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ract

increasing popularity of applications with tight latency requirements has motivated research on Edge Computing, which posi-
computing resources near data sources at the Internet’s edge. Despite the emergence of simulation tools that make prototype
ation less complex, time-consuming, and expensive, researchers and practitioners still face significant challenges when de-
ing resource management strategies for the edge, as existing simulators fall short in providing a fine-grained model of edge
cations provisioning. To overcome this challenge, we propose EdgeSimPy, a simulation framework written in Python for mod-
and evaluating resource management policies in Edge Computing environments. EdgeSimPy features a modular architecture

incorporates several functional abstractions for edge servers, network devices, and applications with built-in models for user
ility, application composition, and power consumption that allow the simulation of various scenarios. Furthermore, we propose
el conceptual model that accurately represents the entire lifecycle of edge applications and ensures seamless integration with

application traces. In addition to submitting EdgeSimPy to an in-depth verification that checks the simulator implementation,
iscuss case studies that show EdgeSimPy in action in different large-scale scenarios.

ords: Simulation, Modeling, Edge Computing, Resource Management, Containers, Python.

troduction

he emerging use cases of compute-intensive applications
tight latency and bandwidth requirements have highlighted
imitations of consolidated cloud data centers [1]. In re-
se, the IT industry has been moving towards Edge Comput-
2], which distributes computing resources near data sources,
ling data processing at the network’s edge to avoid the
round-trip times generated by traversing the Internet back-
[3].
hile proximity to data sources grants Edge Computing

tural advantage over the cloud, it also introduces signifi-
technical constraints. As the deployment of a large-scale
data center in the middle of urban centers is typically un-

ble, edge infrastructures often comprise groups of devices
reduced computing power distributed across small physi-

paces with limited power and cooling supply [4]. As such,
ring the efficient use of resources, which is more critical
ever, also becomes challenging. Thus, efficient resource
gement policies need to be developed and tested to ensure
achieve expected goals.
n addition to the cost and time required to validate resource
gement policy prototypes, the distributed nature of edge

structures adds extra barriers to empirical experimentation

orresponding author
mail addresses: paulo.severo@edu.pucrs.br (Paulo S. Souza),
.ferreto@pucrs.br (Tiago Ferreto),
heiros@westernsydney.edu.au (Rodrigo N. Calheiros)

of new resource management policies in real testbeds. Exam-
ples of such barriers are network instability and power outages.25

Such challenges favored the rise of several edge simulators, de-
tailed in Section 3.1, that promise to close the gap between con-
ceptual research and prototyping. Despite such initiatives, re-
searchers and practitioners still face barriers when designing
resource management policies for the edge as existing simula-30

tors fall short in providing fine-grained modeling of the edge
infrastructure management, which comprises a variety of pro-
cesses such as application provisioning, network flow schedul-
ing, server maintenance, and others.

To overcome this challenge, this paper introduces EdgeS-35

imPy, a framework for modeling and simulating resource man-
agement policies for Edge Computing environments developed
in Python. EdgeSimPy is built on top of a modular architecture
comprising several functional abstractions for edge servers, net-
work devices, and applications. EdgeSimPy embodies a novel40

conceptual model that replicates the application provisioning
method of widely used platforms such as Docker1, allowing
seamless integration with repositories like DockerHub2. In ad-
dition to demonstrating the effectiveness of EdgeSimPy through
an in-depth verification that checks the correctness of the simu-45

lator implementation, we describe two case studies available in
the literature [5, 6] that show EdgeSimPy in action in different
large-scale scenarios.

The contributions of this paper are the following:

1https://www.docker.com/
2https://hub.docker.com/

int submitted to Journal of LATEX Templates May 17, 2023
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We provide a high-level interface that leverages the fea-
tures of well-known modeling solutions such as Mesa [7]
and NetworkX [8] to ease the development of resource
management policies and simulator extensions (§4.1).

We propose a novel conceptual model that accurately rep-
resents the entire lifecycle of edge applications by repli-
cating the behavior of widely used platforms like Docker
(§4.3).

We implement multiple system models for simulating sev-
eral features of edge environments, such as infrastruc-
ture power consumption, application composition, ser-
vice workload variations, and user mobility (§4.2–4.4).

We conduct an in-depth verification that checks the cor-
rectness of EdgeSimPy’s core features implementation
by comparing the simulation results to the expected out-
puts (§5).

We demonstrate EdgeSimPy’s utility through two case
studies based on peer-reviewed papers [5] [6] that have
employed the simulator in different resource management
scenarios (§6).

he remainder of this paper is organized as follows. Sec-
2 reviews the concepts that shape the foundation of our
rch, such as Cloud Computing, Edge Computing, and con-
rs. Then, Section 3 presents an overview of the edge simu-
n landscape, highlighting the contributions of EdgeSimPy
existing simulators. Next, Section 4 details EdgeSimPy’s
tecture and its main components. Sections 5 and 6 check
SimPy’s implementation correctness through an in-depth
cation and demonstrate its extensibility through two case
es. Section 7, discusses lessons learned during EdgeS-
’s development, highlighting its limitations and improve-
opportunities. Finally, Section 8 concludes the paper.

ackground

ver the last decade, Cloud Computing has become one of
ost attractive options for hosting applications over the In-

t [9]. Cloud computing relies on centralized computing re-
es in data centers, reducing infrastructure management’s

en and allowing providers to offer cloud services at afford-
prices for individuals and organizations.
ith Cloud Computing acting as a catalyst for digital trans-

ation, the spotlight turned to use cases such as augmented
ty [10] and online gaming [11], which raised the bar re-
ing the use of software applications in people’s daily lives.
tually, it became evident that centralization around a few
data centers results in them being geographically distant
end devices, resulting in response times that conflicted

the real-time requirements of those applications [12].
his limitation paved the way for the emergence of Edge
puting [2], which adopts a decentralized model where ap-
tions are hosted on resources (e.g., small servers and single-
d computers) at the edge of the network, which results in

shorter response times. Figure 1 illustrates the relationship be-
tween cloud data centers, edge resources, and end devices.

Edge

Network

Backhaul

Cloud

Edge ServersEdge Servers

End Devices

... ...

...

Figure 1: Interplay between cloud data centers, edge sites, and end devices.

Similarly to cloud data centers, edge infrastructures rely
on virtualization technology, often through Virtual Machines
(VMs) or containers [13]. The fundamental idea behind virtu-105

alization is decoupling hardware (physical devices) from soft-
ware (applications). Virtualization gives infrastructure opera-
tors fine-grained control over physical resources, which cre-
ates several resource management possibilities, such as multi-
tenancy (i.e., hosting multiple applications on the same server)110

and on-the-fly relocation of applications among servers.
In addition to yielding a better use of resources, virtualiza-

tion allows developers to bypass repetitive tasks during appli-
cation deployment with template images [14]. At this point,
the differences between VMs and containers show up. Whereas115

VM images are monolithic, most modern container solutions
follow Docker’s3 lead, splitting container images into read-only
layers representing software instructions. This difference may
seem subtle, but it affects the entire lifecycle management of
applications (i.e., building, deploying, and terminating opera-120

tions) [15].
When a container needs to be spawned, a new writable layer

is created on top of the container image’s filesystem. All changes
made to the container are stored in that top writable layer, so
that image layers remain unchanged regardless of application-125

level changes, which allows containers to share common con-
tainer layers [16]. On the other hand, spawning a VM requires
the creation of a complete copy of the base image, as no persis-
tence measure is taken to prevent applications from changing
instructions from their base images. Consequently, provision-130

ing a VM-based application is generally slower and generates
higher disk demand than a container-based application [17].

