{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "QquaYpB00hfs"
},
"source": [
"[](http://edenlibrary.ai/)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yp-OgP370hft"
},
"source": [
"## Instructions\n",
"To run any of Eden's notebooks, please check the guides on our [Wiki page](https://github.com/Eden-Library-AI/eden_library_notebooks/wiki). \n",
"There you will find instructions on how to deploy the notebooks on [your local system](https://github.com/Eden-Library-AI/eden_library_notebooks/wiki/Deploy-Notebooks-Locally), on [Google Colab](https://github.com/Eden-Library-AI/eden_library_notebooks/wiki/Deploy-Notebooks-on-GColab), or on [MyBinder](https://github.com/Eden-Library-AI/eden_library_notebooks/wiki/Deploy-Notebooks-on-MyBinder), as well as other useful links, troubleshooting tips, and more. \n",
"For this notebook you will need to download the **Cotton-100619-Healthy-zz-V1-20210225102300**, **Black nightsade-220519-Weed-zz-V1-20210225102034**, **Tomato-240519-Healthy-zz-V1-20210225103740** and **Velvet leaf-220519-Weed-zz-V1-20210225104123** datasets from [Eden Library](https://edenlibrary.ai/datasets), and you may want to use the **eden_pytorch_transfer_learning.yml** file to recreate a suitable conda environment.\n",
"\n",
"**Note:** If you find any issues while executing the notebook, don't hesitate to open an issue on Github. We will try to reply as soon as possible."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dwqUKc-L0hft"
},
"source": [
"## Background\n",
"\n",
"Open Neural Network Exchange ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. \n",
"\n",
"ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community\n",
"\n",
"ONNX Runtime is a performance-focused engine for ONNX models, which inferences efficiently across multiple platforms and hardware (Windows, Linux, and Mac and on both CPUs and GPUs). ONNX Runtime has proved to considerably increase performance over multiple models.\n",
"\n",
"For this tutorial, you will need to install ONNX and ONNX Runtime. You can get binary builds of ONNX and ONNX Runtime with pip install onnx onnxruntime. Note that ONNX Runtime is compatible with Python versions 3.5 to 3.7.\n",
"\n",
"In this notebook we are going to make use of ONNX format and export our model from PyTorch to ONNX. Furthermore, we are going to use onnnxruntime to run inference.\n",
"\n",
"In this notebook, we are going to cover a technique called **Transfer Learning**, which generally refers to a process where a machine learning model is trained on one problem, and afterwards, it is reused in some way on a second (possibly) related problem (Bengio, 2012). Specifically, in **deep learning**, this technique is used by training only some layers of the pre-trained network. Its promise is that the training will be more efficient and in the best of the cases the performance will be better compared to a model trained from scratch. In this example we are using ResNet architecture and the PyTorch framework.\n",
"\n",
"It is important to note that in this notebook, inspite of making use of ONNX, we are also using the PyTorch framework to design and train our neural networks. This represents an extension over the previous Eden notebooks:\n",
"1. https://github.com/Eden-Library-AI/eden_library_notebooks/blob/master/image_classification/weeds_identification-transfer_learning-1.ipynb\n",
"2. https://github.com/Eden-Library-AI/eden_library_notebooks/blob/master/image_classification/weeds_identification-transfer_learning-2.ipynb\n",
"3. https://github.com/Eden-Library-AI/eden_library_notebooks/blob/master/image_classification/weeds_identification-transfer_learning-3.ipynb\n",
"4. https://github.com/Eden-Library-AI/eden_library_notebooks/blob/master/image_classification/weeds_identification-transfer_learning-4.ipynb\n",
"5. https://github.com/Eden-Library-AI/eden_library_notebooks/blob/master/image_classification/weeds_identification-transfer_learning-5.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HEZ1kYtlIJIf"
},
"source": [
"### Importing Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "hhJqeMkfivXv",
"jupyter": {
"outputs_hidden": true
},
"outputId": "903c1b7e-6bac-4fdb-a3ba-7817a907f8b0",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Collecting onnx\n",
" Downloading onnx-1.9.0-cp38-cp38-manylinux2010_x86_64.whl (12.2 MB)\n",
"\u001b[K |████████████████████████████████| 12.2 MB 3.2 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: numpy>=1.16.6 in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from onnx) (1.20.2)\n",
"Requirement already satisfied: typing-extensions>=3.6.2.1 in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from onnx) (3.7.4.3)\n",
"Collecting protobuf\n",
" Downloading protobuf-3.17.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\n",
"\u001b[K |████████████████████████████████| 1.0 MB 3.4 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: six in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from onnx) (1.15.0)\n",
"Installing collected packages: protobuf, onnx\n",
"Successfully installed onnx-1.9.0 protobuf-3.17.3\n",
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Collecting onnxruntime\n",
" Downloading onnxruntime-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n",
"\u001b[K |████████████████████████████████| 4.5 MB 2.7 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: protobuf in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from onnxruntime) (3.17.3)\n",
"Collecting flatbuffers\n",
" Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB)\n",
"Requirement already satisfied: numpy>=1.16.6 in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from onnxruntime) (1.20.2)\n",
"Requirement already satisfied: six>=1.9 in /home/air/anaconda3/envs/eden_pytorch_transfer/lib/python3.8/site-packages (from protobuf->onnxruntime) (1.15.0)\n",
"Installing collected packages: flatbuffers, onnxruntime\n",
"Successfully installed flatbuffers-2.0 onnxruntime-1.8.0\n"
]
}
],
"source": [
"# In case it is not installed in your system run pip installs ( Google Colab doesn't have onnx by default)\n",
"!pip install onnx\n",
"!pip install onnxruntime"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Xvqku2sVIO0s"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.optim import lr_scheduler\n",
"import torchvision\n",
"from torchvision import datasets, models, transforms\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import time\n",
"import os\n",
"import copy\n",
"import random\n",
"import shutil\n",
"\n",
"# onnx necessary packages\n",
"import torch.onnx\n",
"import onnx\n",
"import onnxruntime\n",
"\n",
"plt.ion() # interactive mode"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-zO6c2eoAvt_"
},
"source": [
"### Folder structuring \n",
"We are going to create a main data folder 'eden_data' that will contain the 4 different datasets. We will also split the datasets into train and validation sub-sets. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LxFPCQ91iatm"
},
"outputs": [],
"source": [
"# Change this path to correspong to your system. It needs to point to your eden-library-datasets folder \n",
"\n",
"DATA_PATH = '/home/air/Desktop/EDEN-REPO/eden_library_notebooks/eden-library-datasets'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hMp60uWfULoe",
"outputId": "991765e0-12af-47a0-ed0c-0c26f2ec34f0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Moved DSC_0514.JPG to validation images\n",
"Moved DSC_0536.JPG to validation images\n",
"Moved DSC_0741.JPG to validation images\n",
"Moved DSC_0504.JPG to validation images\n",
"Moved DSC_0501.JPG to validation images\n",
"Moved DSC_0553.JPG to validation images\n",
"Moved DSC_0532.JPG to validation images\n",
"Moved DSC_0726.JPG to validation images\n",
"Moved DSC_0740.JPG to validation images\n",
"Moved DSC_0516.JPG to validation images\n",
"Moved DSC_0550.JPG to validation images\n",
"Moved DSC_0528.JPG to validation images\n",
"Moved DSC_0506.JPG to validation images\n",
"Moved DSC_0717.JPG to validation images\n",
"Moved DSC_0628.JPG to validation images\n",
"Moved DSC_0508.JPG to validation images\n",
"Moved DSC_0517.JPG to validation images\n",
"Moved DSC_0538.JPG to validation images\n",
"Moved DSC_0711.JPG to validation images\n",
"Moved DSC_0723.JPG to validation images\n",
"Moved DSC_0646.JPG to validation images\n",
"Moved DSC_0567.JPG to validation images\n",
"Moved DSC_0500.JPG to validation images\n",
"Moved DSC_0551.JPG to validation images\n",
"Moved DSC_0689.JPG to validation images\n",
"Moved DSC_0787.JPG to validation images\n",
"Moved DSC_0828.JPG to validation images\n",
"Moved DSC_0247.JPG to validation images\n",
"Moved DSC_0195.JPG to validation images\n",
"Moved DSC_0215.JPG to validation images\n",
"Moved DSC_0259.JPG to validation images\n",
"Moved DSC_0204.JPG to validation images\n",
"Moved DSC_0268.JPG to validation images\n",
"Moved DSC_0205.JPG to validation images\n",
"Moved DSC_0795.JPG to validation images\n",
"Moved DSC_0278.JPG to validation images\n",
"Moved DSC_0203.JPG to validation images\n",
"Moved DSC_0253.JPG to validation images\n",
"Moved DSC_0210.JPG to validation images\n",
"Moved DSC_0312.JPG to validation images\n",
"Moved DSC_0817.JPG to validation images\n",
"Moved DSC_0212.JPG to validation images\n",
"Moved DSC_0230.JPG to validation images\n",
"Moved DSC_0246.JPG to validation images\n",
"Moved DSC_0326.JPG to validation images\n",
"Moved DSC_0805.JPG to validation images\n",
"Moved DSC_0315.JPG to validation images\n",
"Moved DSC_0301.JPG to validation images\n",
"Moved DSC_0832.JPG to validation images\n",
"Moved DSC_0257.JPG to validation images\n",
"Moved DSC_0280.JPG to validation images\n",
"Moved DSC_0809.JPG to validation images\n",
"Moved DSC_0792.JPG to validation images\n",
"Moved DSC_0199.JPG to validation images\n",
"Moved DSC_0813.JPG to validation images\n",
"Moved DSC_0783.JPG to validation images\n",
"Moved DSC_0273.JPG to validation images\n",
"Moved DSC_0281.JPG to validation images\n",
"Moved DSC_0272.JPG to validation images\n",
"Moved DSC_0310.JPG to validation images\n",
"Moved DSC_0261.JPG to validation images\n",
"Moved DSC_0294.JPG to validation images\n",
"Moved DSC_0250.JPG to validation images\n",
"Moved DSC_0789.JPG to validation images\n",
"Moved DSC_0798.JPG to validation images\n",
"Moved DSC_0672.JPG to validation images\n",
"Moved DSC_0651.JPG to validation images\n",
"Moved DSC_0673.JPG to validation images\n",
"Moved DSC_0666.JPG to validation images\n",
"Moved DSC_0681.JPG to validation images\n",
"Moved DSC_0663.JPG to validation images\n",
"Moved DSC_0654.JPG to validation images\n",
"Moved DSC_0635.JPG to validation images\n",
"Moved DSC_0653.JPG to validation images\n",
"Moved DSC_0583.JPG to validation images\n",
"Moved DSC_0486.JPG to validation images\n",
"Moved DSC_0642.JPG to validation images\n",
"Moved DSC_0610 - Copy.JPG to validation images\n",
"Moved DSC_0607.JPG to validation images\n",
"Moved DSC_0493.JPG to validation images\n",
"Moved DSC_0737.JPG to validation images\n",
"Moved DSC_0638.JPG to validation images\n",
"Moved DSC_0498.JPG to validation images\n",
"Moved DSC_0705.JPG to validation images\n",
"Moved DSC_0644.JPG to validation images\n",
"Moved DSC_0562.JPG to validation images\n",
"Moved DSC_0612 - Copy.JPG to validation images\n",
"Moved DSC_0608.JPG to validation images\n",
"Moved DSC_0619.JPG to validation images\n",
"Moved DSC_0617.JPG to validation images\n",
"Moved DSC_0708.JPG to validation images\n",
"Moved DSC_0580.JPG to validation images\n",
"Moved DSC_0743.JPG to validation images\n",
"Moved DSC_0611.JPG to validation images\n",
"Moved DSC_0728.JPG to validation images\n",
"Moved DSC_0609.JPG to validation images\n",
"Moved DSC_0489.JPG to validation images\n",
"Moved DSC_0606 - Copy.JPG to validation images\n",
"Moved DSC_0602.JPG to validation images\n",
"Moved DSC_0579.JPG to validation images\n"
]
}
],
"source": [
"## WARNING : This cell script will Move the 4 datasets used here from your eden-library-datasets directory and put them to a new one created for this particular dataset. \n",
"# Your initial eden-library-datasets will not contain the 4 datasets used here after the script. \n",
"\n",
"# Change paths to suit your system (this was created for google colab)\n",
"if not os.path.exists(DATA_PATH) :\n",
" os.makedirs(DATA_PATH)\n",
"# Directory that will contain all of the data needed for training\n",
"notebook_dataset = os.path.join(DATA_PATH, 'pytorch-onnx')\n",
"\n",
"# Create train and val folders that will host the data.\n",
"train_path = os.path.join(notebook_dataset, 'train')\n",
"if not os.path.exists(train_path):\n",
" os.makedirs(train_path)\n",
"val_path = os.path.join(notebook_dataset, 'val')\n",
"if not os.path.exists(val_path):\n",
" os.makedirs(val_path)\n",
"\n",
"# names of the datasets we are going to use \n",
"classes = [\"Black nightsade-220519-Weed-zz-V1-20210225102034\", \"Tomato-240519-Healthy-zz-V1-20210225103740\", \n",
" \"Cotton-100619-Healthy-zz-V1-20210225102300\", \"Velvet leaf-220519-Weed-zz-V1-20210225104123\"]\n",
"num_classes = len(classes) # we will need this later\n",
"for class_name in classes:\n",
" # Path to source folders\n",
" class_path = DATA_PATH + os.path.sep + class_name\n",
"\n",
" # Create subfolder for each class in validation folder\n",
" class_val_path = val_path + os.path.sep + class_name\n",
" os.mkdir(class_val_path)\n",
" # Move original folder to train folder, created above\n",
" class_train_path = train_path + os.path.sep + class_name\n",
" shutil.move(class_path, train_path)\n",
"\n",
" # List of all files\n",
" images = os.listdir(class_train_path)\n",
"\n",
" # Splitting randomly, choosing some files for validation.\n",
" valid_images = random.sample(\n",
" images, (int(round(len(images) * 0.2)))\n",
" ) # Change ' *0.1 ' to whatever train-test split value you want\n",
" # Move validation images to validation folder\n",
" for val_image in valid_images:\n",
" shutil.move(\n",
" class_train_path + os.path.sep + val_image,\n",
" class_val_path + os.path.sep + val_image,\n",
" )\n",
" print(\"Moved \", val_image, \" to validation images\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TSz6HE1Fvj_2"
},
"source": [
"### Auxiliar functions "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PAE-Uq355fpL"
},
"outputs": [],
"source": [
"\"\"\"Training function. Train input model based on the parameters given.\n",
" Input:\n",
" model: model to train\n",
" criterion: loss function to be used for training \n",
" optimizer: optimizer \n",
" scheduler: learning rate scheduler\n",
" num_epochs: number of training epochs\n",
"\n",
" Returns: Trained model\n",
" \n",
"\"\"\"\n",
"\n",
"\n",
"def train_model(model, criterion, optimizer, scheduler, num_epochs=50):\n",
" since = time.time()\n",
" best_model = copy.deepcopy(model.state_dict())\n",
" best_acc = 0.0\n",
"\n",
" for epoch in range(num_epochs):\n",
" print(\"Epoch {}/{}\".format(epoch, num_epochs - 1))\n",
" print(\"-\" * 10)\n",
"\n",
" # Each epoch has a training and a validation phase\n",
" for phase in [\"train\", \"val\"]:\n",
" if phase == \"train\":\n",
" model.train() # Set model to training mode\n",
" else:\n",
" model.eval() # Set model to evaluation mode\n",
"\n",
" # Reset loss\n",
" running_loss = 0.0\n",
" running_corrects = 0\n",
"\n",
" # Iterate over data\n",
" for inputs, labels in dataloaders[phase]:\n",
" inputs = inputs.to(device)\n",
" labels = labels.to(device)\n",
"\n",
" # zero the parameters gradients\n",
" optimizer.zero_grad()\n",
"\n",
" # forward\n",
" # track history if only in train\n",
" with torch.set_grad_enabled(phase == \"train\"):\n",
" outputs = model(inputs)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, labels)\n",
"\n",
" # backward pass + optimize only if in training phase\n",
" if phase == \"train\":\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" # statistics\n",
" running_loss += loss.item() * inputs.size(0)\n",
" running_corrects += torch.sum(preds == labels.data)\n",
" if phase == \"train\":\n",
" scheduler.step()\n",
"\n",
" epoch_loss = running_loss / dataset_sizes[phase]\n",
" epoch_acc = running_corrects.double() / dataset_sizes[phase]\n",
"\n",
" print(\"{} Loss: {:.4f} Acc: {:.4f}\".format(phase, epoch_loss, epoch_acc))\n",
"\n",
" # deep copy the model\n",
