the portion of fluid arises as a transformation of another portion of fluid on the other side of the barrier, with larger particles removed
filtered through
a indirectly_supplies s iff a has a branch and the branch supplies or indirectly supplies s.
add to RO
uberon
indirectly_supplies
indirectly_supplies
x posteriorly_connected_to y iff the posterior part of x is connected to y. i.e. x connected_to y and x anterior_to y.
posteriorly_connected_to
uberon
posteriorly_connected_to
posteriorly_connected_to
posteriorly connected to
x posteriorly_connected_to y iff the posterior part of x is connected to y. i.e. x connected_to y and x anterior_to y.
x posteriorly_connected_to y iff the posterior part of x is connected to y. i.e. x connected_to y and x anterior_to y.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
protects
uberon
protects
protects
protects
x proximally_connected_to y iff the proximal part of x is connected to y. i.e. x connected_to y and x distal_to y.
proximally_connected_to
uberon
proximally_connected_to
proximally_connected_to
proximally connected to
x proximally_connected_to y iff the proximal part of x is connected to y. i.e. x connected_to y and x distal_to y.
x proximally_connected_to y iff the proximal part of x is connected to y. i.e. x connected_to y and x distal_to y.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
c site_of p if c is the bearer of a disposition that is realized by a process that has p as part.
uberon
capable_of_has_part
site_of
site_of
subdivision_of
uberon
subdivision_of
subdivision_of
placeholder relation. X = 'subdivision of A' and subdivision_of some B means that X is the mereological sum of A and B
subdivision of
Relation between an anatomical structure (including cells) and a neuron that chemically synapses to it.
uberon
synapsed_by
synapsed by
.
transitively_anteriorly_connected_to
uberon
transitively_anteriorly_connected_to
transitively_anteriorly_connected_to
transitively anteriorly connected to
.
.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
transitively_connected_to
uberon
transitively_connected_to
transitively_connected_to
transitively_connected to
.
transitively_distally_connected_to
uberon
transitively_distally_connected_to
transitively_distally_connected_to
transitively distally connected to
.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
.
transitively_proximally_connected_to
uberon
transitively_proximally_connected_to
transitively_proximally_connected_to
transitively proximally connected to
.
http://purl.obolibrary.org/obo/uberon/docs/Connectivity-Design-Pattern
entity
Entity
Julius Caesar
Verdi’s Requiem
the Second World War
your body mass index
BFO 2 Reference: In all areas of empirical inquiry we encounter general terms of two sorts. First are general terms which refer to universals or types:animaltuberculosissurgical procedurediseaseSecond, are general terms used to refer to groups of entities which instantiate a given universal but do not correspond to the extension of any subuniversal of that universal because there is nothing intrinsic to the entities in question by virtue of which they – and only they – are counted as belonging to the given group. Examples are: animal purchased by the Emperortuberculosis diagnosed on a Wednesdaysurgical procedure performed on a patient from Stockholmperson identified as candidate for clinical trial #2056-555person who is signatory of Form 656-PPVpainting by Leonardo da VinciSuch terms, which represent what are called ‘specializations’ in [81
Entity doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example Werner Ceusters 'portions of reality' include 4 sorts, entities (as BFO construes them), universals, configurations, and relations. It is an open question as to whether entities as construed in BFO will at some point also include these other portions of reality. See, for example, 'How to track absolutely everything' at http://www.referent-tracking.com/_RTU/papers/CeustersICbookRevised.pdf
An entity is anything that exists or has existed or will exist. (axiom label in BFO2 Reference: [001-001])
entity
Entity doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example Werner Ceusters 'portions of reality' include 4 sorts, entities (as BFO construes them), universals, configurations, and relations. It is an open question as to whether entities as construed in BFO will at some point also include these other portions of reality. See, for example, 'How to track absolutely everything' at http://www.referent-tracking.com/_RTU/papers/CeustersICbookRevised.pdf
per discussion with Barry Smith
An entity is anything that exists or has existed or will exist. (axiom label in BFO2 Reference: [001-001])
continuant
Continuant
An entity that exists in full at any time in which it exists at all, persists through time while maintaining its identity and has no temporal parts.
BFO 2 Reference: Continuant entities are entities which can be sliced to yield parts only along the spatial dimension, yielding for example the parts of your table which we call its legs, its top, its nails. ‘My desk stretches from the window to the door. It has spatial parts, and can be sliced (in space) in two. With respect to time, however, a thing is a continuant.’ [60, p. 240
Continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example, in an expansion involving bringing in some of Ceuster's other portions of reality, questions are raised as to whether universals are continuants
A continuant is an entity that persists, endures, or continues to exist through time while maintaining its identity. (axiom label in BFO2 Reference: [008-002])
if b is a continuant and if, for some t, c has_continuant_part b at t, then c is a continuant. (axiom label in BFO2 Reference: [126-001])
if b is a continuant and if, for some t, cis continuant_part of b at t, then c is a continuant. (axiom label in BFO2 Reference: [009-002])
if b is a material entity, then there is some temporal interval (referred to below as a one-dimensional temporal region) during which b exists. (axiom label in BFO2 Reference: [011-002])
(forall (x y) (if (and (Continuant x) (exists (t) (continuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [009-002]
(forall (x y) (if (and (Continuant x) (exists (t) (hasContinuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [126-001]
(forall (x) (if (Continuant x) (Entity x))) // axiom label in BFO2 CLIF: [008-002]
(forall (x) (if (Material Entity x) (exists (t) (and (TemporalRegion t) (existsAt x t))))) // axiom label in BFO2 CLIF: [011-002]
continuant
Continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example, in an expansion involving bringing in some of Ceuster's other portions of reality, questions are raised as to whether universals are continuants
A continuant is an entity that persists, endures, or continues to exist through time while maintaining its identity. (axiom label in BFO2 Reference: [008-002])
if b is a continuant and if, for some t, c has_continuant_part b at t, then c is a continuant. (axiom label in BFO2 Reference: [126-001])
if b is a continuant and if, for some t, cis continuant_part of b at t, then c is a continuant. (axiom label in BFO2 Reference: [009-002])
if b is a material entity, then there is some temporal interval (referred to below as a one-dimensional temporal region) during which b exists. (axiom label in BFO2 Reference: [011-002])
(forall (x y) (if (and (Continuant x) (exists (t) (continuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [009-002]
(forall (x y) (if (and (Continuant x) (exists (t) (hasContinuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [126-001]
(forall (x) (if (Continuant x) (Entity x))) // axiom label in BFO2 CLIF: [008-002]
(forall (x) (if (Material Entity x) (exists (t) (and (TemporalRegion t) (existsAt x t))))) // axiom label in BFO2 CLIF: [011-002]
occurrent
Occurrent
An entity that has temporal parts and that happens, unfolds or develops through time.
BFO 2 Reference: every occurrent that is not a temporal or spatiotemporal region is s-dependent on some independent continuant that is not a spatial region
BFO 2 Reference: s-dependence obtains between every process and its participants in the sense that, as a matter of necessity, this process could not have existed unless these or those participants existed also. A process may have a succession of participants at different phases of its unfolding. Thus there may be different players on the field at different times during the course of a football game; but the process which is the entire game s-depends_on all of these players nonetheless. Some temporal parts of this process will s-depend_on on only some of the players.
Occurrent doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. An example would be the sum of a process and the process boundary of another process.
Simons uses different terminology for relations of occurrents to regions: Denote the spatio-temporal location of a given occurrent e by 'spn[e]' and call this region its span. We may say an occurrent is at its span, in any larger region, and covers any smaller region. Now suppose we have fixed a frame of reference so that we can speak not merely of spatio-temporal but also of spatial regions (places) and temporal regions (times). The spread of an occurrent, (relative to a frame of reference) is the space it exactly occupies, and its spell is likewise the time it exactly occupies. We write 'spr[e]' and `spl[e]' respectively for the spread and spell of e, omitting mention of the frame.
An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary of such an entity (for example a beginning or an ending) or it is a temporal or spatiotemporal region which such an entity occupies_temporal_region or occupies_spatiotemporal_region. (axiom label in BFO2 Reference: [077-002])
Every occurrent occupies_spatiotemporal_region some spatiotemporal region. (axiom label in BFO2 Reference: [108-001])
b is an occurrent entity iff b is an entity that has temporal parts. (axiom label in BFO2 Reference: [079-001])
(forall (x) (if (Occurrent x) (exists (r) (and (SpatioTemporalRegion r) (occupiesSpatioTemporalRegion x r))))) // axiom label in BFO2 CLIF: [108-001]
(forall (x) (iff (Occurrent x) (and (Entity x) (exists (y) (temporalPartOf y x))))) // axiom label in BFO2 CLIF: [079-001]
occurrent
Occurrent doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. An example would be the sum of a process and the process boundary of another process.
per discussion with Barry Smith
Simons uses different terminology for relations of occurrents to regions: Denote the spatio-temporal location of a given occurrent e by 'spn[e]' and call this region its span. We may say an occurrent is at its span, in any larger region, and covers any smaller region. Now suppose we have fixed a frame of reference so that we can speak not merely of spatio-temporal but also of spatial regions (places) and temporal regions (times). The spread of an occurrent, (relative to a frame of reference) is the space it exactly occupies, and its spell is likewise the time it exactly occupies. We write 'spr[e]' and `spl[e]' respectively for the spread and spell of e, omitting mention of the frame.
An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary of such an entity (for example a beginning or an ending) or it is a temporal or spatiotemporal region which such an entity occupies_temporal_region or occupies_spatiotemporal_region. (axiom label in BFO2 Reference: [077-002])
Every occurrent occupies_spatiotemporal_region some spatiotemporal region. (axiom label in BFO2 Reference: [108-001])
b is an occurrent entity iff b is an entity that has temporal parts. (axiom label in BFO2 Reference: [079-001])
(forall (x) (if (Occurrent x) (exists (r) (and (SpatioTemporalRegion r) (occupiesSpatioTemporalRegion x r))))) // axiom label in BFO2 CLIF: [108-001]
(forall (x) (iff (Occurrent x) (and (Entity x) (exists (y) (temporalPartOf y x))))) // axiom label in BFO2 CLIF: [079-001]
ic
IndependentContinuant
a chair
a heart
a leg
a molecule
a spatial region
an atom
an orchestra.
an organism
the bottom right portion of a human torso
the interior of your mouth
A continuant that is a bearer of quality and realizable entity entities, in which other entities inhere and which itself cannot inhere in anything.
b is an independent continuant = Def. b is a continuant which is such that there is no c and no t such that b s-depends_on c at t. (axiom label in BFO2 Reference: [017-002])
For any independent continuant b and any time t there is some spatial region r such that b is located_in r at t. (axiom label in BFO2 Reference: [134-001])
For every independent continuant b and time t during the region of time spanned by its life, there are entities which s-depends_on b during t. (axiom label in BFO2 Reference: [018-002])
(forall (x t) (if (IndependentContinuant x) (exists (r) (and (SpatialRegion r) (locatedInAt x r t))))) // axiom label in BFO2 CLIF: [134-001]
(forall (x t) (if (and (IndependentContinuant x) (existsAt x t)) (exists (y) (and (Entity y) (specificallyDependsOnAt y x t))))) // axiom label in BFO2 CLIF: [018-002]
(iff (IndependentContinuant a) (and (Continuant a) (not (exists (b t) (specificallyDependsOnAt a b t))))) // axiom label in BFO2 CLIF: [017-002]
independent continuant
b is an independent continuant = Def. b is a continuant which is such that there is no c and no t such that b s-depends_on c at t. (axiom label in BFO2 Reference: [017-002])
For any independent continuant b and any time t there is some spatial region r such that b is located_in r at t. (axiom label in BFO2 Reference: [134-001])
For every independent continuant b and time t during the region of time spanned by its life, there are entities which s-depends_on b during t. (axiom label in BFO2 Reference: [018-002])
(forall (x t) (if (IndependentContinuant x) (exists (r) (and (SpatialRegion r) (locatedInAt x r t))))) // axiom label in BFO2 CLIF: [134-001]
(forall (x t) (if (and (IndependentContinuant x) (existsAt x t)) (exists (y) (and (Entity y) (specificallyDependsOnAt y x t))))) // axiom label in BFO2 CLIF: [018-002]
(iff (IndependentContinuant a) (and (Continuant a) (not (exists (b t) (specificallyDependsOnAt a b t))))) // axiom label in BFO2 CLIF: [017-002]
s-region
SpatialRegion
BFO 2 Reference: Spatial regions do not participate in processes.