3https://docs.docker.com/storage/storagedriver/

#images-and-layers

2



Journal Pre-proof

I
conta
mod135

hard
I/O,
layer
nel i
kern140

taine
displ
weak

T
be em145

that
deplo
be m
conta
smal150

rity a
D

tion,
ture
their155

to th
meet
tions

A
impl160

niqu
perfo
ning
awar
for n165

A
tenti
reaso
end
frast170

dle o
infra
dispe
prod
resul175

I
testin
prod
proc
comp180

ing w
emer
evalu
adva

3. R185

O
and
 Jo

ur
na

l P
re

-p
ro

of

n addition to the differences in template images, VMs and
iners rely on different types of virtualization. In the VM

el, a control layer, known as a hypervisor, virtualizes the
ware, giving each VM a dedicated virtual CPU, memory,
and network devices. In the container model, a control
, known as container runtime, virtualizes the host OS ker-
nstead of the hardware, so containers share the host OS
el while isolation is handled at the OS level. While con-
rized applications do not need a standalone OS, containers
ay a lower virtualization overhead than VMs at the cost of
er isolation among co-hosted instances [13].
here is no consensus about what type of virtualization should
ployed on edge infrastructures. Some researchers argue

VMs and containers should be employed depending on the
yment needs, enabling a broader spectrum of demands to
anaged more efficiently [18]. In such a line of reasoning,
iners can fit better when shorter provisioning times and

l footprints are needed, while VMs can deliver better secu-
nd isolation in multi-tenant deployments.
espite the potential use cases for both types of virtualiza-
containers have been taking the lead as the prime architec-
for deploying applications on edge computing devices, as
small footprint and low virtualization overhead fit greatly
e resource constraints of edge infrastructures while also
ing strict provisioning time constraints of edge applica-
[19].
t a glance, the virtualization of the edge infrastructure

ies the reuse of consolidated resource management tech-
es already adopted in Cloud Computing. However, for the
rmance expectations of latency-sensitive applications run-
at the edge to be met, new properties such as location

eness are required to be considered, highlighting the need
ew resource management approaches.
lthough Edge Computing displays significant growth po-

al, conducting experimental research is challenging for some
ns. First, the proximity between computing resources and

devices imposes challenges related to positioning the in-
ructure since deploying large-scale data centers in the mid-
f urban centers might not be feasible. Consequently, edge
structures are composed of small interconnected servers
rsed in the environment, making it difficult to conduct re-

ucible experiments, as multiple external factors can affect
ts (e.g., network instability and power supply outages).
n addition, experimental research may comprise several
g stages until prototypes are turned into consumer-ready

ucts. Accordingly, conducting the entire experimentation
ess in real testbeds implies investing time and budget in
uting and networking resources, power supply, and cool-
ith no guarantees of returns. As a result, simulation tools

ge as catalysts for early research on Edge Computing, as
ation in real testbeds is better suited for prototypes in more

nced stages.

elated Work

ver the past decade, simulation tools like CloudSim [20]
GreenCloud [21] were broadly adopted to accelerate the

development and validation of resource management strategies
for cloud data centers. Similarly, the dawn of Edge Computing
has motivated the development of several edge simulators. This190

section starts with an overview of simulation tools for Edge
Computing (§3.1). Then, it highlights the differences and con-
tributions of EdgeSimPy over those existing solutions (§3.2).

3.1. Edge Computing Simulators

Sonmez et al. [22] highlight the limitations of cloud and195

network simulators when modeling the characteristics of edge
environments. While cloud simulators such as CloudSim lack
user mobility and wireless support, network simulators are not
focused on modeling edge servers and users. Accordingly, the
authors present EdgeCloudSim, a simulator that implements200

user mobility, edge device power modeling, and network man-
agement, facilitating the prototyping of placement strategies in
Edge Computing environments.

Qayyum et al. [23] argue that edge simulators abstract net-
work infrastructure characteristics, restricting the options for205

designing new resource management strategies. The authors
introduce a new simulator, FogNetSim++, which models the
power consumption of edge devices, supports various commu-
nication protocols (e.g., MQTT and CoAP), and simulates the
handover of mobile users among network devices. Finally, the210

authors present a use case demonstrating FogNetSim++ effec-
tiveness in modeling placement and scheduling policies for the
edge.

Puliafito et al. [24] discuss the critical role of application
migration in preserving low latency for users despite their mo-215

bility and how edge simulators lack the features needed to eval-
uate migration decisions. Based on these observations, the au-
thors propose MobFogSim, a simulator that models the appli-
cation migration process based on user mobility (including at-
tributes such as speed and moving direction) and the coverage220

area of access points spread in the environment.
Amarasinghe et al. [25] present a novel simulator called

ECSNeT++, focused on deploying and processing stream-based
applications in Edge Computing environments. Unlike other
simulators, ECSNeT++ enables fine-grained resource manage-225

ment for streaming applications, where allocation policies can
determine how tasks are processed at the core level on edge de-
vices (where each CPU core has a processing queue), aiming
to reduce the network delay and power consumption of edge
devices.230

Lera et al. [26] introduce YAFS, an edge simulator focused
on evaluating allocation decisions for composite applications
(i.e., applications composed of multiple components) on edge
infrastructures. According to the YAFS model, routing poli-
cies coordinate the application communication across the net-235

work, allowing modules of a given application to be allocated
on different edge devices. The authors present several YAFS
use cases, including scenarios with dynamic scheduling of ap-
plication components, infrastructure failures, and user mobility.

Jha et al. [27] discuss the complexity of the Cloud-Edge-IoT240

ecosystem, which involves allocating resources across hetero-
geneous devices using multiple network protocols (e.g., LoRa

3
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Table 1: Summary of built-in features supported by existing simulators and EdgeSimPy.
Simulator Server Power Network Power Network Routing User Mobility Application Composition Container Lifecycle
EdgeCloudSim [22] ✘ ✘ ✘ ✔ ✘ ✘
FogNetSim++ [23] ✔ ✔ ✔ ✔ ✘ ✘
MobFogSim [24] ✔ ✘ ✘ ✔ ✘ ✘
ECSNeT++ [25] ✔ ✔ ✔ ✔ ✔ ✘
YAFS [26] ✔ ✘ ✔ ✔ ✔ ✘
IoTSim-Edge [27] ✔ ✘ ✔ ✔ ✔ ✘
IoTSim-Osmosis [28] ✔ ✘ ✔ ✘ ✔ ✘
iFogSim2 [29] ✔ ✘ ✔ ✔ ✔ ✘
EdgeSimPy (this work) ✔ ✔ ✔ ✔ ✔ ✔

Table 2: Summary of potential use cases supported by existing simulators and EdgeSimPy.
Simulator Service Migration Network Flow Scheduling Container Registry Management Maintenance Operations
EdgeCloudSim [22] ✘ ✘ ✘ ✘
FogNetSim++ [23] ✘ ✔ ✘ ✘
MobFogSim [24] ✔ ✘ ✘ ✘
ECSNeT++ [25] ✘ ✔ ✘ ✘
YAFS [26] ✘ ✘ ✘ ✘
IoTSim-Edge [27] ✘ ✔ ✘ ✘
IoTSim-Osmosis [28] ✘ ✔ ✘ ✘
iFogSim2 [29] ✔ ✔ ✘ ✘
EdgeSimPy (this work) ✔ ✔ ✔ ✔

igbee) and messaging protocols (e.g., CoAP and MQTT).
r highlighting the lack of edge simulators considering the
cols of the Cloud-Edge-IoT ecosystem, the authors present

oTSim-Edge simulator. The simulator allows the prototyp-
f resource management strategies for the edge based on the
y consumption of edge devices, application composition,

mobility, and communication protocols.
lwasel et al. [28] make a case for Osmotic Computing, a
igm that involves workload migration among cloud data
rs and edge devices based on performance and security

ts. The authors present a novel simulator, IoTSim-Osmosis,
sed on Osmotic Computing scenarios, which implements a
ty of models for data transmission, energy consumption,
pplication performance. Finally, the authors present a use
where IoTSim-Osmosis is used to model strategies that op-
e performance, energy consumption, and budget in Cloud-
scenarios.
ahmud et al. [29] highlight the lack of support for real

ets on edge simulators, which limits the evaluation of re-
e management policies in edge environments comprising
osite applications. Then, the authors introduce iFogSim2,
ulator with native support to real datasets that incorporates

eling and simulation of service migration in multi-tier in-
ructures (e.g., Cloud-Edge), user mobility, service orches-
n, and edge devices clustering. They present use cases
nstrating iFogSim2 effectiveness in simulating several re-
e allocation scenarios at the edge.

