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Chapter 1

Introduction

1.1 Bitcoin Script

Bitcoin[?] was the first protocol that used a blockchain to build a distributed ledger that allows anyone to
transact a cryptographic currency with minimal risk of their transaction being reversed or undone, and
without relying on a trusted third party or central authority. Typically access to funds are controlled by a
cryptographic private key. References to one or more of these funds, which may or may not have the same
private keys, are assembled into a data structure, called a transaction, along with a set of one or more outputs
which specify which cryptographic public keys that will control each output. This transaction data is signed
with each private key for each input and added to the transaction as witness data.

More precisely, the outputs are not necessarily controlled by a simple single cryptographic key, rather
each output is controlled by a small program written in a language called Bitcoin Script[?, 7]. Bitcoin
Script is a stack-based language with conditionals operations for control flow and no loops. Bitcoin has
stack manipulation operations, Boolean logic operations, and very simple arithmetic operations (without
even multiplication). It also has some cryptographic operations that include cryptographic hash functions,
and digital signature verification operations. The CHECKSIG operation does an ECDSA digital signature
verification of transaction data.

A basic example of a Bitcoin Script program pushes an ECDSA public key onto the stack, followed by a
CHECKSIG operation. This Script is part of the output data within a transaction. In order to spend the funds
held by such an output, one builds a transaction with an input referencing this output and adds a ECDSA
signature to the transaction’s witness data for the input (called a ScriptSig). The witness data describes
which part of the transaction data is being signed (typically everything other than the witness data itself)
and has the signature.

To validate an input, the witness data is pushed onto the stack, and the the program in the referenced
output is executed. In our example above, the program pushes a specific ECDSA public key onto the stack
and then executes CHECKSIG. The CHECKSIG operation pops the public key and the signature data off the
stack. Then it cryptographically hashes the transaction data as specified by the signature data, including
which input is being signed, and verifies that the digital signature for that public key is valid for that hashed
data. Only if successful is the value 1 pushed back onto the stack. In order for a transaction to be valid, all
inputs are checked in this fashion, by pushing its associated witness data onto the stack and then executing
the program found in the referenced output and requiring a non-zero value be left on the stack.

From this example, we see that there are three parts that go into checking if a transaction’s input is
authorized to be spent:

e A Bitcoin Script, which is contained in a transaction output.
e Witness data, for each transactions input.
e The rest of the transaction data, which includes things like output amounts, version numbers, etc.

All the data needed to validate a transaction is part of (or cryptographically committed within) the trans-
action data. This means the inputs can be validated independently of the state of the rest of the blockchain,
as far as Bitcoin Script is concerned.

15
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In the above example, the Bitcoin Script is included into a transaction’s output, at what I call commitment
time. The signature and transaction data is specified later at what I call redemption time. That said, the
Bitcoin Script does not have to be entirely presented at commitment time; it is acceptable to just commit
to the Bitcoin Script’s cryptographic hash. Then, at redemption time, the script is revealed together with
the witness data and the rest of the transaction. In this case the program’s hash is verified to be equal to
the hash committed in the output, and then the witness data, and revealed Bitcoin Script are validated as
before. Bitcoin’s pay to script hash (a.k.a. P2SH) follows this modified procedure which makes it easy for
users to specify complex Bitcoin Scripts with to control funds while only needing to provide a single hash
value to their counterparty when they are first receiving their funds.

More complex scripts can be devised to do multi-signature, escrow, hashed-timelock contracts, etc. How-
ever, because of the the limited expressiveness of Bitcoin Script (e.g. no multiplication operation), only so
much can be programmed. Therefore, we want to design an alternative to Bitcoin Script that will be more
expressive, without sacrificing the good properties of Bitcoin Script. We call this new language Simplicity.

1.2 Simplicity’s Design Goals

Our goals for Simplicity include the following:
e Create an expressive language that lets users build novel programs and smart contracts.
e Enable useful static analysis to bound computational resource usage of programs.

e Minimize bandwidth and storage requirements by allowing sharing of expressions and pruning of
unused expressions.

e Capture the computational environment entirely within a unit of transaction.

e Provide formal semantics for reasoning with off-the-shelf proof-assistant software.

1.2.1 Static Analysis

In Bitcoin Script, static analysis lets us count how many operations there are and, in particular, bound the
maximum number of expensive operations, such as signature validation, that could be performed. We can
do this because Bitcoin Script has no looping operations. In a transaction, if Bitcoin Script is deemed to be
potentially too expensive from this analysis, the program is rejected at redemption time.

We want to support this same sort of static analysis in Simplicity. It lets users determine, at commitment
time, the worst case cost for redeeming the program, for any possible witness inputs. At redemption time it
allows, as part of the consensus rules, to bound the cost of running programs prior to execution. This serves
as one method of avoiding denial of service attacks in a blockchain protocol like Bitcoin.

1.2.2 Pruning and Sharing

As we saw before at commitment time we only need to specify a cryptographic commitment to the program,
and the program can be revealed at redemption time. For more complex programs with multiple alternative
branches, only those branches that are actually going to be executed need to be revealed, and the remainder
of the program that is not executed for this particular transaction can be excluded.

Using a technique called Merkelized Abstract Syntax Trees a.k.a. MAST, we can commit to a Merkle
root of a program’s abstract syntax tree. At redemption time, we can prune unused sub-expressions. Instead
only the Merkle root of the pruned branches need to be revealed in order to verify that the program’s Merkle
root matches the root specified at commitment time.

Because two identical subexpressions necessarily have the same Merkle root, this procedure also lets us
reduce program size by sharing these identical subexpressions. In principle, this sharing could extend as wide
as between different program in different transactions.
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1.2.3 Formal Semantics

Once a program has been committed to, it cannot be changed or updated later. If a program has errors
or security vulnerabilities, it can no longer be fixed. Therefore, it is essential to get these program correct.
Fortunately these programs tend to be relatively small, and hence amenable to formal analysis. We use
the Coq proof assistant [7] to specify formal semantics of Simplicity. This allows us to both reason about
programs written in Simplicity, and also lets us reason about our static analysis and Simplicity interpreters
and prove that they are correct.

While we specifically use the Coq proof assistant, the formal semantics of Simplicity is designed to be
easy enough to define in any proof assistant, especially others based on dependent type theory.






Chapter 2
Type Theory Preliminaries

In this document we endeavour to be precise about the semantics surrounding the definition of the Simplicity
language. To this end we use formal language composed from a mix of mathematics, category theory, simple
type theory, and functional programming. While most all our notation is standard in some community,
readers may not be familiar with all of it. To that end, and to ensure completeness of our semantics, we give
detailed definitions below of the common notation used throughout this document.

Our formal language is phrased in terms of simple type theory and readers familiar with mathematics
should not have too much trouble following it since mathematics notation already borrows heavily from
simple type theory.

To begin with we will assume that we have a notation of a type of natural numbers, N, with 0:IN, 1: N,
and so forth for all other numbers. Given natural numbers n:IN and m: N, we take it for granted that we have

e notions of arithmetic including n+m, nm, and n";
e comparison operations including n <m, n <m, n >m, and n >m;
e when n >m then the difference n —m is a natural number.

We will partake in several notational conveniences. We will generally elide parentheses when the value they
surround already has has its own brackets. For example,

o we will write f(z,y) instead of f({z,y));
o we will write f[cafe] instead of f([cafel);
o we will write [[n] instead of [[[n]].

As you will see, we have a lot of notation with type annotations that are used to fully disambiguate them.
Often these type annotations can be completely inferred from the surrounding context and accordingly we
will usually omit these annotations to reduce notational clutter and reserve the annotated versions for cases
where the annotations are ambiguous or where we want to draw specific attention to them.

2.1 Algebraic Types

We write the primitive unit type as 1. The unique value of the unit type is () : 1.

Given types A and B, then A+ B, A x B, and A — B are the sum type (also known as disjoint union
type), the (Cartesian) product type, and the function type respectively. Given a: A and b: B we denote
values of the sum and product types as

o¥ pla) : A+B
oRpd) : A+B
<a,b>A)B : Ax B

We will usually omit the annotations, writing o%(a), o®(b), and (a,b).
We write an expression of type A — B using lambda notation:

Ar:A.e:A— B

19
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where e is an expression with z: A as a bound variable (that may occur or zero or more times in e). Given
f:A— B and a: A, then ordinary function application retrieves a value of type B:

f(a): B
The type operator — is right associative:
A—-B—-C=A—(B—-()

We define the identity function idg: A— A as
ida:=MXa:A.a
and given f:A— B and g: B— C we define their composition go f: A— C as

go f:=Xa: A. g(f(a)).

We may also write function definitions in “application” style where we implicitly define a function in
terms of function application. In this style we would write the above definitions of the identity function and
function composition as

ida(a) == a
(go f)la) = g(f(a)).

To access components of sum and product types we define functions using pattern matching in application
style. For example given a: A and b: B, we define the first and second projection functions as

Ba,b) = a
3P (a,b) = b
and given f: A— C and g: B— C, we define their copair [f, g]: A4+ B — C by the pair of equations

[f,gl(e™(a)) = f(a)
[, gl(a™(b)) = g(b).

When we take a product type with itself, we form a square and denote it by exponential notation
accordingly:

A2 = AxA

When we take repeated squares, we denote this by exponential notation with successively larger powers of
two:

Al = A
A% = Alx Al
At = A% x A2

14n n n
A? = A% x A2

We define the diagonal function returning a square type, Ag: A— A%
Ax(a):=(a,a)
We define 2 as the Boolean type (or Bit type):
2:=1+1
We name the two values of this type, 02:2 and 1,:2.

0y = 0]{‘)10
12 = O']lﬁ']l<>
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2.1.1 Records

Record types are essentially the same as product types, but with fancy syntax. We write a record type
enclosed by curly braces.

ﬁeld1 : Al

ﬁeldg : AQ

field, : A,

If R is the above record type and r: R, then we denote access the component of the record as follows.

r[ﬁeldl] : Al
T[ﬁeldg] : A2
r(field,): A,

To construct a record value given values aj : Ay, ..., an : An, we again use a curly brace notation.

ﬁeld1 =ai ﬁeldl : Al
ﬁeld2 =as . ﬁeldg : A2

field, :=a, field, : A,

2.2 Functors

A functor F is a type parameterized by a free type variable, such that whenever A is a type then F(A) is a
type. Given a function f:A— B, is it often possible to define a new function Ff : FA — FB such that for
all f:A— B and g: B— C we have
Fida = idgra
F(fog) = FfoFy

When this happens we call such a functor a covariant functor. In this document all our functors will be
covariant functors, and we will simply call them functors.

2.2.1 Option Functor
By way of a useful example, we define S to be the option functor, also known as the maybe functor,
SA = 1+ A

Sf(ota()) = ol ()
Sf(otfta(a)) = ors(f(a))

where f: A— B.
We define special notation for values of “optional” types SA,
03 = U]]_{')AOZSA
S _ _R .
ni(a) := oy a(a):SA
where a: A.

This notation is designed to coincide with the monadic notation that we will define in Section 2.3.4.

2.2.2 List Functors

Given a type A, we recursively define the list functor A* and the non-empty list functor A™,
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A* = SAt
AT = Ax A
(@§+ = 05+

) e
) = i (fH(1)
) = (fla), f+(1)

where f:A— B.
We leave implicit the fact that these are inductive types and recursive definitions over them need to be
checked that they are well-founded. Suffice to say that the definitions in this section are all well-defined.
Given a list [: A* or a non-empty list [: A", we define |I|: N to be its length.

054 = 0
@] = 1]
(a,0)] = 1+11]

To retrieve an element we define lookup functions for lists and non-empty lists. Given a natural number
n:IN and either list /: A* or a non-empty list /: AT, in both cases we define {[n]:SA to lookup the nth value in /.

(03)[n] = 03
(ni+()n] == I[n]

(a,0)[0] := ni(a)
(o, )[1+n] = I[n]

Naturally, the lookup returns () when the index goes beyond the end of the list.
Lemma 2.1. For alln:N and [: A* or1: AT, l[n] =0 if and only if |l|<n.
Given a list [: A* (or a non-empty list I: AT), we define indexed(l): (N x A)* (and indexed(l): (N x A)™
respectively) as a list of elements paired with its index,
indexed(!) :=indexedRec(0, )
where
indexedRec(i, #3+) := (Z)(NXA

indexedRec(i, n3+(1)) := n(NXA) +(indexedRec(s,1))
indexedRec(i, (a,1)) := ({(i,a),indexedRec(1+1i,1)).

Lemma 2.2. For all i:N and [: A* or [: AT, indexed(l)[i] = S(Aa.(i,a))(I[d]).

The fold operation on a list is a most general way of consuming a list. Given a type A with a monoid
(®, e) over that type, we define f01d<®’e>(l) for both lists [: A* and non-empty lists [: A™.

fold\™ ' (051) = e
fold” ) (nf4(1)) = fold{(1)
fold{®N(a,1) = a®fold\®*(l)
Often we will write f01d1<4®’8>(l) as simply fold®(l) since usually both the type and the unit for a monoid is
can be inferred from just its binary operation.
For lists, we provide special notations for its two effective constructors called nil, e4: A*, and cons, a €1: A*
€ = ®i+
a4l = ni{a,l)



2.3 MoNADs 23

where a: A and [: A*. As a consequence the following equations hold.
fold{ ™ (eq) = e
f01d1<4®’e>(a0 da14...4a,4¢4) = P O...0a,
For example, given two lists I, [y : A*, we define the append operation [1-lo: A* using nil and cons
el =1
(a 4lr)le = a4(lyla)

The append operation together with nil, (-, €), forms a monoid over A*. This allows us to define the
concatenation function p}: A** — A*

1 (1) :=fold (1)
Now it is only natural to define a function that generates a list with one element, nj: A— A*.
ni(a):=a e
We write replication of a list, [: A* as exponentiation:

0 = ¢

o= n
We also define quantifier notation for elements of lists. Given a list [: A*, and a predicate P over A, we define

Vael.P(a) := fold\(P*(1))
Jael.P(a) = fold(P*(1))

and similarly for a non-empty list [: AT:

Va€l.P(a) := fold"(P*(1))
Ja€l. P(a) := foldV(P*(l))

2.2.3 Buffers
A buffer is defined as a bounded list. We recursively define a buffer upto (but excluding) 2" as

A<? .= SA
A<t = S(A?) x A<?

A< = §(A2T) x A<?"

Notice that the type for buffers is isomorphic to a finite geometric series of tuples:

AT <14+ A+ (AxA)+(AxAXA) +...+ (Ax..xA)

—_—————
2™ — 1 times

2.3 Monads

A monad, M, is a functor that comes with two functions

mt A MA

At MMA—-MA
that are both natural transformations, meaning for all f: A— B,

Mfomtt = nflof
Mfout' = ploMMf
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The 74" and pA* functions are required to satisfy certain coherence laws. These monad laws are best
presented using Kleisli composition.

2.3.1 Kleisli Morphisms

Functions from A to B that produce side-effects can often be represented by Kleisli morphisms, which are
(pure) functions A — M B, where M is a monad that captures the particular side-effects of the function
in the result. A function f: A — M B is called a Kleisli morphism from A to B. For Kleisli morphisms

fiA—=MDB and g: B— M C we define the Kleisli composition of them as g<A—A<f :A— MC where

g f = Mo Mgo f
We will usually omit the annotation.
The monad laws can be presented in terms of Kleisli composition. For all f:A— M B, g: B— M C, and
h:C— M D, we require that Kleisli composition satisfy the laws of composition with 7™ as its identity:

fe=mt = f
gt~ f = f
(he=g)e=f = he=(ge=f)

2.3.2 Cartesian Strength

In addition to Kleisli composition we define a series of helper functions for manipulating products.

BA's: A x M B— M(A x B)
BM{a,by:=M(Az. {a,z))(b)

Bi's: M A x B— M(A x B)
BM{a,b):=M(A\z. (z,b))(a)

oA'p M A X M B— M(Ax B)
PM= M . gM

oA'p M A X M B— M(Ax B)
GM—GM . gM
The operations qS,Qf‘B and QE%B are similar, but differ in the order that effects are applied in. Roughly
speaking, ¢£f‘B applies the effects of the first component first, while ¢£’fB applies the effects of the second
component first. For some monads, the order of the effects is immaterial and qbﬁle = ¢%B. We call such

monads commutative monads.
It is always the case that

a0 Apa= A 0 Apga: M A— M(A?)

holds, even for non-commutative monads. In this case, the effect specified by the input is duplicated. Compare
this with M A : M A— M(A?) where the contents of type A are duplicated, but not the effect itself. When
we have M Ay = (j)ﬁftA o Apa (equiv. M Ay = (M’fA oApa), we say that M is an idempotent monad.?>! For
idempotent monads, the same effect is occurring two or more times in a row is equivalent to it occurring once.

2.3.3 Identity Monad

The most trivial monad is the identity monad, Id, where Id A:=A and Id f:= f. The natural transformations
ni and il are both the identity function. The identity monad captures no side-effects and it is commutative
and idempotent.

2.1. Beware that we are using the definition of idempotent monad from King and Wadler [?], as opposed to the traditional
categorical definition of an idempotent monad.
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2.3.4 Monad Zero
Some monads have a universal zero value
Pt M A
where for all f: A— B,
MO = 05"
This zero value denotes a side-effect that captures the notion of a failed or aborted computation or some
kind of empty result.

The laws for these monads with zero are, again, best expressed using Kleisli morphisms. At the risk of
some notational confusion, we define @ﬁf‘B :A— M B as a zero morphism.

@%B(a) = M

Zero morphisms are required to be an absorbing element for Kleisli composition. For all f: A— M B and
g:B— M C we require that

M M
g—ZA B = Dax,c
M M
PB,c—f = PAc

(Note: In Haskell, the mzero value typically is only required to satisfy the first equation; however, we require
monads with zero to satisfy both laws.)

2.3.4.1 Option Monad

The functor S forms a monad with the following operations:

mi(@) = oR)
i) = o)
P @) =

The option monad is commutative and idempotent. The option monad has a zero:

05 =)
There is a natural transformation from the option monad into any monad with zero, Lé\flA :SA—-MA:
BU(0F) = 03"
&a(ni(a)) = na'(a)

Lemma 2.3. For all f: A— B,

WhoSf=Mfoudly

Also

M S MM M (M M M
157a0 A= A" 018 ama 0S8 A (=" o Mugla 018’5 a)

2.4 Multi-bit Words

By repeatedly taking products of the bit type we can build the types 22" which denote 2™-bit words. We
choose to represent values in big endian format, meaning that given a pair representing the low and high
bits of a value, the most significant bits are stored in the first half. Given a value a:2™, where n is a power
of two, we recursively define [a],: N to be the number that a represents:

[0211 = O
|_12-|1 = 1
[(a,b)]2n = [a]n2"+[b]n
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We also make use of the following variation of this value interpretation function.
[{a,0)ln,m:=Taln2™+ [b]m

These value interpretation functions are all injective (one-to-one) and we can choose a left inverse. Given
m : N, we implicitly define |m], : 2™ such that [|m|,], = m (mod 2™). We have chosen |m |, so that it
represents m modulo 2.

We can equip the type 2™ with addition and multiplication operations, so that |-|,, becomes a semiring
homomorphism. Given a:2" and b:2", we define a|+|,b: 2™ and a | X |,b: 2™ such that

LmafnlHlnlmeln = [mi+mels

Imifn X ]nlmeln = [mima],

We write 054, 154, ..., £24 to denote the 16 values of 24 that represent their respective hexadecimal values.
Similarly, we write 005s, 01s, ..., ff5s to denote the 256 values of 28, and so forth. It is worth observing that
for hexadecimal digits x and y, we have xy,s = (x4, y4).

2.4.1 Byte Strings

The type (28)* is known as byte strings. We will write byte string values as sequences of hexadecimal digits
surrounded by square brackets, e.g. [cafe] s denotes cazs € feps € exs (whereas cafesis denotes (caps, fess)).
For all these values, we may omit the subscript when the interpretation is clear from the context.

Words larger than a byte are commonly encoded as byte strings in either big endian or little endian
order. We define BE,, : 2" — (28)* and LE,,: 2" — (2%)* as big endian and little endian encodings of words
respectively for n > 8.

LEs(a) := n*(a)

LE3,(a1,a2) := LE,(a2)-LE,(a;1) (when 8 <n)
BEg(a) := n*(a)

BEs,{(a1,a2) := BE,(a1)-BE,(a2) (when 8 <n)

2.4.2 Bit Strings

The type 2* is known as bit strings. We will write bit string values as sequences of binary digits surrounded
by square brackets, e.g. [0110], denotes 0, €4 1, €4 1, €40 € ¢z. Again, we may omit the subscript when the
interpretation is clear from context.



Chapter 3
Core Simplicity

Simplicity is a typed functional programming language based on Gentzen’s sequent calculus [7]. The core
language consists of nine combinators for forming expressions. These nine combinators capture the compu-
tational power of Simplicity. In later chapters other combinators will extend this core language and provide
other effects to handle input and access the transaction that provides context for the Simplicity program.

3.1 Types

This section introduces the abstract syntax and semantics types available in Simplicity. Simplicity uses a
particular subset of the simple type theory we developed in Chapter 2.

3.1.1 Abstract Syntax
Simplicity has only three kinds of types:
—  The unit type, 1.
—  The sum of two Simplicity types, A+ B.
— The product of two Simplicity types, A x B.

Simplicity has neither function types nor recursive types. Every type in Simplicity can only contain a
finite number of values. For example, the type 2, which is 1 + 1, has exactly two values, namely O-]]I::ﬂ<> and
of1(). The type (14 1) x (1+1) has exactly four values. As you can see, the number of values that a type
contains can be easily calculated by interpreting the type as an arithmetic expression. Be aware that types
are not arithmetic expressions. For example, the types (1 + 1)+ (1 4+ 1) and (14 1) x (1 + 1) are distinct
and not interchangeable.

3.1.2 Formal Syntax

Formally we define the abstract syntax of types as an inductive type in Coq:

Inductive Ty : Set :=
| Unit : Ty

| Sum : Ty -> Ty -> Ty
| Prod : Ty -> Ty -> Ty.

3.1.3 Formal Semantics

Formally we define the denotational semantics of Simplicity types as a function from syntax to Coq types:

Fixpoint tySem (X : Ty) : Set :=
match X with

| Unit => Datatypes.unit

| Sum A B => tySem A + tySem B

| Prod A B => tySem A * tySem B
end.

27
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3.2 Terms

Simplicity programs are composed of terms that denote functions between types. Every Simplicity term is
associated with an input type and an output type and we write a type annotated term as ¢: A+ B where
t is the term, A is the input type and B is the output type. We write [t] : A— B for the function that the
term ¢ denotes.

Core Simplicity has nine combinators for forming well-typed terms.

3.2.1 Identity
ideng: AF A
[idena] := Aa.a

For every Simplicity type A, we have an identity term that denotes the identity function for that type.
We can also write the semantics in application style as

[idena](a) :=a

which is just a different way of writing the same definition. However, please note that the a argument is an
argument of the function denoted by idens and is not an argument to the Simplicity term itself.

3.2.2 Composition
s:AFB t:BFC

compy g cst:AFC

[compy, g,cst] :=[t] o [s]

The composition combinator functionally composes its two arguments, s and ¢, when the output type of s
matches the input type of t.

3.2.3 Constant Unit
unita: AF1

[unita] := Aa. ()

The unit term denotes the constant function that always returns (), the unique value of the unit type. The
function’s argument is ignored and we have a constant unit term for every type of input.
We can also write semantics in application style as

[unita](a) := ().

We will use application style when writing the definition of the remaining combinators, trusting that the
reader will be mindful of the distinction between arguments of the combinators versus the argument of the
function that the Simplicity term denotes.

3.2.4 Left Injection
t:AFB

inj'A)B_rctiAFB—FC

[injla,5,ctl(a) == o™([t](a))

The left injection combinator composes a left-tag with its argument ¢.

3.2.5 Right Injection
t:A-C
injra pct:AFB+C

linira, 5.c tl(a) :=o®([t](a))
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The right injection combinator composes a right-tag with its argument t.

3.2.6 Case
s:AxCkFD t:BxCkHD
casea g,c,pst: (A+B)x CkFD

[casea.5.c. pst]{ocl(a),c) = [s]{a,c)
[casea 5. c.pst]{c®(b),c) = [t](b,c)

The case combinator is Simplicity’s only branching operation. Given a pair of values with the first component
being a sum type, this combinator evaluates either its s or ¢ argument, depending on which tag the first
component has, on the pair of inputs.

3.2.7 Pair

s:AFB t:A-C
pairy g ost: AFB xC

[paira, 5, st](a) := ([s](a), [t](a))

The pair combinator evaluates both its arguments, s and ¢, on the same input and returns the pair of the
two results.

3.2.8 Take
t:ARC
takeq p.ct: Ax BEC

[takea, B ct]{a,b) :=[t](a)

The take combinator denotes a function on pairs that passes its first component to ¢ and ignores its second
component.

3.2.9 Drop
t:B-C
dropy g.ct:AxBEC

[dropa,5,ct]{a; b) :=[t](b)

The drop combinator denotes a function on pairs that passes its second component to ¢ and ignores its first
component.

3.2.10 Formal Syntax

We define the formal syntax of well-typed core Simplicity terms as an inductive family in Coq:

Inductive Term : Ty -> Ty -> Set :=
iden : forall {A}, Term A A
comp : forall {A B C}, Term A B -> Term B C -> Term A C
unit : forall {A}, Term A Unit
injl : forall {A B C}, Term A B -> Term A (Sum B C)
injr : forall {A B C}, Term A C -> Term A (Sum B C)
case : forall {A B C D},
Term (Prod A C) D -> Term (Prod B C) D -> Term (Prod (Sum A B) C) D
| pair : forall {A B C}, Term A B -> Term A C -> Term A (Prod B C)
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| take : forall {A B C}, Term A C -> Term (Prod A B) C
| drop : forall {A B C}, Term B C -> Term (Prod A B) C.

3.2.11 Formal Semantics

The formal semantics for core Simplicity in Coq recursively interprets each term as a function between the
formal semantics of its associated types:

Fixpoint eval {A B} (x : Term A B) : tySem A -> tySem B :=
match x in Term A B return tySem A -> tySem B with
iden => fun a => a
comp s t => fun a => eval t (eval s a)
unit => fun _ => tt
injl t => fun a => inl (eval t a)
injr t => fun a => inr (eval t a)
case s t => fun p => let (ab, c¢) := p in
match ab with
| inl a => eval s (a, c)
| inr b => eval t (b, c)
end
| pair s t => fun a => (eval s a, eval t a)
| take t => fun ab => eval t (fst ab)
| drop t => fun ab => eval t (snd ab)
end.

3.3 Example Simplicity

Simplicity is not meant to be a language to directly write programs in. It is intended to be a backend language
that some other language (or languages) is complied or translated to. However, one can program directly in
Simplicity just as one can write programs directly in an assembly language.

Because the core Simplicity language may seem meager, it is worthwhile to see how one can build up
sophisticated functions in it.

3.3.1 Bit Operations

For the bit type, 2, we can define core Simplicity terms that represent the two constant functions that return
this type:

falseqy := injly g qunit: AF2
truey := injry g qunit: AE2
From these definitions, we can prove that false and true have the following semantics.
[false](a) = 02
[true](a) = 12

Next, we define a condition combinator to branch based on the value of a bit using case and drop. The first
argument is the “then” clause and the second argument is the “else” clause.

s:AFB t:AFB
condy, pst:=casey 1, 4 g (dropt) (drops):2x AFB

We can prove that cond has the following semantics.

[cond st]{1s,a) = [s](a)
[cond st] (02, a) [t](a)
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With these fundamental operations for bits in hand, we can define standard Boolean connectives:
t:AF2
nota t :=compy 21 » (pairtunit) (cond false true) : A2

5:AF2 t:AF2
andg st:=compy 2« 4 2 (pair siden) (cond t false) : A2

5:AF2 t:AF2
org st:=compy »x 4,2 (pair siden) (cond truet) : A2

We use combinators to define and and or in order to give them short-circuit evaluation behaviour. Short-
circuit evaluation useful because if we know the second branch does not need to be evaluated, the source
code for it can be pruned at redemption time (see Section 4.3.2.1). If instead we directly defined the Boolean
functions with types and-func: 2 x 22 and or-func: 2 x 2 2, then the two arguments to and-func and or-func
would both be fully evaluated under strict semantics (see Section 4.1). For the not combinator, this is less
of an issue, but we define it in combinator form to be consistent.

3.3.2 Simplicity Notation

In the previous section, we were relatively detailed with the annotations given to the definitions. Going
forward we will be a bit more lax in the presentation. We will also begin using some notation to abbreviate
terms.

SAt = pairst
s;t := compst
with the A operator having higher precedence than the ; operator.

Composition of sequences of drop and take with iden is a very common way of picking data from a nested
tuple input. To make this more concise we will use the following notation.

H := iden
Os := takes
Is := drops

where s is a string of I’s and O’s that ends with H.

3.3.3 Generic Equality

With our notion of a bit in hand, we can build Simplicity predicates of type A+ 2. For example, for any
Simplicity type A we can build a Simplicity predicate eq: A x AF 2, that decides if two values of the same
type are equal or not.

eqq := true
eqayp := case(IH A OH;caseeqyfalse) (IH A OH; casefalseeqp)
eqaxp = (OOH AIOH;eqy) A (OIH A lIH); cond eqp false

Theorem 3.1. Given any Simplicity type A, for values ap,a1: A,

[eaa]{ao, a1) = 12 if and only if ap= a;.

3.3.4 Arithmetic

Using techniques familiar from digital logic, we can build an adders and full adders from our Boolean
operations defined in Section 3.3.1. We begin with definitions of the single bit full adder.
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full-add; : 2 x (2 x 2) |- 22
full-add; := maj; A xor3;

where

maj;:2x (2x2)F2
maj; := cond (cond trueiden) (cond iden false)

and

xor31:2 X (2x2)F2
xor3; := cond (condiden (notiden)) (cond (notiden) iden)

The full adder meets the following specification.

[[full-addi]{c, (a,b))]2 = [ali+[bl1+[c]

It is easy to exhaustively check the above equations because there are only eight inputs to consider. We will
illustrate this for a single case where a =15, b=0,, and c=15.

([[full-addl]}(lg, <12, 02>>—|2 = H[majl A XOI’31H<12, <127 02>>-|2

= [([maj1](12, (12,02)), [xor31](12, (12,02))) ]2
= [(Jcond (cond trueiden) (cond iden false)] {12, (12, 03)), [xor31] (12, (12, 02)))]2
= [([condtrueiden] {12, 02), [xor31]{1z, (12,02))}]2
= [([true](02), [xor31](12, (12,02)))]2
= [(12, [xor3:](12, (12,02))) ]2
= [(12, [cond (cond iden (notiden)) (cond (notiden) iden)](1z, (12,02)))]2
= [(1z, [condiden (notiden)](1z,02))]2
= [(12, [iden[(02)) ]2
= [(12,02)]2
= [12]1-2"+[02]1
=1-2+0
2
= 140+1

[12]14 [02]1 + [12]1

The calculations for the other cases are similar.
Next, we recursively build full adders for any word size.

full-adda, : 2 x (227 x 227)}|- 2 x 220

full-adds,, := drop (OOH AIOH) A (OHA drop (OIH A 11H) ; full-add,,)
; 1IHA (IOHA OH ; full-add,,)
. 10H A (IIH A OH)

We generalize the specification of the single bit full adder to the multi-bit full adders.
[[full-addn]{c, (@, b)) T1.n = [aln+[b]n+T[cly

Theorem 3.2. For all n which is a power of 2, and for all a:2™, b:2", and c: 2, we have that [[full-add,]{c,
(@,b)l1n=laln+ [b]n+[c]i.

Proof. We prove full-add,, meets its specification by induction on n. As mentioned before, the full-add; case
is easily checked by verifying all eight possible inputs. Next, we prove that full-adds,, meets its specification
under the assumption that full-add,, does. Specifically we need to show that

[[full-adda2n]{c, ((a1, az), (b1, b2))) 11,20 = [{a1, az) |20 + [ (b1, b2) |2n + [ 1 (3.1)
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Let us first consider the right hand side of equation 3.1. By the definition of our value function we have that
[(a1,a2)]2n + [(b1,02)]2n + [c1 = [a1]n-2"+ [az]n+ [b1]n- 2"+ [b2]n + [c]y
= ([ar]ln+[b1]n) - 2" + [az]n+ [b2]n + [c]1
By our inductive hypothesis, we have that

[[full-add,] (¢, (a2, b2))11.n = [a2]n + [b2]n+ [c]1

so we know that
[(a1, a2)|2n + [(b1,02) [2n + [c]1 = ([ar]n + [b1]n) - 2" + [[full-add,[{c, (a2, b2)) 1,n
Let us define ¢ and 7 such that (¢, ro) := [full-add,;](c, (a2, b2)). Thus we have that
[{a1,a2) ]2 + [(b1,02) 2 + [e]1 = ([ar]n+ [b1]n) - 2"+ [{co, T0) [1,n
= (Jar]n+[b1]n) - 2"+ [eol1- 2"+ 1ol
= ([arln+ [b1ln+[col1) - 2"+ [ro]n

Again, by our inductive hypothesis, we have that

[[full-addy[(co, (a1,b1)) 11,n = [@1]n+ [b1]n+ [col1
therefore we have that

[{a1, a2)]2n + [ (b1, b2) 12n + [c]1 = [[full-add, ] (co, (a1, b1)) 11,0 - 2™ + [r2]n
Let us define ¢; and 71 such that (c1,r1) := [full-add,]({a1, b1), co). Thus we have that
[(a1, a2)|2n+ [(b1,02) [2n+ [c]1 = [{c1,m1)]1,n 2"+ [roln
([eali-2"+ [raln) - 2"+ [roln
= I_Cl-| 1 22n + ’—Tl]n 2" + I_T'O-|n (32)

Now let us consider the left hand side of equation 3.1. By the definition and semantics of full-adders,, we
have that

[full-adds,,] {c, {({a1, az), (b1,b2))) = [IOH A (IIH A OH)]

o [IIH & (I0H A OH; full-add,,)]

o [drop (OOH A 10H) A (OH A drop (OIH A IIH); full-add,, )]
<C7 <<a17 a2>7 <b17 b2>>>

= [IOH & (IIH A OH)]

o [IIH & (I0H A OH; full-add,,)]
({a1, by}, [full-add,]{c, (a2, b2)))

— [IOH A (IIH A OH)]

o [IIH & (I0H A OH; full-add,,)]
{(a1,b1), {co, T0))

— [IOH & (IH A OH)[
(ro, [full-adder,,] (co, (a1, b1)))

— [IOH & (IH A OH)[
(ro, {c1,7m1))

= ({e1,(r1,70))

Therefore we have that

[[full-add2, [ (c, ((a1, az), (b1,b2))) 11,20 = [{c1, (T1,70)) 1,20

[{c1
[er]1- 22"+ [(r1,70) |2n
[er]1- 22" + [r1]n- 2"+ [ro]n (3.3)

C1
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Together equations 3.2 and 3.3 show that the right hand side and left hand side of equation 3.1 are equal,
as required. O

Computer verified versions of theses proofs can be found in the Coq library (see Section 8.3.2).
With a full adder we can recursively build full multipliers.

full-multiply; : (2 x 2) x (2 x 2) - 22
full-multiply; := take (condiden false) A IH; full-add;

full-multiplyy,, : (227 x 227) x (227 x 227 |- 24n
= take (OOH A (IOH A OIH))
A ((take (OOH A 1IH) A drop (OOH A IOH); full-multiply,,)
A (take (OIH A 1IH) A drop (OIH A 10H); full-multiply,,))
; take (OH A I0OH)
(drop (OOH A 1IH) A (OIH A drop (OIH A IOH); full-multiply,,))
; (OH A drop (IOH A OOH); full-multiply,,) A drop (IIH A OIH)

full-multiplys,, :

>

We can prove that the full multipliers meet the following specifications.

[[full-multiply, ] ({a, b),{c,d))]2n = [aln-[b]n+[c]ln+[d]n
TODO: Notes on trade-offs between efficiency and simplicity.
3.3.5 Bitwise Operations

3.3.6 SHA-256

The official standard for the SHA-2 family, which includes SHA-256, can be found in the FIPS PUB 180-4:
Secure Hash Standard (SHS) [7]. We define the SHA-256 function, SHA256, : 2* — 2256 as a function from
bit strings to a 256-bit word. Technically, SHA-256 is restricted to inputs [ : 2* where |I| < 264.

The SHA-256 hash function is composed from two components, a padding function SHA256p,q : 2* —
(2512)+ which appends padding and length data to produce a (non-empty) sequence of blocks of 512 bits,
and the Merkle-Damgérd construction SHA256)\p : 2256 x (2512)* — 2256,

SHA2562(Z) = SHA256MD<SHA256I\/, T]S(SHA256pad(l))>

where SHA256ry : 2256 is the SHA-256 initial value and nf+ : AT — A* formally converts a non-empty list to
a regular list.