Spatial region doesn't have a closure axiom because the subclasses don't exhaust all possibilites. An example would be the union of a spatial point and a spatial line that doesn't overlap the point, or two spatial lines that intersect at a single point. In both cases the resultant spatial region is neither 0-dimensional, 1-dimensional, 2-dimensional, or 3-dimensional.
A spatial region is a continuant entity that is a continuant_part_of spaceR as defined relative to some frame R. (axiom label in BFO2 Reference: [035-001])
All continuant parts of spatial regions are spatial regions. (axiom label in BFO2 Reference: [036-001])
(forall (x y t) (if (and (SpatialRegion x) (continuantPartOfAt y x t)) (SpatialRegion y))) // axiom label in BFO2 CLIF: [036-001]
(forall (x) (if (SpatialRegion x) (Continuant x))) // axiom label in BFO2 CLIF: [035-001]
spatial region
Spatial region doesn't have a closure axiom because the subclasses don't exhaust all possibilites. An example would be the union of a spatial point and a spatial line that doesn't overlap the point, or two spatial lines that intersect at a single point. In both cases the resultant spatial region is neither 0-dimensional, 1-dimensional, 2-dimensional, or 3-dimensional.
per discussion with Barry Smith
A spatial region is a continuant entity that is a continuant_part_of spaceR as defined relative to some frame R. (axiom label in BFO2 Reference: [035-001])
All continuant parts of spatial regions are spatial regions. (axiom label in BFO2 Reference: [036-001])
(forall (x y t) (if (and (SpatialRegion x) (continuantPartOfAt y x t)) (SpatialRegion y))) // axiom label in BFO2 CLIF: [036-001]
(forall (x) (if (SpatialRegion x) (Continuant x))) // axiom label in BFO2 CLIF: [035-001]
process
Process
a process of cell-division, \ a beating of the heart
a process of meiosis
a process of sleeping
the course of a disease
the flight of a bird
the life of an organism
your process of aging.
An occurrent that has temporal proper parts and for some time t, p s-depends_on some material entity at t.
p is a process = Def. p is an occurrent that has temporal proper parts and for some time t, p s-depends_on some material entity at t. (axiom label in BFO2 Reference: [083-003])
BFO 2 Reference: The realm of occurrents is less pervasively marked by the presence of natural units than is the case in the realm of independent continuants. Thus there is here no counterpart of ‘object’. In BFO 1.0 ‘process’ served as such a counterpart. In BFO 2.0 ‘process’ is, rather, the occurrent counterpart of ‘material entity’. Those natural – as contrasted with engineered, which here means: deliberately executed – units which do exist in the realm of occurrents are typically either parasitic on the existence of natural units on the continuant side, or they are fiat in nature. Thus we can count lives; we can count football games; we can count chemical reactions performed in experiments or in chemical manufacturing. We cannot count the processes taking place, for instance, in an episode of insect mating behavior.Even where natural units are identifiable, for example cycles in a cyclical process such as the beating of a heart or an organism’s sleep/wake cycle, the processes in question form a sequence with no discontinuities (temporal gaps) of the sort that we find for instance where billiard balls or zebrafish or planets are separated by clear spatial gaps. Lives of organisms are process units, but they too unfold in a continuous series from other, prior processes such as fertilization, and they unfold in turn in continuous series of post-life processes such as post-mortem decay. Clear examples of boundaries of processes are almost always of the fiat sort (midnight, a time of death as declared in an operating theater or on a death certificate, the initiation of a state of war)
(iff (Process a) (and (Occurrent a) (exists (b) (properTemporalPartOf b a)) (exists (c t) (and (MaterialEntity c) (specificallyDependsOnAt a c t))))) // axiom label in BFO2 CLIF: [083-003]
process
p is a process = Def. p is an occurrent that has temporal proper parts and for some time t, p s-depends_on some material entity at t. (axiom label in BFO2 Reference: [083-003])
(iff (Process a) (and (Occurrent a) (exists (b) (properTemporalPartOf b a)) (exists (c t) (and (MaterialEntity c) (specificallyDependsOnAt a c t))))) // axiom label in BFO2 CLIF: [083-003]
disposition
Disposition
an atom of element X has the disposition to decay to an atom of element Y
certain people have a predisposition to colon cancer
children are innately disposed to categorize objects in certain ways.
the cell wall is disposed to filter chemicals in endocytosis and exocytosis
BFO 2 Reference: Dispositions exist along a strength continuum. Weaker forms of disposition are realized in only a fraction of triggering cases. These forms occur in a significant number of cases of a similar type.
b is a disposition means: b is a realizable entity & b’s bearer is some material entity & b is such that if it ceases to exist, then its bearer is physically changed, & b’s realization occurs when and because this bearer is in some special physical circumstances, & this realization occurs in virtue of the bearer’s physical make-up. (axiom label in BFO2 Reference: [062-002])
If b is a realizable entity then for all t at which b exists, b s-depends_on some material entity at t. (axiom label in BFO2 Reference: [063-002])
(forall (x t) (if (and (RealizableEntity x) (existsAt x t)) (exists (y) (and (MaterialEntity y) (specificallyDepends x y t))))) // axiom label in BFO2 CLIF: [063-002]
(forall (x) (if (Disposition x) (and (RealizableEntity x) (exists (y) (and (MaterialEntity y) (bearerOfAt x y t)))))) // axiom label in BFO2 CLIF: [062-002]
disposition
b is a disposition means: b is a realizable entity & b’s bearer is some material entity & b is such that if it ceases to exist, then its bearer is physically changed, & b’s realization occurs when and because this bearer is in some special physical circumstances, & this realization occurs in virtue of the bearer’s physical make-up. (axiom label in BFO2 Reference: [062-002])
If b is a realizable entity then for all t at which b exists, b s-depends_on some material entity at t. (axiom label in BFO2 Reference: [063-002])
(forall (x t) (if (and (RealizableEntity x) (existsAt x t)) (exists (y) (and (MaterialEntity y) (specificallyDepends x y t))))) // axiom label in BFO2 CLIF: [063-002]
(forall (x) (if (Disposition x) (and (RealizableEntity x) (exists (y) (and (MaterialEntity y) (bearerOfAt x y t)))))) // axiom label in BFO2 CLIF: [062-002]
realizable
RealizableEntity
the disposition of this piece of metal to conduct electricity.
the disposition of your blood to coagulate
the function of your reproductive organs
the role of being a doctor
the role of this boundary to delineate where Utah and Colorado meet
A specifically dependent continuant that inheres in continuant entities and are not exhibited in full at every time in which it inheres in an entity or group of entities. The exhibition or actualization of a realizable entity is a particular manifestation, functioning or process that occurs under certain circumstances.
https://orcid.org/0000-0001-8815-0078
To say that b is a realizable entity is to say that b is a specifically dependent continuant that inheres in some independent continuant which is not a spatial region and is of a type instances of which are realized in processes of a correlated type. (axiom label in BFO2 Reference: [058-002])
All realizable dependent continuants have independent continuants that are not spatial regions as their bearers. (axiom label in BFO2 Reference: [060-002])
(forall (x t) (if (RealizableEntity x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (bearerOfAt y x t))))) // axiom label in BFO2 CLIF: [060-002]
(forall (x) (if (RealizableEntity x) (and (SpecificallyDependentContinuant x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (inheresIn x y)))))) // axiom label in BFO2 CLIF: [058-002]
realizable entity
To say that b is a realizable entity is to say that b is a specifically dependent continuant that inheres in some independent continuant which is not a spatial region and is of a type instances of which are realized in processes of a correlated type. (axiom label in BFO2 Reference: [058-002])
All realizable dependent continuants have independent continuants that are not spatial regions as their bearers. (axiom label in BFO2 Reference: [060-002])
(forall (x t) (if (RealizableEntity x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (bearerOfAt y x t))))) // axiom label in BFO2 CLIF: [060-002]
(forall (x) (if (RealizableEntity x) (and (SpecificallyDependentContinuant x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (inheresIn x y)))))) // axiom label in BFO2 CLIF: [058-002]
bfo
BFO:0000019
quality
quality
sdc
SpecificallyDependentContinuant
Reciprocal specifically dependent continuants: the function of this key to open this lock and the mutually dependent disposition of this lock: to be opened by this key
of one-sided specifically dependent continuants: the mass of this tomato
of relational dependent continuants (multiple bearers): John’s love for Mary, the ownership relation between John and this statue, the relation of authority between John and his subordinates.
the disposition of this fish to decay
the function of this heart: to pump blood
the mutual dependence of proton donors and acceptors in chemical reactions [79
the mutual dependence of the role predator and the role prey as played by two organisms in a given interaction
the pink color of a medium rare piece of grilled filet mignon at its center
the role of being a doctor
the shape of this hole.
the smell of this portion of mozzarella
A continuant that inheres in or is borne by other entities. Every instance of A requires some specific instance of B which must always be the same.
b is a relational specifically dependent continuant = Def. b is a specifically dependent continuant and there are n > 1 independent continuants c1, … cn which are not spatial regions are such that for all 1 i < j n, ci and cj share no common parts, are such that for each 1 i n, b s-depends_on ci at every time t during the course of b’s existence (axiom label in BFO2 Reference: [131-004])
b is a specifically dependent continuant = Def. b is a continuant & there is some independent continuant c which is not a spatial region and which is such that b s-depends_on c at every time t during the course of b’s existence. (axiom label in BFO2 Reference: [050-003])
Specifically dependent continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. We're not sure what else will develop here, but for example there are questions such as what are promises, obligation, etc.
(iff (SpecificallyDependentContinuant a) (and (Continuant a) (forall (t) (if (existsAt a t) (exists (b) (and (IndependentContinuant b) (not (SpatialRegion b)) (specificallyDependsOnAt a b t))))))) // axiom label in BFO2 CLIF: [050-003]
specifically dependent continuant
b is a specifically dependent continuant = Def. b is a continuant & there is some independent continuant c which is not a spatial region and which is such that b s-depends_on c at every time t during the course of b’s existence. (axiom label in BFO2 Reference: [050-003])
Specifically dependent continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. We're not sure what else will develop here, but for example there are questions such as what are promises, obligation, etc.
per discussion with Barry Smith
(iff (SpecificallyDependentContinuant a) (and (Continuant a) (forall (t) (if (existsAt a t) (exists (b) (and (IndependentContinuant b) (not (SpatialRegion b)) (specificallyDependsOnAt a b t))))))) // axiom label in BFO2 CLIF: [050-003]
role
Role
John’s role of husband to Mary is dependent on Mary’s role of wife to John, and both are dependent on the object aggregate comprising John and Mary as member parts joined together through the relational quality of being married.
the priest role
the role of a boundary to demarcate two neighboring administrative territories
the role of a building in serving as a military target
the role of a stone in marking a property boundary
the role of subject in a clinical trial
the student role
A realizable entity the manifestation of which brings about some result or end that is not essential to a continuant in virtue of the kind of thing that it is but that can be served or participated in by that kind of continuant in some kinds of natural, social or institutional contexts.
BFO 2 Reference: One major family of examples of non-rigid universals involves roles, and ontologies developed for corresponding administrative purposes may consist entirely of representatives of entities of this sort. Thus ‘professor’, defined as follows,b instance_of professor at t =Def. there is some c, c instance_of professor role & c inheres_in b at t.denotes a non-rigid universal and so also do ‘nurse’, ‘student’, ‘colonel’, ‘taxpayer’, and so forth. (These terms are all, in the jargon of philosophy, phase sortals.) By using role terms in definitions, we can create a BFO conformant treatment of such entities drawing on the fact that, while an instance of professor may be simultaneously an instance of trade union member, no instance of the type professor role is also (at any time) an instance of the type trade union member role (any more than any instance of the type color is at any time an instance of the type length).If an ontology of employment positions should be defined in terms of roles following the above pattern, this enables the ontology to do justice to the fact that individuals instantiate the corresponding universals – professor, sergeant, nurse – only during certain phases in their lives.
b is a role means: b is a realizable entity & b exists because there is some single bearer that is in some special physical, social, or institutional set of circumstances in which this bearer does not have to be& b is not such that, if it ceases to exist, then the physical make-up of the bearer is thereby changed. (axiom label in BFO2 Reference: [061-001])
(forall (x) (if (Role x) (RealizableEntity x))) // axiom label in BFO2 CLIF: [061-001]
role
b is a role means: b is a realizable entity & b exists because there is some single bearer that is in some special physical, social, or institutional set of circumstances in which this bearer does not have to be& b is not such that, if it ceases to exist, then the physical make-up of the bearer is thereby changed. (axiom label in BFO2 Reference: [061-001])
(forall (x) (if (Role x) (RealizableEntity x))) // axiom label in BFO2 CLIF: [061-001]
fiat object
fiat object part
object-aggregate
ObjectAggregate
a collection of cells in a blood biobank.
a swarm of bees is an aggregate of members who are linked together through natural bonds
a symphony orchestra
an organization is an aggregate whose member parts have roles of specific types (for example in a jazz band, a chess club, a football team)
defined by fiat: the aggregate of members of an organization
defined through physical attachment: the aggregate of atoms in a lump of granite
defined through physical containment: the aggregate of molecules of carbon dioxide in a sealed container
defined via attributive delimitations such as: the patients in this hospital
the aggregate of bearings in a constant velocity axle joint
the aggregate of blood cells in your body
the nitrogen atoms in the atmosphere
the restaurants in Palo Alto
your collection of Meissen ceramic plates.