" if phase == \"val\" and epoch_acc > best_acc:\n",
" best_acc = epoch_acc\n",
" best_model_wts = copy.deepcopy(model.state_dict())\n",
"\n",
" print()\n",
"\n",
" time_elapsed = time.time() - since\n",
" print(\n",
" \"Training complete in {:.0f}m {:.0f}s\".format(\n",
" time_elapsed // 60, time_elapsed % 60\n",
" )\n",
" )\n",
" print(\"Best val Acc: {:4f}\".format(best_acc))\n",
"\n",
" # load best model weights\n",
" model.load_state_dict(best_model_wts)\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fiSNg6MJarNj"
},
"outputs": [],
"source": [
"\"\"\"\n",
"Runs inference on a defined number of images with the specified model. Plots the images with the model's predictions. \n",
" Input:\n",
" model : model to run inference with\n",
" num_images : number of validation set images to make predictions on \n",
"\n",
" Returns : Plotted images and predictions\n",
"\"\"\"\n",
"\n",
"\n",
"def visualize_predictions(model, num_images=6):\n",
" was_training = model.training\n",
" model.eval()\n",
" images_so_far = 0\n",
" fig = plt.figure()\n",
"\n",
" with torch.no_grad():\n",
" for i, (inputs, labels) in enumerate(dataloaders[\"val\"]):\n",
" inputs = inputs.to(device)\n",
" labels = labels.to(device)\n",
"\n",
" outputs = model(inputs)\n",
" _, preds = torch.max(outputs, 1)\n",
"\n",
" for j in range(inputs.size()[0]):\n",
" images_so_far += 1\n",
" ax = plt.subplot(num_images // 2, 2, images_so_far)\n",
" ax.axis(\"off\")\n",
" ax.set_title(\n",
" \"predicted: {} with\".format(class_names[preds[j]])\n",
" + \" Actual class: {}\".format(class_names[labels[j]])\n",
" )\n",
" imshow(inputs.cpu().data[j])\n",
"\n",
" if images_so_far == num_images:\n",
" model.train(mode=was_training)\n",
" return\n",
" model.train(mode=was_training)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RmhCuICPg9os"
},
"outputs": [],
"source": [
"\"\"\"\n",
"Plot images\n",
"\"\"\"\n",
"\n",
"\n",
"def imshow(inp, title=None):\n",
" \"\"\"Imshow for Tensor.\"\"\"\n",
" inp = inp.numpy().transpose((1, 2, 0))\n",
" mean = np.array([0.485, 0.456, 0.406])\n",
" std = np.array([0.229, 0.224, 0.225])\n",
" inp = std * inp + mean\n",
" inp = np.clip(inp, 0, 1)\n",
" plt.imshow(inp)\n",
" if title is not None:\n",
" plt.title(title)\n",
" plt.pause(0.001) # pause a bit so that plots are updated"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qb7d5siZIpuw"
},
"source": [
"### Data loading and augmentation\n",
"\n",
"First we need to load our data into our pipeline. Since our dataset is not very big we are going to apply some data augmentation in order to increase the generalization power of the network. Lastly, we are going to normalize our training and validation data for better performance and accuracy.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "E_iZOQTFJOp6"
},
"outputs": [],
"source": [
"# Defining some Augmentation techniques\n",
"data_transforms = {\n",
" # We are going to use Compose,in order to chain together multiple transformations\n",
" \"train\": transforms.Compose(\n",
" [\n",
" transforms.RandomResizedCrop((224, 224)),\n",
" transforms.RandomHorizontalFlip(),\n",
" # Converting images to tensors. PyTorch needs input in tensor form.\n",
" transforms.ToTensor(),\n",
" # Normalizing inputs, these values are porposed by pytorch for ResNet\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
" ]\n",
" ),\n",
" \"val\": transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.CenterCrop(224),\n",
" # Converting images to tensors. PyTorch needs input in tensor form.\n",
" transforms.ToTensor(),\n",
" # Normalizing inputs, these values are porposed by pytorch for ResNet\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
" ]\n",
" ),\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "p9d715AFOdRQ",
"outputId": "3856a9ab-bcfa-48b0-c75a-3129955e88c2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Class names : ['Black nightsade-220519-Weed-zz-V1-20210225102034', 'Cotton-100619-Healthy-zz-V1-20210225102300', 'Tomato-240519-Healthy-zz-V1-20210225103740', 'Velvet leaf-220519-Weed-zz-V1-20210225104123']\n",
"Dataset_sizes : {'train': 399, 'val': 100}\n"
]
}
],
"source": [
"# Loading the datasets\n",
"data_dir = notebook_dataset\n",
"image_datasets = {\n",
" x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])\n",
" for x in [\"train\", \"val\"]\n",
"}\n",
"\n",
"dataloaders = {\n",
" x: torch.utils.data.DataLoader(\n",
" image_datasets[x], batch_size=4, shuffle=True, num_workers=1\n",
" )\n",
" for x in [\"train\", \"val\"]\n",
"}\n",
"\n",
"dataset_sizes = {x: len(image_datasets[x]) for x in [\"train\", \"val\"]}\n",
"class_names = image_datasets[\"train\"].classes\n",
"print(\"Class names :\", class_names)\n",
"print(\"Dataset_sizes : \", dataset_sizes)\n",
"# Setting up device either cuda GPU or CPU\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5S0_-SbgCPx7"
},
"source": [
"#### Visualizing some of the augmented training data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 166
},
"id": "yeFgaKIkyVrG",
"outputId": "b27464de-9c5b-4710-cfd8-c96d0e569f47"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Images' size: torch.Size([4, 3, 224, 224])\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAACDCAYAAAAwJK1fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7xlyVXfDX9X1U4n3Xxv5zBZo5FGEQRCYUCAkAEDJtiIINlg4OHhtbF5wQRjhEkGY2Nssh+MRDDxIRkMxoBGEspCaTQ5dU/nvvnEnarq+aP27T59+9zQM9IIw/59Prf7nKp9aldctWrVCuKco0aNGjVq1KhRo0aNGjVq1KhRo0aNGn/3oD7ZFahRo0aNGjVq1KhRo0aNGjVq1KhRo8YnB7VwsEaNGjVq1KhRo0aNGjVq1KhRo0aNv6OohYM1atSoUaNGjRo1atSoUaNGjRo1avwdRS0crFGjRo0aNWrUqFGjRo0aNWrUqFHj7yhq4WCNGjVq1KhRo0aNGjVq1KhRo0aNGn9HUQsHa9SoUaNGjRo1atSoUaNGjRo1atT4O4o9hYMi4kRkICI/9GxUqMbfTIjIG0Xkr3bJv0dEzj6bdapR428C9lobH+d3nRKRz/44lNMQkf8hIpsi8tsfj7rVuIqP1zjVqPFsQUTeLCI/+AzL+LjxASLyJyLyhn0+e6+IfP3H4703gprv+eTh2dx3a9SoUWMce/F4n6w9qUaNnSAiXyci/Uqud+tuz+5Xc/AFzrnvqQo/KSKnqs/9sT8rIqOx71/1zJqxP+ynkXv8/vNF5K9EZENELorIfxWRzoTn5kRkeTszIiIvFJG/FpFh9f8Lx/LeKCJmWz/dM5b/LSLyARHJROTNE9759SLyWPW7PxWRw7u0YyKT+okiUM+03z9REJEjIlKKyC0T8n5PRH68+vwDInJf9eyb9ihzSUR+XUTOV8KUd4rIy7Y983oROV0J0n9fRObG8n5cRB4VkZ6IPCQiX7vtt78gIg9Xa+iNE97/L6q5uSki/01E4io9FpFfrN7bE5EPicjrxn73aSLyv0VkrZq7vy0ih8by3yQixbb5efNY/q59tEebf0xEzohIt3rme8byXrntnVvE6ksnvOMvq7xgLG2uGstBVfbrx/LuEZF7t5czCdX6fLOIJNX6/6wJz/yEiPzOfsp7pqjG41efjXcBXwYcAOadc18+oS7fLiIfq+bVkyLy7WN5z3Q9vFlE8m3jr8fyd1wP1Zz/ierd6yLyMyISTmqgiPy8iPzM2Pewqs+ktE+7od77JKKiIf9kQvo/F5EPVJ+/QkTeJX5funcfZe5Fo3bb595QpXVF5Gy19sfX61773Guqdw5F5K0icmIs72nPw4oW2G3z7A1j+bv20W5t3vbcJBq1Y5tlb7r8rSLyRNWf56v5Pl62m1SPCfW6wqtV30/JVR5tXUT+WESO7aesTwacc69zzr3lmZZT9cM14/M3ASJyu4j8QTUH1kTkf4nIHWP5e62r3fbBrTaPz/3vHcv/zGqtbY7PkbH8l4vI+6p191ERecUObThUvefAWNr37JD2p8+ow55FiMhXVutFtqUHInJZRL5ARCIR+Z3qOSdjvP0OZe617kVEflREVqu/H9t6/z5o3SER+cMq34nIyW3vjsXzjl3xvOS/HMt7pvPwXhFJx+bZw2N5u/bRM2lz9czT4kG3lfGGqm5fP5b2JtnjXDD27JvF85LfPdYHqVx79rt/P2U9U8gz5CFljzPFtme/r+q3zx5L23E8q/zxPagvIn82lrfXHD5SzdO1ah5+0x5tue7sK5+gy5xn2u+fSIjng395Qvrd4vmTORF5XrXuV2Qf/MU+aMJue9NedPAzZfe96WSVPxTPN47Pv13lObI3n7ulDLc1P/+fsbxd+2iPNj9XPD+4Xv39uYg8dyz/T+TavToXkfsmvOPVVR1/cFv6bnTwXqnornPuF51z7e3lTsIzMit2zrW3/oCngC8cS/u1Z1L2s4hp4AeBw8CdwFHg30947keBB8cTRCQC/gD4VWAWeAvwB1X6Ft493k/OuXvH8s5X7/5v218mIq8Gfhj4ImAOeBL49afTwL9LcM6dA/4C+Jrx9Gqx/D38GAE8BnwH8Mf7KLYNvB94CX4s3gL8sYi0q7LvAn6+eucBYAj8zNjvB8AX4ufaG4CfFJGXj+V/BPhm4IPbXywirwW+E3gNcBK4Gfj+KjsAzgCvrsr+XuC3xjbVWeAXqt+dAHrAL217xW9um59PjOXt2Ef7aPMvAs9xzk0BLwdeLyL/AMA5945ttOMLgD7wp9ve8VVVG7fjp4G8eu9XAT9b1edpwTmXAr8JbN8oNPCVXJ0zf5twAnjEOVfukC/4/pgFPg/4FhH5R1XeM10PAD+2bd6Zsbwd1wN+LbwUeB5wO/Bi4F/v0Ia349fGFl6K36detS0N4K93KONvIt7Ctrla4Wu4OlfXgP8E/Lt9lrkjjdrHPtcEvhVYAF6Gp1X//7Gyd9vnFoDfxdOuOeAD+LV45RGe5jzceve2eTa+lnfso33u7bvRqB3bzN50+X8AL65o5/OAFwD/bEI5TwdfWNHcQ8Al4L98nMqtceOYAf4QuANPJ9+Hn3Nb2Gtd7WcfnBmb+z8wlj7Az81v3/b8Fq/0h3g+eAb4MeB/iMjs9medcxfwfMI4TX0V8NCEtLdv//3fYPwevu2v3pb+eYDjKq/yV8BXAxf3UeZe6/4bgC/Gr/e78XzRN1Z5e9E6W9XpugvWCm8Cbqve+5nAd4jI51V5MzyzeQjwLWPz7I5tebv10dNu8zPhQbdQzenvAp6x8M4598NjPO03ce3Z72nzp88y9jpTACBe+eLLgAvbfr/beG5hXE7wuWPpe83hX8Wfgw8Anw/8sIh85o007u8o3gz8AxFpbUv/WuCPnHNrQAH8FvB1+yzzmexNe9HBHfemCr8OfAiYB74H+B0RWazy9pLn7HUWB68MtzU/x4XLe/XRbm0+j18vc/g++0PgN7Z+WF2Ejp+J3wVcY9ElXgniJ4H3bkvfz3nrxuGc2/UPvxHeOvb9JHBqwnOngM+uPsd4pvt89fefgLjKuwc4ixc6XMYTly/GC24ewTPs3z1W7qcC7wY2qmd/CoiqvLdX9RvghQv/sEr/p3iGZQ0/CIf3aufY+/4BcN+2tE+v6vCPgb8aS/9c4BwgY2lPAZ9XfX7j+PO7vPMHgTdvS/tx4KfHvh+u2nrLDmXcA5ydkH4v8PVj378A+HDVn+8C7h7L+07gcfxifQD4krG8K22Z1O9j4/ptY+P6j6vnPwV/EAnGyvtS4MM7tOUjVblbf64q/6e2pZfAmyb8/vXA49vSvhn44IRnf3VSGfsYsy7wkurzDwP/fSzvFjyR6Ozw2z8Evm1C+l8Bb9yW9t+BHx77/hrg4i71+ijwpTvkvRjojX1/E/Cr+2jrdX10I20GjgD3Ad+xQ/m/BPzStrRpPD34tGr8gyq9Vb3n9rFnfwX4d2Pr4N59juEbqdYdnnnsAc2x/L9XzeWgqs8vVvP6HH7N6glr4+eAH9/2nj8A/uXYOv5/gWU8o/PPqvTPq9pVVHP7IzvU+RRX6azi6ppdxW9cc2PP/jaeId/Er9m7qvTv3/aur9tHX/1n4L98PNYDnln5wX28c9J6+ADw5WPfXw+c2eH3R/EM50L1/TuA76v6fTztz3cbm3329dcAp6u87xkfpwn1mkjH8HR0PD1jwlyu2lUCJ8bS7qz6eGHbs18/qYx99P0VGsUe+9yE3/5L4H9MSJ+0z30D8K6x7y1ghD/UPdN5eA8T9sQJv7muj/bTZnagUXu1ecIz19DlbXnzwJ8DPzOW5vY5hicZ49W2z0kqnmvs+5up1iWegf+jai2sV5+Pjj07h6fb56v835/U53ih5gPjvx3LeyN+jf94VcaTwOvG8u+l4l0ADfwHYKV67lu4dl+4F/gB4J14Ov5nXF3jT1XPbq2rTwduBd6Gp40r+Euyrff+JP6A3MVfGrxyLK9R9dN61a5v39beHWnIPsZrrqrn/F7rir33wZM7zcltZX422/h5PI94/7a0R9hhn8Dvi/9lbJwu44Uj42ld4BXV93+Cv2hfB/4X19Kx5wD/G8+7Pwx8xba18IdVWe+rxnsif12NwzgtHVKtG3bgLyeU8QvAf9uW9lvAf5zw7NlJZdzIusfz498w9v3rgPfs8vsrtG4sLajac3Jb+jngc8e+/wDwG890Hm5fp3u097o+eiZt5uPAg+L5tW/e3gb8fvymfY7jm7meT3kj154VX44XdG5W/798W//9YNUXffzl0Dzwa1V73z8+nuxAn9iBh6zWwh/i19RjwD+9wXl63ZkC+BP8/nGKa/eUXcdz+/M7vO+6OYwXFDtgcSztF4Bf2aWc6+Yl1+9P0+zM198C/CWep1upxmNme1t26fd72XlP+mPg/zehn794Qjsm8oXsQuMmlPEw8LVj3zV+7/772567dacy9hizfe9NE347kf9h8t50e9X+zljaO4Bv2qHs6+Q52/KvOYuzTd61w2+u66MbaXM1v/9vYLhD+ScBA9y0Lf078Rd1b2bs/MTe5617uZ7u7tnOG9YcdM6dcs6d3OOx78EzzC/E3yB8KtdqdxwEEjzB/jfAf8XfLL0EeCXwb+SqeaMB/gVe2vrpeOHIN1d12bqZfIHzEtffFG8a+CPAV+Bvx08zJqHdB17F2C1SpT3001xlRsdxF/BRV/V2hY9W6Vt4UaWG+oiIfK/s37RFqr/x7+A1CZ4WROTFeIn8N+I3n58H/lAqM1X8wfeVeIL5/cCvjqv7bmFSv1ffD1a/PYLfFH5aRGadc+/HE9jPGSvmq/GL5zo457bKbeOJzsN4wd63jKW/As9c/sGEIn4PWJBrTWG+BrhOtfrpQLx5WYTfaMGP90fG6v84FaGY8NsGXli635vKa8quPh8QkfkJZR+o3rlT2a+akPeF4tW77xeR/2ufdbquXpPaLCLfKSJ9PFPYwgs6t9e5ib9R2a6d98PAz3L9bfPtgHHOPTKW9pGqPjjn7nXO3bOfBjjn3uyce2P1+V14BmH8Zvlr8ES3rOpX4jeGF+GFB5PM9f878A9FrpjGzFbP/oaIKDzj9xH8GnkN8K0i8lrn3J9Wbd7S5HzBPprwz/AXK6/GMwrreFq1hT/Bawss4bXwfq1q6/dte9cv7vaSqi2vZId59TTXwzdX8+6vZYI5+W7V4Xq6eFREprc/6Jw7i6f/r6ySXoVnJN61Le3tu41N9dyOfV2ZB/wsfr4cxtPWozs1YCc65pz7zbH0w8ATTNAWr9r1Vq7Vjv5a4H8651Z2eu9+MYFG7WefG8ckOrMTts+VAX4fuq7spzEPAZZE5JJ4k+SfmHB7vlu99mrzTjTqRnFdf1VmIl38oeQF+L0aAOecsA/sxqtVdPcfAu/Z4ecKL/w7ARzHC2x/aiz/V/DaA3fh6ctPTHjH9+IPya+u5uwkvAy/vy/gGd9f3KKd2/BPgdfhecoX49fidrwef4G7hJ8HW5oMW/zKTLW+3o0/tP0ZXgh6lGs1KN9fvWcOT89/W0SSKu/78Mz3LcBr8doHW+3di4bshVfhL/5Wd8nfmie77oNjOC3e7OuXKi3d/WA7jd1K24n3fDtX+/hFeK3Bv9iWFgLvE5EvBr4bv88u4unxrwNUa/N/4/t8Ca+1/zNj2hc/DaR4vv6fVH8T4Zy7RmMYzxP+RpU3kb+cUMxbgC+r6CHVHvOFfJz4SK5f95N4vYk0dgdaNxEVD3J4v2VzY/NwCz9SnXPeuWXCtk88kzY/Ix5URD4Vbznwc9vf5Zx7k3PuTftpgHPujc65N++UX2ni/jH+Ymse+I94DchxHv4f4ffzI3ja8m48/Z3DC9K/b+zZifRpFx7y16v2H8bz2j8sIq/ZT9smnSlE5MuB3Dn3Pyf8ZD/j+WvizUn/TET2w+fCVXq0nfd72ufhCrvx9YKXJWxpoR3DC42vwR68+0570lvwZ2D/It8PR4Dr+nQnvnA3GjcBv8y11iafjafJf7LD8zeKp7M3TfrtXrgLeMI513umZe9yFn+7eJPk392uMbsL9tVmEdnA72H/BT9nJuFrgXc4554c+90J/H73byc8vysddM7d4661WN0fdpMc7lfC6Mak6NXnx4G/N5b3WioJMF5yP+KqdL5TveNlY8//NRMk6FXetwK/t1P98LcAPzb2vY2X6J/cRxs+B39QG5f+/gvgZ6vPb+Ta26DvZdvtG/4A/qbq883ATXhG+/n4m+bvmvDeSRoVr8EfDO7G31b/PF4L5it3qPs9Vf7Gtr+Sq7fvPwv8wLbfPYxn3ieV+WHgi3Zo+/Z+3xrXce3Ay8CnVZ//FfBr1ec5/C3HoT3G4xVVGbdvS1+s5ts/2uW3/w/wC9Xn2/CLZWnCczekOQhM4W8gv2ss7S/YdnOBv4W6Z8Lv34JXnZcJeZM0pR7nWm2VkMk3wyFew+Tnd6j33fibw3EtiOfiNxuNv9m8MGl+Teqj/bYZv8G+CC9snnSj+zV4DYtxDZ2XVnMvYJsGBF44cHFbGf+Up6EdNaEu/xr4s7FxHlZ1P4C/rWqMPfuVwFu3r42qvU8Brxqr219Wn18GPLXtnd9FpTXJPjQ5uZbOPgi8ZizvEJ7WTdJgmqn6cXq/7xr77ffjN5/447Ee8If7+Wp8/x7+VvUz9rkefhB/E7uIv4x4b9WuibQEf8v2E3gafBkv0PimsbR1vMBvr7HZsa/xF1y/MZa3dYu41w35RDpW1euPqPadHX771cDDY88/xZim99hzN6w5yDYaxR773Lb0f4w/iCxMyJu0z/0i225Xq/F944Tf3+g8PIincQq/D7+dCfRxUh/t1WZ2oVF7tXlb/nV0eVv+bXhB1sEbGcMdyjqF1zDYwPMF54Hnb1srEzV68YfR9bG5b4HZCc/dg1/r/xG/fqd3qc8bgcfGvjerfjxYfb+Xq7zLXwLfOPbsZ8N1moP/eiz/m4E/rT5fNz74w9IvMEGjcUI91/EXoeAPZuP78TdQaaKwBw3Z4x1Hq37bib+7Zl2xxz6I53tfWs3PA8DvAP9rQrmTtDPmqznylXi+4g3VeO/EW5zEX+LP4vnlH6rSz42lvbVK+xPGNBDxa3OIF0L/Q/yhaLzsn8cLRjSe3j5nLO+H2Z9lzr/Cnyka29In8pfbnnkUeP1Y/+6k0X9DmoNM5sfMtvbdVs1b2fbb62jdWN4kratjVVoylvY528f96czDsXnfwVuMvQG/n19n4TSpj55Jm3kGPGg1nz4AfHr1/V72of14A+P7Rq7yhF8DvG9b/rup9rjq3d8zlvcfgD8Z+/6F7GBlVeWP06c3McbXVWNvuFbT6kfYQ5u9eu66MwWerjxKpdXE9ZqDu44n8Bn482wTTxsvMqaNt9McrtL/Ci9USfA85BoVD7RD/e/F05aNsb8+V+n1rnz9hPK+GPjQ2Pcrbd/e72Pv32lPiqv631Z9/3HGrAN2eP+OfCE70Lix/ON4+nm0+v5rwE9OeO6GNQe5wb1pW/qO/A+T96avYZtmMfBDk+YzE+Q52/KvO4vjhYkR/rz0U8DH2MbXTeqjG2xzq5oLn79DvR7j+nPPH3DVMvbNXKs5uG/5w1i+4+OtObhPHMZrbGzhdJW2hVV31cfUqPr/0lj+CE+Etpzl/lElye3iGYLdbkCvebdzro/XWjsi1wZC2H5T/2n4W5gvc5X0V3wAkH+G14SchD5+0xrHFH5zxDn3hHPuSeecdc7dh5f6ftkudb8C59xf4Jmi/7dqz6mq3LMicnysHf2xn513zs2M/+EJ6hZOAN8m3lnnRiXFPkY1NiLytSLy4bG857F7X2/HqrvWh9mQahzxAqYvrPyFfAWeCbyw05iId5T+W8Ab3Jg0vrK7/x28RtdvVGlfNVbG1k3IW4CvqG78vwZPlC/vpxGVFt1Wea8cS2/gNQPe45z7kbGf7DoPxn7/7/F9+hWuWqH7wPaytz5fKbvSWPgVvEDiWya051Y8U/7PnXPv2Ep3zj3g/O2TcV5z7ifZ5/ycUK+tul3TZufxIfya/v4J5bwB+OWt/qja8jNVXSf5w9vXe58mfhn4TBE5gu+Hx6q6n8AzShfG1sbP428Dr0HVjt/AMxngbw63/K+eAA5vW3/fjWdSng5OAL83VtaDeObsgIhoEfl3IvJ4RTdPVb+5bj3LtY60f25b3rfgb7I+3zmXbct7WuvBOfdB59yqc650/vb517hWY3M3/BDe38iH8RqAv49nei7vQAe2tFqej79xHOJp4lZaAy9g3GtsduxrPP08s1VB57XfrmhdyLWOho9XadfRsW1t7FD5mduB3v8ucKjat+7BM9v78Z+KiPzcWHnfvS1vEo3aL337Yrz/vte5/Wsw7rfsG56HzrmLFY2zzt/CfgcfB/q2Dxq1L+xEl8fhnHsUf7P9zH3IeHxxxRfE+L3ibSJycELdmuIdmZ+u6MfbgRnxlhTHgDXn3PoO75jBC81+xDm3uUd9rmhdVmsTrvIM47hmjW37fF1ZXMt7TMJ34IUG76v2+ytaaCLybSLyoHiH6Bt4a4gturm9HuN87q40ZBIdqNIX8VqMP+Ocu05TeId1tReN7TvnPlDR2Ev4sf5cEdn+m+vgvMbYF+G16i7hzeb+HH8AvI4/cs6dqvJewVXtbPACkK20LX+DJ/B+nrb6Zw0/DkeqvJdt67+vwgv5F7nqD20LV/p+pz1MfDCFf46f96Ox9Ov4yx3o4rjGzbhP112xC4++27qfxOv1x3nFXfbc3bD1/u1lb6exT2ce4px7r3Ou55zLnPfp+k78pd9+6/Z02/xMeNBvxmuGv3uf9Xwm2H4epvp+ZOz79vPvxPMw7EmfJr17zV2raXXl3XJtIIQrQUR3OVN8P96U98kd3rfreDrn3umcGznnhtVYbnDVimMvfBX+ku8MXtHl17hKk3biaf7ZtvPwF4zl7crXiw+I8xsicq7aA3+VGzsPww57UsXD/Bbw1VVffyWVJd1OY8I2vnALk2jcBBr9FJ4Gf7X4M/gXs39aNomv3sr7Ym5wbxr77Z78zwTst+zr5Dnb8ieexZ1zb3fO5c65DXyf3oTXGv241Kt6xwCvrfzLInLNGVK8teNB/NlgK+0L8cL932QyPiFn4v2auN4ozuMX3paw53iV9nTws/jD4Fc653oi8q3szuBvvRu4YqowD5yrmJjrGEYReRHe9vyfVEK5LXwq/pb8AfGWLg2gISIX8cT1frywTcYm2N1ca9o3Dsf15ho7wjn301w1Xbsdr9n0sYop343x3Qln8Le6P7Q9Q7za6n/Fayy+2zlnROTDN1Lf3eCcOyci7wa+BM9k/WyV/g62taViBn4f+E/Oue1qz/8FP+mvmKk7H/zm18Yfcs69Q0S2mNyvxh8G9lvXSSZtcVWnc1zvYPd+vOnX1rM34w9f40LN78ebRb3aOdfdb13Gyv6t6vsLgEsVA79laveL+API33POFdvqfQLP2P+Ac26iGfcYbmR+7tnmbQjw5hLjdTuGF2yM9+cUXuPhN6s1p6v0s+LNGT4IBCJyW3VwpqrHx8Oh9FMi8g48E/I6rpoPncHfMC7sUxjw68Cfici/w9+qf8lYOU86527bqQo3WOUzeJr1zu0ZIvI1+Ln/2XjB4DT+Fu268XXO/TATVNyrA/N34rUgz27Le0brYXsVJtVr4oOe+fmW6g8R+Qbgr52/bLqODuAZol/AO7DeYkDuxws4Ph94v3MuFZG9xma3vr7AGAMh3mTzismQmxwd7Do6Vv32H+EZxU/ZWssVY3dNGc65ofgo2l+L35d+wzmX71D3a+Cc+ya89uT2duxEo/bc58Q7t/+veOHdffupx1jZbxgrp4WnE+MXRU93Hm7HjdK3ndq8K43aD6N7g3T5Otr5TFGtl98VkZ/HC3B+Z9sj34YPUPAy59xF8SZ9H8L33xlgTkRmKiZ6O9bxe+5viciXTFozTwMXuNZU/9gN/PY6uuqcu4i/2d9iyP9cRN6O5/f+FZ4Put85Z0VknG5eqN49zttuYVcaMokOiDf5/DPgD3fgy3ZaV49wY/vgVh/sl86+DW9yhXhXOI/jNZom8kd42voqvOufN2xLewVXTdK3eNDtdHprTbzNOfc5E/I0Xtv1GN5sGcb6ftIeJj7i7luAf+CcOzOWPpG/3IEu/jLezdGn410lfcWEtl+HSTR7rI07rfutffN91fdrxvMGad14XdarPeoFeLPtSWU/3Xk48ZXcOB/5dNr8THjQ1wCvFpEtIeYc3gXUC51z112wP0NccyatcJxtAfj2A/HKCrvRp+207jyeVnfGBITH8f2Jc+66SMR7nCleg3fj8s3V90U8nf9R59yPssd4TsCN8H6nGRPuich/33rPTjzNHtiLr/+Rqn53O+dWK0HYT014Dm6cdwdPm34Ff1k93BJU7zAm1/GFVfpEGrcDjX4Lno+6gN+nJrlSuA6TztfVu5/23nSD/M847gdu3jafX8C17gJ2kuds5d/IWXy/8/NG92OFv9A/gtde38IbgN91XqltC68BXlrJncCf5YyIPN8590XcOB3cH9zeKqN7qh9Wz53iqortD+K1Ohbxkva/4qqj63u41iHoJDX4vwK+uvr8PrzZluCdFT/MteatF7nW0e5r8M6gX1h10E+yi+kBXnp8iUplc1tejJfibv39c7yWyZbZS4S/hfnnXL2JP83VgCmvAw5Un5+DV1H9vm1tT/BE6Feqz1tmMklVN8ET83sZC0wxoa7X9OtY+r1cNc15KZ4gvqwqt4U/IHfw5lcp/kCg8arC4ybJb9yj3697P9ernH8V3jSgC7R2acuvU5kgb0v/RrzGztRe87F6/vuqOqyxzRQNf2OU4InKD1af9Q7lhPiby99nsunYXVWbXln16a9yrZnhd+FV8XcyfYyq978Tf2BJAFXlfV7V18/Fm+j8JWNmePgbiPcA7QnlHsEz9d++w3u/qCpT8ILwc/ib9D37aLc24wnfN24r+wLbnLPjtSrevi1NuHbNfQqePhzh6rr6jWqOtPBmCptUwTZ2mP9v2s98qZ5/A95EMx8fL7xa90/iBQMKz2S+etLaqNIewDPivzeWpvGq//8KL9DR+DX+KVX+N+Fpn9qlfqe4Smf/RdW+E9X3Ra66AfhmvHbdVNVPP8MYLWcPs2L8Wr0I3PkJWA9fhj84KbyPlx5jKvDsvh6O4G/DBX9YO8MYHdqhLefwNP7vj6X9jyptywRur7HZra/vwt/evaKq+4/jaedOAUkm0jG86dMy8MJ9ztVX4zUUu1v13DbXkmpOvb36HO5S1o