The SHA256\p function is a left fold using the SHA-256 block compression function SHA256p10ck :
2256 o 9512 _, 3256

SHA256MD<h,€> = h
SHA256MD<h,b<l> = SHA256MD<SHA256310Ck<h,b>,l>

The block compression function SHA256p10c : 22°6 x 2512 — 2256 i5 a function whose type fits in Simplicity’s
framework. We can create a core Simplicity term sha256-block : 2256 x 2512 |- 2256 that implements this function

[sha256-block] = SHA256p10cKk

We can also define SHA-256’s initial value sha256-iv: 1 2256,
[[Sh3256—iv]] () = SHA2561y

Beyond defining the block compression function in the Simplicity language, we will also be using the SHA-
256 hash function elsewhere in this specification. In practice, SHA-256 is applied to byte strings rather than
bit strings. To this end, we define the variant SHA256,s : (28)* — 2256,

SHA2565s := SHA2565 0 y1* 0 (130)*
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where L%i : 28 — 2* formally converts a byte to a bit string (in big endian format).

L%§<<<b0, b1>, <b2, b3>>, <<b4, b5>, <b6, b7>>> :=bo 4b; 4by; 4 b3 4by 4b; 4bs 4b; 4
Since the SHA2565s variant is so commonly used, we will write it unadorned as simply SHA256.

3.3.6.1 Tagged Hashes

BIP-340, BIP-341 used a “tagged-hash” format to help avoid message collisions between different message
variants. We adopt the same format here to avoid message collisions within a Simplicity application and we
hope to avoid message collision across various applications.

The tagged hash format begins every message with one block prefix which indicate the variant, or type of
digest data being hashed. This first block consists of the SHA-256 digest of a string repeated twice. Given
a byte string t: (2%)*, we can defined the tagged hash of bit strings, SHA2565: 2* — 2256 and byte strings,
SHA2565s : (28)* — 2256,

SHA2565(x) = SHA256(u"((13)"(p-p))-x)
SHA2565s(z) := SHA256,s(p-p-x)
where p:=BEgss(SHA256s(t))

We can compute the SHA-256 midstate after compressing this first block containing the prefix tag.
SHA2561y := SHA 2565100k (SHA 2561y, A(SHA256,s(t)))

3.3.7 Elliptic Curve Operations on secp256k1l

The Standards for Efficient Cryptography (SEC) documents have recommend modular elliptic curve para-
meters including the secp256kl curve [7], which is used by Bitcoin’'s EC-DSA signature scheme and the
proposed EC-Schnorr scheme.

Most points on an elliptic curve, such as secp256kl, consist of a pair of coordinates from a specified
finite field. In the case of secp256kl, the finite field is the prime field I, where p := 22°% — 4294968273.
The elliptic curve for secp256k1 consists of the points (x, y) satisfying the equation y? = 2® + 7 (mod p),
plus an additional “point at infinity”, which we will write as 0. It turns out that elliptic curves can be
given a group structure via “geometry”, where any three points on the curve that are co-linear sum to 0
under this group structure, and where O is the group’s identity element. We have to be careful to count
lines “tangent” to the curve as passing through the same point twice, and count vertical lines as passing
through O. This group structure is Abelian, and therefore can also be viewed as a Z,-module?! where
n:=22%6 — 432420386565659656852420866394968145599 is the order of this elliptic curve. This Z,-module
structure allows us to talk about “adding” two points of the elliptic curve, and scaling a point by a factor
from Z,,.

Because the order of the elliptic curve, n, is a prime number, every non-O element generates the entire
curve (through scalar multiplication). The specification for secp256k1 comes with a reference generator, G,
which is defined as the following point.

G = (55066263022277343669578718895168534326250603453777594175500187360389116729240
,32670510020758816978083085130507043184471273380659243275938904335757337482424)

3.3.7.1 libsecp256k1

The libsecp256k1 library [7] is a C implementation of optimized functions on this elliptic curve. This library
has two variants for the representation of elliptic curve point values. The affine coordinate representation
consists of a pair of field elements, and a flag to indicate the value O (in which case the coordinate values are
ignored). The Jacobian coordinate representation consists of a triple of field elements, and a flag to indicate
the value O (in which case the coordinates are ignored).

3.1. Mathematically, we actually have a 1-dimensional vector space; however determining the linear dependence between
two vectors is presumed to be infeasible. Indeed, the security properties of the elliptic curve depends on this being infeasible.
For this reason, it is more useful to think of this structure as a module rather than as a vector space.
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A point in Jacobian coordinates, (z,y,z) is defined to be on the elliptic curve when
y? =123+ 725 (mod p)
and two points in Jacobian coordinates are equivalent, (o, yo, z0) < (x1, Y1, 21), when
1023 =21 23 (mod p) and yo 23 = y1 25 (mod p).

A point in Jacobian coordinates, (x, y, z) represents the curve point (x 272, y 2~3) in affine coordinates
when z # 0. In particular, the point (z, y, 1) in Jacobian coordinates represents the point (x, y) in affine
coordinates. The same point has multiple representations in Jacobian coordinates, however, even the affine
coordinate representation is redundant because the underlying field representation is itself redundant.

Normally the point at infinity would be represented by (a?,a3,0) in Jacobian coordinates for any a € IF;
however this is not done in libsecp256k1. Instead a flag is used to represent the point at infinity (and the
coordinates are ignored when this flag is set). Testing if a field element is equivalent to 0 is a non-trivial
operation, so using a flag like this may be sensible.

The various group and Z,-module operations are implemented efficiently, again subject to various specific
preconditions on their inputs. In particular, the operation for forming linear combinations of the form

k
Z na, Ai+ngg
i=0
is supported using an algorithm known as Shamir’s trick, where ng, : Zy, ng: Zy, and A; are points on the
elliptic curve.

3.3.7.2 libsecp256kl in Simplicity

The primary application for Simplicity is to implement computation for public validation. In implementing
cryptographic operations in Simplicity, we have no need to worry about constant-time implementations, nor
securing private key material because Simplicity’s application only processes public data.

When it comes to implementing elliptic curve operations in Simplicity, we do face one problem. In order
for elliptic curve operations to be fast, we need a representation of field elements and curve points that
have redundant representations, but then the choice of which specific representative returned by Simplicity
expressions becomes consensus critical.

We see three possible ways of addressing this problem:

1. We can define minimal Simplicity types that can represent field elements and elliptic curve points and
return values in normal form after every elliptic curve operation.

2. We can define Simplicity types that can represent field elements and elliptic curve points with redun-
dant representations and specify precisely which representative is the result of each elliptic curve
operation.

3. We can extend Simplicity with abstract data types for field elements and elliptic curve points and
enforce data abstraction in the elliptic curve operations.

Option 1 would make it easy for developers to implement elliptic curve jets (see Section (reference|TODO))
that short-cut the interpretation of Simplicity’s elliptic curve operations by running native code instead.
The native code for these jets can be implemented by any reasonable algorithm, and the results normalized.
The problem with this option is that computing the normal form of elliptic curve points is an expensive
operation. In particular, normalizing a point in Jacobian coordinates requires computing a modular inverse,
which is a very expensive operation compared to the other field operations.

Option 2 means we must ensure that the native code for jets returns exactly the same representative
that the Simplicity expression it replaces would have produced. Even libsecp256k1 does not guarantee that
different versions of the library will return the same representatives for its basic elliptic curve operations, so
Simplicity jets would not be able to keep up with libsecp256k1 updates.

Option 3 would let us change the underlying representations of elliptic curve values, allowing us to use
any version of any secp256k1 library. However, it would extend the scope of Simplicity beyond what we are
willing to do.
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We have chosen to go with option 2. We have reimplemented the exact same algorithms for field and
elliptic curve operations that the most recent release of libsecp256kl uses as of the time of this writing,
including computing of linear combinations of the form

naA+ngG

which is used for Schnorr signature validation. Our jets will be tied to this specific version of libsecp256k1, and
the commitment Merkle root (see Section 3.7) captures the formal specification of the functional behaviour
of our jets. The libsecp256kl is already reasonably mature, so we are not expecting to lose out too much
by missing future advances. When there are major improvements, new versions of Simplicity jets could be
substituted in by using a versioning mechanism for Simplicity.

In Simplicity, we represent a field element by the type

FE:= 2256
and a value a: FE represents the field element
[a]rE:=[a]2s6 (mod p).
We represent non-O points on the secp256k1 elliptic curve in affine coordinates by the type
GE:=FE x FE

and a value (z, y) : GE represents the point

[z, y)lce:=([z]rE, [y]rE).
We also represent points on the secp256k1 elliptic curve in Jacobian coordinates by the type

GEJ:=GE x FE

and a value ((x, y), z) represents the point

[((z,y),2)]ces = ([z]re- [2]5h (mod p), [y]re - [#]rs (mod p)) when [z [rg #0 (mod p)
[((z,y),2)|ges = O when [2]pg=0 (mod p) and [y]#g = [x]fE (mod p).

The translation between libsecp256k1’s affine coordinate representation of elliptic curve points and Sim-
plicity’s GE is straightforward except that Simplicity’s GE type has no flag and cannot represent the O
point. The translation between libsecp256kl’s Jacobian coordinate representation of elliptic curve points
and Simplicity’s GEJ type is mostly straight forward, however the GEJ type represents the O point using
a z-coordinate representing 0, while libsecp256k1 uses a flag to represent the O point.

The Simplicity implementation of libsecp256k1 is designed so that libsecp256k1 can be used as jets for
these Simplicity expressions. As such, the Simplicity expressions are designed to mimic the exact behaviour
of a specific version of libsecp256k1’s elliptic curve functions. For inputs of particular representations of point
in Jacobian coordinates, the Simplicity expression returns the exact same representative for its result as
libsecp256k1. If an off-curve point is passed to a libsecp256k1 function, the Simplicity code again computes
the same result that the libsecp256k1 function does.

The only subtle point with using libsecp256k1 for jets lies in the different representation of O. The inputs
and outputs of operations need to be suitable translated between the two representations. However, this can
be done as part of the marshalling code for the jets, and the Simplicity expressions are written with this in
mind.

3.3.7.3 Schnorr Signature Validation

With elliptic curve operations defined, we are able to implement Schnorr signature validation in accordance
with the BIP-0340 specification [7]. We define Simplicity types for the formats of x-only public keys, PubKey;
messages, Msg; and Schnorr signatures, Sig, below.

PubKey := 2256
Msg := 2256

Sig = 2512
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The PubKey type is an x-coordinate of a point whoes y-coordinate’s least significant bit is even. A Msg
value m represents the byte-string BEass(m) for a Schnorr signature’s message, and a Sig value a represents
the byte-string BE512(a) for a Schnorr signature.

We have implemented a core Simplicity expression to check a Schnorr signature for a public key on a
given message:

bip-0340-check : (PubKey x Msg) x Sigt 2

The semantics are such that [bip-0340-check]({(p,m), s) =15 only when the values that the inputs represents
satisfy the verification conditions of the BIP-0340 specification.

3.4 Completeness Theorem

General purpose programming languages are famously incomplete because there are functions that are
uncomputable, the halting problem being the most famous of these. Core Simplicity is even more limited that
these general purpose programming languages because its denotational semantics are limited to functions
from finite types to finite types.

However, we can ask the question, is every function from a finite type to a finite type expressible in core
Simplicity? This question is answered by the following completeness theorem.

Theorem 3.3. Core Simplicity Completeness Theorem. For any Simplicity types A and B and any function
f: A— B, there exists some core Simplicity term t such that for all a: A,

[tl(a) = f(a)

This result is possible because these functions are all finitary and can be, in principle, expressed as a large
lookup table. It is possible to encode these lookup tables with Simplicity expressions. The formal proof of
this theorem can be found in the Coq library (see Section 8.2.1).

It is worth emphasizing that this result is a purely theoretical result that shows that core Simplicity is
fully expressive for its domain; it is completely impractical to generate Simplicity expressions this way as
many expressions would be astronomical in size. Thus we can view Simplicity programming as an exercise
in compression: how can we take advantage of the structure within computations to express our functions
succinctly.

One practical variant of the core Simplicity completeness theorem is that for any value of a Simplicity
type b: B, the constant function A _.b: A— B can be realized by a Simplicity expression. We call the function
that constructs this term, scribeq p(b): AF B.

scribes 1() := unit
scribea 5+c(0F.c(b)) = injl (scribes 5(b))
scribea, p+c(0B.c(c)) = injr(scribea,c(c))
scribea pxc(b,c) = scribes p(b) A scribeg co(c)

Theorem 3.4. For all Simplicity types A and B, and for all values a: A and b: B, [scribes g(b)](a) =0.

3.5 Operational Semantics

The denotational semantics of Simplicity determine the functional behaviour of expressions. However, they
are not suitable for determining the computation resources needed to evaluate expressions. For this reason
we define an operational semantics for Simplicity via an abstract machine we call the Bit Machine.



3.5 OPERATIONAL SEMANTICS 39

3.5.1 Representing Values as Cell Arrays

Values in the Bit Machine are represented by arrays of cells where each cell contains one of three values: a
0 value, a 1 value, or a ? value which we call an undefined value. We write an array of cells by enclosing a
sequence of cells with square brackets (e.g. [170]). We denote the length of an array using |-|. For example,
|[170]1|=3. The concatenation of two arrays, a and b is denoted by a - b, and replication of an array n times
is denoted by exponentiation, a”. Sometimes we will omit the dot when performing concatenation.

For any given type, we define the number of cells needed to hold values of that type using the following
bitSize function.

bitSize(1) := 0
bitSize(A+ B) := 1+ max (bitSize(A), bitSize(B))
bitSize(A x B) := bitSize(A) + bitSize(B)

We define a representation of values of Simplicity types as arrays of cells as follows.

r<>71 = [
ra’,}l‘,B(a)—‘A+B = [0]-[7] padL(A,B) | fa,
ToRp(b) ayp = [1]- [7]PadRAB) g
Ta,b) axp = Ta'a-"b g

The representation of values of a sum type are padded with undefined cells so that the representation has
the proper length.

padL(A, B) := max (bitSize(A), bitSize(B)) — bitSize(A)

padR(A4, B) := max (bitSize(A), bitSize(B)) — bitSize(B)

Theorem 3.5. Given any value of some Simplicity type, a: A, we have |"a”4| = DbitSize(A).

3.5.2 Bit Machine

A frame is a, possibly empty, cell array with a cursor referencing a cell in the array, which we denote using
an underscore.

[01710]

The cursor may also reference the end of the array, which we denote by marking the end of the array with
an underscore.

[01710]

Frames can be concatenated with cell arrays either on the left or on the right without moving the cursor.
Note that when concatenating a non-empty cell array onto the right hand side of a frame whose cursor is at
the end of the frame, the cursor ends up pointing to the first cell of the added cell array.

[01710] [11177] = [0171011177]

We will sometimes denote the empty frame, [], with a small cursor, A.

The state of the Bit Machine consists of two non-empty stacks of frames: a read-frame stack and a write-
frame stack. The top elements of the two stacks are called the active read frame and the active write frame
respectively. The other frames are called inactive read-frames and inactive write-frames.

read frame stack write frame stack
[1001177110101000] [11??1101]_
[0000] [11177]

nj

[10]

Figure 3.1. Example state of the Bit Machine.
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Notationally we will write a stack of read frames as r, > ... > r1 > 1, with r( as the active read frame. We
will write a stack of write frames in the opposite order, as wg<tw; <... <{w,, with wg as the active write frame.
We write a state of the Bit Machine as [© 1> ro|wg < E] where © is the (possibly empty) inactive read frame
stack, = is the (possibly empty) inactive write frame stack, ro is the active read frame, and wy is the active
write frame.?-2 There is one additional state of the Bit Machine called the halted state, which we denote by X.

The Bit Machine has nine basic instructions that, when executed, transform the Bit Machine’s state.
We denote these basic instructions as i: So~- Sy, where 7 is the instructions’s name, Sy is a state of the Bit
Machine before executing the instruction, and S7 is the state of the machine after the successful execution
of the instructions.

3.5.2.1 Frame Instructions

Our first three basic instructions, create, move, and delete active frames.

newFrame(n) : [© > rolwo <E]~ [O D 1o|a[?7]1" <wy < E]
moveFrame : [O>ro|lcy - cp]l Qwo<E]~ [OD>roD> [y cplwo < E]
dropFrame : [©>r;>1g|E]~ [© > r|E]

Executing a newFrame(n) instruction pushes a new frame of length n onto the write frame stack. This new
frame has its cursor at the beginning of the frame and the entire frame is filled with undefined values. It is
legal for the new frame to have length 0.

Executing the moveFrame instruction moves the top frame of the write frame stack to the read frame
stack. This instruction is only legal to execute when the cursor of the active write frame is at the end of the
frame. The cursor is reset to the beginning of the frame when it is placed onto the read frame stack.

Executing the dropFrame instruction removes the top frame of the read frame stack.

3.5.2.2 Active Write Frame Instructions

Our next three instructions operate on the active write frame.

write(0) : [© > rolwo-[2] [7]1™ Q=] ~» [© > rolwp- [0] [71™ Q1 E]

write(1) : [© > rolwe-[2] [7]1™ QE] ~» [© > rolwe- [1] [71™ Q=]

skip(n) : [O@>rolwon [21"T™ QE] v [O > rolwe- [71™ A [P < E]

copy(n) : [©7rLer cul rhlwon [21"T™ QE]~> [O 1> 1o [ey++ cul - rhwo: et -+ cu] [P1 < E]

Executing a write(b) instruction writes a 0 or 1 to the active write frame and advances its cursor. Writing
an undefined value using this instruction is not allowed. The cursor cannot be at the end of the frame.

Executing a skip(n) instruction advances the active write frame’s cursor without writing any data. There
must be sufficient number of cells after the cursor. The trivial instruction skip(0) is legal and executing it
is effectively a no-op.

Executing a copy(n) instruction copies the values of the n cells after the active read frame’s cursor into
the active write frame, advancing the write frame’s cursor. The must be a sufficient number of cells after
both the active read frame and active write frame’s cursors. Note that undefined cell values are legal to copy.
The trivial instruction copy(0) is legal and executing it is effectively a no-op.

3.5.2.3 Active Read Frame Instructions
The next two instructions are used to manipulate the active read frame’s cursor.
fwd(n): [© > ro-[cg++ cal rhlwo <E] ~ [O > 719 [cy -+ cpl Th|wo < E]

bwd(n) : [© > ro-[cy -+ cnl -rolwo <AE] ~ [© > 1o [y cpl 1wy < E]

3.2. The notation for the Bit Machine’s state is intended to mimic the gap buffer used in our C implementation of the Bit
Machine (see TODO: C implementation).
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Executing a fwd(n) instructions moves the cursor on the active read frame forward, and executing a bwd(n)
instruction moves the cursor backwards. In both cases there must be sufficient number of cells before or after
the cursor. The trivial instructions fwd(0) and bwd(0) are legal and executing them are effectively no-ops.

3.5.2.4 Abort Instruction

The final instruction of for the Bit Machine moves from any non-halted state into the halted state.
abort : [© D> rolwy < =] ~ K

This is the only way to enter the halted state, and once in the halted state no further instructions can be
executed.

3.5.2.5 Bit Machine Programs

The basic instructions of the Bit Machine are combined to produce programs that take the Bit Machine
through a sequence of states. We write Sy » k — S for a program, k, that, when executed, successfully
transforms an initial state Sg to the final state S;.

S» nop —» S
We write nop for the trivial program with no instructions. The initial and final states are identical in
this case.
i SO ~ Sl
SO 1 —» Sl
For every basic instruction there is a single instruction program whose initial and final states match those
of the basic instruction.

Sor—ko—S1 S1»k1— S
So» ko; k1 — S

We write ko; k1 for a sequence of two programs, kg and k;. The Bit Machine executes the two programs
in turn, concatenating the sequence of states of the two programs.

[© > ro- [0] - 7h|wo < E] ko — S
[@ > ro- (0] ~7’6|w0<1 E] »— k0||/€1 —- S

[© > 71o-[1]-1)|wo < E] k1 — S
[@ > ro-[1] -r6|w0 < E] »— ko”kl -5
We define ko||k1 as a deterministic choice between two programs, ko and k1. When executing a deter-
ministic choice, the value under the active read frame’s cursor decides which one of the two programs are
executed. When encountering a deterministic choice, the active read frame’s cursor must not be at the end
of its array and the cell under the cursor must not be an undefined value.

Xk —K
Lastly, we stipulate that every program when executed from the halted state ignores all instructions and
perform a no-op instead.
Take care to note this difference between instructions and programs containing one instruction. A single
instruction cannot be executed starting from the halted state, while a program that consists of a single
instruction can be run starting from the halted state (however, it does nothing from this state).

nxk :=fwd(n); k; bwd(n)

The nxk notation (called “bump”) is for a program that temporarily advances the active read frame’s cursor
when executing k.

Theorem 3.6.
[© > 710 [cr+ el Tolwo <TE] =k — [© > 1o [y ro|wh < 2]

[© 1> 1o [ege-cnl Th|wo A E] »—nkk — [© 1> ro- [y cp] 1) w) < 2]
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3.5.2.6 Crashing the Bit Machine

Bit Machine programs are deterministic. Given a program k and an initial state Sy there exists at most one
state S such that So» k — S1. However it is possible that there is no state S such that Sy» k— Sy given
an initial state for a program. This happens when the Bit Machine is trying to execute a single instruction
program, ¢, from a non-halted state where that instruction cannot legally execute from. This can also happen
when a deterministic choice operation is encountered starting from a state where the active read frame’s
cursor is at the end of the frame, or is referencing and undefined value.

When a program cannot execute to completion from a given initial state, we say that the Bit Machine
crashes, or we say that the program crashes the Bit Machine. Crashing is distinct from halting. We will have
a number of theorems that prove that a Bit Machine interpreting a Simplicity expression from a suitable
initial state never crashes the Bit Machine; however in some of these cases the program may cause the Bit
Machine to legitimately enter the halted state.

3.5.3 Executing Simplicity

We recursively translate a core Simplicity program, ¢: AF B, into a program for the Bit Machine, (t)), called
the naive translation:

(idena)) := copy(bitSize(A))
(compy g cst) := newFrame(bitSize(B))
i ((sh
movekrame
;o (o)
; dropFrame
{units)) := nop
(injla,p,ct) = write(0); skip(padL(B, C)); ()
({injra, 5, ct) = write(1); skip(padR(B, C)); (t)
(casea B,c,pst) = (1+padL(A4, B))x{s)
I (1+padR(A, B))*(t)
(paira, p,cst) = (s)h; (t)
(takea,p.ct) = ()
((dropa g.ct) := bitSize(A)*((t)

Theorem 3.7. Given a well-typed core Simplicity program t: A+ B and an input a: A, then
(O roaTa rh|wga [21P1ES2BIFm =] o (1) — [O > 1o A Ta rh|wo-[t](a) T4 [21™ < ]
for any cell arrays ro, vy, wo, any stacks ©, 2, and any natural number m.

In particular, for a well-typed core Simplicity program t: AF B, we have
(a7 [21PS B o (1) = [ATa T[T [t] (a) T A]

which means we if we start the Bit Machine with only the input represented on the read stack, and enough
space for the output on the write stack, the Bit Machine will compute the representation of the value [t](a)
without crashing.

3.5.3.1 Tail Composition Optimisation (TCO)

Traditional imperative language implementations often make use of tail call optimization that occurs when
the last command of a procedure is a call to a second procedure. Normally the first procedure’s stack frame
would be free after the second procedure returns. The tail call optimization instead frees the first procedure’s
stack frame prior to the call to the second procedure instead. This can reduce the overall memory use of the
program.
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The composition combinator, comp, in Simplicity plays a role similar to a procedure call. We can perform
a tail composition optimization that moves the dropFrame instruction earlier to reduce the overall memory
requirements needed to evaluate Simplicity programs. We define an alternate translation of Simplicity pro-
grams to Bit Machine programs via two mutually recursively defined functions, (-)ZF© and (-)EC©:

(idenaoi®

{(compa p.cst)ag®

(unita)og
(injla, 5, thai ©
(injra, B, ct) o ©

TCO

{(casea B, D st)oft

(paira, 5o sthag O
((takea g ct)IF©
(dropa g o t) e ®

((idena ) ZCO

copy(bitSize(A))

= newFrame(bitSize(B))

(shae®

moveFrame

(B

nop

write(0); skip(padL(B, C)); (t)IF°
write(1); skip(padR(B, C)); (t)5§©
(14 padL(A, B))*(s)ai

(1+ padR(A, B))x(t) &5

= {(shot % ()

{thort

= bitSize(A)*(t)IEO

copy(bitSize(A))

; dropFrame
{(compa p.cst)eL® = newFrame(bitSize(B))
s (shon ©
moveFrame
; (thes©
((unitA>> := dropFrame
<<inj|A)B?Ct>>TCO := write(0); skip(padL(B
»TCO

0)); (thon©

{injra, B,ct = write(1); bklp(PadR( C)); (thas®
<<caseA)B’c)Dst>>TCO := fwd(1+ padL(A, B)); << >>TCO
|| fwd(1+ padR(A, B)); (t)as©
(paira, g, o stYer© = (shor s (Ehan ©
(takea, B.othon @ = ((thes©

{dropa,pothon © = fwd(bitSize(A)); (t)on

The definition of the ((-)3F© translation is very similar to the naive one, except the dropFrame instruction
at the end of the translation of the composition combinator is replaced by having a recursive call to (-0
instead. The definition of (-)ZCC puts the dropFrame instruction in the translations of iden and unit. The
bwd instructions are removed from the translations of case and drop. Lastly notice that the first recursive

call in the translation of pair is to {(-)ZF°.

Theorem 3.8. Given a well-typed core Simplicity program t: A+ B and an input a: A, then

[© > 1o aTa b wg a [2]P1ESIZBIFm q =] 5 (1N IFO - [O > roaTa rhwo " [t] (a) 4 [717 < F]

and

{thes®— 1[0

for any cell arrays ro, 7, wo, any frame r1, any stacks ©, =, and any natural number m.

[O©>7r1>710a"a T rh|woA [7] bitSize(B)+m =]~ > rijwo"[t](a) A [71™ < ]
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In particular, for a well-typed core Simplicity program ¢: AF B, we have

["aT|ALZT VS E]  (TEC — [aTa 7| [t] (@) A

3.6 Static Analysis

Static analysis lets us quickly compute properties of expressions, without the need for exhaustively executing
expressions on all possible inputs. We use static analysis in Simplicity to bound the computation costs in
terms of time and space of Simplicity expressions for all their inputs. The analysis we do are linear in the
size of the DAG representing the Simplicity expression, and typically the analysis runs much faster than the
cost of evaluating an expression on a single input. We can do this because the intermediate results of static
analysis can be shared where there are shared sub-expressions.

3.6.1 Space Resources

The primary source of memory resources used by the Bit Machine is the cells used by all the frames that
make of the state of Bit Machine. A secondary source of memory resources used comes from the overhead
of the frames themselves, which need to store their boundaries or sizes, and the position of their cursors. In
our analysis we will make a simplifying assumption that these boundaries / sizes / positions values are all of
constant size. This assumption holds when the Bit Machine is implemented on real hardware which has an
upper bound on its addressable memory and there is a limit on the number of Cells that can be held anyways.

To bound these resources we perform a static analysis to compute an upper bound on the maximum
number of cells needed when executing a Simplicity program on the Bit Machine for any input, and we
compute an upper bound on the maximum number of frames needed as well.

3.6.1.1 Maximum Cell Count Bound

We define the cell count of a frame to be the length of its underlying cell array and the cell count of a Bit
Machine state to be the sum of the cell counts of all its frames.

cellCount([cy ---ci-- cpl) == n

cellCount([ry, &> ... > rolwo < ... Qwp)) = Z cellCount(r;) + Z cellCount (w;)
—0 j=0

<.

cellCount(X) :=

We define the cells required by a program Sp» p — 57 as the maximum cell count over every intermediate
state.

cellsReq (S » nop — 5) := cellCount(.5)

i SO ~ Sl
cellsReq(Sp » i — S1) := max (cellCount(Sp), cellCount(St))

So»— ko — S S1»—k1— S
cellsReq (S » ko; k1 — S2) := max (cellsReq(Sp » ko — S1), cellsReq(S1 » k1 — S2))

[@DTO' [Q]-r6|w0<E] —ko— S
cellsReq([© > ro- [0] 74 wo <t =] » k|| k1 — S) := cellsReq([© 1> ro- [0] -ro|wo <1 E] > ko — S)

[@DTO' [1]-r6|w0<E] —k1— S
cellsReq([© > ro- [1] '7’6|w0 Q=] »kol| k1 — S) := cellsReq([O© 1> r¢- [1] .7»6|w0 FEEES

cellsReq(X» k — X):=0
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Note that when executing a Simplicity expression on the Bit Machine, the size of the state prior and after
execution is identical. For naive translation of Simplicity to the Bit Machine, we can write a simple recursive
function that bounds the number of additional Cells needed to evaluate a Simplicity expression beyond the
size of the initial and final state.

=0

:= DbitSize(B) + max (extraCellsBound(s), extraCellsBound(t))
=0

:= extraCellsBound(t)

extraCellsBound(ideny)

)

)

)
extraCellsBound(injry g ct) := extraCellsBound(t)

)

)

)

)

extraCellsBound(compy g ¢ st
extraCellsBound(unityq
extraCellsBound(injly g ot

:= max (extraCellsBound(s), extraCellsBound(t))
:= max (extraCellsBound(s), extraCellsBound(t))
:= extraCellsBound(t)
:= extraCellsBound(¢)

extraCellsBound(cases g ¢, p st
extraCellsBound(pairy g ¢ st
extraCellsBound(takes g ¢t
extraCellsBound(dropy ¢t

Lemma 3.9. For any core Simplicity expression t: A- B, such that

[© B> rolwg < E] > (t) — [0 > rhw) < =]
we have that
1. cellCount([© > rolwo <1 Z]) = cellCount([© > rh|wy < E])
2. cellsReq([O 1> ro|wo < E] » ((t)) — [©' > r)|wy < E]) <
cellCount([O > ro|wp < Z]) + extraCellsBound(t).
In particular for a: A and
["aT|A LIPS o (1)) — [ATa 7|t () ]
we have that -
cellsReq([A7a 7| [?] P52 (B)] o (1) — [ATa 7| [t](a) " A]) <
bitSize(A) + bitSize(B) + extraCellsBound (t).

We can compute a tighter bound for TCO translation, but the calculation is a bit more complicated. The
number of extra cells needed depends on whether TCO is in the “on” state, and what the size of the active
read frame is.

extraCellsBoundj o (idens) (1) = 0
extraCellsBoundJ5° (compy 5 ¢ st) (r) := bitSize(B) + max (extraCellsBound g (s)(r),
extraCellsBound o (¢) (bitSize(B)) — )

extraCellsBoundggno(unitA r) := 0

)(r) -

extraCellsBound 35" (injla 5 ¢ ) (1) extraCellsBounday’ (1)
)(r) := extraCellsBound3o ()
)(7)

extraCellsBoundE}?nO(i njra g ct)(r

= max (extraLCellsBoundgfmO

extraCellsBound 1 o0 (¢) (r

(s)(r)
)
TCO(S) (0
)

extraCellsBound 140 (casea 5, p 1) (7

3
3

extraCellsBoundE}(,jno(pairA7370st)(r) := max (extraCellsBound gy, )
extraCellsBound o (¢)(r)

extraCellsBoundjo° (takea, 5,ct)(r) := extraCellsBoundjol(t)

extraCellsBoundg}(,jnO (dropa g.ct)(r) = extraCellsBoundrgndO(t)

Lemma 3.10. For any core Simplicity expression t: A- B, such that

[@on > Ton,0|won,0 < Eon] » <<t>>gr?o - [Gc/)n > T(/)n,0|w(ljn,0 < E(/)n]
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and

[Ooft B> Toff, 0 Woft,0 < Zof] = (LN e © — [Oba ™ T o[ w0 < Ebal

we have that

1. cellCount([Oon > T'on,0|Won,0 < Eon]) = cellCount(ron o) + cellCount([O4y, &> ron, o/ wWon,0 <V Ebn]) and
cellCount([Ooft I> 7ot 0| Woft,0 <1 Eofi]) = cellCount ([O4g > 744 o|wo.0 < Eog])

2. CeHSReq([@on > 7ﬂon,0|rwon,0 < E'on] > <<t>>’OI‘nCO - [6(/311 > 7ﬁ(I)n,O|’UJcI>1ﬂ,O < Eén]) <

cellCount([BOopn > ron,0|Won,0 < Zon]) + extraCellsBoundE}?no(t) (cellCount(ron,0)) and
cellsReq([Ooft > Toft, 0| Woft,0 < Zof] ™ <<t>>r£ffco — 04 > ""éff 0|w(/>ff 0<1Zo0q]) <
cellCount([Oof I> Toft, 0| Wort,0 < Eoft]) + extraCelleoundEndo( )(0).

In particular for a: A and
[\"a A LIPS o () EFC — [A7a T [t] (@) 7]
we have that
cellsReq([A"a|x [?]P1tSi2e(B)] o (1) TEO — [\Ta 7|7 [t] (a) 7 A]) <
bitSize(A) + bitSize(B) + extraCellsBound 1o (¢)(0).

The problem with extraCellsBoundEycnO( ) is that it is effectively a dynamic analysis because its result
is a function. We cannot directly use this definition to perform a static analysis because we cannot cache
and reuse results on shared sub-expressions. Fortunately, we can characterize the set of possible functions

returned by extraCellsBoundEycnO by a pair of parameters.

interpTCC(n, m)(r) := max (n —r,m)
We can write a static analysis to compute the pair of parameters that characterize the results of
extraCellsBoundg}(,jnO.

extraCellsBoundZ$S, (ideny) = 0,0)

extraCellsBoundiSq(compa .o st) = (max (rp+ ns, g, 7+ my), 7+ M)
where (n, ms) := extraCellsBound %S Q. (s)

(
(
(
< TCO (t)

and (ng, my) := extraCellsBound iz

and 7p:=DbitSize(B)

extraCellsBound 55 (unity) (0, 0)
extraCellsBound 559, (injl A Bot) = extraCellsBound%§ S (t)
extraCellsBound 5SS, (injry Bct) = extraCellsBound&§S.(t)
extraCellsBound g (casea g c.pst)  :=  (max (ng,n;), max (mg, ms))
where (ns, ms) := extraCellsBound 5o (s)
and (ng, m;) := extraCellsBound %5 o (t)
extraCellsBound% S, (pairy B.cst) = (ngmax (nsms,my))
where (ng, ms) := extraCellsBound 55 %(s)
and  (ng, m;) := extraCellsBound 355, (¢)
extraCellsBoundZ GG (takea . ct)  :=  extraCellsBoundLGoe(t)
extraCellsBound %S %, (dropy Bct) = extraCellsBound5$%, (2)
TCQ

When computing extraCellsBoundstdmC( ) resulting values for shared sub-expressions can be shared, making

extraCellsBound%$S. a static analysis. We can use interpT®© and extraCellsBoundk%$Q. to compute

extraCellsBoundE}(,jnO for our bound on cell count.

Lemma 3.11. extraCellsBoundJGC(t) = interp™©O (extraCellsBound 55 o (t)).

Corollary 3.12. For any core Simplicity expression t: AF B and a: A such that

["aT|ALZT PS5O — [aTa | [t] (@) M A]
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we have that
cellsReq([a"a | [?]1PIS2e(B)] o (1) TEO s [\Ta 7| [t] (a) " a]) < bitSize(A) + bitSize(B) + max (n,m)

where (n, m):=extraCellsBound %5 (¢).

3.6.1.2 Maximum Frame Count Bound

3.6.2 Time Resources

3.7 Commitment Merkle Root

In modern Bitcoin, users who use P2SH (pay to script hash) do not commit funds directly to Bitcoin
Script, rather they commit to a hash of their Bitcoin Script. Only when they wish to redeem their funds do
they reveal their Bitcoin Script for execution. Bitcoin’s consensus protocol enforces that the Bitcoin Script
presented during redemption has a hash that matches the committed hash.

Simplicity is designed to work in the same way. However, instead of a linear hash of a serialized Simplicity
program (Section 7.2) we follow the tree structure of a Simplicity expression and compute a commitment
Merkle root of its syntax tree. Below we define both the commitment Merkle root of a Simplicity expression
t: A B as #°(t): 2256 as well as a value #°(t) : 22°¢ that will later be used to define a varianted for identity
Merkle Roots (Section 7.2.3). Below «a € {c,i} and hence for core Simplicity expression ¢, #(t) =#(t), but
they will no longer be equal when we consider some extensions to core Simplicity.