An entity a is an object aggregate if and only if there is a mutually exhaustive and pairwise disjoint partition of a into objects
BFO 2 Reference: object aggregates may gain and lose parts while remaining numerically identical (one and the same individual) over time. This holds both for aggregates whose membership is determined naturally (the aggregate of cells in your body) and aggregates determined by fiat (a baseball team, a congressional committee).
ISBN:978-3-938793-98-5pp124-158#Thomas Bittner and Barry Smith, 'A Theory of Granular Partitions', in K. Munn and B. Smith (eds.), Applied Ontology: An Introduction, Frankfurt/Lancaster: ontos, 2008, 125-158.
b is an object aggregate means: b is a material entity consisting exactly of a plurality of objects as member_parts at all times at which b exists. (axiom label in BFO2 Reference: [025-004])
(forall (x) (if (ObjectAggregate x) (and (MaterialEntity x) (forall (t) (if (existsAt x t) (exists (y z) (and (Object y) (Object z) (memberPartOfAt y x t) (memberPartOfAt z x t) (not (= y z)))))) (not (exists (w t_1) (and (memberPartOfAt w x t_1) (not (Object w)))))))) // axiom label in BFO2 CLIF: [025-004]
object aggregate
An entity a is an object aggregate if and only if there is a mutually exhaustive and pairwise disjoint partition of a into objects
An entity a is an object aggregate if and only if there is a mutually exhaustive and pairwise disjoint partition of a into objects
ISBN:978-3-938793-98-5pp124-158#Thomas Bittner and Barry Smith, 'A Theory of Granular Partitions', in K. Munn and B. Smith (eds.), Applied Ontology: An Introduction, Frankfurt/Lancaster: ontos, 2008, 125-158.
b is an object aggregate means: b is a material entity consisting exactly of a plurality of objects as member_parts at all times at which b exists. (axiom label in BFO2 Reference: [025-004])
(forall (x) (if (ObjectAggregate x) (and (MaterialEntity x) (forall (t) (if (existsAt x t) (exists (y z) (and (Object y) (Object z) (memberPartOfAt y x t) (memberPartOfAt z x t) (not (= y z)))))) (not (exists (w t_1) (and (memberPartOfAt w x t_1) (not (Object w)))))))) // axiom label in BFO2 CLIF: [025-004]
site
bfo
BFO:0000030
object
object
gdc
GenericallyDependentContinuant
The entries in your database are patterns instantiated as quality instances in your hard drive. The database itself is an aggregate of such patterns. When you create the database you create a particular instance of the generically dependent continuant type database. Each entry in the database is an instance of the generically dependent continuant type IAO: information content entity.
the pdf file on your laptop, the pdf file that is a copy thereof on my laptop
the sequence of this protein molecule; the sequence that is a copy thereof in that protein molecule.
A continuant that is dependent on one or other independent continuant bearers. For every instance of A requires some instance of (an independent continuant type) B but which instance of B serves can change from time to time.
b is a generically dependent continuant = Def. b is a continuant that g-depends_on one or more other entities. (axiom label in BFO2 Reference: [074-001])
(iff (GenericallyDependentContinuant a) (and (Continuant a) (exists (b t) (genericallyDependsOnAt a b t)))) // axiom label in BFO2 CLIF: [074-001]
generically dependent continuant
b is a generically dependent continuant = Def. b is a continuant that g-depends_on one or more other entities. (axiom label in BFO2 Reference: [074-001])
(iff (GenericallyDependentContinuant a) (and (Continuant a) (exists (b t) (genericallyDependsOnAt a b t)))) // axiom label in BFO2 CLIF: [074-001]
function
Function
the function of a hammer to drive in nails
the function of a heart pacemaker to regulate the beating of a heart through electricity
the function of amylase in saliva to break down starch into sugar
BFO 2 Reference: In the past, we have distinguished two varieties of function, artifactual function and biological function. These are not asserted subtypes of BFO:function however, since the same function – for example: to pump, to transport – can exist both in artifacts and in biological entities. The asserted subtypes of function that would be needed in order to yield a separate monoheirarchy are not artifactual function, biological function, etc., but rather transporting function, pumping function, etc.
A function is a disposition that exists in virtue of the bearer’s physical make-up and this physical make-up is something the bearer possesses because it came into being, either through evolution (in the case of natural biological entities) or through intentional design (in the case of artifacts), in order to realize processes of a certain sort. (axiom label in BFO2 Reference: [064-001])
(forall (x) (if (Function x) (Disposition x))) // axiom label in BFO2 CLIF: [064-001]
function
A function is a disposition that exists in virtue of the bearer’s physical make-up and this physical make-up is something the bearer possesses because it came into being, either through evolution (in the case of natural biological entities) or through intentional design (in the case of artifacts), in order to realize processes of a certain sort. (axiom label in BFO2 Reference: [064-001])
(forall (x) (if (Function x) (Disposition x))) // axiom label in BFO2 CLIF: [064-001]
material
MaterialEntity
a flame
a forest fire
a human being
a hurricane
a photon
a puff of smoke
a sea wave
a tornado
an aggregate of human beings.
an energy wave
an epidemic
the undetached arm of a human being
An independent continuant that is spatially extended whose identity is independent of that of other entities and can be maintained through time.
BFO 2 Reference: Material entities (continuants) can preserve their identity even while gaining and losing material parts. Continuants are contrasted with occurrents, which unfold themselves in successive temporal parts or phases [60
BFO 2 Reference: Object, Fiat Object Part and Object Aggregate are not intended to be exhaustive of Material Entity. Users are invited to propose new subcategories of Material Entity.
BFO 2 Reference: ‘Matter’ is intended to encompass both mass and energy (we will address the ontological treatment of portions of energy in a later version of BFO). A portion of matter is anything that includes elementary particles among its proper or improper parts: quarks and leptons, including electrons, as the smallest particles thus far discovered; baryons (including protons and neutrons) at a higher level of granularity; atoms and molecules at still higher levels, forming the cells, organs, organisms and other material entities studied by biologists, the portions of rock studied by geologists, the fossils studied by paleontologists, and so on.Material entities are three-dimensional entities (entities extended in three spatial dimensions), as contrasted with the processes in which they participate, which are four-dimensional entities (entities extended also along the dimension of time).According to the FMA, material entities may have immaterial entities as parts – including the entities identified below as sites; for example the interior (or ‘lumen’) of your small intestine is a part of your body. BFO 2.0 embodies a decision to follow the FMA here.
A material entity is an independent continuant that has some portion of matter as proper or improper continuant part. (axiom label in BFO2 Reference: [019-002])
Every entity which has a material entity as continuant part is a material entity. (axiom label in BFO2 Reference: [020-002])
every entity of which a material entity is continuant part is also a material entity. (axiom label in BFO2 Reference: [021-002])
(forall (x) (if (MaterialEntity x) (IndependentContinuant x))) // axiom label in BFO2 CLIF: [019-002]
(forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt x y t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [021-002]
(forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt y x t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [020-002]
bfo
BFO:0000040
material entity
material entity
A material entity is an independent continuant that has some portion of matter as proper or improper continuant part. (axiom label in BFO2 Reference: [019-002])
Every entity which has a material entity as continuant part is a material entity. (axiom label in BFO2 Reference: [020-002])
every entity of which a material entity is continuant part is also a material entity. (axiom label in BFO2 Reference: [021-002])
(forall (x) (if (MaterialEntity x) (IndependentContinuant x))) // axiom label in BFO2 CLIF: [019-002]
(forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt x y t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [021-002]
(forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt y x t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [020-002]
immaterial
ImmaterialEntity
BFO 2 Reference: Immaterial entities are divided into two subgroups:boundaries and sites, which bound, or are demarcated in relation, to material entities, and which can thus change location, shape and size and as their material hosts move or change shape or size (for example: your nasal passage; the hold of a ship; the boundary of Wales (which moves with the rotation of the Earth) [38, 7, 10
immaterial entity
history
History
A history is a process that is the sum of the totality of processes taking place in the spatiotemporal region occupied by a material entity or site, including processes on the surface of the entity or within the cavities to which it serves as host. (axiom label in BFO2 Reference: [138-001])
history
A history is a process that is the sum of the totality of processes taking place in the spatiotemporal region occupied by a material entity or site, including processes on the surface of the entity or within the cavities to which it serves as host. (axiom label in BFO2 Reference: [138-001])
anatomical entity
connected anatomical structure
material anatomical entity
Material anatomical entity that is a member of an individual species or is a viral or viroid particle.
organism or virus
Melissa Haendel
9/18/11
organism or virus or viroid
An individual member of a clade.
organism
mah
7.16.2011
A general term for organism that is agnostic about single cell vs multi-cellular. Note that this is a subclass of 'anatomical structure', meaning that an organism must be a connected structure. So, if I take one plant and make a rooted cutting from a it, I now have two (clonally related) organisms.
organism
biological entity
Elementary particle not affected by the strong force having a spin 1/2, a negative elementary charge and a rest mass of 0.000548579903(13) u, or 0.51099906(15) MeV.
-1
0.000548579903
0.0
KEGG:C05359
PMID:21614077
Wikipedia:Electron
electron
chebi_ontology
Elektron
beta
beta(-)
beta-particle
e
e(-)
e-
negatron
CHEBI:10545
electron
PMID:21614077
Europe PMC
electron
ChEBI
electron
IUPAC
electron
KEGG_COMPOUND
Elektron
ChEBI
beta
IUPAC
beta(-)
ChEBI
beta-particle
IUPAC
e
IUPAC
e(-)
UniProt
e-
KEGG_COMPOUND
negatron
IUPAC
Any bacterial metabolite produced during a metabolic reaction in Mycoplasma genitalium.
chebi_ontology
Mycoplasma genitalium metabolites
CHEBI:131604
Mycoplasma genitalium metabolite
Mycoplasma genitalium metabolites
ChEBI
A carboxylic acid anion resulting from the deprotonation of the carboxy group of a dicarboxylic acid monoester.
chebi_ontology
CHEBI:131605
dicarboxylic acid monoester(1-)
A class of carbonyl compound encompassing dicarboxylic acids and any derivatives obtained by substitution of either one or both of the carboxy hydrogens.
chebi_ontology
dicarboxylic acids and derivatives
CHEBI:131927
dicarboxylic acids and O-substituted derivatives
dicarboxylic acids and derivatives
ChEBI
A carbohydrate acid derivative anion obtained by deprotonation of the carboxy groups of hyaluronic acid; major species at pH 7.3.
-1
(C14H20NO11)n.H2O
chebi_ontology
hyaluronan
hyaluronate polyanion
CHEBI:132153
hyaluronate
hyaluronan
UniProt
hyaluronate polyanion
ChEBI
Any organic compound having an initial boiling point less than or equal to 250 degreeC (482 degreeF) measured at a standard atmospheric pressure of 101.3 kPa.
Wikipedia:Volatile_organic_compound
chebi_ontology
VOC
VOCs
volatile organic compounds
CHEBI:134179
volatile organic compound
VOC
ChEBI
VOCs
ChEBI
volatile organic compounds
ChEBI
A Bronsted acid derived from one or more inorganic compounds. Inorganic acids (also known as mineral acids) form hydrons and conjugate base ions when dissolved in water.
Wikipedia:Mineral_acid
chebi_ontology
inorganic acids
mineral acid
mineral acids
CHEBI:138103
inorganic acid
inorganic acids
ChEBI
mineral acid
ChEBI
mineral acids
ChEBI
Any main group molecular entity that is gaseous at standard temperature and pressure (STP; 0degreeC and 100 kPa).