40ir33uc+q6vGqHcrebZ9bxK/fL63Sf5RrHZg/k3l4D37vFLxQ4a2MmXju1ke7tZn90ajd2rwXXf56KhcYeLp/PxOCIIyt43v3OV9OcZV2CJ7+l1wNVPRmrvJpP4a/1U/wB+ff41oz3j/G7wuz1Ti8aqzPt8y2PgfP+L5sh/q8kevp5jiNuper/Mf/VfXDEbxm4v/eVp8rz24vG8+EG651F/PlXDWxuguvnXMTXuPpfDWuEZ73NGP99qP4QCazeGHlR8fauysNmdD+KTx/+1M75O+1rnbcB/E83h14GjuPjwD+1rHfqmpsX4ef1wnV3B2jRWFVx/8EvHOPufUNeHr6wbG0l1RpOVWgL/xF2cfG6jlNFWAKz4eexl8eh9Xfp1Ct/aoNv1GN53PxWkM7BSSZwgsRv2FC3kT+cpe2vRW/dv54Ql5c9d1Z/F6WwPUuY/a57r8Jvy9s7XH3U5mLsQetq55JqrngqrEfNyP+d2Pz9jl4fmwrcOLTnof4tfja6t0Bnl4PgDv200fPpM08Ax60qvc4DX8XXlN2eoc+cNyY2fgbuUp/5vEacq+v+ugfVt+3zDDv5VradY0rCvwF72PV573o03U8JF5I/1NVv9+NX5Ofs0vddztTzG/rtzN4Wtrex3gex9OpLf7u2/H8zvxY+bvN4TvxNCLCXz6tMBagZEJdr+nXKu0erpU/7MbX/xZe+KWr9rxz229P7dHv28f1ypwYS3sEv4f8m13aMZEvZBcat0M5LTyvfYptNAi/RhI8XXXV5+vct+yHJlT5u+1Ne9HBvfam9+B57AS/n2xszQN2kedU+bvxuXfh5UYafz75T3h5U7ifPtqjzZ9TjaOuxu0/49fx+PxuVG35rG316nDtmvtNvFukub3o4C7jd4XP2vGZfUyoPQuZsFCSqvEXqr//vNUJ3Lhw8FX4BdDHE7l/y7VCqm+q3rFBFdmsSnscLxT6I3bxK4N3+mq5NurP/Ts8+0auX9wvwjOEI7xW04vG8n68mqgDvK+af8vYAQ3P2Lttf2+q8mbwRGOAPxz9CDsIryb161j6vVxLoD4P79B2o+q33+aqH44fqvpsBe8z6G3sLBy8pt8nvZ/rhYNN/CR+yz7m3HDbmLyyaku2Lf27dynnpmpsJ/loePOEvn/jDuW8eqc6jT3zerxQaYDfcOa2tWfHelft2l6Xe8byt8x7uvj5uhX5+0T1bLqt7K+q8r+vyh/P64+V++t4At/Hr7Htwrtd+2inNuOJ+59Wc6mP3wC/G67zI/MQe0TKZbK/qDk8wzio3v/6XX7/OLswQhOe39pA/2Rb+jRe2/Usnuh/iMpXHJPpwvdW9f7ybemHq36/iNeweQ9X6eY8nvatMyGy9vY1VfXzlkP1XtXWH67y2tWY9PAb7NdyY8LBJ7kafW3r7+c+TuvhHVUfdvE+5Lb73Lt3wry7p8p7VdUHw6rdX7WPMf11PB0YZ0K/oyr3tfscmx37usp/Q9XeVfaOVnwvE+hBNSbltvQ/2aVdgt9XHpyQ98YJffjmXcrai0btts+9dbd6s8s+V+V/Np4WjKq+OfnxmIfVeJ2r8s/gtTU7++2j3dq8Dxq1Y5vZmy7/Elf5hlPAv2eMidz27l+kEnDvYx2cqtrSx8/hjzG2frhWOHi4Gost+v2N423E0+C3VPVcx992w/X83edXz7xkQn3eyP6FgwGeIV6t5sS/qOaFbH92Utl43msZz698Gl74ea5q3+NUByw88/6LeNp0AU8nTnGVDjTx2mQb7ByteCINmdD+N1TtHWybC8f3ua523AfxWiZPVnkXqjofHMu/h+vn573baOZm9febTPDXvK0td1Rl/OexNF3147u3Pfs1XL0kPsNYROCqnD+uxmoVfxn6wipvEc/Pd9k7WvFW+65bY+yxd+1CSycpEJya0I8ndyhnr3Uv+Hm5Vv39GFfn93723O31cGN5MT4YYRe/Hv/lx2MeVmPyfjw92cDP98/Zbx99HNr8jHjQsXLuZQefg/hLgB47RG/eZc6M059X4PeSzer/V+z0bnYXDu5Fn67jIav6/1HVF4+zQ2TX6tkT7HKm2GH+j5/xdhvPu7h6pl3F+0p76bbydpvD34qnC4OqjS/dqR07jSmToxXvxNffVY1VH3/R/m3sLByc1O/bx/WaOVGl/euqnTfv0o43MWH9sQuN26WsN+OFyYe3pZ+c0PendinnmexNe9HBeybU5d5tdb0Xz8s8zLXz75fYRZ7DLnwuXuD5cFXny1X9b9tvH+3R5i/nqhxrGR945u5tffqV+LPaRBq1bQx/cFvajuetHcpw7CHX21q0O0JE0qoz/7Nz7nt3fbhGjT0gIo/jHYv/+Se7LjX+dkNEjgK/7Zz79E92XWrUqFHj443K9cdr3M6RRf9WovKz9HPOuROf7LrUqFHjby9E5KvxGkDf9cmuS42/XRCRr8VfTL3ik12XGn/7ISL/GH/JmgDPdc49seOzewkHa9T4eEFEvhRvlnO7c85+sutTo0aNGjVq1PibjcpP3Gfi/aIdwAdqe49z7ls/mfWqUaNGjRo1bhSVb+q/xAcA+uW9nq9R49nEJypacY0a10BE7sWrb//ftWCwRo0af1sgIp8nIg+LyGMi8p2f7PrUqPG3EIKPlLmON/16EO9vq0aNGjVq1Pg/BiLyWrx56SXGgmnUqPE3BbXmYI0aNWrUqPE0UEXRfATvcPgs3v/SVzrnHvikVqxGjRo1atSoUaNGjRo1bgC15mCNGjVq1Kjx9PCpeGfhTzjncnzEsi/6JNepRo0aNWrUqFGjRo0aNW4ItXCwRo0aNWrUeHo4go+4uYWzVVqNGjVq1KhRo0aNGjVq/B+D4JNdgRo1atSoUeP/UMiEtGt8dYjINwDfABCFwUtuOjhHmheEWqO1YnMwIs0KAq3JSoMSCLWmMJbSWKxzWOuwzqJEEBFACAO9VT7gyAuDsQatFIHWOAfWWbznEOefc2CcBeeIwwCtNUoEYx1FaShKg93mEjbQCpGr94jWWbQS5jpNppoJIoKxFutAK0VpDGmWY3BMNRooJRjjGOU53WGKMYYo0DTikCQKCXSAANY5hmnGam+IsYbFmTadRhNrDUorAh3gnMVZ/2xmLGu9IWmagQidVkIzCRHxfaKVRkSw1vchgHMOESiKkjQriCLPAhljKUpLGGpCrekORuSFJY4CploxogStFNY6eoOULC8JtKLZiAhDTZ6XACglVfkGgDgKfb+LoJWvS1FairLElJYwDBBxRGGIKGEwzMnzknYzIqjGV2mNsxYRQUT53xpDaSxRoNDat1OJkOYFRWkItCYKgyvjrpQfv83eCCVQlLaaO6C1oigtnU6LxbkOiELpCFHBxMntZ5ODLZc0IuAs1hQUecYozav+9+8NA40OAkRpRAXVONiqbrpaQg7v4saBKEpnMRiErfk+vtDkSi38N1VVQ+G2SnPguDqPlQPlLGWRUZQlgar6TSmo+kZwOOebM/62rfWDVO8S5dtrDTiHqGp9yNXfpGlOOkqJ4/BK/Z1zWGuvlL01T+XK74Qr7pgdGGvJiwJjHWEQoLUC5zDGIkoIggCc+LHAIYzVXUApjXMWYyzOOZSSK2U73BU6UTrDyOTgPF1RIkQq8H0PiBKs9eO91Yatfvb1r/pI2Eb5GGubuzJdfD08zRAcSvl5Xhpz5Tfj884Bo1HG2fOXVpxzi9SoUaNGjRo1PmGohYM1atSoUaPG08NZ4NjY96PA+fEHnHO/APwCwNFDi+4nvvGLEKU4OD/LqCj50/d8BIfjhTcf5wOPnOGRsxe5aWmapZkpBrnlvtMrfOzJc4TacWh+ln5qKI0hiUOCwAv4yqLkzPIatiyY6bRoN5uUxpIVJc5anLVkRQEitJKQ2U7CXScOMNtq8u6Hz3FxrUdZWoZZhogQak1elojA3FSbRtJAa81glNEfDjmx2OYrXvU8bj9+mDAIuLTRJawEjY+fu0jhDM+/+QRLs9MESpEVho1+ym/e+0H++J0fIQzg77/yuXzuS57PuZVVyjJncXqaR8+v8taPPA4UfN3rPoNjS0s8efE8C50WJ48cxhgYjjKK0vDAcp8nVpf57f/5LjqdJt/8+s+m04gYDAcoHdFpt0Aper0eUglKAqVYW1uhPxjy4QfPc/zIHFEYsLLeZ3kjJYo0C1Mxj5xe4eLKgOfdcYRPvfs4xlhOHj/Oxcsr/P6fvZ8zl7pMdxoszra45egMRWk4e2kTa2GqGXJ5tctUu8XddxxiZrpJEEQszc9RlgVx3CA3jtXVdeZmp/mLd3+MtbUNvuTzXkYYN3j08dNE2nJoaZEwijl7YRlTFiiBYW45d3GNwWBII4m56egcWVZirOHO225iozfk8dMXuenYIo04pN3uUJQl1pQ4hA89cIqDc026vYxhWnD/E5e84Afhcz7rFXzT130BYdwhah4ijNp+AovgrMHZq8IbU44oyx4iGqUSnCvJh5dZu/gUy5fXaMURIsIgL2glCTOdFvHMFI3pE+iwgzUp1gxxzlZCSMG5EmtLchWzQUpKighEEiEYSgwBCZFqowSMy3EuI1AtlMRoFeONYRzGZhg7xBFQ2IzYQrsY0F85T7c3YH56Cq0VojWSNNBhC6UjcF54tyX8VCrE2hxT9BCdEMYLaN3AOUORXcZZgw5aiAoBi7UFZbbBIw89ycceOscdtx6jmSSkaYbgBfxFUZI0EpQIvf6IKIkJdTU/A01ZGLKsICtzltc2ibRmdnaaRhQyzHJ63QGXuwOOHlxkZmoKa4W0tCSxxouDDeAItaLIU0ZpgTGWIPACTOccUSPEhcKBxhyjrOR8uskg77HmuhQOWkGD42qO6SSm1e7QG47QgHGOfm/AYDhCgEgrgkD5vlReiG2tvyQAUOL/cZXgX2vF4vwMSgJWN7rkRU4UhhTGko5SRHnh5JYQXynBWeFjD53i2//Nfzj9CaHgNWrUqFGjRo0rqIWDNWrUqFGjxtPD+4HbROQm4Bzwj4DX7/Swc47ucMTczBQWR3cwYm66xYnFGaY7TY4stFjfiPnA4+d50c2OhekOzzs6hSKnEWuOz8/y4LkNLqx1GQyGGGuJQu0P/MoStxpEQUhZaZaVxlCWBsFroE03E44fmOGVzzvBofkZHjx9kdJYf5gPoKWSSstIUVpDFHrtKmsNYei1lxxwaaPPex96CmPh8Pw0a70hoYKszDkwN8XMdJvDC7MEWhMGAaIKbG9EaQxxFLIwHXPHwSV6w5RRVnBodppAae48doCbluZY7fc4vriAVopO3GS122NxZoRFX9GgxFniUDE71WBxvoM4g3PQbHpBjwWssV5rDRAJ0IEmjGLOP3GeKArIC8vSQotzyz1WNwZ0WjHPveUQ01NtPvLQOS6tbPK29zzC8SMLHD92jLLIeO1n3MnK5pC5mSk+8uBTPPD4Cv1RijGWNC9YnG4x22kxM9WkLB2jtGBtcxPnLEtzcwSBptGIaCQR/V6Xl7/wFgzCwvwcRWm56egSZVkyHA2JbcnCTBulFYNhymMPneW+Ry5w/MAUL7n7VqbbTQajlPd86BGy/Amec8sRWo2YlbUet998hKIsCIKI3ihjdX2TE4dmyfOCE8eW6Hb7FMZrgYoooihAx7Mk7YOoINmasP5/UVibYcyo6kuvLeecwZRdssEKg81VxJQcWpih0Wp6oeP6JkVWeGFSHBJ3MrRrISI4DM6VXmNNNIjG4eiWfQg1CsG6EkullSlb7Kpji3UNVESkp3CVUBAs1hWAARRKAkRycnJAiMKATjMhbLcRJYgK0WEbpRuVdqxU7SqxrkTQiCsRHaPDDkHQQkTjLIgKcc7gcCjRIDFKApxZIxuNCIPAN00gKwqctRhnyAuDDkKsg2GWUlhLI47QSkiSEEQorWW60aaVNBCtCUKNLQ2kOSrQOGvo9XrMthuARikIgpggiggDhRJLlmYoU6J0ySDNMWLR0yGhhLSjJptmwOV+lzT1Ar1ZGrSjkEtsMjKb5EEbpxoM04wizykc1Vzx4tNA60pnEUR7DdAtWqFxOAHjoCxKcBaHw1mHKS0EUFqLMYbMWlCKTqeJsZAXBWVWYEpDFCkaSTKulFmjRo0aNWrU+ASiFg7WqFGjRo0aTwPOuVJEvgX4X4AG/ptz7v6dfyFYEYhDLmQFvdGIWw4ukpc5g+GIQVZwqTskzy1vu+80w7xgaSrhRTcd4HnHD9AbFZRFSm8woDtMSULFzQtzNELNWpowLATrvJFhoIVhmnsTQq0rs0lLdzjiqcsbXFjrcd+pZUZZQRxpREWIaNIsp9sfYKwhCRsESpMXhiAwKBGscawMR7z1I0/y2IV1bjk4y9GFaQ7OtpmfbjE/3aaszEa1VuTGcnG9x/sfeoLL3R6f+eLbuOXADK0kwpQFJw8sEEUhrjQMs5SlmTaNZkBRlhSlZX0wAiUMsoJGrGlEEUVZEoUBWWFZ3Rx6gZqxGOuFgXmegQq86bVzGGeIo5hud52N3pAzlzYRpdgY5Kxu9nnsqVUWZjvccnyRk0cOECpoN2L++G0f4/HVPoV1tJqP8PjpC3SaCZ/2ottwztBuhlxYtoxGBRu9IVPthOfetMDSfBMkYLOfU1pDuxmhVYDWAWVRoipT2PsfeYqjh+Y5efwoOMfyyjJ5OmJ6aoo4nvFCXSWsbnQxpiTPCwRBa2jGEVmeUeQpIopTFzYYZRnDtASEuZkWpjQM04JOp4FWilYjYrM/IhyOyLKckwdnmJpqebNoLZgywzqLVBp0OIegvPktjiJbxhYjosYiSjeAwgvSyox0MMAZ6LRb6GaDUGlmjWFlfZNhlhKmMS2TYW0GCIIXNGNLrJQIARZHriyRhEQuIsNgsCSqgTiFxXrBEwbrDKFqYJxFi66WlwJXgjOVda2fh4UrcDpCgpggcCgdeoGWClE6QakIVFC1VeNsgSv7WOeFikonaN0CvCDeugJbDClHXVSUYYMBOpxC6QZhMkvcaKJVHyoBfRKHGGPJcwi1UJaGoizRSmOtJctzoiCg3xuRm5KiNLQaCc1mgtYBzjrSsiSOApRuYGxBWUJpSqJYkWiNsxlFbtESgtboKMbgcIVlkPdQS32KZEiRB2yaDmUp6FJhMpgNO0RBSEcnTCczPJo9hkSWdrMNTgiDgFGWUWY51jrSoqQJKKVwzgv9wJscG1uiCRCtUEoj1puHN6OIrCzJ8oJIhCTSBIQEgabdbhPGMWVR0u31GQH9sqwkj2q7tXKNGjVq1KhR4xOEWjhYo0aNGjVqPE045/4n8D/3+TRKvH/AkTXezDSJWR/0SaKIo4uLSHAB41I2BwVrvT79QUqgFBc3R3SHBZc3huSl9zR229E5nnvsAPeduciRmRaXBpbCwCArMKX1psG+kt7MsLRsDjLe9/B5+mlGluXEUUgYBF4br/L9FmjFTHuaKAoxxmGdozccAUIUBVjnffutbIxY7+c8eWmT5x6b5VOfc4xRmqGDgM3hCNKU5fUuqxsbNBLNl37G3URKWNvYpJ9l3H5gHlFeINkfppxfWSGJNPOtDqWxPH7+AqPS8Jzjh0mSmEAr77tPK8Ig8JqJWnNptedNN8VrNMVRgikLVjdXCaOYOA7JspQ8L1hf7/LQqRVmOm0W5tqcOr/B5dUBd992iOfdcpgkjskLbwKZ5SWjNOfMxQ2OHVniFZ/yPEajAY0kJstz4jCoTEK9xtmhhSlOHpkjK0p0GDEfRQRBQKsRk6Ze8JZECUoJWgfcdPwwU+0mSgc8dfYCa2trnDh6mDCKUFox7PdpJE2K0vEX736YNMu55cQc3d6INBuRJAkC3H37YdK0oLCW3iDlzMUuH/joE9x2fAkVBpy/tM7CdItRmnP7TYdpJk16vS7Lq2voQNNd2aAVzjBcu4AtM4K4RdKcJwhaWFvgSocpB5i0Tz7sIQhhcxFRIUrFRHGLOIrY6A0J8pzEWSRsEreaxIMh3X6BNQZTjFDBAK0SREJEvJDPWeMFTSKVoElQor3gz3lzXAEUQmmHOBXhMIgElb8/sNZ4c1RnAY2SAOsKtAQ4CXESE8RNTJnhbA4SIs5hGOACCHSMVhEOh3X5FXNim45wOoRKmKkqn4PgvLn2qIcNI0THqKBDEM8RteZBlgm0xpQlSoRGK4FWzGCUkaUFcRTSkBjjvPAeLGmaE2qF0pU/Qecoy+KKnz+lhUgHTHdahGFMp93yprvOYsRhixGZGTLVSjASQxQx0BHtTgvXWEHUEBeWlJlhtBFikhGNYIokmkGcYJ0jtoqlYJEoaNBqtTDWEZQhQRDTp4eptP/6RUocRzj0FT+BSmsCHXohrjiUBo3XejTOkeU5QaAq34UO4xyNQHuZrruqYdluJhjncNb7Ua0VB2vUqFGjRo1nB7VwsEaNGjVq1HgWICIEStNb2yQvSyItBFpxeG4WpRVKBdxxZJ7+MGWtn/qgItZxeTNjM600AJVmqpUw24m5/fAiYRyzPijpjzbQQcxsu0VvOCLNMmItxFFEXlqaSYTWmkArskqjLC+8L7o0L1CiCILAazpVAkNjLKX1gpA8LwgCr403HDnCQCNaYyxc3hzRH6WsDwa88q6bmZ2aojdM6bSarG720DheePIQWeF44Mmz9IYD7rzpCLMz05TGUViHCkpyp3nfw6eZTmLEwPuePM09z7sVpwxxqEiCkMIYHN7EcTAcEUcBj5+5zLs/9BjPv/0wc7MdlNJopdCBJi9K+oMhm70+j566yGOnVylKRxAINx9b5NaTz+U9H3yMJ86uc/zIJqID7nvkFA88eoHeqKDd8sLF5958hFtPHuTxJ5/isdNnaSQJxloGaYYoSOKQVjOqzLFDusOM+bkZijInLwriOCLNMhqNJqIUxlm6/SGPPHaaW04e4eLaJrEWrDOMRilFkZHnOXmRM0wL+sOc5940z523HOL0+TUGgxHtVot2pwNYRsOC5eVlploJa92L9AcZa90RzSSk3UyIw4CpdkKeFySxIYoiDh86RF4ar6EWaEbDEavrp4mikKVDfZLOIkpF3sdevoZJB4z6QxyCjloE4RSIRoUNojgmHGY+UIbSiITopMHUVBNxjqQRE0SNymy3ALxpskJAInTQABSqHGIoUJV+pRc8CVoFgCK3fbQTtHhtRkGuCOuMzdCuxHtH1AhCIBFOlRhCGsk0zo5weYqVzK9JNUDCoS8n7IBzWJtjTYZNh4y6fa/9OeeQlkKF077NQZOoo0EUokKCcJogbCJKey1CJSjtBWFZUSJa0WkmCA5jfDAW61wVZMj7DbXOIUoIdXDVzFkJWIcShUWw1tBoNGhPNRANprS4wnmhJl4rtTQlvVFKu92hmSQQONIgRtkRtoCV8wNEJwRFQKOVsKZSFqVBiCJQcEgtoMK4CljkMFWgIqUUjSSi0UjI0xRroBTj26qEKIh9AB1nPO0oS0QpCmtw1gc30ghZXtIfDhEcrSSmKAzD0YD+cEikhSRpUVjIRkOUjAc2qVGjRo0aNWp8IlELB2vUqFGjRo1nAdY6Vjd63HzkIGvdlN6gh7GWZqPBKMuJA8Vth+Y4dX6ZbidivjXHxjAHEQoDKtAEWihNySAt+MipZYx19FNDXpQoVdAbZWS59zUYaIW1lihUhFGANZY0zwmUot1IGIiQRBH90QilHMpa/xvnKI3BOUtZGvLSR2YtnWOYZQzSFBtF3m9bFXl0OCpZ7/bYHGTcfmSJIwtTPOfYQY7OTHNxo8uZS+s8dn6Fssx50W3HmJ2ZIoo0LRXQCEO6jRaC4tff+n4efPIczhgKl3PywAw3HT3oA5FoL6BwyouFRlnJkQNT9IY5j59d5cSROVqtBu1WgFbQ7w5438dOo7SQpQWPnF4hKyydVkynEaKlZHNjg6NLHRqhZn2zz4NPXuTBxy6RFYYoCjhyYAbnLB+8/zHmZpocO3KY86s9PnbfaUCYm27TG6wwO9Wg1QhJ04KZ6QSlCtI0Za07YDjMWJjt0Gw0eOL0aZbm52i12szNznDx8jofuO9xnnf7UfqDIY88/hSz020W5xe88EhpDi7O8dxbDmCKguXVDdY3+2R5wczMNGWR0e50iGJHo5mw3ssItTDdaXBheZNmHHDHTQcJA83U1BRPnVshjtY5fvQgWgfYvGBpaZ5+GRKFAd1+SpFlrMp5WqMerfYUYTKDOIvDR1pmMKI1U0DowJU4W2KMI4ljmu02KohBBBXENDrTKDS60SCM5lA6oiwH4AxKNVDBllmvBmtx5TLGFTiU91PnhCiYxlH6aMEqRolCEaCI2FI7E3E4CkoKnASoKvqvw2JxpK6gGbTQYYMyzyjSFGu8+bRxm4RJl7g1Q9iYRekYHTRxUUbUKAlsidJbAT2qwCw6IdBNlG6ggwQJoitRi5X2UYqDIEQJBDogLXKstSRJQmk1WVbijEEhXqu1LGhEXrisxWLFYYwmVAGiFIE4nNNkKqWcWmUUjDDkuDAglBli1wRCBmZIUURkhaNdxrSCAFxIRoxyMYP1TYK4AUkApabHkFSl2GjIoWKBdqAIwpgkafgAI1cifOdkWYpWQhxHhGKJwggdeG3e0kBeGlxeEoYKcVy58IAcwSISMCpKnHWIc5TOsjkYodMcLQqxlsLiTYuLErEWbdUuFLVGjRo1atSo8fFELRysUaNGjRo1ngUYa3n84jrHDx5AaWFjlDI7GBEEAYFWbGx2edeDj3FqeYUX33KYqTjkbQ+epzso6A4GBOmQduwDTPSGI/qDEa4KDqCUJokCnPMmq5QWpbzgzjhHURT4UAL4QBRaEYcBiA8koJSQl96voKtCPGgdkOaF19ZzjlFl/luWJQM9op3ERGGIdY7ClDSjkEvrGd3BRU5fWmeU5pw8uIA1cGZ5nQefOs8rn3cTRw4sogKFxqHFR23I8pzNfo/ZTsKJAwd48PR5FqYanJifQ0Sz2e8TiGaq0yJSIQ5Hsxlz502LTDVC3v/gBS6uDTh6aI7C5KysbXLqwgob/ZwwEJ44s0JeGG49Ns/JI7MgikAL690hBxamyPKC4ShnozviwOIUhxamaDYiWkmA4PjL9z5OmhV8wWe+lE99/u3cdGSR4Shnbb3LuUtrRIGm10955PQyRw4UGAdpVrIw2yFrRACcOX+Zjd6Ayysb3HnbTcxNT/HSu28jy1KMtQSBYzjMGI5SnDNMddoMhyPKIiUOHCoMWJif5tiRw7z/vlP89UcfYX6mxfQw567n3Ear1UZfWuPYwRFRGHD7yQOIyTh5bImVjSFr65scWJyiyHPW1zeZnp4izw068QKoZiNmAct6t8/l1XXc6gbzc9McOFQQNprEnRlmnJCPMvLBxhVBWJF5YWWcJIStKVTYrDTfHBIajOuS9vskUylB2EFrwJnKFDdBVOUzkBwnDoWldN6cVLBYl1bBRYSABLAEOkQI/JwWR2mG4HJEYu87EMFQVAFKoKCgsBoRDUqjgxClHc44BoMhl9cuMjczZO5QhNZNgnAapXz9rMlQQcP7rzQjRLaCkVgv9FJbmn54+1gRnPMBiAxe880aS5aXhGPBOwLAVMGDBE0Sxzh8gKBR7qMMG7yQLC8KymCImltGkhxs5oOXkJGHKQXg4oQiV/RyhYljbG5o00BZBYUmLhYRyQg6giiLCQssGlREjmbDDuiULeLYt6UoSu+1sTLxVQjihEYcQNj0UdGtwZQGxNMHZww+SIrQbjRQSpFmAVYMUaDJ8pLcGqIoJsCRpgXWjmg1YhBNf+ijVAdKoTRQ0Z4aNWrUqFGjxicetXCwRo0aNWrUeBYgIqx2h7z9Iw/SH5VsDoacPr9Cp5Nw15ElHjh9gXc+cJpbD0xz1+E5Tq/1mG3FZFnJ8saIvCxZU0JZet+AOMtMKyEKA5xomkmMqQIGBFoRhREiwigvvN/BIKC0lrwwZEVOURqsc2glREHIMM0wzhGFXliTFQXWOR8B2RpAvB81480EjfVaRcZYlMBUKyGOYkoHZ1dHrPae4vD8KnOtBmeW12loS380wLiSqcYU1nkT58EoJUtT1vt9XnHXTWR3CM33Kk5dvMCFjU3uvOUkZ1c2edvHHuF5Rw/w/FtvIssdo1HGoDtgZX2AMY5zlzaY7cSsrA9YnG3Rbka89HlHeOTJS/SHOdOdhGMHpohDzfxsh0D5gB9YhyjNxx47i3HwuS9/DtPthDRNKa3l0nKXIwdmePDxiwxH7+IfvPbTmJ+ZYn7aYcuMMNBs9IesbPSw1rExKJiZSoh0QF6UBFoY5ZZWI+TA/DTDNOf0uQssLRRk2ZAnzy6zND9NmafkhUMpIY5CWs0mRVHyyONPgAiPn10jLx0vef5tHFpss7o54uylLmubKbfefJJWq8WBJUe32+PY4SXa7RaPnzrDcNBjpt2iKHKc9XMnigLWu0N63R6333KC4cAhgWJqdgqtFb3hZdY2Bt4vpRYWDh32WnUzMWl2josXL9FsbBCGAbb0UY+TdhsdthEdAuIDe1gvFFte3yRpXyJMZisTYvCBSQBnsbakLFNKm6OUxfoFg0AliFMIIZbKzFh8tFyco7AjSpsRSISIFxjiQKsIYwrvf5CS3BkSHRM0p3HFEJOOQCtapoEtbRVZO6h8KYaICrHOeP+DeR/nrDenjua8gNCWmHKAiEa7BBFdmTk7r3VnDEHoIxA34pg098FijHEoBdZ5LeC8LMhyizEFrUZCEmpG6Yh4qkMUaqwVsjKjDDOC/gz5ZopMX0SHDqUCnFJoDS5KsZHClQrJSwYmJzOaRncamwP9FkHRwFpLMOcwqsCZkiAUol7MaDnnQnONmamCIIwwzvuCDHXgNZCjkPXugMGwz3ynhQ40WOUjU1uD1kIcxyCQZTlplnthrPNm0UHoTc7JfX84B3mRQ2kpipLSFOAs7UYTFSiKsqQsCpyzzy6hrlGjRo0aNf6OohYO1qhRo0aNGs8CnIP7z6zxjvt7BJVmVW/ktcYOzjTZGIwwZUl/EPFXDz2BOMXtB6aYb0ZsDgZ0h96RfxU8lulmyMvvOEy7kfDQxR556SiMF+LpShuwqA7eaaWR5KOtOkrjgxxYZ9FOkxUFSnkTzaK0FKWpBFv6iiZPEob4VzsirWg1YgLtfadZJ0RhjEMojGGUGla7I84ubwKO0hRMJRqD4cjSHM+7JUF0SJaXrG92eeypc1hTcnhhFusUL7ztGKvDIetpznqvjykM/c0hf3H5fg7NdijUFA8+cZlRf5O1bopWijPn19nspTSSmKlOC61KHn3sEkprwlATBQFJFBAFGiXQSCLyoqDd6bDWKyiM41Off5IsyzCNiLXNEQ88cZHXveoFvPj5CX/x7gf48ENn+b0/ezef9oKbObgwQxQqnnfbIU6dX+fIYpsPPXSB88sDAh0y1QoYpQVaC3MzbcJAszQ/hwUefOwplteepNOKSBpN2s0Wl0cFaZ4zP5OwvLqKcY7VtQ2W13s856YDNJod3vG+h9BKsTDb4uDiNE+eXSUvLOfOX2RhYZEsKzh2aJHpToe8zMmKkvOXepw8GjDVblIaSxAo2q0WOit57MmztDsrEM4w6A2ZXphhanaGE8YgDvrDjM3ekEZjjaZz6EARRZr+cMSZ85cJQ83BhVkOLC4QJA2sy1EWRCKwBcWwx+p6l8urXaanVujM9tGNhSvmwM4ajBlhyhG5LUEERIOzhAQ4LFAi0sC50psaYzA2RyTxs9GlBCi0SqCa004EIUCJ9ubHQOocsWqggDIb0e+PiKKQKImYFiHqTKG0L0OUQtBo3cToPmXax2wJu8IqGIrSVwKXOFuidOx9KlYBVgQf5CMKQ8CRZhmZc4gOUDrAmYIoCGglCYPhBptpSTOOyEsH1tGIIqIkYitc72BlyHp3hAOac4eIF4a45hAVDjDGYGjiiHHKYAKD05bSwogQ+hGSO6RQzAYzOL1JFmQYZQgjg2pAEkdko4zlLEV0QJrmpHnO7HSb2ak2URQRBwoTeqH3Zr/PVLuNUgrrfJAVpRSB1mgdkOU5IhBHvv0i3tQ7DAPiKKIoDUoUuXMUuaG0lkYS0WwlaKUoCsNqmmNMLRysUaNGjRo1ng3UwsEaNWrUqFHjWYBzjv6ooD8qyPLMBxwxFhF44sImiCPUwlPLA7ojQ6sRM9/u0IgjZtststJRlgZlLdZZojBAKShKQ284Iiusj9iqFDhNaSDNS7KioBElBNr7AjMWrNW4KiCCr4cjDBTOCcNRymCUYqyhmUQkNroSrCQvSxpRSKh8ZFmDZbrdwjnBIgzSnDQvKcsSY7x/NlMFJEgLOLc64t0fe4JGo8nRxUVWNwb89cOnuPe+h/m0249grQUlvPCO4zznxCGiQGgmCY+cWeGBM6uEYri81qWzNE2aFTznpkVW1gc8fm6D0vq+SIzh0uUNhmmKQzMTK1pJTBhoQq3Y6A64tDbk9psWSKKQbrfPRx58iiNL0xyYjZmemqLZaBCHIY+cuoy1sLQwx+vueTFOFA88eo6N3v285M4j3HXrMT79hbfzkrsK8sxHCj6/0mNlY0BZlpy5mCMi3HFyS7AbcurcCg8+eYkXP/cYl1YHvPDOBbK8YKrTYmGuTTNpsNkbcv+jZzhzbpkjix0G/SGHlxa58/ZjfOSR8yxMJ0RhiDjrhYMX12i125w6c5EThxdJy5Ll5RXiABbmphiNUrK8IEkSZqanWFnbYHZmmtmpNu/90GPc+dy7WN8ckiQRzZlpZpYWEa05f3GV4Sjj3MUVgpVVFuZmSMKARhCy7kAshFqhowhnc5zJKu0+hbUl/c0el9d79AcZ/V6PbLROEM8gKsCagjLvYsoe4LAotNJem1CozHMr42JXoCVG4SP7ehN5R2EGWDsiUC3MFVNk5YNiYBC091coipwMI020buBkk6IsUc5rxAVJBBhs2acERM2gg4QgbCHqEEpCci7ibI4xA7RuolSIUhHW5ThX+LWsIpw1OBylNbispMi9kNYaSxCEOPxFgXXOC9ySmO5gSOaEVrOJ1lBai7miMeejYQsBWVHSjgPUMCJYm0aNHEOzgW0MCOOAQlKc1rjq8sEASawJ+y1SCuajBWIbk48EMz0AcQSBJnZeAxnrCLSPDZ055wWYyvsmjWJv1l8UbZbXNri8skFRGj9mVeAQb1UtNJsNgiCgKEq0kooGOJIwIAh0FbG4pBmHOGMYpBmmNLSbESKOvIpwXFrB1fGKa9SoUaNGjWcFtXCwRo0aNWrUeBbg8H4HrbVeK0/pKiIolcDAYayjm5ZIYImTkIcv9wEhjGKaDUO3P/BRQ8OQJEq478wGm4MRm4MMpYRGFFYagnhNQBG0EsLAb/cCaBFC7f2KpbnzB3cceWEpjcUYSxwGBDqk3WiggwDrQDLvt1B5CQxRFNCII5pJgnVCYSyj1GtC5nlJoGG208R6B2w04wgdaHojx4XlTVpRTFFYppsJLzp5mEMLsyRRRKuZkMQRG/2UvCzpNGIOHVzieTcf5wMPPsmfvP9BXvgCTRSFtFoJyxsjwjAgRNAirHWHDLOcdhIyOxWy2c+IwoAoCgjjiOkw4ImzawxHhTfbffIyjThA4Xjq7Aq5Xaa0wsJMC2MsD5+6yJGDi0y3W3zOK19Ef5gRaljvpqR5SSNJCENhlAppVtBKInqDnCIvyUtDp51wfsWP4+lLTzAYZcx2msx2Es70hpSlYW2jR2kseZ4x02ly8MACrWYTZ+HgQoc8z8jzjFe85A6ee/NhnjhziXPnl6uALAVnLm1yYLFLNkp51wcf4vCBWWY6DVbXBxw5OFv5jyy57+GzHFmaxlpHkjSYnWmx8tEhaV4S6ACMwZY5QWOG6YUArTWbGz3WNgdcXOkzGmUszU6jQ8XSbNtrvjUbiDgw3gTUlZaysORpxsZmn3RUEAcajCEfrBCECdaWFFkPV6boKCCIOiARFoMmQIvGOEMgMaBxOEQUoYrI7RBVPWvdkEA1ERWjEK81WGkb+qjIQSUwdH7eAlo1iRrzTM+kYEt0o4UzBSZLyfJL6MYApbx/QlEhOmp74ZxYynJwJfAIEqCURhF7wZg14Axem9H5CL8IgVKUWlGWPsCPKEeJrTyAWorCkoQBzSjwZu7iNQ7TNCdJYh8MyFhEhChQhGFIEASY0hEWCXGxQGgOkmQhmcvplpu4cISKQpwIUZkQhIocCzkMXcpmb0SzExOoIQGWtjRRYYgxXrOvLA1aee3a6ekOnU4TpTWB1oRRRDsvubzaZWVlk5npFs04pixLoiigKEvSoiDUGl0FRcrzEnBMd1oordnodhmOMppR5E3ThyOvrVwassIwHGY+GI1WqDpacY0aNWrUqPGsoBYO1qhRo0aNGs8GnKPbHzAYpQRKE0eRd/bvLIGSKwLCQCtmWk1EaTYGhdemE8FZKI0XdBjrWO1niAh54YOOOAODtEAJlM4HKmnFPopqYQw2