#*(ideny

#%(compy g o st

;= SHA256!28ier
= SHA256p100 SHA256125™, (#(s), #%(t)))
;= SHA256} 58

- SHAQSGBIOCk<SHA256tdg'"J',<LOJ256, o(t))

#%(unityg

#(injla, B, ct

(

= SHA256p10c (SHA256 55 (4 (s ) “(t))
:= SHA256g100( SHA2561v %", (#°(s), #°(1))
:= SHA256p100 SHA256155, (|0 256, #°())
- SHAQSGBloCk<SHA256tag‘“°" (0] 256, # (t)>>

#%(caseq,p.c,p st
#%(pairg, g,c st
#< (takeA B,ct

)
)
)
)
#°(injra p.ot) = SHA256p00( SHA25655™, (10956, #°(2))
)
)
)
#%(dropa, g, ct)

Here we are directly using SHA-256’s compression function, SHA256 gjock (¢, b), which takes two arguments.
The first argument, 4, is a 256-bit tagged initial value. The second value, b, is a 512-bit block of data. Above
we divide a block into two 256-bit values, (bg, b1), and recursively pass Merkle roots into the compression
function.

Like static analysis, the time needed to computing the commitment Merkle root is linear in the size of
the DAG representing the term because the intermediate results on sub-expressions can be shared.

We define unique tags tag$ for every combinator.

tagiyen = [53696d706c69636974792d44726166741f43656d6d69746d656e741£6964656€] o8
tagiomp = [53696d706c69636974792d44726166741f436f6d6d69746d656e741£636£6d70] 2s
taginie = [53696d706c69636974792d44726166741£436f6d6d69746d656e741f756€6974] 98
tagiy = [53696d706c69636974792d44726166741f436£6d6d69746d656e741f696e6a6c] 9s
taghr 1= [53696d706c69636974792d44726166741f436f6d6d69746d656e741£696e6a72]9s
tagte 1= [53696d706c69636974792d44726166741f43656d6d69746d656e741£63617365] o8
tagpair = [53696d706c69636974792d44726166741f436f6d6d69746d656e741£70616972] 2s
tagiae = [53696d706c69636974792d44726166741f43656d46d69746d656e741£74616b65] o8

taggrop = [53696d706c69636974792d44726166741f43616d6d69746d656e741£64726£70] s
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Notice that the type annotations for expressions are not included in the commitment Merkle root. We will
rely on type inference to derive principle type annotations (see Section 7.1.1). Later, we will make use of
this flexibility when pruning unused branches from case expressions (see Section 4.3.2.1).

3.8 Type Merkle Root

We also define a Merkle root that follows the tree sturcture of types in the same way that we defined the
commitment Merkle Root.

AW(1) = SHA256L8
#Y(A+ B) = SHA256p100( SHA256, (#(A), #(B)) )

ty

#Y(Ax B) = SHA25GBlock<SHA256§$gpf°d, <#W(A),#W(B)>>

We define unique tags tag;y for every sort of type.

tag?;e := [53696d706c69636974792d44726166741£547970651£756e6974] os
tag?u'm = [53696d706c69636974792d44726166741£547970651£73756d] os
taggod := [53696d706c69636974792d44726166741£547970651£70726£64] 9s



Chapter 4
Simplicity Extensions

The core Simplicity completeness theorem (Theorem 3.3) proves that the core Simplicity language is already
computationally complete for Simplicity types. Our primary method of extending Simplicity is by adding
expressions with side-effects. We will use monads to formally specify these new effects.

4.1 Monadic Semantics

We define a new interpretation of Simplicity expressions, ¢t : A F B, whose denotations are Kleisli
morphisms, [t]JM:A— M B.

[idena]*(a) := n*(a)
[compa p.cst]M(a) = ([(]M—~=[s]"")(a)
[unita]*(a) = ™)
[inila, 5,ct]*(a) := Mo™([t]"(a))
[inira, 5.ct](a) = Mo®([t]"(a))
[casea 5.c.pst]™(ot(a),c) = [s]M(a,c)
[casea.5.c.pst]{(oB(b),c) = [t]M(b,c)
[paira,s.cst]"(a) = ¢™([s]"(a), [{]*(a))
[takea 5 .ct]M(a,b) = [t]™(a)
[dropa, g.ct]™(a,b) = [t]*(b)

The above interpretation for Kleisli morphisms is nearly uniquely defined (under the requirement of para-
metericity). Many well-typed variations of the definition above end up being equivalent due to the monad
laws. The main choice we have is between using ¢£le or (Mle in the definition of [pair s¢]J*. The only other
definitions amount to duplicating the effects of sub-expressions.

To ensure that all these possible choices are immaterial, we demand that M be a commutative, idempo-
tent monad when interpreting Simplicity expressions. This lets us ignore the order of effects, and duplication
of effects, which simplifies reasoning about Simplicity programs. It also provides an opportunity for a Sim-
plicity optimizer to, for example, reorder pairs without worrying about changing the denotational semantics.

Theorem 4.1. For any core Simplicity expression, t: AF B, we have [t]™:=nk"o [t].
Corollary 4.2. For any core Simplicity expression, t: A B, we have [t]'¢:=[t].

Notice that our monadic semantics are strict in their side-effects in the sense that the definition of
[pair st]™ implies that the side-effects of [s[™ and [t]* are both realized even if it ends up that one (or
both) of the values returned by s and ¢ end up never used.

4.2 Witness

Our first extension to core Simplicity is the witness expression. The language that uses this extension is
called Simplicity with witnesses.

49
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b:B
witnessy pb: AFB

The denotational semantics of the witness expression is simply a constant function that returns its
parameter.

[witnessa, g b]M(a) := ng"(b)

As far as semantics goes, this extension does not provide any new expressivity. A constant function for any
value b can already be expressed in core Simplicity using scribes g(b). The difference between scribe and
witness expressions lies in their commitment Merkle root.

#¢(witnessy pb) := SHA256Ewiness
where tagyiness value is a unique value.
taguitness = [53696d706c69636974792d44726166741f43616d6d69746d656e741f7769746e657373]5s

Notice that a witness b expression does not commit to its parameter in the commitment root. This means
that at redemption time a witness expression’s parameter, called a witness value, could be set to any value.
This differs from the identity root (Section 7.2.3) which will include a commitment to its parameter.

Witness values play the same role as Bitcoin Script’s input stack in its sigScript or Segwit’s witness.
They act as inputs to Simplicity programs. Rather than accepting arguments as inputs and passing them
down to where they are needed, witness expressions lets input data appear right where it is needed.

4.2.1 Elided Computation

4.2.2 Type Inference with Witness

Like other expressions, a witness expression does not commit to its type in its commitment Merkle root.
Type inference is used to compute the minimal type needed for each witness expression (see Section 7.1.1)
This helps ensures that third parties cannot perform witness malleation to add unused data on transactions
during transit.

4.3 Assertions and Failure

Our first side-effect will be aborting a computation. New assertion and fail expressions make use of this effect.
The language that uses this extension is called Simplicity with assertions.

s:AxCkFD h . 2256
assertls .o, psh:(A+B)xCFD

h : 2256 t:BxCFD
assertra p.c,pht:(A+B)xCFD

h: 2512
faily ph: Al B

Assertions serve a dual purpose. One purpose is to replicate the behaviour of Bitcoin Script’s 0P_VERIFY
and similar operations that are used to validate checks on programmable conditions, such as verifying that
a digital signature verification passes or causing the program to abort otherwise.

The second purpose is to support pruning of unused case branches during redemption. The 256-bit value
is used in the commitment Merkle root computation to hold Merkle root of the pruned branches. This will
be covered in Section 4.3.2.1.
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Because we are extending Simplicity’s semantics to support an abort effect, there is no harm in adding
a generic fail expression. The parameter to the fail expression is used to support salted expressions (see
Section 4.3.2.2). We will see that fail expressions never manifest themselves within a blockchain’s consensus
protocol.

4.3.1 Denotational Semantics

Given an commutative, idempotent monad with zero, M, we extend the monadic semantics for Simplicity
expressions, [t]*™, to include assertion expressions:

[assertls 5.c. p sh]M(c%(a),c) [s]1™(a, c)

[assertla. 5 c.p sh]M{a®(b),c) = O

[assertra 5. o p ht]M (0¥ (a),c) = 0

[assertra p.c.p ht]M (aB(b),c) = [t]M(b,c)
[faila, g h]M(a) g

Notice that the h parameters are ignored in the semantics. They will be used instead for the Merkle root
definitions in Section 4.3.2.

A term in the language of core Simplicity extended with witnesses and assertions, ¢ : A F B, can
be interpreted as a function returning an optional result: [t]° : A — SB, using the option monad (see
Section 2.3.4.1).

Theorem 4.3. For any core Simplicity expression with assertions, t: AF B, and any commutative idempotent
monad with zero M, we have [t]™ =1%o [t]".

4.3.2 Merkle Roots

We extend the definition of commitment Merkle root and identity Merkle root to support the new assertion
and fail expressions

#(assertly p.c.psh) = SHA256p10c(SHA256 55 (4%(s), b))
#*(assertra p.c.pht) := SHA256p10c(SHA256%85 (b, #%(1)))
#%(fails, gh) := SHA256p100( SHA2561%"", h)

where tag,; value is a unique value.
taggy = [53696d706c69636974792d44726166741f436f646d69746d656e741f6661696¢] 28

It is important to notice that we are reusing tagc... when tagging assertions in their commitment Merkle
root. Also notice that the h value, which was ignored in the semantics, is used in the commitment Merkle
root. Together this allows an assertion expression to substitute for a case expression at redemption time
while maintaining the same commitment Merkle root. This enables a feature of Simplicity called pruning.

4.3.2.1 Pruning Unused case Branches

The commitment Merkle roots of the assertion expression reuses tagg,e in the compression function. This
means that the following identities hold.

#(assertla, .o, p S #°(t)) = #(casea, B, p st) = #(assertra g,c.p #(s) t)

In particular, it means that when a case expression is used at commitment time, it can be replaced by an
assertion expression. If we substitute a case with an assertion expression and that assertion fails during
evaluation, then the whole transaction will be deemed invalid and rejected. On the other hand if the assertion
does not fail, then we are guaranteed to end up with the same result as before (which ultimately could still
be failure due to a later assertion failure). Therefore, assuming the transaction is valid, a substitution of
assertions will not change the semantics.
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We can take advantage of this by performing this substitution at redemption time. We can effectively
replace any unused branch in a case expression with its commitment Merkle root. In fact, we will require
this replacement to occur during redemption (see Section (reference|TODO)).

For those cases where we want to use an assertion at commitment time, for example when performing
something similar to Bitcoin Script’s OP_VERIFY, we use the following derived assert combinator,

t:AR2
asserty ¢ :=t A unit; assertr #°(fail [0]512) unit: A1

where |0]512 is used as a canonical parameter for fail. Naturally, the [0]512 parameter can be replaced with
any value. This can be used as a method of salting expression, which is the subject of the next section.

Theorem 4.4. For any core Simplicity expression t: AF2,
[asserta t]° =[t].

4.3.2.2 Salted Expressions

During pruning, unused branches are replaced by its commitment Merkle root. Since hashes are one way
functions, one might believe that third parties will be unable to recover the pruned branch from just its
commitment Merkle root. However, this argument is not so straightforward. Whether or not the expression
can be recovered from just its commitment Merkle root depends on how much entropy the pruned expression
contains. Third parties can grind, testing many different expressions, until they find one whose commitment
Merkle root matches the one occurring in the assertion. If the entropy of the pruned expression is low, then
this grinding is feasible.

Some expressions naturally have high entropy. For example, any branch that contains a commitment to
a public key will have at least the entropy of the public key space. However, this only holds so long as that
public key is not reused nor will ever be reused elsewhere.

For expressions that reuse public keys, or otherwise naturally having low entropy, one can add salt, which
is random data, to increase its entropy. There are several possible ways to incorporate random data into a
Simplicity expression without altering the program’s semantics. One way is to incorporate the fail expression
which lets us directly incorporate random into is commitment Merkle root.

Given a block of random data, h: 2512, and a Simplicity expression ¢ : A - B, we can define two salted
variants of ¢:

salted’ ht := witness Oz A iden;assertl (drop t) #¢(fail h): A+ B
salted! ht := witness 15 A iden; assertr #¢(fail h) (dropt): A+ B

The salted® ht expression will have high entropy so long as the random data h has high entropy. By randomly
choosing between these two variants, this method of salting obscures the fact that the expression is salted at
all. Without knowing h, it is impractical to determine if #(fail h) is the commitment Merkle root of a fail
expression, or if it is a some other, high-entropy, alternate expression that the redeemer has simply chosen
not to execute.

By explicitly using the fail expression here, one has the option prove that these alternative branches are
unexecutable by revealing the value h. If the Simplicity expression is part of a multi-party smart contract,
it maybe required to reveal h (or prove in a deniable way that such an h exists) to all party members so
everyone can vet the security properties of the overall smart contract.

Of course, lots of variations of this salted expression are possible.

4.4 Blockchain Primitives

We extend Simplicity with primitive expressions that provide blockchain specific features. Naturally the
specifics of these primitive expressions depends on the specific blockchain application, but generally speaking
the primitives allow reading data from the context that a Simplicity program is being executed within. This
is usually the data of the encompassing transaction including details about the inputs and outputs of the
transaction, and which specific input is being evaluated.
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A blockchain application needs to provide a set of typed primitive expressions and a monad to capture
the side-effects for these primitives. This monad should be a commutative, idempotent monad with zero in
order to interpret Simplicity and its extensions. All primitive expressions must be monomorphic and have
no parameters (i.e. they are not themselves combinators).

In the next section we will be detailing the primitives used for Bitcoin, or a Bitcoin-like application. In
Appendix A we describe the primitives used for the Elements sidechain.

4.4.1 Bitcoin Transactions

For the Bitcoin application, Simplicity’s primitives will be primarily focuses on accessing the signed trans-
action data, which is the data that is hashed and signed in Bitcoin.

We define a record type that captures this environment, called BCEnv.

Lock := 232
Value := 264
Outpoint := 2256 x 232

prevOutpoint : Outpoint

value : Valuemake this SigOutput? just add the segwitVerison/outputKey?
Siglnput := sequence : 232

annex : S((28)*) (excludes the 50,s prefix)

scriptSig : (28)*

value : Value }

SigOutpu { scriptPubKey : (28)*

version : 232

inputs : Siglnput ™
outputs : SigOutput™
lockTime : Lock

SigTx :=

leafVersion : 28
TapEnv := internalKey : PubKey
branch : (2256)*

tx : SigTx

ix ;232

tapEnv : TapEnv
scriptCMR : 2256

BCEnv =

The type SigTx contains the signed transaction data. Following a design similar to BIP 143, this signed
transaction data excludes transaction inputs’ ScriptSigs and includes inputs’ Bitcoin values. The ix field is
input index whose redemption is being processed by this Simplicity program. The scriptCMR field holds the
commitment Merkle root of the Simplicity program being executed.

The SigTx type given above allows for an unbounded number of inputs and outputs. However, there are
limits imposed by the Bitcoin protocol. The number of inputs and outputs are limited to less than or equal
to 22° by Bitcoin’s deserialization implementation. Similarly, the length of SigQutput’s pubScript is limited
to less than or equal to 22 bytes. We assume all transactions to adhere to these limits when reasoning about
Bitcoin transactions.

Furthermore, we assume that for every e : BCEnv that [elix]] < |e[tx][inputs]| so that “current” index
being validated is, in fact, an input of the transaction. We also assume that the annex length, when it
exists, is strictly less than 225 (becaues it excludes the 0x50 prefix), [e[tapEnv][leafVersion]] is even, and
le[tapEnv][branch]| <128 in accordance with Taproot limitations.
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Bitcoin’s money supply is capped below 21 000 000 x 108 satoshi, therefore it is safe to assume that all
monetary values are within this bound. In particular, we assume that for every e: BCEnv that the following
inequalities hold.

0 < fold{"” (No. [o[value]]¢4)* (e[tx][outputs])) < fold ' (\i. [i[value]]¢4) " (e[tx][inputs])) < 21000000 x 108

The monad we use for the Bitcoin application provides an environment effect (also known as a reader
effect) that allows read-access to the BCEnv value defining the Simplicity program’s evaluation context. We
call this monad BC.

BCA := BCEnv—SA
BCf(a) := Ae:BCEnv.Sf(a(e))

BC is a commutative, idempotent monad with zero:
n5%a) := Xe:BCEnv.nj3(a)

pi(a) = Ae:BCEnv. ui(S(Af. f(e))(a(e)))
PEC := Xe:BCEnv.0%

We define several new primitive expressions for reading data from a BCEnv value. The language that
uses this extension is called Simplicity with Bitcoin.

version : 1 232

lockTime: 1+ Lock

totallnputValue : 1+ Value

currentindex : 1+ 232

inputPrevOutpoint : 232 S(Outpoint)

inputValue : 2321~ S(Value)

inputSequence : 232 - §(232)

inputAnnexHash : 232 - S(S(2256))

inputScriptSigHash : 232 |- §(22°9)

totalOutputValue : 1+ Value

outputValue : 232 - S(Value)

outputScriptHash : 232 |- §(2256)

tapleafVersion: 1 28

tapbranch : 28 §(2256)

internalKey : 1+ PubKey

scriptCMR : 1 |- 2256
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4.4.1.1 Denotational Semantics

55

We extend the formal semantics of these new expressions as follows.

[version]B€() := Xe:BCEnv. n°(e[tx][version])
[lockTime]B€() := Ae:BCEnv. n%(e[tx]|[lockTime])
[totallnputValue]B€() := Xe:BCEnv. 53(fold\T1s1((Al. I[value])* (e[tx][inputs])))
[currentindex]B€() := Xe:BCEnv. n°(e[ix])
[inputPrevOutpoint]B€(i) := Ae:BCEnv. n%(S(\l. I[prevOutpoint])(e[tx][inputs][i]))
[inputValue]BC(i) := Xe:BCEnv.nS(S(\.I[value])(e[tx][inputs][i]))
[inputSequence]BC(i) := Ae:BCEnv. n%(S(\.I[sequence])(e[tx][inputs][i]))
[inputAnnexHash[BC(i) := Xe:BCEnv. n3(S(\l.S(SHA256)(I[annex]))(e[tx][inputs][i]))
[inputScriptSigHash]B€(i) := Ae:BCEnv. n%(S(\l. SHA256(![scriptSig]))(e[tx][inputs][i]))
[totalOutputValue]B€() := Xe:BCEnv. n3(foldlTls1((Al. [value])* (e[tx][outputs])))
[outputValue]B€(i) := Ae:BCEnv. n%(S(\.l[value])(e[tx][outputs][i]))
JoutputScriptHash]BC(i) := Ae:BCEnv. n5(S(A. SHA256(![scriptPubKey]))(e[tx][outputs][i]))
[tapleafVersion]B€() := Ae:BCEnv. n%(e[tapEnv][leafVersion))
[tapbranch]B€(i) := Xe:BCEnv. n°(e[tapEnv][branch][i])
[internalKey]B€() := Ae:BCEnv.7%(e[tapEnv][internalKey])
[scriptCMR]B€() := Ae:BCEnv. n%(e[scriptCMR])

The sums computed for [totallnputValue]B¢

() and [totalOutputValue]B€() never “overflow” their 64-bit

values due to our assumptions about Bitcoin’s money supply.

4.4.1.2 Merkle Roots

We extend the definition of the commitment Merkle root and identity Merkle root to support the new
expressions by using the initial value of with tags of new unique byte strings.

#*(version)
#%(lockTime)
#*(totallnputValue)
#*(currentIndex)
#*(inputPrevOutpoint)
#*(inputValue)
#*(inputSequence)
#*(inputAnnexHash)
#*(inputScriptSigHash)
#*(totalOutputValue)
#*(outputValue)
#“(outputScriptHash)
#“(tapleafVersion)
#“(tapbranch)
#“(internalKey)
#*(scriptCMR)

where

SH A256Bcprcﬁx~ [76657273696f6¢]

SHA?2 56BCprcﬁx [6c6£636b54696d65]

SHA?2 56{3\§Jprcﬁx~ [746£74616c496e70757456616c7565]
SHA?2 56BCprcﬁx~ [63757272656e74496e646578]

SHA2 56BCprcﬁx [696e707574507265764£7574706£696e74]
SHA2 5613\§3prcﬁx~ [696e70757456616¢7565]

SHA?2 56Bcprcﬁx- [696e70757453657175656e6365]

SHA?2 56BCprcﬁx [696e707574416e6e657848617368]
SHA2 56{3\§Jprcﬁx~ [696e70757453637269707453696748617368]
SHA256F’VCPreﬁXv [746£74616c41757470757456616C7565]
SHA?2 56BCpreﬁx» [6£757470757456616c7565]

SHA?2 56BCpreﬁx [6£757470757453637269707448617368]
SHA?2 56?\§jpreﬁx [7461706c65616656657273696f6e]
SHA?2 56BCpreﬁx» [7461706272616e6368]

SHA256BCpreﬁX [696e7465726e616c4b6579]

_ BCprefix- [736372697074434d52]
= SHA2565

BCprefix := [563696d706c69636974792d44726166741£5072696d69746976651f426974636£696e11]
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4.5 Simplicity Programs

Ultimately, we only are interested in the side-effects of Simplicity expressions; we only care that a particular
expression does not fail when executed within the context of a given transaction. We do not care about the
output value of a Simplicity expression, nor do we provide explicit inputs to Simplicity expressions, which
are handled by witness expressions instead.

To this end, we define a Simplicity program to be a Simplicity expression of type 1+ 1. A core Simplicity
expression of this type is useless. However, a Simplicity program with witnesses, assertions, and Bitcoin,
t:1F 1, has semantics of [t]®¢() : BCEnv — 2, which is the type of predicates over BCEnv. This is exactly
what we want to use a Blockchain program for: to decide if a given set of witness data authorizes the
redemption of funds for a specific input of a specific transaction. A particular input authorizes the transaction
in the context e : BCEnv only when [t]¢()(e) = 15, and all inputs must authorize the transaction for the
transaction to be valid.

Let us look at a basic example of a Simplicity program that requires a single Schnorr signature.

4.5.1 Example: checkSigHashAll

Using Simplicity with witnesses, assertions and Bitcoin, we are able to build an expression that use Schnorr
signatures to authorize spending of funds. Using the assertion extension we are able to define a variant of
bip-0340-check called bip-0340-verify:

bip-0340-verify := assert bip-0340-check : (PubKey x Msg) x Sigh 1
such that

[bip-0340-verify]S((p,m),s) =n5() < [bip-0340-check]((p,m),s) = 1.

Next, we use the Bitcoin transaction extension to build a hashAll expression that computes a SHA-256 hash
that commits to all of the current transaction data from the environment and which input is being signed for.

hashAll : 1 |- 2256
hashAll ;= (scribe(SHA 256 [536964706c696360747920447261667411536967486173681 )
A (inputsHash A outputsHash)
; sha256-block)
A (((currentValue A (currentindex A lockTime))
A ((version A scribe(|231]32)) A scribe(]0]64))) A scribe(| 1184 |256))
; sha256-block

The hashAll expression derives a total of 672 bits of data from the environment. The initial SHA256 adds
one 512-bit block constant prefix to this, which totals 1184 bits of data. While it is not strictly necessary,
we choose to explicitly append the SHA-256 padding for this length of data.

Next we pair the commitment Merkle root of hashAll with its output. This commitment Merkle root plays
the role of the signature hash flag that is covered by the signature in Bitcoin script. It is a specification of
which parts of the transaction data is being signed, and exactly how those parts are combined to form the
digest being signed.

sigHashAll : 1 |- 2256
sigHashAll :— scribe(STA256/536964706c6963697479244472616674115369676e6174757265]

A (scribe(#¢(hashAll)) AhashAll)
; sha256-block)Ascribe(| 251 + 1024 512)
; sha256-block

The pair of the commitment Merkle root and the digest itself is 512 bits. The initial SHA256 adds one 512-
bit block constant prefix to this, which totals 1024 bits of data. While it is not strictly necessary, we choose
to explicitly append the SHA-256 padding for this length of data.

Finally, given a Schnorr public key p:PubKey and a Schnorr signature s:Sig we can create a Simplicity
program that checks the signature against the public key and above message digest.
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checkSigHashAll(p, s) : 1+ 1
checkSigHashAll(p, s) := (scribepubkey(p)AsigHashAll) A witnessgg(s)
; bip-0340-verify

The witness combinator ensures that the program’s commitment Merkle root #¢(checkSigHashAll{p, s)) is
independent of the value of the signature s. This allows us to commit to this program without commiting
to the signature, and only providing the signature at redemption time. As with normal Bitcoin transactions,
the signature is only valid in the context, e : BCEnv, of a particular input on a particular transaction during
redemption because our program only executes successfully, i.e. [checkSigHashAll{p, s)]BC()(e) = (), when
provided a witness that is a valid signature on the transaction data and index number.

4.6 Schnorr Signature Aggregation

4.7 Malleability

4.7.1 Transaction Weight
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Reminder: build jets for parsing lockTimes.

Chapter 6

Delegation

Our last Simplicity extension is the disconnect combinator. This extension allows for delegation but using
it loses some nice properties of Simplicity. The language that uses this extension is called Simplicity with
delegation. The language that uses this and all other extensions is called full Simplicity with delegation.

5:286x A-BxC t:CFD
disconnecty g.c,pst: AFB x D

Semantically, the disconnect combinator behaves similar to the composition combinator, but where the
commitment Merkle root of the expression ¢ is passed as an argument to the expression s. We extend our
formal semantics to the disconnect combinator by defining it in terms of core Simplicity as follows.

[disconnecta, ., p st]™ := [scribea p2s6(#(t)) A iden; s; take iden A drop t]™M

We can simplify the semantics as follows.
[disconnecta 5., p st]™(a) = ([takeiden A drop t]M « [s]M)(#<(t), a)

Like a witness expression, the real significance comes from the form of its commitment Merkle root. We
extend the definition of the commitment Merkle root as follows.

#¢(disconnectq p.c.pst) = SHA256Block<SHA256§$g3isconnw, (10] 256, #(s)) )

where the tag§isconnect value is a unique value.
tagSisconnect ‘= [53696d706c69636974792d44726166741f436£6d6d69746d656e741£646973636f6e6e656374] s

The commitment Merkle root only commits to the first argument, s, of a disconnect st expression. During
redemption the second argument, ¢, can be freely set to any Simplicity expression. This differs from the iden-
tity root (Section 7.2.3) which will include a commitment to both arguments. In order to place restrictions
on what t is allowed, the commitment Merkle root of ¢ is passed to s as an input. This way s is allowed to
dynamically decide if ¢ is an acceptable expression to be used here.

The primary purpose of disconnect is for delegation. In this scenario, s, validates that the commitment
Merkle root #°(t) is signed by a fixed public key. This lets a user postpone defining ¢ until redemption time,
while still maintaining full control, because any redemption requires their signature on #¢(t). For example,
a user can require that [t]J™ returns a public key. After commitment, but before redemption, the user can
delegate authorization to redeem these funds to a third party by signing the that party’s key in this fashion.

The disconnect combinator comes with some significant caveats. Because the whole program is not com-
mitted to at commitment time, it is no longer possible to statically analyze the maximum resource costs
for redemption before commitment. During redemption [t]J* could, a priori, perform arbitrary amounts
computation. Indeed we can use disconnect to commit to what are effectively unbounded loops in Simplicity
(see Section 6.2). Contrast this with the witness expression, where type inference limits the size of the witness
data, so bounds are still possible to compute.

Of course, depending on the specifics of the policy enforced by s, it may be possible to bound the
maximum resource costs for redemption in specific cases. However, that depends on the details of s and
there is no practical, universal algorithm that will work for any Simplicity expression. Using disconnect risks
creating program that ends up impractical to redeem due to costs. This danger is why disconnect is not part
of full Simplicity and it is instead considered an extension to be used with caution.
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However, it is also important to note that static analysis can be performed at redemption time. At that
point time the ¢ expression has been provided and usual static analysis can proceed. Static analysis can still
be part of the consensus protocol, even when the disconnect expression is used.

6.1 Implementing disconnect on the Bit Machine

The semantics of the disconnect combinator can tell us how to implement it on the Bit Machine. We simply
define the translation of the disconnect combinator to be the translation of its semantics.

((disconnecta g, pst) = ((scribes p2s6(#°(t))A iden; (s; takeiden A dropt)))
((disconnecta g.c.pst)eFC = (scribes p2ss(#(t))A iden; (s; takeiden A dropt))

TCO
on

{(disconnects B¢, p st))

TCO
off

((scribea p2so(#°(1)) 2 iden; (s; take iden A drop £)) 5,

We can expand out each of these definitions in turn to see their definition in terms of Bit Machine operations:

(disconnects B ¢, pst) =

(disconnecta p.c,p sthag O =
)
)

)

((disconnecta .o, p st)LCO

where

i

)

newFrame (256 4 bitSize(A))

i writeszse(#¢(t)); copy(bitSize(A))

; moveFrame

newFrame(bitSize(B) + bitSize(C))
{(s)

movekrame
copy (bitSize(B)); bitSize(B)*{(t))
dropFrame
dropFrame

newFrame (256 4 bitSize(A))

i writepzse(#°(t)); copy(bitSize(A))
; moveFrame
; newFrame(bitSize(B) 4 bitSize(C))

{shan©

moveFrame
copy (bitSize(B)); fwd(bitSize(B)); (t)5°

newFrame (256 4 bitSize(A))
writepese(#°(t)); copy(bitSize(A))
dropFrame

moveFrame

newFrame(bitSize(B) + bitSize(C))
{shan©

moveFrame

copy (bitSize(B)); fwd(bitSize(B)); (t)5°

writes1(0) = write(0); skip(0); nop
(

writes1(12)

:= write(1); skip(0); nop

2
writep2n({a, b)) := writepn(a); writezn(b)

Of course, in an optimized implementation of disconnect we would discard the skip(0) and nop operations
from the definition of writez2ss. TODO: before doing Time Resource static analysis we may need to formally
define this optimized implemenation of disconnect.
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Because the Bit Machine instructions are directly derived from the semantics of disconnect the correctness
theorems for the Bit Machine still hold.

Theorem 6.1. Given a well-typed Simplicity program with delegation t: A- B and an input a: A, then
[© > 7oA a  rh|wo A [21P1SIZB)IFm g =] o (1) — [O 1> roa"a rh|lwo " [t] (a) A [21™ < 5]
for any cell arrays ro, vy, wo, any stacks ©, 2, and any natural number m.
In particular, for a well-typed Simplicity program with delegation ¢: A+ B, we have

[\"aT A LZTPSE B (1)) (a7 [t] (a) 7]

Theorem 6.2. Given a well-typed Simplicity program with delegation t: A- B and an input a: A, then

[© > 19 aTa b wg A [7]P1ESIZBIFm q =] 5 (1N IFO — [O > roa"a rhwo " [t] (a) 4 [717 < F]
and
(O 71> roaTa - rh|wg a [21P1ESZeBITm q 2] (1) TCO o [0 > 1 |wo-T[t] (a) 4 [217 < E]

for any cell arrays ro, 74, wo, any frame r1, any stacks ©, =2, and any natural number m.

In particular, for a well-typed Simplicity program with delegation ¢: A+ B, we have

[\"aT|ALZT P E]  (NTEC — [aTa 7| [t] (@) A

6.1.1 Static Analysis of disconnect

6.1.1.1 Space Resources

Because the Bit Machine implementation of the disconnect combinator is derived from its semantics in core
Simplicity, we can derive the static analysis of the space resources used by the Bit Machine implementation
of the disconnect combintor from its definining Simplicity expression.

extraCellsBound(disconnects g ¢, pst) := extraCellsBound
(scribey p2s6(#°(t)) A iden; (s; take iden A drop t))
extraCellsBoundg}(,jnO (disconnects g ,c,pst) = extraCellsBoundrgndO

(scribey p2ss(#°(t)) A iden; (s; take iden A drop t))
extraCellsBoundsTtggC(disconnectA) B,c,DSt) = extraCellsBoundL%$S.

(scribey p2s6(#°(t)) A iden; (s; take iden A drop t))

We can expand out each of these definitions in turn:

extraCellsBound(disconnects .. pst) = 256+ bitSize(A)
+ bitSize(B) + bitSize(C)
+ max (extraCellsBound(s), extraCellsBound(t))

extraCellsBound o (disconnects g, pst)(r) =  max (r,, max (extraCellsBound o (s)(7a) + 7a,

extraCellsBound 50 () (r5)) + 75 — )
where 74 :=256 + bitSize(A)
and 7, :=DbitSize(B) + bitSize(C')
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extraCellsBoundstam(d|scon necta. p.c.pst) = {(max(ng,ry+max (ns, my, re+ms)),Ta)
where (ng, ms) := extraCellsBound5$Q(s)

and (ng, my) :=extraCellsBound 5o (t)
and 7, := 256 + bitSize(A)

and 7p:=DbitSize(B) + bitSize(C)
The correctness theorems about these analyses still holds:

Lemma 6.3. For any Simplicity expression with delegation t: A B, such that

[0 1> rolwg < E] > (t) — [0 > rhw) < E]
we have that
1. cellCount([© 1> rowo <1 Z]) = cellCount ([0’ > rj|wh < Z'])
2. cellsReq([O 1> ro|wo < E] » (t) — [©' > rp|wy < E]) <
cellCount([O > ro|wy < Z]) 4 extraCellsBound(t).

In particular for a: A and
["aT|A LIPS o (1)) — [A7a 7| t] () ]
we have that
cellsReq([n"a | [P0 - (1) —» [\ra [ (a) ")) <
bitSize(A) + bitSize(B) + extraCellsBound (t).

Lemma 6.4. For any Simplicity expression with delegation t: AF B, such that

[@on > 7ﬂon.,0|'UJon,O < Eon] » <<t>>gr?o - [Gc/)n > T(/)n,0|w(ljn,0 < E(/)n]

and

[Ooft B> Tofr, 0| Woft,0 < Zoft] > () ar © — [Oba > T ol whsr,0 < s

we have that
1. cellCount([Oon B> T'on,0|Won,0 < Eon]) = cellCount (ron,0) + cellCount([O, > ron o|whn,0 < Ebn]) and
cellCount ([Oof B> Toft, 0| Wot,0 < Eogt] ) = cellCount ([O4 B> 75, 0| w0 < Eo])

2. cellsReq([Oon > Ton,0|Won,0 < Eon) ™ <<t>>§$0 =[O B> Ton.0lWon. 0 < Ebn)) <

cellCount([BOopn > ron,0|Won,0 < Zon]) + extraCellsBoundE}?no(t)(cellCount(ron,o)) and
cellsReq([Oofr > Toft,0|Worr,0 < Zoft] > (t)ar © = [Obat > rom ol wie,o < Eba]) <
cellCount([Oogt B> Tofr,0|Wor,0 <I Zogi]) + extraCellsBound o () (0).
In particular for a: A and
[Ara—l|A [7] bitSizc(B)] — <<t>>’gffCO s [Ara—‘|r[[t]] (a)‘l A]
we have that -
cellsReq([n"a7| [7] P57 B)) e (N TEC — [\Ta | [t] (a) 71 ]) <

bitSize(A) + bitSize(B) + extraCellsBound 5P (¢)(0).

Lemma 6.5. For any Simplicity expression with delegation t: AF B,

extraCellsBoundEfno( ) = interp” €O (extraCellsBound 553, (1)).

Corollary 6.6. For any Simplicity expression with delegation t: AF B and a: A such that

["aT|A LIPS o ()G — [0 [t (@) 7]
we have that
cellsReq([A"a 7| [?]P1tS12e(B)] o (1) TEC — [\Ta 7|7 [t] (a) 7 A]) < bitSize(A) 4 bitSize(B) + max (n, m)
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where (n, m):=extraCellsBound %55 (t).

6.2 Unbounded Loops

While the primary purpose of disconnect is for delegation, the construct can be used to create what is
effectively an unbounded loop in Simplicity. Given a Simplicity expression, t: A+ A 4+ B, we can build a
commitment Merkle root to an expression that will repeatedly recursively evaluate [¢]: A— A+ B on an input
A until a B value is returned.

Consider a Simplicity expression t: A+ A+ B, and a continuation k: A x 2256 B. We define loopBody tk:

loopBody tk: A x 2256 B
loopBodytk := taketAlIH
; case (disconnect (assert (IlH A OH ; eqp2s6) A IH) k;1H) OH

Let us consider the semantics [loopBody tk]™. Given inputs ag: A and h:22°¢, then in the first clause in
the definition of loopBody we have

[take t A IH]M (ag, h) = oM ([t] M (ao), 7™ (h)) : M((A + B) x 2256).

It evaluates [t]*!(ag) and pairs that with h. For those contexts in which [t]*(ao) doesn’t fail, it results
in either an o(a1): A+ B for some a;: A, or c®(b): A+ B from some b: B. Let us consider the easy case,
oB(b), first. The remainder of loopBody continues as follows.