Wikipedia:https://en.wikipedia.org/wiki/Gas
chebi_ontology
gas molecular entities
gaseous molecular entities
gaseous molecular entity
CHEBI:138675
gas molecular entity
gas molecular entities
ChEBI
gaseous molecular entities
ChEBI
gaseous molecular entity
ChEBI
A cyclic tetrapyrrole anion that is the carbanion obtained by removal of the acidic proton from position 21 of any chlorophyll. Major species at pH 7.3
-1
C49H57MgN4O5R4
806.308
805.41794
C1=2N3C(C=C4[N+]5=C(C=C6N7C8=C(C9=[N+](C(=C1)[C@H]([C@@H]9CCC(OC/C=C(/CCC[C@@H](CCC[C@@H](CCCC(C)C)C)C)\C)=O)C)[Mg-2]735)[C-](C(C8=C6C)=O)C(=O)OC)C(=C4*)*)=C(C2*)*
Wikipedia:Chlorophyll
chebi_ontology
a chlorophyll
CHEBI:139291
chlorophyll(1-)
Wikipedia:Chlorophyll
SUBMITTER
a chlorophyll
UniProt
A cyclic tetrapyrrole anion obtained by removal of the acidic proton from position 21 as well as deprotonation of the carboxy group of any chlorophyllide. Major species at pH 7.3
-2
C29H18MgN4O5R4
526.783
526.11276
C1=2N3C(C=C4[N+]5=C(C=C6N7C8=C(C9=[N+](C(=C1)[C@H]([C@@H]9CCC([O-])=O)C)[Mg-2]735)[C-](C(C8=C6C)=O)C(=O)OC)C(=C4*)*)=C(C2*)*
chebi_ontology
a chlorophyllide
CHEBI:139292
chlorophyllide(2-)
a chlorophyllide
UniProt
-1
CH2NO2
InChI=1S/CH3NO2/c2-1(3)4/h2H2,(H,3,4)/p-1
KXDHJXZQYSOELW-UHFFFAOYSA-M
60.03212
60.00910
NC([O-])=O
Beilstein:3903503
CAS:302-11-4
Gmelin:239604
carbamate
chebi_ontology
Carbamat
Karbamat
carbamate ion
carbamic acid, ion(1-)
CHEBI:13941
carbamate
Beilstein:3903503
Beilstein
CAS:302-11-4
ChemIDplus
Gmelin:239604
Gmelin
carbamate
IUPAC
carbamate
UniProt
Carbamat
ChEBI
Karbamat
ChEBI
carbamate ion
ChemIDplus
carbamic acid, ion(1-)
ChemIDplus
A molecular entity that can accept an electron, a pair of electrons, an atom or a group from another molecular entity.
CHEBI:13699
CHEBI:2377
KEGG:C00028
KEGG:C16722
Acceptor
chebi_ontology
A
Akzeptor
Hydrogen-acceptor
Oxidized donor
accepteur
CHEBI:15339
acceptor
Acceptor
KEGG_COMPOUND
A
KEGG_COMPOUND
Akzeptor
ChEBI
Hydrogen-acceptor
KEGG_COMPOUND
Oxidized donor
KEGG_COMPOUND
accepteur
ChEBI
0
O2
InChI=1S/O2/c1-2
MYMOFIZGZYHOMD-UHFFFAOYSA-N
31.99880
31.98983
O=O
CHEBI:10745
CHEBI:13416
CHEBI:23833
CHEBI:25366
CHEBI:30491
CHEBI:44742
CHEBI:7860
CAS:7782-44-7
Gmelin:485
HMDB:HMDB0001377
KEGG:C00007
KEGG:D00003
MetaCyc:OXYGEN-MOLECULE
MolBase:750
PDBeChem:OXY
PMID:10906528
PMID:16977326
PMID:18210929
PMID:18638417
PMID:19840863
PMID:7710549
PMID:9463773
Wikipedia:Oxygen
dioxygen
chebi_ontology
Disauerstoff
E 948
E-948
E948
O2
OXYGEN MOLECULE
Oxygen
[OO]
dioxygene
molecular oxygen
CHEBI:15379
dioxygen
CAS:7782-44-7
ChemIDplus
CAS:7782-44-7
KEGG COMPOUND
CAS:7782-44-7
NIST Chemistry WebBook
Gmelin:485
Gmelin
PMID:10906528
Europe PMC
PMID:16977326
Europe PMC
PMID:18210929
Europe PMC
PMID:18638417
Europe PMC
PMID:19840863
Europe PMC
PMID:7710549
Europe PMC
PMID:9463773
Europe PMC
dioxygen
IUPAC
Disauerstoff
ChEBI
E 948
ChEBI
E-948
ChEBI
E948
ChEBI
O2
IUPAC
O2
KEGG_COMPOUND
O2
UniProt
OXYGEN MOLECULE
PDBeChem
Oxygen
KEGG_COMPOUND
[OO]
MolBase
dioxygene
ChEBI
molecular oxygen
ChEBI
A primary alcohol is a compound in which a hydroxy group, -OH, is attached to a saturated carbon atom which has either three hydrogen atoms attached to it or only one other carbon atom and two hydrogen atoms attached to it.
0
CH3OR
31.034
31.01839
*C(O)([H])[H]
CHEBI:13676
CHEBI:14887
CHEBI:26262
CHEBI:57489
CHEBI:8406
KEGG:C00226
Primary alcohol
chebi_ontology
1-Alcohol
a primary alcohol
primary alcohols
CHEBI:15734
primary alcohol
Primary alcohol
KEGG_COMPOUND
1-Alcohol
KEGG_COMPOUND
a primary alcohol
UniProt
primary alcohols
ChEBI
A peptide containing ten or more amino acid residues.
C4H6N2O3R2(C2H2NOR)n
CHEBI:14860
CHEBI:8314
KEGG:C00403
Polypeptide
polypeptides
chebi_ontology
Polypeptid
polipeptido
CHEBI:15841
polypeptide
Polypeptide
KEGG_COMPOUND
polypeptides
IUPAC
Polypeptid
ChEBI
polipeptido
ChEBI
A nucleobase-containing molecular entity with a polymeric structure comprised of a linear sequence of 13 or more nucleotide residues.
0
(C5H8O6PR)n.C10H17O10PR2
CHEBI:13672
CHEBI:14859
CHEBI:8312
KEGG:C00419
Polynucleotide
chebi_ontology
polynucleotides
CHEBI:15986
polynucleotide
Polynucleotide
KEGG_COMPOUND
polynucleotides
ChEBI
An azane that consists of a single nitrogen atom covelently bonded to three hydrogen atoms.
0
H3N
InChI=1S/H3N/h1H3
QGZKDVFQNNGYKY-UHFFFAOYSA-N
17.03056
17.02655
[H]N([H])[H]
CHEBI:13405
CHEBI:13406
CHEBI:13407
CHEBI:13771
CHEBI:22533
CHEBI:44269
CHEBI:44284
CHEBI:44404
CHEBI:7434
Beilstein:3587154
CAS:7664-41-7
Drug_Central:4625
Gmelin:79
HMDB:HMDB0000051
KEGG:C00014
KEGG:D02916
KNApSAcK:C00007267
MetaCyc:AMMONIA
MolBase:930
PDBeChem:NH3
PMID:110589
PMID:11139349
PMID:11540049
PMID:11746427
PMID:11783653
PMID:13753780
PMID:14663195
PMID:15092448
PMID:15094021
PMID:15554424
PMID:15969015
PMID:16008360
PMID:16050680
PMID:16348008
PMID:16349403
PMID:16614889
PMID:16664306
PMID:16842901
PMID:17025297
PMID:17439666
PMID:17569513
PMID:17737668
PMID:18670398
PMID:22002069
PMID:22081570
PMID:22088435
PMID:22100291
PMID:22130175
PMID:22150211
PMID:22240068
PMID:22290316
PMID:22342082
PMID:22385337
PMID:22443779
PMID:22560242
Reaxys:3587154
Wikipedia:Ammonia
AMMONIA
Ammonia
ammonia
azane
chebi_ontology
Ammoniak
NH3
R-717
[NH3]
ammoniac
amoniaco
spirit of hartshorn
CHEBI:16134
ammonia
Beilstein:3587154
Beilstein
CAS:7664-41-7
ChemIDplus
CAS:7664-41-7
KEGG COMPOUND
CAS:7664-41-7
NIST Chemistry WebBook
Drug_Central:4625
DrugCentral
Gmelin:79
Gmelin
PMID:110589
Europe PMC
PMID:11139349
Europe PMC
PMID:11540049
Europe PMC
PMID:11746427
Europe PMC
PMID:11783653
Europe PMC
PMID:13753780
Europe PMC
PMID:14663195
Europe PMC
PMID:15092448
Europe PMC
PMID:15094021
Europe PMC
PMID:15554424
Europe PMC
PMID:15969015
Europe PMC
PMID:16008360
Europe PMC
PMID:16050680
Europe PMC
PMID:16348008
Europe PMC
PMID:16349403
Europe PMC
PMID:16614889
Europe PMC
PMID:16664306
Europe PMC
PMID:16842901
Europe PMC
PMID:17025297
Europe PMC
PMID:17439666
Europe PMC
PMID:17569513
Europe PMC
PMID:17737668
Europe PMC
PMID:18670398
Europe PMC
PMID:22002069
Europe PMC
PMID:22081570
Europe PMC
PMID:22088435
Europe PMC
PMID:22100291
Europe PMC
PMID:22130175
Europe PMC
PMID:22150211
Europe PMC
PMID:22240068
Europe PMC
PMID:22290316
Europe PMC
PMID:22342082
Europe PMC
PMID:22385337
Europe PMC
PMID:22443779
Europe PMC
PMID:22560242
Europe PMC
Reaxys:3587154
Reaxys
AMMONIA
PDBeChem
Ammonia
KEGG_COMPOUND
ammonia
IUPAC
azane
IUPAC
Ammoniak
ChemIDplus
NH3
IUPAC
NH3
KEGG_COMPOUND
NH3
UniProt
R-717
ChEBI
[NH3]
MolBase
ammoniac
ChEBI
amoniaco
ChEBI
spirit of hartshorn
ChemIDplus
A one-carbon compound in which the carbon is attached by single bonds to four hydrogen atoms. It is a colourless, odourless, non-toxic but flammable gas (b.p. -161degreeC).
0
CH4
InChI=1S/CH4/h1H4
VNWKTOKETHGBQD-UHFFFAOYSA-N
16.04246
16.03130
[H]C([H])([H])[H]
CHEBI:14585
CHEBI:25220
CHEBI:6811
Beilstein:1718732
CAS:74-82-8
Gmelin:59
HMDB:HMDB0002714
KEGG:C01438
MetaCyc:CH4
PMID:17791569
PMID:23104415
PMID:23353606
PMID:23376302
PMID:23397538
PMID:23718889
PMID:23739479
PMID:23742231
PMID:23756351
PMID:24132456
PMID:24161402
PMID:24259373
Patent:FR994032
Patent:US2583090
Reaxys:1718732
UM-BBD_compID:c0095
Wikipedia:Methane
Methane
methane
tetrahydridocarbon
chebi_ontology
CH4
Methan
marsh gas
metano
methyl hydride
CHEBI:16183
methane
Beilstein:1718732
ChemIDplus
CAS:74-82-8
ChemIDplus
CAS:74-82-8
KEGG COMPOUND
CAS:74-82-8
NIST Chemistry WebBook
Gmelin:59
Gmelin
PMID:17791569
Europe PMC
PMID:23104415
Europe PMC
PMID:23353606
Europe PMC
PMID:23376302
Europe PMC
PMID:23397538
Europe PMC
PMID:23718889
Europe PMC
PMID:23739479
Europe PMC
PMID:23742231
Europe PMC
PMID:23756351
Europe PMC
PMID:24132456
Europe PMC
PMID:24161402
Europe PMC
PMID:24259373
Europe PMC
Reaxys:1718732
Reaxys
UM-BBD_compID:c0095
UM-BBD
Methane
KEGG_COMPOUND
methane
ChEBI
methane
IUPAC
methane
UniProt
tetrahydridocarbon
IUPAC
CH4
IUPAC
Methan
ChEBI
marsh gas
NIST_Chemistry_WebBook
metano
ChEBI
methyl hydride
ChemIDplus
A sulfur oxoanion obtained by deprotonation of both OH groups of sulfuric acid.