Discussion
s discussed in the previous section, the popularization of
Computing motivated the development of several simula-

tools that address aspects such as user mobility and infras-
ure heterogeneity, which are not covered by cloud simula-
despite being critical in edge scenarios.
espite the significant research interest in simulation mod-
focused on Edge Computing environments, existing edge

simulators lack native support for managing the lifecycle of
containerized applications. At first, extending existing simu-
lators may seem trivial as most of them are built with program-280

ming stacks that facilitate the inclusion of new features. How-
ever, in this case, several changes may be needed to allow the
evaluation of container management strategies at the edge, such
as including several new entities (e.g., container registries, im-
ages, layers, etc.) and modeling the container provisioning pro-285

cess from scratch, as it differs significantly from the VM model,
as discussed in Section 2.

EdgeSimPy models aspects of edge computing that are also
supported by existing simulators, such as user mobility, energy
consumption (for computing and network devices), and appli-290

cation composition. Complementarily, it provides functional
abstractions that are not covered by existing edge simulators
(e.g., container registries, container images, and container lay-
ers), enabling the simulation of the whole lifecycle of container-
ized applications (e.g., placement, scheduling, migration, up-295

date, and removal of operations). Table 1 summarizes the main
differences between EdgeSimPy and related simulators regard-
ing built-in features.

In addition to its built-in functionalities, EdgeSimPy aims
to contribute to the community by providing more comprehen-300

sive support for specific use cases, as shown in Table 2. Al-
though some simulators like Although specific simulators such
as MobFogSim and iFogSim2 support the modeling of service
migration strategies, they focus predominantly on VM-based
migration models. For instance, although MobFogSim provides305

a ContainerVM class, such an entity follows the VM migra-
tion model, where containers are relocated from a source to a
destination server, overlooking the shareable structure of con-
tainer images and the abstraction of container registries. In
contrast, EdgeSimPy’s abstractions for container-related enti-310

ties (i.e., container registries, container images, and container
layers) allow it to support the design of relocation strategies

4
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ontainerized applications. In the same way, these new ab-
tions implemented by EdgeSimPy make room for other
ases. For instance, as EdgeSimPy represents container

tries as domain-specific services, it supports the design of
isioning policies that manage such entities aiming at opti-
tions in the lifecycle of containerized instances. In addi-
EdgeSimPy facilitates modeling maintenance operations
hysical resources (e.g., servers, network devices) and ap-
tions, which is not supported by existing simulators. An
pth analysis of EdgeSimPy’s suitability in two case stud-

nd a comparison with existing simulators in these scenarios
ovided in Section 6.

dgeSimPy Architecture

dgeSimPy’s primary design goal is to support researchers
ested in evaluating resource management strategies in Edge
puting infrastructures. For example, EdgeSimPy supports
eling different types of resource allocation decisions, such
acement, migration, scheduling, and maintenance, while
idering the heterogeneity of the infrastructure (power con-
tion, resource capacity), users (mobility, access profile),
pplications (composition, performance requirements). Fig-
illustrates a sample EdgeSimPy simulation scenario in

h entities interact with each other and different resource
gement decisions affect the environment.

L5

L4L3L2

L1

ES2 ES3

ES1

Registry

1

Edge Server 3 (ES3)

CPU + RAM Disk

LayersImagesServices
CL4

CL3

CL2

CL1

CI3

CI2

CI1S1

S2

S3

 Request

outing

Layer Pulling

Scheduling

Server Update

Maintenance

Provisioning

Service Migration/Placement

S3 CI3 CL4

2: Sample EdgeSimPy simulation scenario. While “L” and “ES” denote
twork links and edge servers, “S”, “CI”, and “CL” represent the services,
ner images, and container layers.

efore starting the simulation, EdgeSimPy expects an input
efining the simulated scenario. EdgeSimPy input files are
en in the JavaScript Object Notation (JSON) format, which

human-friendly file structure [30] and is widely adopted
rious software domains [31], which facilitates EdgeSimPy
ration with other tools.
dgeSimPy input files organize the metadata of each sim-
d entity into a well-defined structure comprised of two
ct information groups: attributes and relationships. At-

tes refer to the internal characteristics of entities, such as
server capacity, network link bandwidth, application de-
mong others. Relationships represent the associations be-
n entities (e.g., a service’s host or a user’s applications). By

adhering to this predefined structure, EdgeSimPy can automati-350

cally identify entity input metadata and construct the simulated
scenario, even in cases where custom attributes and relation-
ships have been specified. Figure 3 depicts a sample EdgeS-
imPy input file containing the metadata of a given application
entity.355

{

        "Application": [

                {

                        

1
"medium"


                        

"class": "Service", "id": 1


"class": "EdgeServer", "id": 1


my_custom_function


                },

        ...

        ]

}

"attributes": {

                                

                        },


"id": ,

                                "privacy_requirement": 

"relationships": {

                                

                        }


"services": [

                                        {

                                                
                                        },

                                        ...

                                ],

                                "preferred_host": {

                                        
                                },

                                "comm_model":  

Entity attributes with

multiple data formats

One-to-many relationship

pointing to multiple entities

One-to-one relationship

pointing to a single entity

One-to-one relationship

pointing to a Python function

edgesimpy_dataset.json

Figure 3: Sample EdgeSimPy input file.

Simulated entities can carry geospatial metadata, which fa-
cilitates the integration of datasets containing real or synthetic
coordinates to EdgeSimPy and allows the modeling of events
such as user mobility. By default, EdgeSimPy uses the map
model proposed by Aral et al. [32], which divides the environ-360

ment into hexagonal cells.
Once the simulation starts, EdgeSimPy triggers a monitor-

ing mechanism that stores snapshots of the entity’s state at the
end of each time step. Simulation logs are stored in MessagePac
a binary serialization format designed to be a faster and smaller365

alternative to JSON [33]. Instead of writing data to disk each
time step, EdgeSimPy stores the simulation output at config-
urable intervals of time steps, reducing the I/O pressure during
the simulation.

EdgeSimPy’s flexibility stems from a modular architecture370

(depicted as a block diagram in Figure 4), which divides the
functional abstractions into four layers (Core, Physical, Log-
ical, and Management). Each abstraction is self-contained to
streamline the integration of new features and algorithms.

The remaining of this section details the components that375

comprise each layer of EdgeSimPy’s architecture.

4.1. Core Layer
Edge computing environments can be seen as complex sys-

tems with several entities that interact with each other in a non-
linear way. This ecosystem may assemble emergent phenom-380

4https://msgpack.org/index.html
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EdgeSimPy

Core

Base

Station

Network

Switch

Edge 
Server

User

Physical

Container 
Registry

Container 
Image

Container 
Layer

Application Service

Logical

Placement Migration Routing Scheduling Maintenance

Management

Figure 4: EdgeSimPy architecture.