[case (disconnect (assert (OIH A IH ; eqz256) A OH) k; IH) OH]M (B (b), k)
= [OH]™ (b, h)
= ()
Whenever [t]™(ap), “returns” a o®(b) value, that b value is the “result” of [loopBody tk], and & is ignored.

Now let us consider the case when [t]*(ag) results in an o%(a;) value. In this case the remainder of
loopBody continues as follows.

[case (disconnect (assert (IIH A OH ; eqz2se) A IH) k; IH) OH]M (a¥(ay), h)
= [disconnect (assert (IIH A OH ; eqz2se) A IH) k; IH]M (aq, h)
([IH]M « [disconnect (assert (IIH A OH ; equ2s6) A IH) k]™M) (a1, h)
([IH]M «~ [take iden A drop k]M « [assert (IIH A OH ; equ2ss) A IH]M)(#(k), (a1, b))
= ([takeiden A drop k; IH]™ « [assert (IIH A OH ; eqas6) A IH]M) (#5(k), (a1, h))
([drop k]™M < [assert (IIH A OH ; eqpass) A IH]M) (#(k), (a1, h))

For the first part we have
[assert (IIH A OH ; eqpase) A IH]M (#(k), (a1, h))

= 13" ([assert (IH A OH ; equ2s6) A H]S(#(K), (a1, h)))

= 1§"(¢([assert (IIH & OH ; eqzzso) [3(#(k), (a1, h)), 1% (a1, h)))

= 8" (¢([IIH & OH ; equase] (#°(k), (a1, b)), n° (a1, h)))
§"(¢5([easasol (b, #°(k)), 0 (a1, 1))
We know that [eqmese]|(h, #°(k)) = 1o =n"() if and only if h=#°(k) and that [eqpess](h, #°(k)) =05 =07 if
and only if h=£#°(k). When h #+ #°(k), then

[assert (IIH A OH ; eqpase) A IH]M ({ay, h), #°(k)) = p™M

= L3

and the whole loopBody expression fails with a 07" result. However, when h = #¢(k) we have that

[assert (IH A OH ; eqp2s6) A IH]M ((aq, h), #°(k)) = ™ (), (a1, h))
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and we can continue with
[drop K[*((), (a1, h)) = [k]* (a1, h)
and the result is that
[case (disconnect (assert (IIH A OH ; eqp2s6) A IH) k; IH) OH)M (oL (ay), h) = [k]M (a1, h).

Recapping, when [t]*(ao) results in an o%(a;), then [loopBody tk]* (ag, h) evaluates the continuation
[k]* (a1, h) under the condition that the h value matches the commitment Merkle root of k, i.e. h=#¢(k),
and fails when h # #°(k).

Now let us consider loopBody’s commitment Merkle root, #¢(loopBody tk). Because of the use of discon-
nect, this commitment Merkle root is independent of the expression k.

Lemma 6.7. For allt: AF A+ B and k: A x 2255 B, #¢(loopBody t k) = loopBodyCMR(t) where

100pBodyCMR (t) := SHA256p100( SHA256148™, (#(take ¢ A IH),
SHA 256100 (SHA2561554, (loopTail, #°(OH)))) )

and

loopTail := SHA256p10c( SHA25613™, {
SHA256BIOCk<SHA256§€‘Ig§isconnect, (10] 256, #(assert (IIH A OH ; eqpess) A IH)) ), #(1H) ) ).

While the commitment Merkle root of loopBody tk does not restrict what the continuation k is, the second
component of the input to the expression does, since h = #¢(k) is required for evaluation to be successful.
We can build a new expression that forces the continuation & to be loopBody ¢k itself:

looptk: AFB
looptk := iden A scribe(loopBodyCMR(?)); loopBody tk

Again, loop’s commitment Merkle root is independent of the continuation k:

Lemma 6.8. For allt: AF A+ B and k: A x 2255 B, #(loop tk) =loopCMR(t) where
loopCMR(t) := SHA256310Ck<SHA256}€,gS°’"", (#<(iden A scribe(loopBodyCMR(t))),loopBodyCMR(t)) ).

By design, [loop tk]*(ag) passes loopBodyCMR(t) as the h value to loopBody ¢k, and the result can
only be successful when #(k) = loopBodyCMR(t) = #(loopBody tk’) for some further continuation k’ :
A x 226 - B. Furthermore, the same h value, is passed again into [k]*(a, h) = [loopBody tk’]M (a1, h),
and that result can only be successful when #°(k’) = #°(loopBody tk") for some yet further continuation
k": A x 22561 B,

This process looks endless, making it impossible to redeem any loopCMR(t) commitment. However we
can end this chain by using

loopEnd t: A x 2256 B
loopEndt := taketAIH
; assertr loopTail OH

The loopEnd ¢ expression replaces the case combinator in loopBody ¢ with an assertion that [t]*(a,,) results
in a o®(b). By construction #¢(loopEndt) =loopBodyCMR(t), so that it can be used as a final continuation
to terminate our chain of expressions in loop tk.

Tying everything together, we have a commitment Merkle root, loopCMR(¢), that makes a commitment
to a subexpression that can be redeemed by a subexpression of the form

loop t (loopBody ¢ (loopBody ¢ (...(loopBody ¢ (loopEnd t)))))
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where loopBody is repeated the number of times necessary for [t]*(a,) to result in a o®(b) value in the
particular redemption context. Note that while it appears that ¢ is duplicated n times, the subexpression ¢
will be shared in a DAG representation of this expression, avoiding a large of a blow up in program size.

We have repeated the same expression ¢ in during redemption in the above example; however, if the ¢
expression contains witness subexpressions, those witness values could be different for each instance of ¢
shown above. Thus, more generally, the commitment can be redeemed by

loop to (loopBody ¢ (loopBody t5 (...(loopBody t,,—1 (loopEnd ¢,)))))

when #(¢;) =#¢(t) for all i. For example, this construction would let you build a Simplicity expression that
takes an arbitrarily long stream of SHA-256’s 512 bit data blocks and computes the SHA-256 compression
function composed over this stream of blocks by putting each data block into a witness expression within the
different ¢;’s.

6.2.1 Adding a loop primitive to Simplicity?

The purpose of the above derivation of the loop construction is to understand the theoretical expressiveness
that Simplicity’s delegation extension adds to the language. The loop construction proves that the delegation
extension brings Simplicity’s expressiveness beyond what is possible with full Simplicity without delegation.

While it is, in principle, possible to use the loop construction in Simplicity applications (that support the
delegation extension), the loop construction is subject to all the same problems that using delegation entails:
One cannot bound the computation costs of redemption at commitment time using general purpose static
analysis. One might be able to perform an ad-hoc analysis on a particular program in order to bound the
computation costs, but there are programs you can write in Simplicity with delegation where no upper bound
on redemption costs exists. As with disconnect, using loop risks creating program that ends up impractical
to redeem due to costs. Therefore we strongly recommend against using loop in practice.

If, contrary to our expectations, the loop construction ends up very popular, we could amend the specifi-
cation of Simplicity to add native looptk and loopEnd ¢ combinators to Simplicity such that their commitment
Merkle roots that depends only on ¢, and with rules that require the continuation k£ be one of the two loop
constructors (with the same ¢ parameter). This would somewhat reduce the overhead of using unbounded
loops.

6.3 Universal Signature Hash Modes

In Section 4.5.1 we defined a Simplicity Program for a single signature check with over fixed hashAll transac-
tion digest message. However, in Bitcoin Script, the user can select among a set of multiple different signature
hash modes. Moreover, this choice is made at redeption time rather than at commitment time. We could
replicate this behaviour by writing a Simplicity program that, given a signature hash flag value defined by
a witness node, selects amongst a small variety of transaction digest expressions to use. However by using
disconnect, we can provide the user with an unlimited choice of signature hash modes.

Below we define sigHash ¢ where ¢ : 1+ 2256 is a Simplicity expression that defines some signature hash
mode.

sigHash ¢ : 1 |- 2256

sigHash t - SHA2561[{5/3696d706c69636974792d44726166741f5369676e6174757265] )

= scribe(
A disconnectident
; sha256-block) Ascribe(|2°1 + 1024 512)
; sha256-block

This expression can be composed with pubkey key and signature values to form a Simplicity program that
supports universal signature hash modes.

(checkSigHasht)(p,s) :1+1
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(checkSigHash t)(p,s) := (scribepubkey(p)AsigHasht) A witnessgig(s)
; bip-0340-verify

The sigHash t expression is similar to the definition of sigHashAll from Section 4.5.1. The difference is that
we have replaced the (scribe(#¢(hashAll)) AhashAll) subexpression with disconnect ident. When t is hashAll,
these two expressions have identical semantics:

[disconnect iden hashAll]EC()
= ([scribe(#¢(hashAll)) A iden; iden; take iden A drop hashAllB€)()
[takeiden A drop hashAll[BC «— nBC « [scribe(#¢(hashAll)) A iden] B€)()
[takeiden A drop hashAll[BC « [scribe(#<(hashAll)) A iden] B€)()
[takeiden A drop hashAll]BC «— nBC o [scribe(#¢(hashAll)) A iden] ) ()
[takeiden A drop hashAll]BC o [scribe(#¢(hashAll)) A iden] ) ()
= [takeiden A drop hashAll[BC([scribe(#¢(hashAl)]{), ())
= ¢((nBC o [scribe(#¢(hashAll))])(), [ hashAlJBC())
= ¢ {[[scribe(#¢(hashAll))]BC(), [ hashAll|BC())
= [scribe(#(hashAll)) AhashAlIJBC()

~ o~~~

The difference between the two expressions is that the subexpression disconnectiden hashAll does not commit
to using the hashAll transaction digest. During redemption any alternative expression ¢:1 2256 for creating
a digest can be used instead. Because #°¢(t) is covered by the digital signature proveded to checkSigHash ¢,
the signature fixes the digest expression and it cannot be altered by a third party while still satisfying the
bip-0340-verify, with the exception of any witness values or disconnected expressions within ¢. This allows users
not only to simulate any of Script’s signature hash flags, but to create and use any novel signtature hash
mode that they desire.

6.3.1 Side-Effects and Delegation

While the primary purpose of the ¢ : 1 2256 parameter in checkSigHasht is to use the Bitcoin primitives (or
more generally the primitives for the specific blockchain application being used) to construct a cryptographic
digest, the ¢ parameter can additionally include assertion side-effects. For example, one could include a
condition that an absolute or relative timelock meets some specific threshold, without the signature covering
any specific timelock value in the digest.

Another possibility is to have the expression return a trivial value (e.g. |0]256) and have ¢ itself contain
its own (checkSigHash t'){p’, s’} program for a different public key and its own digest expression ¢’. The
side-effect of the schnorrAssert within this inner checkSigHash expression essures that the whole Simplicity
expression is only successfull if the signature s’ is valid for the public key p’ and for the transaction digest ¢’.
This process lets you delegate control to another public key by creating a signature with the orginal public
key that covers such a delegaton mode for a specific public key, p’. Further conditions can be added as to
such a delegation such as checks to limit the amount of funds being spent while ensuring the change is send
back to a fixed address. Such delegation can be recursively applied, but could also be restricted by delgating
to (checkSigHashAll)(p’, s’) or to some other fixed set of signature hash modes instead.

Using (checkSigHash t)(p, s) as a standard Simplicity expression gives users maximal control over how



they are able to later redeem their funds.

Chapter 7

Type Inference and Serialization

In this chapter we will define a representation of Simplicity expressions as an untyped Simplicity DAG
where subexpressions have explicit sharing. We will define how to perform type inference and reconstruct
a Simplicity expression from this Simplicity DAG and we will define a binary serialization format for these
Simplicity DAGs.

7.1 Explicit Simplicity DAGs

In this section, we will introduce an DAG representation for (untyped) Simplicity expressions with explicit
sharing of subexpressions. A Simplicity DAG is a topologically sorted list of Simplicity nodes. Each Simplicity
node is a combinator name with a payload of references to earlier nodes in the list, or a payload of witness
data, etc.

First we enumerate the possible values for Simplicity nodes.

‘iden’ : Node
‘unit’ : Node

i:IN
‘injl" i : Node

i:IN
‘injr' i : Node

i:IN
‘take’ 7: Node

i:IN
‘drop’i: Node

1:IN j:N
‘comp’ 75 : Node

i:IN  j:NN
‘case’ij : Node

i:IN  7:N
‘pair'ij : Node

69
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i:IN 7N
‘disconnect’ 7 : Node

v:2*

‘witness' v : Node

b 2512
‘fail’ b: Node

b : 2256
‘hidden’ h: Node

In addition to the above, every primitive name is a Node. This set of primitives is application specific.
For Simplicity with Bitcoin, we have 'version': Node, ‘lockTime': Node, etc.

The single quotes around the Node names is there to distinguish them from their corresponding Simplicity
combinator. Notice that there is not a perfect 1-to-1 relationship between Node names and Simplicity
combinators. In particular, there are no Node names for the assertl and assertr combinators. Instead we have
one ‘hidden’ Node name that will be used in conjunction with ‘case’ to represent assertions.

A Simplicity DAG is represented as a topologically sorted, (non-empty) list of Nodes. (You may wish to
review Section 2.2.2 to recall our notation for list related operators.)

DAG :=Node™*

Each node has between 0 and 2 references to nodes found earlier in the list represented by a relative offset.

ref(‘iden’) = e
ref(‘unit’) = €
ref(‘injl’ i) := i<e
ref(‘injr'i) = i e
ref(‘take’?) = i<e
ref(‘drop’i) = i<e
ref(‘comp’ij) = i4j dc
ref(‘case’ij) = i€ j e
ref(‘pair'ij) = i4jde
ref(‘disconnect’ ij) = i€ j ¢
ref(‘witness' v) = €
ref(‘fail'b) := e
ref(‘hidden' h) := €
ref(‘version') := €
ref(‘lockTime') := ¢

In order for a list I: DAG to be well-formed, it must satisfy two conditions. Firstly, we require that references
only have offsets that refer to nodes occurring strictly earlier in the list:

V(k,a) € indexed(l). Vi €ref(a).0<i <k

Secondly, when ‘hidden’ a node is a child, the parent must be a ‘case’ node, which in turn can only have at
most one ‘hidden’ child node.

V(k,a) € indexed(l). Vi € ref(a). Vh.l[k — i] = n°(‘*hidden’ h) = 3 j; jo.a = 'case’ j1 jo
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and
V(k, ‘case’' i j) € indexed(l). Vhiha.l[k — i] # 7°(‘hidden’ h1) V I[k — j] # n°(‘hidden’ hs)

Theorem 7.1. If a list : DAG s well-formed, and lo: DAG is a prefix of | (i.e. there exists an ly such that
n3(lo)-li=n%(1)) then ly is also well-formed.

Note that technically the root of a well-formed DAG, [[|l| —1], can be a ‘hidden’ node.

7.1.1 Type Inference

Simplicity DAGs, as described above, do not have type information associated with them. Before we can
interpret a Simplicity DAG as a Simplicity expression we must first perform type inference. Type inference
can be done by solving unification equations of typing constraints to compute a most general unifier.

A unification equation is written as S =T were S and T are Simplicity type expressions with unification
variables, where unification variables are denoted by Greek letters «, (3, v, etc.

Given a well-formed I: DAG, we associate with each index in the list, 0 <k < |l|, a pair of fresh unification
variables ag, B that are to be instantiated at the inferred source and target types of the expression for
the node at index k. Each different node occurring at an index k& in the DAG [ implies a set of unification
equations over these type variables, possibly requiring further fresh unification variables.

= {ar= B}
)= {B=1}
i) = {ar=ag—i, Bk =Pr—i+7}
) = {ar=ag—i, B="+ Br—i}
cony{k, ‘take'i) = {ar=ar_; X7, Bk=Br_i}
/)
)
)

con;(k, ‘iden")
cong (k, 'unit

cony(k, ‘injl’" ¢ where 7y is fresh

cong (k, ‘injr'¢ where 7y is fresh
where 7 is fresh
cony(k,'drop'i) = {ar=7v X ag—i, O = Pr—i} where «yis fresh
= {ar=0ak—i, fr—i=ar—j, B =Pr—;}
= {ar=(7+12) x 3}

U{ak—i =71 X 73, B = Br—i|Vh.l[k — i) # n°(‘hidden’ h)}

U{ak—; =2 X 73, Bk = Br— j|Vh.I[k — j] % n°(‘hidden’ h)}

where 71, 72, 3 are fresh

con;(k, ‘comp’ij

con;(k, 'case'ij

cony (k, ‘pair’ i j
con; (k, ‘disconnect’ ¢ j

con; (k, ‘witness' v

con;(k, 'hidden’ h

= {ap=ap—i=ar—j, B =0Fr—i X Br—;}

{ag—i=ap x 220 Br_ =y xag_j, B=" % Bp—;} where  is fresh
{}
{}

{

= {Ozki]l,ﬁk£232}
= {Oéki]l,ﬂkiLOCk}

con; (k, 'version

)
)
)
cony(k, ‘fail' b)
)
)
>

con;(k, ‘lockTime'

The rest of the constraints for the other Bitcoin primitive names follows the same pattern of adding con-
straints for the o and [y variables to be equal to the input and output types of the corresponding primitives,
all of which are required to be concrete types.

Notice that the unification variables for ‘hidden’ nodes are unused. When ‘hidden’ nodes occur as children,
their parent must be a ‘case’ node and the constraints for ‘case’ nodes specifically excludes references to
their ‘hidden’ children’s unification variables. Thus when a ‘case’ node represents an assertion, the only type
constraints needed for an assertion are added.

Using the con; function, we can collect all the constraints that need to be solved for a well-formed
(untyped) Simplicity DAG, I: DAG, to be well-typed:

con(l) := fold”(con; (indexed(1)))
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Depending on the application there may be further constraints imposed on the root of the DAG. For example,
if the DAG is supposed to represent a Simplicity program, which has type 1 F 1, we would also add the
constraints {ca;—1 =1, Bj;j—1 =1}

A substitution ¢ is a function from unification variables to Simplicity type expressions with unification
variables. A substitution, ¢, is a ground substitution if for every unification variable «, the Simplicity
type ¢(a) has no unification variables. A substitution, ¢, applied to Simplicity type expression S, is a new
Simplicity type expression S|c with each unification variable « replaced by ¢(«):

alg = <(a)

1. =1
(S+T)|< = S|c+T|<
(SxT)|¢ := S|xT|¢

A substitution 7 can also be applied to other substitutions yielding a composite substitution:
<Ir(@) =@l

A substitution ¢ is an instance of another substitution ¢; whenever there exists a substitution 7 such that
¢1=¢a|+. If ¢; and ¢y are both instances of each other then they are a-equivalent.

A unifier for a set of constraints C' is a substitution ¢ such that for every constraint (S=17") € C' we have
S|¢=T|c. The most general unifier for a set of constraints is a unifier ¢ for those constraints such that every
other unifier ¢’ for those constraints is an instance of . The most general unifier is unique up to a-equivalence.

Once all the constraints have be gathered we can perform first-order unification to solve for the most
general unifier ¢. The most general unifier, ¢, may still contain free variables. To eliminate these free variables,
we define an instance of ¢ that sets all remaining free variable to the unit type 1. We call the resulting
ground substitution ¢p:

S1:=6|xry.1

Notice that if ¢ and 7 are a-equivalent then ¢y =74. In particular, this means that the ground substitution
1 is independent of which choice of ¢ we compute as the most general unifier.

It is possible that there is no unifier for the given collection of constraints. In such a case the Simplicity
DAG is ill-typed, (or does not meet the type constraints imposed by the application) and does not represent
a well-typed Simplicity expression.

First-order unification can be preformed time linear in the size of the constraints [7], although in practice
quasi-linear time algorithms using the union-find algorithm are simpler and may perform better on the size
of problems one is likely to encounter. Our set of constraints is linear in the size of the DAG thus we can
compute the most general unifier in linear (or quasi-linear) time.

It is important to note that these (quasi-)linear time computations rely on having sharing of (type)
subexpressions in the representation of the substitution. If you flatten out the representation of the substi-
tution, for example by printing out all the types, the result can be exponential in the size of the input DAG.
Fortunately, all of the computation required for Simplicity’s consensus operations, can operate without
flattening the representation of the inferred types.

Also notice that our set of constraints imply we are doing monomorphic type inference, meaning that
any shared subexpressions are assigned the same type. Sometimes we will require multiple instances of the
same sub-DAG within a DAG so that different types can be inferred for the subexpressions corresponding
to those sub-DAG. As a trivial example, a DAG will often have multiple ‘iden’ nodes, one for each type that
the iden combinator is be used for. A DAG should never have sub-DAGs that end up with the same pair of
inferred types and will be disallowed by anti-malleability rules (see Section (reference|T0DO)).

We could remove duplicate sub-DAGs entirely by using polymorphic type inference instead. Polymorphic
type inference is DEXPTIME-complete [?]. However, because removing duplicated sub-DAGs can produce
exponentially smaller terms it might be the case that polymorphic type inference is linear in the size of the
DAG with duplicated sub-DAGs that are needed for monomorphic type inference. If this is the case, we
could switch to polymorphic type inference without opening up DoS attacks. Whether this is possible or not
is currently open question for me.
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7.1.2 Reconstructing Simplicity Expressions

Given a well-formed Simplicity DAG, I: DAG, that does have a substitution ¢ yielding the most general unifier
for con(l), we can attempt to synthesize the Simplicity expression that the DAG represents by recursively
interpreting the DAG as syn(l) : c1(oys—1) F ca(/B);)—1) where

syn(l) :=syn(l, |I] =1, {[[I] = 1])

and where
syn(l,k,0% = L
syn(l,k,n5(‘iden’)) := idenc(ay)
syn(l,k,n (umt')) = unitg,(g,)
syn(l,k, n3(injl"4)) = injly(ap),B.csyn(l, k—i, [k —1]) where B+ C' = ¢1(0k)
syn(l, k,n (anr i) = injre,(ay),B,csyn(l, k —i, [k —i]) where B 4+ C = ¢1( k)
syn(l,k,n5(‘take’i)) = takea p, cy(g,) syn(l, k —i,1[k —1]) where A x B =¢p(ag)
syn(l,k,n5('drop’)) := dropa, p e (s, syn(l, k —i,1[k —i]) where A x B =¢p(ag)
syn(l,k,n5(‘comp’ij)) = compe,(an) ca(Br_i),ea(r) YR,k — i, [k —i])syn(l, k — j, I[k — j])
syn(l,k,n%(‘case’ij)) := syncase(l,k,k—i,l[k —i],k—j,1[k— j])
syn(l, k, n5("pair' i5)) = paitg(a,) ca(Brs)sa(Bu_y) Syl k—i, [k —i])syn(l, k — j,1[k — j])
syn(l, k, n°(‘disconnect’ij)) := disconnecte,(a,),B,C ca(Bi_ ) SYN(, k — i, U[k —i]) syn(l, k — j, [k — j])

where B x C' = ¢y (B —s)

syn(l, k, n3(‘witness' v)) = witness,(a,), e (5,) inflate(sa(Bx), v)

)
syn(l, k, n5(‘fail'b)) := faile, (o), (81) b
syn(l, k,n5(*hidden' h)) = L
)
))

syn(l, k,n5(‘version')) := version

syn(l, k, n5(‘lockTime’)) := lockTime

The case and witness clauses require special consideration which we define below. The syn function never
encounters a ‘hidden’ node when [ is well-formed except when 3h.1[|I| — 1] = 75(‘hidden’ k), in which case the
entire expression itself is hidden. These ‘hidden’ nodes are only used by the syncase function.

7.1.2.1 syncase

The syncase function constructs case expressions as well as assertl and assertr expressions. Assertion expres-
sions are produced when hidden nodes are passed as parameters. However both branches of a case expression
cannot be hidden when [ is well-formed.

syncase(l, ko, k1, n5(‘hidden’ hy), ko, n5(‘hidden’ ha)) = L

syncase(l, ko, k1,11, k2, n°(‘hidden’ hy)) := assertls. B, (k) syn(l, k1, n1) ha
where ¢1(ag,) =(A+ B) x C
and when Vhy.ny # n°(‘hidden’ hy)

syncase(l, ko, k1, n°(‘hidden’ hy), ko, ng) := assertra B c (i) M1 syn(l, ka, no)
where ¢1(ag,) =(A+ B) x C
and when Yha. na # 1°(‘hidden’ ha)

syncase(l, ko, k1,11, ko, n2) = CaseA B,C cu(frg) syn(l, k1, n1) syn(l, k2, na)

where ¢1(ag,) =(A+ B) x C
and when Vhy, ho. n1 # 1n°(‘hidden’ h)
Ana# n3(‘hidden’ ho)
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7.1.2.2 inflate

A ‘witness' node does not hold a Simplicity value, like the witness combinator requires. Instead it has a bit
string that encodes a Simplicity value. The inflate function performs a type-directed decoding of this bit
string to reconstruct the witness value. The inflate function is defined recursively via the inflation function.
These two functions are defined below.

inflation(1,v) := ((),v)

inflation(A + B,0, 4v) := (ok pa,v’) where (a,v") = inflation(4, v)

inflation(A+ B, 1, 4v) := (o4 gb,v’) where (b, v) = inflation(B, v)
inflation(A+ B,e) = L

inflation(A x B,v) := {{(a,b),v") where (a,v’) = inflation (A4, v)

and (b, v"") = inflation(B, v’)

inflate(A,v) = a when (a, €) = inflation(A, v)

inflate(A,v) = L otherwise

As part of DoS protections and malleability protection, we want to prevent witness data from being inflated
with unused bits. Notice that that in the definition of syn(k, ‘witness’ v), the inflate function is passed
the inferred type ¢1(0k). Using the inferred type ensures that the witness data only contains data that is
nominally useful by the surrounding Simplicity program. Furthermore, the inflate function fails unless it
consumes exactly all of its bit string argument. This prevents ‘witness’ data from being padded with extra,
unused bits.

7.2 Serialization

In this section, we define a binary prefix code for serializing Simplicity DAGs. Because prefix codes are self-
delimiting, they provide a convenient framework for creating serialization formats. Compound structures
can be serialized by concatenation of prefix codes of its substructures.

Our serialization of Simplicity DAGs can be used as part of a network protocol or for writing data to a
file. The program size metric (see Section (reference|TOD0)) computed for terms can be used to bound to the
length of this binary encoding. However, specific binary encodings, such of this one, do not form a consensus
critical aspect of Simplicity’s design and can be substituted with other encodings that have similar suitable
bounds. Appendix C describes an alternative, byte-based, binary encoding.

7.2.1 Serialization of Bit Strings and Positive Numbers

In this section we present a recursive Elias prefix code for bit strings and positive natural numbers. Our
code for positive natural numbers it has properties similar to the Elias omega coding, but is a has a simple
recursive functional definition and some other nice properties.

First, for any n: N with 0 <n, we define |n ]z« to be a bit string for n, written in binary, with the leading
15 chopped off.

|12+ = [z
|27 ]2 |72+ [0]2
[2n4+1]s+ = |n]2[112

For example,

[1]2- = [12
12]2« = [0]2
3]0 = [11»
[4]

o« = [00]2

7]z = [1115
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This binary code is not a prefix code. To make a prefix code we define mutually recursive function on bit
strings and positive numbers. This encodes a bit string by prefixing it with a tag indicating if the bit string
is null followed by the bit string’s length when it is not null. It encodes a positive number, n, by encoding
its associated bit string |n |z~

05,7 = [0],
)T = i
l_n—l = anJZ*—l

The table below illustrates this prefix code on a few inputs.

1" = T[' = [0]s

27 = T[ol,' = [100]»

37 = T[1l,' = [101]»

47 = T[00],7 = [110000],

57 = T[01],7 = [110001],

67 = T[10],7 = [110010],

77 = T[11],7 = [110011],

r81 = T[000],7 = [1101000],

M157 = T[111],"' = [1101111],

r167 = T[0000],7 = [11100000000],
617 = (1137 = [11101111]5-[1]5°

r9167 —  T[0]3%7 = [111100000000],-[0]3°

Notice that this prefix code preserves numeric ordering as lexicographical ordering. If n and m are
positive numbers then n <m«&"n'<X"m' where < is the lexicographical ordering on bit strings. When you
are parsing a code for a positive number that you know from context is not allowed to exceed some bound b.
Then during parsing you can abort as soon as the string being parsed lexicographically exceeds "b'. In some
cases you can abort parsing after only a few bits. For example, if from context you know that a the positive
number must fit in a 64-bit integer (i.e. it is not allowed to exceed 264 — 1), then you can abort parsing as
soon as the bit string being parsed lexicographically meets or exceeds the prefix [1111001].

7.2.2 Serialization of Simplicity

In this section we describe a fairly direct serialization for Simplicity DAGs. First, we provide a prefix code
for Node values stripped of witness data:

Tcomp'ij' = [00000]p¢ 157
Mcase'vj ' = [00001],-7¢7-"
Tpair'ij7 = [00010],-7i "

Mdisconnect’'ij7 = [00011],-M¢7M 57

|

|

J
J
J
J

Cinjl'i7 = [00100] 574"
Tinjr'd7 = [00101]57i
Ttake's' = [00110],-7¢"
T'drop’i!' = [00111],-T4"

Tiden'? = [01000],

Tunit'? = [01001],

Tfail' b7 = [01010]-(p* o (:3-)* 0 BE) ()
Thidden’ A7 = [0110],-(p* o (13+)* 0 BE)(h)
Twitness'v' = [0111],
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We define a witnessData(l) : 2* function for DAGs [: DAG that serializes the values held by the witness data:

witnessDatum(‘witness'v) := v

witnessDatum(n) = ¢ when Vv.n # ‘witness'v
witnessData(l) := " p*(witnessDatum*(n°(1)))”

For serialization of DAGs, I: DAG, which is a non-empty list of Nodes, we have a couple of serialization
options.

stopCode(l) := p*((A\z."27)*(n(1)))- [01011] p-witnessData(l)

The stopCode above serializes the list of nodes using the prefix code for nodes and terminating the list with
the code [01011]5, which has been reserved for use as an end-of-stream marker.

lengthCode(1) :="|I| ™ p*((A\z."27)*(n°(1)))-witnessData({)

The lengthCode above prefixes the serialization of DAG with the number of nodes, followed by the list of
nodes serialized with the prefix code for nodes. Both stopCode and lengthCode are prefix codes.

The last alternative is to directly use p*((Az."27)*(n®(1))). This is suitable when, from the context of
where the code is used, the number of nodes or the length of the code in bits is already known. This variant
is not a prefix code.

Which serialization format is best depends on the context in which it is being used. Users should choose
the most suitable one for their application.

Notice that the witnessDatum does not use a prefix code, and the witnessData simply concatenates
values without separating them with deliminators. This works because during deserialization, type inference
does not depend on witness data, and once type inference is complete, we can use the inference types of
witness nodes to decode the witness values in sequence. In fact we could even drop the prefix-code use in
the witnessData code itself, however we chose to put the block of all the witness values into a prefix-coded
list so that one doesn’t need to perform type inference to figure out where the the witness data ends.

7.2.2.1 Serialization of Word Jets

A prefix of [11] is reserved for computational jets which are given in Appendix B. A previx of [10] is used
with a special enoding for jetting scribeﬂﬂzn(v) expressions, which we call word jets.

n:IN v: 22"
‘word’ nv : Node

ref(‘'word' nv) = €
cony{k, ‘word' nv) = {ap=1, B =22"}
syn(l, k, n5(‘word’ nv)) :

Tword'nv™ = [10]z"n+ 1—‘~L%in(v)

jet(scribey 52n(v))

where L%in(fu) formally converts a word value v: 22" to a bistring:

15:(b) = n3(b)

2n+ 1 on 22n

e (z,y) = 15 (@)5 (y)

7.2.3 Identity Merkle Root

The DAG encoding for Simplicity expressions allows for sharing of subexpressions, however nothing in the
previous section mandates sharing of subexpressions. Without manditory sharing would have a malleability
vector where a third party could unshare every subexprssion, vastly inflating the weight of a transaction.
To enforce manditory sharing we will introduce the notion of an identity Merkle root and require that every
sub-DAG have a unique such identity.
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The identity Merkle root of a Simplicity expression ¢ is defined by #%(¢). This value is the same as #°(t)
except in the presence of witness and disconnect combinators which are defined as follows:

#"(witnessqy pb) := SHA256BlOCk<SHA256§€,ga“"eSS, (SHA2565(deflates(b)), #¥(B)) )
#'(disconnecta g ¢ pst) = SHA25GBloCk<SHA256}€,g3i“°""e°‘, (#i(s),#i(t)>>

The unique tags used are

taga,itness 1= [53696d706c69636974792d44726166741f4964656e746974791£7769746e657373] s
tagfjisconnect 1= [53696d706c69636974792d44726166741£4964656e746974791£64697363616e6e656374] »s

and deflatey : A — 2* is the inverse of inflate:

deflates(()) = e
deflates + 5(0% p(a)) = 0, «deflates(a)
deflateat p(of 5(b)) := 1, «deflates(b)

deflates « ({a, b)) := deflates(a)-deflatep(b)

Lemma 7.2. For all a: A, inflate( A, deflates(a)) =a.

One of our anti-malleability requirements is that non-hidden nodes in a DAG synethesis are terms with
unique identity Merkle root, input, output type triples. We also require that hidden nodes are unique.

Definition 7.3. We say a well-formed Simplicity DAG | :DAG, that has a substitution ¢ yielding the most
general unifier for con(l), has mazimized sharing when
1. for all k1 and ko such that
a) ki,ka<|l] and
b) I[k1] # n5(‘hidden’ hy) and l[ks] # n°(‘hidden’ hy) for any hy and hs, and
¢) salok,) =<a(ar,) and a(Br,) =<a(Br,), and
d) ##'(syn(l, k1, 1[k1])) = #'(syn(l, ka2, [k2]))
then k1 =ks, and
2. for all k1 and ko such that
a) ki, ka<|l| and
b) 1[k1] =n3(‘hidden’ h) and I[ks) = n°(‘hidden’ h) for some h
then ki1 =ko.






Chapter 8
Coq Library Guide

The Coq development for Simplicity is found in the Coq/ directory. There are two subdirectories: Simplicity/

contains modules related to Simplicity, and the Util/ directory has a few modules dedicated to other
structures that are not by themselves specific to Simplicity, including a short hierarchy for commutative
and idempotent monads. We will focus on the contents of the Simplicity/ directory.

8.1 Simplicity Types

The Coq development for Simplicity begins with the Simplicity/Ty.v file. This contain the inductive
definition of Ty which defines Simplicity’s type expressions. The tySem function interprets Simplicity types
as Coq types, and it is declared as coercion. The module also provides standard arithmetic notation for
Simplicity’s sum and product types.

The tyAlg is a record collecting the operations needed to define structurally recursive functions for Ty.
These are known as F-algebras [?], and it is one of the inputs to tyCata that defines catamorphisms from
Ty to another type.

8.2 Simplicity Terms

There are two different ways of representing of Simplicity terms defined in Coq. One representation is an
“initial” representation, as an inductive type. The other representation is a “final” representation, based on
algebras.

Generally speaking the “initial” representation works well when reasoning about Simplicity term using
induction to prove properties about them, while the “final” representation is useful for implicitly capturing
shared sub-expressions when defining Simplicity programs.

We begin with the “initial” representation, which will most readers will find more familiar.

8.2.1 The “Initial” Representation of Terms

The Simplicity/Core.v module defines an inductive family, Term A B, for the well-typed core Simplicity
language. The core language is the pure fragment of Simplicity that has no effects such as failure or read
access to the transaction environment. The eval function provides denotational semantics and interprets
terms as Coq functions over the corresponding Coq types.

This module also establishes the core Simplicity completeness theorem (Theorem 3.3) as the
Simplicity_Completeness theorem. The proof is built from scribe, a function to produce Simplicity
terms representing constant functions, and reify which transforms Coq functions over Simplicity types
into Simplicity terms representing those functions.

8.2.2 The “Final” Representation of Terms

To explain the “final” representation of terms it is first necessary to understand what an algebra for Simplicity
is. We can understand this by way of a mathematical analogy with ring theory. A ring is a mathematical
structure consisting of a domain along with constants from that domain that correspond to 0 and 1, and
binary functions over that domain that correspond to + and x operations that satisfy certain ring laws. A
term from the language of rings is an expression made out of 0, 1, +, and x. Given a ring and a term from
the language of rings, we can interpret that term in the given ring and compute an element of the domain
that the term represents. There are many different rings structures, such as the ring of integers, and the ring
of integers modulo n for any positive number n. A given term can be interpreted as some value for any ring.
An alternative way to represent terms is as a function that, given any ring, returns a value from its domain
and does so in a “uniform” way. This would be the “final” representation for terms in the language of rings.
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8.2.2.1 Simplicity Algebras

An algebra for Simplicity is an analogous structure to a ring. An algebra for Simplicity consists of a domain,
along with constants from that domain that correspond to iden and unit and functions over that domain
that correspond the other combinators from Simplicity. Unlike the case for rings, the domain of a Simplicity
algebra is indexed by a pair of Simplicity types, and naturally the constants and functions that interpret
Simplicity combinators must respect these types (and unlike rings, we are not going to impose any extra laws).