-2
O4S
InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2
QAOWNCQODCNURD-UHFFFAOYSA-L
96.06360
95.95283
[O-]S([O-])(=O)=O
CHEBI:15135
CHEBI:45687
CHEBI:9335
Beilstein:3648446
CAS:14808-79-8
Gmelin:2120
HMDB:HMDB0001448
KEGG:C00059
KEGG:D05963
MetaCyc:SULFATE
PDBeChem:SO4
PMID:11200094
PMID:11452993
PMID:11581495
PMID:11798107
PMID:12166931
PMID:12668033
PMID:14597181
PMID:15093386
PMID:15984785
PMID:16186560
PMID:16345535
PMID:16347366
PMID:16348007
PMID:16483812
PMID:16534979
PMID:16656509
PMID:16742508
PMID:16742518
PMID:17120760
PMID:17420092
PMID:17439666
PMID:17709180
PMID:18398178
PMID:18815700
PMID:18846414
PMID:19047345
PMID:19244483
PMID:19544990
PMID:19628332
PMID:19812358
PMID:30398859
Reaxys:3648446
Wikipedia:Sulfate
Sulfate
sulfate
tetraoxidosulfate(2-)
tetraoxosulfate(2-)
tetraoxosulfate(VI)
chebi_ontology
SO4(2-)
SULFATE ION
Sulfate anion(2-)
Sulfate dianion
Sulfate(2-)
Sulfuric acid ion(2-)
[SO4](2-)
sulphate
sulphate ion
CHEBI:16189
sulfate
Beilstein:3648446
Beilstein
CAS:14808-79-8
ChemIDplus
CAS:14808-79-8
NIST Chemistry WebBook
Gmelin:2120
Gmelin
PMID:11200094
Europe PMC
PMID:11452993
Europe PMC
PMID:11581495
Europe PMC
PMID:11798107
Europe PMC
PMID:12166931
Europe PMC
PMID:12668033
Europe PMC
PMID:14597181
Europe PMC
PMID:15093386
Europe PMC
PMID:15984785
Europe PMC
PMID:16186560
Europe PMC
PMID:16345535
Europe PMC
PMID:16347366
Europe PMC
PMID:16348007
Europe PMC
PMID:16483812
Europe PMC
PMID:16534979
Europe PMC
PMID:16656509
Europe PMC
PMID:16742508
Europe PMC
PMID:16742518
Europe PMC
PMID:17120760
Europe PMC
PMID:17420092
Europe PMC
PMID:17439666
Europe PMC
PMID:17709180
Europe PMC
PMID:18398178
Europe PMC
PMID:18815700
Europe PMC
PMID:18846414
Europe PMC
PMID:19047345
Europe PMC
PMID:19244483
Europe PMC
PMID:19544990
Europe PMC
PMID:19628332
Europe PMC
PMID:19812358
Europe PMC
PMID:30398859
Europe PMC
Reaxys:3648446
Reaxys
Sulfate
KEGG_COMPOUND
sulfate
IUPAC
sulfate
UniProt
tetraoxidosulfate(2-)
IUPAC
tetraoxosulfate(2-)
IUPAC
tetraoxosulfate(VI)
IUPAC
SO4(2-)
IUPAC
SULFATE ION
PDBeChem
Sulfate anion(2-)
HMDB
Sulfate dianion
HMDB
Sulfate(2-)
HMDB
Sulfuric acid ion(2-)
HMDB
[SO4](2-)
IUPAC
sulphate
ChEBI
sulphate ion
ChEBI
A mucopolysaccharide composed of N-acetylglucosamine and glucuronic acid subunits. It is found in the connective tissues of vertebrates. A principal constituent of the extracellular matrix (ECM), it mediates the growth and metastasis of tumour cells.
0
(C14H21NO12)n
CHEBI:14412
CHEBI:24622
CHEBI:24623
CHEBI:5772
Beilstein:8538277
CAS:9004-61-9
HMDB:HMDB0010366
KEGG:C00518
KEGG:D08043
KEGG:G10505
PMID:11122186
PMID:18056362
PMID:18290544
Reaxys:8187837
Wikipedia:Hyaluronan
Hyaluronic acid
chebi_ontology
Hyaluronsaeure
[beta-D-glucopyranuronosyl-(1->3)-2-(acetylamino)-2-deoxy-beta-D-glucopyranosyl-(1->4)]n
[beta-N-Acetyl-D-glucosaminyl(1,4)beta-D-glucuronosyl(1,3)]n
acide hyaluronique
acido hialuronico
hyaluronan
CHEBI:16336
hyaluronic acid
Beilstein:8538277
Beilstein
CAS:9004-61-9
ChemIDplus
CAS:9004-61-9
KEGG COMPOUND
PMID:11122186
Europe PMC
PMID:18056362
Europe PMC
PMID:18290544
Europe PMC
Reaxys:8187837
Reaxys
Hyaluronic acid
KEGG_COMPOUND
Hyaluronsaeure
ChEBI
[beta-D-glucopyranuronosyl-(1->3)-2-(acetylamino)-2-deoxy-beta-D-glucopyranosyl-(1->4)]n
ChEBI
[beta-N-Acetyl-D-glucosaminyl(1,4)beta-D-glucuronosyl(1,3)]n
KEGG_COMPOUND
acide hyaluronique
ChEBI
acido hialuronico
ChEBI
hyaluronan
ChEBI
A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food.
0
CO2
InChI=1S/CO2/c2-1-3
CURLTUGMZLYLDI-UHFFFAOYSA-N
44.010
43.98983
O=C=O
CHEBI:13282
CHEBI:13283
CHEBI:13284
CHEBI:13285
CHEBI:23011
CHEBI:3283
CHEBI:48829
Beilstein:1900390
CAS:124-38-9
Drug_Central:4256
Gmelin:989
HMDB:HMDB0001967
KEGG:C00011
KEGG:D00004
MetaCyc:CARBON-DIOXIDE
MolBase:752
PDBeChem:CO2
PMID:10826146
PMID:11094503
PMID:11584085
PMID:11802652
PMID:14639145
PMID:15050588
PMID:16591971
PMID:16656478
PMID:16659660
PMID:17190796
PMID:17448243
PMID:17878298
PMID:17884085
PMID:19043767
PMID:19259576
PMID:19854893
PMID:23384758
PMID:23828359
PMID:24258718
PMID:8482095
PMID:8818713
PMID:8869828
PMID:9611769
PMID:9730350
PPDB:119
Reaxys:1900390
UM-BBD_compID:c0131
Wikipedia:Carbon_dioxide
CARBON DIOXIDE
Carbon dioxide
carbon dioxide
dioxidocarbon
methanedione
chebi_ontology
CO2
E 290
E-290
E290
R-744
[CO2]
carbonic anhydride
CHEBI:16526
carbon dioxide
Beilstein:1900390
Beilstein
CAS:124-38-9
ChemIDplus
CAS:124-38-9
KEGG COMPOUND
CAS:124-38-9
NIST Chemistry WebBook
Drug_Central:4256
DrugCentral
Gmelin:989
Gmelin
PMID:10826146
Europe PMC
PMID:11094503
Europe PMC
PMID:11584085
Europe PMC
PMID:11802652
Europe PMC
PMID:14639145
Europe PMC
PMID:15050588
Europe PMC
PMID:16591971
Europe PMC
PMID:16656478
Europe PMC
PMID:16659660
Europe PMC
PMID:17190796
Europe PMC
PMID:17448243
Europe PMC
PMID:17878298
Europe PMC
PMID:17884085
Europe PMC
PMID:19043767
Europe PMC
PMID:19259576
Europe PMC
PMID:19854893
Europe PMC
PMID:23384758
Europe PMC
PMID:23828359
Europe PMC
PMID:24258718
Europe PMC
PMID:8482095
Europe PMC
PMID:8818713
Europe PMC
PMID:8869828
Europe PMC
PMID:9611769
Europe PMC
PMID:9730350
Europe PMC
Reaxys:1900390
Reaxys
UM-BBD_compID:c0131
UM-BBD
CARBON DIOXIDE
PDBeChem
Carbon dioxide
KEGG_COMPOUND
carbon dioxide
IUPAC
dioxidocarbon
IUPAC
methanedione
IUPAC
CO2
KEGG_COMPOUND
CO2
UniProt
E 290
ChEBI
E-290
ChEBI
E290
ChEBI
R-744
ChEBI
[CO2]
MolBase
carbonic anhydride
UM-BBD
A naturally occurring polypeptide synthesized at the ribosome.
CHEBI:8526
KEGG:C00017
chebi_ontology
Protein
polypeptide chain
protein polypeptide chains
CHEBI:16541
protein polypeptide chain
Protein
KEGG_COMPOUND
polypeptide chain
ChEBI
protein polypeptide chains
ChEBI
Any member of the class of organooxygen compounds that is a polyhydroxy-aldehyde or -ketone or a lactol resulting from their intramolecular condensation (monosaccharides); substances derived from these by reduction of the carbonyl group (alditols), by oxidation of one or more hydroxy groups to afford the corresponding aldehydes, ketones, or carboxylic acids, or by replacement of one or more hydroxy group(s) by a hydrogen atom; and polymeric products arising by intermolecular acetal formation between two or more such molecules (disaccharides, polysaccharides and oligosaccharides). Carbohydrates contain only carbon, hydrogen and oxygen atoms; prior to any oxidation or reduction, most have the empirical formula Cm(H2O)n. Compounds obtained from carbohydrates by substitution, etc., are known as carbohydrate derivatives and may contain other elements. Cyclitols are generally not regarded as carbohydrates.
CHEBI:15131
CHEBI:23008
CHEBI:9318
Wikipedia:Carbohydrate
carbohydrate
carbohydrates
chebi_ontology
Kohlenhydrat
Kohlenhydrate
a carbohydrate
carbohidrato
carbohidratos
glucide
glucides
glucido
glucidos
hydrates de carbone
saccharide
saccharides
saccharidum
CHEBI:16646
carbohydrate
carbohydrate
IUPAC
carbohydrates
IUPAC
Kohlenhydrat
ChEBI
Kohlenhydrate
ChEBI
a carbohydrate
UniProt
carbohidrato
IUPAC
carbohidratos
IUPAC
glucide
ChEBI
glucides
ChEBI
glucido
ChEBI
glucidos
ChEBI
hydrates de carbone
ChEBI
saccharide
IUPAC
saccharides
IUPAC
saccharidum
ChEBI
Amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another with formal loss of water. The term is usually applied to structures formed from alpha-amino acids, but it includes those derived from any amino carboxylic acid. X = OH, OR, NH2, NHR, etc.
0
(C2H2NOR)nC2H3NOR
CHEBI:14753
CHEBI:25906
CHEBI:7990
KEGG:C00012
Peptide
peptides
chebi_ontology
Peptid
peptido
peptidos
CHEBI:16670
peptide
Peptide
KEGG_COMPOUND
peptides
IUPAC
Peptid
ChEBI
peptido
ChEBI
peptidos
ChEBI
+1
C8H12NO3
InChI=1S/C8H11NO3/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8,10-12H,4,9H2/p+1
SFLSHLFXELFNJZ-UHFFFAOYSA-O
170.187
170.08117
C1=CC(=CC(=C1O)O)C(C[NH3+])O
chebi_ontology
noradrenaline
CHEBI:166902
noradrenaline(1+)
noradrenaline
UniProt
Any oligosaccharide, polysaccharide or their derivatives consisting of monosaccharides or monosaccharide derivatives linked by glycosidic bonds. See also http://www.ontobee.org/ontology/GNO?iri=http://purl.obolibrary.org/obo/GNO_00000001.
chebi_ontology
glycans
CHEBI:167559
glycan
glycans
ChEBI
An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position.