[34], which are the product of interactions between enti-
An example of an emerging phenomenon at the edge is

structure saturation generated by a series of poor resource
ation decisions. While detecting such type of emerging
omena is key to avoiding erroneous allocation decisions,
rstanding its causes through the attributes of individual en-
is challenging as it arises from the interaction between

iple entities.
ne of the most popular techniques for studying emergent

omena is Agent-Based Modeling (ABM) [35] [36]. ABM-
d simulations represent the world through a bottom-up ap-
ch, where independent entities (called agents) interact with
other and the environment over time according to commu-
ion and decision-making rules. Most ABM-based simula-
systems adopt the Fixed-Increment Time Advance (FITA)
gy [37], which advances the simulation clock in fixed in-
ents of time delta (∆). If multiple events are scheduled
he same time step t, they are considered to have occurred
urrently at the end of t.
ITA-based simulators must define two properties: the gran-
ty of ∆ and the agents’ activation regime [37]. ∆’s granu-

affects the accuracy of the simulation output and the sim-
on time—lower ∆ yields higher accuracy to the simulator
reduces the number of events computed in the same time
at the cost of longer runtime. The activation regime deter-
s the order in which the simulator computes simultaneous
ts at the end of each time step, which can affect the simu-
n output, especially if simultaneous events influence each
.
dgeSimPy employs the ABM approach, representing en-
of edge scenarios as interactive agents. Features that com-
the simulation core (i.e., agent modeling, activation regime,

time advance) are managed by Mesa [7], a well-known
framework that ships several built-in modules that en-

ass the building, analysis, and visualization of ABM sim-
ons. EdgeSimPy’s simulation workflow is depicted in Fig-
.
hen EdgeSimPy is started, it loads input data from JSON

1. Loading

Dataset

2. Executing

Resource Management


Algorithms

3. Activating Agents

and Advancing


Simulation Clock

4. Monitoring

System State

6. Displaying

Results

5. Stopping 
Criterion is Met?

No

Yes

Figure 5: EdgeSimPy’s simulation workflow.

files or Python dictionaries, spawning simulated entities accord-
ingly (Figure 5, step 1). After loading the scenario, EdgeSimPy420

starts an iterative process until a user-defined stopping criterion
is met. At each time step, EdgeSimPy executes user-defined
resource management policies, calls the activation regime for
updating the agents’ state, increments the simulation clock, and
collects logs about the system state, respectively (Figure 5, steps425

2–4).
Once the stopping criterion is met, EdgeSimPy stops the

simulation and displays the metrics and logs collected during
the simulation (Figure 5, step 6). Thanks to EdgeSimPy’s de-
coupled architecture, it is possible to define custom stopping430

criteria, resource management algorithms, and personalized rou-
tines for collecting and exhibiting simulation metrics.

4.2. Physical Layer

The Physical layer contains functional abstractions for users
and resources that comprise the edge infrastructure. Regard-435

less of their distinct functions, all components in the Physi-
cal layer have a coordinates attribute, which carries the com-
ponent’s geospatial information. Physical entities that provide
networking capabilities leverage the features of NetworkX [8],
a well-known graph library for manipulating complex networks440

that ships several built-in methods (e.g., shortest path and com-
munity finding).

The remainder of this section discusses the particularities of
each component in the Physical layer.

4.2.1. Base Stations445

Base Stations act as gateways in the edge network, provid-
ing wireless connectivity for seamless communication between
users and edge servers. EdgeSimPy assumes that the base sta-
tions cover the entire map area so that users always have con-
nectivity regardless of location. As such, the set of coordinates450

of the base stations comprehends the whole available area for
user transit, so users cannot be in a position that represents a dif-
ferent coordinate from all base stations, as they would not have
network connectivity. Base stations on EdgeSimPy embody
multiple customizable attributes, such as energy consumption455

and wireless latency, enabling various scenarios to be modeled.
In addition to providing wireless connectivity, EdgeSimPy

automatically handles user handoff between base stations based
on user mobility patterns. Accordingly, EdgeSimPy allows for
a realistic simulation of users moving through the edge network460

and the associated changes in connectivity as they transition
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one base station to another. In addition, base stations
be equipped with network switches for wired connectiv-
nd network flow management and edge servers for hosting
ces, ensuring an adaptable model for edge environments.
dgeSimPy can also be customized to support map mod-
here a single base station covers multiple coordinates, and
utes such as wireless latency are affected by the distance
een the user’s and base station’s positions. This allows the
eling of various connectivity scenarios and the analysis of
impact on the performance of edge applications.

. Network Switches
etwork switches provide wired connectivity between in-

ructure components (e.g., base stations and edge servers)
anage data flow in the network. These components ship

iple configurable parameters, such as chassis types and vary-
umbers of ports with specific delay and bandwidth proper-
In EdgeSimPy, network switches are modeled as nodes in
raph representing the network topology.
lthough network switches are used as network nodes by
lt, EdgeSimPy allows other entities to be modeled for this

ose, enabling a variety of networking scenarios to be sim-
d. For example, cars can act as topology nodes in vehicu-
etworks, serving the environment as intermediate data ex-
ge and communication entities.
dgeSimPy assumes that user requests are protected by Qual-

f Service (QoS) policies so that one user’s request does not
tively affect others. On the other hand, more demanding
transfers between edge servers (e.g., service migrations)
odeled as network flows, sharing the bandwidth of net-
links. The duration of a network flow depends on the

width of the links it spans over and the resource allocation
y of the network switches. Whenever a network flow starts
ds, EdgeSimPy runs a flow scheduling algorithm to update
ccupation of the involved links, redistributing the available
width, if applicable.
ince a network flow can use a path with links contain-
ifferent bandwidth demands, EdgeSimPy normalizes the
width available to a network flow to the lowest available
width between the links in its path. The Max-Min Fairness
ithm [38] is used as the default flow scheduling algorithm,
ing network bandwidth proportionally to the demand of

s. As flow scheduling logic is fully encapsulated, it is pos-
to define custom flow scheduling algorithms without bur-

uring simulation, the network’s power consumption varies
rding to resource usage and the technical features of net-

switches. By default, EdgeSimPy includes the network
r models proposed by Conterato et al. [39] and Riviriego

. [40] However, the behavior of power models is fully en-
ulated, allowing new models to be implemented without
iring changes to the simulator’s base features.

. Edge Servers
dge servers are used to host services. EdgeSimPy assumes

the edge infrastructure is virtualized so that edge servers

can host multiple services simultaneously. In addition to ca-
pacity parameters such as CPU, RAM, and disk storage, edge
servers can also have performance parameters like Million In-
structions Per Second (MIPS), which allows for an alternative
representation of server performance and resource allocation.520

It is possible to define the distribution of MIPS among applica-
tions on a server based on custom criteria, allowing the model-
ing of advanced phenomena such as resource contention among
co-hosted applications.

Technical specifications such as hardware resources and re-525

source usage affect the power consumption of edge servers dur-
ing simulation. EdgeSimPy incorporates three built-in generic
power consumption models (LinearPowerModel, QuadraticPow
erModel, CubicPowerModel) [41], which assume that the power
consumption of edge servers grows according to their CPU us-530

age following linear, quadratic, and cubic functions, respec-
tively. EdgeSimPy’s energy modeling enables the implementa-
tion of advanced features, such as temporarily turning off edge
servers to save energy. As the properties of power models are
fully encapsulated, EdgeSimPy supports custom power models535

for edge servers.
As edge servers have static coordinates, they are immobile

by default. Nevertheless, EdgeSimPy can be extended to assign
mobility models to edge servers, allowing the representation of
mobile devices with computing capabilities, such as drones or540

Single-Board Computers (SBCs) connected to automobiles.