Core Simplicity algebras are formalized in the Simplicity/Alg.v file. The Core.Class.class record
captures the interpretation of constants and combinators for core Simplicity over a given domain. The
Core.Algebra structure is the type of Simplicity algebras, containing a type family for the domain, and an
instance of the Core.Class.class record for interpretations.

Given any Simplicity algebra and a well-typed term (from the “initial” representation) we can interpret
that term in the algebra to get out a value from the domain (that has a type corresponding to the type of
the term). The Core.eval function performs this interpretation by recursively evaluating the interpretation
of the core Simplicity combinators from the algebra.

What sort of Simplicity algebras are there? The most obvious one is the functional semantics of Simplicity.
The domain of this algebra is the functions between Simplicity types. This domain is indexed by the
input and output Simplicity types. The interpretation of the iden and unit constants are the identity and
constant-unit functions respectively and the interpretation of the other core Simplicity combinators is also
in accordance with Simplicity’s denotational semantics. This algebra is defined in the CoreSem structure and
the CorSem_correct lemma proves that the interpretation of terms in the “initial” representation into this
algebra results in the same function that the eval function from Simplicity/Core.v produces. The | [x] |
notation denotes this denotation semantics using the CoreSem domain.

Another example of a Simplicity algebra is the “initial” representation of terms themselves, which form
a trivial algebra. This domain of Simplicity terms is also indexed by input and output Simplicity types
and the constants and combinators are interpreted as themselves. This algebra is defined in the Core.Term
structure and the Core.eval_Term lemma proves that the interpretation of any term in this algebra returns
the original term back.

There are several other Simplicity algebras. Programs for the Bit Machine form a Simplicity algebra
with the translation from Simplicity to Bit Machine code defining the interpretation of core Simplicity
combinators. Also 256-bit hashes form a Simplicity algebra with the commitment Merkle root computation
defining the interpretation of core Simplicity combinators. Static analysis of resource usage for Simplicity
expressions forms yet another set of Simplicity algebras.

Instances of Simplicity algebras are declared as Canonical Structures. This allows Coq’s type inference
engine to infer the interpretation of Simplicity terms when they are used in the typing contexts of domain
of one of these Simplicity algebras.

8.2.2.2 The “Final” Representation

The “final” representation of a Simplicity term is as a function that selects a value out of any Simplicity algebra
and does so in a “uniform” manner. A “uniform” manner means a function that satisfies the Core.Parametric
property which effectively says that that the values chosen by the function from two domains must each
be constructed from a composition of the interpretation of combinators in the two domains in the same
way. In other words, the function must act the the interpretation of some “initial” represented term under
Core.eval for any domain.

Terms in the “initial” representation can be converted to the “final” representation by partial application
of Core.eval. The Core.eval_Parametric lemma proves that the resulting “final” representation resulting
from Core.eval satisfies the Core.Parametric property.

Terms in the “final” representation can be converted into the “initial” representation by applying the
function to the Core.Term Simplicity algebra. The Core.eval_Term lemma shows that converting from
the “initial” representation to the “final” representation and back to the “initial” representation returns the
original value. The Core.term_eval lemma shows that starting from any term in the “final” representation
that satisfies the Core.Parametric property and converting it to the “initial” representation and back to the
“final” representation results in an equivalent term. This completes the proof at the two representations are
isomorphic.
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8.2.2.3 Constructing “Final” Terms

To facilitate the construction of expression in the “final” representation, the nine core combinators are defined
as functions parameterized over all Simplicity algebras, and each combinator is proven to be parametric or
to preserve parametericity. For the most part, these combinators can be used to write Simplicity expressions
in the “final” representation in the same way one would use constructors to write Simplicity expressions in
the “initial” representation. On top of this, notation s &&& t is defined for the pair combinator, and s >>>
t is defined for the composition combinator. Also we define the *H’, *0’, and *I’ notations for sequences
of takes and drops over the identity combinator.

For every expression built in the “final” representation, it is necessary to prove that the result satisfies
the parametericity property. A parametricity hint database is provided to facilitate automatic proofs of
these results. Users should add their own parametricity lemmas to the hint database as they create new
Simplicity expressions. Some examples of this can be found in the Simplicity/Arith.v module.

8.2.3 Why two representations of Terms?

The “initial” inductive representation is the traditional definition one expects for terms and is easy to
reason inductively about. The problem with this representation is that, due to lack of sharing between sub-
expressions, it is expensive to evaluate with these terms inside Coq itself. For example, one cannot compute
Merkle roots of anything but the most trivial of expressions.

The “final” algebra representation solves this problem by allowing transparent sharing of expressions.
In the “final” representation, terms are really values of a Simplicity algebra. When these values are shared
using in Coq’s let expressions, or shared via some function argument in Coq, those values of the algebra are
shared during computation within Coq. This representation makes it feasible to actually compute Merkle
roots for Simplicity expressions directly inside Coq.

Both representations are used throughout the Simplicity Coq library. The isomorphism between the two
representations is used to transport theorems between them.

I typically use term : Core.Algebra as the variable name for an abstract Simplicity algebra. I use this
variable name because Core.Term are the most generic type of Simplicity algebra (formally known as an
initial algebra) so it makes sense to think of generic Simplicity algebras as if they are term algebras.

8.3 Example Simplicity Expressions

8.3.1 Bits

The Simplicity/Bit.v file defines notation for the Simplicity type for bits, and notation for their two values
’Bit.zero’ and ’Bit.one’. The Simplicity expressions false and true are defined to be the constant
functions that return the zero and one bit respectively. A few logical combinators are defined for bits,
including the cond thn els combinator which does case analysis on one bit of input, and executes thn or
els expressions according to whether the bit represented true or false.

All the combinators and Simplicity expressions are given in the “final” representation and parametricity
lemmas are provided.

8.3.2 Arithmetic

The Simplicity/Arith.v file defines types for multi-bit words and defines Simplicity expressions for addi-
tion and multiplication on those words. Word n is a Simplicity type of a 2™-bit word. The ToZ module defines
a class of types of finite words. The class provides toZ and fromZ operations that convert between standard
Coq integers and these types of finite words along with proofs that the conversion functions are inverses
modulo the word size. Canonical Structure declarations provide implementations for the Bit and Word
n types and for pairs of of such types.

The Simplicity/Arith.v file also defines the following Simplicity expressions:

e adder : forall n term, term (Word n * Word n) (Bit * Word n)
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e fullAdder : forall n term, term ((Word n * Word n) * Bit) (Bit * Word n)
e multiplier : forall n term, term (Word n * Word n) (Word (S n))

e fullMultiplier : forall n term,
term ((Word n * Word n) * (Word n * Word n)) (Word (S n))

The adder expression defines the sum of two 2"-bit word, returning a carry bit and a 2"-bit word result. The
fullAdder expression defines the sum of two 2™-bit word and one (carry input) bit, returning a carry bit
and a 2"-bit word result. The multiplier expression defines the product of two 2™-bit word and returns a
27+ L bit word. The fullMultiplier expression takes a quadruple, ((a,b), (c,d)) of 2"-bit words and returns
a-b+c+d as a 2"t 1-bit word.

Each of these expressions has an associated correctness lemma. These expressions are all defined in the
“final” representation and there are parametricity lemmas for each expression.

8.3.3 SHAZ256

8.4 The Hierarchy of Simplicity Language Extensions
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Figure 8.1. The inheritance hierarchy of algebras for Simplicity’s partial extensions in Coq.

So far we have only covered the algebra for the core Simplicity language in Coq. The various extensions
to this core Simplicity language are captured by extensions to the record type for the core Simplicity algebra.
Figure 8.1 illustrates the names of the algebras extending the Core language algebra and their inheritance
relationship. We use the “packed-classes” method for formalizing the inheritance relation of these extensions
in Coq. Readers unfamiliar with this style should first read “Canonical Structures for the working Coq
user” [7] and “Packaging Mathematical Structures” [7].

Roughly speaking, there are two dimensions to the inheritance structure. In one direction, the Core,
Witness, and Delegation algebras all have semantics that can be interpreted as pure functions. That is,
the function semantics of terms from these languages can be evaluated as functions that have no side-effects
and can return values within any monad, including the identity monad.

The next layer in this direction, Assertion, AssertionWitness, and AssertionDelegation, extend the
previous layer with assertion and failure expressions. These expressions introduce the failure effect and the
functional semantics of terms from these languages return values within a MonadZero, which includes the
option monad.


https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/hal-00816703v1/document
https://hal.inria.fr/inria-00368403v1/document
https://hal.inria.fr/inria-00368403v1/document
https://hal.inria.fr/inria-00368403v1/document

8.4 THE HIERARCHY OF SIMPLICITY LANGUAGE EXTENSIONS 83

The last layer in this direction, Primitive, Jet, FullSimplicity, and FullSimplicityWithDelegation,
include primitive terms that are particular to the specific blockchain application. The functional semantics of
terms from these language return values within a monad that captures the particular effects of the blockchain
application. In the case of Bitcoin, the effects are captured by an environment (a.k.a reader) monad that
provides read-only access to the signed transaction data.

We break up the language of Simplicity into these layers because it helps us isolate the side-effects
of the various language extensions when reasoning about Simplicity programs. When dealing with a
sub-expression from the first layer, one can safely ignore the environment and failure effects and reason
only about pure functions. Afterwards, various lemmas, such as Simplicity.Alg.CoreSem_initial or
Simplicity.Alg.AssertionSem_initial, can be used to lift results into the monads use by the other
layers when combining the pure sub-expression with other sub-expressions that do have effects.

The other dimension of the inheritance structure breaks the language into feature sets. The Core,
Assertion, and Primitive algebras exclude witness and delegation features and encompass the set of
language features that Jets are restricted to using. The next layer, Witness, AssertionWitness, and
FullSimplicity, add witness features culminating in the FullSimplcity algebra defining the Full Sim-
plicity language. The last layer, Delegation, AssertionDelegation, and FullSimplicityWithDelgation
provides the powerful and dangerous delegation extension, which should only be used with caution.

We cover these language extensions in more detail below.

8.4.1 Witness

The Witness algebra, found in Simplicity/Alg.v, extends the Core algebra with the witness combinator.
The WitnessFunSem and WitnessSem canonical structures define the function semantics by interpreting the
terms as pure functions and as Kleisli morphisms for any monad, respectively. The Witness_initial lemma
relates these two interpretations.

8.4.2 Assertion

The Assertion algebra, found in Simplicity/Alg.v, extends the Core algebra with the assertl, assertr,
and fail combinators. The AssertionSem canonical structure defines the functional semantics of Simplicity
with assertions by interpreting terms as Kleisli morphisms for a monad with zero. The AssertionSem_initial
lemma shows that when reasoning about the functional semantics of Simplicity with assertions, it suf-
fices to reason within the option monad and translate the result to any other monad with zero via the
optionZero homomorphism.

The AssertionWitness algebra is simply the meet of the Assertion and Witness algebras without
adding any new combinators.

8.4.3 Delegation

The Delegation algebra, found in Simplicity/Delegation.v, extends the Witness algebra with the
disconnect combinator. The AssertionDelegation algebra is simply the meet of the Assertion and
Delegation algebras (equiv. the meet of the AssertionWitness and Delegation algebras) without adding
any new combinators.

Building the functional semantics of Simplicity with delegation involves a simultaneous computation of
commitment Merkle roots (see Section 8.5) and the functional semantics. To support this the Delegator
arr A B type is the product of the arr A B and the CommitmentRoot A B types. Whenever arr forms an
algebra from any of the previous Simplicity language algebras, then Delegator arr is also a member of the
same algebra. Furthermore whenever arr is a Simplicity with witnesses algebra, then Delegator arr is a
Simplicity with witnesses and delegation algebra. Similarly whenever arr is a Simplicity with assertions and
witnesses algebra, then Delegator arr is a Simplicity with assertions, witnesses and delegation algebra.

The runDelegator projection extracts arr A B, from Delegator arr A B. For example, Arrow A B is
a functional semantics for Simplicity with witnesses. Then, when t is a term for Simplicity with witnesses
and delegation, runDelegator t : Arrow A B is the functional semantics of t.
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The runDelegator_correctness lemma shows that for Simplicity terms that don’t have delegation, then
runDelegator returns the original semantics.

8.4.4 Primitives

The Simplicity language is parameterized by the choice of blockchain-specific primitives. Currently we use
Coq’s module system to capture this parameterization. A Module Type PrimitiveSigfound in Simplicity/
Primitive.v defines the parameters that define these blockchain-specific applications of simplicity:

e A type family t : Ty -> Ty -> Set of the primitive expression’s syntax.
e A function tag : forall A B, t A B -> hash256 that defines the Merkle roots for the primitives.
e A type env : Set that captures the relevant read-only context used to interpret the primitives.

e A functionsem : forall A B, t A B -> A -> env -> option Bthat defines the functional seman-
tics of the primitives.

At the moment, this frameworks only supports primitives that use the environment (and failure) side-effect;
however this framework could be extended to allow primitives that require other effects that can be captured
by commutative and idempotent monads (for example, the writer effect to a commutative and idempotent
monoid).

Given an instance of the PrimitiveSig’s parameters, the PrimitiveModule defines the algebras for
the parts of the Simplicity language that depends on the primitives. This includes the Primitive, Jet,
FullSimplicity and FullSimplicityWithDelegation algebras.

The Primitive algebra extends the Assertion algebra with the primitives given by the PrimitiveSig’s
type family t through the prim combinator. The primSem M arrow is the Kleisli arrow for the monad gener-
ated by adding an environment effect for the PrimitiveSig’s env to the monad M. The PrimitivePrimSem
canonical structure provides the functional semantics for Simplicity with primitives by interpreting terms as
primSem M whenever M is a monad zero.

8.4.4.1 Bitcoin

The Bitcoin module found in Simplicity/Primitive/Bitcoin.v provides these an instance of the
PrimitiveSig parameters used for a Bitcoin or Bitcoin-like application of Simplicity. The structures defining
the signed transaction data are specified culminating in the sigTx data type.

The Bitcoin.prim type lists the typed primitive expressions defined in Section 4.4.1. The environment
type captures the read-only context for interpreting these primitives and it includes a sigTx, the index
withing this transaction that is under consideration, and the commitment Merkle root of the script being
evaluated.

Lastly, the sem function defines the functional semantics of the primitives in accordance with Sec-
tion 4.4.1.1 and the tag function defines the Merkle roots for the primitives in accordance with Section 4.4.1.2.
We use vm_compute in the definition of tag to pre-evaluate the definitions of the Merkle roots as an opti-
mization.

8.4.5 Jets

The Jet algebra, found in the PrimitiveModule in Simplicity/Primtive.v, extends the Primitive algebra
with generic support for jets. The jet combinator takes a term t from the Primitive algebra and the
JetPrimSem canonical structures defines the functional semantics of a jet to be the functional semantics of
t. Operationally, we expect implementations of specific jets to be natively implemented, but this detail goes
beyond the scope of the specification of Simplicity within Coq.

Because t is restricted to being a term from the Primitive algebra, jets cannot contain witness or
disconnect sub-expressions. While our generic definition of jets allows any term from the Primitive
algebra to be a jet, we expect specific applications of Simplicity to limit themselves to a finite collection of
jets through its serialization format.
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8.4.6 Full Simplicity

The FullSimplicity algebra, found in the PrimitiveModule in Simplicity/Primtive.v, is the meet of
the Jet and the Witness algebras (equiv. the meet of the Jet and AssertionWitness algebras) with no
additional combinators. It defines the full Simplicity language. The SimplicityPrimSem canonical structure
provides the functional semantics of the full Simplicity language as the primSem M type family when M is a
monad zero.

The FullSimplicityWithDelegation algebra is the the meet of the Jet and the Delegation algebras
(equiv. the meet of the FullSimplicity and Delegation algebras, or the meet of the FullSimplicity and
AssertionDelegation algebras, etc.) defines the full Simplicity with delegation language. The functional
semantics are defined via the SimplicityDelegationDelegator canonical structure whose domain includes
Delegator (primSem M) when M is a monad zero. Using runDelegator, one can extract a primSem M value
as the functional semantics.

8.5 Merkle Roots

The Simplicity/MerkleRoot.v file defines a Merkle root of types, and the commitment Merkle root
and annotated Merkle roots for part of the Simplicity language. The Merkle root of types is specified
by typeRootAlg and defined by typeRoot. The in the CommitmentRoot A B family the parameters are
phantom parameters, and the value is always a hash256 type. Canonical Structures provide instances of
CommitmentRoot for core Simplicity, and Simplicity with assertions and witnesses. The CommitmentRoot
for delegation is found in Simplicity/Delegation.v and the CommitmentRoot for primitives, jets, Full
Simplicity and Full Simplicity with delegation is found in Simplicity/Primtive.v.

These Merkle roots are computed using the SHA-256 compression function with unique tags providing
the initial value for each language construct. These tags are in turn the SHA-256 hash of short (less than 56
character) ASCII strings. The Coq definition of SHA-256 is taken from the VST (Verified Software Toolchain)
project[’] and the Simplicity/Digest.v module provides an interface to that project.

The VST implementation of SHA-256 is efficient enough that it is practical to compute some commitment
Merkle roots of functions inside Coq itself using vm_compute. See Fact Hash256_hashBlock at the end of
Simplicity/SHA256.v for an example of computing the commitment Merkle root of a Simplicity function
that computes the SHA-256 compression function.

8.6 The Bit Machine

The Simplicity/BitMachine.v file provides the primary definition of the abstract Bit Machine. This def-
inition, and hence this file, is independent of the rest of the Simplicity language.

The Cell type explicitly tracks cell values in the bit machine as being one of 0, 1, and undefined. None
represents the undefined value and Some false and Some true represent O and 1 respectively.

The ReadFrame record represents read frames. It uses a zipper representation of a list with a cursor: The
elements of the list in front of the cursor are in the nextData field and the elements of the list behind the
cursor are in the prevData field stored in reverse order. The setFrame function builds a read frame from a
list with the cursor set to the beginning of the frame.

The WriteFrame record represents write frames. It uses a similar zipper representation where the
writeData field holds the elements behind the cursor in reverse order. Because write frames are append
only, every cell in front of the cursor must be an undefined value. For this reason we only store the number
of cells in front of the cursor in the writeEmpty field. The newWriteFrame function builds an empty write
frame of a given size and the fullWriteFrame function builds an filled write frame from a list.

The RunState record represents the non-halted states of the Bit Machine. It consists of

e inactiveReadFrames: a list of inactive read frames, with the bottom of the stack at the end of the list.
e activeReadFrame: the active read frame, which is the top value of the non-empty stack of read frames.

e activeWriteFrame: the active write frame, which is the top value of the non-empty stack of write
frames.
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e inactiveWriteFrames: a list of inactive write frames, with the bottom of the stack at the end of the
list.

The State variant is either a RunState or the Halted state and represents the possible states of the Bit
Machine. We make the injection of RunState into State a coercion.
It is sometimes useful to decompose the Bit Machine’s state as

[© > 1o [eg+ epl To|lwo-[eg -+ cp ] [21™2[?1™ < E]

where we are locally interested in what is immediately in front of the active read frame’s cursor, [ci-+ ¢cpl,
and what is immediately surrounding the active write frame’s cursor, [c; --- ¢, ] [71™2. This is captured
by the LocalState type, noting that the data immediately surrounding the active write frame’s cursor is
captured by the WriteFrame type. The remainder of the state, consisting of [O > ro- @ -rglwg- @ - [7]1™ < E] is
captured by the Context type, which happens to be isomorphic to the RunState type. The fillContext
function combines a Context value and a LocalState value to build a complete RunState value.

Sometimes we are interested in of some LocalState within another LocalState. The context of
such a decomposition is isomorphic to LocalState and we don’t even both giving a type alias to this.
The appendLocalState function combines a context, 1s1, with a LocalState, 1s2, to build a combined
LocalState. appendLocalState makes LocalState into a monoid and fillContext becomes a monoid
action on Contexts with respect to this monoid. This theory is not fully developed in Coq, but will be
if it is needed. The context_action lemma proves the monoid action property, which is the only the-
orem developed so far.

The StateShape type is constructed using similar fields as the State type and contains a sequence of
numbers. This is used for counting the number of cells in the various components of the Bit Machine’s
State. The stateShapeSize function tallies up the totals and is used later in the maximumMemoryResidence
function.

8.6.1 Bit Machine Code

The MachineCode.T S1 S2 type enumerates the nine basic instructions of the Bit Machine. The type of
these instructions are parameterized by the legal states that the instructions can successfully operate in, S1,
and the resulting state after execution of the instruction, S2. In this way, the MachineCode.T type family
represents a precategory (also known as a directed multi-graph) that captures the machine instructions and
their semantics. There is an object (a.k.a. node) for every possible state of the Bit Machine. There is an
arrow (a.k.a. directed edge) between two states if there is an instruction of the Bit Machine that successfully
transitions from the source state to the target state, and that arrow (a.k.a. directed edge) is labeled with
the name of the instruction. The Abort instruction is the only instruction whose final state is the Halted
state. No instruction begins from the Halted state. The specific type MachineCode.T S1 S2 is the type of
all instructions that transition from state S1 to state S2.

A thrist of MachineCode.T is the free category generated from the precategory MachineCode.T. This
free category can also be understood as a collection of all paths through the directed graph of all machine
instructions and their associated state transitions. The specific type Thrst MachineCode.T S1 S2 is the
type of all sequences of instructions that transition from state S1 to state S2. This type captures the
semantics of sequences of machine instructions.

The notation S1 ~~> S2 denotes the MachineCode.T S1 S2 type of single step transitions, which corre-
sponds to S1~»S3. The notation S1 ->> S2 denotes the Thrst MachineCode.T S1 S2 type of multi-step
(including 0 steps) transitions between states S1 and S2 and the trace of the instructions used. The runHalt
lemma proves that the only trace that begins from the Halted state is the empty trace.

8.6.1.1 Bit Machine Programs

We interpret a Bit Machine Program as a function taking an initial machine state and, if successful, returning
a final machine state along with a thrist of machine instructions that connect the initial state to the final
state. The notation S1 >>- k ->> S2 corresponds to S7 » k — Sy and denotes that the program k when
started in state S1 successfully executes and ends in state S2. The trace function extracts a S1 ->> S2
trace from a program k when S1 >>- k ->> S2 holds.
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For each machine instruction we use makeProgram to define a single instruction Program that tries to
execute that single instruction once and returns that state transition. If the initial non-halted state given
to these single instruction programs is not valid for their instruction, the program fails by returning None.
However, when the initial state is the Halted state, the program succeeds but ignores its instruction and
remains in the Halted state. This corresponds to the X »i— X deduction. These single instruction programs
have an associated correctness lemma that proves they run successfully when run from an initial state valid
for their instruction and a completeness lemma that proves that they were run from either a valid initial state
or the Halted state. We also define the trivial nop program that contains no instructions and always succeeds.

These single instruction (and nop) programs can be combined into more complex programs using the seq
and choice combinators. The seq combinator sequences two programs, running the second program starting
from the final state of the first program and combines their thrists. The sequence fails if either program fails.
The choice combinator picks between running two programs by peeking at the cell under the active read
frame’s cursor from the initial state and running either the first or second program depending on whether
the cell holds a 0 or 1 value. When starting from a non-halted state, if the cell holds an undefined value, or
if the active read frame’s cursor is at the end of the frame, the choice combinator fails. When started from
the Halted state, the choice program succeeds but remains in the Halted state.

The notations k0 ;;; k1 and k0 ||| k1 denote the sequence and choice combinations respectively of
two programs and correspond to ko; k1 and ko||k1. We also define the combinator bump n k which corresponds
to nxk.

The runMachine function takes a Program and an initial State and extracts the resulting final State
and the trace to get there, if the program is successful. For denotational semantics we only care about the
resulting final state. For operational semantics we will care how we got there. A few lemmas are provided
to help reason about the behaviour of runMachine when running the program combinators.

The maximumMemoryResidence function computes the maximum number of cells used by any interme-
diate state from the trace of execution of a Bit Machine program. A few lemmas are provided to help reason
about the behaviour of maximumMemoryResidence when running the program combinators.

8.6.2 Translating Simplicity to the Bit Machine

The Simplicity/Translate.v file defines how to transform Simplicity programs into Bit Machine programs
that perform the same computation. The bitSize and encode functions implement bitSize(A) and "a™4
respectively.

The Naive.translate structure provides a Simplicity algebra for Bit Machine Progams that interprets
Simplicity terms according to the naive translation. The Naive.translate_correct theorem proves that
the Program generated by Naive.translate when started from a state that contains an encoding of Sim-
plicity function’s input successfully ends up in a final machine state that contains an encoding of Simplicity
function’s output (and input).

8.6.3 Static Analysis

The Simplicity/StaticAnalysis.v files defines the static analyses of Simplicity program that compute
bounds on the various computational resources used by the Bit Machine when executing translated Sim-
plicity. The file also proves the correctness of these upper bounds.

The MaximumMemory module defines the MaximumMemory.extraMemoryBound algebra which is used to
compute an upper bound on additional memory that will be used when Simplicity sub-expressions are naively
translated to the Bit Machine and executed. The MaximumMemory.Core_spec lemma proves that for naively
translated core Simplicity expressions, the maximum memory used by the Bit Machine is the memory needed
by the size of the initial state, plus the results of MaximumMemory.extraMemoryBound. This bound holds
no matter what the starting state is, even if it is not a valid state for holding the input for the Simplicity
expression.

The MaximumMemory.CellBound function computes the memory used by the Bit Machine for evaluating
Simplicity expressions starting from a standard initial state and MaximumMemory.CellBound_correct proves
that this upper bound is correct.






Chapter 9
Haskell Library Guide

WARNING: None of the Haskell library development is normative. There is no formalized connection between
any of the Haskell library and Simplicity’s formal semantics and development in Coq. There could be
errors in the Haskell library that cause it to disagree with the formal development defined in Coq. The
Haskell library is intended to be used for experimental, exploratory and rapid development of Simplicity
related work, but should not be relied upon for production development. For production development,
formal developments in Coq should be created.

The Haskell Simplicity project is split up into multiple libraries in order so that multiple different
applications of Simplicity to different Blockchains can be developed and used without conflicting with each
other. We use the Backpack feature of the Glasgow Haskell Compiler to parameterize and reexport common
functionally for different Simplicity applications.

9.1 Simplicity-Core library

The first library, Simplicity-Core, is found in the Haskell/Core directory. It defines the aspects of
Simplicity that are independent of any particular Blockchain application. This include Simplicity’s type
system, Simplicity’s core expression language and the assertions, witness, and delegation extensions, and a
few other components.

9.1.1 Simplicity Types
The Core/Simplicity/Ty.hs file contains the development of Simplicity types. There are three different
ways that Simplicity types are captured in Haskell.

The primary way Simplicity types are captured is by the TyC class which only has instances for the Haskell
types that correspond to the Simplicity types:

e instance TyC ()
e instance (TyC a, TyC b) => TyC (Either a b)
e instance (TyC a, TyC b) => TyC (a, b)

The TyC class is crafted so that its methods are not exported. This prevents anyone from adding further
instances to the TyC class.
The second way Simplicity types are captured is by the TyReflect GADT:

data TyReflect a where
OneR :: TyReflect ()
SumR :: (TyC a, TyC b) => TyReflect a -> TyReflect b -> TyReflect (Either a b)
ProdR :: (TyC a, TyC b) => TyReflect a -> TyReflect b -> TyReflect (a, b)

This data type provides a concrete, value-level representation of Simplicity types that is tied to the type-
level representation of Simplicity types. For each Haskell type corresponding to a Simplicity type, a, the
TyReflect a type has exactly one value that is built up out of other values of type TyReflect corresponding
to the Simplicity type sub-expression. For example the value of type TyReflect (Either () ()) is SumR
OneR OneR.

The reify :: TyC a => TyReflect a produces the value of the TyReflect GADT that corresponds to
the type constrained by the TyC constraint. When users have a Haskell type constrained by TyC they can use
reify to get the corresponding concrete value of the TyReflect GADT which can then be further processed.
The reifyProxy and reifyArrow functions are helper functions for refiy that let you pass types via a proxy.
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The third way Simplicity types are captured is by the Ty type alias, which is the fixed point of the TyF
functor. This is a representation of Simplicity types as a data type. The one, sum, and prod functions
provide smart-constructors that handle the explicit fixed-point constructor. The memoCataTy helps one build
memoized functions that consume Ty values.

Generally speaking, we use TyC to constrain Haskell types to Simplicity types when creating Simplicity
expressions. This way Simplicity type errors are Haskell type errors and can be caught by the Haskell
compiler. We use the Ty type when doing computations such as deserializing Simplicity expressions and
performing unification for Simplicity’s type inference. The TyReflect GADT links these two representations.
For example, the equalTyReflect function can test if two Simplicity types are equal or not, and if they are
equal then it can unify the Haskell type variables that represent the two Simplicity types. The unreflect
function turns a TyReflect value into a Ty value by forgetting about the type parameter.

The Simplicity/Ty.hs file also defines the UntypedValue that represents data values of Simplicity’s
typed, but in an untyped manner. This is mostly used for witness nodes. There are functions to convert to
and from typed and UntypedValues.

Within the Simplicity/Ty directory, there are modules providing data types that are built from Sim-
plicity types. The Simplicity/Ty/Bit.hs module provides a Bit type, corresponding to 2, and the canonical
isomorphism between Haskell’s Bool type and Bit.

The Simplicity/Ty/Word.hs module provides the Word a type that describes Simplicity types for multi-
bit words. Its type parameter is restricted to either be a single Bit word type or a product that doubles the
size of a another word type via the Vector GADT. The wordSize returns the number of bits a word has, or
more generally the number of elements a vector has. The fromWord and toWord functions convert values of
Simplicity words types to and from Haskell Integers (modulo the size of the word). The file also provides
specializations of these various functions for word sizes between 1 and 512 bits.

9.1.2 Simplicity Terms

Terms are represented in tagless-final style [7]. This style is analogous to the “final” representation of terms
that is defined in the Coq library.

The Core/Simplicity/Term/Core.hs file develops the core Simplicity term language plus a few exten-
sions. The Core type class captures Simplicity algebras for core Simplicity expressions. Core Simplicity
expressions are represented in Haskell by expressions of type forall a b. Core term => term a b which
are expressions that hold for all Simplicity algebras.

This module provides infix operators, (>>>) and (&&&), for the comp and pair Simplicity combinators
respectively. It also provides notation for short sequences of string of I's, O’s and H’s. Note that because case
is a reserved word in Haskell we use match for Simplicity’s case combinator. Examples of building Simplicity
expressions can be found in the next section.

This module also provides Assert, Witness, and Delegate classes for the failure, witness, and delegation
language extensions respectively. Terms that make use of these extension will have these class constraints
added to their type signatures. For example, a value of type forall a b. (Core term, Witness term)
=> term a b is a term in the language of Simplicity with witnesses.

This module provides (->) and Kleisli m instances of these classes that provide denotational semantics
of core Simplicity and some extensions. For example, one can take core Simplicity terms and directly use them
as functions. The semantics of Delegate depends on the commitment Merkle root; you can find semantics
for that extension in Indef/Simplicity/Semantics.hs and it is discussed in Section 9.2.4.

The primary purpose of using tagless-final style is to support transparent sharing of subexpressions
in Simplicity. While subexpressions can be shared if we used a GADT to represent Simplicity terms, any
recursive function that consumes such a GADT cannot take advantage of that sharing. Sharing results of
static analysis between shared sub-expressions is critical to making static analysis practical. Adding explicit
sharing to the Simplicity language would make the language more complex and would risk incorrectly
implementing the sharing combinator. Explicitly building memoization tables could work, but will have
overhead. For instance, we do this when computing Merkle roots of Simplicity types. However, the solution of
using tagless-final style lets us write terms in a natural manner and we get sharing for Simplicity expressions
at exactly the points where we have sharing in the Haskell representation of the term.
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9.1.3 Merkle Roots

The Core/Simplicity/MerkleRoot.hs module reexports functionality defined in Core/Simplicity/
MerkleRoot/Impl.hs, which provides instances of Simplicity terms that compute the commitment, iden-
tity and annotated Merkle roots. The commitmentRoot, identityRoot, and annotatedRoot return these
Merkle root values. The Simplicity/MerkleRoot.hs module also provides a memoized computation of
the Merkle roots for Simplicity types.

The SHA-256 implementation is provided through an abstract interface found in Core/Simplicity/
Digest.hs, which in turn references an implementation of a 256-bit word type defined in Core/Simplicity/
Word.hs.

The identityRoot computation differs from #¢(¢) in that it additionally hashes in the input and output
types of an expression ¢. This is done so that ensuring the uniqueness of the #(¢) and the input and outputs
type triples can be effectively done by just comparing the single identityRoot hash value.

9.1.4 Tensors

The Simplicity/Tensor.hs module provides a typed Product tensor which allows you to apply multiple
interpretations of a Simplicity expression simultaneously. For example, this Product is used in the loop
construct (see Section 9.1.5.5) to simultaneously compute a commitment Merkle root alongside another
interpretation.

9.1.5 Example Simplicity Expressions

The Core/Simplicity/Programs directory contains various developments of Simplicity expressions in Haskell
that are independent of any particular blockchain application.

9.1.5.1 Generic

The Core/Simplicity/Programs/Generic.hs file provides some Simplicity expressions that can apply to
any Simplicity type.

The scribe function produces a Simplicity expression denoting a constant function for any value for
any Simplicity type. The eq Simplicity expression compares any two values of the same Simplicity type and
decides if they are equal or not.

9.1.5.2 Bits

The Core/Simplicity/Programs/Bit.hs file has Simplicity expressions for bit manipulation. false and
true are Simplicity expressions for the constant functions of those types and cond provides case analysis
combinator for a single bit. There are combinators for various logical operators. These logical operators are
short-circuited where possible. There are also a few trinary Boolean Simplicity expressions that are used in
hash functions such as SHA-256.

9.1.5.3 Multi-bit Words

The Core/Simplicity/Programs/Word.hs file provides support for vector an multi-bit word expressions
that operate on Simplicity’s vector and word types. It provides the implementations of logical bit-vector,
padding, truncating, shifting and rotating Simplicity expressions.

The full_shift function provides a generic shift operation that allows shifting in and shifting out an
arbitary word size of bits. The shift_const_by function can perform either left or right shifts, filling in new
elements or bits with a provided value. The rotate_const function can perform either left or right rotates
by a constant amount.

The bitwise_bin combinator takes a Simplicity expression for a binary bit operation and lifts it to a
Simplicity expression for a binary operation on arbitrary sized words that performs the bit operation bit-
wise. There is also a variant, called bitwise_tri the does the same thing for trinary bit operations.
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9.1.5.4 Arithmetic

The Core/Simplicity/Programs/Arith.hs file provides support for arithmetic and number based expres-
sions that operate on Simplicity’s word types interpreted as unsigned integers. It provides implementations
of the zero, one, add, subtract, multiply, divide, and modulo Simplicity expressions. It also provides
implementations of 1t, le, min, max, and median.

The eea expression implements the extended euclidian algorithm, which in turn defines bezout,
cofactors, and gcd expressions.

The absolute_value and sign expression operate on an intepretation of Simplicity words as signed
integers (with absolute_value returning an unsigned value).

9.1.5.5 Loop

The Core/Simplicity/Programs/Loop.hs files is a stub module for holding operations for building
unbounded loops via the self-delegation method described in Section 6.2. At the moment it can be used
to build the CommitmentRoot of an unbounded loop, but the code needed to redeem such a commitment
has not been developed yet.

9.1.6 Libraries of Simplicity Expressions

The tagless-final style used for Simplicity expressions is designed to perform efficently for some interpretations
of Simplicity when subexpressions are shared. In particular the computation of Merkle roots and serialization
(see 9.2.6.2) are much faster to compute when subexpressions are shared. However the polymorphism in
the tagless-final type used for expression is at odds with subexpression sharing in a naive implementation of
Simplicity expressions.

In order to realize subexpression sharing between Simplicity expressions, we build libraries of Simplicity
expressions as a record type. We use the RecordWildcards language extension to bring all function of a
library in scope with a single Lib{..} pattern. This approach is similar to “First-class modules without
defaults” by Gabriel Gonzalez. Generating several Simplicity expressions together allows us to share common
subexpressions between the different library functions all within a single intepretation.

Libraries typically come with some kind of mkLib function that given a set library dependencies, con-
structs an instance of the library of functions. Building a library from a set of dependencies allows us to
share dependencies between different libraries when we want to use multiple different libraries.