0
C10H12N2
InChI=1S/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H2
APJYDQYYACXCRM-UHFFFAOYSA-N
160.21570
160.10005
NCCc1c[nH]c2ccccc12
CHEBI:15274
CHEBI:27161
CHEBI:46157
CHEBI:9767
Beilstein:125513
CAS:61-54-1
DrugBank:DB08653
Gmelin:603448
HMDB:HMDB0000303
KEGG:C00398
KNApSAcK:C00001434
MetaCyc:TRYPTAMINE
PDBeChem:TSS
PMID:16126914
PMID:22770225
PMID:24345948
PMID:24558969
Reaxys:125513
Wikipedia:Tryptamine
2-(1H-indol-3-yl)ethanamine
Tryptamine
chebi_ontology
1H-indole-3-ethanamine
2-(1H-INDOL-3-YL)ETHANAMINE
2-(3-indolyl)ethylamine
3-(2-Aminoethyl)indole
CHEBI:16765
tryptamine
Beilstein:125513
Beilstein
CAS:61-54-1
ChemIDplus
CAS:61-54-1
KEGG COMPOUND
CAS:61-54-1
NIST Chemistry WebBook
Gmelin:603448
Gmelin
PMID:16126914
Europe PMC
PMID:22770225
Europe PMC
PMID:24345948
Europe PMC
PMID:24558969
Europe PMC
Reaxys:125513
Reaxys
2-(1H-indol-3-yl)ethanamine
IUPAC
Tryptamine
KEGG_COMPOUND
1H-indole-3-ethanamine
NIST_Chemistry_WebBook
2-(1H-INDOL-3-YL)ETHANAMINE
PDBeChem
2-(3-indolyl)ethylamine
ChemIDplus
3-(2-Aminoethyl)indole
KEGG_COMPOUND
0
C35H34MgN4O5
InChI=1S/C35H36N4O5.Mg/c1-8-19-15(3)22-12-24-17(5)21(10-11-28(40)41)32(38-24)30-31(35(43)44-7)34(42)29-18(6)25(39-33(29)30)14-27-20(9-2)16(4)23(37-27)13-26(19)36-22;/h8,12-14,17,21,31H,1,9-11H2,2-7H3,(H3,36,37,38,39,40,41,42);/q;+2/p-2/t17-,21-,31+;/m0./s1
ANWUQYTXRXCEMZ-NYABAGMLSA-L
614.97300
614.23796
CCC1=C(C)C2=Cc3c(C=C)c(C)c4C=C5[C@@H](C)[C@H](CCC(O)=O)C6=[N+]5[Mg--]5(n34)n3c(=CC1=[N+]25)c(C)c1C(=O)[C@H](C(=O)OC)C6=c31
CHEBI:13976
CHEBI:13977
CHEBI:23159
CHEBI:3633
Beilstein:5801116
CAS:14897-06-4
KEGG:C02139
KNApSAcK:C00007316
Chlorophyllide a
chebi_ontology
Chlorophyllid a
CHEBI:16900
chlorophyllide a
Beilstein:5801116
Beilstein
CAS:14897-06-4
ChemIDplus
CAS:14897-06-4
KEGG COMPOUND
Chlorophyllide a
KEGG_COMPOUND
Chlorophyllid a
ChEBI
High molecular weight, linear polymers, composed of nucleotides containing deoxyribose and linked by phosphodiester bonds; DNA contain the genetic information of organisms.
CHEBI:13302
CHEBI:21123
CHEBI:33698
CHEBI:4291
CAS:9007-49-2
KEGG:C00039
Deoxyribonucleic acid
deoxyribonucleic acids
chebi_ontology
(Deoxyribonucleotide)m
(Deoxyribonucleotide)n
(Deoxyribonucleotide)n+m
DNA
DNAn
DNAn+1
DNS
Desoxyribonukleinsaeure
deoxyribonucleic acids
desoxyribose nucleic acid
thymus nucleic acid
CHEBI:16991
deoxyribonucleic acid
CAS:9007-49-2
ChemIDplus
CAS:9007-49-2
KEGG COMPOUND
Deoxyribonucleic acid
KEGG_COMPOUND
deoxyribonucleic acids
IUPAC
(Deoxyribonucleotide)m
KEGG_COMPOUND
(Deoxyribonucleotide)n
KEGG_COMPOUND
(Deoxyribonucleotide)n+m
KEGG_COMPOUND
DNA
IUPAC
DNA
KEGG_COMPOUND
DNAn
KEGG_COMPOUND
DNAn+1
KEGG_COMPOUND
DNS
ChEBI
Desoxyribonukleinsaeure
ChEBI
deoxyribonucleic acids
ChEBI
desoxyribose nucleic acid
ChemIDplus
thymus nucleic acid
ChEBI
A compound in which a carbonyl group is bonded to two carbon atoms: R2C=O (neither R may be H).
0
COR2
28.010
27.99491
[*]C([*])=O
CHEBI:13427
CHEBI:13646
CHEBI:24974
CHEBI:6127
CHEBI:8742
KEGG:C01450
Wikipedia:Ketone
Ketone
ketones
chebi_ontology
Keton
R-CO-R'
a ketone
cetone
ketones
CHEBI:17087
ketone
Ketone
KEGG_COMPOUND
ketones
IUPAC
Keton
ChEBI
R-CO-R'
KEGG_COMPOUND
a ketone
UniProt
cetone
ChEBI
ketones
ChEBI
A compound in which a carbohydrate component is covalently bound to a protein component.
CHEBI:14349
CHEBI:5481
CHEBI:5493
KEGG:C00326
Glycoprotein
glycoproteins
chebi_ontology
Glykoprotein
Glykoproteine
glicoproteina
glicoproteinas
glycoproteine
glycoproteines
CHEBI:17089
glycoprotein
Glycoprotein
KEGG_COMPOUND
glycoproteins
IUPAC
Glykoprotein
ChEBI
Glykoproteine
ChEBI
glicoproteina
ChEBI
glicoproteinas
ChEBI
glycoproteine
ChEBI
glycoproteines
ChEBI
A one-carbon compound in which the carbon is joined only to a single oxygen. It is a colourless, odourless, tasteless, toxic gas.
0
CO
InChI=1S/CO/c1-2
UGFAIRIUMAVXCW-UHFFFAOYSA-N
28.01010
27.99491
[C-]#[O+]
CHEBI:13281
CHEBI:23013
CHEBI:3282
CHEBI:41526
Beilstein:1900508
Beilstein:3535285
Beilstein:3587264
CAS:630-08-0
Gmelin:421
HMDB:HMDB0001361
KEGG:C00237
KEGG:D09706
MetaCyc:CARBON-MONOXIDE
MolBase:753
PDBeChem:CMO
PMID:10085152
PMID:10679539
PMID:11572959
PMID:14527438
PMID:14563665
PMID:15127883
PMID:15598489
PMID:16371440
PMID:16520836
PMID:17041734
PMID:18094356
PMID:19909254
PMID:23762709
PMID:7022476
PMID:8240252
PMID:8620577
UM-BBD_compID:c0369
Wikipedia:Carbon_monoxide
CARBON MONOXIDE
Carbon monoxide
carbon monooxide
carbon monoxide
carbon(II) oxide
chebi_ontology
C#O
CO
[CO]
CHEBI:17245
carbon monoxide
Beilstein:1900508
Beilstein
Beilstein:3535285
Beilstein
Beilstein:3587264
Beilstein
CAS:630-08-0
ChemIDplus
CAS:630-08-0
KEGG COMPOUND
CAS:630-08-0
NIST Chemistry WebBook
Gmelin:421
Gmelin
PMID:10085152
Europe PMC
PMID:10679539
Europe PMC
PMID:11572959
Europe PMC
PMID:14527438
Europe PMC
PMID:14563665
Europe PMC
PMID:15127883
Europe PMC
PMID:15598489
Europe PMC
PMID:16371440
Europe PMC
PMID:16520836
Europe PMC
PMID:17041734
Europe PMC
PMID:18094356
Europe PMC
PMID:19909254
Europe PMC
PMID:23762709
Europe PMC
PMID:7022476
Europe PMC
PMID:8240252
Europe PMC
PMID:8620577
Europe PMC
UM-BBD_compID:c0369
UM-BBD
CARBON MONOXIDE
PDBeChem
Carbon monoxide
KEGG_COMPOUND
carbon monooxide
IUPAC
carbon monoxide
IUPAC
carbon(II) oxide
IUPAC
C#O
ChEBI
CO
KEGG_COMPOUND
CO
UniProt
[CO]
MolBase
A nitrogen oxoanion formed by loss of a proton from nitric acid. Principal species present at pH 7.3.
-1
NO3
InChI=1S/NO3/c2-1(3)4/q-1
NHNBFGGVMKEFGY-UHFFFAOYSA-N
62.00490
61.98837
[O-][N+]([O-])=O
CHEBI:14654
CHEBI:44487
CHEBI:71263
Beilstein:3587575
CAS:14797-55-8
Gmelin:1574
MetaCyc:NITRATE
PDBeChem:NO3
Wikipedia:Nitrate
nitrate
trioxidonitrate(1-)
trioxonitrate(1-)
trioxonitrate(V)
chebi_ontology
NITRATE ION
NO3
NO3(-)
[NO3](-)
nitrate(1-)
CHEBI:17632
nitrate
Beilstein:3587575
Beilstein
CAS:14797-55-8
ChemIDplus
CAS:14797-55-8
NIST Chemistry WebBook
Gmelin:1574
Gmelin
MetaCyc:NITRATE
SUBMITTER
nitrate
IUPAC
nitrate
UniProt
trioxidonitrate(1-)
IUPAC
trioxonitrate(1-)
IUPAC
trioxonitrate(V)
IUPAC
NITRATE ION
PDBeChem
NO3
ChEBI
NO3(-)
IUPAC
[NO3](-)
IUPAC
nitrate(1-)
ChemIDplus
The primary alcohol that is the simplest aliphatic alcohol, comprising a methyl and an alcohol group.
0
CH4O
InChI=1S/CH4O/c1-2/h2H,1H3
OKKJLVBELUTLKV-UHFFFAOYSA-N
32.04186
32.02621
CO
CHEBI:14588
CHEBI:25227
CHEBI:44080
CHEBI:44553
CHEBI:6816
Beilstein:1098229
CAS:67-56-1
Gmelin:449
HMDB:HMDB0001875
KEGG:C00132
KEGG:D02309
MetaCyc:METOH
PDBeChem:MOH
PMID:11141607
PMID:11430978
PMID:11489599
PMID:11680737
PMID:11684179
PMID:14012711
PMID:14678513
PMID:14760634
PMID:15172721
PMID:15906011
PMID:16705261
PMID:17451998
PMID:17733096
PMID:19064074
PMID:19850112
PMID:20314698
Reaxys:1098229
UM-BBD_compID:c0132
Wikipedia:Methanol
METHANOL
Methanol
methanol
chebi_ontology
CH3OH
MeOH
Methyl alcohol
Methylalkohol
carbinol
spirit of wood
wood alcohol
wood naphtha
wood spirit
CHEBI:17790
methanol
Beilstein:1098229
Beilstein
CAS:67-56-1
ChemIDplus
CAS:67-56-1
KEGG COMPOUND
CAS:67-56-1
NIST Chemistry WebBook
Gmelin:449
Gmelin
PMID:11141607
Europe PMC
PMID:11430978
Europe PMC
PMID:11489599
Europe PMC
PMID:11680737
Europe PMC
PMID:11684179
Europe PMC
PMID:14012711
Europe PMC
PMID:14678513
Europe PMC
PMID:14760634
Europe PMC
PMID:15172721
Europe PMC
PMID:15906011
Europe PMC
PMID:16705261
Europe PMC
PMID:17451998
Europe PMC
PMID:17733096
Europe PMC
PMID:19064074
Europe PMC
PMID:19850112
Europe PMC
PMID:20314698
Europe PMC
Reaxys:1098229
Reaxys
UM-BBD_compID:c0132
UM-BBD
METHANOL
PDBeChem
Methanol
KEGG_COMPOUND
methanol
IUPAC
methanol
UniProt
CH3OH
ChEBI
MeOH
ChEBI
Methyl alcohol
KEGG_COMPOUND
Methylalkohol
NIST_Chemistry_WebBook
carbinol
ChemIDplus
spirit of wood
HMDB
wood alcohol
ChemIDplus
wood naphtha
ChemIDplus
wood spirit
NIST_Chemistry_WebBook
A molecular entity that can transfer ("donate") an electron, a pair of electrons, an atom or a group to another molecular entity.
CHEBI:14202
CHEBI:4697
KEGG:C01351
Donor
chebi_ontology
Donator
donneur
CHEBI:17891
donor
Donor
KEGG_COMPOUND
Donator
ChEBI
donneur
ChEBI
'Lipids' is a loosely defined term for substances of biological origin that are soluble in nonpolar solvents. They consist of saponifiable lipids, such as glycerides (fats and oils) and phospholipids, as well as nonsaponifiable lipids, principally steroids.
CHEBI:14517
CHEBI:25054
CHEBI:6486
KEGG:C01356
Lipid
lipids
chebi_ontology
CHEBI:18059
lipid
Lipid
KEGG_COMPOUND
lipids
IUPAC
Any polysaccharide containing a substantial proportion of aminomonosaccharide residues.