4.2.4. Users
As part of the Physical layer, users have a coordinates at-

tribute that defines their location on the map. Users can remain
in the same position during the entire simulation or move ac-545

cording to mobility models. By default, EdgeSimPy incorpo-
rates two mobility models, Random and Pathway [42], which
can be easily replaced by other synthetic models or real mobil-
ity traces.

Users and applications are linked by a many-to-many re-550

lationship, which allows a user to access multiple applications
or even an application to be accessed jointly by multiple users.
Following this design principle, each user has properties that
define their delay and availability requirements for each ap-
plication they access. As each entity is self-contained, adding555

new user requirements such as security and budget is possible,
which opens room for prototyping custom allocation strategies.

Each user has their access pattern, specifying when they
will call their applications and how long each access will last.
By default, EdgeSimPy incorporates two user access pattern560

templates, Random and Circular. While the former arbitrarily
defines when and for how long the user will access their appli-
cations, the latter establishes a pattern that repeats indefinitely.
Figure 6 illustrates four users using the Random and Circular
access patterns.565

As the user access patterns are defined through independent
classes, it is possible to easily define new patterns. This feature
allows EdgeSimPy to model different workloads, from stream-
ing to batch processing applications and serverless functions.
As a user’s access can be intermittent, allocation policies may570

choose to deprovision applications during idle periods, which
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
r 4
r 3
r 2
r 1

Time

Random( =2, = 1, 4 , = 3, 5 )start duration interval[ ] [ ]
Circular( =4, = Infinity , = 0 )start duration interval[ ] [ ]
Circular( =3, = 3 , = 3 )start duration interval[ ] [ ]
Circular( =1, = 1 , = 1,  2 )start duration interval[ ] [ ]User 4

User 3
User 2
User 1
User Access Pattern

Figure 6: EdgeSimPy’s built-in user access patterns.

e beneficial in terms of resource saving or harmful if there
ong application provisioning times after the user’s request

the case of serverless functions facing cold starts [43]).

Logical Layer

he Logical layer comprises functional abstractions for ap-
tions running on the edge infrastructure. Despite support-
Ms, EdgeSimPy adopts containerization as the default vir-

zation model (see details in §2). Accordingly, abstractions
ontainer registries, container images, and container layers
rovided. The rest of this section describes the components
e Logical layer.

. Applications
pplications are modeled as abstract entities representing
flows involving multiple services. This way, the applica-
services are allocated within the infrastructure rather than
pplications themselves. As EdgeSimPy models applica-
as self-contained entities, they can receive custom attributes,
as priority and budget, which enables modeling specific

arios.
dgeSimPy calculates the latency of a given based on the
it takes to visit the servers that host all its services. The
lt application implementation in EdgeSimPy assumes that
ata flow starts at the application users and passes through
e application services sequentially.
n addition to the built-in application communication be-
r, EdgeSimPy supports custom communication patterns to

el multiple software architectures, from monoliths to mi-
rvices [44] and stream applications [45]. It is also possi-

o specify custom communication policies among the ser-
that compose a given application based on various crite-

uch as inter-service latency and the characteristics of the
ce hosts.

. Services
ervices in EdgeSimPy are modeled as container instances

in the infrastructure. While a service’s disk demand corre-
ds to the size of the layers that comprise its container im-
its CPU and memory demand describe the computational

resources required by the service instance and therefore are un-
related to the service’s image. Each service also has a state610

attribute, which defines whether it is stateless or stateful.
Services leverage a layered file system model to separate

service components and ensure that changes in one container-
ized service do not affect other co-hosted services using the
same base image. This containerization approach provides an615

efficient and isolated environment for hosting services in the
edge infrastructure. The layered file system model used by ser-
vices in EdgeSimPy is shown in Figure 7.

Image Layers

(Read-Only)

Container Layer

(Read/Write)

Service A (Container)

Host Server

Custom

Data (25 MB)

Django (32 MB)

Python (39 MB)

Debian (61 MB)

Image Layers

(Read-Only)

Container Layer

(Read/Write)

Service B (Container)

Custom

Data (18 MB)

Java (47 MB)

Debian (61 MB)

Shared

Layer

Figure 7: Layered file system used by service in EdgeSimPy.

The layered file system used by services divides the ser-
vice image into two parts: the container and image layers. In620

this setting, each service has its container layer with its run-
time files and user session data. As the container layer is not
shared with co-hosted services, it has read-write permissions.
Conversely, image layers hold read-only permissions as they
provide static files, libraries, and dependencies, and are shared625

among co-hosted services. This separation enables a stream-
lined relocation process and ensures that services can be effi-
ciently transferred across edge servers without affecting other
instances or interfering with shared resources.

The state attribute plays a crucial role in how service is re-630

located. Stateless services maintain no user session data or run-
time state, allowing them to be relocated without downtime, as
their container layer can be easily discarded on the target host
and recreated on the destination host. In contrast, stateful ser-
vices require the transfer of both image layers and the container635

layer containing user session data, resulting in a brief downtime
while the service’s state is transferred to the destination host.

4.3.3. Container Registries
Container registries are the main component when allocat-

ing a service in the edge infrastructure, as the service’s con-640

tainer image is pulled from them to the destination host. A con-
tainer registry is a containerized service built on top of a registry
image that embeds image distribution and storage functionality.
Thus, a container registry also has its own CPU and memory re-
quirements for performing image distribution processing.645

EdgeSimPy supports the definition of custom policies for
selecting from which container registries container images are
pulled to the edge servers. This feature fosters the design of re-
source management strategies that optimize service provision-
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y considering factors such as network usage and the loca-
of container registries. Additionally, as container images
w a layered file system model, EdgeSimPy makes room
esource management strategies that leverage multiple con-
r registries to download the layers of a given image.
dgeSimPy also allows defining how many layers of a par-

ar image are downloaded simultaneously to a given host.
level of control enables the design of resource manage-
strategies that optimize service provisioning by balancing

iple metrics of interest, such as network usage, provision-
ime, and resource availability.
s container registries are modeled as domain-specific ser-
that distribute container images across the edge infrastruc-
EdgeSimPy enables dynamic provisioning of container

tries as it does with regular services. This feature allows
to adapt the container registry deployment to changing

ork conditions, resource requirements, or application de-
s, ensuring efficient image distribution and optimized re-
e utilization in the edge environment.

. Container Images
ontainer images embed the basic functionality for services.
efault, each image has a tag attribute representing its ver-
which enables the modeling of scenarios where new image
ons are released during simulation. Like applications, con-
r images are modeled as abstract entities, so they have no
rce requirements by themselves. Instead, the disk demand

given container image results from the size of its layers.
dgeSimPy models container images according to the Open
ainer Initiative (OCI) 5 format, a well-known standard for
iner images. By adhering to the OCI format, EdgeSimPy

ncorporate metadata from real-world container images from
sitories like DockerHub, providing a more accurate repre-
tion of services in the edge infrastructure.
n addition to providing compatibility with real image traces,
SimPy’s container image format allows the definition of
ce provisioning constraints to model edge-specific scenar-
For instance, it is possible to define datasets with con-
r image specifications that narrow the service provisioning
ns based on the architecture and hardware capabilities of
able hosts.