The general approach to using the libraries for your own expressions is to create a where clause containing
the mkLib expression for all the libraries that you want to use and their dependencies that are bound to
name@Lib{. .} patterns to bring all the library function into scope. Then you can build your expression using
any of the library functions.

9.1.6.1 SHA-256

The Core/Simplicity/Programs/Sha256.hs file provides a library of Simplicity expressions to help com-
pute SHA-256 hashes. The iv expression is a constant function the returns the initial value to begin a SHA-
256 computation. The hashBlock expression computes the SHA-256 compression function on a single block
of data. To compress multiple blocks, multiple calls to the hashBlock function can be chained together.

This library has no dependencies and you can use the 1ib library value directly.

The Core/Simplicity/Programs/Sha256/Lib.hs file provides an unpacked module version of the library.
However use of this module will lose the subexpression sharing. Therefore this should only be used for
testing purposes.

9.1.6.2 LibSecp256k1l

The Core/Simplicity/Programs/LibSecp256k1.hs file provides a library of Simplicity expressions that
mimic the functional behaviour of the the libsecp256k1 elliptic curve library [?]. This includes Simplicity
types for, and operations on secp256k1’s underlying finite field, elliptic curve point operations in affine and
Jacobian coordinates, and linear combinations of points.

This module also include the bip0340_check and bip0340_verify expressions that implement Schnorr
signatures as specified in BIP-0340 [7].
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The mkLib function builds the library from the its dependency, the SHA-256 library. The 1ib value
illustrates how to build the library, but using the 1ib value will not allow you to share the dependency, so
it should only be used for testing purposed.

The Core/Simplicity/Programs/LibSecp256kl/Lib.hs file provides an unpacked module version of
the library. However use of this module will lose the subexpression sharing. Therefore this should only be
used for testing purposes.

9.1.6.3 CheckSigHash

The Core/Simplicity/Programs/CheckSigHash.hs, while not technically a library, provides a
checkSigHash Simplicity program that is similiar to the CHECKSIG operation of Bitcoin script except
with “Universal signature hash modes” (see Section 6.3). The sigHash combinator uses disconnect to pair
the commitment root of a given hash mode with its output and produces the message that checkSigHash
checks its siganture against.

9.1.7 The Bit Machine

The Core/Simplicity/BitMachine/ directory has modules related to the Bit Machine and evaluation of
Simplicity via the Bit Machine.

The Core/Simplicity/BitMachine/Ty.hs file defines bitSize, padL, and padR, which define the bitSize,
padR and padL functions from Section 3.5.1. They operate on the Ty type. The file also defines variants of
these three function that operate on the TyReflect GADT instead.

The Core/Simplicity/BitMachine.hs file (technically not in the Core/Simplicity/BitMachine/ direc-
tory) defines the canonical type of a Cell to be a Maybe Bool, with the Nothing value representing undefined
cell values. The encode and decode functions transform a value of a Simplicity type to and from a list
of Cells that represent the value. The executeUsing combinator captures a common pattern of running a
Simplicity program through an implementation of the Bit Machine by encoding program inputs and decoding
the results. Since there is more than one way to compile and run Simplicity program on the Bit Machine
(for example, see naive translation versus TCO translation), this abstraction is used is multiple places.

The MachineCode type alias captures canonical forms of programs for the Bit Machine, which is the
explicit fixed point of the MachineCodeF functor. Usually programs are built in continuation passing style
(analogous to using difference lists to build lists), making use of the MachineCodeK type alias. There are
smart-constructors for each machine code that make single instruction MachineCodeK programs. Programs
are composed sequentially using ordinary function composition, (.). Deterministic choice between two
programs is provided by the (|| |) operator. The nop program is an alias for the identity function.

The Core/Simplicity/BitMachine/Authentic.hs file is an implementation of the Bit Machine that
follows the formal definition of the Bit Machine and fully tracks undefined values. The Frame type is used
for both read frames and write frames. The Active type is captures the pair of active read and write frames,
and the State type captures the entire state of the Bit Machine. Lenses are used to access the components
of the State.

The runMachine function interprets MachineCode in accordance with the semantics of the Bit Machine,
and transforms an initial state into a final state (possibly crashing during execution). It is meant to be
used, in conjunction with a Simplicity translator, with executeUsing. The instrumentMachine function is
a variant of runMachine that logs statistics about memory usage during the execution. It is used as part of
the testing for static analysis.

9.1.7.1 Translating Simplicity to the Bit Machine

The Core/Simplicity/BitMachine/Translate.hs file defines the naive translation from Simplicity to the
Bit Machine. The Translation type wraps the MachineCodeK type with phantom type parameters in order
to make an instance suitable to be a Simplicity algebra. The translate function translates Simplicity
terms to MachineCode via the Translation algebra (recall that a Simplicity term in tagless final form is
a polymorphic value that can become any Simplicity algebra). The Simplicity/BitMachine/Translate/
TCO.hs file provides a similar Translation Simplicity algebra and translate functions, but this translating
using tail composition optimization.
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9.1.7.2 Static Analysis

The Core/Simplicity/BitMachine/StaticAnalysis.hs file has instances to perform static analysis for
bounding the maximum number of cells used by the Bit Machine when executing the naive translation
of Simplicity expressions. The ExtraCellsBnd type wraps the data needed for the static analysis with
phantom type parameters in order to make an instance suitable for a Simplicity Algebra. The cellsBnd
function computes the bound on cell use from Simplicity terms via the ExtraCellsBnd Algebra. The Core/
Simplicity/BitMachine/StaticAnalysis/TCO.hs file provides a similar static analysis that bounds the
maximum number of cells used by the Bit Machine when executing the TCO translation of Simplicity
expressions.

The Core/Simplicity/BitMachine/StaticAnalysis/Tests.hs runs a few of the example Simplicity
expressions through the static analysis and compares the result with the maximum cell count of exe-
cuting the Bit Machine on various inputs. In this file you can see an example of how executeUsing
(instrumentMachine . translate) program is used.

9.1.7.3 Fast Evaluation with FFI

While Simplicity with assertions expressions can be evaluated directly with the Kleisli instance, evaluation
of sophisticated expressions, such as Schnorr signature verification, can be extremely time and memory
consuming. To address this the Core/Simplicity/FFI/Frame.hs and Core/Simplicity/FFI/Jets.hs files
create bindings via cbits/frame.c and cbits/jets.c to the C implementation of jets for Simplicity with
assertion expressions. The Core/Simplicity/CoreJets.hs modules provides a fastCoreEval that replaces
evaluation of subexpressions of Simplicity with assertion expressions that match these jets with optimized
implementations.

9.2 Simplicity-Indef library

To keep the Haskell library of Simplicity modular over different blockchain applications we use the Glasgow
Haskell Compiler’s Backpack mechanism. The next library, Simplicity-Indef, is found in the Haskell/
Indef directory. The Indef/Simplicity/Primitive.hsig file is a module signature that defines the data
types and functions that make up the interface that a blockchain application needs to provide. The remained
of the Simplicity-Indef library defines the aspects of Simplicity that are generic over all different Blockchain
application through this Simplicity.Primitive module signature. This includes the full Simplicity lan-
guage, including primitives and jets, the semantics of full Simplicity, type inference for full Simplicity
expressions, and generic serialization and deserialization of Simplicity expressions.

Each different blockchain application needs to provide a module satifying the Simplicity.Primitive
signature. At the moment only the Bitcoin blockchain application is provided (see Section 9.3).

9.2.1 Primitive Signature

The Indef/Simplicity/Primitive.hsig signature provides an interface to the different possible primitives
provided by different blockchain applications. This signature requires

e Prim a b, a GADT for primitives,

e primPrefix and primName which are used to generate unique names for the Merkle roots of primitive
expressions,

e getPrimBit, putPrimBit, getPrimByte, putPrimByte, are provide for primitive specific serialization
and deserialization operations.

e PrimEnv and primSem, which provides the type of the context and the denotational semantics for
evaluating primitive expressions.
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9.2.2 Primitive Terms

The Indef/Simplicity/Term.hs module provides expressions for the blockchain primitives and jet exten-
sions, in addition to re-exporting the Simplicity.Term.Core module.

Discounted jets are characterized by their specification, which consists of a Simplicity expression with
assertions and primitives, but not witness nor delegation. Later a discounted cost will be added as a
parameter. Be aware that universal quantifier in the jet argument means that subexpressions within this
specificaiton cannot be shared outside of the specification itself.

All the Simplicity extensions are gathered together in the Simplicity class, whose associated values
of type Simplicity term => term a b are terms in the full Simplicity language with delegation. The
semantics of full Simplicity is discussed in Section 9.2.4.

9.2.3 JetType class

While the Jet class allows any expression to be a jet, in reality there we will have a specific set of known
jets that we have accelerated implements of. The Indef/Simplicity/JetType.hs defines the JetType
class whose instances are types which represent sets of known discounted jets. The specification method
define the specification of discounted jets and the matcher method decides if a given Simplicity expression
is known to be substitutable by a some discounted jet. The implementation gives an optional optimized
implementation of the jet, which otherwise defaults to that of the specification. There are also putJetBit
and getJetBit used for Serialization (see Section 9.2.6)

Because the set of discounted jets in use could vary over time, the JetType class allows for different types
to represent different sets of discounted jets. You can have a different JetType instance for each version of
the set of discounted jets.

9.2.4 Denotational Semantics of Full Simplicity

The Indef/Simplicity/Term.hs module provides an Kleisli m instance which provides semantics for full
Simplicity (excluding delegation), where m is both a reader monad over PrimEnv and MonadFail. Semantics
for the full Simplicity language with delegation, which depends on computing commitment Merkle roots, is
found in the Indef/Simplicity/Semantics.hs module.

The Delegator p a b helper type bundles a commitment Merkle root computation with the Simplicity
semantics of disconnect, allowing commitment Merkle roots and semantics to be evaluated concurrently.
This allows us to create Delegate and Simplicity instances using Delegator.

The Semantics a b is a of Delegator for the Kleisli semantics that support the Blockchain primitives,
and thus is an instance the Simplicity class for expressions of full Simplicity with delegation. The sem
function defines the semantics of full Simplicity with delegation by returning a concrete function from
PrimEnv and a to Maybe b.

The Indef/Simplicity/Semantics.hs module also provides a fastEval function that uses a JetType’s
optimized implementation to evalute subexpressions with known jets.

9.2.5 Type Inference

The file Indef/Simplicity/Inference.hs defines a concrete term data type for Simplicity expressions in
open recursive style via the TermF ty j wfunctor. The ty parameter allows for these terms to be decorated
with type annotations, though nothing in the data type itself enforces that the annotations are well-typed.
The tyAnnotation traversal provides access to the type annotations. When type annotations are unused,
this ty parameter is set to (), as is the case for the UntypedTermF functor synonym.

The j parameter determines the type of data held by Jet nodes. This is usually of the form SomeArrow
arr for some type annotated data structure arr that represents a type for known jets. The jetData traversal
provides access to the jet data.

The w parameter determines the type of data held by Witness nodes. This is often UntypedValue, but
is sometimes a vector or list of Bools, which may be used in intermediate computations when deserializing
Simplicity expressions. The witnessData combinator is a traversal indexed by type annotations for accessing
this Witness data.
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While the fixed point of this TermF ty j w functor would yield a type for untyped, full Simplicity terms,
instead we usually use a list or vector of TermF ty j w Integer values to build a DAG structure, where
the Integer values are references to other subexpressions within a list or vector. This provides a structure
with explicit sharing of subexpressions. This structure is captured by the SimplicityDag type synonym.

The main functions of this module are the typeInference and typeCheck functions. The normal pro-
gression here is to first use the typeInference function which discards the type annotations of the input
Simplicity DAG (if any) and performs first-order unification to infer new, principle type annotations, with
any remaining type variables instantiated at the () type. It also adds unification constraints given the input
and output types of the intended Simplicity expression provided through the proxy a b argument.

Next one would use traverse . witnessData to use the inferred type information to decode the witness
data into an UntypedValue.

Lastly, one would uses the typeCheck function to type check the inferred type annotations and, if
everything is successful, a proper well-typed Simplicity expression of is returned. Note that the one calling
typeCheck specifies the type of the resulting Simplicity expression; it is not inferred from the SimplicityDag.
The typeCheck function should never fail after typeInference provided the same type constraints in its
proxy argument and the witness data has been decoded to an UntypedValue that matches the inferred
witness type.

There are deserialization functions (see 9.2.6) that go through this progression of type inference and type
checking for you.

9.2.6 Serialization

There are two main methods of serialization found in this Simplicity library. The primary method is serial-
ization via a difference list of Bools and deserialization via a free monad representation of a binary branching
tree. A difference list, represented within the type [Bool] -> [Bool] should be familiar to most Haskell
programmers. The same technique is used in the shows function using the ShowS type synonym and is used
to avoid quadratic time complexity in some cases of nested appending of lists. A DList type synonym is
defined in Core/Simplicity/Serialization.hs. Our free monad representation of binary trees is perhaps
less familiar. See Section 9.2.6.1 for details.

An alternative serialization method is via the Get and PutM monads from the cereal package. These are
used for serializations to and from ByteStrings. The alternative method is deprecated and will probably
be removed.

9.2.6.1 Free Monadic Deserializaiton

Our free monad representation of binary trees is perhaps less familiar. A binary branching tree with leaves
holding values of type a can be represented by the free monad over the functor X — X2 which in Haskell
could be written as Free ((->) Bool) a where Free is from the Control.Monad.Free in the free package.

type BinaryTree a = Free ((->) Bool) a

In the free monad representation the Pure constructor creates a leaf holding an a value while the Free
constructor builds a branch represented as a function Bool -> BinaryTree a, which is isomorphic to a pair
of binary trees.

Given a binary tree (represented as a free monad) we can “execute” this monad to produce a value a by
providing an executable interpretation of each branch. Our interpretation of a branch is to read a bit from
a stream of bits and recursively execute either the left branch or the right branch depending on whether we
encounter a 0 bit or a 1 bit. This process repeats until we encounter a leaf, after which we halt, returning
the value of type a held by that leaf. This interpretation captures precisely what it means to use a prefix
code to parse a stream of bits. Given a stream of bits we follow branches in a binary tree, left or right, in
accordance to the bits that we encounter within the stream until we encounter a leaf, in which case parsing
is complete and we have our result, plus a possible remainder of unparsed bits.

Where does the stream of bits come from? Well, if we were to interpret this in the state monad, the state
would hold a stream of bits. If we were to interpret this the I0 monad, we could grab a stream bits from
stdin or from a file handle. In general, we can interpret our free monad in any monad that offers a callback
to generate bits for us to consume.
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runBinaryTree : Monad m => m Bool -> BinaryTree a -> m a
runBinaryTree next = foldFree (<$> next)

This ability to interpret a free monad within any other monad is essentially what it means to be a free
monad in the first place.

This free monad approach to parsing can be extended. For example, suppose when parsing we encounter
a prefix that is not a code of any value. We can extend our functor to given a variant to return failure in
this case. Thus we build a free monad over the functor X — 1+ X?2. In Haskell we could use the type Free
(Sum (Const ()) ((->) Bool)) for this monad or equivalently

type BitDecoder a = Free (Sum (Const ()) ((->) Bool)) a

runBitDecoder : Monad m => m Void -> m Bool -> BitDecoder a -> m a
runBitDecoder abort next = foldFree eta
where

eta (Inl (Const ())) = vacuous abort

eta (Inr f) = f <$> next

Our free monad interpreter now requires two callbacks. The next callback is as before; it generates bits
to be parsed. The abort callback handles a failure case when the a sequence of bits do not correspond to
any coded value. This callback can throw an exception or call fail, or do whatever is appropriate in case
of failure.

This implementation of free monads suffers from a similar quadratic complexity issue that lists have. In
some cases, nested calls to the free monad’s bind operation can have quadratic time complexity. To mitigate
this we choose a to use a different representation of free monads.

The above interpreters completely characterize their corresponding free monads. Instead of using the
BinaryTree a type we can directly use the type forall m. Monad m => m Bool -> m a. Similarly we can
directly use the type forall m. Monad m => m Void -> m Bool -> m a in place of the BitParser a type
TODO: consider replacingm Void with a MonadFail constraint instead. This is known as the Van Laarhoven
free monad representation [7] and it is what we use in this library.

For example, getBitString and getPositive from the Simplicity.Serialization module are decoders
a list of bits and positive numbers respectively that use this Van Laarhoven representation of binary trees.
Similarly get256Bits from Simplicity.Digest is a decoder for a 256-bit hash value.

In Core/Simplicity/Serialization.hs there are several adapter functions for executing these Van
Laarhoven free monads within particular monads.

e evalStream evaluates a Van Laarhoven binary tree using a list of bits and returns Nothing if all the
bits are consumed before decoding is successful.

e evalExactVector evaluates a Van Laarhoven binary tree using a vector of bits and will return
Nothing unless the vector is exactly entirely consumed.

e evalStreamWithError evaluates a Van Laarhoven bit decoder using a list of bits and returns an Error
if the decoder aborts or the list runs out of bits.

e getEvalBitStream evaluates a Van Laarhoven bit decoder within cereal’s Get monad while internally
tracking partially consumed bytes.
9.2.6.2 Serialization of Simplicity DAGs

The file Indef/Simplicity/Dag.hs provides a jetDag that coverts Simplicity expressions into a topologi-
cally sorted DAG structure with explicit sharing that is suitable for encoding. This conversion

e finds and shares identical well-typed subexpressions,

e runs type inference to determine the principle type annotations needed to optimal sharing and pruning
of unused witness data,
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e finds subexpressions that matches known jets and replaces them with Jet nodes.

The file Indef/Simplicity/Serialization/BitString.hs provides getTermLengthCode and
putTermLengthCode functions that decode and encode a Simplicity expression. The putTermLengthCode
function executes jetDag to perform sharing and substitution of jets, and the getTermLengthCode executes
deserialization, type inference and type checking all together. The getTermStopCode and putTermStopCode
functions provide the same functionality using a serialization format with a stop code instead of a length
code prefix. The module also provides, getDagNoWitness, getWitnessData and putDag, that are used by the
getTerm* and putTerm* functions to convert between Simplicity DAGs and their serialized representation.

The file Indef/Simplicity/Serialization/ByteString.hs provides similar getDag and putDag func-
tions for the alternative ByteString encoding described in Appendix C.

9.2.7 Jet Substitution

The Indef/Simplicity/Dag.hs provides also provides a jetSubst function uses the same substitution
mechanism in found in Section 9.2.6.2 to return a new Simplicity expression that replaces found jets with
explicit jets. This substitution can change the commitment root of the overall expression and of subexpres-
sions. Because the commitment root is used in the semantics of disconnect, it is even possible for this
substitution to change the result of evaluation of expressions.

In order to support partial evaluation, the jetSubt function returns a WrappedSimplicity expression.
This result can be unwrapped by the unwrap function. The use of WrappedSimplicity lets us share much
of the work of substitution in case we want to evaluate the resulting expression with multiple different
interpretations. Without WrappedSimplicity we would end up needing to redo the entire subtitution for
each different intepretation of the resulting expression.

9.3 Simplicity-Bitcoin Libary

To instantiate the Simplicity-Indef library, we need to provide a blockchain specific implementa-
tion of the Simplicity.Primitive signature. The Simplicity-Bitcoin library provides primitives
used for Bitcoin applications. The Bitcoin/Simplicity/Bitcoin/Primitive.hs module implements the
Simplicity.Primitive signature by providing the primitive expressions and their semantics for Simplicity’s
Bitcoin application. The Prim a b GADT enumerates the list of primitive Simplicity expressions for Bit-
coin. The PrimEnv provides the context that a Simplicity expression is evaluated within, providing the
signed transaction data, the index of the input being considered for redemption, and the commitment
Merkle root of the Simplicity program itself. The primSem function is an interpreter for these primitive
expressions for the Bitcoin.

The Bitcoin/Simplicity/Bitcoin/DataTypes.hs module provides the data structures that make up
the signed transaction data for Bitcoin.

9.4 Simplicity Library

The Simplicty library assembles all of the previous libraries together. The Simplicity-Indef library is
instantiated at all available implementations of the Simplicity.Primitive signature, which at the moment
isonly the Simplicity.Bitcoin.Primitive module. This Bitcoin instance of the Simplicity-Indef library
has its modules reexported under the Simplicity.Bitcoin prefix. Specifically the following modules are
reexported:

e Simplicity.Term as Simplicity.Bitcoin.Term

e Simplicity.Semantics as Simplicity.Bitcoin.Semantics

e Simplicity.Dag as Simplicity.Bitcoin.Dag
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e Simplicity.Inference as Simplicity.Bitcoin.Inference
e Simplicity.Serialization.BitString as Simplicity.Bitcoin.Serialization.BitString

e Simplicity.Serialization.ByteString as Simplicity.Bitcoin.Serialization.ByteString

9.4.1 CheckSigHashAll

Some modules build on specific Simplicity blockchain applications. The Simplicity/Bitcoin/Programs/
CheckSigHashAll.hs file provides a library for a hashAl1 signature hash mode for creating a Bitcoin specific
transaction digest and a checkSigHashAll Simplicity program that verifies Schnorr signature over that digest
for a given public key. The sigHashAll function hashes the pair of the commitment root of hashAll with
the output of hashAll producing the message that needs to be signed. This signature is compatible with
using the hashAll mode with the checkSigHash program from Section 9.1.6.3.

The Simplicity/Bitcoin/Programs/CheckSigHashAl1l/Lib.hs file provides an unpacked module ver-
sion of the library. However use of this module will lose the subexpression sharing. Therefore this should
only be used for testing purposes.

The Simplicity/Elements/Programs/CheckSigHashAll.hs file provides similar functionality for the
Elements blockchain application.

9.4.2 Known Discounted Jets

The Simplicity.Bitcoin.Jets and Simplicity.Elements.Jets provide a canonical JetType of known
jets. Currently this only consists of CoreJets. These modules also provide getTerm* and putTerm* function
that specifically encode and decode this set of jets.

Both sets of jets draw upon the Simplicity.CoreJets module which provides “core” jets that are jets
that do not depend on any primitives. These “core” jets include

e Jets for arithmetic, including 32-bit addition, subtraction and multiplication
e Jets for hash functions, including the SHA-256 compression function.

These modules also reexport specialized instances of jetSubst and fastEval for their specific JetTypes.

9.5 Simplicity testsuite

The Tests directory has a collection of tests for a Simplicity testsuite. The Tests/Tests.hs file imports
the various test modules to build a testing executable to run them all.

The Tests/Simplicity/Programs/Tests.hs has some QuickCheck properties that provide randomized
testing for some of the Simplicity expressions developed.

The Tests/Simplicity/BitMachine/Tests.hs runs a few of the Simplicity expressions through the
Bit Machine implementation to test that the value computed by the Bit Machine matches that direct
interpretation of the same Simplicity expressions. In this file you can see an example of how executeUsing






(runMachine . translate) program is used.
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Appendix A
Elements Application

The Elements application of Simplicity is based on the Bitcoin application described in Section 4.4.1. The
signed transaction data for Elements is similar to Bitcoin’s but with added confidential amounts and assets,
pegins, and asset issuances. Below we define the record type ELEnv defining the environment in which
Simplicity expressions are evaluated within for the Elements application.

Lock 232
Outpoint 2256 5 232
. L pt : Point
Confidential(X) := { prf: X }
ExplicitAsset := 226
Asset(X) := Confidential(X )+ ExplicitAsset
ExplicitAmount := 264
Amount(X) := Confidential (X) + ExplicitAmount
ExplicitNonce := 2256
Nonce := Confidential (1)+ ExplicitNonce
RangeProof := (28)*
SurjectionProof := (28)*
TokenAmount(X) Amount(X)
contractHash : 2256
Newlssuance := ¢ amount: Amount(RangeProof)
tokenAmount: TokenAmount(RangeRpoof)
blindingNonce : ExplicitNonce
Reissuance := entropy : 2256
amount : Amount(RangeProof)
Issuance := Newlssuance + Reissuance
asset : Asset(SurjectionProof)
. amount : Amount(RangeProof)
El tsSigOutput =
CHICHESSIEIPY scriptPubKey : (28)*
nonce : S(Nonce)
asset : Asset(1)
ElementsUTXO := ¢ amount: Amount(1)
scriptPubKey : (28)*
peginChain : S(2256)
prevOutpoint : Outpoint
txo : ElementsUTXO scriptPubKey is claim _script when isPegin
ElementsSiglnput := <{ sequence: 232

issuance: S(Issuance)
annex : S((28)*) (excludes the 50,s prefix)
scriptSig: (28)*

103
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version : 232

inputs : ElementsSigInput™
outputs : ElementsSigOutput™
lockTime : Lock

ElementsSigTx :=

tx : ElementsSigTx
ix:232

ELEnv := tapEnv: TapEnv
genesisBlockHash :
scriptCMR : 2256

2256

The parameterized types of Confidential, Asset, and Amount are functors in their natural way.

(Confidential( f)(a))[pt] := a[pt]

(Confidential( f)(a))[prf] := f(a[prf])
Asset(f)(o%(a)) := o¥(Confidential( f)(a))
Asset(f)(0™(a)) = o™(a)

Amount(f)(oc¥(a)) := o¥(Confidential(f)(a))
Amount(f)(c®(a)) = o®(a)

The Elements protocol imposes limits and other constraints similar to Bitcoin’s for transactions to be
valid. We will assume that for all transactions the length of the inputs and outputs arrays are less than or
equal to 22°, and the the length of the scriptPubKeys lengths are also less than or equal to 22°. Also we
will assume that for every e : ELEnv that [e[ix]] < |e[tx][inputs]| so that “current” index being validated is,
in fact, an input of the transaction.

The monad we use for the Elements application provides an environment effect (also known as a reader
effect) that allows read-access to the ELEnv value defining the Simplicity program’s evaluation context. We
call this monad EL.

ELA := ELEnv—SA
ELf(a) := Xe:ELEnv.Sf(a(e))

EL is a commutative, idempotent monad with zero:

n5¥(a) := Xe:ELEnv.n3(a)
WEH(a) = Ae:ELEnv. uS(S(\f. f(e)(a(e)))

0FY := Xe:ELEnv. 0%

We define several new primitive expressions for reading data from a ELEnv value. The language that
uses this extension is called Simplicity with Elements.

version : 1 232

lockTime: 1+ Lock
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inputPegin : 2321~ §(S(2259))

inputPrevOutpoint : 232 - S(Outpoint)

inputAsset : 232 - S(Asset(1))

inputAmount : 232 S(Amount (1))

inputScriptHash : 232 |- §(2256)

inputSequence : 232 - §(232)

inputAnnexHash : 232 - S(S(2256))

inputScriptSigHash : 232 - §(2256)

reissuanceBlinding : 2321- S(S(ExplicitNonce))

newlssuanceContract : 232 §(S(2256))

reissuanceEntropy : 232 - S(S(22°9))

issuanceAssetAmount : 232 - S(S(Amount(1)))

issuanceTokenAmount : 232 - S(S(TokenAmount(1)))

issuanceAssetProof : 232 |- §(2256)

issuanceTokenProof : 232 - S(2256)

currentindex: 1+ 232

outputAsset : 232 - S(Asset(1))

outputAmount : 232 S(Amount (1))

outputNonce : 2321 S(S(Nonce))

outputScriptHash : 232 |- §(2256)

outputNullDatum : 232 x 232}1- §(S(22 x 2256 + (2 4-21)))

outputSurjectionProof : 232 |- §(2256)
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outputRangeProof : 232}~ §(2256)

tapleafVersion : 1 28

tapbranch : 28 S(2256)

internalKey : 1+ PubKey

genesisBlockHash : 1 - 2256

scriptCMR : 1 |- 2256

A.1 Denotational Semantics

We extend the formal semantics of these new expressions as follows.

[version]EL(
[lockTime]®L(
[inputPegin]EL(
[inputPrevOutpoint] ®L(i
[inputAsset]FL (i
[inputAmount]®L(i
[inputScriptHash] ¥t (i
[inputSequence] *L(i
linputAnnexHash] =X (i
(i
(i

[inputScriptSigHash]*L(i
JEL

7

)
)
)
)
)
)
)
)
)
)
)

[reissuanceBlinding] ™" (%

[newlssuanceContract]®L(i) :

[reissuanceEntropy] (i) :

[issuanceAssetAmount]¥L (i) =

[issuance TokenAmount]®L(i) -
[issuanceAssetProof]®L(i) :
[issuance TokenProof [ (i) :

[currentindex]®L() :

ELEnv. n°

Ae: n°(e[tx][version])

Xe : ELEnv. 5 (e[tx][lock Time])

Ae : ELEnv. n5(S(\l. I[peginChain])(e[tx][inputs][i]))

Xe : ELEnv. 75(S(Al. I[[prevOutpoint]) (e[tx][inputs][i]))

Ae : ELEnv. 75(S(\l. l[txo][asset]) (e[tx][inputs][i]))

Ae : ELEnv. 75(S(Al. [[txo][amount]) (e[tx][inputs][i]))

Ae : ELEnv. 75(S(\l. SHA256([[txo] [scriptPubKey])) (e[tx][inputs][i]))
Ae : ELEnv. 75(S(\l. l[sequence]) (e[tx][inputs][i]))

Ae : ELEnv. 75(S(Al. S(SHA256)({[annex])) (e[tx][inputs][i]))

Xe : ELEnv. 75(S(\. SHA256({[scriptSig])) (e[tx][inputs][i]))

Ae : ELEnv. 75(S(Al. S(blindingNonce) (reissuance(l)))
(e[tx][inputs][i]))

Ae : ELEnv. n5(S(\l. S(contractHash)(newlIssuance(l)))

(e[tx] [inputs][4]))

Ae : ELEnv. n5(S(Al. S(entropy) (reissuance(1)))(e[tx][inputs][i]))

1 (
Ae: ELEnv. S(S(S (ClearAmout) o issuanceAsset Amt)
(e[tx][inputs][i]))

Ae : ELEnv. 75(S(S(Clear Amout) o issuance Token Amt)
(e[tx][inputs][i]))
Ae: ELEnv. 7°(S(OptionPrfHash o issuance Asset Amt)

s
(e[tx] [inputﬁ] [i1))
Ae : ELEnv. 75(S(OptionPrfHash o issuanceToken Amt)
(e[tx][inputs][i]))
Ae : ELEnv. 5 (elix])
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JoutputAsset] ®L(4)
JoutputAmount]®L(4)
JoutputScriptHash]®L(4)
JoutputNullDatum]EL(i, )
[outputSurjectionProof] EL(4)
[outputRangeProof]L(4)
[totalFee] L (a)
[tapleafVersion] ()
)

)

)

)

(
(i
[tapbranch]®L (i
[internalKey]®

(
[genesisBlockHash]®(
[scriptCMR]EY(

where

PrfHash(o%(a)
PrfHash(oc®(a)
OptionPrfHash(n*(a
OptionPrfHash (%
ClearAsset(a

ClearAmount(a
isNewlIssuance(n°(a%(1))
isNewlIssuance(n°(o®(r))
isNewlIssuance((}
isReissuance(n®(a¥ (1))
isReissuance(n¥(c®(r))

s

isReissuance(()
newlIssuance(!

reissuance(l
getIssuanceAsset Amt (o%(1)
getIssuanceAsset Amt (o ®(r)
getIssuanceToken Amt (o (1)
getIssuanceToken Amt (o ®(r)
l

issuanceAssetAmt

—~ o~

l
fee(e,a
fee(o «l,a

issuanceTokenAmt

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

fee(o «l,a) :

encAsset(()S) :
encAsset(n5(o®(a))) :

= Ae:ELEnv. n5(
Ae:ELEnv. n°(
Ae:ELEnv. n°(
Ae:ELEnv. n°(
Ae: ELEnv. n5(
n>(
UM
n>(

e
Ae:
Ae:
e

(e[tx][outputs]|[i]))

Ae:ELEnv.
Ae: ELEnv.
Ae: ELEnv.

S(fee(e[tx][outputs], a))
S(e[tapEnv][leafVersion|)
e[tapEnv][branch][7])

[

[
S(e [tapEnv][internalKey])

[

[

S(e[genesisBlockHash)])

S(e[script CMRY])

SHA256(a[prf])
SHA256(c)

PrfHash(a)

SHA256(c)

Asset(unit)(a)
Amount(unit)(a)

(1)

@S

@S

@S

n°(r)

S
isNewlIssuance({[issuance])
isReissuance(l[issuance])
I[amount)

rlamount]

I[tokenAmount]

o®[0]64
S(getIssuanceAsset Amt)({[issuance])
S(getIssuanceToken Amt)(I[issuance])
1064

fee(l,a)|+]6av

fee(l, a)

[00] 5s
[01] 28'BE256(CE)
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: ELEnv. n3(S(\. ClearAsset({[asset]))(e[tx][outputs][i]))
ELEnv. 75(S(Al. Clear Amount (I[amount]))(e[tx][outputs][i]))
ELEnv. 75(S(Ml. SHA256(I[script PubKey])) (e[tx] [outputs][i]))
:ELEnv. n°3(15(S(A. nullDatum(I[scriptPubKey], [71)))

]
S(Al. PrfHash(I[asset])) (e[tx][outputs][i]))
(

S(S(\l. PrfHash(/[amount]))(e[tx][outputs][i]))

o®(a)

and o[value] = o®(v)

when o[asset] =

and o[scriptPubKey| =€
when o[asset] # o®(a)
or Yv. o[value] # o®(v)
or o[scriptPubKey| # €
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encAsset(n3(a(02, x)
encAsset(n3(c (15, x)
encAmt(o®[0]64
encAmt(o®(v
encAmt(o%(05, x
encAmt (0% (15, x

encNonce(()

) = [0alss-BE2se(z[pt])
) := [0b]zs-BEase([pt])
) := [00]5s
) := [01],5-BEga(v) when v # [0]64
) := [08]5s-BEase(w[pt])
) = [09]5s-BEgs6(z[pt])
) := [00]5s
encNonce(n%(c®(a))) := [01]5s-BEas¢(a
)
)
)
)
)
)

encNonce(n5(c(05, x

)

:= [02]58-BEas6(z[pt])

[03]s-BEgs6(x[pt])
BE,s56(SHA256(c))
BE2s6(h)
[00] 5s- [00] 28
= encAmt(z[amount])-
encAmt(z[tokenAmount])-
BE256([0]256)-
BEgs56(z[contractHash])-
encProof( AmountPrfHash(z[amount)))-
encProof( AmountPrfHash (z[token Amount]))

)
encNonce(n3(o¥(1, x)
0

encProof(

encProof(nS(h

enclssuance(()

enclssuance(n°(c%(x)

enclssuance(n®(c®(z))) := encAmt(z[amount])-
[00] 5s-
BEgs6(z[blindingNonce])-

BEss6(z[entropy])-
encProof( AmountPrfHash(z[amount)))-
encProof(()%)

where nullDatum is defined in the next section.

A.1.1 Null Data

An output’s scriptPubKey is call a TX_NULL_DATA script if it consists of an OP_RETURN opcode ([6azs])
followed by “PushOnly”, operations, which are operations whose opcode is OP_16 (96) or less (including
OP_RESERVED (80)).

In Elements, pegouts have an instance of a TX_NULL_DATA scriptPubKey. For that reason we offer prim-
itives for detecting and parsing TX_NULL_DATA scriptPubKeys. Below we define the function

nullData : (28)* — S((22 x 2256 4 (2 4 24))¥)
which,
1. decides if a script is “PushOnly”, and
2. if it is push only, returns a list of parsed opcodes in which the pushed data is hashed.

We also define

nullData : (28)* x N — S(S(22 x 2256 4 (2 4 24)))
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which decides if a script is TX_NULL_DATA and returns the parsed element at the given index for the parsed
data, if length of the parsed script is long enough. This is used to define the semantics of outputNullDatum

above.

nullData(ezs) =
nullData(n €d-l) :=

nullData(n €l) :=
nullData(|76|s «n «4d-l) :=

nullData([76|s «n <) =
nullData(|76|s «€¢) :
nullData(|77|s 4, 4ng «dl) =

nullData(| 77 |s «n; <ng «4l) =
nullData(|77]s «l) :

nullData(|78|s 4n3 4 ny 4ny 4ng «d-l)

nullData(|78|s 4ns 4 n2 4ni 4ng <)
nullData(|78]s <)

nullData([79]s <)

nullData(|80]s <)

nullData(x <)

nullData(z <!
nullDatum(6ays « s, j

nullDatum(e, j

A.1.2 Merkle Roots

We extend the definition of the commitment Merkle root to support the new expressions by hashing new

unique byte strings.