zQiDAK0U4AUcEYLJLEnofYXlpfeTlkTeLDArC2IBrTVxGNIbjnClo53EdJoJjTgmL72Gk1YKh1CWXrNRK8VMI+DQbAcdwPEDC0RJgyMLU8x1muSlZa0/ILcZL7j1CAtz07TbCY0wprSOZhTSaUQkcczzbz7KcJjysScusNov6aY+0MR6N2UwylmY6zA/22J1vc9wVJCXhu4wp3TCTUdmObo0RasRsjTnfaU9eXaFt77vceZnmmS5oTdIsQ6atxxgo5fy5NkVjh6cZpSVnL24xtmLlzly+BCNOOK244vccmKJ+x8+zaOnL3DL8SUCLYhYXnjnMdLC8ujpS+RZyac87xAveM4xWo0ERHFxbYApS4b9HoFygOOvH3iKm4/OE2jF42dX+cAD57n79j63nTjE8+84QRB4E0uHkOcZBxemaCWa2XaCc4YgLlhZ69Ht9pjpRASB0G6ExFGEtVRaiTF2lBEFmvXNAb1RWQXCEV73qudTqAZx5M1vy9EIURE6nqIzLwRaMcwywqECazHWEAeKoBHTaDZoNBuI1kgQeT9/DCiGPQaDlGFWkpeWKBCKoqS3sYHCYWxBNhoRxxE6nMY5gxKHWJDAeyMMJESjcEAkMYFqAobSGUIsYIiDaQRvtup90zmcM1iXIxJ6IaIzleZhQKAStG6gRGHbA8q866NuS4jNM0xRQtqnjDcRFaF0gnKBD3KiEpR402JVmTCDoHXi3RyKFwwiCusspTUEKiCIQhKlsKXFWVsJKR1RGKHEm+F3Wg2SJKI/yrDGosT7IyyLkjAMKYqCLMu8sA1wzgsVW82E+akOgQ4w1kIZYDZSEh3RnprCKI2IQ6KSUCc4F5HZ1F9UpBFBM4VCMbI57TCmQUwjTrwJdJYR6oBms0kUx4hzOARRQhyH3gw5TSmykiLQBEGAqsarLAzGcSWasRJFaUrSPEcpxXCYMhgMcI2mD3iE91na6bS9P0LjyMsSp3wgmho1atSoUaPGJx61cLBGjRo1atR4FuCA/igFHLNTLbQOGaUZeZ5TGG8SOTfV4vDiLM0kYb2fYmxZCRAdooQg0JSlpSgt1nnBQaArgZ/zB2pRinYUEoUhZelN9rqjEeJgqumFekpptBKaoWKm2SRKmuSlD04y106YaSecX97g/OoGWVGANUy3YgZpBM7QSiJaSUxhK4GiUpVZoat8hDmK0pAWliQOmO3EnDwwxfHDh2gmPijCpbUNhsMUVxiUc4zSEcrNVIEKfNCUZhzSH6WcW17lgafOcfLIDK+48wQzS4dYGWbMdYTHzqzwmpfczrGDM2z2B1xeG5LnJc1GzFQ7oRlpHj99jiMHZxGBJAx4yZ1HOTC7xrEjB2gmAWcurJAVjuffdRtREPKR+x/hiTMrXOylRIHm8dOXmJ+bIwwD7rzjCHEcokKNtRYR7TUXw5B7Pv0IzWaD//W2DzAaZdx160EOLs5TlCVxHNNsNHj/fY+xsrbJp9x9K8O05K8fPEccCvNTLXr9lKX5KeZmZmi0mkRRSF4UiNJsdrs0k4TecEhRFszNdXj4iQtYaynyglazwdxsm0Pam0oPRylz003W1nqICIvz8yRJk7W1dTotb24aKFicm2J1GFI62BykRJmQlJbGFIgSikqbK9SK6XaDmakWDsdglBPFMTpposLIRx/WTUQnNEWRFyXpcunnQW6J45TOTAsVRsTJHI0pBwKiApRuoXWCygdYVyIIsYoxlDhApAF4E3wt3velUg1EfPATYwuMK7AUPsIxgjiHlhCH14yNVYsoaqNEY3GgAkxe4IoCCQJEB0RJ069VZ3C2xJL7wCrO4lyJtQXOZoj1EaX9XwelfNRlQVeRiwVnfLTwLCv8Gi8LH0wliIl0gNI+mIcTCHSAEoUASRKSRE3yomCU5ljAWoPgaMQx4H0iBtprBMeRRuvQ+2y0JVYsjVaT6UaDwjqGBVhlSUxAEls2S82snvKRl7MAC/SDdXQeMp1434IWR6vl+0IErHVIpeuI8VHGW42EVhxWfWNpxBFRHFOUJUVZEgaaIPQBjIIwwAFpVmCtY5j6gEiDUUoYhizOTtFqJjSSBmjtgyxZ70M1DDQ1atSoUaNGjU88auFgjRo1atSo8Swh0BodKppxQGm9GWRWloiChZk2n/3i23j+rScojeHJ8yu87+GzbPaHXpNKa+Iw8P78rCMINTMz01gH6XBInmXEcUS71SbUgdc8KlMUirQofCCRQqEzTWkyRlnKdCfmtS+9gyBuYUpY2RyQhIrFTkwnmuHWAx3OrPQ4v96r/KQZbFliTElRFN4ItIoqC4CD0pRYV6KjgLR0PHJhk8NpE0QzLBzTrQaNMGC1N2KzP2R5o8cjZ5cRbfmMu4bccvQouXUMs4yNvmMwzDhzeZ0T8x1e+5LnMDvd4UzPcHihQygZd99xlFuOL1HmKXNTTY4eXPQRVL1YCXCM0iGz09Mo5cjzjENLc7SSgOkqTckcDk2rERFq7TXvAmGQFjSzgrVun7Mry0wfbNFLhlilWLhzBtW1pHmKtQFr613uuGOKhx47BSbnBXccYmaqjVIB1pVkeem1MdOMdjNieW0DYx1JFJCmBVNHm3zOZ9zJhYtrRAEMBgNOn7nAnbedpNNqEEfzDIYjRAUEAYzSHjNTTa+BimBMSRwlpFlOq9kgTXNmZzoEYUAShSwtLnDiRIOz5y5w4eKyNxuNQ7T4qM3GwmCUESpHtz+k2R9iES4sr3F5tUsjCjFOVYIpRQuNFoU1BaI1OkxQKvKqfw1Hu52SJCHOWsrCoJXQaTUJm3PEzUOICnAmxyEoHYMO6LgRXbcJAqWzIN6c2LgSbI4o74FOSQgorHPe+6BzgAJXYDHe6hfxwkIBcUIoMTrw2pEYhdIxKoiweUoxGnjfe0kH0SGiG6ggQdBYM/KBR8ohYMEWlGXXB1MpR9gwIwhnCIIWokKoZl1ZGrRWFEVOWRqc814ArbMo5f14GmsISu8fsLCG6U6LTruFEyEdjRgMU7IsA+dotxoESpMXOQ4II6+9F4URhXOM3IgVuUA5PeSyWaNMl5hP5khiyEwI5PRlQNpeRwJL6DTWaQpKorikKLs4GhhnEaDRSDDG0usPEVFEkTefttYHLIoCr/2sK0GlaE1eFBjryEpDEkfEYUwhBeJKNEKaW4y1aBGajYRm0iCOQxqNGGcdo8wHFFI6wIgj0t71Qo0aNWrUqFHjE49aOFijRo0aNWo8a7C0koQkihhmBmt99Ni7bz7EbScO8LI7T3D70UNsDoZsdHsECsJAV0E+jPc7FoaEYcDcdJu5mQ7DtESsIy8MSvt8UQqN91OmlNBMIo4tTnProTm0Ujx5YY2nVgqWplucXJhmbVTSace0YgHrmOs0aUTTnF3b5GS7QzTV576HniQvSqJASPOSi2ubtBoNAq0BIS1KhllOXpZoBc2kgVKKQWZ4cmVAjubs6oCnllc4MJ3wqbce59J6nwfPeK09a0rOr3yYW46c4Zaji9x06CBBEJJEMYfn54gjYabdrASRjkYSEyrH0SQmTTPazQZxHGGcI09H6MAHbGkmTZIo4vLyCvPzM6RpjlYKHYYM0hFJnJA02mgdMByOGA6HnL+8yfxMwqGFDkduPsjR2xZIOzm5GCxeS5JGgI4DTAFrqwP6acaTp87wwCPnECwXl9cJAoVEMVnkhViUwkwrQkcB/UHO4YU2s9MneeLMKvc9fJ7n3HKA40fm0TrEOjhyaAkB1jc3SEeZn0GOyhQWbjq6wOzMDM1EkxVe8CQ40izFOsuZ88vcdOIQ7/zrRzl7aZOXf+rdLMzP0R+kPPjoUxyY77CwsOi11kQxyBy4gixLKct1+qOUUVaQBAGlDlje6NJqxkxPtQi0kBeGdGOTzlyANAJA48ShdIsgbvrovT5KBWEYEjWaoEIQXQkEY6+apry2XSeaYZBuIqLRAoWzuMpMV0lGURYg3oTYUQCh1wKs1pYSwVZBTHzgEh+gREQTqABslaYUOpombBtcmaGyPq4YgXihoagA8H45nTNYM/JagrpBId583mDIcAQuI7EjQiOENLCV71CRSusyt0ShJokjrPURei3e9yhAEAdY44WgcRx5H5+VRqqvv6C0InAanCLQAaU1KPEmvqW1pC5jWR7GTg1ouoA8h/VBTss0cSqiKBzohCLewOkC6wziYoqRxgWWQFtcPCAfFigTkpelj5qCsNEbgAjT0wGCDy6SZTnW2Wq8IYm8K4BBWdBKGjjrA64YZzDWUpQl1hr/5xxBGNCINM1G4k2ljcNaSHNDGFqSUFOUBbq2KK5Ro0aNGjWeNdTCwRo1atSoUePZgHNYa4kD5f0Glrk37W02ePXdN/Py599KO0m4tLrJWz/6OB994gKDrPDahtpr6yRRwPx0iygIabcahGGIsw6sP2TPtBOOLkwThwEay6PnV3js7GUWOk2+5NOfy/EjS5TO8Y4PPUQYwqfdcZxRbnnwzArTzYS7TxxEaUEpTauZcPdMm3aryUNPXcKlA247Mst0I+LRc2ucXdmktK7SfixIs5K8KCjLkjiJvPaUsSzMtHjBrUe59fAiT5xb5r0PneX0hXXSUUGaO85vDImCgEArsrUcJWvccXSJVqOJiJBEghNHI9Cko5RBmZFZb0LrCqHXT0mSBNGKdqcFTrDGIEqTZSkOR7PVZL3bJx4MSNMRWV6y3h2xst5jlBum2g3uuv0ESRLTTBo877ZDXFje4KUvW6JzICKny+agT5Bpmo0OYTKN1ZpSLBKGNFoz9GzOg4+e58Jqn81+SpTEzB6YI5WUVJcoFaNMTtAIOXn4AK1Wh8FwgHOGTrvB6kaP4TBlbqbN/GyHIi+Jk5g4aVAWOZvdHs4J7VYTZwqSKKLX6xNFESoIODQ7w+r6Js048gFsWoozF1bpD0YMMsP9j19kZrrFzFSb0pRcWOnx4BOXEK1pzRymtA5RGmPAiGN9MGJ5tU+gHZ3ZacRZBoOUy8trGFPSajQxtvKz573RARa2fP/hKIzFIYQaGnFEELe8dqHz+aKCSjDo0Qg7NNKElBxFSCCAs17LkBLLEEUIldBRZMvHYIFzOdb5cCRaIi/MwyBOIVbQYnFlVpn/CkHUQVXRhYO4T5mtIMoLuq0tcWUfkcBry6qIzFnWyEAFRJKQ65JChwQiFMoQikXblKHN0ErRaiZkRUGWZhSlFwo2kpigCvyRphlaCTrUWGeIlCIIAiyWoigZZRnOOcLARwM2SlOUBoci1FKZ6gobdo1BeBmCAeJKjLJIZAnEMMx7xG6OWIz3qVkuolRIFq2hrCFRlrJsUAxLkshgg4JQgkqT1F8ubPkMTEfeBYITLyAMtA+ekpeGQZoSBgEK70MRqWaAMTjnKK1FKtcIUhrvC1VrSutQGkRpkjAgThLCcEs7VVdRq599Ul2jRo0aNWr8XUQtHKxRo0aNGjWeDYgQhyGDUYYA8zMtPv34Lcx0mkRJxPsfe5IYxf2nLvPgmVWm201eeHSR5fU+51Y2yPPC+64LmizOdXjBLUeIo4g8zxmmGSu9lJsOTHNwts0ozbiw3uMLD93G25oJT15c4fzaJgvzbW4/fojNWw4RaWFhqkU3LTk00+Ho0izT7QYr/QGtICAJNIvTbdKiZL4d88rn30yoBWsc/QyGBVfMDLOiJM0Kr9mFJS8LSmuYb0a85PbDfMbzb2OQFnRHZymMYaOf8t5HLvroyjpgmJaUpkQrhxPD5mCEsY68TFnodEiiKYajlKcuXaLVToiSNnkvJ09HpEXJRreHswWb3R5TnTZFUbK+uczRg4coS8OllQ0++OA5bjs+z1Qr4qEnz3J+uYdSmmbDR0z93++8j0PzUxw6MEO7oWg3Q0oyPvj2JxiUGQePJqiWQ0frxI2QVqtJozGFCtvosMnSTUtEScLisYKVjRGLR2cpZkPSIAfROCw2DmA2wSnFKB+xsr5BkY04evgwzhrO9oeEOmR9s09RZByIF8AZ4ihiujOF1qoKNGIYjkZ0hzkPPnqKo4fmWVldJVDQnJtFdICxA6IwIMty7ji5xMNPXALn2NjsEShLGCqeurjOI6cuc+edi4QKDi3OYwClNQuDJeyjT9DdWGVQlLjcYoyPRJsWJccPaaan2+g4QoUx1hmU+Ci/znnT87zS9BOBOA4IogZaN7w2XxXF2muoeSgd0AymSc0yTqwXOFblOQkJRAMFWybj1lmMHWKdN703rkThg3AoFYLzxsViCpzr4uh4PUORytdh7AOJiPLjYwa+TBEKM6AUBaqBVSGXy1VSN2Q6mMFIQeFy3y7dQkkDJwFGBCN+XSitSZSPuDtMvbltaR3OWLTybgKKssQJaB2gdeBNqEtLluWURYFWoLUXGhLh/RCOvLJlHMX03JCN4Bw6ygiCrQjJDrTBKkterpIVBTrQNE2bpgkJR21wBSb2wViQEpsp3ChEAq+ZGEbeHNw67+ewtI48zRilQ4IgItAaFYQEWldBkbzbgtIY729QC0EQUFrvexTAWO+PNAgUURhhrEGLf05pjRLlNSSVJq98sFZSxho1atSoUaPGs4BaOFijRo0aNWo8C1AiHJr3Pu7uOH6Qz3rBrRxemsday3CYct9jp/jN99zPxdUes50Gr33xzbzsuTfz/ofPsLzRxVjDKM8oTcHNB6f5lDtOMCwMkRbEGi53B2z2h5iy8JFsgThQfMadR5mKNW//2FM8dOYi97zwJk4sLNBuNHn84gbogBffcZTpZovzy6s0As38VJveaMSMaTBMM5wpOTjdoDdK6aUlhXFVtGUojalMmaWKquzNjtO8YKoZcXxhhn6/z/sePsuHH7/AYJT5qMbGkhtLK9Q45yhy62VFVvHwmYuAo9EISW4+iUjAUxcv89TFZW49ukQhKbOz0yThFJvdAWsbm8SR4vzFdbLScNftxwnEce78eaamZ5ieaiHAfY9e5PiBKeJQ0x/mNJOQUEc0Es3DT/a4vNJnZXNAI4L+sGC20yAbWhY6UxxU0yinmO0EnOufYyVdAVkjDBsszs0z21li4fAs7iActIbC5VjtEKmCVChvEhwtTTEoHO3ckEQRy8sbrHefoJGEnF3usbiY0mwkFKWlu7lJvz8gimPazSbNhjfDzfMC5xyLCxGX1/uUlQ+4SyubWKc4sLSIs5ZWs8HDTy6zNNfi5mNziMCRQwsUecFNh3NW1gYcPzRLGCoaScTsgUOosIHohCVjSMKARx55EGNLBqOSUWZI8yGdRgIIQaOJjptIkLClQbil6qWAVhwSBgpnHc4anM2xNvV9YjXCluahh7UGVRZQWohBoxEcpcsInaCkiZaUQAJKCShNhnMFWmKcBIgdABqvwQjiArR1hDYDDKJmcECRrfs66CYbpktpc0JRKNWkEMOG6ZK6EYgmoYXFUEpGpEIsBWVV30S3iVQLkQDnHEoCpIqwq5UAGqeEWASFoLX2pvmNGBUGlEOLEi8QK0tDrz+gtJay8FHHnVQm0Kpi10uviReGAVY71t05gmBEoARB45Q3Z0ZBUcaUgVCGl8ltQlYMmTVLqAxatsFQdzFxiRaFFBGtYoaGjhFxaB3glGLQG5HnGTjBOeNN9bUCAYs3G8Z5AaAooZnE3jep8QLBrWjstgou4qyl2WhUQVYcQewD+ahKe3TLTLqKQuPHsdYcrFGjRo0aNZ4V1MLBGjVq1KhR41lAoBVf9LI7aE81eNmdtzLdbLC62ePRcys8cmaZ+09dYr2XkxeGzeGIC+trOHsTtxyc4aMzCcrlLM7Msz7yZptBICy220RaowTmpttcXO9xbnmNxMJcp8XyRpeHzlzi0XOXOL+ywWZf87I7j9KME5wThnnJC29d4sTSPGcurfP2+0/xnEPTaCX0RxnKGfqjjOX1buU/sOTiZs4gK2nEESBkRcEoy2glMVOtJnlR0h0MGKYFZy5v8I77niQMQx6/sMFad4BWmmacEChFGCqCKhppkwRjCgpjGKWWvFAQhax1M/K8z1986FF6gz6LnSZRNE0y3WauE9FuNbEmJy8K7nrOzRR5yihLQTS9wYiFpYSDB5ZwCA8/do4sL7nz5gUGWcnqxoj13oiVjQF5aVFKsbY+4NiBDs+//QitZoPbbobzF5cJQ8V0q8183CIuQwYy5GK5QjcdcOrsiO70Gotzh0miDiIKrQOsgHEOrZTXbAMIFAMpiI1GaU1pLRdXehR5QT81DIYpBxdnaLcaZFnOxeUV5manaTabbPZ7GOM13bI0o9lqccuJoyyvrBJQcujgEk+eucTs7DTtVoPbTh7i1pNHWF5ZYZQXrHdHTHdGzM8vkJcX+OyX38nsTIeR1YRJSBA1CaJpREcYU7AwN8NgcZayLEjTgovrXUQUC7MzdGanUHEDCRpo3ayCkWjAYUuvrTbdbtBqJgzTgtJYbD6g0GDDHKUjH8BDBJzD5CPS0Qoby09RRgFB1ESUAgwW430LOosWH1TEugIoiHQT6/xTEGDcyAcqcZqmmqEVtLBm6LUZbYoOWogoRvk6A91nkz6RxCgRSlUwMkNKSgKlUKJwUhKgaAYJBkskDRp6msJlBESVYNCAaLSKUHhzWB3oytTa4VAUhTctVgJFWYIRlM+mND4acVoUGGsJA0UcVZF/iwIJQUQhzlbCNE0vG+KCAkWIkFWRlL1E0RFisgYoS9IcYTJFqTTZcEhCk0RigmKBDXUeHRpoF4ycIbYHcVZIGiHGgFIjH1m4yGklEUmYYHEESuMALQoVeGFhoDRR4KMf51UEYyUKLZpSDArBiDeHNs75CMxafN+UFhREEngBsfKuDYqyHFcsrVGjRo0aNWp8AlELB2vUqFGjRo1nASLCnTcdZGFumoOzHVbWe9z32Fn+/CNPcH61R3+YEmjN4uwUJw/McHF9yB+978PMJDGX1jcpTMGn33aYS/0Ci3BxbYM7Tx4BFFlegLPMthMursB6d8D6KGd9s8d7HjzNE+dX0SIsTE/TUJonLy5zdnmDle4A50rOXV7jsQtrnF3ehCzj1IU1CmtoxBHN2EdFbSYNLm3mXNoYXTHNNMaQ5T7Ax1S7hdYKY73fN2ct672M9z10xkcgVRqcI1DKBwTRglYK56giMQs2FG4+foA7bznCC287zsHZWc5eXuOJ8+c5dblLv9djuTvg2JLXptJaYdOSIAh48uxl8sIx1Y5oNRosLS75oA8CaTpAY7jjpkVW1zbZ3Ozx4uccYnm9x/lLA6bbCU4cZy93UcD8dJODizPMzc4wGI546txFHnjsEi99XkiWKqba05QbisMu4uBMydn+BQbDPlnxJIcWTxLHDZSK0BJd8Z3mjCMQ8b7YlKIbWg7NTjHfHfGuj5xhfXNIHIWsbgy45aTgnCWKIg4sLRKFAUVRYoywsdkjSRKcc5iyJAlhcbZFt9tFCUSh0O0NiMIUJbC0uIDWCyyvrNJIEjb7Q6amiisRr4vSgBaCALLBCqYYYq3FiRCQsjQ/RX84JAoDpIoQMTfTIm52ULqBSISoxAcYEYWzpW97Ms3s3IADg4yLK116g4zeZpdprXG65YWCOsAJuCxlNLzE2uUzLC+v4qKQUjuaMzPEukEsmtKlPsSI1cSqBGsIVRNU5IV/tkDhhYa5KZkO5plqzqGcozRtymKdMl9nUHbZtCmFdjgZVUKrHCFGiUaroAp44rCUhNICAeMMAQGJnkJEo5ygVIh1JY6SUBJUFUQkCDSNOME6S1kacCUbvQGRVrQaEcaUKFSlbQuIQ4ki0T7YiVLKC9qsJSsKb46rNUopkiTAWseUaqHlCHm5TBH2EAVWDIFOUeKwhYZIIa5B3LDIyFCoEYk0EFE03Aw2U4z0GYI4x0w5BpubNGyTLCsYZTmBUnTaTdJUSMKA0rnKdQBEYUilLEwQBGR5wSgvaCQ+grH3Qiko5UAJovwaKMrSaxqHAUq8tmhZWsBC6M2IgypCcVl60+YaNWrUqFGjxicetXCwRo0aNWrUeDagFFlrik4Ss7bR5V0fe4I/fO9DXF7v4xwYU9JpxDzn2AIvv/M4jUhz36mL/N67H+bCyiZhAL/73geZn5ri5sPziM1J85RQRTxy9jxlXmAtfPjxC6x1B1zaHLC22efs5U0ftCRQrHVTfvudDxAoTXdUMEgL7j9lCZQmK0qmWyGjVkgSNbnt8AKLM1PMdBrMz8wwSEvOrD5ElmWoIMA5SLOCsjSEgabdiFic6TDMS6JA0x2mPrBC7rUBk9ibHIZBUEVaBaUUzllEFFGoOX5gmtd/1qdw/NAiSej914VRiNIhr7rzBH/ywYd58MJljtx8B2meUZagw5DDh5ZQ4njqwhpFnhEn3uw2jLy5p7OGjW6XtfUBaVZw+kKXl9x1hKW5NpES2q2EqakWR5ba5HnJwlyHKApZWd9kY2OD7iDDWcugP2LY79OZatNIEg4vHmeUjuj2C2aWNBc2Vuld3iA6AooILRpxjrL0wjgQAgm8WWYo9GxJ1BBecudh3vPRswyzgrnZNvNzc2xubhDqkDQTGo0EU2mXTbU79AdDclMySjMC7TW2isIxHPQ5MN9BCfR7A3QYsrHZo9lICLTGGcfaWpcsK5hth5x66hLHDs0TT08TRAn97grGOBQQBIpmI6KRxGSlIQpCZqaagNDqtFBhgtIJosJKCzDwEXa3BGQ4OnOHOak0ooQLlzd56vwKtwSapoowSY7QxOY5o/5F1lfO0uv1KU3JaL1Ps6GxzTYmrvwWklM6bz4rooiCGOO0Dx7ivFBQnMGUObELmU4W0aK9sFI3CEVjbcHQbNInJVQxGoWgKFxGrEJKN0KJoFBYSrSLEdGUpFgMibQIJMZgELyWpHEFkWoQqBDweoJhEBCEAdYYisIbIYcajCsxLiTUPjq0IASBN6s31oCGQAU4IM1znAMlqhIMWxqNhCDQZGmBM5aGNBkMDaXrE4QhSaLQOsaWjkJptDagDKVJiGLjtRCNVHMmRNkZ1MhS6LNEcU7Z6mFGC5RlFS0YIdRCZ2aKIAwYpbkXdFfyOqV94BDrIM1ysiwjiUO0VhTGR+j2FvWKwnpxobUOBwRRRBxFFMZUUaYVZenNnI3xKpVlUXraVaNGjRo1atT4hKMWDtaoUaNGjRrPApxzNFRAf5Tzzo89ynvvf4qVjT7OOgZpijjLQichLQwPnl/hBccP0koa/kDtHEJAd1CCpBxIc+anOjSCgI1uj8fPXKQsDGu9jEcvrDNIC3qDEcNRXgV1EIyxbA4y8tIRBSHWWQpjKEuDwgeN7Y8cTy2vs/7/sfcnsbKlCX4f9vumM8V8x3ffnHNWDjV2d3WT7HYThEkZJiDZ8AgY8EKANga8lbzySoBWXnmlhWF74UGQAUuALdJUk+LY3VXdVV1TZuX45vfufGM64zd5cSKThNEkLViVXvD8gERmxr034kScE4F3/+8/1BXH85yu0HRWkGpJGQN1XVM3Na/fPuBoNuKjZ5ecdg3EyIOjGb/11l2eXSzxzgOCm02JlBIhxG6kQZClCdAvN0shaF2gaSu0EpSNwvmOPDFEIkrA3rTg9tGCv/h0zeEo59Xlhsv1ivkooel6pcJ2HY+fX3B0uE9qBJfLLR99/oyjwxknhwusc2RpwnQayZqG+eQW0Qe8FUyKlLJqCREmRQJZwnbb4Pw1z09vuLipAMgyzR//4jl3j2f87p1jlFQgAokx3D/a5+X5FfVGMJ9FjsOIi3JNmzRIqZDK4Hfus9Z3KBlJZWTlavSe5L3ide7cuc3Nasu92wd0XYcSiqqpadqOTbklS1PqqibLEsbjgsvrNdNpgZSS9XpLlkgm45xiNELrhLKqmIwnlNUWax37e3uUVcW7b91jta4ot1uqpuPxi0se5seoJCfPa7qmJUkSkixDpTlRbTFNixaK8aToF32FILgGlUxRKkfJvgtRCAlCIEmQUqPNBGkK7gtN1XScXq6I0XNSNxyqMRmCurri+uwpZVX2PXRKAwJncjYusjAaIR0IgxYdioiIFo/G+YoIBAIhNijvceWaabJAuK4XluJunERnYCtEqBhJgRAaR4uNDZoMJUzvToyeEBxCCHJVIERAR4lEk8hRv7JM7wSOMaBlhlYFUmrCrmOv79DrBzqquiV4jzEaCRitdgvA/QqxEJIQPTGCtRGTq69HfvouT9m7AkPEdr07su1afOi7B3Uzx4ktQl3gujFBR0KbI3SDD4o0UbjoiEESVcCrljSZ9PcbI5mbIzYC1Ckq39CEM2R7Gy37uG+MkSzPUErjfIBdWLp3DBqyLEXsotJd13clht3QTIi9MVKKvnN191HUO4d1LyR3tiN6j9Kyfy+HQIgBhMTajhjD/x8+rQcGBgYGBv7NYxAHBwYGBgYGvgEikU/LJaPrDX/68XN+/eyS1bbq44shMMkSmq7jcrnpO8gCvLra0HQOJWUf6xSCGGFddZzfbEiU4hePXvLFixtihPNNw7axtF0fRUyMJk/7ZdAYwtf3Y7RGCMgi1E1H1XVEG7CuY111qKuSpxdrPnz9mL/9ww9YVzVfvjgleMuHrx/zvTdv9+JknvCjXz9nXdXUTcOPP3nMqrI01qKVRApBkiQo0UeIe2GhF1D6lVaFdI7OeVyAs+uSf/rxZ9w5OiDPCoJ0aCV5/eSIV1cbfvrZS9Zly8vLG2ySsF51FFnKJ1++4M9+9YK/+VdHvP3aCZPplIubVd+duC1ZrjbMJmNuHR1yc3ON7Tzj8Zi6LrlebgkIutaipwWJMXz86AlXm5pN2dJ1nvu3FywmGS8vKlKjcNZSzEbYzvLo6Uusbalqy3hhuHd8hK4Nrz5Zclpuuf+tQ+bHewijkAEkAtc4xhjcuqPtWma35tzZn/GGusPjR08J3mE72wdbbeDiuuTu7QOKPMc6y7pck2hJVfUR77ppGBcpne0oxJjOdgghaZoKrSR7ixlaG5z3xBDZm43RCt5NU4oixyf9iEc2GpNNFmjT9yZGIiZG8qwkOI/OcqTp15KRahcbzUD0Ylh/le9GMYRGSEkij5gfat72HUWmSBNDkaW45oJlvWK1WlNV9e49Qj/IESJhPKYVnnVbksUGnaUYlaBFIPgGS78YHHC46LGupb5ZUr16xfjIYdMZJlkglemvO6l2ImKHYLeOGyUKTaEmRPrXWwK5zJAiQwu16zuERE7Qsl9aJgakUGjZx8e10P0zj55IIIa4i8s61tuqj98S0KkhM30vn5AKoyStdYQIaZoR6N2B1vWivfceIQRGK4KPeO8pK0vbdhhjMEYziTNMk9KSEcZXJNphSdFG4kJL8COMAmtBOYOJKc4HDBKjJU3rkbYg716nzZ9gRxdsqhzTjhC76L+1Hudjv0huHXn21ZBIP7KilNo5FxOSJKVud92JSvUiv5LkWUrdtljnyUXfKehD7xqMSu0+HwDv6ZzbOQx319LAwMDAwMDAb5xBHBwYGBgYGPgGkEoy+d5DPvp7v+LzF1dcb0o66zCqd9U576mbDuscm7Lm1eWSqrH9MIgUOzeSwIfIsmz56MkZz85u+Oj5NcuqA2QvMiSGECOtdRACWZrSWosgkhiD0ZrUaKTsI35C9NHGqm1h54oCSNKMN++e8PqdO5xdr3h+teK3vvWAD1+/y6TISI1hMZ9y52DB3/vJZ3z+8goXPEWaopQCBInpBzeMUr3AESKdtxDj12MNQgjy1DAbZTw8mlBtGz5++pQPXnsNJ/pjTBPNm3eO+PC1W3zxPHK5rjCjLXtTw4ubC754ekWiNYd7M5I0JzQN83GOD47ttmQxn3J2ecN0OmVvNuNnH3+JP19z62DE/mJC23WkWcZr9x9gtETolM+enFKWFZkRzMYpxhj+rb/2DokR1K2D9Yrnry5ZbhwP7+xx6zCjLi5RBMbjEe8+OMF//pKP/slzju6vObm3YHNecmdvxpefvuSV1lyvau6/doi+63FYEgJxMUZGQWhblBAsFlNmk0k/XuI6hJSMdkLL9fWaNNWM8v41v17VtO6aNFFkJsFjOL9aMplMici+SzAEnHMs5nM++/wZIUTyxaKP32YTlBohVbG7CvrV2TTf0G5LgnO7OLFAmmIXK96JOjH09//1+nA/CoKQmGTG4vh1RtM5SiUonbC5ecmXTx/RtH53XfZC0npb45XCFAWdb1i2a05kRrNeImYLhBRE4YixIcYWHwPLZs3qYsn22RXKdhwUI8bzbT+usovpxuDxvsXh6YPTEYkklzO0yml9f/33EeaEQs8JscPGLRJFqmZIYQjR4mOLkb1jsl8S7td8Q+ydddY52sZS1Q1VXSOVJDOm/14pUZL+vRwjPvSDNWmSIGT//23Xx9D71d8Isf/82L2sGGNIU0OMgSwxKKHQ3UPqMqMLpwjVIEWClh5J6KO6QhKtQcUU5wLeWxKjCD5glCSxY0R8E9LnWFnhXEqy65GsmhapJM55rLOMRB+39j5SlnU/HmItUkg662k7R/AODCjVv9ND7zektRZrbX+71Kjd8IjYLV1LpZCh/26jewFyYGBgYGBg4DfPIA4ODAwMDAx8Q6SzEQ9/8D7i7/5ZHxUW/YqxUX0PXdU6fBOoWvu1c0YKgdmNEWjdu6Cq1vHR00u8DwQEoyJnNirQCm7NCz5+fs2nT8+omq63Y+160FJtMErx7r199qYjlmXHzbZitW0oG80bt/fZm04IwvPbb97j9dv7KNX3ET483uP91++wmE7Quj/mudJ8752cdd2xrjuquqOsGlrbrxJLJcm03A2P9M4n7z0h9AMLnbU0bUNiFEWqyRLJ67f2WOQFy/UWHwPB9/HjUaJ4cGvGKFNsTc5yU3N6fsm0MHz/3RO+fLlmNpvQdR3bcoN1luAdaWJ4+vKCuvEQA3lRMC4y5vMZWga6rsPawJ3be2SZQSnDO2884O6tAy4uLzi7uiExCfuLKetNuRtdgfl0wt58QZImTCcjnLN8uV1S+BylDPPpmPffPEIrmIzGTLuEw0VCtS3BR/7801cc7Y84uLtPq/r2uyYE9GzM6WrLzXJL2lmqR6e89/Z9bGtp6hqlJJc3W473p0wmY4yO1HXNy/OGpgtoVfHgzgHOWiaTKedXzzHJSw73Fygp8QjSzCCEYts6Guu4PQ8IBEqN0GYCSGL0CKERRmCKSR+BRdDVFSoxKCP73r0YiThi6F1zvZYViKEFJAiNkpok3UcnM4gR163YlBWPnp9S1p5RnlIUKRK4Xm05vHcbpQ0mehrZshYBte1w6pLJZAJihBKC0pVcb664eHJGe1niGodSkrZzeFfhfYfSRT8o4ltqV1LGllxlhOjwOFK5R4y9UNgvAmtyNe/nNIRARoUQBil0L3LFDkFEyX5kZ+eF7bstdwKY956uszR1i5KCTGuydDfUIfqxkUik6yyCQJ/C9WRJhrWOrusI/qul3tCvOfuIC4FUa0bjHKUUZVWhtSZJFK4TFP4uTbNBjlsUCYQIUaOUR0RP61pa15EnKW1n6awghoiNlrIq6XykEzPUeIXDEtpItnM0JkYTtCZEj3WOdd0SvN19NvXioNKaEDsSLXFI2rZD7f4SwofQv/c9OOeIXn0drdaqj6SHEPAeghcQA3EQBgcGBgYGBr4xBnFwYGBgYGDgGyDGyLZcIhLI8hQtFUr04wBKSZTsu8b6tU6NpRezhIA0NYyyrO8YkwIlegFkPim4fTjn9ZM99qYTlBCkRvHwaEGqBD/69XO63bqo2q3mShl55/aM7731kBAFle24WFWs64YPHt7itZMjoohM8oyqtTx+ccrlasn7D+6wN52idP8LvZSQCkVZNyzGmv/e777Dly+v+Me/eoILvWiUqF4YFLJ3NQYZvu4fjDGwrWrKtuXOeMwP3r6DSQSL2YTjvT2azlGVLV+8OOcnnz/l1iLnt956wF95/y2+WHX8Zz/6iOg9RdYLLSeHYy6Xa2ajHOcjznkSo9mUNR8/uuB779ylalrGkwmNl3z+9Ixvv32X6XTGerOlblq224qiKBASqqZiU5XMxgWz+R7eWYSEjkCtBYnw3JosELvn6FREIpiO5lxfX5JlOQd7B0zGU+bTCUppqrpmvSm52Ehevwf7s5ROCFKpendbDHghSeYzDkYTnn36jBdPrjg+2rBct9ysNlR1y2I2wlrLh+++TlWVGKP7eKfUKK3ZW+zz/OUpq2cv2F9M+NnHzzlY3PDw7j5KSLIspW5LDuYjNtsS6yPKTFAq312r/YiGEBIhUpJ8gVCK6DrKmxvcZstsr3d+Qdy58/pYLVEQQoPtbpAyQaqCGCWKFCkM1q1Y3Tzj1dk5603F09NV3/c4zigSjQ+B1z/8DrmeoEVGabdUeIpiQnVzSpIrgpriCWy2K55//Jiwcmgh0UqTGEk+GpPmxyiZ0jVXVKHjxm257pZEBYkeUcWSVPQLxT62u+PvBzGk0EQ8PloUEiVS+mBwIBJI1ASl0t113EeIfXAQPTF6rPMoJSjydCcaRoxWaK0wWpNnOZ21dDjETkwMoXcdOt87O7WUSK2Iu+itkJKmabE+MNWGiMD7iEoVUkuuyjXb8oqj6hoOwd5OESIF2eKdgaDRMSdPEqSUyF1PoNwVAYboadregZyle9SiI3aOcSHx9O9hrSVaZ3Qu4J0l14o8S4lC4Hf3JYVESwlK03UOa30fP5ay/8uM2GuWjQvksu8VVbofDnIh0Frfvw+Cx9Ye64bOwYGBgYGBgW+CQRwcGBgYGBj4BhBCoFVCEJYoAlKCEqofHRB9hC5GdtHMtu+Hi4I0NRzMpuRpgtaaGDxCCkZZwpsne7z34Jj9+YhxUZCnCZ31TPKU+0fX/Omvn9F2Xd81qHadhQhWVUfVNOzPpzy8e4TRmrppeXRxihaevfkU6Ic9Xl5tOF1v+LZWpGlCCJFtXeNU3+P2/OKK682GvSynbipC8Bi5i7DGgFQarRQ+RJwXhBCwzvVjDqnm9eMJv/P+Xf7GD96jrltu1hvW25IY4MXZDT/+9XN+9fiMF1PN+w9usZiOmLp+OXW1XrPdatpuzHyScnG5IjX9gEOMgW3Z8eOfP2G57nj66oZbhwuapmV/ljMbZ6RpSmct55c3PDvbcHI45Wh/RiAiosN2jtnBjJvVisvLa6SRXGnBjQ+MlivW446Thw85e/UCL0o2XcOj81fMxzllXTMWktlk0g9MdDXeeyajnB+8d4/Rb7+JtY4z4Wh2E7BCSIgQ8JjU8OD9e2STlJ/84jETpahqS54l3L99RFVuOT07ZzYbM8lHHB3sU1UNbdcRguNgb8HV9TXBed56eIyUghg8ykjW6zUhBm4d7bHe1IQodk62JTHYXghK5kiSfkBCTxEyw7stSq+5Xq5JjEInKUJoZEzoo7WBEC3BVfh6RdAJOoVoLZ236HSG67acnZ2z2lTo3Z9CV9uGtnNMRyl7iyl7t476GLxMwDusCKxiIFUpbbkmmAk2em7Ozmgua0ZpvnP19eKzMglSJTi3ourWPPUlK7chhkCh8l2oOKBlsRP4PBFPIFLIOVomxOiQQuJCh5E5kYiPLVqmKFUgRS+A+2BxoSPEQOSfO+CctfgYSZIEHwJJYlC6F+KSPENqhfOWLsa+c9N76rqmLOteHEwTEpOQGA1CoJTEGMP1zZrletsPeBCRUpCYhOm44GbzFBkDo23HeWfB5BChDhFVjdhPbzHJil6E2/WSCinRUiOF3HUEBozPyaSgk/3SOFHQhL7eoMgypPQkSpLnKUYbOueoW0v0Eecdne2dlMg+Ai2F6DtPgybr35x45/Ha94vlIfZiadcBkJoE62Brm77fcmBgYGBgYOA3ziAODgwMDAwMfAPEGKmrLeurkqa2xBjRRrM/K8iSlKrrnTtd14sFPkSUEkyLjJP9CScHc2Z5yucvr1iVNXXX8emLC642Ww7mBbf3Z9zen7MY5f2YRQhIAj4E8mQnLMaAVprPXi7xIfL23UOEEIxHOU1reXFxw53ZlP3FlBAFxmjuHC7Y1hUvrpfMJmPSJMUHz/ObJTFEVBCst4H/6i8+5dn5km3V/0Iv6LsCC993yvnQRyNba6nbmjcfHvDbP3iXNx8e8+BkjyIb0T49R21Lzq9WrLc1P//yJY9eXu6GTQxS9fHkECOHi5yr62ve/eAB33n7mJ9/9IjVpmI6Tqjblhen11xelyw3LX/7D7/Di7NLrm6WhOgZj1Kcg9OLKyZFwmxSULWB65sNy9WadWl57c6MW4d7ZFnOatsyGo2oTWRV1dR1Sxsj9+5MOV8t+fyjL9k7hKg8l5dLqrohTRLWZc0Dc4LRmrOLcwDm0yl1XVGMEqQEtymRRYGUiigEUvSzHj5YIHB0b5+pjNxNMs7OV0zHOYvFlHJrcF+tucZIluXkWcb5xQ3b7ZbpdEFR5KRpwmw65+mrc+qmQgiJ1po01bRdw93b+zijCaHDtze4tiEdTVFmTN/BJ5EyAaEQQpONbii2W7RSCNEPmcTovxYGY2jxbkvoWnxd79Z7Ba6pidHS1hXbbYmIkVFimI0TnLN9bF4JTu6eEEeeJm56cZI+chsIlCIw8hERBdZa6psKsxv28DESrKNzgWBrmu1TELDWKa30ZGmCcwGlFB6HQpPIAh9aQrDECEoYEjXuuwUBgULJiBCKGPsRDyHSfonXW0J0uNB93bLYt2iG3Tnsh0Skkbjgd92MgjQxqCxDSEXSdXQ20FmH8w6jFBBJjUGKvofwKwGbCDH2InLd1BhjSJRiWzVMpGaSjrk1e8hGFoQMurVDxxFWbehkxdSOsTgq0ZImGT4q2rYjaoXSvUBotMbaDiki+9Mx27JhuamIzpFkhuloRNg9We97AVQrhd8tnkfVL6v3AzACGQVFnvXdis4xTRWt83TWImLA+7BzzPZOXyUFWZ4zHo1prcP5iFbqG/yUHhgYGBgY+DeXQRwcGBgYGBj4hujqjuXTmu1qTZYavvXwhD/44CHrbcuPP33Jy6ZFKckoy5Ciw4VeFPng/gG//913cSGyrltu1iWTacLrJ3s0LnC5bnl68QLrHlMkGucCr663OOeRgr4j0Gicd4Dgct1yU17w2csl/+iXj1Ey0vmAFuBqx/Wm5nhvxrgYMR/nZEpSrrb85Nefc2t/znw6IXp4ebnmk1drHp+vEcowGY1Ybmu2VUOeKGajFCH5Oi6otSLPEo72E/7Hf+sD/uYf/jZqvGBZOp68vOGnT17yzijji1c3fPzskst1iZCa105mvHE8IVMJVdPRtJbJKIMYaJqOJElASM4vV1zdbKhaS1m1aCW5e7zg+GDK0f6YcltxfnHNbD7n6OF3WERLdf4p81nOraMDLq4uEVKyrTyJERweHjIeT5jNZqzXa3756jmd9f36spCkk5SbF+dc3pQkM4UKmrq1bE5b8jzBaIlRkju3jghIfv3ZMxaTK7SWlHXD2dWGZd1yr8gopovd1i9AH6VUQvbiXJrx6Nk548yQJJrTs0vypBf5xsUIInjvyZKENDFEPNty28dQXWC9fcnd431Goztsy5q27ajqmhgii9mUm04Sg+sdrGmK1OnOFdeiyPooOBIhDTopyNK+bw+piMERcLtIcQA8UmpUktFuN/jVkmw86qPXdcn11ZK66Yi78ZzFJIMYabuAUpr5wZwgLDb24rYQEWIEAbXrcLHY9RY2VJt+lVkKiZTgtSR4R9fUdOUKshHX0mJDh4gBiQIR6GJNoUbE6OlijYuOiKNvfpR9d+KuS1AKAwREdAT8riPQwlczG9L0geMQ+p+NDh/6+Gxu+oVoIrRtR5oYjJKEzuFdfx8heAi9407vhFutFC54mrZFCEHnXC+GNi1S9tdUmqZIIblerXHWIaVABEE+uoXShnHXEUPExAkitCiTIjRsyobOawKC1vXCbZampGlG60p8FCilMUmKajxGtbgoMVIhhKDtOrwPtE2DtRLrA50NOO8pdqInsu9erOsGYj//IpXqP4MiSB8IwLZpMKqPJn/lQkyzFGOSPqq8G2AaGBgYGBgY+M0ziIMDAwMDAwPfEJ7IxYsLjhYTfvitB/z+h29wNB3z//zxJ6xri3OREAMh9O44JSXRRx6/Ouf20YwHx0dkaYoxmjzRfOveIXeO9lFac72p+OLFORfLkuVuQbTb9eS9c/eAt+/f4uVNRVk1bOsW5xyrsuHL0ytGqWFSJNxZTPjV00t++eScvdmIe4cLqrrh48cvqTvLyEg+eP02928d8eX5mtNlxf50wg/fvU/0jkcvLynLLc61/JX37vC7bz/g+bLiYts7Jfs+QMfxNOXByT7zSU6rM14tV3z0xRkvXl5TKcmX51vWZUsIfT9h3XS8uFyjv3zG3nyOdRprA84HPv78BQ9OZhij8d6jlWJ/VnD7cMLVzZZRKlhtSh7cPmYxnbLabFmvNkyvH4OAPM8J3qO1YTwaI4DFotiJqZGmc73oJSXR9QJTlJIsNUTpkNKRpxpjIssrR9v1vXGrumY2SXl1sWY8KlBC8MXzFXm65XvfOma1qXh5UeKQPPvsGe/+YNwLbgBR9LFV0cfRVZ6yqS2LSUFAcLXccrgYIbVmNp1yvVzz+PlLJqMRqTEsl/1wyvHRPp89fsXh3pTVekvVdkzHk/541ooXL88oiowQDAiB1MnODRix3bJfI072ENKwW8dA6owkS/HWYaslKi16QUhohJB9LFnl6CLHdJbVZkPZ3jAZF1RVy/n1mqazeO+JQJYmjAuItCRpQj7LEEKh6I8jkZrL9SXGpDjvuKxqTuYCnEOhkEZgdxF2iCghaOqGrdK0QlFKhxT9YEaR6V3Xp0Rh0CJBCoGMHS5UaJGjZIKPfbdgjA4fWxKhiUIgZI4UCfCVS1DsBlm+6gztuxr7Xr1ACJ5tWfXjOCEQQop1BbJt8CFQNTWr9RZB3wnaR5cDIkqkkljb4ZwjxPi1s1BJg7UeHwJut/rtrMN6R5EZksSQJAmJV5RVg3cB4w1BRKTuhda27ZBEslQzylKMTuiso2k62q7jYhmYjzxJojncn1PWLU3bsi7r/pzsugbTtO9d7GzTv/ZakWU5rfVUdUPZtEQ8eZIQYqTuLFprijzF+8i6rGi6Duc8aWJ6AbqztJ2nbhqstV9fdwMDAwMDAwO/WQZxcGBgYGBg4BvCrTyrs3P++3/tPf7g2+8yHRdUdbsbHBAoLbGtp2xafPCkRlG1jj/+9Qs+en7JD966g0AhiFSt5cXVkpPDBQfjnFGecGtvjPeeunX88S++4NdPXjDOE374/n3+Wx++xarquFxueHa55npV8icfP8ZoyQ/fPCHKyLfuHXH3cJ+zVcW66bhcNzw5veLTV0sS2Y+d5C+XfH5WcbGuOZqPePPWjLvHB3z+6gJ56lkUButTfvj2Pb712h3e8AGhE1wIiBhYl1W/yNpEVuuSTgpePL/il7/4gtXZinMkIUrSNGG1rXl1s+Z6I9hOCw73JzgX2dQt27pFS2g6h/X0zsDacv/2AYf7EwSRzx+9Yn8+4dbRIVJKlqslIXi6rsG3G7SWNE704mCisa4jS3OUgOAdT86uuPvuW8im4eL8EmM9ouvwQqJGGa1bkxae8TjFZJG9+zO0yVEZRKVQqsOvBc9XK2ZK84e//RbWtlyuStZlRz6eY9Kcrir7syr6BeBA7MUoEZFCUeQpH7xzh0xqsizn9vEhL1684uLiiuPDfaaTEZ3zXFzdcPfkCCkjWvXurYPFhIP9fR49ecZsWjAuxoQQSBPNdFKwLStiOupFQSWJwROcJbqOoBukTHcLxr0gps2EbDxne3NBtd6QjRzKGFQ6QaoEHz1SFSg1Is4haklXV707zlqqpqFum6/Hd/o+PUVqEvbmY9JZP4ricLgY0CYh+oATjigCV9slT68LFjKSaIOgd022XYcSkUWRsq4abtrI9PiIxHQQwEZPojO0/Cq63T+2iAotEoQMGFkgpEaF3gHZhqofZ5EJQqRolffrxLF3dobIrifSE4LFxQ4h+pEWax2pMUyKnM4ZNtuSsmmpaouQHW3bsbxZU25LZrMxQsiv3Z9RQJb0fY9t20KMGKXJ8pS6aSk3235MRPTR5SxNcN6TGo2PoReZRS9QJlqh0wSpJJ11VI1F0K+GW+fwLrCqWkTsV5M75+isZW9SkBd9Z6Hzgbpu+l5BPKQJSZKQJinsnI3OdX1vonXUVUPXNsgYdqNKAhFBEcmzjDRL6TpL7jy2s72Ltb8YqLoOaz226xinCqOHWPHAwMDAwMA3wSAODgwMDAwMfAPEGPFXAbfdcDy9x7rc0rqOGAQni4J37h7w9GLF+fWmjw8K8CFinUVJQXdT80c/+YLDaUGe9i6qXz875+7RHmli8MGzNxmBSFhvL/nxZ0+p6paHJ1M+eHDE3mLMeOwxWnI4Lfjs+Tk//kwyyzNK2zIZpbgYsK7j4a05tw72qJqWH33ymLfv7qOF4unFirLpaOsW5zxX65qnFzfcOd7jeD5Bpyk3reX+rT2SImXb9sMqefRoKXl5teRmUzJJUy5fBP7u6c84Kx0/+eSM589PSZVgPCpIkhQlJUZrvvJoPTya892Ht0kShWwjb9zbY545fv75BT/+xSMgsJhNODnaI00lj56+4GZb8+F7bzKbjojB03QdTdsym45YrSvm84LlZoMXgqAEJHC9WTGfzTBCkSrByxefMDqZkNzdR54GxJcltmlJFgXb7oxESvRkRH63gJR++IPeBRaCIJlqNJo0ppzEMctXN/zs01OikNzbK2it48nTGw5PSw5OJigpesfgTiyByMXpNbnWXG5K1Lrk+HCfk1tH3KxWXFxcMpvNmI1zlAhMJ2PyrF/XdT5Qn15gFDy8e8K2KqmqLc5qbtYbRlmBUpobq9F6DNQE30Kw/eMHh+uWAEhpEEIhZYrJ9slGNZvlDa5p8Z1FRwG56qPHZoKUKcqPSMwaFQNd23KzLWm6ltZZCL2wFnwkBs9kZDg8nJGNUpSIgMRGi1C9eOi9QymJlIrnqzP07ASlJa75SjyT5Kni/q0DpNTU6YSNiQgR0dqQ7DoeJaIXMHcuzX6QRPTPTST9CAkWHzuUkCRqTkD1C8Yxfh2xDgQEAgG40PXCIAIArRRxN7wzm4wY6xHWRy6ulpxd3TDtWrq2o2la8jwjS5KvO/YCu1GinXAqpIIQEMCmrLlebfBtiykkUav+OKRAREHd9gIdUu6uHPrewsSgjaHtOiIR23nKrqWsKtabmra13D2ec3K8jw/9+nJRFCgp6bo+Jg2CIjVonfX9qU1L27ndAIuDAE1roXX9sEiMaCUxSiOVAhGBiHWeUDcE7/HO0dle5Ex2IqAMAWtbmqZGi/Qb+WweGBgYGBgYGMTBgYGBgYEBhBD/O+BvA+cxxg92t+0B/1fgIfAY+B/FGG92X/tfAf8u4IH/ZYzx7/7rHiP6yD/7L/6EalXyn/6jvyBPU8ZFwWIyYlGkfO/hIfvjjH9c1ZxFR6oUIfYxY6UkJ4sRxMjFqkKICq0UN5stRsF337jL6ycHxHGBRPJnnz7lZ188J08Es1HWu7SI/Ypu0/HPPn/G6cUVh+OEy63ltZN9fuut+yAUv3r8ki9++QX/g9/7Nkf7e/zW2/fJkhQX4Px6jSDw9GLDn37ynOWm5PMX10ghyRPDfpZyZ3/KH3zwGu+++TbBez778gn/9KOPGWlF2XRcrPvIa5YYtDKsar9bq7WUziFE73gTQiGAaZExKRTz6YjruuRB9OyNR8iR5t3Xjnnr9TWfPjnl8YtLXp7d8OzlGUpFPvnylHfeeMDV9RXbast0PObyekWWZiRpgtWeas/CnkZpKEWJ1gKzp9jqhqJKiDHw4vNr4tWXPPzgbbIHKfeKnEd/tkERqbsSI+ZMHhhkYYgxovQIITSd3SJlSoiCLnhutKOSJdlxznxvSr1pOT19wXLT8PjZkvYffsr3fuuEuw8OMKaPayJAtA2PfvmYbjbizq0j/v4f/5K3Hx7w4buv4YOkLGv29xYYrdmWNcWoZTGd4rxHKc3dkwO6riVNMyaTY9brdf+1XYec0gYsu9GNvm9P6BQpDb4r6cobgreYdIpUBQiJ0gUmn5F3DV3TYhtLqBom05ZsvMBri9Q5CEnT1GxXS+qmZb0p8T4Qwq5GMAZsiAglKfKM6d4exqQooUnlFCW2dKIjVZptqPHOo5REJ4ZnzRn79+dsvjinqzrSRDOfTpnMpqi0IMnmVGKNi5EQ+vdQJKKEwuOBSIh95FiIhBjaPhYdIy60+FCSqRFRGJQwu7g19LJt+Fp8C6HDx3a3luzxsUEphTKatrOsq5pRnpNnCXvTMWXbcH29RApQUpImCimhV0shxEhnPXW3xdleRNWmd9Cty4rtpmQ2ysmylDRL6DqHUr1TsCxrfAzkoe/+E0KwLmtS69ibG4oiQxuFbS1aSYiB9bpmW9eEMO8XlZXCukDTWurG0jnHtqxZb0tSrUgTAxKiF7S27p+H6DsF/W4BOe6Ewd1JJiIIoRcHAy0CQYiw2VQsN1umhaFpLY1tGGWGIkn62Lr7qoNzYGBgYGBg4DfNIA4ODAwMDAzA/x743wL/x3/htv8A+KMY438khPgPdv//7wsh3gP+J8D7wG3gvxRCvB1j9P+qB3DO8/iLp2gR2GwFe5MJF6uWJ2crFpOct08WHM1y3rq7R6sU915/jdG4oF6XJOUNytWc3mwJqwZrHcIG6s7yRz/5jI+fnPJX3rvPew/vUKQpP3v0ilGacDQ2fPvuAZMsoWs7us5xennDqiq5vTfm9t6EtXW8fWuPZzcb7swn7I8LPnkeObvZkBf9+EMMDiUkR/OCNNU8uHXA3nzE3/vJ5zy/XPLyZoP3AUnfk/jJqyVqekYmJZ+/vOHR6QYpIPiID56mawgxMC1yjOn7yLzvXUV1Z5mOeyfRxrU8PJ7wV957yOsnhyzLNUIKEqmp1iumxZg3X7vDvTuHvHx1xv/t7/6U04sNxwcj3nnthNtHCxJjWG/XvDw7QwgYjUckJwmlqehUIDUAHhcEQRuEEWgFdRZouwCV4vxLMONH3HnjXab7Cx58u2DTbsmEoJhOcTqgtcG5DiUVIHYrqylls0aJQIw5tXM0Bqavzfj0jz5nNjIE30cvL19d8Q//H6948HCPo+Mpk0nOyd6UuUl4784ev/7ylNdu7/O7332N8ShjOp3x+usJT58+paw7EgefPznHeUhN30tZNS11Y7HOcWhSuq5lOp1Q1f01ZJIUHxwRTYgdRIdQpo/KCgkh0pUVtm0R04hKfS+iSYNSKSbLKcuG5aamtS1VVTOZ1Iz3HNPF62hdkCYZN11HWdU01hEjGK1wPuBcRACjPGVSpGSTCVJqfLQELJkaI0VFkRds2g3s/HpBWkLwbHTH+O4RN1+8QgjBZDQGldA1LSF1SCmJURCiR6MhSrTIELFDyxwtM0J0RPzun4gLDTas0EISIjvxUO/O607vEuB9R+dX+ND1/ZA7t6hA4UPsl3+jo64bROzFs+l0RNxE6rojSzRKCYSUNJ0j+ICkH2lJkoSqarhab1muS24f76FHI5zzEAJaSoQQJNqQJcmubzOyLWtsa6nqhhAFZVWxXJXMJjnjIicRCRHRr2LvhkAO5iOEiAT6Ds8syyB6VpsS7y3eBS5XJcF2ZLMJ1nuCiwQXiKF3LXYxgvVEEZEItNEopajrhqppyLKOJDGkxtBaT1m3fcdh3RKcpZHgvKCqKtrMMB2NUUL23Y8h/Df3KT8wMDAwMDDwL2UQBwcGBgYG/o0nxviPhBAP/z9u/reBP9z99/8B+K+Af393+/8lxtgCj4QQnwO/A/zxv+oxBCCF5KasSVSkSAx5VmBD5PR6y1XZ8Vf/2u9y8O4Rh8UzWhP4wQ/f5Hj/NpvPXrD54peM8mvGec6L6w2rbUNnLa31XK9rfvLpSy5vSsZ5xsO9Kb//5h1+/MUL/sHHz2lF5N/6wXtcbGt+/fQVe+OMo/mEw+mc1joen13xo0+eAZGjUYrWfRzReji9vmaSaIo860cSvCJLDPcPcv7W9x5wutonKsGPP37B9XWJEIqnZ2teXn1EZhTLde8M+t5b91mWLadXK9q2JQbPpnGwaxvTWqFVwnyS8dbtBUfTEduu4YP7x0xHOZM8wySC1CRsfURKxcXVNTerDUWRk2eGw/0Rj14tmRSaYpQznYwZjwqyPOHV6SsmkyliJrg2NyBlP2oSDHma07reDZhoECKjC4LizgFv3FogOsH5Z9cUkyfMb90jmVm49qTpDK8DUhuMHtPaK0Kk76kjIqkxsqN3TOUoleJ9Q3qs2T+ZkvlArCxZpvG2Rhh4/PkFLx5fcfdwQvHGAfnxIe+++YBxbphNRygt2VYN3luODvZZrUtevLpgNh3zy8/PuV7VTMYFJ8fHbDZb2q5jUzakaQJEsjQhz0cUo3G/TpxkyE4CGqVyUBkAIVqiEIQQcI1D6RUmtEidopIJSuUokyNYUtY127Jhu625XK5ZbLY8kAqdjIgE0sRQt55tben9dhIIhNhHhid5Rp5lFJMJUvSB6jLckMs5AhhnI85EP05jnSN2kKYJQinCnuLA3sZd35DnGUJpurpG2t7BRxRfx3OVEP0QiezdgEoaZNTYUCKF7odLfEkiDVpNAYOSCUpqBAIf+nEa6xtaf02MEVAINFIY/K6jMPhA3bTEEJFK7QaGerEyMxqiwBiFVgIhoLMWay1uZ5NL0gTrPDEKWmsZZQnz6YgQHNuyYrWt8D7SWcv+YobRmohDK4WWBmc9QkSM6ftJnet/TrVdH1aXoj+WNGE2HtFZT1V3XC83ZEnai3LeISO4GFECRqOMybjAA9uyYbltyRPBpChore3FZi3pQgAVyFKF1QrnLamWjIsMpQyBFrve0tYt3jmsc6RRQ+gXr7smsopbpBR03vcx6YGBgYGBgYHfOIM4ODAwMDAw8JdzHGN8BRBjfCWEONrdfgf4k3/h+57vbvtXEgEfPEZpWme5WNcsgiBNM6TWfO/3fpf9N97gZ3/6z9i0Nakw5OOUfJpSTA3ffv8By7t7PD+/5kefveJsWbGtLdfrDZ3zWBfwAayHh8cT7h7NKUY5NsCrqw0g2B+N2ZtP+e7rd0l1wrZs+PzJGb96fMbTi5JtVfOR8Lx7Z0GaKPZmE6yz3KzXjHLRd7Bpw9Vygw2Oca74/skJh0cHXDWR5eqLvpNNSurW9svIZcXtg5Tfevs2aTbm9GrNzWbL2dWKXz05ZaThYJLROs+80PzOuw85Wky53Gx4vZixmIxQUlLkKVHA41fnVKbg+M4tVKj46Udf8PZrD0jTlDfv7fOPf/qUX31xznfeu48xhqZtuFku2TSSW3cmXKpXdEi06r/mnCLLUqzbYj0IOUGFgAsaEVOksrz22ycc3EzZvLriKj4mHU2YFDNyOcK3jiTpOyAh4n2/HFs1S0apJE1yOhsxqh/12LZL6m7D0cMJL39xQZoYDhZjLq42OAfTSc44791gyqScXiw52Nvj/HKDVoYf/eIJRa6ZTqekacaDe7d5riT/+E9+yeVyy72TOeNRwc1qzdn5JW3bMpsUZImhsZ5HT0/ZW8xoO8vto30SrZBSIlWGlHF3pUbwEakN6SjHeI+Ukl0ZYu+mQyKEQutdFNf3K9vYQAxL4BOC6P+gqSN43zvTgugjpWBQKiKFQGuFShNMkWFERiIyVu6SrbtGS4XWCiMFXQgoCVIIlIKAR2qJvp1xOCmYTOaYdITUGT4ZIUXvNhRCgwAtNI4OhUYIs4sR250wmCIIaAGJ2sMhAUWMAecb2MWNQ3S9WxBNEAGBBqGwoe7jxd4SQ8BZj/OQJRCDIsZI57t+aChNSU1CCJ4YI2XVsdzUHM2npEm/GO2d3y0QJ2R5RpIYxqOCNFlxcbWmazumjPuF6iTQWY9EIoWgdR3jvCCXirJoCd6x3pYIKdHGUKQZIQqci3Q+9CvJ3rPZbClHRa+nRrG7EiJ7s5xRMSIxhs713Y/WO2ghMZ7W9R2J3nmcc4xHOdPJiLzI2W5LMiORQiGlYDLq18HrzNA0HZuyosjS3nlrPc55pPNEpYghsqtxHBgYGBgYGPgNM4iDAwMDAwMD//X4y35d/UursYQQ/x7w7wGMipzZdIrONInXWO85X5XszRUfvvcBs1tH/IM/+WNOLy9ARL792+9xfH8fd9OhN1cUY4Wej/n1swuuNzV5ohllKWXTsCk7qrZjXbeMs4zrTQNixf50xNF8wqcvTnlxfs3h3ozXjvfJTMq26vjzz1/x409fcrmqsD5ya3/Gt+4d0vmOl9crDhZ7tD4wKnImozHbuibGyCjPSEzCo9MzQgJHsl/YXVUNszxDqwQfekGirGvUjeP55Q1v3Z8QCSSyb27z3lN7z52DCbcX++hU8OGbJxTFlO0TjxewrluKxOBjZLVt+eTxOVfK8FeP9pmkGiXgZ79+xCiTJIniwckM68F2Lb/4+DOW25bpYp/FyQln8SVORLw3CFmgaOhiIASF98AuhhoxOB+RClpvESoi5wlyM+HZX7zgje9E9hZTHn30iuO3byOF2W2HaITU1OWSul1jZIZUc7JsRN1saDrHdlOiZeTgdsHlp5rDvRFaK1brCiEgTxWTccKoSJnNJ6zXDadnV4yLlCxNAMHj59fMJy9wQXO4N8NZizYJb94/4He+8yZl1TAaFSxmU5arNfP5nIvrvvdvVGTMJmMePT/n5asz7t29jRAZSmUoRb/EGwNCSKRM0MmMGEPfubdz7yk1AiGRugCpsLEv39RSQgRrHReX17gQiMA0y4kITJ5RI7ERZIzIGInO44n9YxLRsh9TGasZ191zPIaxXjAvxlxXV/hAHz12jvlkwSibYF1LtndAlh6iVIZOWmx0CL/u+wIBIzQQiDiEUCQq63sWhScGjxABLSReJnSh3c3BaEJ0u25Cg4+uHyERshdHd82DMXpsLJFRksVIYgyHiwURqJv+vEopsday2VRoqYmmF+VihKZ1bKqWO8f9+XXOo5UiMaaP8UZBZ33vzpMCrSRJmlBkKU3bEWKk6VwvrElJojXWeTZdh7WBVEna1mG9J88DbWPxoT9ugGmRM8oMidEEHxBKIlUv4vadhpK5liSJwYV+AflwNsI6x6ZqsN6xGBeE2C9I789njEYjfAi9A7DtqLuOQmUYrZlNx8ymI8qqRSiJ0JouCkL8agla9s9fa6SQ/01+dg8MDAwMDAz8SxjEwYGBgYGBgb+cMyHEyc41eAKc725/Dtz7F77vLvDyL7uDGON/DPzHAEcHezFLDZ11IDR5nnP7wT32jg+Qi4w//uWfcb1c09mO+2+d8M6Hr2Gk4fmzR5z/7CPauwvmRcH1pkYA8yJjWmTcbMreibfckhjNfFSQd5bT68Czyw2hc2y2Lf/pP/k5v/ete7z34D5/8qvH/PzxGS+utnQukCaK1EjuHk743hu3uVhtwHmub26IUrI3HeNjwIfIuq7Zn81ITMa4qHh8esMnF494dO4RZkTrHB5L3bSUTYMUgrqN/P2ffslHz9ecXq2pyoqq7SjrFqMVm25FFwVv3F2gEsNknPPhw3u946ls+PL0FfNxgTGSD9+6z6VT3CyXFIdT8jThzz56xAdv38E5y7e/9Tonx3OqsuLZ6RVpmjKdTohZRxUtU6PYukgMCVEolDR4H2lbj42ePA2EkFI35/jo0EojhUZrQTYvSGLO459bRve+ZHUdOHQnbOsbBIoQ+y61ui3JjSSIgraL+NCxqUuurq4Ypxn5ZEwSAr/7wze5PluzXDYYoxFA1wW8j/2Cbdfx7pt3efToOceHC2yQHMwLrlYlP/v0FS4o8jxBKcU7rx+z2VbEEHh5fs3JkWI6nVA3JVopppMJzkfSVFGMMg72xjx+8pKLmy37d95BCoVSBgAXbN8HKDQmm+8WfSMxOmKweCFpY6ACmtkes7cSUtuhY8SVJW65pS23GCWxLlB1jqg15DkWcCEQokcF0FrSSsm2rtle3ZAVE4TUKKmZmjmX7TmgmIxy1q3Eao+K4LxjVS0RIqJEQmb6qLMQEu9bgitR0bMbwaUJFblM0UKhMLu1YoELDS6sSdWIQCDsvtaLVL38J3bavxT9OQpfLUlHhw1VHy+OkAWFiv25S5KEKCKQIWXfU+i8RyqJFBHbOZz3hBip2g6t+jGYznaUjWWzrdmWLWXdcnm9pGkayrJmWzXMJyNOjvcZFTlNaynrhk3ZIGIgSxKkkrRdR1XVaBnJi4IQIsIJlBSUdUMIkTxLmY4KIFJXNVrJfqwmRpACJQSJEqzrhsul4mAhUVJhEkMhBMEHWrdB+tivdMfd+rPcuUMjKKUIsXcTG23YvVQYY0iTyLwoaK1nvSmxnUXJiPeBtrP4CNYPnYMDAwMDAwPfBIM4ODAwMDAw8JfznwP/c+A/2v37P/sXbv8/CSH+N/SDJG8BP/rX3ZkUgsNZxumy5s233uIP/tbvc3G94mdf/JL16RnVpiRNE9793mt8/wfvk2jNdlXyyx9/xNOPn9JVFUezCTfrLUWq+1XPLGF/NmFZtdysN5zelIzSFa11KKX59cslddNQGMXV2vLHH7/k2WXNVeV5db3F+4CSAtsFmrbDuYpbkwSPYH82QiSK+weHrOqOi5s1bVMjpeRgtkCIyN3DPRJj+MXza6RtMVLgLJRNxXpbYrRiXOSEEHlxseVy1eJ9YFOWSAmzUYHWGq0lb9495s27hwQUxmhQEucE42KElobldstolHFvdoDeBH70xRd09YbDgxm/8+2H3DqckxrJbDJDaYkCPnxnSkTQacHj5pRORhqTkpoO65dY31K2kKUFCEVbb1ltQOuUREe8c6QmBwRGgZhljPdTHn9eETJFMg/YakM+mbIul0ig7tZ4Z/FKYzsoy1PqtkEgsI1nXEg22wYnJQ+OpmRB88tPe905xEieGYxS3D2aM84SNtsNh/sLXpye09nI+2/f4cN377PelkA/3LJ/coxSktk4Zz6b0XSOPM+IwN5iD2M0EQlxRZ7mSGE42t/n+npN23UI0bciBgGnm1NerZ+z6SoIMDNj7szuMslGuODY2Iql39IpS91tSbRGzBKkVzjvcGNJnGSYM4NbLdFSEBFYIahEpAueEHcxVAFuVwvYWId68oTpwQG6SPqWRr3PPDSc1S/JpMIHS5oofPAIF2i2G6xJKZKCTIAPDcHVXJx/DtEjxjn5eEwTG4gCJRRapGjR//G3Fwa3JDJDyYyARMn0azEUIgR2QyMgkDvRUBGjpwkbJAIpEgw5Eyk4UykhBMqyoguO1BhMYnDeY51DaUmUgs71Tj/vPUYJ8knBtqoxUqNELzwmCtroefbykoP5GEkvnCWFJk1TsiInyVLiunf4fbVuHoOA2I8DFUXC/mLWP5UQ+iGQzhFjwGjddyJ6i9aSJEloOkvTtWi9i2JrxShNaOqWG9H3e2olIfSOUWMURTIiTTRN2+JdoK7rXd9jwFmH0YpRnmHShK7rqFuHtZYYPNpIfARiQKtIUWQIRC+cOt8vwAwMDAwMDAz8xhnEwYGBgYGBf+MRQvyf6cdHDoQQz4H/Nb0o+J8IIf5d4CnwPwSIMf5KCPGfAB8BDvhf/OuWiqEXfnSa8Yd/64d8/699n88ef8FPv/gFVVshYuSt9x/yre+8zb17t9FG42zD8nLF+ZNTOhf44nTN6U3Fpu4wWlF1llGe8trxjMwofvU00HYddWf54vSmHxTZdRGGNMU6x822o3VLOi+omw7n+p486NeUrzdb6q7jb//ee/ze+29SFCl7kzEm7ciN4fGLM86ul9xsPmVvnLM3ndB1HtFWrK+vKLfbr59vlhomeUGaaCLQWc+q3FI3DZLIbJSTG8V8mnP3YMJ3Xj9hf7Fg01bUbUeeJtgusClrLpcbjqYps9mEdbWl7RRH+zO8qymKEd96c0IMniQx1E3Npx+/4mh/SpZr8qygUh4nGpxXCKkJMWKUJ0jL0+slTbtlkgl88NRNRd06UjOlbWqatkHr3nEVFKRFytHBCCUFPm2xbsNc7TMpxlxvzuhsQ6oTNrVnW55Rlx3OezJtUEZzcbnsF2ZnKRfra6Y6751944yLqy3WehKtGI1SEpNQ1S1FNsIkKfuLjOlkys3NNaM8o24cZ6fn+L0527JlW9bkxYjpKMM7ixAJ680GbRLyNOV6XfP8/Ia3X4usNxtObu2jdcJNq3G+49X6lC+Xj+ls2wt61nJT3vDF+VNGaQ4Koo5kRcJksiBLM6SUGJHiladsVggJnQZ1NCVBsr28JEpPKzWdD4QQCDFAhCj6MZoK8FJwvd7w7ONPePDeO5AJXLQUZo+9ULNuLvsZkxCxziJCJMsLOufQCJy/RiYjgitZra5p0pTJrCDGQK7GCClJpAYRCXhcaGndDUpAokZEYUj0iN4nGIkh4L96W++GRxB9p58PDTbUaBIQEhE1uUhJlETrCU3bUtbV1xHtECxd1xGjYDGdEQl450BIjBYc7M1IjOHqZsXF9ZLZdAyAlIIs02zqjm1V9XF+rYi7YgOtFRGN1oZslBOso227XVffLgIuFUZrhBBIIRCiYzYqeoegEjRtAyH2ceTEYL2laf3ueUaMlmSJwfmOTVVTd448M2ipcM4TfUQXCm00SQh46bGdZVvVRB/oupYoJWmaYIj9XwbI3tkoibvlas+4MIyKCZPR+Ovhmc5aXp5e///wyT4wMDAwMDDw/y2DODgwMDAw8G88Mcb/6b/kS3/jX/L9/yHwH/7XeQytNf+d/9m/Q+0b/l//5I94dnYG0fPawzt893feY7wYIYzAyL5brN1W/MXf/xnLi0tSKWk6h/cB6z1p0sfz2s7yxskei3FODBatIEsyfvX0kuW2pe4sWgqM0VgXuN5WbJsOIRRV16GEYFzkJCbBOYfzjswY3r59i+