CHEBI:14361
CHEBI:24398
CHEBI:5495
KEGG:C02545
Wikipedia:Glycosaminoglycan
Glycosaminoglycan
glycosaminoglycan
chebi_ontology
Glykosaminoglykan
glicosaminoglicano
glycosaminoglycane
glycosaminoglycans
CHEBI:18085
glycosaminoglycan
Glycosaminoglycan
KEGG_COMPOUND
glycosaminoglycan
IUPAC
Glykosaminoglykan
ChEBI
glicosaminoglicano
IUPAC
glycosaminoglycane
IUPAC
glycosaminoglycans
ChEBI
A biomacromolecule consisting of large numbers of monosaccharide residues linked glycosidically. This term is commonly used only for those containing more than ten monosaccharide residues.
CHEBI:14864
CHEBI:26205
CHEBI:8322
KEGG:C00420
Polysaccharide
polysaccharides
chebi_ontology
Glycan
Glycane
Glykan
Glykane
glycans
polisacarido
polisacaridos
CHEBI:18154
polysaccharide
Polysaccharide
KEGG_COMPOUND
polysaccharides
IUPAC
Glycan
KEGG_COMPOUND
Glycane
ChEBI
Glykan
ChEBI
Glykane
ChEBI
glycans
IUPAC
polisacarido
ChEBI
polisacaridos
IUPAC
0
C55H72MgN4O5
InChI=1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32-,33-,37+,41+,51-;/m1./s1
ATNHDLDRLWWWCB-AENOIHSZSA-M
893.48900
892.53531
CCC1=C(C)C2=Cc3c(C=C)c(C)c4C=C5[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C6=[N+]5[Mg--]5(n34)n3c(=CC1=[N+]25)c(C)c1C(=O)[C@H](C(=O)OC)C6=c31
CHEBI:13974
CHEBI:23157
CHEBI:3631
CHEBI:48807
Beilstein:1208847
Beilstein:4651978
CAS:479-61-8
COMe:MOL000003
DrugBank:DB02133
Gmelin:475109
KEGG:C05306
KNApSAcK:C00001528
PDBeChem:CLA
CHLOROPHYLL A
Chlorophyll a
[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl (2(2)R,17S,18S)-7-ethyl-2(1),2(2),17,18-tetrahydro-2(2)-(methoxycarbonyl)-3,8,13,17-tetramethyl-2(1)-oxo-12-ethenylcyclopenta[at]porphyrin-18-propanoato(2-)]magnesium
chebi_ontology
(SP-4-2)-((2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecenyl (3S,4S,21R)-9-ethenyl-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoato(2-)-kappaN(23),kappaN(24),kappaN(25),kappaN(26))-magnesium
Chlorophyll
CHEBI:18230
chlorophyll a
Beilstein:1208847
Beilstein
Beilstein:4651978
Beilstein
CAS:479-61-8
ChemIDplus
CAS:479-61-8
KEGG COMPOUND
Gmelin:475109
Gmelin
CHLOROPHYLL A
PDBeChem
Chlorophyll a
KEGG_COMPOUND
[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl (2(2)R,17S,18S)-7-ethyl-2(1),2(2),17,18-tetrahydro-2(2)-(methoxycarbonyl)-3,8,13,17-tetramethyl-2(1)-oxo-12-ethenylcyclopenta[at]porphyrin-18-propanoato(2-)]magnesium
IUPAC
(SP-4-2)-((2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecenyl (3S,4S,21R)-9-ethenyl-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoato(2-)-kappaN(23),kappaN(24),kappaN(25),kappaN(26))-magnesium
ChemIDplus
Chlorophyll
ChemIDplus
That part of DNA or RNA that may be involved in pairing.
CHEBI:13873
CHEBI:25598
CHEBI:2995
KEGG:C00701
Wikipedia:Nucleobase
chebi_ontology
Base
nucleobases
CHEBI:18282
nucleobase
Base
KEGG_COMPOUND
nucleobases
ChEBI
An acyclic branched or unbranched hydrocarbon having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms.
0
CH3R
15.035
15.02348
C[*]
CHEBI:13435
CHEBI:22317
CHEBI:2576
KEGG:C01371
Alkane
alkane
alkanes
chebi_ontology
Alkan
RH
alcane
alcanes
alcano
alcanos
an alkane
CHEBI:18310
alkane
Alkane
KEGG_COMPOUND
alkane
IUPAC
alkanes
IUPAC
Alkan
ChEBI
RH
KEGG_COMPOUND
alcane
IUPAC
alcanes
IUPAC
alcano
IUPAC
alcanos
IUPAC
an alkane
UniProt
A phosphate ion that is the conjugate base of hydrogenphosphate.
-3
O4P
InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3
NBIIXXVUZAFLBC-UHFFFAOYSA-K
94.97136
94.95507
[O-]P([O-])([O-])=O
CHEBI:14791
CHEBI:45024
CHEBI:7793
Beilstein:3903772
CAS:14265-44-2
Gmelin:1997
KEGG:C00009
PDBeChem:PO4
Reaxys:3903772
phosphate
tetraoxidophosphate(3-)
tetraoxophosphate(3-)
tetraoxophosphate(V)
chebi_ontology
Orthophosphate
PHOSPHATE ION
PO4(3-)
Phosphate
[PO4](3-)
CHEBI:18367
phosphate(3-)
Beilstein:3903772
Beilstein
CAS:14265-44-2
ChemIDplus
CAS:14265-44-2
KEGG COMPOUND
Gmelin:1997
Gmelin
PDBeChem:PO4
ChEBI
Reaxys:3903772
Reaxys
phosphate
IUPAC
tetraoxidophosphate(3-)
IUPAC
tetraoxophosphate(3-)
IUPAC
tetraoxophosphate(V)
IUPAC
Orthophosphate
KEGG_COMPOUND
PHOSPHATE ION
PDBeChem
PO4(3-)
IUPAC
Phosphate
KEGG_COMPOUND
[PO4](3-)
IUPAC
An organic group formed by removing one or more hydroxy groups from an oxoacid that has the general structure RkE(=O)l(OH)m (l =/= 0). Although the term is almost always applied to organic compounds, with carboxylic acid as the oxoacid, acyl groups can in principle be derived from other types of acids such as sulfonic acids or phosphonic acids.
acyl group
alkanoyl
chebi_ontology
acyl groups
alkanoyl group
groupe acyle
CHEBI:22221
acyl group
acyl group
IUPAC
alkanoyl
IUPAC
acyl groups
ChEBI
alkanoyl group
ChEBI
groupe acyle
IUPAC
alkaline earth metals
chebi_ontology
Erdalkalimetall
Erdalkalimetalle
alkaline earth metal
alkaline-earth metal
alkaline-earth metals
metal alcalino-terreux
metal alcalinoterreo
metales alcalinoterreos
metaux alcalino-terreux
CHEBI:22313
alkaline earth metal atom
alkaline earth metals
IUPAC
Erdalkalimetall
ChEBI
Erdalkalimetalle
ChEBI
alkaline earth metal
ChEBI
alkaline-earth metal
ChEBI
alkaline-earth metals
ChEBI
metal alcalino-terreux
ChEBI
metal alcalinoterreo
ChEBI
metales alcalinoterreos
ChEBI
metaux alcalino-terreux
ChEBI
Any of the naturally occurring, basic nitrogen compounds (mostly heterocyclic) occurring mostly in the plant kingdom, but also found in bacteria, fungi, and animals. By extension, certain neutral compounds biogenetically related to basic alkaloids are also classed as alkaloids. Amino acids, peptides, proteins, nucleotides, nucleic acids, amino sugars and antibiotics are not normally regarded as alkaloids. Compounds in which the nitrogen is exocyclic (dopamine, mescaline, serotonin, etc.) are usually classed as amines rather than alkaloids.
Wikipedia:Alkaloid
Alkaloid
alkaloids
chebi_ontology
Alkaloide
alcaloide
alcaloides
CHEBI:22315
alkaloid
Alkaloid
ChEBI
alkaloids
IUPAC
Alkaloide
ChEBI
alcaloide
ChEBI
alcaloides
ChEBI
chebi_ontology
aminoglycans
CHEBI:22506
aminoglycan
aminoglycans
ChEBI
A monoatomic or polyatomic species having one or more elementary charges of the electron.
Anion
anion
chebi_ontology
Anionen
aniones
anions
CHEBI:22563
anion
Anion
ChEBI
anion
ChEBI
anion
IUPAC
Anionen
ChEBI
aniones
ChEBI
anions
IUPAC
A molecular entity having an available pair of electrons capable of forming a covalent bond with a hydron (Bronsted base) or with the vacant orbital of some other molecular entity (Lewis base).
KEGG:C00701
Base
base
chebi_ontology
Base1
Base2
Basen
Nucleobase
bases
CHEBI:22695
base
Base
ChEBI
base
ChEBI
base
IUPAC
Base1
KEGG_COMPOUND
Base2
KEGG_COMPOUND
Basen
ChEBI
Nucleobase
KEGG_COMPOUND
bases
ChEBI
chebi_ontology
benzopyrroles
CHEBI:22728
benzopyrrole
benzopyrroles
ChEBI
The univalent carboacyl group formed by loss of -OH from the carboxy group of carbamic acid.
0
CH2NO
44.03272
44.01364
*C(N)=O
PMID:24168430
carbamoyl
chebi_ontology
-C(O)NH2
-CONH2
aminocarbonyl
carbamyl
carbamyl group
carboxamide
CHEBI:23004
carbamoyl group
PMID:24168430
Europe PMC
carbamoyl
IUPAC
-C(O)NH2
ChEBI
-CONH2
IUPAC
aminocarbonyl
IUPAC
carbamyl
ChEBI
carbamyl group
ChEBI
carboxamide
IUPAC
chebi_ontology
carbon oxides
oxides of carbon
CHEBI:23014
carbon oxide
carbon oxides
ChEBI
oxides of carbon
ChEBI
0
CO
28.01010
27.99491
O=C(*)*
carbonyl
carbonyl group
chebi_ontology
>C=O
CHEBI:23019
carbonyl group
carbonyl
IUPAC
carbonyl group
ChEBI
carbonyl group
UniProt
>C=O
IUPAC
An organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly (prosthetic group).
Wikipedia:Cofactor_(biochemistry)
cofactor
cofactors
chebi_ontology
CHEBI:23357
cofactor
cofactor
IUPAC
cofactors
IUPAC
Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity.
molecular entity
chebi_ontology
entidad molecular
entidades moleculares
entite moleculaire
molecular entities
molekulare Entitaet
CHEBI:23367
molecular entity
Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity.
fake:2
molecular entity
IUPAC
entidad molecular
IUPAC
entidades moleculares
IUPAC
entite moleculaire
IUPAC
molecular entities
IUPAC
molekulare Entitaet
ChEBI
chebi_ontology
Cyclopeptid
Zyklopeptid
cyclic peptides
peptide cyclique
peptido ciclico
CHEBI:23449
cyclic peptide
Cyclopeptid
ChEBI
Zyklopeptid
ChEBI
cyclic peptides
ChEBI
peptide cyclique
IUPAC
peptido ciclico
IUPAC
Any substance which when absorbed into a living organism may modify one or more of its functions. The term is generally accepted for a substance taken for a therapeutic purpose, but is also commonly used for abused substances.
chebi_ontology
drugs
medicine
CHEBI:23888
drug
drugs
ChEBI
medicine
ChEBI
A compound or agent that combines with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
enzyme inhibitor
chebi_ontology
enzyme inhibitors
inhibidor enzimatico
inhibidores enzimaticos
inhibiteur enzymatique
inhibiteurs enzymatiques
CHEBI:23924
enzyme inhibitor
enzyme inhibitor
IUPAC
enzyme inhibitors
ChEBI
inhibidor enzimatico
ChEBI
inhibidores enzimaticos
ChEBI
inhibiteur enzymatique
ChEBI
inhibiteurs enzymatiques
ChEBI
A chemical entity is a physical entity of interest in chemistry including molecular entities, parts thereof, and chemical substances.
chemical entity
chebi_ontology
CHEBI:24431
chemical entity
chemical entity
UniProt
A role played by the molecular entity or part thereof within a biological context.
chebi_ontology
biological function
CHEBI:24432
biological role
biological function
ChEBI
A defined linked collection of atoms or a single atom within a molecular entity.