#(version

#¢(lockTime
#°(inputsHash
#°(outputsHash
#¢(inputPegin
#¢(inputPrevOutpoint

)
)
)
)
)
)
#¢(inputAsset)
)
)
)
)
)
)

#¢(inputAmount
#¢(inputScriptHash
#¢(inputSequence
#¢(inputAnnexHash
#¢(inputScriptSigHash
#<(reissuanceBlinding

US(€22x2256+(2+24))
pS(S(Ar.o¥(|0]2, SHA256(d)) «r)(nullData(l)))
when |d| =[n]s <76
s when || < [n]s <76
pS(S(Ar.o¥(| 12, SHA256(d)) «r)(nullData(l)))
when |d| =
= ¢ when || < [n]s
— 8
pS(S(Ar.o¥(|2]2, SHA256(d)) «r)(nullData(l)))
when |d| = [(ng,n1)]16

= (" when |I] < [(no, n1) 16
= (" when |l <2
= uS(S(Ar.ot(|3 ], SHA256(d)) «r)(nullData(l)))
when |d| = [((no, n1), (n2, 13)) 152
03 when [I| < [({no, 1), (n2,n3)) 32
= (5 when |I| <4
= uS(S(\r.c®(c%(05)) «r)(nullData(l)))
= pS(S(\r.c®(o%(1,)) «r)(nullData(l)))
pS(S(Ar.o®(o®|[2]s — 81]4) «r)(nullData(l)))

when 81 < [z]g <97
) = 03 when 97 < [x]g
) = S(ALI[j])(nullData(s))

nullDatum(z «s, j) : S
)

=

Il
=

S

|
=

SHA256ELPreﬁx [7665727369616¢]

SHA?2 56ELpreﬁx- [6c6£636b54696d65]

SHA?2 56ELprcﬁx [696e7075747348617368]

SHA?2 56{3\1;prcﬁx- [6£75747075747348617368]

SHA?2 56ELprcﬁx- [696e707574506567696e]

SHA?2 56ELprcﬁx [696e707574507265764f7574T06£696e74]
SHA?2 56{3\1;prcﬁx- [696e7075744173736574]

SHA?2 56ELprcﬁx- [696e707574416d6£756e74]

SHA?2 56ELpreﬁx [696e70757453637269707448617368]
SHA?2 56?\%Preﬁx- [696e70757453657175656e6365]
SHA?2 56ELpreﬁx- [696e707574416e6e657848617368]

EL fi 696e70757453637269707453696748617368
SHA 2565 Prefix 1696 !

_ SHA256ELpreﬁx- [726569737375616e6365426c696e64696€67]
- v

when x # 6aps
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#¢(newlssuanceContract)
#¢(reissuanceEntropy)
#¢(issuanceAssetAmount)
#¢(issuanceTokenAmount)
#¢(issuanceAssetProof)
#¢(issuanceTokenProof)
#¢(currentindex)
#¢(outputAsset)
#¢(outputAmount)
#¢(outputNonce)
#¢(outputScriptHash)
#°(outputNullDatum)
#¢(outputSurjectionProof)
#¢(outputRangeProof)
#¢(fee)

#¢(tapleafVersion)
#°(tapbranch)
#¢<(internalKey)
#¢(genesisBlockHash)
#¢(scriptCMR)

where

ELprefix := [63696d706c69636974792d44726166741£5072696d69746976651f456c656d6e74731f]

SHA 2565 Prefix
SHA 2565 Prefix
SHA2565Prefix
SHA2565FPrefix
SHA2565FPrefix
SHA2565FPrefix

SI{A256EmeﬁX

SHA2565FPrefix
SHA 2565 Prefix
SHA 2565 Prefix
SHA256 5 Prefix
SHA 2565 Prefix
SHA 2565 Prefix
SHA2565Prefix

SI{A256EmeﬁX

SHA2565FPrefix
SHA2565FPrefix

SI{A256EmeﬁX

SHA2565FPrefix
SHA 2565 Prefix

ELEMENTS APPLICATION

[6e657749737375616e6365436£6e7472616374]
[726569737375616e6365456e74726£7079]
[69737375616e63654173736574416d61756e74]
[69737375616e6365546f6b656e416d6f756e74]
[69737375616e6365417373657450726£6£66]
[69737375616e6365546f6b656e50726f6£66]
[63757272656e74496e646578]
[6£75747075744173736574]
[6£7574707574416d61756e74]
[6£75747075744e6£6e6365]
[6£757470757453637269707448617368]
[6£75747075744e756c6c446174756d]
[6£75747075745375726a656374696f6e50726£6166]
[6£757470757452616e676550726f6£66]
[666565]

[7461706c65616656657273696f6¢e]
[7461706272616e6368]
[696e7465726e616c4b6579]
[67656e65736973426c6£636b48617368]

[736372697074434d52]



Appendix B
Catelogue of Jets

UNDER DEVELOPMENT AND SUBJECT TO CHANGE

We develop a recommended set of jets and provide an interm encoding. An encoding ought to be based
on how frequenly jets are used, however we do not currently have good estimates of that. As an interm
measure we develop a heirarchical encoding of jets by category.

The properties for jets listed below may not fully define the jet’s semantics. All jets will be formally
specified by a Simplicity program that implements their complete semantics. Those formal specificaitons will
be found in the Coq library. Implementations MUST implement the COMPLETE specifications as defined
in the Coq library.

B.1 110...: Core Jets

The following jets are specified in core Simplicity or Simplicity with assertions, and therefore are applic-
able to any Simplicity application.

B.1.1 1100...: Jets for multi-bit logic

It is recomended that jets be supported for multi-bit words up to 22°6 in size.
TODO: define bit,, ,,:2"— 2

B.1.1.1 verify

verify’ 7:= [110]5-717.717
verify:2 -1

B.1.1.2 low

Tow'gn T:=[110]5-"17.F 2.+ 17
lowsn: 1+ 22" for 0<mn

Properties:
[bitan,i([lowzr] ()11 =0
[Tlowan] ()2n =0

Aliases:
zerogn = lowgn:1 F 22"

B.1.1.3 high

“high'en = [110] 5717737 4 17

111



112

highan:1 F22" for 0<n

Properties:
”[hlghQHH <>‘| on = 2n—1

Aliases:
onep :=high:1+ 2

B.1.1.4 complement

T'complement’on:= [110] " 17747 T + 17
complementan : 22" 22" for 0<n

Properties:
[bitan ;([complementan](z))]1=1 — [bitan ;(z)]1
[[complementan](z)]2n =2 — 1 — [2]2n

B.1.1.5 and

Tand’'gn 1= [110]5-"17-T5 T 417
andgn: 22" x 22" 22" for 0<n

Properties:
[bith)i([[andQn]} <ZZC’, y>)] 1= X( ’VbthnZ(I')} 1= 1A ’VbthnZ(y)" 1= 1)
B.1.1.6 or

Tor'gn1:=[110]5-"17-T6 T+ 17"
orgn : 22" x 22" 22" for 0<n

Properties:
[bitan i([oran](z, y)) 11 = x([biten i(z)]1 =1V [bitan (y)]1=1)
B.1.1.7 xor

T'xor'gn 1:=[110]5-"1.F 7T+ 17
x0rgn : 22" x 22" 22" for 0<n

Properties:
fbitgqi([[xorgn]] <CL’, y>)-| 1= ’—bitgn)i(tf)-l 1+ [bitgnﬂ'(y)—l 1(mod 2)
B.1.1.8 maj

T'majagn = [1101 5717787y 4 17
majon: 22" x (22" x 22" 22" for 0<n

Properties:
[bitan ;([majen](z, (¥, 2)))]1= x(2 < [biten,i(x) 1+ [biten i(y) 1+ [bitan,i(2)]1)

B.1.1.9 xor-xor

CATELOGUE OF JETS
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T'xor-xor'gn 1:= [110] 571779 p 4 17
xor-xorgn : 22" x (22" x 22") - 22" for 0<n

Properties:
fbitgqi([[xor-xorgn]] <CL’, <y, Z>>)-| 1= ’—bitgn)i(tf)-l 1+ [bitgnﬂ'(y)—l 1+ [bitgn)i(z)—l 1(mod 2)

B.1.1.10 ch

Tch'gn:=[110]-"17-F10 T+ 17
chgn: 22" x (22" x 22") - 22" for 0<n

Properties:
[bitan i([chen](z, (y, 2)))]1= (1 — [biteni(x)]1) - [biten,i(y)]1+ [biten i()]1 - [bitan i(2) 1

B.1.1.11 some

(CAUTION: Not defined when n=0.)
M'some'gn ':=[110] 57177117
somegn: 22" 2 for 1<n

Properties:

[[somezn] (2)]1 = x([2]2n #0)

Aliases:
somej:=iden:2+2

B.1.1.12 all

(CAUTION: Not defined when n=0.)
Mall'gnT:=[110]-"17.M127.Tn™
allgn : 22" 2 for 1<n

Properties:

[[allan] (2)]1 = x([]2n =2" = 1)

Aliases:
ally:=iden:2+2

B.1.1.13 eq

Meq'gn = [110] 71771377 4+ 17
€(an : 22” X 22” F2for 0 S n

Properties:
[eaz](z, y) = x(z=y)

B.1.1.14 full-left-shift

T'full-left-shift'an gm ':= [110]-"17-F 14 "m +17Tn —m ™
full-left-shiftan gm: 22" x 22" 22" x 22" for 0<m <n

Properties:

bitQm’i(Tfl([[fu”—'eft—shifth_’Qmﬂ <SC, y>)) = bith?i(z) for 0<i< 2™
bitgn)i(7T2([[fu||-|eft-shift2n72m]] <.’L’, y>)) = bit2n72m+i($) for 0 << 2™ —2™
bitgn)gn_2m+i(7T2([[fu||-|eft-shift2n)2m]] <.’L’, y>)) = bitgm)i(y) for0<i<2™
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Aliases:

full-left-shiftan on :=iden: 227 % 22" 22" i 2"

full-left-shiftan_om :=full-right-shiftam on: 22" 5 22M 22" 22" when 0<n<m
full-right-shiftan_gm :=full-left-shiftam on : 22" x 22" 22" x 22" when 0<n <m

B.1.1.15 full-right-shift

T'full-right-shift'on om ™ :=[110]-"17-715-"m+1"Tn —m™
full-right-shiftan om : 22" % 22" 22" x 22" for 0<m < n

Properties:

bitgn ;(m1 ([full-right-shiftan om[{z, y))) = bitg(x) for 0 <i< 2™
bitgn)gm_ﬂ'(7‘(1([[fu”-right-shiftgnygmﬂ <$, y>)) = bitgn)i(y) for 0<i<2m—2™
bit2m7i(7r2([[full-right-shiftngm]] <CL’, y>)) = bit2n72n_2m+i(y) for0<i< 2™

Aliases:

full-right-shiftan on :=iden: 22" x 22" |- 22" x 22"

full-right-shiftan_om :=full-left-shiftom on : 22" % 22" 22" % 22" when 0<n<m
full-left-shiftan_om :=full-right-shiftam on: 22" % 22™ 22" %« 22" when 0<n<m

B.1.1.16 leftmost

'_'|eftmost'27172wn,—' = [110] 2,717,7167 -Tm + 17 "™n —m™
leftmostan om: 22" 22" for 0<m<n

Properties:
bit2m7i([[|eftmost2n72m]] (.’L’)) = bitgn)i(fﬂ)

Aliases:
leftmostan on :=iden : 22" |- 22"

B.1.1.17 rightmost

T'rightmost’gn om ™ :=[110]5-" 17717 "m +1""n —m™
rightmostgn om : 22" 22" for 0<m <n

Properties:
bitgm@([[rightmostgn,gmﬂ ($)) = bit2n72n_2m+i($)
H[rightmosth)Qm]] (SC)] om = ’VSC-| on (mOd 2m)

Aliases:
rightmostan 9n :=iden: 22" | p2"

B.1.1.18 left-pad-low
(Note: derived from full-left-shift.)

M'left-pad-low'an om ™ :=[110]-"17-F18"Tn+17"m —n
left-pad-lowgn gm : 22" 22" for 0<n<m

Properties:
[bit2m7i([[left—pad—low27172mﬂ (ZZ?))-| 1= 0 when i < 2™ —2"
bit2m72m_2n+i([[left—pad-lowzqgm]] (.’L’)) = bitgn)i(fﬂ) when 7 < 2"
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[ [left-pad-lowan om](z)]2m = [2]2n

B.1.1.19 left-pad-high

(Note: derived from full-left-shift.)
M'left-pad-high’gn om 1:=[110] 717719 +17""Tm —n
left-pad-highan om : 22" 22" for 0 <n<m

Properties:
[bitom ;([left-pad-highan om](z))]1 =1 when ¢ < 2™ — 27
bitgm om _on4i([left-pad-highan om](z)) =bitan ;(x) when i <27

B.1.1.20 left-extend

(Note: derived from leftmost, left-pad-low and left-pad-high.)
M'left-extend'gn om 1= [110] 2717720 "n+1""m —n"
left-extendgn om 22" 22" for 0<n<m

Properties:
bitom ;([left-extendan om](x)) = bitan o(x) when ¢ < 2™ —2
bit2m)2m,2n+i([[left—extendgn)gm]] (SC)) = bltgnl(x) when 7 < 2"

Aliases:
right-extend; om:=left-extend; om: 2+ 22" for 0<n<m

B.1.1.21 right-pad-low

(Note: derived from full-right-shift.)
M'right-pad-low’gn om ™ := [110] 717721 "n+1""m —n ™
right-pad-lowgn om : 22" 22" for 0<n<m

Properties:
bitom ;([right-pad-lowgn om](z)) = biten ;(x) when 7 < 2"
[bitom ;([right-pad-lowgn 2m](x))]1 =0 when 2™ <j < 2™

B.1.1.22 right-pad-high

(Note: derived from full-right-shift.)
T'right-pad-high’gn om ™ :=[110]-"17.7227"."n 4+ 17""m —n "
right-pad-highgn om : 22" 22" for 0 <n<m

Properties:
bitQm)i([[right—pad—high2n727n,ﬂ (ZZ]’)) = bith_’i(ZZ?) when 7 < 2"
[bitom ;([right-pad-highgn om](x))]1 =1 when 2™ <i< 2™

B.1.1.23 right-extend

(Note: derived from rightmost, right-pad-low, and right-pad-high.)
(CAUTION: Not defined when n=0.)
M'right-extend’gn om 1= [110]-"17-7237."n""'m —n’!
right-extendgn om : 22" 22" for 1<n<m

Properties:
bitom ;([right-extendan om](z)) = biten ;(z) when i < 2™

[bitgm ;([right-extendan om](x))]1 = biton on_1(x) when 2™ <i< 2™

Aliases:
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right-extend; om:=left-extend; om: 2+ 22" for 0<n<m

B.1.1.24 left-shift-with
Left shift by a given amount. Bits are filled with the provided value.

™left-shift-with'gn 1= [110] 57 17-7247.7 4 17
left-shift-withon : 2 x (227" x 22") - 22" for 0 < n

B.1.1.25 right-shift-with

Right shift by a given amount. Bits are filled with the provided value.

"'right-shift-with'on 7 := [110]-"17-725"Tn + 17
right-shift-withgn : 2 X (22%(”)1 x 22 22" for 0<n

B.1.1.26 left-shift

Left shift by a given amount. Bits are filled with 0 bits.
Mleft-shift’'on 1:= [110] 717726 -0+ 17
left-shifton : 22" x 22" 22" for 0<n

B.1.1.27 right-shift

Right shift by a given amount. Bits are filled with 0 bits.
T'right-shift'on7:= [110] -7 17-727 T + 17
right-shiftan : 22T 52m L 52" 0 ) <n

B.1.1.28 left-rotate

Right rotate by an amount.
'left-rotate’gn ;= [110]5-717.M287.T

left-rotategn : 22T p2m 52" g <n

Aliases:
left-rotate; :=drop: 1 x 2+ 2

B.1.1.29 right-rotate

Right rotate by an amount.
T'right-rotate’on ':=[110] -7 17:7297.T "
right-rotategn : 22" x 22" - 22" for 1 <p

Aliases:
right-rotate; :=drop: 1 x 2+ 2

B.1.1.30 transpose

(CAUTION: Not defined when n=0 or m=0.)
(Note: Support only recommened up to 2™ -2 < 256.)
M'transpose’gn om ':= [110]5-"17-730"Tn . Tm ™
transposegn gm : 222" - 22"2" for 1 <n and 1<m

Aliases:
transpose; on := iden : 22" |- 22"
transposegn 1 := iden : 22" |- 22"

B.1.1.31 find-first-high

(CAUTION: Not defined when n=0.)
™ find-first-high'an":= [110]-"17-7 317 "
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find-first-highgn : 22" F 22" o 1 <

B.1.1.32 find-last-high

(CAUTION: Not defined when n=0.)
™'find-last-high's» " := [110] 571773277
find-last-highon : 22" 22D g0 <n

B.1.1.33 bit

(CAUTION: Not defined when n <1.)
Tbit'gn :=[110]5"17F33"Tn — 17
bitgn: 22" % 22" -2 for 2<n

Aliases:
bit; :=drop:1 x 2+ 2
bitg:=ch;:2 x 2212

B.1.2 110100...: Jets for arithmetic

B.1.2.1 one

(CAUTION: Not defined when n=0. See Aliases.)

Tone'gn ':= [110]5-727.7 10T
onegn:1+22" for 1<n

Properties:

[bitan ;([onegn](2))]1 =0 when 0 <i<2"—1
[biton,2n—1([onezn](z))]1 =1

[[onezn]()]2n =1

Aliases:
onep :=highy:1F2

B.1.2.2 full-add

(Note: 'full-add’y is composed from ‘maj' and ‘tri-xor'".)

Tfull-add’on:= [110]5-727.7 2777
full-addgn: 2 x (22" x 22") -2 x 22" for 0<n

Properties:

[[full-addan] (¢, (@, y)) 11,20 = [#]2n + [y]on + [er]1

B.1.2.3 add

Madd’s» :=[110]5-727.F3 T + 17
addgn: 22" x 22" 2 x 22" for 0<n

Properties:
[[addan](z, y) 11,2 =[x ]2n + [y]2n

Aliases:
popcounts :=add; : 22 22

B.1.2.4 full-increment

(CAUTION: Not defined when n=0. See Aliases.)
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full-increment’on ' := [110] 5-727.74 .M
full-incrementgn : 2 x 22" 2 x 22" for 1<n

Properties:
[[full-incrementan]{c, )]1,2n = [ ]2n + [c1]1

B.1.2.5 increment

Tincrement’gn ' := [110]5-727.F 5. p?
incrementgn: 22" 2 x 22" for 0<n

Properties:
”[incrementhH (I’)‘| 1,2n = ’VSC-| on —+ 1

B.1.2.6 popcount

(CAUTION: Not defined when n <1.)
Tpopcount’on = [110] 572776 T — 11
popcountan : 22" 22T for <n

Properties:
[ [popcountan] () |grinen 1= 3o o " [bitan ()]

Aliases:
popcount; :=iden:2+2
popcounts :=add; : 22 22

B.1.2.7 full-subtract

(Note: composition of full-add with complement applied to 1st and 3rd arguments).

T'full-subtract’on 7:=[110] 5727777
full-subtractan : 2 x (22" x 22") -2 x 22" for 0<n

Properties:
[[full-subtractan]{c, (x, y))]1,20 = [2]2n — [y]2n — [c1]1(mod 22" +1)

B.1.2.8 subtract

Msubtract’on ':=[110]5-727.F871-Tn "
subtractgn : 22" x 22" 2 x 22" for 0<n

Properties:

[[full-subtracton]{z, y)]1,0n = [2] 2~ — [y]2n(mod 22" +1)

B.1.2.9 negate

(CAUTION: Not defined when n=0.)
Tnegate'an':= [110] 727797 "
negategn: 22" 2 x 22" for 1<n

Properties:
[[negatesn](z)]1,2n = —[x]2n (mod 22" 1)

B.1.2.10 full-decrement
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"'full-decrement’sn := [110] 727710 """
full-decrementgn: 2 x 22" F 2 x 22" for 0<n

Properties:
[[full-decrementan]{c, 2)]1 20 = [2]2n — [c1]1(mod 22" 1)

B.1.2.11 decrement

Tdecrement’'gn ':=[110] 57277117
decrementan: 22" F2 x 22" for 0<n

Properties:
[[decrementan] ()]1.2n = [2]2n — 1(mod 22" 1)

B.1.2.12 full-multiply

(Note: 'full-multiply’; is composed from 'full-add’; and ‘and’.)
T full-multiply’on ™ := [110] 7277 127-Tn
full-multiplyan : (22" x 22") x (22" x 22")F 22" for 0<n

Properties:

[[full-multiplieran] ({c1, c2), (x, y)) lon+1= [@]2n - [y]2n + [c1]2n + [c2]2n

B.1.2.13 multiply

T'multiply’gn:= [110]5-727-7137Tn?
multiplyan : 22" x 22" 22" for 0<n

Properties:
[[multiply2n](z, y) lon+1=[z]on - [y]on
B.1.2.14 is-zero

(CAUTION: Not defined when n=0. See Aliases.)
(Note: complement of some).
Mis-zero'gn ':= [110]5-727.M147.M'p"

Properties:
[[is-zeroan](z)]1= x([z ]2~ =0)
B.1.2.15 is-one

(CAUTION: Not defined when n=0. See Aliases.)
Mis-one'gn 1= [110] 5727715 n!

Properties:
[lis-onezn](z) 1= x([z]2n =1)
B.1.2.16 le (unsigned)

(Note: borrow bit from subtractor)
Mle'gn:=[110]-727-F 167"+ 17
legn : 22" x 22" 2 for 0<n

Properties:

[Mlezn](z, y) 11 = x([2]20 < [y]2n)
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B.1.2.17 It (unsigned)

Tt'gn T:=[110]5-"27717 T4+ 17
[ton : 22" x 22" 2 for 0<n

Properties:
[Mte-]{z, y) 11 = x([2]2n < [y]2n)
B.1.2.18 min (unsigned)

T'min'gn := [110]5-727.7187.Mp ™
mingn: 22" x 22" 22" for 1<n

Properties:
z < [['min'an]{z, y)]2~ if and only if z < [2]2» and z < [y]an

Aliases:
miny:=and;:2 x 22

B.1.2.19 max (unsigned)

Tmax’'gn ':= [110]5-727.719.M "
maxan: 22" x 22" 122" for 1<n

Properties:
[[maxan]{z,y)]2n <z if and only if [x]2n <z and [yen <z

Aliases:
maxji:=or;:2x2F2

B.1.2.20 median (unsigned)

Mmedian’gn T:= [110]-727-7207"-Tn"
mediangn : 22" x (22" x 22") 22" for 1<n

Properties:
[[minan] (@i, 25)]2n < [[mediangn](z1, (@2, 23)) |2n < [[maxan] (24, x;) |2n for all 1 <i< j <3.

Aliases:
mediany :=maj;: 2 X (2 x 2)-2

B.1.2.21 div2nln

(Note: helper function for divmod. See Fast recursive division by Bunikel and Ziegler (1998).)
T'div2nln’gn = [110]5-7277210 T + 17
div2nlngn : 22" 22" 1 227 5 22" for () <n

Properties:

When 2"71 S ’Vy-|2n and ’VZC‘|271+1 <2m. [y]gn,

a) [ylan- [mi([div2nlngn](z, y))lan = [2]on+1 — [ma([div2ningn] (2, y))]2n, and
b) [ma([diventng.](z, y))Ton < [y]2n.


http://cr.yp.to/bib/1998/burnikel.ps
http://cr.yp.to/bib/1998/burnikel.ps
http://cr.yp.to/bib/1998/burnikel.ps
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When 2" 71> [y]onor[z]gn+1 > 2" [y]2n, then bitgzn ;([div2nlnan](z, y)) = 1.

B.1.2.22 div-mod (unsigned)

T'div-mod’on:=[110]5-M27.7227.Mp 417
div-modan : 22" x 22" 22" x 22" for 0<n

Properties:
[y]2n - [m1([div-modan](z, y))|2n =[x ]2n — [ma([div-modan](x, y))]2n

For all r € N such that [y]an|[x]2n —r we have[ma([div-modan]{x, y))]|an <.

B.1.2.23 divide (unsigned)

Tdivide'on T:=[110] 5727723 Tn + 171
dividegn : 22" x 22" 22" for 0<n

B.1.2.24 modulo (unsigned)

T'modulo’on:=[110] 57277247 4+ 17
modulogn : 22" x 22" 22" for 0<n

B.1.2.25 divides (unsigned)

Tdivides'gn 1= [110] 57277250 + 17
divideson : 22" x 22" 2 for 0<n

Properties:
[[dividesyn](z, y) |1 = x([z]2n[[y]2n)

B.1.2.26 eea (unsigned)

Meea'gn 1:=[110],-727-726"-Tn 4 17
eeagn 1 22" x 22" (((22" x 22") 4 (22" x 22")) x (22" x 22")) x 22" for 0<n

Properties:
Let ({b, {cy, cx)), d) := [eean-]{z, y)

[czlon [d]an=[z]2n
[cylon [d]2n=[y]on

If o%(s,t) = b then [s]an [2]20 — [t]20 [y]2n = [d]2n and either [s]on <12 or [#]5 <[22,

If o®(s,t) =b then [s]2n [2]20 — [t]2n [y]2n=—[d]2n and either [s]zn <12 or [#]5, <[l

[eeas[{l ], [2]) = ((e"([1], [0]), ([1], [1]), [=]).
B.1.2.27 bezout (unsigned)

(CAUTION: Not defined when n <1.)
bezout'gn ':=[110]-M27-F27 .M
bezoutyn : 22" x 22" |- (22" x 22") 4 (22" x 22") for 1 <n
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B.1.2.28 gcd (unsigned)

(CAUTION: Not defined when n <1.)
Mged'on T:= [110]5-727.7287.Tp "
gedan : 22" x 22" 22" for 1<n

B.1.2.29 cofactors (unsigned)

(CAUTION: Not defined when n <1.)
T'cofactors’gn ':=[110]5-727.7297.T 0
cofactorsgn : 22" x 22" 22" x 22" for 1< n

B.1.2.30 lcm (unsigned)
Mem'gn:=[110]-727730"Tn 4 17

leman : 22" x 22" 22" for 0<n

B.1.2.31 jacobi (unsigned)

Mjacobi'an 1= [11015727-731 7 4+ 17
jacobign : 22" x 22" 22 for 0<n

B.1.2.32 absolute-value (signed input/unsigned output)

absolute-value'sn:= [110] 277 327.Mn!
absolute-valuegn : 22" 22" for 0<n

B.1.2.33 sign

(CAUTION: Not defined when n=0. See Aliases.)
'sign’gn 1:= [110]-727.7337".M "
signan: 22" 22 for 1<n

Properties:
[signan] (z) = ([leftmostan](x), [somezn](x))

B.1.2.34 signed-le

signed-le’sn ' := [110]5-727-F34 . + 17
signed-legn : 22" x 22" 2 for 0<n

B.1.2.35 signed-It

signed-It'on 1:= [110]5-727-735 .+ 17
signed-Itan : 22" x 22" -2 for 0<n

B.1.2.36 signed-min
B.1.2.37 signed-max
B.1.2.38 signed-median

B.1.2.39 signed-right-shift

Right shift by a signed amount with sign extension. Negative values are a left shift.
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B.1.2.40 signed-divmod (unsigned denominator)

B.1.2.41 signed-div (unsigned denominator)

B.1.2.42 signed-signed-divmod (signed denominator)

B.1.2.43 signed-signed-div (signed denominator)

B.1.3 110101...: Jets for hash functions

B.1.3.1 1101010...: Jets for SHA-2

123

In this section we define Ctx8:= (28)<64 x (264 x 2256). This represent a type of SHA-256 contexts for hashing
variable length byte strings. The first component is a buffer of bytes representing a partial block. The second
component is the number of times the compression function has been invoked. The third component is the

SHA-256 midstate of compressed data so for (excluding the data in the partial block).
Note that SHA-256 only allows the compression counter to be less than

The jets below will fail if

the compression counter is 2%° or larger, or if executing the function would cause the counter to become 2°°

or larger.
B.1.3.1.1 sha-256-block

T'sha-256-block’ ':= [110],-"37.F17.M" 1"
sha-256-block : 2256 x 2512} 2256

B.1.3.1.2 sha-256-iv

'sha-256-iv’' 1= [110]5-737.717.727
sha-256-iv : 1 |- 2256

B.1.3.1.3 sha-256-ctx-8-add

"'sha-256-ctx-8-add’on ' := [110]-"37M 1773 .Tp 4+ 17
sha-256-ctx-8-addan : Ctx8 x (28)2" - Ctx8

B.1.3.1.4 sha-256-ctx-8-add-buffer-511

"'sha-256-ctx-8-add-buffer's;; 7:= [110] ,-737-F17.747
sha-256-ctx-8-add-buffers;; : Ctx8 x (28)<°12 |- Ctx8

B.1.3.1.5 sha-256-ctx-8-finalize

"'sha-256-ctx-8-finalize' ' := [110]-"37-"17.F'57
sha-256-ctx-8-finalize : Ctx8 - 2256

B.1.3.1.6 sha-256-ctx-8-init

"'sha-256-ctx-8-init' ':= [110] -7 37-F17.7 6"
sha-256-ctx-8-init: 1 - Ctx8

B.1.3.2 110101100...: Jets for SHA-3

In this section we define X°:= X x X% and X1600:= ((X64)5)5,
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B.1.3.2.1 sha3-zero

M'sha3-zero' ':= [110]5-737-727.M' 1"
sha3-zero: 1 21600

B.1.3.2.2 sha3-absorb

(Note: we should proably byte-stwap the input before xoring it into place
M'sha3-absorb’y, ,, ':= [110] -7 37.M27.M27.Mp1.0m 1
sha3-absorby, 264 5 21600121600 f4r 1 <n,m <5

B.1.3.2.3 sha3-xor

T'sha3-xor':= [110],-737".M 2. 37
sha3-xor : 21600 5 21600 31600

B.1.3.2.4 sha3-permute

"'sha3-permute’ ':= [110]5-"37.M27.747
sha3-permute: 21600 - 21600

B.1.3.2.5 sha3-squeeze-256

"'sha3-squeeze-256'":= [110],-737-M271.757
sha3-squeeze-256: 21600 |- 2256

B.1.3.2.6 sha3-squeeze-512

"'sha3-squeeze-512'":= [110] »-"37-727.-7 6™
sha3-squeeze-512: 21600 |- 2512

B.1.3.3 110101101...: Jets for RIPEMD
B.1.3.4 110101110000...: Jets for SHA-1 (RESERVED)

B.1.4 110110000...: Jets for elliptic curve functions

B.1.4.1 1101100000...: Jets for secp256kl

In this section we define Scalar := 2256 2129.=2 x 2128 FE.= 225 GE:=FE x FE, and GEJ:= GE x FE,
Point :=2 x FE.

(Note: To convert GE to GEJ pair with one).

TODO: Verify that all equivalent FE and Scalar inputs yield equal outputs.

B.1.4.1.1 secp256k1l-point-verify

(Note: Support only recommened up to 2" <TODO 87.)
™'secp256k1-point-verify'on 1:= [110] 574771771 7.Fn 4+ 17
secp256k1-point-verifyzn: ((Scalar x Point)2" x Scalar) x Point -1 for 0 <n

B.1.4.1.2 secp256kl-decompress

M'secp256kl-decompress’ ' := [110]5-M 477" 17MF270.Mp 17
secp256k1-decompress: Point - S(GE) for 0 <n

B.1.4.1.3 secp256k1-linear-verify
(Note: Support only recommened up to 2" <TODO 87.)
M'secp256kl-linear-verify'on 1 := [110] 574771773 + 17
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secp256k1-linear-verifyan: ((Scalar x GE)?" x Scalar) x GEF1 for 0<n
B.1.4.1.4 secp256kl-linear-combination
(Note: Support only recommened up to 2" <TODO 87.)
M'secp256kl-linear-combination’'on ' := [110] -4 771774 . + 17
secp256k1-linear-combinationan: (Scalar x GEJ)?" x Scalar - GEJ for 0 <n
B.1.4.1.5 secp256kl-scale

M'secp256kl-scale’ ' := [110]5-747"17-T'57
secp256kl-scale: Scalar x GEJ+ GEJ

B.1.4.1.6 secp256kl-generate

M'secp256kl-generate’ ':= [110] 74771776
secp256kl-generate: Scalar - GEJ

B.1.4.1.7 secp256k1-gej-infinity

M'secp256kl-gej-infinity’ 7:= [110],-74 7M1 1.7 71
secp256kl-gej-infinity: 1+ GEJ

B.1.4.1.8 secp256k1-gej-normalize

"'secp256kl-gej-normalize’ ' := [110] -7 47717787
secp256k1-gej-normalize: GEJ S(GE)

B.1.4.1.9 secp256kl-gej-negate

"'secp256kl-gej-negate’ ':=[110],-747-717.797
secp256kl-gej-negate: GEJ - GEJ

B.1.4.1.10 secp256kl-ge-negate

M'secp256kl-ge-negate’ ':= [110],-747T17.7107
secp256kl-ge-negate: GEF GE

B.1.4.1.11 secp256k1-gej-double

"'secp256kl-gej-double' " := [110],-747-" 171117
secp256kl-gej-double: GEJ - GEJ

B.1.4.1.12 secp256kl-gej-add

"'secp256kl-gej-add’ " := [110]5-747-T17.7127
secp256kl-gej-add: GEJ x GEJ - GEJ

B.1.4.1.13 secp256kl-gej-ge-add-ex

M'secp256kl-gej-ge-add-ex' 1:= [110] 7477177137
secp256kl-gej-ge-add-ex: GEJ x GEFFE x GEJ

B.1.4.1.14 secp256k1-gej-ge-add
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M'secp256kl-gej-ge-add' " := [110] 574 .F 177147
secp256kl-gej-ge-add: GEJ x GEF GEJ

B.1.4.1.15 secp256kl-gej-rescale

M'secp256kl-gej-rescale’ ':= [110],-747M17.7157
secp256kl-gej-rescale: GEJ x FE - GEJ

B.1.4.1.16 secp256k1-gej-is-infinity

™'secp256k1-gej-is-infinity’ 1:= [110]-747.M17.716™
secp256kl-gej-is-infinity: GEJ -2
B.1.4.1.17 secp256k1-gej-equiv Does not exist in libsecp256k1
Warning: this can be implemented by comparing coordinates (by cross multiplication) or by adding points
and testing for infinity. However these two implementations yeilds different results for off curve points.
M'secp256kl-gej-equiv' ' := [110] -7 47T 17C 17T
secp256kl-gej-equiv: GEJ x GEJ -2
B.1.4.1.18 secp256k1-gej-ge-equiv Does not exist in libsecp256k1
Warning: this can be implemented by comparing coordinates (by cross multiplication) or by adding points

and testing for infinity. However these two implementations yeilds different results for off curve points.