l4RBS9Y2qSJuADqVG0NvDZ8yte3dzw1skBB7M5v3q5pLVx16vmSYzC6LTfr5C9i6+LFiEEeZZjbUdjLZOR4ffff0CWJgjAdy0XV0sSJbhzsM80N1xe3/CLJy8xqef1+7e57jbUjWUxm5Kogs1my63jA5x1PH1xwXw2omlbZtMJWarpnKNjtwQrIm3bgCxIU5BJ5P4tzdWqBhSdb2m2jsgZJ0f7IDw+7GKsweCsw7cWJSXz+Zw42+Jp2axPySZ7SBH6JVxVUN1cIb0gVYpxMmIyzcgyibO9KCSVomsip+dL3rq/x/n1Bikl603Dp0+uKOuOP/idt5iOChazGTFGXpyeMRlPuV63vP5gn7yIlGVJiB4p4PRiyeHejL3FnOubJTZU/MUvvmQ6zvnt77zFfDrmky9fMR0VaClom5aQSJx3PK9fcO2XFEVBFlIa26K1IkkN203Fut2iU9kPhARNZyt0NsJH+3V3nTEJwlvMKOFmfUO6X2CvFYiAyBOoG/pyx9452LvzRO+qFIJWSc7OXpEVGYu390B0xCjJzRgdI5WqqGPfTygBaz3OlqzCDaZdkSYKJSzjUYpa7ONNQoiORKRomWJEBgTAYv0SgSXXBwQketdBCJEQwm5Duz8+KdO+d5FA57eE6NEiBSH6PkIkSYyIXQT9ZlOyX1ZkeULT1HS71efJdMJoVNBZT5J4QgSJQBtFahLazvHls1dUrUUr0Q+SpIYs0VRt//6fz8bkxQhtErQy+N1oR6IUZWfprEVJgZSQJhoQWOtI0xQfAnXbIYRAa41zjuA81ke0hiIGpJD9srqSu4EasRueUaggsc5zdd0SYyBGwaasQIzQsu9gVErhQ6DZlgTv+uMjUhqNlgKpdD8i4yQ+eELoz2OaGI4PDjBZSgj9sE/dNLv498DAwMDAwMBvmkEcHBgYGBgY+AYQUvDl2SN++tFHOOuZzXO+/cPv8PobdwGIXhNqQUVL19b89O98xM//9OdE77FAaiRO9cuwVdv1owUiMM0No0TzhRGMiwStUlKjqNuO1lqikjR1g3P9yITzoncHdR15opiNDO/cPeb0ZkPE8uHDI8bZLtooFU1rWW1rfvLpM37+5QuWm4qqsfz6xQ0vL0uO5jc4FCFEpOgFhbptSbTCaEXX9Q7FzjqMkiym492S8YZvv37Et9+4y+nNBqMUr65ucJ3Dtp5HL84JwfPo7JzvPLzFO7dv03aOTCcgOoSUjMcjJuMR1zc3XFzd8Kc/f8ZsUvDgzj43qxWzyZhkf8KyvMITUEpRt5Y0A0gxiUSIlLywBLfi/GpF3SjK7TVSOWbjDCUNWgZccMSmw24tWqUkOmE0u8VlfYZzEdtaxsUUYTwXNxsKoyDr16N9iH3EVE6Yzae4riGElnGWc+Za5pOMLFUc7Y0JPvLifM3zsxV//ovH/O733kRXNctNzfOzNQ/vWE4OF6RJxsXVGTF6nGsZFykP7hzy57/8kju39skSya2jQ+bzGY+enmLU5+zvjfjrv/su9+6c0HWOx4+fsFyfkh4/5LS9wJgUKWW/2msUaWIoq5rJZERdtwQCUii8s7RdBBHIklEv/CJQO9edkBGpBJu2Jj/cZ315ic4SlLeEto/pRiK9rhUQcRctFhCc4+zijOL1EdFYEiRKCOb5Eatkzba5osgMtuvwMdK1jnN/QVflrC8uyTPFyRsPSPOUsm1QqcbIhEwtdg5AD1gMoNU+USgSVQAQou/jzsED8WuxUOCJsWPjLhEIjBghRC8Ehhhp/JqxVzif4n2JdY4YPXmi8CHiQ0SbPsKrpCZLJDEarOvFM6P6+4FIcJ7VatN3SUrQxpBnGaPgybKMvcUM6LsB267rJczYi/hta/tREi3xiN2gB2yrms4HCIHVpsR7xyhNduMyktZ1eN8PoRDBaIUSAh+h8w4TI1qAMBohPVerktWm5GA27usNUkOaaLTShNh3MuoYMTrDaPN1fHq9qciyBKUFMjVY2/cfrquWUaZJUoNWGhsdLgq8HyLFAwMDAwMD3xSDODgwMDAwMPAN4Lzjxc1z7r12zIPbdzm+c0A2U+jc9O66UBCtpHEl1YsNTz9+DiEgpaRubC8eJOx+2W9pnefFco0xglGS8vHzS+7sjXj9JOXh0ZSrTPPr5zWJiRzPUpa1pbUSrTVR9AMQdVOjZeD9OzPuHo75nXdu8eBwTtU2NE1DYy2fvzjnyfmGXz4+4+ympGoaOmvZ1h2p1mzbPp6opULsoowxClrrgIam65AClFQICXf3C+7uz/jpo2fc2Z8xyhIEkYubFUoqcm34hz/5hE9PT/mdt+/xrft3mM8nHM3n+AipNjwplxijybKU6+sr2ralqVvyRDHKU+6fHPDJl89ZdYHpLPLqeoUnkBX9MUSxJsaCIjMoNUHKhjZG3nqgObtcc7NxrFYbxlnA65yucwgvqB9v2K47VBrYUpMXJ9w6eID3kfPrV+AtB9MR84liXXVYHzHC06xrYkjonAPmjNIcjSJaD7Hve3zntTuEEMjSlOvVhr/7jz/i2ekK/+efE3xklKV88eIK+IQP3rrDaDQCImVZk+UpJnru394nSzP+0Y9/ze3DMe+88YDvf/A6r86vaNqO8eiQu7ePaduOPMtYzGe4GHG78yalQOvepSoQSC2YT6as65Jc9o49pTWJSYl4ggtswhotFVIqhNA47yC2fS+dFLiRJG4MQkvSPKUqa4L7amQi7kYsPDEKHBFkpA2OEC0uWJASQYGUc0bZiLg+w2cBrRJc67BNjQeykSHepFSdpZSKut1i245xOkKhUCIl0OBCTa6mjPQ+XggCEustIQQQAikkIfhe5hQWH2pi9MTokUIRgiNgUTIlAiE6fGzxXtDVVzTb015c0wqTJITOIWLEKEldt8QQUVr3zj3vcd4jYiTQf89skrOtWpRUpFr232sMo2zMuMjJsgwXPM466rrpxUwfUFIiRL9qLIkorRC6H1RxnaVtu14cjYFEy/74lMQHSLyldZ71tiaEgFZiF992hODxEULoe1OzzLA/HyElHO1PKfKMNO17FaVUeN8vJiutUbJflu6sZbstqZoWFzxFkWGkxGiN87ApWyTQNB1Jshs1iWHoGxwYGBgYGPgGGcTBgYGBgYGBbwClFb//3/4+pkiRUtB0gU3TwaZDC4NWLdHCxeM1f/x3/pRnXz5DiX7tUyuBVl8JOBIhYZz2scabMnCzrYgRjJZ85+ERUkl+9eUrrjZr/vD9u7z/4A4/eXTKXzw65/WTA7775j3SNOEvPn/Kn3z0iP/7jz7iD957yINbB5RVwy+fnvJnHz9jXXd89vKGiOKrX9Ol1MTYxwDnk4L92QQfYVO1aC2RUhJCwFpL03YoJRnnOUJKmrbFuZYP7+8zHye8uFkzffESqRTbumU+yrlYbViXFYeTEXdmM9ZlSek7DucznAuUVUP0ER8Cm+2GumnY1h0ozW+9f4/ReMInX77g2fmG7797FytblO5o68D1zRVSaUbjDIGi6zYkZtKLXXKC1Bm3bmkO9moulx0uaOhWdCtP99KhbMTkksM3PCxSRJJDTJHSs5hNaJobknTE3EjGo4S6KVlVgSaNbMsK37V0Vct8MSEVOUVleefhCS/PryiKAolASclsHHj3tSN+/fiMs8sth/Oc+Szl3fQWV8sNLy+3bMoveeP+LfLMcHJ8i9V6SwSO9mdMxhlfPr/k/pPnHB/M+Ft/7QNiFEQsaWJIjMH5SDEec/34lGkhWRR72NgSg0NIRfQ7t6eGRGm66Akh4KPDIzA6oVA5q3pL5WtSY4jK4ZxDSIGnF9Sq2JEucqRR5CalXCta3zveJDsBKMp+AVgIvI5EpTAiRSDoQkOqEkp/2ffWKYlt2n5HWCqklhAFpbLc/uA+l5+dc72t8U3FbJLS+AoXSnysaMI5qSwozD6OgI8Qo4N+nJcQPS5YfOh68TO6XWQ7IeLRGFApEk2MDh8tPnYkQfWuyQBNVTEuMvI8I8SIkAIlJIFAVTVUVU2a5SzmY0KM1HVDHSBN+m7APEtwnUOryHicMxoXpEn/mdHHmHdR5118V0qJMZpUa+bTMV3bgnf0/k/6IRUhIHgikCQao/rHQoCIkcQkSOkAsDunoxB9vLrIMkyS0FpHUWRMxiMOD+B6tYXgEVJgvUd4haY/RqUVWikiAaEEGkOeZ2gl2ZYNq/UWKSVNa6mbDgF9J+pqzWRUkCR6N6jSi5sDAwMDAwMDv3kGcXBgYGBgYOAboqxqwqokH48oxnPykaKrG5plw+qs4tOffMZPfvQLljdLlBRoITBAanTvRpISiBitGY8K8iRhNs7wMfBmcsQk1wgpmBUZ02nBW3ePSJKUZVPzxvEejYv8zrsP+PYb94nALDNcLyv+9NePuVx9wmLyDC0iy7JFCon1kVVZkxvFbJSRpBlKSpQUFIlmnGreu7cgIPnZo3NCjPgoECKjkRLvLXlqGOUJ1gUaYNt0ZHnCX//ut/gvfvwr/vMf/ZL/7m+9z8nhgm3Vsuksf/3775BnGduq5ZfPX7GuNuxlOUanXK/WnG0dx9MMKTWz2ZzJdEZnO4K1bMoK7y2LxYhskWPlFiETiBaCR6eB5fWK9brEpIY0LRFIhICimDDJp0idcOuwxTlPt1zz7OdbJmnO7Xs5D+4XWKVZxgLrOgQGrSVGOTqd0AWH0XvEcMNi6shShYiO1U1DtbG0paddO/aVo9EeMZ6BFNStZToZY5RkJOA7773Gd95/g6puaZuKtu2YzSb88vNTDhcTFpOCi+st02mBtZbL6yXOOZRW/O53XwP6ERXnHEWRc71uWK+2TCYlSZLjfaCsa27fWuDShFyNGKkxjavwdksbKpwPX4tmSkmE1AgJQoAUkaA8x7NjrtaXVG1JMAYXAiqCloY0iXhfIVLFNC/Yxo4kS7BNS4ihX0mW/VIyISIQRCmpg8PbiJOWQESS0YVrjE5ZFGPWtaV1Edu2SDwgicGz9FfEQnC9XCGMZFwonIu4ZEPtLYkcs0ju4whImaKBzrf46BC7/kAbSoTQxBiRIkWIfy4SCgQ+Nkg0IXbImJJ4TR4lWklC4siynCQx/UL0rrZQSUFEY4wnBI/E07QtbWvx1hIB5QARsC4glGQ6HjGfTcnzjCTJsMETvKfIM2KMNJ3FxNgLkCIid58JdVNTbiuQgug9QUrYxY6FkPgQieKfu/JijEgpSGUCAqx3tI2lER5JYG8xpShGVJ1jfzYlyRKkEEQhuLi8IXQOJXsJTyTpV/NGKKn6mgEkQQSkVCQmQWtL2/ZR4utNxa39CUf3Dr9ec15vSrJMI6XG+6+6HwcGBgYGBgZ+0wzi4MDAwMDAwDdAjJGu6QjW0647Sr1FoLl+ueGzH3/O5bMr6rrFtS1GKaQArRQhQtX2scfMaJSUdJ2ljFvmh1Pef22Ph7cOMQSutg1ZknBVNXQu8MFrt5nmOb94/JKqsWgl2ZQNX7684Hpb8fh0ycvrNc4FVmVL03qs9yRaMsqyr/vStk2Hj4HCOkKAuutwwXMwz/n+W3cRSK42DU/P19idoBSjJgRJZzuuupYiNRwvxhRZwnJbszdt2Jvk5HnKZJRzuD9nWjjSLGV/NiZLE24dLrh/+4iffPaMH3/2nHme8PxqzZaUN997jb1ZwbYqqcotSoBJUhbzOXvzGau6BtnSOEuaGjob2F53NHVE6UhdbZFKgwSpwCSR5foaJRXjPOHW0R5H85yL5YbJWDM7atl7XbG9ElyfC/K3BVpngKNpS4RMiNHS2A4lA84ntHKKMg0nBym2yXneXiFioGgjR2lK2XZ8/vSU5abjy6e/4G/8lW+jlaLtWrSUjMc5J8cHdG3Hrz59xGpTcr0qqasK7h7yo58/5XvvP8DaQAyW6ahguVozGc25fXQIwKuzM16envOnP3+GtY5ilLM37YW5J88vkAJmtyWg8LEjMzmJSSl0wnW5oWkqQOCDQ+sEokOJBCEUNnhaVbI/3UNvBZtmQz9NIhEqkBhJ2whccLS2JskMWW6o1v3qsIgRIQKCfrlYCIExkqA6lucrJrdTciXpwikuWnI152gyxdNHk63zONsidEbwHU0NvpV4H5FSQ3SE2OGjYiJnzJIHWDqMmiLp3YBG9ccLkSgiSha7gZV+iEMgcaEm0HfpudASqUnjiFTNiPh+OEX0YpjOJ0h50Y+a+LgTzANGa7Ik6V9HpcEHEq1QpHjvCbuIeN1aRkXKYjEjyzJ8b7EkVYagNSZNCT4grad1Fu8dZhcRlgLSNKUsa2IEGwMyxr6TMIIQEUHAWugFPEGI4ILfiaFyN0jSLxRneUKe50ipMAbSLEFpTQyhj50L6JzDZIbEKJSWxBBwzuN0QGmD94GmrlmuSpSE3Ci0yolR0HnHbDJiVBR479lsK5bbCllBkSUk2gzJ4oGBgYGBgW+IQRwcGBgYGBj4JogCbiYYFWk2NS9erXj59JQnnz3GVi1GG6zrl4pDCAQiQsBkNKK1jtY6fLCkphcOY/B0XcPJNOf1W/vEKDladFyvtvzZpy/4xZcvub0/IUszzpYNN5saIwXXmwYhnrCsHattxc0u4qelonOBzrnetbP7rVwr2UdSo2BdtfgQiDGSJZI3T/Z4cGsf5yNHs4Kn50u8c/0ogugjhs57YnDcPp7wN3/rHSovqLrAeltye3/E8eI9olR01pLnKSfJgtPliplzHGZzFtOc3373IVerLbazEBX/9OkNVd1RJhLXdSQmIc8zmrolSVJOxiPE5QVn2xvMRDDKeydYlmls2xFF7zwToaNrIiaTpBkUmaRIYDrSqKRGSIkYe7J3Ekyq+OxXlldf1Bzem5JEh3cWjwMStBohYgMIXPBkyZjWNiAEIlpu38mYTMas1y2jIHh37x5jXXB5vabItvz0V495/OwlRweHPH7ynPu3F2yqilcXCalR5FkvtLz78IDZpGAxm+Oi4ecfP8H5pygReee1Y66XJT5EDvcXECXPTm/4/MkpF1cbIvDZl2d8972CySilbCxPX1zx24f3cLR4PARLxJOagruLKU3XUHVbrreXIPq+PIcjBoGIsPY1kzRyMLvFJBvzcnUKESIOpSRpmtJ2llW9YWbGjCcZm7XCb3c9mjEiiCgREVL1YxUGXrx4zGv5A7LDFI0nhhXXYYWOuzVvaxHKkqSaIBXNtiO6liKbsV3V6BjwsSYHJvI15vp1XHA4IQCHEP313R9DPzsikPho+5Hi3S0giRhsqGlDSRs6RmLKODtGCdMvLgePC323YJRJ/35SCu8DIgrkbpFZKImQghjpXZlK4kL/GmipSLXmaG/Cwd6MoihAalprsZ1D6f4+27bDdhZnbS+uht4RqLRCRYVWmhgiPnqM1iRaf70g3C8Zq93SeYf3AflVXYHor1uAybRgMZ+jkwStBTFENLLvNtSCtnWUdUvZWKqmYzwuyPOc1nq61tE5hw2QmABE1puKy+s1aaLJD6YkOiHPoGxayrojRAExUrYWrRSJ7l2XQqo+Tj0wMDAwMDDwG2cQBwcGBgYGBr4BhAAzkahEku9nTE7m3H5/wd0P5zz6yTnbq5K6tdjlmrrr8M6hlURLCSbpxUNr2TaWGAJEz6Zr+N3lhg+l5PR6y598/IQvXl7x5GzF5WrDqmwpsrRfy7WeJnqsDwgh2DaOrnOk2mCURggQro+PGi1xPhJjIDX91zJjcN5TdxYXPAG42lZcbbZM84KDSYGIgaYp+5VXqXG2QxHJsoTbRzPeenBCEJqqKnG+Yzou2J/NWZYdVduSmkDnLLnRfbfizl2Wp4bbB3NW65Jf1i0Af/IXn7I3TXn39ROypBc8Qox01qG1osgyYt3R2ASdaMZC4EOEEWgFWiuMHmFUBjLBekWeKoT0bOuIDRnKt+hRwd5oTFNtsEVL01lEETGJgGhxIZCYEc71AVjnW1IUIfj+3KmcEFKE6Mhnmnw8AxuxY8tEjFnMFtypKyRwvVxRZCnPz2/oXI1OCr58dskPv/2Q+WQEieDsYkmRGq6WKx7cOWK5XHJ+VXF+teLu8T7jUYGSkYvLGzrbMUoTJqOCH7w/IzGS1+7fRimB0ZrlpuHqZktrHV1o+sGNaFFS04YGLROSJKFIj1FC8nL5is7151PEPg6cmgyIuGgZZQuOfOTV+iUBAUqgjUIqKIOlbiuKYsR4mhO8xXa7IZAISgi0isjoCS5S1Zbnnzznwewe1nRkSoNtiMGhI+AswjpUkhKdo1f0LNleRG0k01FClgXuJA+YyAO6uEaoBTI4nKuIQhLp17+BvmMwdLhQARK36yL00SEJxBhoQotzgSydkuicft2mf5/EoAlCEFTvuI0IhJAI9dXAhkDK2C+GW/e1yC52y82ttdgQSBODSTPY9QJGKejabiddClxnaboWKSVFltN0LexETOcdZVURYkBLuesnFWitwEdU6B2BSimapqVzvRjoQ8CHflVbCkGe55g067sKY9xJm5HlekuW9B2BSrCLvLeMiozpdMq2rGmaFiUl3lmi6l8DJeFob4LSEpP20eM29MJg23nSuiNRis57DvemZGlG27VItcuwDwwMDAwMDPzGGcTBgYGBgYGBbwhVQJYrvINMKCaT2yymx7z7UOI6gQ+Wq8sVf/IP/pTHn35Gqv/5EEjfGQatdX1HmDIUmWKRpJxf3vB3/vwz/uLzV1RNR9l0xBAIwVM3Dc734wtGKzrnsS5Qtx12txorBUjVj0x47/vlUykInq875hD9z/crq4Gqbfijnz7i2cWaN473uNk0dG1N23VopRC7zjKj4HiW8/BkH2M0rXccLkYkZk6R5zgf8VgCgm3ZULYts/EIrSWdc7TbftFVIvj5F09Zllu++8YdfvrojF9/9pTnr3rxLEv7EQjvI5uypnItYprSNo7aSaaFIbiGSa6wcQIiUjpNKjK0EHiRUnYWYzKUtAhKXIj4OCfLRkyKgiLXhA2Qxt4JSmBbVhSFIYSu7zVEolVBVV8xzgsa62hdZJzN0VIRtKcNJesuEkxg22xZrpZ894O3uLxZMcoyJqOcpq05PDhkPik4Pb/m6GCPzgbOLpfcOV4QpSIxim+9dZ/DxZL1ZovSmnu3j/jks0c8P73mW2/e5rUHt3jtwW2MMQTvSdKM5XrD89NrvnhyxnpT9xFfwAhNFIpAIERPCA4rIk5YpqMFUhpO188IPvRxbCmJRGQU2NigomZUTBl31/3r34duCQRG4wLXWbQUzPfHSB2pywrbOQgRLUH4SPCR4Byui6yahrqxKGGRSSQzklwlVLFD+o6syKhdH5s1JvbXXOI42C8oZpbDZMJEz3GixkdNcKtesEMgY0KMgRB7l24IFo+l9DeEGOiCRSJJZEouxzj6bkAjNZN0r48t04uAUsj+dRMSZIp3vncN7sZIoB/3iPRCYZL0P2utRyiJi6F3Q3YdMcZeSBSKzro+wruL/DbWkhhFkWZUbcvlck1ZVjgfmY4Lxrkh0YrJKEMgdue1Fw0jvQtYKkWW52RFjpIaHyKr9ZrlpmKUZiSJQWuDcx1Ga3yv3ZIlhqppKauSLE3J0oQsMSQaxuMCpTQBMFqTJr3jMU8NMQpsYpCiFynzPENpTdM6pJTgHEEJdGaYTjMWswlC9d2pPvheoBwYGBgYGBj4jTOIgwMDAwMDA98Aznl+/A9+wbvfeZtxPmGSFyQqJ5iImZmvV4CzIuX7v/chk1HG008/JzWazoXe1SMl4zxjlPVOQoHnv/zZI8afPOeTF9ds6xatFHmiEEKRGd2PEERHdAFi3zHWOf/1kEHY3W8M/bKo+n+z92e/lqV5eh72fNMa93TmE3Nk5FBZc1VXsbvdZItNijYlyIB9YdGGAEEGBOjGgGHAF5L9F+hKgG8J+8IGPBGQBMsWTHMyabLJrmYXu6qrsiozKzMjYz7z2dMav8kXa2d2wTZpAXKnL3o9QCIzT0ScKfbZiPPG+/4eKVBqdzvMD6KGRCuC90ghd8HGEIg0necXT6/4+PkNrXVICalWJIlhmqeYxNB0LQ9Pp7x774Q8T1nonESpIThRBussIgam6TAlnBlNXmZIpQk+0DQty/UW23U8P7/g9GTO4/unzI4WiNDy4Wev6fqwmyFK3py9wYaAuqPopaBILd43EHOEFFRuSpZOcXZDlk4wwuNCpOt7iAGjFXnSsGlgmh9QNxXEAmRHki3Ye6tnu+pou54sKdBK0vc3pCanLI9YbS5p+8Ec3PU9VXOL84FEG4iK3rZAj5eGPjpubldIKVBK8/jBXV69PkfIoanVtR2L6YTFtODoYJ+66Xh495DGBkySsNrUzKZTpnnO6zfXfPDxc956cEjXWzZNj/OB8+slznmmkynGKD765XO6tub15XqYIMdICIJUFnRhS2Bo8QURCbEnhOFu3jRRFHnKXXWHq80ldVuhE0VCSh0DeAgJZDLjZHaXV7fPCUSS1BA9BMA5gZKKw8ke03JC37XgBYKADzVt7fCdRAToVMd8PsO6Btu54ZahDri4JtUZE2VogyNaiet6lAqkRQohMF8EykwxV1OcuiLIY6K/JUZDFAaBQQk/fM0RkQik1MjoKWRJRDFRBhd7Kr9BR4dEIqMgkyWJzndtwJ1xhGGaK4QgCrmTm0SC9aAN4gupS1RDSLhr1EXCMAH2YTBB+0Db9jgXEFISrB3ERFoPk241tB3TxFA1DWdnlyyXa4iRZZHx4O4R82mJKzKatqetG2B47kiUJio5NEHzFGUSjNkJRMTwnOB8pNCKxAxCFSmG+TNCDF9Tegg1h6mvJDGa6Bls0XVNta1QSpAVOYlPAWjaHiUECPDe09keGSKIyHyaUVUNeZ5ydLCHNoY0z4fnS+8RTjL6ikdGRkZGRr4axnBwZGRkZGTkKyDGyOcfX3H1uqYsct77+mPu37uPNoZe90TiYDUVjvnehM1yhSKgJEgp6HpL1bSUqSYzCqUVoHl5XSG8ZVk3PD6Z8de+9y46yfiDj17z4vxmECIEdo1BN0hOQqTte7wfbgNaN0wLE63I0gRipHd+N3sc5riCOEwtgW4XLqbGDC1DAYtU8+BoxvGi5NHRgiLPkFqiFJwsJhwfLJhNSkRwtH2PEppECSKBvUmOFIK+d0QxzFaDVKxXFVoblBT8ow8/QarIbzx5xEYaDsqEMp1z/84RUSiQCevNCmcdxw8XrGe3zDy0VuHFnM4ZtNJkaY6SW2zUpInCuaEFZ7RAiUjb3hKUx0dDDIIYNUooIgohJa1t6G49yawmeIfAkyY5k8kdvOsQUpAlJb2VOO8pywXetry5fIYgQ+KZzxa4EPBCsNq2bKqavb1DvI/0LvDsxRmnh1Osdzy4f4pWCqMVddOSJoYXr6+Q8oaH907JEo13PfdPF3zw2Rmb7ZbTowWfv1mx3jb40HC9aimyFUoq/vDnn/Pk7hxJZH9ecnFb7QLAQOMrggC1C38TlZJIzdZWNK5iqmeU6R6ZnnC1eU0TO0IYTLRaKESMKKFROuGtg6/zevUpbXBoM9x8tFJS1w175ZzD8gQ1TZFowGLDhk1X0bphehtai2dDTCp8tDRri0ss09QOYVnU9NsW51rms4TF3jHO9UzMnMxCrgI2uWLTz9isniNcxFYOGTwmlaTZlCw/IMuO0CZHCIUSEzJZ7NqAQ1jdhy8m1xIlDaXeG+5pxrjrDQ7hYCSy6yCSJClJkrCpKnrrd3f/BNb7wYDtPEar4d4hAq0NvXNEAl0XuL5dkaSGJEmGie5O8qHk8Biw1tK1HbZvMWpocGoRadqWxGiUGsQi3kcgoJRkXTcYrSgnBUJq2IWY1nmEVEwnJct1NbSMCaRiCKi1Hib+MUakVsRkaAOuNjVd2w3CodsVSmmKNGE2m5GkyXCCoO3wvgWxi1AjdG2P9x3RO/amE6QYxDsHBwusj4NYRQ1vo+26sTk4MjIyMjLyFTGGgyMjIyMjI18R/e4b5u22Zbms+LD8nMViwsHBPnuHU+b7JWmakE4STh/c4/XL19jQoJQeDMHe0zpB01syQCvNtm653VZA4GCa8M0HR+TlhKfnSz57fYX1g9W16fovjccxQtvZL+eGgmFyqOTQcHQMc0shJSFECAElJUoJApFpYXgwXVAWGUfTgsJIhPB8++EJkzKnyBKkEFR9z6TMSU3KzaaizDMSKbABJmk6GFWdI080ETl8LOs1aWVItMGHoXH2yaszjiYT3rp3wHxasq0ghEDXWZ4+f4NKZsz29sml5/jomNKkXF8siQsIIsH2gRAVWZEi2dDbQFmkiNgRUSRGEpXCyIzglyy3MJ3u430FQhGiRDgFQhCA5asGW0uOv2WISmIdWGsJ0eFcpGpuCR5Sk6J1igCmWcF60+Bj5OzygkU2oZotEFLx+vyWrz9p0GXB4d6C8PAufd9xcbMhzXIm5YToa0IUSKm4f2efuump6wpvW7Is5fHDO0xnJUIIDvf3ECqhaRqcC1wvt1S7UPnuQcHp4ZQPPr2k6SynBxMSbdjP7lHECev+ktZXxOhx0RIR5HoIzyIChUTpknuLt1l259x0a5y3aCNBQBM2GJGQiZL94oiXq+c4qdBKUpYlq9tbtpsKM80o8/3BXItDe01MUpxcY0OPyAWu6hEC5tkcXa7RfgGxwiPRNpCbBrNvmM9LUh2YmANEv0/fn9GYNbeXKW8uLujbQGIDVJbQdwQRSLIElSZM92Ycnjzi4OAxaVIglUaKZNcMhP30Lq27pQ8tUSgKVRJjYGgLMmzud2KV4RboEMblRbEL9Xu00mglafqOblAF47xCG810MqHMMtquZbnacHa15Oz6hrwYJrZba2nqlrrp2NYdXdcP4blzVFWH0bvNP1BvK7q2J09TfIS2a0mTBESktYPsQ0iN3Ak/mq7bhY6SLM/YkxKjFForkjRFCIFzAe/tIOeRihgC603Fzc2S3jpciFhrydOE2XyGMQkIvmxWai0RUe7akxHn/E5sY4ZmqTEQBW3rETLiBCQK0nR4DhnDwZGRkZGRka+GMRwcGRkZGRn5ChAM98eGBo4gRE/dVqyf3/L06ecIBFlWkCQpRV6wXq5Z3L0PdU20PdMiZ1oUCCnoXU+73fLocMr+6ZyTfsI0M7Q28l/+4QfkecbHL27YNC1973EhQIw7uYjcGYklqUqxzgFDa9Co4Y8FUoCUCqUUCEi04HBacDLLSBLB9959xMFihtiZXpUQrJqKIs8IUvPJmxteX1/xzYd3uLO/T2cdz1+f89GzZ3zvyUO0MWgxRE1t1yJIcB7qtiGKyDzP2TYtPsDtpuF2vea333/C/TvHFFmGqBqs80ynGbNJyk8/es5bCCYnE5RWJMpw+ekGfRAoH2qaDgKepmkRIlKUJdZBYkqCb9n2njJpMdpxsW5xIUNITQyeEDyCwSDtoiaVhmChueypbhP0VCCVwIULJvkUpSS93aL1BOt7TDQoPWUyNZSlo20qbm5XuM5Rb1subtZcLms668h8IM0M9+/eoWpqfvTzH/PmfMl3vv4Wkzyh7hxJYob7jPUWqTQHM01dt3RlwScvLthuO37wLcXD+yf89INfcXa5pm0tUsC337vPZluRpwmJvuHe8Ywn9w/Ic40NHZPkkGlyiA0N5/Xn1G6LEIN1uNjd3ZOkSEDKhIP8EVKcs+wu6GyHFJJUJQih8DiyZMZBvs91e4snoo3CZJrV+opquaY53FBkE2J0OAI6KUllQu+H+5VVs2Yvm1IkM2yoyU2G81d4FCYoJvP7qMIz0UO7k21O365oReDFZ5HbVcd8siATHt9v6Z0jRAUonFMkqWazrFlvf8XlzTmH+6ccHz4hL4aPAQJGJcAC5WokLUqa3SSfnahjuDwYYyAEh2TIClNjSJME2/c787ggTRMSbbC9RSrJZFKSZTlCSDIhOFAaH2Fb1SgCXduw3dacXy25ul6z3m7JEsPBotwJSQzTSY6QEu89wQes7WnaDvVr4Vxe5MzmC6TUCKVxbphDD8GgwIvhI9FqaB0WeUaeZXTWImUgxiGgE1LQNJbz61ukdyilWFX1riGbk2YpCEkMka7raJoepYZ5chyWxIBAJQKkpG5byiIjBHh9ccVimpJlOQQwJtm1o0dGRkZGRka+CsZwcGRkZGRk5CtASsnJ0QHnV1dkSUJwnri77xe8p+8tTXNLajLyPclRlhLbnqODUy7enNFbT2c9e9OMd05PeXW9okgT3r9/wsWqYlW1vLpa80efnA8hhVD4MDTzXAjsTUvKPKe3Hr5s5Aw3BmP0aKUo84RpMbT7Ei2Ylxl7k5zee07nBVmiyIuE7759H6kV16s1AkGRpEgj2Z9OcAGent/y2WVF4Ix5UYBUpELyq6sVp4sVR3sLqrodApgY6fvBNjstM47TOanS1E2LEOBjYH864Xh/gdGatu/Zth3FYkoIPXXToYTn6fNXZOaUb7//hBAswQduX1mYO1wXicJDZuh8SpIqJIrgI65f0XUrMr2gsQnW1Rhjdm0nSWIcITpisPT9lizmlEnDq7Mt8qng9JsTur4jygbne4q0oCj2WG9uiGEQuxhd0nUtIQqUyTg5kqg28sGfPOfjTy8gBP7kl5/xza895kDOkVKRJCkPTvao65qq3nJ8cI+m35JnOb0PLDcdF1eX/Oa37vH2o3tUXc/V1Yq6sTg/2Gq/8e4jvvcNw7NXF1R1jVaKm3WLtxuy1GBdYFJmGK2RQuOCRUmDkRPuTt5n21+xtdfY2OJjjxSaLlQYmUJU5GrGcfGY3ORcda9wwaGkIBWD/VdKyeH0ASE6Vm5FiB0mHSbM3Gz5/FdXQ7DlHPlijzuPn5AYQ24yVPAURzPKNKH1N6Roen+DCvuDvCT2ZHGC6ia0m4Yy1zjlqWUNIqdIchaPE/IDh7eO2JzQXXfYusd2zSBUSdSQhCuJsw2XVy+o2ppH979Nme8NhbwYIQ5393I52YWDQ9guxJ+Ggz44YuhRgPWOtu1J04SIwPlAphXKDEIf6xxtb0lMgpQSax3EQJIknB4f4N0CbTTeeRKj0FrQ9R1lpjnYm3Dv5IgkSTCJHuQerWW9reiaBoGg6VqmRcJ8Pmc+nWKyjEk+fB1vtjXW9mgpsbanch4pQUvN5e2Kvu95++Ed0jTFOwcxoo3ZxaCCtusJ3jKflmQucL3cUDfdYGdWmuAjVV2zWm9wtifbBYYhBJRSBCSJMSRpMsiNrKVpevqqQkxzIoK+74fWoBzDwZGRkZGRka+KMRwcGRkZGRn5CogxcjQrQByw3dakRuN9xGgDEYKHB/Ocf/P7X+Od4wWr9Yp/8JNfcXVzyyQzWKNQTU+mIVWCk3nJpot8+GbJq+s1bT98kx0xg3AkDFZj58MgCUjMbgEZCH64YTaEGh6lBHeOZvzFbz5GRsHv/+Jzrm5rNm1P1XbcVi2/fBn4wbv3+J1Hp2Rm+OPDJEkGc3KacLC3wChFZS0//NpjDqYlv3j2io9fXpKnhkRKvvPgLrPJDFTG+XLDNEs52ZshpRxCSgRCKdrO8mq5Zbnc0HQdt+s1f/zx58zKnGmecdNEtpuaq8sLzq+XPL67xx//8jXeB955fI/EKJTSbK5qtj8LHLyfkhUGR7q7V6fonWNzc0OZ1SyKAhdnqOCIaIzJ6W2DFJAm+zhXQ6zRoWV16WjqnnmhkOsANxExlcM8O8Bmu8UGyLISYqBpa+pQYbRCoKnrmtJkpNuUeweSR8f7/MnHL7m82fDZ8zd8/vIClGZvNuHB6R7LjabpAh9++pK7x/v0fc9mveXJvQW//Z232J+VpHlB2nd8/2v3+clHr7i4uuX0cJ9US7Is4Xh/Rtyb0HY9j04XPH9zxXrb8NGzK4o8YX4nEKJDoQgxEGNEKc1+/oDCzLntnuOjRaKIQnwxLsYHi1SavewRRiou2hdIIXCxRSLQMUXLjKPpPdy2po41SaLpo2d6kmKuE26ub2k2PWkGKkoEEiM1QRtSOUGIChkrhNCkMiFX92hVSZJ9ylZ8QmL3aduOYPY43z7DBo8PoPMSm2RsqkD0Ee+hOJmS6xnTap/lqyvatsPFQUiDlAgtWW1bnId3Hn+HxGR47/DRoYVGy/xLCUn8sgoXidHjfY8KFsUwqW1tj1ISISJiZ0Xu+7C7H2no7dDoVXG4WxgEw5TXaaS0w5xfSJI05c7RPkYqtJbsL2Zk2RCiJUYSGG6Ayt1Nw0QpJnlKkWUcHxww21vg3CATSqWkVQoJ+DgITgzD6YAYI5kSrOqay+tbRASlBEmSII1GInHWE50d/hJhUrJpdmcDlMJZS72tqDuLsx1qeAVY6/HC0/U9Pg5yIyUlU5OQJilN2xICZNkQFtreYW1L9B4vFN6H/789Z4+MjIyMjPx5YgwHR0ZGRkZGvgKC9/zyn3/I468/YX56Qtdb2rbBOYfsPaq3UFmuz1/j1tc477k/yzi/uuV0nnFvf8Enb27ZNC2/eHHJuukwWpOnGYmEtMiIAdreoZQBHEJEjBnuncUY6XpL11uarqftLUJCnhrevXfAX/8L7/PNx/f58Sev8GiWlWVZ9Tw9XxFjYFqm5EnKzarh6Ztf4qyj71uU0bxz74SHp8cUaUKMAgVIQEXB//3nn+O944dv3+Ebj+/wq5eXrNuWR/sLbrceIQT7k3y4c5YYlJLoJOXR6TH70ylPz274/Q9f83f+xTO0Frx1suD999/l56+u6dqK3/7OI5brLScHJYeLgr631G3DxU3Fh5+d42PkLz54i5CnOA8BTdd3BNtwZ6ERekrlJVoKeu9ApCQ6R0qP95G2a5DCYWSHq3pefHRD8JHf+OZDLq/XXH/WcvDNPSqaQdDhI01zQ1rU5ElOaiQ+Snyw5CYn+gK/DazPt3zryX3SNOXV1Zaffvgc6+HB6R5nV5ecpYavv32HqrV8/PlrHp/usZhm9L1lf1GyXK852Juyv7cPUpB2hqOTI+wvXpAmBqEEqclxLpCmKZvNFkFkNsl47627KJXy9PWSVxdrnnQ9PrRE36FkihIpwTmElqR6yrF8h5vu5W4WanDREgg4OqxrAMEsvU8UnqU9x8UOgaJzb0B4cjnlqDjion8BKpIBUSums5Tp/QzfBogJ69UbjMlARGJwrNuGPOkpF5FJfgdFJLoJaWK4c3LKZ5e/xAfPerNia8/ppcDFgJMSJztU4zCpIS9KfAwgA51uccawyO7y9CfPOTu7xVqHVpI8laRFOrQLe0s5mdH6jr29fe7MHhEJ+GB/zaD7RTDYIXyPjgxSFiWRShJiwCiFyBISpQm2x1pH6waxj5byy3IiOzmI9x4fAkoKEBKCIskyjo+HP7JnWUbY3fnzUQ5m8LIYmoC9xfWWRBu0MSitcNbTWUeaGGIcjMHsxEPGpDgXud1s6LsWIRW2tzx7eQ5E9mdTtEnQQuGdZ1s31F2HUZoAED3zMsEYRdO0NK1DKkGWJmxtYF132N6iZSTRik1rMWII0meTMDQIkwSle2yAuumwztM3HSvZ0js7WMRHRkZGRkZG/swZw8GRkZGRkZGviPWq4l/8wU95/M5jHr/zhNebhv29ORt3y9n5NWsheHG2IjOSg0mGi2CUIk8MdW+52jas646ms2zrliLVEMEYg0RRpIaqUfjgiVHivfty+thbh/WBrh/+LaXgaDHhG49O+M2vP+A33n1IalKOZyXfenDItm64Wm7wPiClpLeRf/zzF/wz9ZLlttklGoGDeclHL2+Y5Z9R5hmpNvgYud22XNxu+ez1khgc8ywFFB+9umFT17w62SPPJ2xXJQ+OZkwmOYf7C6a7ZtO0SLizP+Hh8QFvrtc8O1uyXtUIbnn0xPL+40NODp/w5P4hf/DHvyTPEjLt+dlHz1htKp69uqLvLb0LXH605Z6KhDzi6CFo7h5O0cmM5bYi0cNssu09AkOIFm9rvHc0vSVRAWkEr15U/PKTS+4dzZBSsKl61usW9azG3MnwviMQ8QhE1yOiQImEpmvRUtL6hthKkk6y9+CALhF43/Ob333CJE/55NkbHt0/4p1HJxRFzrZumEwKDvdmzMoCHwNpqgHFN957GyklQils72jaHoHgYFHy41+84PT4gNlsQgwBISQ6MfRt4HZZo40CPItJipQC7wYrdWRoEIboAYnta7TMSHTGPDlk21/go8fIZLgTGB1trAmuxTFnntwBtlRui48ejUahEDhys+Dd9Af00ZLkCi8Y5rmpIxSO3m54dfYBVxc34IfQjChw2nB38ZcxquCq/UOa5gOyuMA3OcGXaGa4piGqgFARnedDGI5AZ5I0V6AthpTgNMIJlJa4ouft777D+rbherNCSIfzCuN7fIhcuOeosiSZ5szmM4geoh/eZ8TQGgwBHzukd6RIEjmITJSUlFmy+9pR5HmKFAJlFNEHrq9XuzuEQ1Cm9GAf760jeA9RIIRCSwghIqVGK439tbAshIAMIBGDKbgomM8t19dLGmspxDB4tn1L03Q4awhxEOcIwc6zLHahtcBh2FSDrXiSJ0TnuFlXuACzSWTbdJxd3FDXDfuznL7rMEqitKKzjrip8BHmswneKHxwTDJDJ2Cz2WLylEIPjd3ttualv0IqSZkaur6D4LlerrG9wzuL0QKj5c4GPTIyMjIyMvJnzRgOjoyMjIyMfEUMAZ3jlz/7kM8/fUaaaJ688xYnx8ecT85pt1sCkk3rafoapRQHk4w3NxWXm2uW22ZoAFqP856bTYcLgcPFnN5btk1P7xzeD9NQIcRg9bWBzg4vV0oOU2BjuH8857e/8Yj3HhzjnON2VfHhi0te3mxxPuC8RwoxTEVd4OXlaphJ7m4Weu9prWdddWilB/OoEHgfaXoLEaSQSGN4flXz8uYFN+stPjheXq1ZlCnP3xR87d4e33zrLvPphBgjIcRB3gJIKXhyusd3H5/wR796hfeDFVZrhVGRsiz5K7/zPdabik8/f8YvPn3OpvZMi4yqtpxMEo7KHFYCZQSqgJP9Q4LQ1G3EO4uUKZEIOCSBvmuQskFJgxKeGCO2hv7KsZgkXK1q3lwsSROJVhDXLckiJ8wS2tYigsLZgDABFT3BOpxI0FGghCE/mWGN5loolIhMveJbX39E2za8Orvk8YNTgh8mqBdXtzx+cJdX59eIGLh/54g3F1fMZxOEhL539H2HdZZt1VDVPa8uVvzq2Rnf+/pbCAFKBhazCZ/erPj85SUnh1PeeXTC87Mlby62hBiQIiClwcYh+BUxEkREhB7vOozOWSRHDNGYIsRuN7GFGB1SKmT0HCbvsWcsQgwzaiHkIMKIEYEmiogUCqLH+Xb3enq81KijB/yq2dA1PQRFCBEfJW1XsTUf4+MSrQLNeoV0KY9Of5vrq3MkDVlUpIVAlIHOdYjCYHJDiMMMemLm5PkxRs7xsRvmuEnHd//yN/mTf/RLtstrpGAQatiAW7e4PqKlAusIYbiDNwyJIYaADz3Ct2QiJTMzlDRIZfAhIqRCxSGYt87TNB2ISKoNvfcgh3uaMQCIIUiWiugjbd9Rd5DowRys5PBPUaRUdUfTtV9KPpquh74n0YbEGISUdK2lanucj2g53BUd/oLAonY2Ymsdm6pGCkGeJRitSY0hTxMO9+dopel8oKpbqqYdPmjv6G3H7dqTdh2zskQg8WGQGmWJoSwyyrKgLAqCD7y+uOFmXbHaNhR5Sm4MfdeyqSpCjBwupkzLgv35lNvlBiMiTkaMVkgtkVJ+9U/UIyMjIyMjfw4Zw8GRkZGRkZGvgAj0zg4ikAjVdotPDB/97Jd8rBV915MnhhACIQSQilmZ0flIvW5Z1y3Oe5RUCCGGtqAUQ3tMSKTYGUV3RZsQI8RIliQopajblhAjWghSo5kWKad7U4yU/NHHL7lZ11ytal5db9nUHVVrCTEi5S6k2xlNffBIBVmS4Fyg7TskPYkJ9G4QN/gA1rrh/VUShaRzHut6mm6YM8fguXQtN5uW89sNZ6staZEynUx3b9NjnSciKfOEd+7ss217fvnijOuqwSWaR/cPmM1nrFZL1lWD9YIYJSE4Xp5vECLy4M4hs1lBU/WE0mFF4KaqSEyBZLhFp4VAi5reQlFMEfR0bUXXC9AZmRGEpWd71VDmKUf7ijwzRD8IPlKjOIopicm48hVTldEFRxMdfhOYJlPctkfYnnZPkwsBAYIIOCUIypNrw6N7+7iuQ4pInmeI3nJ9u8W6V7y5uObh3SOikIQgMNrQdB2rzZboPYLAdDbBRoG1gZ/+4hlff/sOk2LCertlOlGcHh8wKXM+f3HGgzTlyYNjXp5tAEmiFxiTkhF2o9mIloYQLFFIYhQImaOFQggIsRwe1GJoHUoR8dHjkUg52T3iJVIM7S8fHD76XV8tEkODxeFiS29vcK6mVQnp/hO6ZYXCYKuOvJigJ4BQpPKQNE0RBzlK7CH9jMmDyOHhfBckZbT9LV5V9KJGKElPoFQnIAxCKJQQ+N3XZK5yzEHOb/xr3+eP/9Ef0NYNMQRCUEODzzc4Kagur1hKQ56XBCFQUg8T/mZNGSyy3EeYgNhNgUPw9NZilBpCQOvw3jHJU5z39N5zOJlSFjlN2xGDp6ktWikSM0h3ZAzEOJiCfYAiy1Bao5TfWc+H8FhphQ8BLQVNCLgQiMBq21DVLZPJ8FxhTIILAYGidwEhIsEOM+C2iygE1jqmk4LZfEqRDfbhtve8fnNJ8G64XxoDwVq6EFgFhgk0AR8UR4sZi4N9tEmIzrLd1sPzlrV03hO8JeY5eZZwvDchhuH2oQueGIY5spIpfd8Bu5n/yMjIyMjIyFfCGA6OjIyMjIx8BQhASYn1DiUlejdBtC7geksMHmLAOocU8O7dY37n60+42Pa8uVnz7GLJalPRW0sEyjQhRIOSgq7vUdpgdq1AJSXeCwKRaZmSJilFntJbh/OOw3nG1+8d4L3nH//8KVfrITgUQtJ2FuccSimMSQjeERlmjDCEAVGI3fspAcGm7RFtT7ILLL2POO+xzmG0Gmy4crDoIoY2llZDK0iKiFSGgKRpLW2wzCdTmnpoK0UiJ4spL4orjmYFv1KRSa55++EJe/MJ27pltan4/R9/xO26ZpLnHO0VZJmianbW4rVlvW1p1h2HTzL6dE3wHqM0ve1QLqJUg3WR1WaJ8w4lhjaXcC2ZnBKroR03KxWHiwylNMeHU95cbnn6akUIkmM7ZZYa3n5wyKQsuK02fH75jB/e/Rp9Z/nF+SXrREGI+BiR0qOVASm5jA2ZFsyLffb39iiKjMJ53n58j/V6xfe/8Yiu9zRNy/nNkvl8Qt871lWNjJEnj+9w/84R7799n5dvbrleNVSNwxjPJ88vODloOdibcef4kOPDfc4uLokhcu94Tp4mKJmhVYoQ4kv7rg0W0CihCdEjGH6/IwLE0Ar1wSNEHNpwKKQQ+BB3P2bxREK0SJkghR6my8HR+5rObnn9+jlN6Mgm6TAJLgx2E1gut4iouL8/xxGIYU7wgU2t6etIV12TmQ3lXFK3W4qiZNte0bbP2T/9OoVZoIWijx2CjCgShMhRZF9+HBZHqjTqyPC93/sBH/7o59Sr7ZdfC1pK6CzLl2/obzfINMUpTZYWqABdveK0TJjdU3TRIU2Jd/UQiAqJUoMYJ0ZPlmVMphPatkUKOdzW6x3O2WEybC3ee4QcJCOJ0Ugp0UpirWe5qdBaIgWUecamrrExMskLur6nt5am75kUGXuTgm3T0vY9czkBoO2GOXJiNE3XoKSgKDIAmqZlXbX0Xced4wOOj48xWQZSIusWZZasN1uc64fngSHbpq9qEmPY35+SFTmz2QyTpoO1GKgaS/SOB6cH9N6TJoZJWSKlIk2TYQrftcg4PFflWYbWgklZEAOsqy1CMDIyMjIyMvIVMIaDIyMjIyMjXwFDwDYEgKkxzCclSWLYVA1V0xKlxJhhQpcYxeEs5717+7wtFL//C8fnZ9d01rGpWpTcTQ6VAgSrbU3vPKkZwsKgJDpIfBgCjjLVfOvREfcP54QYmOeG4B0fvbrh7OqW1jq00kSpaLohACjShCxNqeuGru/w4U+tocFHatftJscMM1Qp0UohpKJ3PZ0d5rjSB0KwQ/NQiiEUFLA/zXjrdJ8s1Xz9wTFHexMO5wUiRqL3OOcwUrOtGkLwnCym/PzpBUpKjDLMpiXBR66uLvn8xRtO9idkiUZIxcnBhMf3j3nx5oKqafHBooXn84+uefMy4b/x10+Z5gGTbgjOge9pekfXS2xfUaQGnWqUjxRbTdJ5Pvr0mtt1x5N7CzaNY9Os0Erw6N6C+3f3+PjpJTfrBq0k51cVeZrwzsNDgu/ofM+knJBMN6RaECMI4VEqQUhDJOISiSsTri9XaK3RWqG15t0nj6i26+H3eVNR5AVfe/KQ29Wauul59vISKSLvvv0AhOTb793n3tGc//Tv/pj/4u/9mL/0g3f4+tsPyLMU5y1FUeCcZ9s4Npua3/3he/g8hV8LYZzv8b4FoVBSA2IXBA9hrURAFLsp9jBxD4AUDHNiwa5NKHG+Igz/hw8eRMS5Nb1vOH/zgvPzC/YeHKGzjESlKBEGo7SSTMoJaT4hcSlVveH1y2dUqx5cJFMd0miqG48PDVNldpINw9XZFYv9U0SZgTAEFIocgSLi0MIQome4bgmJzCgODvjWb/2An//+P8fbDqMlWmm0BNf2LKtr6s7RWo/SBq0E00IxO16wujonIEizFNv0aKWQMdJZh9KaECNx11gMDDPfEALrzQaEQOeDSdw6h+h6yixFSUkIYfi6jJKurtDqT8O13jpu11uI7L6mBNMiJ9ub01pP4wIx/KmEyDnHpMyJEVIzNCi1HprK3nu21YYQAiZJ0WmGUGaQo7iAjFDXww3ORCnSLCHPC0IM5HnG3v6CLM9JigKph8d03zmatuF4b8L+YoYHpFDkeUFvLZuqZlu3iOBQif5SSGSd3zUhNZkZ/gJlZGRkZGRk5M+eMRwcGRkZGRn5ivDB45wlesl7d6Z86/E9fvrskjc3G6ZlxrceH2OUoGl6Pj275H/5d3/E9x/fod7WWOfJ0pTNbl7c9haBwwdP1fVDG1FrlJTgIpFIkSa7G4Aeieft4xkohbeW221FZjRCyuHXiEjf94TgUVIi5GAcnk8K1hXUTQPEL79Zl3K4OxhjJE0T8jRjaJVFiiwlT1M6a/HeEXcGVwDvA5lRvHt3j99+/yFSCg5mJdNJQZYa6qoDJ6i7nkkuh7uJQJmlCAH3jg84nM3pe8vt7TVJoplPS959fJ8PPn7Ks9dLtq0nMQllnrKpO5RW7O1NmJa33Cxbfvz3L/nhb+WcvJNQmoCLHhsCOvQkKmKUobvsuX66RbSSVEUubyq0EjSd5eKmQgjB7aplPk3Yn+e89WCfEOHl2ZrnLy/pes/JfoFRCR+fv+Lu4h5JliKDJwQ3WHmlRiAGyYWQ2EmCuK1ZrVc4D7erNUeHBxR5husbrLNUdc1yXfHmYsk3333A7brh5naDkoaqasnSlEf3S77/jcf8sx9/hIgR2/c479nWHQd7+wQgTxOePDjiYH/GeT1kg8PtuAgxIIRBCjWEgruw74sbgwDsguG+b0DowXIsFVIMs/cQA941QzCsSkIYVC0xdNRujXMdr19eQqYwicGoDCUMQgyt1Sg1ZVmidYILCucF+WTKfC9heXnOVCfcbGqcyJF6wdW65skk4+HpA5a15ennrzBJycnpCUWeEQTEAMH2SJkitcYoA3IQvAgUUnuKPKXDo9UQvosQqTvHtulpO4sQkcQ7lFEksiA4x8XVkrrvOZhNsI3Hej8EgkPHEm0UEkG1reh7S5mnTIqCpusgxiE0ZQj8Q/SEMHzeI4K66xBEsixBSUnvA8JHqqbn6nrN5e2ae8f7zKcTtNFMphP62w0hRPIkwVlLbzuIQ3vwerlBIJgWGQhJ1/c425NohXWRum3wzhOioKkq6qYmBjt8DUvBZJqxv7dPkRUgIM8TxO4uoO0dygSUVNyuKq6ulzy5d8hkMUdKhXMepYbnnKpuaOsapWCmCrIkIc1SaHuW6y0xtruJ91fy1DwyMjIyMvLnnjEcHBkZGRkZ+QpItOJv/N73+D//wc/ZVDV5obl7MOWT8xXzIuHx6Zy/+P5D9mYlL85v+fR8xS+fn/HZ2ZYyTVDKYHQkSzPqpmbTDM09FwJGKYpsCGc66+hsD0SUNIQQaV3gw5c3GCk4mU94fnvLu8d7WOfwuwlljBGtFVIp2t7hrf3yXqEc6oFfhkNCCLTWpIlBiCFoKLOcqump2w4pwWjFtMjJM83RouTkYErbWn7x+RuqpuWXr2+5qToOywQfA2/fO+A7b91jOi2ZZjk+BKq2JTGGxWTC1XLL3eM9/sI3HpNOZ8MtQwHBe+7ev4uIkrvH+zjn8SHy5vySbVXv3l9JXXXcrgZhx6ErWT7fUF9q0qlkcqBZ5CWbixs++WyN1DVu67m8qYgBDhcZeWq4ezTFesem7km0xuiIc4bOeaazCd45Ht1ZcHwwJXjP3nzCB1c1N9uWN+0bjo4mIBVaD0FnjIHgh4BXSugELOYl/c2Gut4Sg+X5y1fEKDjemzCZlBiTcfHJMzItcM7x1t0FP/zW2wipqKqGEAOTMudwb0YEXl8uEVJwcVPRWs/je0donbBc1yzXW+7ePQWG4FrIwVgMoKRGCLWTcERADJPXna1Xioh1NSEKtDRfNgW/sGPH0NH5FoEeUjmGULTz17TtisvP33B1dkV5Z8q2rkmSnEIWRKmYZVPkVFNmijfbT9nUKw6LQ2pzQxMq7j2aM2Ufbl6zl++T6DlP3SXLRnDkPCcHJxij+fDZC65+sSTLCrQybG/XbC+XgMIkmiwvOb17ihCCze0V9WpF7LshNBcCIcBHaDvHatMRQyBNFURQSpEoTQyRbduxaTqIgr4d5tVlkRNiHOb3UuJjYLupvmyECiVJEoNSEqMH67iUw++p9+7LlzdtgySSZRk+Brzz3K4rXp5dYgRkqSFRgq7vMMbgXaDvLc46tm3LVBfsz2bkRY5znr674nZVEZxjNi2IPiCBNDFD07O3tE09PJ7qLcF7QojE4Dk4mHFysI9Oc1xgF/hLQozUVUNYV5SThryc8MnTF5y9OefeyWLXRExoVyu865BSEkIkywyTfGgoa5OitaHIFdu6oWkbJnmG1uqre5IeGRkZGRn5c8wYDo6MjIyMjHwFaKX47/+VH/Lxm2veXN3wG2/d48PXV3z++oJEw3F5RPQdUk5QOkFKTZnlQ2ijDHHXxsqSBOcdbdchlaRIU9LEkCUpEWh7BwxtQec9KQbnPG3r+dHHr0lUpLWOalOzbDxt15OmCQfTgqP5hItVw6ru8SHiA6id2biSkuA8MQbSNKHIErRSZMkw5YyAMRqxmyUnxvDW3QN+8O5dHp8sKCcltu/4ra8/IEbJR8/P+Hs//pgP2xaIfHq2pKktx0cTEm2QStP3FiUkLjj2Jyl/9TtPyIucl1vPZV0zLTJeXCzZW1W0dcV0NuFrb9/nzdklt6uKqvUoNdxgvLppuFnWxAiH+wVGC4KN1Dee+sahjlMmIWd5cUbVBvJUkyeKLFFc3tQc7pUspoKbTU8IDEGqFGgtMXpo7UkpmE0LOhc5nJUIJailZH9/QpJqEAlCSFwISCeQwmERg5FWGXwMdKbHhcB+WVCWBefn15yeHLC/WHCzXOJDR55l/OJXr1huO373t77NZDLFu0DX90QiTaupmh4fAuttS2o2rDYdvY188PEL3n58h9tNxwefvOGtR3eIap8YHT4MxmItNTsPMXHIBYf/jwF2NwR7O3wupRyMxEPDM+4kLy2NXSGFIhLwoUUIRR829K7l7OlrPvrJx0QlWa8kPtEopSnmOU23xbFFTjo2YoXJBK6yvFk9p8wjRwvNJI0U8ZSFOuOyecly+4zJ4QxBzlmzRaYp+7NDvv+1khdnZ1ydr2h7QXW9pKkarB1kNyFGnn76lDzRTPKUItMkWqGExMdI9BHrIo319G5ovwqVkE1zJtMCUyZ4KejcMOtfblrquidLFzutSxyuG0boejvMZVFfGnilUiTpYAr2PuJDQIRIajRCCqqdRKjIhlauEALnPdfXS66vb1hMpyitsT5SJnKY4RKRIqK1ZJKnTPIUbQxpOSGVkuMITdNh2xaXapRS+BDpnEcJyFODIECIqAhV03O7qkiM4Wh/j8lsSggQew/e48SuFewD0Vu6ast6XXFxfsZ+mbLZVmzXW4rJlM2moq4adKJom4b5tCDLBlO4946mg9RokiQhBM/h/j5Jknzlz9UjIyMjIyN/HhnDwZGRkZGRka+EyO1mxd4k4VsP3qP38OJiidKSOydzTJrw0ZtLrpue6AYbqVKCLDHMigzrI+DwPlCkQ0swhmH+KIVESYFJEqRUdH1PZ3vavkfIDi0VMUaqzlG1PUYJ3kwsD+4cs3/oeXw45+7hAuc8H72+5UGMJEqwah1t77hKFJ2zdF1HkWqyNCXEQU4ipCRGcH6wtU7LjKppmZYJv/vtx/zGew9ZVhU6etIs4c67D0mTjMWk5Hy55bNXV1zerrlctvy9nz7lZL9gnhc8ODpg03csJhPyNBnupElJ17U4J1jMptw7LJlOp5hkuLUohCQQWMznvDh/SWIMbR9QBq5WDV3vONibcrg3QevB9LyuhibT1c2aMjM8OJ3y0dNbrHU8vLPPxfUWYsQ6T9c7msbh/HB57+ig4PhgMPPGKLhZ1tggyYzh7fsnbKRn73CKVgYRPFp7Ij0+KkJQREBpDXEIc5VIiFlkb0+QJobDoyPSrEAKSe8FN+uKpqqQRIo84dPn1xzsveBr7zyEGNnWLcv1BikEnz6/xLtBDNJ0jsvbirbz/Jf/8KfcP33BatvQthbbW8iHAaySw+NnMGoPqWD44sYgu9F47GldQ4hx+PlCfyngkEi872jtkhgFCL/rHIIPltZv6DYNLz5+jrNuEJ30ge2y4spoFvkcqxqicLSuIU0kQWgmkxlKwbSMJKYBelQ0hABNLVm3FtSSGLd0YkJXd5zgOclO+fpbh9wc3PLi6XPa5ZpOCLoA3rOb1A8BuJICidjNvIfHs/fQu4A2CQcnEw5ODlnslWQzjUqHrznlA/nVhv7smkQOgXOMsK0Gi3WaDu3AQERZj0cQvSe23dDEDYGQJHwx5/7i9uNgQ25Jk4TJpGRbN/jec3Gz5PXZFVoIlIzUdcMlkeTkgLKQSKnI5o5lVAAAQF1JREFUs5Q8T0kSg5CarrekvUPpwVQcYqC3jm1Vk6UpbWupm4YsNfQ24K0HqamajvPLG+qm4sGdQxZ7C5IkZWiRWmzfDXKSGBESFBIhBV3dMs0kR/sLQoTzs3OKomK1WtM0NVlqEFKRldlgnxaC4CPrumHtPH3fU+7e/5GRkZGRkZGvhjEcHBkZGRkZ+QqIMXK7qfhvffdd1nXPjz56xp29Cf/mb32DJ3ePaa2jaVs+eXXFzz59TV03zHODFGI37QMXPNu2JfhB9pEYQ5oYfAhsm5YSkHKYgmopqXwgdj1GqaG1pBUHswlaS955eIe/9sP3maaDvXSa5QiheP/RXX729DXP3pzz7lHJ6cGClzcVe59nLDcVR7OS+WzCqu6Gm28+DnPLRLG/mHJQZHzw9CV3D3O++fiYg1mJNoqz6xtSGSnSFB/hcDHjr37/Pb77+A5/+48+4tnZFbfbjijgo9dXHC9mTIscIRWXyw1N33Bn/5CIAhEp8pw0yzhOErZ1zdZbmtayv7egKEo694xtG3fyDcvtast8WvDNd05JkhQhAj44itzQ9wGipG48+4spiVmTJIqm9V/eS/ziNmCWKE4P59RNT5lnhBAJIexkHJFq25LOoQuRTRKG5lOIlNOSqAVGJmRKQRyCqN56nA0IoQkikmjD/fuHVMstIgpOjg75Rz/6KXtlihaR48M5EcG6Dry62HB5dUOZG+aTguvbDc9fX3Mwz6g2W5abhqevlvgYMFohhGS1qVmuh6bb6eHsS6vuFw1AGMKeYToshvAqRiDQ+wofekDtgsFBpoIQSKmIoaexNzvhyu5G4e51utAQQ+Di81c0VYOUkhgiwgecC2xWNfmjgsPpEbasWPcXLNsbZNAkBTtBiEPEDC1KpCzJ5QEq3qBTdjNtQ1QSS+Da3UCvOElOOD18h73pKVn2J3z4809oeo9WIJXE7IzAUgACXAgED53zCKWZnhxw52BGMBEnAzHxiNKAVrjgCEKR3VsglcFd3xItnC9rzi5vSI0mzwd5TozQtR1lmROJWGvRSkKIOGsRQmCMQeoh7JdCYLQhxkDb9TgXuF1vefX6kuAcb907ZDYruVlX3C4rijzFpOlgGBaCIktoe0vT9DS9pe2HeXNV1aRa49Rwg1IrhdKSIkuQArq+5Wa1YlNbLm+W4DpOD6ecHh8ymc0QUhF8wLqA9RK9e1xZ5xFiaNFmxjEpC4pJTp7ltG3Per1CEZlPctI0wYaAFAKl1G6SDloKVtstPgT2ZyWjqnhkZGRkZOSrYwwHR0ZGRkZGvgJ65/k7P/6Yv/yNx9yuVlzdrnn77oLvPLk33CcLkVXV8vHLa25WW5zvOF5MeXNT0fYNSZIwzVOa1rDadIMcoBgafJ11OB9YbrYkxkAc5od5mlDsZosxRqz3pFpxtCjJteTi8gaxN6HMDakxBAR5nnPvcMa/+PApH3z+mn/nr3yPv/y9d3l895Qf/+ol17e3HE4zvvPWHYzRnN1u2NY1WngeHu1hfWS5veFf/947LMoc7y1lYijTBC0HY7OUmkhkMSs5Wcz44MUVLy6ueXxnj7/2/a9x72DGs9st3fk1D/bneB/ofE+ZJfgoCFWDDwGTJAgRcd4zLSdIrZhMppxdXBEDXNxs2ZvlVFVH8IHH94956+EJPkSIfmjbbVva3pElBtdbrlYVUkoSrQBPlmq6zg+T4TKjaXsub2va1nK9arifFfTWMy0Mi2lG2wes9fzjn33Kve+cEKMm0SleaCQe5+LQT1PDvDRVCTEEXO+RUuKCp/eRoiiRStI5yzsPT1mt1uSp4cG9e6w2W8zLG2ZlRpJo3pxfk6UJWmsO9iYkKjDLNXvTjE3dYl0YTNAykhhN3zsEAu+HgLlnV1gTw91AH4f5eIggosdHi/XtTrAhdz85MghqFMRI8C2tW+GDRcpBhDNcHxT0fk2IjlB7lueXpEZjfcB5EC4iIuwVe5R5iUQQcSQmIQ8pNjqE8IgYkd5QqCmJnGPFDTFZ8+BgyizPuawa2j4OIbq3+KBZ+yVi6ZgmNadH3+S73/mrTOYH/PGPf8LycokQEi0FRg0BaQyC3gdciJgyoTgqCLlko2qM0iSJJM0VQg2GYJVkGKWJUaDuGqIUdO0ldbPBdQ3eKm6XlvV6Q1kUdH1PkafkRUr0gSgiQkmcC1jrmExylFI7g/AQune2Z1t3bOsOEXr2pxlxmnF0uE+SpfQeLm+23Kw25GlC1/b44Id2IkPj1fY969th1lzkGbPFDGUaVpst2mhyrZEiwftAkqR4YL2+RgXLvbtH7O/vUZYlKslAKlxVEYJDK4kxGm2G24De2qFBqixKa4xOiEi0MSitMEoDAecj1oZBzNM5pBgM6MtNQwiBMk+Qu9BxZGRkZGRk5KthDAdHRkZGRka+ArwP/F//8EM+eX6O1pLD+YR5WdB2LXK48oW3PSJ4Xl0vmZaK33nvDv/kwzNeXa+QgHeOIjE0RmOUHOQbcTAI50nCtmnY1jXsmoN5mgyNMSKJlpSpRisBQvLsYoNznlxCqmfoHBrr2FZbssSQ5BmTtuTv/uQTppOCb771CAj8rX/4mta2PDydY0zO3ZN9vAv88w8/4en5FUJIWttxNM/Jk0HsUFtHbgxGSrquJ0ugSBTOJ9R1S+97fvD+PX7vW28xKRNyMwQu/+RPPuMfVB9zb2/C1x4ccru/Rn1xn64oBrGDCKSpAUqiGCbOq03Nquqp6o5US15dLNFaY6Sg7zxdb4kxEAXY3tJ1nrq2SAF3D0ruHJQ8e7Nkb1pwtazIUsWkMGityPMU67aDAVoKtFLkmRpkEMGRmIBSkizTIEAKUEoTf+2On3UBA0TEYIVWmiSVhADCR16dnaNt4Pj4BAFkRpLuz3n26ow8XzKbTPja23e52dR89vKGr711zOXNkq537M0n/PyjV2yrmjzVSKnwRFrrOd5LuHN0yCcvbrF1R5Gng4QkshvURlyw+GCJcWiCWV8DXzQJFQJJFAL5pc1Y4EON9UOjMO5Cwxg9AkUftkSG+303L8/xtmMxyYkhsKotNgQmOuXrT95DaogiEGKPDZbcZOzJFCkcShjADhN5PC44LBqVlByncyb5hjerJZ235HlOluXIaLBR8vSzp/R95OG9H/Lek99hPj/i4w8/4OXTF7i+w+zuDLoYcTGSHU5IDwqsdphEkuc5Sap382MNQiKVGObCcZiYx0xijhfI8zV7s5L5bDpMgZ3Fd5E2eoRUJMZQ5CV1U2O0Jssz2rqhqhtCyMiMpnW7yfEuh23qinpbcfdwD1dkBO8wiSEiiAJSM7Qwq7plva0HuZDSJEaRGE3QmhA8WgmKPCPPc4zRlFmClHz5OA5xuJLY1Q1lkTA7WrC3WCC1JggBQhBDxNoerSRZkoKSKKMxiaHvO7wdZCqTdBCNIASpUYQYCcOKGmd7vHOEINlWNWmiWW9bnr0643S/JElnuKiHr4+xPTgyMjIyMvKVMIaDIyMjIyMjXxG2D/zixTVHi4J37x5zeVPxn/0/fsIkz7i7P+NkMSFTUCSa3jpO9+c8udNxsdwSo6frBlNuiHGwyO6CQa0YTKTW0/Y9qVEkWYrzHmmHe2pKRKIEGJpJTdvz7MKSKMnDrifTGiEVnzw/Z9s1/Fs/fIcQFP/5P/kJP/3sOb/x7iPuHZYc7xVcrCpeXtyi1NBW2jSWl+crTucp9xdTnl1dDZPGrqe2nsxozC6gAOhsT9+31NWWn7044/vvnPIb7zxCIPjw1RlFqrmtG7Zt5NVVw+dnaz49W/KTzy95cP+A45N7LB6c7iIrhVQaF1q2VYXzkddntzSt5XZTgYD9eQkM0oWzyxVay8EO3DmsC9yuG+q252BRcrDY42B/jlGSpnX0NlAWKZMyGwQSZmjkvahW2N5TtZG+t0ih6Z1Ha4lWApMrQKKk+tMALgokcXevMYKMyOCBoT3nvUMCB4s5oXU8e/mSB6fH3Cw3zKclWaJIFHRtw+nxIX/hO4K/809+yg+//R5aS7re45xns+mYZpGm7fnF0xtmk4KbVcXj0yl37+zT28DnZ0tCjJxd3DI9meFDh7cdACH6oUVIJEQHSKSQu8ddRKKGTqAA6zb0oUaJbGgR7qzWShqcb/GhBQ/V2S1Xr15Q5imzLMU5h/WD7OPx6UOms4JIJIQeH3tyWZCpglTt0YVbXOyQlAS2SFESRIMLCiESpJihUs/jowXrds1Fc0vmh8YaMpAvpvz0j35M1wfeefxD7hy+T/kbE07uHvPy6Qvq5ZIQAkZFVKFQ8wQymOYF2ii00gj5xeQalAIXHEZpPEMALKTApiCnGWUdKMsc7yx9ojFGDxNtoOl6dN2x3lRMpyVpClXT0bQ9Zekpcjk8VrueuJOURO+YlhlBiCH0TTRaK2wYZvNllqKNRmtJtBGkQMpBTpSlCUma4JwlTxOk1vgwzN2lEDjvSM0wK49xeP+CD9w5OqCcTLDe473DWonph1BPEEmyFCEUbmczNokhzQRedvSpoSyHADLs7NWut/Ru+JxpnRCTiNGaNE/Jk4yI5MHxHvNpiTIJxMimaYevk5GRkZGRkZE/c8ZwcGRkZGTkzz1CiAfA/wY4BQLwN2OM/wshxD7wfwQeA58DfyPGeLv7Nf8z4N8HPPA/jjH+3/6/vZ0QI1pKEqX5+NU1H766obcOIQRH85x/7ZuPKRLDLE8IO4nI6SxFisCyapgWBVli6Kyjd4EYITFDqBcE5GmC1orgHc4FpBmCBgDrAz6EIZTZ/VqjBee3W47nGTYEiIKPX19zubrl24/uYUzK1x8e4AU0fc+7dw74d//1H/Lp6xs2Vcsff/aC82VN0/WstxV39nJuj7d898Eps2LK7abhgxdnnCxK3j49wsWI94GqqvjRR58RY+Dde6e8ff8OZZoSI5RFhpIKpVN+7zuBX7womSbDfPl2a1l9ckV5HXjra28To8B/odKNAmctm7qn6VqcdxRZwqRImU8ypIDbTcPzNzdMJzmzSTbcQtu2tF1PjJFZrgkx8vNfveT6tqaznqvbimmZ0ttIagxKKiZlOsgdekdd9ZRlQt05Ei3JE8WkyLAHKQE5yEiUAIaZrpQS5yKRiJRx18gKyAjBeYSALDVY53j74V02VcevPj/j3vGCe8f7JEnG8zdXTGdz5tMJX39ySozw4s011gUmRcLp0RwZWvYXJdYFnl9UzArDJDe8Prvl3Qd7eB+43rScXa5I9y3Wd2iZEmMAxBAARpAkBBwhOqT40z82utBAiPjokejdvNgjhUGJBCK40CG8pD675ubzzzgoM+aTAiEi26rB1B0+CPb29ndiix4ba5QomJo7uLjFhw5JgaABAjEGpMzQMiN019SiAn1LRJHquyyKkhgTNm5DqnNSWZIdG/RHr/nZj/85zlvee/IbTIpDTu/2TPZyms2WdX3J1rdUzqGNJs0zhBSEAMEH8BFjFFIJfAgQwRJQWhOjJ8RhLl/JgJJD2JakGblzSDkIZkKIVHVNXTc0TYvWEhFhebvGOYeznm3d0NRD0C1jpG1bskyzt1hgTDqElGGYoKdGI6XEJAl5lmASg9EBFwNGDkFtnqW4EKmjIMuy4f99oO06vLMkWqOVwcdIQBCBLEuYTGdooxHWUrcdoe8J6xVGa/I8R