. Container Layers
ontainer layers represent the instructions aggregated into
iner images. Each container layer depicts a set of files

d or modified concerning the previous layer. In EdgeS-
, container layers can be identified by a digest attribute,
ling hosts to check the integrity of downloaded container
s.
ach container layer carries attributes representing its soft-
instruction and disk size. As container images in EdgeS-
adhere to a layered filesystem model, co-hosted services

hare read-only image data, resulting in considerable disk
gs. This model makes room for the design of layer-aware

ttps://opencontainers.org/

resource management strategies that could minimize applica-
tion provisioning time by selectively choosing hosts already
possessing the necessary service layers.

4.4. Management Layer705

In addition to modeling the behavior of several entities of
Edge Computing scenarios, EdgeSimPy provides fine-grained
control over network and edge server resources. Consequently,
it facilitates prototyping various resource management policies,
such as:710

• Service Placement: Defining the placement of applica-
tion services in the infrastructure represents a vital deci-
sion to ensure the efficient use of resources. By support-
ing the definition of custom user access patterns, EdgeS-
imPy enables the modeling of online and offline place-715

ment strategies [46, 47]. In offline placement scenarios,
the allocation policy has a priori knowledge about all the
applications it needs to provision. In online placement
scenarios, application provisioning requests occur at run-
time, and provisioning policies must allocate application720

services on demand.

• Service Migration: Given the strict latency requirements
of applications running on the edge infrastructure, user
mobility may require relocation of services at runtime.
To support this functionality, EdgeSimPy supports the725

modeling of allocation policies with fine-grained control
over the migration process. In this way, migration poli-
cies can define which edge servers should host the ser-
vices, from which container registries the layers should
be pulled, and which network paths should be used in730

this process.

• Maintenance: Updates for applications and physical de-
vices are often released to add new features, fix bugs, or
mitigate security vulnerabilities. As components of the
Physical and Logical layers have versioning attributes,735

EdgeSimPy supports the modeling of maintenance sce-
narios, incorporating decisions such as the order in which
components are updated.

• Network Flow Scheduling: In large-scale edge scenar-
ios, events such as user mobility may trigger the provi-740

sioning of multiple applications simultaneously. How-
ever, the lack of network management can allow large
flows to indiscriminately saturate the network, causing
the starvation of smaller flows and reduction of the over-
all network performance [48] [49]. Accordingly, EdgeS-745

imPy allows the definition of scheduling strategies for
network flows that can control the priority of each flow
based on objectives modeled through built-in or custom
attributes.

The entities comprising EdgeSimPy’s architecture shape a750

robust platform for modeling various Edge Computing scenar-
ios, where different resource allocation policies can be proto-
typed and validated without burden. In addition, each compo-
nent is designed to work independently, which facilitates the
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sion of new attributes and entities to the simulator, extend-
he breadth of potential EdgeSimPy use cases. The next
on describes the verification process used to demonstrate
orrectness of EdgeSimPy implementation.

dgeSimPy Verification

ne of the main advantages of simulation is that it allows
rchers to understand and explain real-world phenomena
lower complexity and cost than empirical experimenta-

[50]. As modeling all the details and behaviors of a real-
d system might be infeasible given the high complexity in-
ed, simulators usually make assumptions and abstractions
t the real world. While these can reduce the simulation
lexity, they inherently add inaccuracies to the model [51].
ne of the most critical tasks in simulation studies is check-

f a simulator delivers acceptable accuracy levels given the
ptions and abstractions it implements. This task gener-

involves two processes: validation and verification [52].
e validation determines whether the conceptual model ac-
ely represents the real world, verification checks whether
onceptual model’s implementation is correct.
he conceptual model adopted in EdgeSimPy is based on
known abstractions representing user mobility, network

duling, and application provisioning, which have already
formalized and discussed in past research [42] [53] [54].
dgeSimPy adopts such abstractions without further modi-
on, model validation is out of the scope of this work.
he remaining of this section presents a verification that
nstrates the correctness of the implementation of EdgeS-
’s conceptual model. The verification process is conducted
two well-known techniques, Animation and Tracing [50],

h display the simulated entities’ behavior over time, allow-
s to check the simulator’s logic correctness.

Scenario Description
igure 8 depicts the edge infrastructure used in EdgeSimPy’s
cation. We consider three NVIDIA Jetson TX2 boards
senting the edge servers. Each edge server has 4 CPU
, 8 GB of RAM, and 64 GB of storage (CPU and mem-
alues are obtained from Süzen et al. [55]). Edge servers
ownload at most three container layers at once, following
er’s default configuration to avoid network congestion6.

edge network comprises nine links with heterogeneous ca-
ies (for simplicity’s sake, L1–L4 have a bandwidth capac-
f 9 Mbps while L5–L9 have 2.5 Mbps).
n this scenario, two users move according to the Pathway
el [42], each accessing one of the two existing applications.
etailed in Figure 9, Application 1 has a stateless service
while Application 2 comprises a stateless service (S2) and

teful service (S3). Services S1 and S2 use the same base
e with a single layer (L1), while S2 has a base image with
layers (L1–L4). All services are initially on edge server
which also hosts a container registry demanding 1 CPU
1 GB of memory, and 10 MB of disk.

ttps://docs.docker.com/engine/reference/commandline/pull/
urrent-downloads

User 1
S1

Workflow 1

User 2
S2 S3

Workflow 2

User 1

User 2

S3
S2S1

L9

L8

L7L6

L5

L4

L3L2

L1 ES1

ES2

ES3

Figure 8: Overview of the infrastructure considered in EdgeSimPy’s verifica-
tion. Symbols “L”, “ES”, and “S” denote the infrastructure’s network links,
edge servers, and services.

Service 3 (S3)

State: 9 MB

CPU Demand: 1 core

Memory Demand: 1 GB

Image 1
Layer 1(L1) - 12 MB

Service 2 (S2)

Image 2

State: 0 MB

CPU Demand: 1 core

Memory Demand: 1 GB

Layer 1(L1) - 12 MB
Layer 2(L2) - 6 MB
Layer 3(L3) - 9 MB
Layer 4(L4) - 9 MB

Application 2

Service 1 (S1)

State: 0 MB

CPU Demand: 1 core

Memory Demand: 1 GB

Image 1
Layer 1(L1) - 12 MB

Application 1

Figure 9: Application specifications used in EdgeSimPy’s verification.

In the first time step, all services start to be moved out of
edge server ES1. This behavior is defined through a simple re-
source allocation strategy to demonstrate different events within
the service provisioning process. Specifically, S1 is moved to810

edge server ES3 through links L3 and L6, while S2 and S3 are
moved to edge server ES2 through link L4. The reallocation
of the three services takes six time steps. For simplicity, each
time step corresponds to 1 second, and the Max-Min Fairness
algorithm [53] is used as the network flow scheduling policy.815

The remainder of this section presents a discussion aiming
to track down events demonstrating EdgeSimPy reproduces the
expected behavior. For such, we draw a parallel between the
result of the EdgeSimPy simulation, presented in Figures 10-11
and Table 3, and the conceptual model adopted within the sim-820

ulator (i.e., provisioning services according to the lifecycle of
containers and sharing bandwidth based on the Max-Min Fair-
ness algorithm [53]).

5.2. Verification Discussion

Figure 10 shows the progress of network flows spawned by825

service migrations. Service S1 is migrated across links L3 and
L6, which have different bandwidths (9 Mbps and 2.5 Mbps, re-
spectively). In such a scenario, EdgeSimPy equalizes the band-
width available for service provisioning to the bandwidth of the

10
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with the lowest capacity. Accordingly, layer L1, which cor-
nds to the base image of service S1, is transferred at 2.5

s during time steps 1–5.