group
chebi_ontology
Gruppe
Rest
groupe
grupo
grupos
CHEBI:24433
group
group
IUPAC
Gruppe
ChEBI
Rest
ChEBI
groupe
IUPAC
grupo
IUPAC
grupos
IUPAC
A cyclic compound having as ring members atoms of carbon and at least of one other element.
chebi_ontology
organic heterocycle
organic heterocyclic compounds
CHEBI:24532
organic heterocyclic compound
organic heterocycle
ChEBI
organic heterocyclic compounds
ChEBI
A heterodetic cyclic peptide is a peptide consisting only of amino-acid residues, but in which the linkages forming the ring are not solely peptide bonds; one or more is an isopeptide, disulfide, ester, or other bond.
heterodetic cyclic peptide
chebi_ontology
heterodetic cyclic peptides
peptide cyclique heterodetique
peptido ciclico heterodetico
CHEBI:24533
heterodetic cyclic peptide
heterodetic cyclic peptide
IUPAC
heterodetic cyclic peptides
ChEBI
peptide cyclique heterodetique
IUPAC
peptido ciclico heterodetico
IUPAC
Originally referring to an endogenous compound that is formed in specialized organ or group of cells and carried to another organ or group of cells, in the same organism, upon which it has a specific regulatory function, the term is now commonly used to include non-endogenous, semi-synthetic and fully synthetic analogues of such compounds.
chebi_ontology
endocrine
hormones
CHEBI:24621
hormone
endocrine
ChEBI
hormones
ChEBI
A compound consisting of carbon and hydrogen only.
hydrocarbon
hydrocarbons
chebi_ontology
Kohlenwasserstoff
Kohlenwasserstoffe
hidrocarburo
hidrocarburos
hydrocarbure
CHEBI:24632
hydrocarbon
hydrocarbon
IUPAC
hydrocarbons
IUPAC
Kohlenwasserstoff
ChEBI
Kohlenwasserstoffe
ChEBI
hidrocarburo
IUPAC
hidrocarburos
IUPAC
hydrocarbure
IUPAC
Hydroxides are chemical compounds containing a hydroxy group or salts containing hydroxide (OH(-)).
chebi_ontology
CHEBI:24651
hydroxides
Any compound containing an indole skeleton.
chebi_ontology
CHEBI:24828
indoles
A compound which contains oxygen, at least one other element, and at least one hydrogen bound to oxygen, and which produces a conjugate base by loss of positive hydrogen ion(s) (hydrons).
oxoacid
oxoacids
chebi_ontology
oxacids
oxiacids
oxo acid
oxy-acids
oxyacids
CHEBI:24833
oxoacid
oxoacid
IUPAC
oxoacids
IUPAC
oxacids
ChEBI
oxiacids
ChEBI
oxo acid
ChEBI
oxy-acids
ChEBI
oxyacids
ChEBI
chebi_ontology
inorganic anions
CHEBI:24834
inorganic anion
inorganic anions
ChEBI
A molecular entity that contains no carbon.
chebi_ontology
anorganische Verbindungen
inorganic compounds
inorganic entity
inorganic molecular entities
inorganics
CHEBI:24835
inorganic molecular entity
anorganische Verbindungen
ChEBI
inorganic compounds
ChEBI
inorganic entity
ChEBI
inorganic molecular entities
ChEBI
inorganics
ChEBI
chebi_ontology
inorganic oxides
CHEBI:24836
inorganic oxide
inorganic oxides
ChEBI
A molecular entity having a net electric charge.
Ion
ion
chebi_ontology
Ionen
iones
ions
CHEBI:24870
ion
Ion
ChEBI
ion
ChEBI
ion
IUPAC
Ionen
ChEBI
iones
ChEBI
ions
ChEBI
0
Mg
InChI=1S/Mg
FYYHWMGAXLPEAU-UHFFFAOYSA-N
24.30500
23.98504
[Mg]
CAS:7439-95-4
DrugBank:DB01378
Gmelin:16207
KEGG:C00305
WebElements:Mg
magnesium
chebi_ontology
12Mg
Magnesium
Mg
magnesio
magnesium
CHEBI:25107
magnesium atom
CAS:7439-95-4
ChemIDplus
Gmelin:16207
Gmelin
magnesium
IUPAC
12Mg
IUPAC
Magnesium
ChEBI
Mg
IUPAC
Mg
UniProt
magnesio
ChEBI
magnesium
ChEBI
magnesium molecular entity
chebi_ontology
magnesium compounds
magnesium molecular entities
CHEBI:25108
magnesium molecular entity
magnesium molecular entity
ChEBI
magnesium compounds
ChEBI
magnesium molecular entities
ChEBI
chebi_ontology
magnesium porphyrins
CHEBI:25111
magnesium porphyrin
magnesium porphyrins
ChEBI
Any intermediate or product resulting from metabolism. The term 'metabolite' subsumes the classes commonly known as primary and secondary metabolites.
CHEBI:26619
CHEBI:35220
metabolite
chebi_ontology
metabolites
primary metabolites
secondary metabolites
CHEBI:25212
metabolite
metabolite
IUPAC
metabolites
ChEBI
primary metabolites
ChEBI
secondary metabolites
ChEBI
chebi_ontology
metalloporphyrins
metaloporphyrins
CHEBI:25216
metalloporphyrin
metalloporphyrins
ChEBI
metaloporphyrins
ChEBI
Any carboxylic ester resulting from the formal condensation of a carboxy group with methanol.
0
C2H3O2R
59.044
59.01330
COC([*])=O
chebi_ontology
carboxylic acid methyl ester
carboxylic acid methyl esters
CHEBI:25248
methyl ester
carboxylic acid methyl ester
ChEBI
carboxylic acid methyl esters
ChEBI
chebi_ontology
mitochondrial electron transport chain inhibitors
mitochondrial electron-transport chain inhibitor
mitochondrial respiratory chain inhibitors
CHEBI:25355
mitochondrial respiratory-chain inhibitor
mitochondrial electron transport chain inhibitors
ChEBI
mitochondrial electron-transport chain inhibitor
ChEBI
mitochondrial respiratory chain inhibitors
ChEBI
A molecule all atoms of which have the same atomic number.
chebi_ontology
homoatomic molecule
homoatomic molecules
CHEBI:25362
elemental molecule
homoatomic molecule
ChEBI
homoatomic molecules
ChEBI
Any polyatomic entity that is an electrically neutral entity consisting of more than one atom.
molecule
chebi_ontology
Molekuel
molecula
molecules
neutral molecular compounds
CHEBI:25367
molecule
molecule
IUPAC
Molekuel
ChEBI
molecula
IUPAC
molecules
IUPAC
neutral molecular compounds
IUPAC
A group of neurotransmitters and neuromodulators that contain one amino group that is connected to an aromatic ring by ethylene group (-CH2-CH2-). Monoamines are derived from the aromatic amino acids phenylalanine, tyrosine, histidine and tryptophan.
chebi_ontology
monamines
monoamines
CHEBI:25375
monoamine molecular messenger
monamines
ChEBI
monoamines
ChEBI
An oxoacid containing a single carboxy group.
chebi_ontology
monocarboxylic acids
CHEBI:25384
monocarboxylic acid
monocarboxylic acids
ChEBI
An endogenous compound that is used to transmit information across the synapse between a neuron and another cell.
Wikipedia:Neurotransmitter
chebi_ontology
neurotransmitters
CHEBI:25512
neurotransmitter
neurotransmitters
ChEBI
0
N
14.007
14.00307
WebElements:N
nitrogen
chebi_ontology
7N
N
Stickstoff
azote
nitrogen
nitrogeno
CHEBI:25555
nitrogen atom
nitrogen
IUPAC
7N
IUPAC
N
IUPAC
Stickstoff
ChEBI
azote
IUPAC
nitrogen
ChEBI
nitrogeno
ChEBI
nonmetal
chebi_ontology
Nichtmetall
Nichtmetalle
no metal
no metales
non-metal
non-metaux
nonmetal
nonmetals
CHEBI:25585
nonmetal atom
nonmetal
IUPAC
Nichtmetall
ChEBI
Nichtmetalle
ChEBI
no metal
ChEBI
no metales
ChEBI
non-metal
ChEBI
non-metaux
ChEBI
nonmetal
ChEBI
nonmetals
ChEBI
Any organic ion with a net negative charge.
chebi_ontology
organic anions
CHEBI:25696
organic anion
organic anions
ChEBI
Any organic ion with a net positive charge.
chebi_ontology
organic cations
CHEBI:25697
organic cation
organic cations
ChEBI
chebi_ontology
organic ions
CHEBI:25699
organic ion
organic ions
ChEBI
An oxide in which the oxygen atom is bonded to a carbon atom.
chebi_ontology
organic oxides
CHEBI:25701
organic oxide
organic oxides
ChEBI
Compounds of the general formula SO3HOR where R is an organyl group
chebi_ontology
organic sulfates
CHEBI:25704
organic sulfate
organic sulfates
ChEBI
An alcohol derived from an aliphatic compound.
0
HOR
17.007
17.00274
O*
KEGG:C02525
Aliphatic alcohol
chebi_ontology
aliphatic alcohols
an aliphatic alcohol
CHEBI:2571
aliphatic alcohol
Aliphatic alcohol
KEGG_COMPOUND
aliphatic alcohols
ChEBI
an aliphatic alcohol
UniProt
An oxide is a chemical compound of oxygen with other chemical elements.
oxide
chebi_ontology
oxides
CHEBI:25741
oxide
oxide
ChEBI
oxides
ChEBI
0
O
InChI=1S/O
QVGXLLKOCUKJST-UHFFFAOYSA-N
15.99940
15.99491
[O]
KEGG:C00007
WebElements:O
oxygen
chebi_ontology
8O
O
Sauerstoff
oxigeno
oxygen
oxygene
CHEBI:25805
oxygen atom
oxygen
IUPAC
8O
IUPAC
O
IUPAC
Sauerstoff
ChEBI
oxigeno
ChEBI
oxygen
ChEBI
oxygene
ChEBI
oxygen molecular entity
chebi_ontology
oxygen molecular entities
CHEBI:25806
oxygen molecular entity
oxygen molecular entity
ChEBI
oxygen molecular entities
ChEBI
Any peptide with hormonal activity in animals, whether endocrine, neuroendocrine, or paracrine.
chebi_ontology
peptide hormones
polypeptide hormone
CHEBI:25905
peptide hormone
peptide hormones
ChEBI
polypeptide hormone
ChEBI
Salts and esters of phosphoric and oligophosphoric acids and their chalcogen analogues. In inorganic chemistry, the term is also used to describe anionic coordination entities with phosphorus as central atom.
phosphates
chebi_ontology
phosphates
CHEBI:26020
phosphate
phosphates
IUPAC
phosphates
ChEBI
A phosphorus oxoacid that consists of one oxo and three hydroxy groups joined covalently to a central phosphorus atom.
0
H3O4P
InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)
NBIIXXVUZAFLBC-UHFFFAOYSA-N
97.99520
97.97690
[H]OP(=O)(O[H])O[H]
Beilstein:1921286
CAS:7664-38-2
Drug_Central:4478
Gmelin:2000
HMDB:HMDB0002142
KEGG:C00009
KEGG:D05467
KNApSAcK:C00007408
PMID:11455380
PMID:15630224
PMID:17439666
PMID:17518491
PMID:22282755
PMID:22333268
PMID:22381614
PMID:22401268
Reaxys:1921286
Wikipedia:Phosphoric_Acid
Phosphoric acid
phosphoric acid
tetraoxophosphoric acid
trihydrogen tetraoxophosphate(3-)
trihydroxidooxidophosphorus
chebi_ontology
H3PO4
Orthophosphoric acid
Phosphate
Phosphorsaeure
Phosphorsaeureloesungen
[PO(OH)3]
acide phosphorique
acidum phosphoricum
orthophosphoric acid
CHEBI:26078
phosphoric acid
Beilstein:1921286
Beilstein
CAS:7664-38-2
ChemIDplus
CAS:7664-38-2
KEGG COMPOUND
CAS:7664-38-2
NIST Chemistry WebBook
Drug_Central:4478
DrugCentral
Gmelin:2000
Gmelin
PMID:11455380
Europe PMC
PMID:15630224
Europe PMC
PMID:17439666
Europe PMC
PMID:17518491
Europe PMC
PMID:22282755
Europe PMC
PMID:22333268
Europe PMC
PMID:22381614
Europe PMC
PMID:22401268
Europe PMC