6rhVEGIkeAdwcvhc6E02miMSYgMjWnvBoN6ugskm64jBI9QCfPZDJBkznN0dICSkt45MgObFqz/r/30PjIyMjIyMvJfgTEcHBkZGRkZAQf8T2OM/0IIMQV+LIT4u8D/EPj7Mcb/WAjxHwH/EfAfCiG+AfwPgG8Cd4G/J4R4L8b4L/9WVgjyLCPEwLLu6KyjSBOEGKy5m6anc57j/Tnvv/2QMk94cbPl1fkNs0xzu5W0NhCAIs+RQrCpKkIMFFlGYoaGWhoiTdcSQiDGoXmkdkFj7yNbazF6CAWcg3WtuVzVtL0lzzS50Tx9dcv//u//cxaznO89ucNfeP8dFmVB6zx78xnvm4yzqyX/7MNXXFyv8MFjXeDF1ZrFJOUtpfjs7IpEaQolObtc8uHnrzmaT7izv+CffvApP/v8Of/O736Xt06P6a1ntV2Rp5p5WRIRHM6nzPKU9x6e0PeOj16c0XUtAcmbTrCpGi6uBfPpZGdKVkhlWG+X1E1PYhTOWYiRMk8IwTPJDV3b8ebyFq322VQteaIxChItuX+6IE8VpwcFXdvw+esViVEcLQpcCLw8X7E/y0mNIUsknXW0bTeYaJXgtvfcO1kQlSIojUAh5GBwFZEv/zvaDmcjwQeMMRitIe6aVATW6y2zPCVJU3TTcTDLeP36gjJP0U3Pr56dsW0s+7OCu0cLmqbh1ZsLtBC40lBMpvyDP/qcvUnCuw8W3PWRy9uKV1dbDvcmTMqMe8czeheoWksIESl2Q2fxxcx4aBAKIZBovgiZQ7S42A4zZKFRIkEKyWA2DiiZ4UKHDy3OdcSbDWaz5t7hfGfQ1VjraDuHEhIlA8FFBBpoSeUELUv6uCQGj6MnIvAEYmwppEGLgoaG/fQtzurPuPFLcpMT7UuMnHJ39k2W3QuEiJTqFB8tRkvayvOrn/6U4BzvvftDpukxIfZU4gJrIqKTLNQUhKS3nuiHG4yJMaQ6pUxzlMqwYQi7lJAYmWJDw7pfYX2H9Y6+7ambDq01eZ6hhSBNNN4H2r6jtx5rLZ11TEqFVBLhI23Xsdls6boWQURLhYiBPC1I0wyEwiQZSgSM0fgoh8BaCJRUEBjeVyXoekf0gbrrcdbTO0vTSTwSZy3OWrQEJSRt3yOVRAqFs466aZHKMJkURIbJsVKS6ANC/5pshuHtWtsjbE8Mnr63hABt79EmIKUkIFBfiEusQwtBMSlRZphGX6+2LJe37M8mBMRuAq1RMn7ZNh4ZGRkZGRn5s2UMB0dGRkZG/twTY3wDvNn990YI8UvgHvDfAX5v99P+18A/BP7D3cv/DzHGDngqhPgE+E3gn/3L3oYAFtPJLiDoWdXtziqaopXg4dGUJ/eOeHjvDo+fPGCyN+f3/8Wv+MVPnvHmqsYYTZFlSOup2p6m7XHO776Rlig1zHbbrqftepQUO9lnREmJ0Yok0bgQWNVDuJPoQcCwrlpu64bf+9bbrKqWi9ua89uKotAkieBb7zxkSon1AQGUecLx3pRHp/usNjVvrtcYJXj3/gH/3n/zt5hOJ3zy+ooPnp9zdzHB9YEf/fIV58sVjw5nXKwrHp0smEzm2BDobeDNzZpplgAwKyekaYJSgv3FjM4FGg9Xtzfc3Z9z3Auis5yfn/P81RvyPGc2yWn7jrbp8D7i/dB/GybUHWWmmaQaP813QpKAVgKpBEYPs1EXAiEI3nt8DxEjv3p2w968ZFKkNJ3l7PKWSZaQprvbe2GYTBo13FX79NkVVzdb3nr7kKP9U7JdKBt3jUGISKEgWmzvcVHuzL4SxTBPzYzh8uoKfTjHJDnaGPb2FtzcbHj5+or3ntzlr/7O9/npLz7lw0+e8+3336LrWh7d2SNNMl68uWIq4M7xAtvUJFnGw6Jgf17w4dNLbjct+4sJD05mGC35ow/f8OjdDudqjMy/vPEWoh3kI0AMDhd7AkN7UMkEJdPhsSX0IDEJbtcU63G+pau3uOsrpkSmd44RIiCUHqzI1e2XH3eInheffkyxP0EXargFGSEER8QPwWBscbGjlHMStYcHbNii1Qkn+dd4XX9C4zq8FOjgSeWCTO+xcWckYU3ooG9bjJYE73n6y1+gpOatt7/LNL2LERkFT1kmS5ogiE5SipREpWSmoDATlNTYONwClHKwCLvY00aLEQYjDM61SKC1PduqRhuFFJGiyEgTQ28twlm0FqQIUq2RSiOlwGiFjB7v7BCyeU+QniQZbvf11rHZVtxuttw/2SNJUzbbFhcCaTrMcJuuAyVJpUZiB8t0jGgtcUHQdz3RB4hf3IVU9NZim5Z0Jy4Kfgguq6oa7grmKUliUFpDgEjAO48QcfcXG4IsNQgh6K2F4CHC7aamblsO94YGIoLhbYeAlApQ+BCp64bb5QoZHVormrZHKTVMo+Pu9Y2MjIyMjIz8mTOGgyMjIyMjI7+GEOIx8H3gR8DJLjgkxvhGCHG8+2n3gD/4tV/2cveyf9Urpsgyejt80+5DYNtZEIKFTmk7y4fPXoKAu6dHSG85KBV5MnzjXSQGrQQpkq4XdLZHykGKUHc9RSqYFDk+QmctEXA+EIlkIqHMU8osYzEpqDvLumq5WW+ouw0H04Knr27Zbj/g+eUtbd/zvXdO+W//9jdJ8pRt7zjVilmSUff9cG9OKr7/9l3Wqy03m5pJpvnG4xOODubMywmpMczyFCUl27rjd953/O0ff8iPP3nFv/GDd/i3f+832V/MCQjqziHFmhAiTeeYFJHMGDrBECxIeHC8T5pIcqOYasG6tuzPUjb1ipvlFn3/mEQPd/9eX655db6ECFXdcTDLsTZitKG3Dc4HMqMIIZIZOTT/hOR2XZMeTIcpaYikRjMssyNZoslTzbaxNNZT5gmTYrCwLiYJ28YipSBRkv3DEqUTooSII0SFjBEhhzt9eZYhVUCKITz0vSMASgsypSn358QYubi6YjYpyRLNt7/xhOOjA2bzOX3v+O3vv89yNdzKOztfkSlJnmYcLCYsZlO+/W7KP/3xh7x8s+Txg0Mmk5z5vOT8cs3L19fk2fB7w+4W4jQmdH2DVZFIQAo9KEqCA2fRwdN0HaKYIbIhQJQMd+p8dPhgcb6ha7asXr9hc3XJXqGZPnqbbHJCDP0u+LN47wgx0vvhTubV5SXFxx/x6DtvDUKS4HGxHwQp0QGRub5Pqg/wsSXEFuIQMJXpPe5LzYvqQ1x0eAlr+5pUlvTOslErpAUIaCWHsNZ5Pv/ol2RFzumdt8jTQ2R0RCvJQiDLDkjkBB87QrQEHF3o8NETohveThxm+j4EJAIjhxDPGIPKU06PFsQYhkBQCqKQCKnwUQGOIktJtKaqK8Ru/uu9x9mhlWh7S5SCJDV01mPrlvW2oapa3OEcoQxSdrR9TwyBLEko8wwpdyHd7i5gnqUoo2GzxVmPSTQghlYtQ3DtfMC3LXmaopRiOikIIbJcrZmECfPZhDTLcdbSti2IfrilKSRK7O4xxoj3nrpuqJsOEQPbbUtuDPP5FCJIqRAyQPC0tqdQKUpJ9sqUKBL63tJ2LfuzCW3nuLpe4pz7r/uUPjIyMjIyMvJfgTEcHBkZGRkZ2SGEmAD/KfA/iTGu/xWmzP9PP/D/djlfCPEfAP8BwKQs8MHv5niQaE3dOqrOopXmo1e3/NEnr3nrzjP+xu9+l9/81tc4nU945+4+N5stSoBguNnngyfRiizRlFmKj4E0MUzygiLLuDbDdNM5h/N+sKKmCUoNDbU0QJZ4pnmG957eBp5fLvno5QUhBGZlwvffu8sPv/E2Uim6ENjWPT60u2aZ4Hq1IVUBIeHOPOdkr+CdOweUeYaPEWstIQamaco0T2i7jsP5hJvthjuHc1rneHF5wf3jA3SRY3VCoSKJVqyqhiwZPldSSKRSHMwKZkVC01tWtzXbzZZUJuxNcx6cHpCkCberiqevrnjx5obEKFKjmRQpR/sTun4IaTZVO3welKRIFUZLfAi0rUOrjL3phNWmYbntBzurGO6wJUaymOU8e7Me7vodTkmN4mbVkhcFm8oRAuzNctJ5CXLXCpRfyCgiMUikDAxaXjsEglIhlULECMIj+iFkybKUGB1GSh7ev0fbtpRlSd92NE1L1bacHh8DgvOLG7qmJnjPwWJGiJH1es2b6y0ffX7Jo4d3WCymrH/xhqbzOOuxskdpxSQzSASZTilUyaa9ZL0+R4RIXhYoARpB6BtePH3Gprbce/frTI+PEVKhZQbB4Zo11c0FF69e0NQ1IgZkOUOZFKVLglc4u8J3G5q6ZtN01J2l6z1RBF49e87xO6foQqLw9KEd7MgxskgekZlDfLTEUAOSiBz+HSFVh5zm7/Km/RQDwBAu7icPuOieoYQgTTN83+3sIZFoPU8/+jlpCQeLd5FmwaEq6XxFH4dbij5abGwI0e9mzdCGFhEGqcwg4xhepZQOoQRaK1RRcHB4gO17NtUWGRkeS0Sy1KDQg2lbCWzbD79GK1yIKK1IE41SgzRnNikBiQBmU0kEmq7dzY/7YaYrJUUx3BP0IbDabAkMZu00TfFh93Uk4tDcFALvPD54EBGtFTGC0sPEXQBt3+NCiwbSNEMZQwjDPcqmcSjpUEojXUBLQdf3rNYbVus1qVY8ON3ndl2x2m7pXM/ebIZOEqIQBBR93yKEpHOREAJJqtFCARlJkrLcVHRdzc4DMzIyMjIyMvJnzBgOjoyMjIyMAEIIwxAM/m9jjP/Z7sXnQog7u9bgHeBi9/KXwINf++X3gdf/r68zxvg3gb8JcHS4HwUBIcBohRARoxV5alBq+OZ/UhR0UfOHn75mUuacHu5zZ5HxYD9nMSm4rTu8B+c6RNRkqSHdTfayNEVrRQYczYfbXettQ9v1+BBpmo6WbmeEjVjryBOFkpq6c/huCCmKLOXh4YRHR/soqXFAmWRUbYcApkVGZz23qzVnt2uyxHDbdKzalsks4dtPHmCSjG3bM0kMXdehE82jO4dMy5yvPTzmm289xEbBRy8u6Jzj9PguznrW1nI0m+KIxF0I2XQ9aWJQRpEYSWIKkspx5/SA4/0CokdrhfPwwccvqKqh2eh9ZDpPmU8LijJDKcW2abHOs5jlpKlhWwX251NWmy3p3PAXvvMuL19d8uzVDVXdMSlznBe0XUCq4W3kqcZohUkMAkHXe371+eXufdNMCkPcTYiFlHgfiMIjhEQIBlGMkmilcD5grUMJh1YKIyS3F7c8ffqGR/ePSIyhzHMgcnG9xIdAmmjqthlafRFcGKQQWWowicEHT91ZfvzLl2xry2KacX29Ym8+pSxSLq+3rOqeNNEEH3h4NCFNFMSIFJALifMWW29JtEdogzQ5IkmZFjnPX15w+6N/yp2Hj9k/OWZWTsh1RPUVkhaxKFkpqKoa6xzeNsToQEi8rdmubrm8WVO1HTEErB+sxfk0pY8OEQ1KSBKR4mLLfvouqdkfGorBE3FomRB9jwtrJBqtSmbpfTwdt/0FHknvW7R2ZGLK2l+TTwvqm364lzd8uLTrmvM3TynKY4zeQymNwdHYC1pvCVHiccQYCDEQiIOueCfBEVEgRAQCLjgIEhscddVwc7sixIAE0jQFoLcWJSVpkgxSlrrDOkuRGKSUZIn50kA+KTVlWTCZlLug39NZi/MeLQSbbYV3HiUgNXqQfUiJ824wSzMEeSCwzhJCwO3ODqSpRqph0q3U8MkIUSClQqvhRmCSpvgosASs90O4qDW9DVzdrphkGiE10QeUBmsd0TsmeUpZFBTFBKTCaMV6W4GIKCm4rRrWmwpJxDmHFMMs2WiDEAoRoGosznlOj/b59LOX/z97jh8ZGRkZGRn5lzOGgyMjIyMjf+4RQx3ufwX8Msb4n/zaD/0XwL8H/Me7f/+ffu3l/zshxH/CICR5F/jDf+UbiZGm7ZBSIBB475lkZpgCB2i6jnfu7/Pf/d3v8ez8lr/5t/+IvVxxfrMBCX/9++8QZMREwX/+hz2fX2wRYriTJwWEMFhjvbcEZ5HakBpDBDZVRds2zIoMkENoISLOeYpU890n98jKnP1JiSCyrCo+Prvh3skN792/i9ByJ60IpFqxrnu0VHzt3jEne/v86s0NL86u+PxsxefnNxzMpjRNDSHw/GrJyd6UaVHy9r0Fj07e4v7xAc55riYTyiSjTAx39mZsqjW9D0QRdjfNFFXdsmmG973Mki8bgck0Y1IWxOiJMXD2+oKmaTk9nFPVLd57isxQNy03q5a9aYpdB4o84cn9fTZ1T9c7EqN459Exd04OuXd6zM3tivObze4sW4QQWG5atk0/CCSKjG3d8eL1CiWhd4HESPreEUIgTVOi1oONOEo8X9xMG8IQowxCaZQCITQ+eLzvsdZiZMrdowO6qiM4Rzktdk2wmr5vydN98jxju63RWuFDQEvN6fER//gPf87xXsudwykAp/sT1lXHu/f2UDhurm+YTQu27Rmt7bl3VGAd7C0KzM6427e32G5FsLt7li4gVcR7i1KGvb05e4spZxc3PP/0U9rVFYv3npAfPkZmRxRTy8zWzFdvePXqNXXXs13fYLIFSueEELm4XXO7aXZ378CFgNGGt779BKstCZIuDD82Tx5SmEMcERsaQuwZnD8aIVK6sESKCZoJMVpKfcKyW9L5ISCu/A1GZahUk9/bo99U9LtZ/BcB3+35hpN7lxR5BionMQfsq5K6u2blbhBIpEiQIsGIDLkLhQVDi6/3Fev+ihgFiUm4kUtutpfcLm9Jk4TFZEKSGBAC1bS0bYcymkxrbF8PQbMxhBiRSpKnhm3dglYUeb6bIjta6+i6DiElxgwNwa7v6Z2n6y3WOSKRtrUIhiCusw4XBltwkSUYo4ag0Xq0UqRpitKGvuuHQiXQOYf3g0jEaElVN1xd33CIQOsEYkAx3B5t6gZne5JUM5sU5NkUuwu/I4NgZ28+p7eBrnc437Fa3SKJFOUEhEQRQQg2VY/1Hm/7IfRUksXh/u4+4cjIyMjIyMifNWM4ODIyMjIyAn8R+HeBnwkhfrJ72f+cIRT8W0KIfx94DvzbADHGD4QQfwv4BYPp+H/0rzQVA1IK3r475/K2onNx1+GDPNFUnSOESBSRk/0Z88mUuu74v/zoA84vl5welnxydsWmi1yuG86WPVmaoc3QNNpUNZ21iBgIYWgnploSYiREhRKSdV0jBRRZNoQGzmG04Htfe8h/7y/9gL35jN5H+t7S2Z6q6bitaz55fcaj0yOUiEgp8AESpcjTlHXbcDgteXhQcnl7zXfeOmWaJlyu1lwtN2y2LR+8uOT89kMyI/n6owPuLR6xXG3Y1DWTTHIwL8mMJE8MMpYobVhXFUXi0EYShxUot+sKKQLOO6zr0WQoAVInNG2PQDKblLx8c82dwylGC9LEcHWz5cWbW5p2wtXNhrceHLG3N2W7veRobwjf0ixnb29BbwPTsuDB6YKzqw1H+zOa1tK7SGoUVdtTtf1gR941G733rHtLahSZUby62GAe7WPKlJYOow0xSBBD801IT/BDeCOkQDHczpMECh9QieTdJ/domp7WWvI8Zb2tB3lNMYEY8CEyzbLh/hsCbVI+enbDB7864y99+z5HR3t84917/PYPvsGLl6+YTQqE0rirLXmicMETg2RVdRwezJAy0vc39JszXNdRNx3Xqy0ewf7h/m4CHUkTw72jPdabmr7vmeYZeTlHJwuk1MN0Np1DdGQ312yqlsvrJWlxSTk95YuNqA+BECI+RESMvPXeQyYnGShBG3oikbk6JDNHtL5GSkOIHeBRIqEPDbm6Sx8+p/WXhNihZEYiZxzlD7juXuJCoO1boop0fYvVAjPJqM7r3c1MTRQCu+lZXp6R3J0jhEJKSaInTIRGWoOPgUTNYXdfEQQhWmIc7iYqoUhkvvtqjkySJam5IE+SwXrsPNLuGnpC4mMY7MJKkSSGIk8HMYsbzNCDdVsOjxug7XqqumW5WuP6DpMYkILgI0LAXpmjTELvHG1vsf1gZk4Sg5IKN5h5SNOETEqapsX2w7mB1CQoKbHOYbRBm6F56p3HOU+aGMo8pWk7ri6vkMrQdy2pUSgp+H+2d2exlmbXQcf/aw/fcKY71lw9VLs7duzgKRaxSZQQ2xGOgmxekIIUFCEeAwSEhBIeeAviASEQgkhRAEUiIopMJKIgAVFAREHGDh7Asd3tbtvtrqqu6d66w5m+ae/Nwz5VKdttq4NSVca1fg9V93z3nrrfWec7R3XXXUPpDd4WzGYTxpNxPv9uwBdF/r4x4K3DWsutg6Nc5WiF/TP7jEZTThdLFvM5LuVd14QeIeIsJBKrtiOm+Kf2Jq+UUkqpb0+Tg0oppZ54KaU/4I3nCAJ86Nvc55eAX/qTfJ93X97hRSdcvbOi38wFbNqWYcjLKgyGG0cnPH/hLB/6wbfSh8B//9yX2Ro5mjbwxdeOaPrEkPIeWZFc/WSNYdU0FDa3BVpjSCniBCqfq3q6oaePiT4khhBZth2XpiN+9B3Pc+nsPs5bQoQ7J3P2xxMu7u/wuS9/nc9/7RoXtmdEMfQhYa2lLCzbkzGnyzWvXL3F4emS975wng+/5+0EhKkxlM6zHDWIcYSU2BoV3Dlp+OX/+An6bqDpGz74nud429MXSDEwKiS3i6ZE6T3OWkSEqnBQFty6e8QQ8obcxarleHWHyegi27OStpuDCEenC5wVzu9N6PqcbNndnnB4vOJ0vsBaYW97inOOna2KGBMHxwvWbcuqaTm3N2O+WFIXFmeg7WPeYty3OCOklJhUjvVK2NseMZtW3DqYc+fuHOMt05GnWTcM85Zikuc5WmPyTDdMnhmZIhIhGUOSATEGE6HyFWWCk9MTZpMpzlsm3jKqK05Ol0iKmwRjYrVuqeqacVURU6DthCsXd2jXa+ra0/cDi8WKs2f2eerSBcQYdnZ2eOapy7zzbc8yDJGuabh2/SbjqiDFgeXR66wXc8ab2XXd4Sl3jxds7WzhvCcOPdY5drbGXDwz4/bdOXXpc1KQSEqbLbgigCGGBGJykvnwgLKaYV3FbDLm1p1jhiEQhkhZV2w9vU8nAylGDJbSVmyVl7HiGVKDSQ4rFYEek4QuHeFkxJZ/lpPu6wyxwZsxzpRM/XlCXNGHAV+MGPl9Snud0/Vd1kXPussLP7wXnLWAYX7rhN39JWJLJBis8YgpGJfniDGw7teE2JAXeOQlPwKkFHNlofGE2JEICB7ZVO0hkquFF0u6AKRIaYW27SEmCu+o6+p+pd4QIkPoAWHZ9IS7p8SUWK0bTMot5cZY4hDxVhjPxhRFgbOOGBOny1VOdovFWo9IIgYwYmj6gEjEOIdHiKGHzWxQI4mYIovVGgGsAWPzJmIxhmEYaNZrhgTrVUNdlVR1lR9PWTAaj/FlRRgCxoEvK8xmy/Cq6VisG7rVinHt2d7dYzSeUJY1dYjEMOCcz5eNeFLM81FDTMyXS/q+/5O8xSqllFLq/5EmB5VSSqlHIKXE73/hNQ6WLW2fq6ZijKzanJSDRAyJdt3T95H5ckUMPR94/jzHXcuwaeYzkqgLT0w5F9MNgVXTEUNeMJAXkFhCyMkxayyVNzxzfpsz2zPWfeLO3ZM8n7AuKEuP9y5v0jWWyXjErPSczFccL5eEkDharOlj5OXrr5MM/MR7/gy722PaEDhdrHju4g7PP3WOejwiRmiGSNM3nK7WjCvPj739CtuTmhuHR3z8f3yBr1y/A+Tqu2fPneH7n3uW7XGeZdiHiPeedoiEds2qaXKCs3LUvmDZtVgrHBwt+KOXr/L+d7+VEOHwaEHoB6wYhijUdUE/JLphYGtaM6odo1HJ0HWsQmD/zB7zxYr27oqq9FTeshkVSDcEytIx9ANxs5U2kWjbgUnt2d0esbs9YbHKVYQX9yf3E5khBu5cPeaZ/SkUhiSSW2e9weKIQEo50eid0Hcxt5hbz/m9Pe4eHhJDYDoeY4wlJWFrNkGI9EMgxoSQODw4JGzNGGJie2uLj/7ED/H1azc5uH2bIl9x9EPk4oWnWLVtfjxD4MK5M6SY+MznX+Yr1454QYRR2dMuF4xGFaPd88S+Y3q04PR0QbtcYbe3YRhIxlBNJjx1fg9n8qbldn2a24ZtmROERPr2lKbLG7NThNWqoe+W1OMz1KMxYgxtn2fg7ZzboZgVFLbCS0FlK0Z+C2erTdwhxBZjCiRFEgND7LFGcHaMNSOasKSIM/rY4EzJyO0zT3fwZkxhK/brp5Ehcrq4nit0SdgQMc7gjSOsB9anc2y5RZCeIQYEwdtcDWmM0IeGmAIxRbypATCSE6Mh9UAgxYGUeizgBIrCslzHvESm7fLjGdX0w0AsPaPxiLIoQRIhbBbRFHnxx8l8ASnkJSApMB7XOJOX8wB4n6t3jc1bg0OMmJXQtW2uBkwNafNLhHtbjPshIJCTok7wzrNqGhBDP/S0XYcBrHUUpcOURX4PsYI1HjtEFiFwdHxK1bSMxyV1XRJzDz5iwDmbF7PYgjgElstThqZlVHlmsxl1nd8juq7DWsOZvV2aLlcDF97RNAPdEEkxMXT9/fZzpZRSSj1cmhxUSimlHoGEcGMemC/73F5KYnc2ZlzX9DFXInUBPvXia7x09Qax7Xjl1iE/8rZn2YkD24XnpeswXzQ4Z3GuyAsdhoEQcyJosWrwztEPAWNk0/rnIAZ+6O1P8+Pv/QH+96s3+T9fuc6o9GzXhi9du8lzF85SVCXOCYV1XLt1lxdffQ2XBn7wLZc5Xa64c3ya2y5J3LpzSFmV1N6ys1XxgZ1nee7yRZzzrLu8HXkIkaYPXNzb5nC+4qu37tJ0ARGbE1wiXL99wqu3DnjhmctY6whxoPKWwln6kGjWgRQCHTCqSpZ9R0yJUVlwbn+bw+MjTuYrXr16ky9/9TrrrmdrPKIfEuPa4qzQ96c455hORkwmFaenS9ZNS1GVHJ+uKJzBinD74JTD4yXeGvohb3/23tG0HdYYhgCjyrJYt1Sl49adE1brNldDTSuGPuKcZVwb7tw6ZvLamL23nMEYR4oDIZKTfSHP8AshEUOE6Khw7ElB3w8URcl4lKsa54sFvijYnk2ZTkeslg1t2zMa1cznc/qu4frtY5qu59z+Dm+5colRVXD9+g0KX2Ot5/B4zu2DO1w6t4dYT9OsGdU1qzZw7c6cyajimd1cuTaabeP9lOQiOzvHzBdLFqeL+1WcNgSK8ZTx1hZn+4HbdxfcvnkTAerZPtaNIUXaZnk/0ZQQ2r6n7xrqsVAUNaOqJMYTUkqMJhXjoqZwNU7y4g5vRzkpm1pIkSiJEBpgwBKIRFIcwFqmxSXW65do4xwXRxg7wtsxtj/GmQojjsJYwmHg5GiOtXkz770KWwOEfmBxcMRk9zzR9Hl+p+SW3HttxlYcq+6QEAdCGh6YOhiJKSex4iZRGFPCeUdd1Tjr7ydn0yYx6b3DOaHtO7phoK5rrBVSyq/nvuuo6wpnDU3bEYeBddPhvWO7rjZVdgaxNs8qlHS/QrWuS3a2JptZlUu6YVNxmCwp5qUqYgRvclIRMVSbJGCKkW4Y6LuetotMx2O8d0ynE0iwWjdMxhVd1zEZ12zNJriyYugDg81LdcQaSLnCsm0H+q5lMi7wrmJra4b1BWLYbD4GsY7CQ+EtCWEIa9brNV3fMxkVOKczB5VSSqlHQZODSiml1KOQuL8R9N7MNWL+od66vL3WGUPsBj712k1ePzzh3c9f4srl87x+cJdPv/wacRg4PFkQU6AqCsqizBVr3rJuEwenS0ZlXnJS+4LZuOL87hbXbh/ylZsH/FRh+JF3PMM7r1ygKBynpyd84sWv8vLrN7m4v0vfR+4cn3L78JhXrt0kSeTM1oxPfeUq124f8Off+QK7sxkvX7vJabPifd/3PLO6ZDoeMS49znnqomS+atmeThFreObCGXbXPTcOjpCUuDtfE2Pg9cNTQgr0ob+/IGXd9iyXuZLJWSEMA4tmndtTh47Le3s5IdLlRSpfXaz43d//LDvTkg//8Dt49bXrvPLqIefO7jEdF7TdgPMeI7Ba9yQMIUI/RE7nK/o+cn5/i/my5fbRksILZ7ZHbE9L7hw33D1ZU5UONpufZ2Ofm4NjIsXEdFQyHReIGI6Xa6xzTMclzhluvXrA9OwUjGCd5OUkKSdySZEQBsIQGLma8+WIEktVFrx29XUunttjNp3mWW+HhwiJne0tqqqk7/N25q3ZlO2tGcfLjus37lA7Q1kVXDy3T9s2ecFJMaFZL7l18xaFJbd/blpZL57fpaw8t49WPJVgvL2Dr3bBOAzCZDpjMj7iaLGm6QJJoPCO7a2Wqi5IMbFedxzP8+bks0RG25cxYjZLL2KuXLN5c3TXNMTQICIUzmAsiBiaxQqJFisFRlxeOoIhpYEQO4w4EgMhLbEkrJnkhSBiMRi8nTF1uzRhQUg9IbTEFCjtBMEQYo8kYXl0F28Fb4v7Czu8zYlhZy3dcklsB6wXIGyWxfSIlIhYnBsxAppuzpAGhtRjyZWDeQZhINe4CV0/MMS8rdoWnp2qYgiBddsR48DWeIx1wny5YrFcUfiCPMswklICgbquGIaBVZOXw3hnIUbWTQeAdQZvLYlECHkRTlUWxBio6xHOO5zzzOfzzdKbQNt3VL6kcA6zqYp0m/ejlPIcRu8MRBhCoOnyLNRhGDDWMKprvHMYA3VZgzGIyY+3nw/5lxY+v176bmC+WBJDjy8KJqOaqh5hrM1txMbkFukYIQaMdcQEzpm8oVsEZ01OYCqllFLqodPkoFJKKfUoCJSFp+l6jMkLKlZtR9021FWFGMfpqmW5bhmCMBuPuXJuj2UbePXOnMNFpEuOyWTK0ekphycLnFvlraNFwWxUYqY1KeW5gOd3JnzwXVe4cvEs//OLr/KJl17hzvEJVy6f5+zOJCcqhjUfe/87CUl4/eCI67cOmdUFF3a3sMZytF7hvOO5M7uYODAbj9nf2uL20YKv3Trm+y4s6VNkdzYmbRJe1nq2xhXGGKbjirIswAhHC8+120e85fIepTf8zie/xFNnt9mdbXP3eA5bwhDychVvDH3fs2g6iqrEP/NOtscTFlc/j0mR1Soy1I5R7Qmh4crT5xjVIy6cPcsXX7mN8wXLJvLyq7fo2oHtaZmTfCkRh0hVWEIc2JqNOJ6vOTxecuHMlKqw7O9M6fqOdogcz9cMQ24rPX92hrNmkzxJeBcJIaeDnIU+5A2r126eUFeOIIHl1RNObs/ZOjtGdkeIEWIIGC8ULiKpYOYte65iNs7z404WLV+79iJve8sFtiZT6qqiquv7lYfO21x5Zg3WOi6f3+Pc/nZOEpcF1jn6AK/fOqGob/D0xTPs7c4oSk8IA2f293DOU3jLT/7Yu/iDP3yJiODrXTCeGAeMGHyZZxq+duMuKcxJMSDGsLc1YjIqadqeg5MFfR8YQm6NvmhcXihzuqDthpwIMtAPsFquGJ3ezgtvmo4Qchtq6CJ28Ph6QogNRnJTdEwBweVqujDHmYKRP0sf5gxxIEjHEDuGmPAyYRGPGWJLh8XbMaXbIaVcuZhiJHQN3uVtwHXpSQn6PmKtZTQqmU5GuG4FYUqQHmeqfP/NdmQQjFRUXmiHJXkJdW57NlKBJAwWLxVxMzcTEfp+IJl8befXpqEsC4rCsW46Vqs1k9GIwnsAjORfIBgRVqv8eSuJssiLhNbrFc45uj7PG/XWg+RkdQgD1uRqwyImAmC9o3AeELqhx5g8czSGPieKy5I+BPoQcGLoUiCk/Hyu12vCEHIloBjsuESMoSwKXFHkWYkiCIGm7VitAquuIw6BuvRUhaeYjnHOURYF1nm891jn89xGkVwF6YvcPj7khHIiUTiP82Yzw1IppZRSD5skneWhlFJKPXTnz+2nj37kxwlhUx20qTPy1uCcy219ifvVQ4IwHRU4a1m1fa40FCHGlNs0hyFvXRXBu80ikk37Z9cHCmc4tzWmLDzHyzVHixWX97eoyhIj0A0DKSWqoiAlWHcdx/MlVeGpywIhz8pLMW7m7iVm4xprLKum5cbRCePSM6lLJnW9+UF/s8E35q+/J6VI1wf6IeCtYbFuOThdsjut2RrXhBgpXK5kGkIgprw1OcTIuK6ot8/k73tygKREGxLRAgImQVXmltxEYrlqsDYve2m7nqrMSRfvcmzuzWKMm0TNuunpN8kMY4RxXRI2FVrrpr+/VdhZgzEmJ5pC3GyCzskca4V10+OcpesDzuaG07wYJlFUjmLkQfKiGDFgBMBQGYfD4J0jISyXS5brhsmopCzyuVibt+hCbsc094YjJgFSPpfNcRHDyemCruupqpLZdELX5Tl0iOBc3rrbdS3GGA7unlKPRly6dCFfg/eWbcRA3zbMVw0hxLytR/JjEpMTU0OIQN5i7Z3N15YRmrbL8+3uXxPgN5VuMSXWbUfbh9ze6j2jSd5SHVNExGDFk4j5IRJIacCaAhFHjD0htYh4DJaUT4s+rjHiMeIwYu+/vtLmj/XpMcPQ4azBWZOv0xQRJFfvWos4R7L5ebLiNhuIQfIr7YF/My9gyTMW5Ruq29bLFav5nOlklK+3GO/d7f7GI+vs/S3BIUSKwt9/flNKm9c/9EOg6+/NV8wVfgDGmM1Wctl8/z9+nxEREPnjs03pgWsnz1KMm//7G5Ov6dwSnd9z0uZauvfvp5TuP4dmcz3fv99G3MxPhTw3MaWEcw5rzf1zyudlMJtzvned3TvRnIjN94+b58UY4e7RKf/gH/7zT6eU3veGb6xKKaWU+lOhyUGllFLqERCRO8ASOHjc5/Jdbh+N0ZuhcXpzNE5vzndznJ5JKZ153CehlFJKfS/T5KBSSin1iIjI/9IKmO9MY/TmaJzeHI3Tm6NxUkoppZ5sOuVXKaWUUkoppZRSSqknlCYHlVJKKaWUUkoppZR6QmlyUCmllHp0fuVxn8D/BzRGb47G6c3ROL05GiellFLqCaYzB5VSSimllFJKKaWUekJp5aBSSimllFJKKaWUUk8oTQ4qpZRSD5mIfEREXhKRV0TkFx73+TxOIvKUiPw3EfmSiHxBRH5+c3xXRH5XRF7e/L3zwH1+cRO7l0TkLzy+s3+0RMSKyGdF5Hc2tzVG30REtkXk4yLy4uaa+oDG6VuJyN/ZvN7+SET+nYhUGiellFJK3aPJQaWUUuohEhEL/AvgJ4G3A39FRN7+eM/qsRqAv5tS+n7g/cDPbeLxC8DvpZReAH5vc5vN534aeAfwEeBfbmL6JPh54EsP3NYYfat/BvynlNLbgHeR46VxeoCIXAL+FvC+lNIPAJYcB42TUkoppQBNDiqllFIP258FXkkpfTWl1AG/AXzsMZ/TY5NSupFS+szm4zk5mXOJHJNf23zZrwF/afPxx4DfSCm1KaWvAa+QY/o9TUQuAz8F/OoDhzVGDxCRGfCjwL8CSCl1KaVjNE5vxAG1iDhgBLyOxkkppZRSG5ocVEoppR6uS8DVB25f2xx74onIs8B7gE8C51JKNyAnEIGzmy97UuP3T4G/B8QHjmmMvtFzwB3g32zar39VRMZonL5BSuk68I+B14AbwElK6b+gcVJKKaXUhiYHlVJKqYdL3uBYeuRn8V1GRCbAvwf+dkrp9Dt96Rsc+56On4j8ReB2SunTb/Yub3DsezpGGw54L/DLKaX3AEs2rbHfxhMZp80swY8BV4CLwFhEfuY73eUNjn3Px0kppZR6kmlyUCmllHq4rgFPPXD7Mrml74klIp6cGPz1lNJvbQ7fEpELm89fAG5vjj+J8fth4KMi8iq5Df2DIvJv0Rh9s2vAtZTSJze3P05OFmqcvtGHga+llO6klHrgt4A/h8ZJKaWUUhuaHFRKKaUerj8EXhCRKyJSkAf9//ZjPqfHRkSEPCPuSymlf/LAp34b+NnNxz8L/IcHjv+0iJQicgV4AfjUozrfxyGl9IsppcsppWfJ18t/TSn9DBqjb5BSuglcFZG3bg59CPgiGqdv9hrwfhEZbV5/HyLP+tQ4KaWUUgrI7RhKKaWUekhSSoOI/A3gP5O3hP7rlNIXHvNpPU4/DPxV4PMi8rnNsb8P/CPgN0Xkr5OTGX8ZIKX0BRH5TXLSZwB+LqUUHvlZf3fQGH2rvwn8+ibx/lXgr5F/+a1x2kgpfVJEPg58hvy4Pwv8CjBB46SUUkopQFLSESJKKaWUUkoppZRSSj2JtK1YKaWUUkoppZRSSqknlCYHlVJKKaWUUkoppZR6QmlyUCmllFJKKaWUUkqpJ5QmB5VSSimllFJKKaWUekJpclAppZRSSimllFJKqSeUJgeVUkoppZRSSimllHpCaXJQKaWUUkoppZRSSqknlCYHlVJKKaWUUkoppZR6Qv1fkAxU2DZxkfwAAAAASUVORK5CYII=\n",
"text/plain": [
"