T1 T2 T3 T4 T5

e 3 State

e 2

Layer 1

Layer 2

Layer 3

Layer 4

e 1 Layer 1 BW:2.5. Left:9.5 BW:2.5. Left:7 BW:2.5. Left:4.5 BW:2.5. Left:2

BW:3. Left:9 BW:3. Left:6

BW:3. Left:3 BW:3. Left:0

BW:3. Left:3 BW:3. Left:0

BW:3. Left:6 BW:3. Left:3

BW:3. Left:6 BW:6. Left:0

BW:9. Left:0

BW:3. Left:0

BW:2. Left:0

10: Network flows used to transfer container layers and service states
g servers. For conciseness, “BW” denotes the bandwidth available for the
rk flows, and “Left” denotes the remaining data that will be transferred in
quent time steps.

ervices S2 and S3 are moved from edge server ES1 to edge
r ES2 through the same path, sharing the bandwidth of
L4. As the base images of S2 and S3 are built on top of
L1, ES2 does not pull L1 twice. Despite the layer-sharing
ization, edge server ES2 can only pull three layers at once,

h forces layer L4 to wait during time steps T1 and T2 until
umber of active downloads of ES2 decreases as the transfer
yer L2 ends.
t time step T4, the Max-Min Fairness algorithm distributes
ps and 6 Mbps to the active flows of layers L1 and L4, re-

tively, instead of giving them an equal bandwidth share.
happens because Max-Min Fairness divides the available
width proportionally to the size of the network flows. As
L1’s flow only needs 3 Mbps to finish, the 1.5 Mbps left-

is offered to L4’s flow, which can be transferred at 6 Mbps.
he differences between stateless and stateful service pro-
ning are noticeable in time step T5. Once all layers of S3’s
image are present in edge server ES2, S3 is stopped on its
e host ES1, and its state is transferred to ES3. EdgeSimPy

s S3 unavailable during time step T5 while its state is trans-
d, as depicted in Figure 11. Further information about ser-
provisioning is presented in Table 3, which details resource
nd and provisioned layers on the edge servers throughout

imulation.

dgeSimPy Case Studies

his section presents two case studies from research papers
mployed EdgeSimPy as a validation platform for resource
gement in edge infrastructures. An in-depth discussion of
case study can be found in the original publications [5]
) and [6] (§6.2). Accordingly, this section focuses on de-
ing the motivation, scenarios, and adjustments made to Ed-
mPy for the simulations rather than discussing the results.
e case studies illustrate how EdgeSimPy can be easily ex-
d to comprehend various resource management scenarios.

Case Study 1: Application Migration
s Edge Computing research matures, large-scale infras-

ure providers are starting to move toward a new service

model called Edge-as-a-Service (EaaS), which harnesses the870

physical proximity of the edge in an infrastructure capable of
delivering the speed necessary to meet the demand of latency-
sensitive applications [56] [57]. Just as cloud services have led
a technological shift over the past decade, EaaS offerings dis-
play great potential to become the “next big thing” in the IT875

industry.
This case study explored the possibility of federated edges,

in which coalitions of EaaS providers are created to enhance
profit and meet ever-increasing application performance expec-
tations [58]. In such a scenario, microservice-based applica-880

tions must be migrated according to user mobility while re-
specting privacy requirements of specific microservices.

Whereas infrastructure providers are willing to share re-
sources to reduce application latency bottlenecks, users exhibit
distinct levels of trust with different providers, which restricts885

allocation options for services with special privacy requirements
The performance evaluation compared a novel algorithm against
three migration strategies from the literature regarding the num-
ber of migrations and SLA violations, which consider prede-
fined latency thresholds of applications and the privacy require-890

ments of microservices.
EdgeSimPy’s base architecture does not include a functional

abstraction for infrastructure providers. Therefore, to support
this case study, a “provider” attribute is added to edge servers to
identify their infrastructure providers, and a “trusted providers”895

attribute is added to users with the providers they trust. Dur-
ing simulation, both parameters are checked to arrange edge
servers based on the level of trust between users and infrastruc-
ture providers. In addition, a “privacy requirement” attribute
is added to services to specify their privacy requirement level.900

The simulated scenario comprised an infrastructure with 60
edge servers managed by two infrastructure providers and 240
services with heterogeneous capacity, privacy, and latency re-
quirements. The obtained results demonstrated that certain mi-
gration decisions, i.e., prioritizing services with special privacy905

requirements from applications with tight latency demands, can
reduce privacy leaks by up to 7.95% at federated edges without
sacrificing application latency [5].

6.2. Case Study 2: Edge Server Maintenance

Edge infrastructures typically comprise computing resources910

deployed near end users, as it helps deliver low latency to ap-
plications [2]. At the same time, proximity also forces infras-
tructure dispersion, as deploying large-scale data centers close
to urban centers may not be feasible [1]. While the distribution
of computing resources allows them to be close to end users, it915

also introduces technical challenges related to IT operations.
In case edge resources cannot be deployed on a large scale

within centralized facilities, communication between nodes typ-
ically relies on public networks, which increases the chance of
instability caused by outages and lower bandwidth [59]. In ad-920

dition, outdoor-deployed edge devices are more prone to phys-
ical issues and security threats. In such a scenario, infrastruc-
ture operators must invest in maintenance strategies to mitigate
eventual security threats and infrastructure failures.

11
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11: Dynamics of each time step of EdgeSimPy’s verification. Dashed arrows represent the network paths used for communication between users and services.

Table 3: Edge servers state throughout EdgeSimPy’s verification simulation.

Time Step Instance Demand Services Waiting Queue Download Queue LayersCPU RAM Disk

T1

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
2 2 2048 36 L4 L1, L2, L3
3 1 1024 12 L1

T2

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
2 2 2048 36 L4 L1, L3 L2
3 1 1024 12 L1

T3

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
2 2 2048 36 L1, L4 L2, L3
3 1 1024 12 L1

T4

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
2 2 2048 36 L2, L3, L1, L4
3 1 1024 12 L1

T5

1 2 2048 46 Service 1, Service 3 Registry, L1, L2, L3, L4
2 2 2048 36 Service 2 L2, L3, L1, L4
3 1 1024 12 L1

T6

1 1 1024 46 Registry, L1, L2, L3, L4
2 2 2048 36 Service 2, Service 3 L2, L3, L1, L4
3 1 1024 12 Service 1 L1

his case study focused on an edge server maintenance sce-
. This case assumed that patches require edge servers to be

oted for the changes to take effect. Consequently, before an
server can be updated, the applications it hosts must be re-
ed to another server to avoid downtime (such a process is
d server draining). As such, maintenance strategies need
hedule the server update order and define new hosts for the
cations hosted by the servers that will be updated.
his case study imposed two main objectives to mainte-

nance strategies: reduce maintenance time and application la-
tency bottlenecks. From a security perspective, maintenance935

needs to be completed as soon as possible, as patches can corre-
spond to critical security updates, so the infrastructure remains
vulnerable until all edge servers are updated. At the same time,
applications hosted on the infrastructure are latency sensitive,
so migration decisions performed to drain servers must keep940

applications close enough to their users to ensure that latency
remains low.
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he default implementation of edge servers in EdgeSimPy
rises no attribute related to maintenance. Therefore, to

ort this case study, an “updated” attribute is added to edge
rs to denote their updated status (this attribute is False by
lt). A “Patch” entity is also created with the time required
mplete the update. Edge servers and patches are bounded
gh a relationship attribute. Finally, an “update()” method
plemented inside the edge server entity, representing the
ing process. Once an edge server starts to be updated, it

gged as unavailable for its patch duration, and when the
te period ends, the edge server’s update status is changed
rdingly. In this case study, the simulation continues until
ge servers are updated.
his case study evaluation compared two novel algorithms
st two strategies from the literature regarding maintenance

, the number of migrations, latency requirement violations,
ulnerability surface (which quantifies how long edge servers
in outdated during maintenance). The simulated scenario
rises an infrastructure with 40 edge servers hosting 90
cations with heterogeneous capacity and latency require-
s. The results showed that user-location-aware migration
ions can reduce latency requirement violations by 30.67%
erage without extending maintenance time [6].

Discussion

his section motivates the adoption of EdgeSimPy to ad-
the needs of the described case studies, highlighting how
it is more practical than other existing simulators.

he first case study focused on migrating composite appli-
ns within an edge environment composed of multiple in-
ructure providers. While many of the existing edge simu-
s offer support for application composition (e.g., IoTSim-
, YAFS, and iFogSim2), they lack functional abstractions
nfrastructure providers. In addition, they do not provide
res for managing the lifecycle of containers, which is the
rred virtualization technology for composite applications.
he second case study focused on edge server maintenance.

ke EdgeSimPy, existing edge simulators do not provide the
res for modeling maintenance operations, which involves
porating version attributes to differentiate updated from

ated devices and functions to represent the update process.
lthough EdgeSimPy’s built-in entity attributes had to be
ded for conducting the simulations, EdgeSimPy allowed
changes to be included out of the box without requiring

ifications to its base features. This was possible as EdgeS-
automatically identifies custom entity attributes, provided

put format is followed. This feature mitigates the risk of
an-induced errors arising from changes to the simulator’s
features.
he ease with which EdgeSimPy allows the incorporation
stom attributes and entities is an advantage over exist-

imulators, which generally require creation or extension of
es to represent such attributes and entities. For example,
NeT++ and FogNetSim++ are built on top of OMNeT++,
crete-event simulator written in C++. In OMNeT++, cus-
entities can be modeled using C++ classes called modules.

Despite the flexibility of creating classes for new entities to
suit specific needs, entity instances are bound by the attributes
previously defined in their class definitions, meaning they can-1000

not incorporate unique attributes not initially present in their
class constructors. This constraint is also observed in Edge-
CloudSim [22], MobFogSim [24], IoTSim-Edge [27], IoTSim-
Osmosis [28], and iFogSim2 [29], which extend the function-
ality of CloudSim [20] and require extension of built-in classes1005

or creation of new ones to represent the necessary features.
YAFS [26] displays the closest resemblance to EdgeSimPy

regarding extensibility, as it is also written in Python, which
is highly flexible regarding extending classes. Nevertheless, as
YAFS lacks a well-defined format for importing and export-1010

ing entities, custom components must be built manually rather
than imported automatically through dataset files, as compati-
ble serialization formats (e.g., JSON and XML) cannot recog-
nize advanced data structures used, for example, to define re-
lationships between objects. Additionally, manual instructions1015

must be passed to the simulator regarding how entities are up-
dated over the simulation time and how entity metrics should
be gathered. Once importing custom entities becomes a manual
process, YAFS suffers from the same issue as other simulators
based on Java and C++. Whereas this behavior may not be an1020

issue for small tests, it hinders the efficient execution of large-
scale batch executions.

7. Lessons Learned

Several reflections have emerged during EdgeSimPy’s de-
velopment, providing valuable insights for researchers and prac-1025

titioners interested in developing simulation tools.
Selecting Python as the base language for EdgeSimPy has

enabled users to benefit from a broad ecosystem of libraries, es-
pecially those related to emerging fields such as Artificial Intel-
ligence. One key takeaway from our experience developing Ed-1030

geSimPy that could benefit future simulator developers involves
carefully considering the base programming language, espe-
cially regarding the popularity of the language within the com-
munity and the number of available libraries that users could
leverage when using the developed simulator. This approach1035

aims to broaden the utility of the simulator, enabling users to
harness community-supported algorithms and thus potentially
reducing the need for manual implementation.

Throughout our internal testing, we also found that EdgeS-
imPy’s native support for Jupyter Notebooks7 considerably ease1040

code sharing, as online platforms like Google Colaboratory8

and MyBinder9 facilitate real-time collaboration among EdgeS-
imPy users, eliminating the necessity for local installation of
assets. With this in mind, we would advise researchers inter-
ested in simulator development to select a base programming1045

language and design the simulator with user interactivity as a
primary requirement. Leveraging interactive computing plat-
forms can enhance the user experience through an environment

7https://jupyter.org/
8https://colab.research.google.com/
9https://mybinder.org/
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supports real-time collaboration and learning, where users
un experiments with different configurations, observe the
ts in real-time, and adjust their approaches accordingly.
nother lesson we can share with researchers interested in

lator development is the importance of designing a frame-
with a decoupled architecture. In EdgeSimPy, we have

rved that its strength primarily comes from this highly de-
led structure, which includes class-based modularization
tandardized input format, which facilitate the implementa-

of new entities and attributes, thereby supporting users with
ific simulation requirements. This degree of decoupling
er translates into a high level of configurability, where users
djust simulation parameters out-of-the-box, including the
lation tick rate and system models (e.g., user mobility, power
umption of compute and networking devices, network band-
h sharing control, etc.).
inally, it is worth noting that appropriate calibration of the
lator parameters is critical to obtaining an accurate repre-
tion of real-world experimental setups. The calibratable
eters include the simulation tick rate and the configura-

of the system model to match the scenario being modeled.
nstance, this may involve defining a geographically accu-
map, setting up a realistic power consumption model, or
icking actual user mobility patterns. Additionally, the se-
n of metrics to be collected during the simulation is an-
crucial factor that must be carefully calibrated.

onclusion and Future Work

dge Computing is attracting attention as a paradigm that
ers low latency for applications by pulling processing from
tional cloud data centers to the network’s edge [2] [60].
he expectations on the potential benefits of Edge Com-
g grow, ensuring that Edge Computing transitions from
ise to reality require developing efficient resource man-
ent techniques.
side from the development challenges, experimental re-
h at the edge can be expensive and time-consuming as
olves building and instrumenting an infrastructure with
interconnected devices. Furthermore, the distributed na-

of the edge makes room for several external factors (e.g.,
ork instability) to affect the reproducibility and reliability
sults, undermining the extraction of insights needed to ma-
prototypes. Consequently, simulation has been considered
rimary approach to accelerate the validation of early-stage
types at a reduced cost [61].
xisting Edge Computing simulators incorporate various
res for modeling user mobility, application composition,
energy consumption of the edge infrastructure. However,
fail to deliver fine-grained control over container provi-
ng, which has been acknowledged as the primary choice
eploying applications at the edge.
o fill this gap, we presented EdgeSimPy, a novel simulator
models the lifecycle of containerized applications through
al functional abstractions that replicate the behavior of con-
r runtimes like Docker. In addition, EdgeSimPy features

a flexible input format that allows users to define custom pa-
rameters for simulated entities out-of-the-box, extending the
simulator’s built-in capabilities without modifying its core fea-1105

tures. EdgeSimPy’s source code can be accessed via GitHub10.
Furthermore, a tutorial library11 with several practical exam-
ples has been developed to assist researchers and practitioners
in effectively integrating EdgeSimPy into their work. In fu-
ture work, we intend to extend EdgeSimPy networking capabil-1110

ities to support the simulation of advanced routing policies that
leverage the programmability of network switches at the edge.
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Highlights
● A high-level interface for developing management policies and simulator extensions.
● A novel conceptual model that represents the application lifecycle based on Docker.
● System models for simulating several features of Edge Computing environments.
● An in-depth verification that checks the correctness of EdgeSimPy's implementation.
● Case studies based on peer-reviewed papers that have employed EdgeSimPy.
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