M'secp256kl-gej-ge-equiv' 1= [110]-74-F 17718
secp256kl-gej-ge-equiv: GEJ x GE2

B.1.4.1.19 secp256k1-gej-x-equiv

M'secp256kl-gej-x-equiv' ' :=[110]5-74.F17-719™
secp256kl-gej-x-equiv: FE x GEJF 2

B.1.4.1.20 secp256kl-gej-y-is-odd

M'secp256kl-gej-y-is-odd' ':= [110],-747.717.M20"
secp256kl-gej-y-is-odd: GEJ 2

B.1.4.1.21 secp256k1-gej-is-on-curve

M'secp256kl-gej-is-on-curve' ':= [110]5-74 .7 17721
secp256k1-gej-is-on-curve: GEJ 2

B.1.4.1.22 secp256k1-ge-is-on-curve

"'secp256kl-ge-is-on-curve' ' := [110] -7 477177227
secp256kl-ge-is-on-curve: GEJ F 2

B.1.4.1.23 secp256k1-scalar-normalize

T'secp256kl-scalar-normalize' " := [110] -7 47.M 177237
secp256k1-scalar-normalize: Scalar F Scalar

B.1.4.1.24 secp256k1-scalar-negate

"'secp256kl-scalar-negate' ' := [110]»-"47.F 177247
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'secp256k1-scalar-negate’: Scalar - Scalar
B.1.4.1.25 secp256k1-scalar-add

T'secp256kl-scalar-add' " := [110] »-M47-M 1717257
secp256kl-scalar-add: Scalar x Scalar - Scalar

B.1.4.1.26 secp256k1-scalar-square

"'secp256kl-scalar-square’ ' := [110] -7 47-717.126™
secp256kl-scalar-square: Scalar - Scalar

B.1.4.1.27 secp256k1-scalar-multiply

M'secp256kl-scalar-multiply’ " := [110]5-747.F 1.7 277
secp256kl-scalar-multiply: Scalar x Scalar - Scalar

B.1.4.1.28 secp256k1-scalar-multiply-lambda

M'secp256kl-scalar-multiply-lambda’ " := [110]5-747.M17.728™
secp256k1-scalar-multiply-lambda: Scalar - Scalar

B.1.4.1.29 secp256k1-scalar-invert

M'secp256kl-scalar-invert' ' := [110] -7 477177297
secp256kl-scalar-invert: Scalar - Scalar

B.1.4.1.30 secp256k1l-scalar-is-zero

M'secp256kl-scalar-is-zero' ' := [110],-747.M17.730™
secp256k1-scalar-is-zero: Scalar -2

B.1.4.1.31 secp256k1-ge-scale-lambda

"'secp256kl-ge-scale-lambda’ " := [110],-74"-"17.7 31"
secp256kl-ge-scale-lambda: GE- GE

B.1.4.1.32 secp256k1-gej-scale-lambda Consider removing

M'secp256kl-gej-scale-lambda’ " := [110] .74 7.7 177327
secp256kl-gej-scale-lambda: GEJ - GEJ

B.1.4.1.33 secp256k1-scalar-split-lambda

M'secp256kl-scalar-split-lambda’ 7 := [110] .74 -7 1.7 33
secp256k1-scalar-split-lambda: Scalar - 2129 x 2129

TODO Properties:
A« [m1(['secp256k1-scalar-split'] (x)) 2128 + [m2([['secp256k1-scalar-split'] (z)) 2128 =scalar [ ] 2256

B.1.4.1.34 secp256k1-short-scalar

M'secp256kl-short-scalar'":= [110]»-"47-717-734™
secp256k1-short-scalar: 21291 Scalar
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B.1.4.1.35 secp256kl-fe-normalize

™'secp256kl-fe-normalize’ " := [110]5-747-717.7 357
secp256kl-fe-normalize: FEF FE

B.1.4.1.36 secp256k1-fe-negate

"'secp256kl-fe-negate’ ':= [110] 5747717736
secp256kl-fe-negate: FEFFE

B.1.4.1.37 secp256kl1-fe-add

"'secp256kl-fe-negate’ ':= [110] 747N 1.7 377
secp256kl-fe-negate: FE x FEFFE

B.1.4.1.38 secp256k1-fe-square

M'secp256kl-fe-square’ ' := [110]»-"47-M17-.738™
secp256kl-fe-square: FEFFE

B.1.4.1.39 secp256k1-fe-multiply

M'secp256kl-fe-multiply’ " := [110],-747-F17-739"
secp256kl-fe-multiply: FE x FE+FE

B.1.4.1.40 secp256k1l-fe-multiply-beta

™'secp256k1-fe-multiply-beta’ ™ := [110]-747.717.740™
secp256kl-fe-multiply-beta: FE-FE

B.1.4.1.41 secp256kl-fe-invert

M'secp256kl-fe-invert' ' := [110] 747N 177417
gisecp256k1-fe-invert: FEFFE

B.1.4.1.42 secp256k1-fe-square-root

M'secp256kl-fe-square-root' ':= [110] -4 .M 177427
secp256k1-fe-square-root: FE+ S(FE)

B.1.4.1.43 secp256k1-fe-is-zero

M'secp256kl-fe-is-zero' " := [110]5-747.M17-7 437
secp256kl-fe-is-zero: FEF 2

B.1.4.1.44 secp256kl-fe-is-odd

M'secp256kl-fe-is-odd' 7 := [110]»-M4 -7 177447
secp256kl-fe-is-odd: FE I 2

B.1.4.1.45 secp256kl-fe-is-quad

'secp256kl-fe-is-quad' " := [110]»-"4-F 177457

CATELOGUE OF JETS
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secp256kl-fe-is-quad: FE 2
B.1.4.1.46 secp256k1l-hash-to-curve

M'secp256kl-hash-to-curve' := [110]5-74 .M 17746
secp256k1-hash-to-curve: 2256 GE

B.1.4.1.47 secp256kl-swu

M'secp256kl-swu'':= [110]-M47-M17.747"
secp256kl-swu: FEF GE

B.1.5 110110001...: Jets for digital signatures

B.1.5.1 1101100010...: Jets for secp256kl based digital signatures

In this section we define Pubkey := 2256, Signature := 2512,

B.1.5.1.1 check-sig-verify

(Note: this jet can fail.)
"'check-sig-verify' 7:= [110] "5 .M 1.7 17
check-sig-verify: (Pubkey x 2°12) x Signature 1

B.1.5.1.2 bip-0340-verify
(Note: this jet can fail.)
™'bip-0340-verify' 7 := [110]p-"5 .M 17127
bip-0340-verify: (Pubkey x 2256) x Signature 1
B.1.5.1.3 bip-0340-challenge-iv

"'bip-0340-challenge-iv' " := [110] -5 .71 .13
bip-0340-challenge-iv: 1 |- 2256

B.1.5.1.4 bip-0340-challenge-midstate

"'bip-0340-challenge-midstate’ ' := [110] -7 57N 1.7 4™
bip-0340-challenge-midstate: FE x Pubkey I 2256

B.1.5.1.5 secp256k1-signature-unpack

"'secp256kl-signtaure-unpack’ " := [110] "5 .M 17.757
secp256k1-signature-unpack: Signature - S(FE x Scalar)

B.1.5.1.6 secp256kl-pubkey-unpack

"'secp256kl-pubkey-unpack’ " := [110]5-757-F171.76™
secp256k1-pubkey-unpack: Pubkey F S(GE)

B.1.5.1.7 secp256k1-pubkey-unpack-neg

"'secp256k1-pubkey-unpack-neg' := [110] -7 5T 1.7 7T
secp256k1-pubkey-unpack-neg: Pubkey - S(GE)

129



130 CATELOGUE OF JETS

B.1.5.1.8 secp256kl-ecdsa

B.1.6 110110010...: Jets for Simplicity

Tagged hash IVs for basic simplicity combinators, signature hashes, etc. The CMR of various expressions
for constants.

These would be use for Simplicity covenants.

B.1.6.1 11011000100...: Jets for tagged hash IVs

B.1.6.1.1 iden-commitment-tag
B.1.6.1.2 comp-commitment-tag
B.1.6.1.3 unit-commitment-tag
B.1.6.1.4 injl-commitment-tag
B.1.6.1.5 injr-commitment-tag
B.1.6.1.6 case-commitment-tag
B.1.6.1.7 pair-commitment-tag
B.1.6.1.8 take-commitment-tag
B.1.6.1.9 drop-commitment-tag
B.1.6.1.10 witness-commitment-tag
B.1.6.1.11 disconnect-commitment-tag
B.1.6.1.12 fail-commitment-tag
B.1.6.1.13 signtaure-tag

M'signature-tag’ " := [110] -6 -7 177137
signature-tag: 1 |- 2256

B.1.6.1.14 sighash-tag

B.1.7 110110011...: Jets for Bitcoin (without primitives)

This section is not recommended for non-Bitcoin(-like) applications.

B.1.7.1 parse-lock

(Note: ['parse-lock’][0]32:=c%(0))
Mparse-lock' ' := [110]-" 77717
parse-lock : 232 |- 232 4 232

B.1.7.2 parse-sequence
™'parse-sequence’ ':= [110] 5" 77727

parse-sequence : 232 - §(216 4 216)

B.2 111...: Bitcoin Jets

B.2.1 Signature Hash Modes
e sighash-all:1 |- 2256

e sighash-single:1 - 22°¢ (anyone can pay)
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e sighash-outputs:Index x 2322256 (anyone can pay)

B.2.2 Time Locks

In this section we define Height := 232, Time := 232, Distance := 2'6, and Duration = 216,

B.2.2.1 check-lock-height

"'check-lock-height' " := [111] 727117
check-lock-height : Height - 1

Asserts that the value returned by 'tx-lock-height’ is greater than or equal to the input.

B.2.2.2 check-lock-time

"'check-lock-time' 7:= [111]5-727.M 27
"check-lock-time’: Time 1

Asserts that the value returned by 'tx-lock-time' is greater than or equal to the input.

B.2.2.3 check-lock-distance

"'check-lock-distance' 7:= [111],-727.M37
'check-lock-distance’ : Distance -1

Asserts that the value returned by 'check-lock-distance’ is greater than or equal to the input.

B.2.2.4 check-lock-duration

"'check-lock-duration' 7:= [111]5-727.74™
'check-lock-duration’ : Duration 1

Asserts that the value returned by 'check-lock-duration’ is greater than or equal to the input.

B.2.2.5 tx-height-lock

"'tx-height-lock' " := [111] -7 27.757
tx-height-lock : 1 - Height

Returns x when is-final returns 0, and [parse-lock] o [lockTime] returns o%(z).
Otherwise returns |0]s2.

B.2.2.6 tx-time-lock

Mtx-time-lock’ " := [111] 572776
"tx-time-lock’ : 1+ Time

Returns = when is-final returns 0, and [parse-lock] o [lockTime] returns o®(z).
Otherwise returns |0]s2.

B.2.2.7 tx-distance-lock
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Mtx-distance-lock’ " := [111]-727.7 77
"tx-distance-lock’ : 1 Distance

When 2 < [[version]()]2s2, returns the greatest x of values n°(c%(z)) returned by (S[parse-sequence] o
[inputSequence]) (i) for any input ¢, if there are any. Otherwise returns |0]1¢.

B.2.2.8 tx-duration-lock

Ttx-duration-lock’ 7 :=[111]5-727.7 8™
"tx-duration-lock’ : 1+ Duration

When 2 < [[version]()]2s2, returns the greatest x of values n%(c®(z)) returned by (S[parse-sequence] o
[inputSequence]) () for any input ¢, if there are any. Otherwise returns |0]16.

B.2.2.9 is-final

Mis-final' 7:=[111],-727.797
"is-final" : 1+ 2

Returns 1, when all the sequence numbers of the tranaction inputs are at their maximum value.
Otherwise returns 0.

B.2.3 Transaction

B.2.3.1 script-cmr
T'script-cmr’ ;= [110] 5737717
script-cmr : 1 - 2256

B.2.3.2 internal-key

Tinternal-key' 7 := [110] -7 37727
internal-key : 1 - PubKey

B.2.3.3 current-index

Tcurrent-index' ':= [110]5-737.M 3™
current-index : 1+ 232

B.2.3.4 num-inputs

T'num-inputs’ " := [110] 737747
num-inputs : 1+ 232

B.2.3.5 num-outputs

"'num-outputs' ':= [110] 5737757
num-outputs : 1 - 232

B.2.3.6 lock-time
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"'lock-time' ' :=[110]5-"37-76"
lock-time: 1+ Lock

B.2.3.7 fee

Mfee' 7:=[110] 5737777
fee: 1+ 264

B.2.3.8 output-value

output-value' 7 := [110] 57377 8™
output-value : 232 |- §(264)

B.2.3.9 output-script-hash

output-script-hash':= [110],-"37.79™
output-script-hash : 232 |- §(2256)

B.2.3.10 total-output-value

™'total-output-value' 7 := [110]-"37-7 10"
total-output-value : 1 - 264

B.2.3.11 current-prev-outpoint

™'current-prev-outpoint’ ' := [110] " 37-"11"
current-prev-outpoint : 1+ Outpoint

B.2.3.12 current-value

Tcurrent-value' T := [110]-737-M127
current-value: 1 - 264

B.2.3.13 current-script-hash

™current-script-hash’ 7:= [110]5-737-M13™
current-script-hash : 1 |- 2256

B.2.3.14 current-sequence

Tcurrent-sequence’ ':= [110] -7 37N 147
current-sequence : 1 - 232

B.2.3.15 current-annex-hash

Tcurrent-annex-hash' " :=[110] -7 377157
current-annex-hash : 1+ S(2256)

B.2.3.16 current-script-sig-hash

Tcurrent-script-sig-hash’ 7 := [110] ,-"37-716
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current-script-sig-hash : 1 |- 2256

B.2.3.17 input-prev-outpoint

Tinput-prev-outpoint' ' := [110]5-"37.7 17"
input-prev-outpoint : 232 - S(Outpoint)

B.2.3.18 input-value

input-value'":=[110],-737-718™
input-value : 232 |- §(264)

B.2.3.19 input-script-hash

Tinput-script-hash’7:= [110],-737.719™
input-script-hash : 232 - §(2259)

B.2.3.20 input-sequence

T'input-sequence’ " := [110] 5737720
input-sequence : 232 - S(232)

B.2.3.21 input-annex-hash

"'input-annex-hash'":= [110] -3 21"
input-annex-hash : 232 - §(S(22°6))

B.2.3.22 input-script-sig-hash

Tinput-script-sig-hash' " := [110] -7 37.M 227
input-script-sig-hash : 232 |- §(2256)

B.2.3.23 total-input-value

"'total-input-value' 7:= [110],-737-7237
total-input-value : 1 264

B.2.3.24 tapleaf-version

tapleaf-version' 7:= [110] »-737-724™
tapleaf-version : 1 28

B.2.3.25 tappath

Ttappath’:= [110]-"37-725™
tappath : 28 - 5(2256)

B.2.3.26 version

'version' :=[110],-737.726"
version : 1 - 232

CATELOGUE OF JETS
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B.3 111...: Elements Jets

B.3.1 Signature Hash Modes

B.3.1.1 sig-all-hash

M'sig-all-hash’ 7 := [111]-717.717

sig-all-hash : 1 |- 2256

Returns a SHA256 hash of the following;:

e The result of genesis-block-hash (32 bytes).

e The result of genesis-block-hash again (32 bytes).

e The result of tx-hash (32 bytes).

e The result of tap-env-hash (32 bytes).

e The result of current-index (Note: this is in big endian format) (4 bytes).

Note: the two copies of the genesis-block-hash values effectively makes this result a BIP-340 style tagged
hash.

B.3.1.2 tx-hash

Mtx-hash':= [111] -7 17.727

tx-hash : 1 2256

Returns a SHA256 hash of the following;:

e The result of version (Note: this is in big endian format) (4 bytes).
e The result of lock (Note: this is in big endian format) (4 bytes).

e The result of inputs-hash (32 bytes).

e The result of outputs-hash (32 bytes).

e The result of issuances-hash (32 bytes).

e The result of output-surjection-proofs-hash (32 bytes).

e The result of input-utxos-hash (32 bytes).

B.3.1.3 tap-env-hash

T'tap-env-hash'7:= [111],-717.737
tap-env-hash : 1 - 2256

Returns a SHA256 hash of the following;:
e The result of tapleaf-hash (32 bytes).
e The result of tappath-hash (32 bytes).
e The result of internal-key (32 bytes).
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B.3.1.4 inputs-hash

Tinputs-hash’":= [111] 5717747

inputs-hash : 1. - 2256

Returns a SHA256 hash of the following:

e The result of input-outpoints-hash (32 bytes).
e The result of input-sequences-hash (32 bytes).
e The result of input-annexes-hash (32 bytes).

B.3.1.5 outputs-hash

Toutputs-hash'7:= [111] 717757

outputs-hash : 1 |- 2256

Returns a SHA256 hash of the following:

e The result of output-amounts-hash (32 bytes).

e The result of output-nonces-hash (32 bytes).

e The result of output-scripts-hash (32 bytes).

e The result of output-range-proofs-hash (32 bytes).

Note: the result of output-surjection-proofs-hash is specifically excluded because surjection proofs are depen-
dent on the inputs as well as the output. See also tx-hash.

B.3.1.6 issuances-hash

Missuances-hash’ ':= [111]5-"17.76"

issuances-hash : 1 - 2256

Returns a SHA256 hash of the following:

e The result of issuance-asset-amounts-hash (32 bytes).

e The result of issuance-token-amounts-hash (32 bytes).
e The result of issuance-range-proofs-hash (32 bytes).

e The result of issuance-blinding-entropy-hash (32 bytes).

B.3.1.7 input-utxos-hash

Tinput-utxos-hash' " := [111] 717777
input-utxos-hash : 1 - 2256

Returns a SHA256 hash of the following:
e The result of input-amounts-hash (32 bytes).
e The result of input-scripts-hash (32 bytes).

B.3.1.8 output-amounts-hash

output-amounts-hash' " := [111],-717.7 8™
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output-amounts-hash : 1 |- 2256

Returns the SHA256 hash of the serialization of each output’s asset and amount fields.

B.3.1.9 output-scripts-hash

output-scripts-hash' ' := [111]5-717.797
output-scripts-hash : 1 |- 2256

Returns the SHA256 hash of the concatenation of the SHA256 hash of each output’s scriptPubKey.

B.3.1.10 output-nonces-hash

Toutput-nonces-hash’ " := [111] 57177107
output-nonces-hash : 1 |- 2256

Returns the SHA256 hash of the serialization of each output’s nonce field.

B.3.1.11 output-range-proofs-hash

output-range-proofs-hash'7:= [111] -7 17711
output-range-proofs-hash : 1 |- 2256

Returns the SHA256 hash of the concatenation of the SHA256 hash of each output’s range proof.
Note that if the output’s amount is explicit then the range proof is considered the empty string.

B.3.1.12 output-surjection-proofs-hash

"output-surjection-proofs-hash’ 7:= [111] -7 177127
output-surjection-proofs-hash : 1 |- 2256

Returns the SHA256 hash of the concatenation of the SHA256 hash of each output’s surjection proof.

Note that if the output’s asset is explicit then the surjection proof is considered the empty string.

B.3.1.13 input-outpoints-hash

"'input-outpoints-hash' 7 := [111]5,-717.M13™

input-outpoints-hash : 1 - 2256

Returns a SHA256 hash of the concatenation of the following for every input.

e If the input is not a pegin, then the byte 0x00.

e If the input is a pegin, then the byte 0x01 followed by the parent chain’s genesis hash (32 bytes).
e The input’s serialized previous transaction id (32 bytes).

e The input’s previous transaction index in big endian format (4 bytes).
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IMPORTANT: the index is serialized in big endian format rather than little endian format.

B.3.1.14 input-sequences-hash

Minput-sequences-hash' 7:= [111] 7177147
input-sequences-hash : 1 - 2256
Returns a SHA 256 hash of the concatenation of the following for every input.

e The inputs sequence number in big endian format (4 bytes).

IMPORTANT, the sequence number is serialized in big endian format rather than little endian format.

B.3.1.15 input-annexes-hash

Tinput-annexes-hash'7:= [111],-"17.715™

input-annexes-hash : 1 |- 2256

Returns a SHA 256 hash of the concatenation of the following for every input.
e If the input has no annex, or isn’t a taproot spend, then the byte 0x00.

e If the input has an annex, then the byte 0x01 followed by a SHA256 hash of the annex (32 bytes).

B.3.1.16 input-script-sigs-hash

Tinput-script-sigs-hash' 7 := [111],-717.7'16"
input-script-sigs-hash : 1 |- 2256

Returns the SHA256 hash of the concatenation of the SHA256 hash of each input’s scriptSig.

Note that if an input’s UTXO uses segwit, then it’s scriptSig will necessarily be the empty string. In
such cases we still use the SHA256 hash of the empty string.

B.3.1.17 issuance-asset-amounts-hash

M'issuance-asset-amounts-hash’ 7:= [111] -7 17.7 177
issuance-asset-amounts-hash : 1 - 2256

Returns a SHA256 hash of the concatenation of the following for every input.

e If the input has no issuance then two bytes 0x00 0x00.

e If the input is has a new issuance then the byte 0x01 followed by a serialization of the calculated issued
asset id (32 bytes) followed by the serialization of the (possibly confidential) issued asset amount (9
bytes or 33 bytes).

e If the input is has a reissuance then the byte 0x01 followed by a serialization of the issued asset id
(32 bytes), followed by the serialization of the (possibly confidential) issued asset amount (9 bytes or
33 bytes).

IMPORTANT: If there is an issuance but there are no asset issued (i.e. the amount is null) we serialize
the vase as the explicit 0 amount, (i.e. 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00).

Note, the issuance asset id is serialized in the same format as an explicit asset id would be.
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B.3.1.18 issuance-token-amounts-hash

™'issuance-token-amounts-hash':= [111]5,-717.718™
issuance-token-amounts-hash : 1 - 2256

Returns a SHA256 hash of the concatenation of the following for every input.

e If the input has no issuance then two bytes 0x00 0x00.

e Ifthe input is has a new issuance then the byte 0x01 followed by a serialization of the calculated issued
token id (32 bytes) followed by the serialization of the (possibly confidential) issued token amount (9

bytes or 33 bytes).
e If the input is has a reissuance then the byte 0x01 followed by a serialization of the issued token id
(32 bytes), followed by the serialization of the explicit 0 amount (i.e 0x01 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00) (9 bytes).

IMPORTANT: If there is an issuance but there are no tokens issued (i.e. the amount is null) we serialize
the vase as the explicit 0 amount, (i.e. 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00).

Note, the issuance token id is serialized in the same format as an explicit asset id would be.

B.3.1.19 issuance-range-proofs-hash

M'issuance-range-proofs-hash’7:= [111] 57177197

issuance-range-proofs-hash : 1 |- 2256

Returns a SHA256 hash of the concatenation of the following for every input.

e The SHA256 hash of the range proof of the input’s issuance asset amount (32 bytes).
e The SHA256 hash of the range proof of the input’s issuance token amount (32 bytes).

Note that each the range proof is considered to be the empty string in the case there is no issuance, or if the
asset or token amount doesn’t exist (i.e is null). The SHA256 hash of the empty string is still used in these

cases.

B.3.1.20 issuance-blinding-entropy-hash

Missuance-blinding-entropy-hash’ 7:= [111],-717.720"
issuance-blinding-entropy-hash : 1 |- 2256

Returns a SHA 256 hash of the concatenation of the following for every input.

e If the input has no issuance then the byte 0x00.

e If the input is has a new issuance then the byte 0x01 followed by 32 0x00 bytes and the new issuance’s
contract hash field (32 bytes).

e If the input is has reissuance then the byte 0x01 followed by a serializaiton of the reissuance’s blinding
nonce field (32 bytes) and the reissuance’s entropy field (32 bytes).

Note that if the issuance is a new issuance then the blinding nonce field is 32 0x00 bytes and new issuance’s

contract hash

B.3.1.21 input-amounts-hash
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Tinput-amounts-hash' 7 := [111],-717.M 21"
input-amounts-hash : 1 - 2256
Returns the SHA256 hash of the serialization of each input UTXQO’s asset and amount fields.

B.3.1.22 input-scripts-hash

T'input-scripts-hash' 7:= [111],-717.72271
input-scripts-hash : 1 - 2256

Returns the SHA 256 hash of the concatenation of the SHA256 hash of each input UTXO’s scriptPubKey.

B.3.1.23 tapleaf-hash

T'tapleaf-hash’m:= [111],-717-723™
tapleaf-hash : 1 - 2256

Returns a SHA256 hash of the following:

e The hash of the ASCII string TapLeaf/elements (32 bytes).

e The hash of the ASCII string TapLeaf/elements again (32 bytes).
e The result of tapleaf-version (1 byte).

e The byte 0x20 (1 byte).

e The result of scriptCMR (32 bytes).

Note: this matches Element’s modified BIP-0341 definition of tapleaf hash.

B.3.1.24 tappath-hash

M'tappath-hash':= [111],-717.724"
tappath-hash : 1 |- 2256

Returns a hash of the current input’s control block excluding the leaf version and the taproot internal
key. Using the notation of BIP-0341, it returns the SHA256 hash of ¢[33: 33 4 32m)].

B.3.1.25 outpoint-hash

outpoint-hash' 7:= [111]5-717.725™7
outpoint-hash : Ctx8 x (S(22°¢) x Outpoint) - Ctx8
Continues a SHA256 hash with an optional pegin and an outpoint by appending the following;:

e If the input is not a pegin, then the byte 0x00.
e If the input is a pegin, then the byte 0x01 followed by the given parent genesis hash (32 bytes).

e The input’s previous transaction id (32 bytes).

e The input’s previous transaction index in big endian format (4 bytes).

B.3.1.26 asset-amount-hash

Masset-amount-hash"":= [111] 5717726
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asset-amount-hash : Ctx8 x (Asset(1) x Amount(1)) - Ctx8

Continues a SHA256 hash with the serialization of a confidential asset followed by the serialization of a
confidential amount.

B.3.1.27 nonce-hash

T"nonce-hash’ 7:=[111]-717.M 27"
nonce-hash : Ctx8 x (S(Nonce)) - Ctx8

Continues a SHA256 hash with the serialization of an optional nonce.

B.3.1.28 annex-hash

Tannex-hash' 7:=[111]5-717.M 287

annex-hash : Ctx8 x (S(2256)) - Ctx8

Continues a SHA256 hash with an optional hash by appending the following:

e If there is no hash, then the byte 0x00.

e If there is a hash, then the byte 0x01 followed by the given hash (32 bytes).

B.3.1.29 build-tapleaf-simplicity

"'build-tapleaf-simplicity’ " := [111] -7 17-7297

build-tapleaf-simplicity : 2256 |- 2256

Returns a SHA256 hash of the following:

e The hash of the ASCII string TapLeaf/elements (32 bytes).

e The hash of the ASCII string TapLeaf/elements again (32 bytes).

e The byte Oxbe (1 byte) for the Simplicity tapleaf version number.

e The byte 0x20 (1 byte).

e The input (32 bytes) which should be the CMR of a Simplicity program.

B.3.1.30 build-tapbranch

"build-tapbranch-simplicity’ 7:= [111],-717.730"

build-tapbranch-simplicity : 2256 x 2256} 2256

Returns a SHA256 hash of the following:

e The hash of the ASCII string TapBranch/elements (32 bytes).

e The hash of the ASCII string TapBranch/elements again (32 bytes).
e The lexicographically smaller of the two inputs (32 bytes).

e The lexicographically larger of the two inputs (32 bytes).

This builds a taproot from two branches.

B.3.2 Time Locks

In this section we define Height := 232, Time := 232, Distance := 2'6, and Duration = 216,
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B.3.2.1 check-lock-height

"'check-lock-height' " := [111] 727117
check-lock-height : Height - 1

Asserts that the value returned by 'tx-lock-height’ is greater than or equal to the input.

B.3.2.2 check-lock-time

"'check-lock-time' 7:= [111] 5727727
"check-lock-time’: Time 1

Asserts that the value returned by 'tx-lock-time' is greater than or equal to the input.

B.3.2.3 check-lock-distance

"'check-lock-distance' 7:= [111],-727.M37
'check-lock-distance’ : Distance -1

Asserts that the value returned by 'check-lock-distance’ is greater than or equal to the input.

B.3.2.4 check-lock-duration

"'check-lock-duration' 7:= [111]5-727.74™
'check-lock-duration’ : Duration - 1

Asserts that the value returned by 'check-lock-duration’ is greater than or equal to the input.

B.3.2.5 tx-lock-height

"'tx-lock-height' " := [111]5-727-757
tx-lock-height : 1+ Height

Returns = when is-final returns 0, and [parse-lock] o [lockTime] returns o%(z).
Otherwise returns |0]s2.

B.3.2.6 tx-lock-time

Mtx-lock-time' 7 := [111]5-727.76"
"tx-lock-time' : 1+ Time

Returns = when is-final returns 0, and [parse-lock] o [lockTime] returns o®(z).
Otherwise returns |0]s2.

B.3.2.7 tx-lock-distance

"'tx-lock-distance’ " := [111] -7 2.7 7"
"tx-lock-distance’ : 1 Distance

When 2 < [[version]()]232, returns the greatest = of values 7°(c%(z)) returned by (S[parse-sequence] o
[inputSequence]) () for any input ¢, if there are any. Otherwise returns |0]1¢.
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B.3.2.8 tx-lock-duration

"'tx-lock-duration’ " := [111] -7 27.F 8™
"tx-lock-duration’ : 1+ Duration

When 2 < [[version]()]2s2, returns the greatest x of values n%(c®(z)) returned by (S[parse-sequence] o
[inputSequence]) () for any input ¢, if there are any. Otherwise returns |0]1¢.

B.3.2.9 tx-is-final
Mtx-is-final’ " := [111],-727.7 97
"tx-is-final": 1+ 2
Returns 1, when all the sequence numbers of the tranaction inputs are at their maximum value.
Otherwise returns 05.
B.3.3 Issuance

B.3.3.1 issuance

Missuance' ':= [110],-"37-"1"
issuance : Index F S(5(2))

Returns 7(n(02)) when the given input has a new issuance. Returns 7(n(12)) when the given input has
a reissuance. Returns 7(f)) when the given input has no issuance.
Otherwise returns () when there is no input of the given index.

B.3.3.2 issuance-asset

Missuance-asset' ':= [110]5-7 3.7 27
issuance-asset : Index F S(S(ExplicitAsset))

Returns n(n(x)) when the given input has an issuance with asset ID z. Returns n(f)) when the given
input has no issuance.
Otherwise returns () when there is no input of the given index.

B.3.3.3 issuance-token

Missuance-token’ ' := [110] -7 3.7 3™
issuance-token : Index - S(S(ExplicitAsset))

Returns n(n(z)) when the given input has an issuance with reissuance token ID x. Returns 7(f)) when
the given input has no issuance.
Otherwise returns ) when there is no input of the given index.

B.3.3.4 issuance-entropy

Missuance-token’ " := [110] -7 37".74"
issuance-token : Index - S(S(225))

Returns n(n(x)) when the given input has an reissuance with entropy z, or if there is a new issuance
whose computed entropy is x. Returns 7(()) when the given input has no issuance.



144

Otherwise returns ) when there is no input of the given index.

B.3.3.5 calculate-issuance-entropy

™'calculate-issuance-entropy’ ' := [110] -7 3775
calculate-issuance-entropy : Outpoint x 2256 |- 2256

Calculate the entropy value from a given ouptoint and contract hash.

compute issued asset and token IDs (see below).

B.3.3.6 calculate-asset

'calculate-asset’ ' := [110]5-"37.7 6!
calculate-asset : 2256 - Explicit Asset

Calculate the issued asset id from a given entropy value.

B.3.3.7 calculate-explicit-token

"'calculate-token' 7 := [110] -7 37777
calculate-token : 2256 |- ExplicitAsset

CATELOGUE OF JETS

This entropy value is used to

Calculate the reissuance token id from a given entropy value for assets with explicit issued amounts.

B.3.3.8 calculate-confidential-token

"'calculate-token' " := [110] -7 37" 8™
calculate-token : 2256 - ExplicitAsset

Calculate the reissuance token id from a given entropy value for assets with confidential issued amounts.

B.3.4 Transaction

B.3.4.1 script-cmr

T'script-cmr’ ;= [110] 5747717
script-cmr : 1 - 2256

B.3.4.2 internal-key

Tinternal-key' 7 := [110],-747.727
internal-key : 1+ PubKey

B.3.4.3 current-index

Tcurrent-index’ " := [110] »-"747.7 3™
current-index : 1 - 232

B.3.4.4 num-inputs

T'num-inputs’ " := [110]p-747.7 47
num-inputs : 1 |- 232
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B.3.4.5 num-outputs

'num-outputs’ " := [110]5-747-M57
num-outputs : 1 - 232

B.3.4.6 lock-time
'lock-time' " := [110]-747-76™
lock-time : 1+ Lock

B.3.4.7 output-asset
output-asset’ ':= [110]5-747.7 71
output-asset : 2321~ S(Asset (1))

B.3.4.8 output-amount

Toutput-amount’ " := [110] 5-747-78™
output-amount : 232 S(Asset(1) x Amount (1))

B.3.4.9 output-nonce

output-nonce' ':=[110] 5747797
output-nonce : 232 - S(S(Nonce))

B.3.4.10 output-script-hash

™output-script-hash’ 7 := [110]5-747-710™"
output-script-hash : 232 |- §(2256)

B.3.4.11 output-null-datum

output-null-datum’ 7 := [110]5-747."11""
output-null-datum : 232 x 232 |- §(§(22 x 2256 + (2 + 2%)))

B.3.4.12 output-is-fee
output-is-fee’ T:= [110],-747-M127
output-is-fee : 2321~ S(2)

B.3.4.13 output-surjection-proof

™'output-surjection-proof’ := [110] -4 7-7137
output-surjection-proof : 232 - §(2256)
B.3.4.14 output-range-proof
T'output-range-proof :=[110]5-747.714"
output-range-proof : 232 |- §(2256)

B.3.4.15 total-fee
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'total-fee' 7:=[110]5-747.715™
total-fee : ExplicitAsset - ExplicitAmount
B.3.4.16 current-pegin
Tcurrent-pegin' 1:= [110]5-747-716™
current-pegin : 11 S(2256)
B.3.4.17 current-prev-outpoint
T'current-prev-outpoint’ := [110] 7477177
current-prev-outpoint : 1+ Outpoint

B.3.4.18 current-asset

Tcurrent-asset' ' := [110]»-M47-718™
current-asset : 1+ Asset (1)

B.3.4.19 current-amount

"'current-amount’ 7 := [110]»-747.7197
current-amount : 1+ Asset(1) x Amount (1)

B.3.4.20 current-script-hash

™current-script-hash’ 7:= [110]5-747-720™"
current-script-hash : 1 - 2256

B.3.4.21 current-sequence

T'current-sequence’ T:= [110],-747-721"
current-sequence : 1 - 232

B.3.4.22 current-annex-hash

"current-annex-hash' " := [110]5-74 7.7 227
current-annex-hash : 1+ S(2256)

B.3.4.23 current-script-sig-hash

T'current-script-sig-hash’ ' := [110] ,-747.723™
current-script-sig-hash : 1 |- 2256

B.3.4.24 current-reissuance-blinding

Tcurrent-reissuance-blinding’ 7 := [110] -747.M24"
current-reissuance-blinding : 1+ S(ExplicitNonce)

B.3.4.25 current-new-issuance-contract

™'current-new-issuance-contract’ ' := [110] »-"4 7.7 257

current-new-issuance-contract : 1 - S(22°9)
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B.3.4.26 current-reissuance-entropy

"current-reissuance-entropy’ ':= [110]»-"47.726"
current-reissuance-entropy : 1 S(22°9)

B.3.4.27 current-issuance-asset-amount

™'current-issuance-asset-amount’ ' := [110] -4 1.7 27
current-issuance-asset-amount : 1+ S(Amount(1))

B.3.4.28 current-issuance-token-amount

™'current-issuance-token-amount’ 7:= [110] »-"47.M 287
current-issuance-token-amount : 1 + S(TokenAmount (1))

B.3.4.29 current-issuance-asset-proof

™'current-issuance-asset-proof’ ' := [110] »-747-729™
current-issuance-asset-proof : 1 - 2256

B.3.4.30 current-issuance-token-proof

™'current-issuance-token-proof' := [110]5-"47-730"
current-issuance-token-proof : 1 - 2256

B.3.4.31 input-pegin
input-pegin’ := [110],-747.731"
input-pegin : 232 - §(S(2256))

B.3.4.32 input-prev-outpoint
™'input-prev-outpoint’ := [110]5-"747.732"
input-prev-outpoint : 232 - S(Outpoint)

B.3.4.33 input-asset

Minput-asset’ ':= [110] 57477337
input-asset : 2321~ S(Asset (1))

B.3.4.34 input-amount

input-amount’ " := [110] »-747.734™
input-amount : 232 - S(Asset(1) x Amount (1))

B.3.4.35 input-script-hash

Tinput-script-hash’7:= [110],-747.735™
input-script-hash : 232 - §(2259)

B.3.4.36 input-sequence

147



148
input-sequence' ':= [110]5-747-736™
input-sequence : 232 - S(232)

B.3.4.37 input-annex-hash

"'input-annex-hash'":= [110] 7477377
input-annex-hash : 232 - §(S(2256))

B.3.4.38 input-script-sig-hash

Tinput-script-sig-hash':= [110] »-747.M 38"
input-script-sig-hash : 232 |- §(2256)

B.3.4.39 reissuance-blinding

™reissuance-blinding' " := [110]»-747-739™
reissuance-blinding : 232+ S(S(ExplicitNonce))

B.3.4.40 new-issuance-contract

""new-issuance-contract’ ':= [110],-"747-740™
new-issuance-contract : 2321- S(S(2259))

B.3.4.41 reissuance-entropy

™'reissuance-entropy’ ' := [110] 5747741
reissuance-entropy : 232 - §(S(2259))

B.3.4.42 issuance-asset-amount

Missuance-asset-amount’ ' := [110] »-M47.7427
issuance-asset-amount : 232 - S(S(Amount(1)))

B.3.4.43 issuance-token-amount

Missuance-token-amount’' ':= [110],-747.7437
issuance-token-amount : 232 - S(S(Token Amount(1)))

B.3.4.44 issuance-asset-proof

Missuance-asset-proof’ := [110] 747744
issuance-asset-proof : 232 - §(2256)

B.3.4.45 issuance-token-proof

™'issuance-token-proof' 7 := [110]-747.745™
issuance-token-proof : 232 |- §(2256)

B.3.4.46 tapleaf-version

'tapleaf-version' 7:= [110] »-747-746™
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tapleaf-version : 11~ 28

B.3.4.47 tappath

Ttappath’:= [110] 57477477
tappath : 28 - 5(2256)

B.3.4.48 version

'version' :=[110],-747.748™
version : 1 - 232

B.3.4.49 genesis-block-hash

™' genesis-block-hash'7:= [110]5-747-749™
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genesis-block-hash : 1 |- 2256

Appendix C
Alternative Serialization of Simplicity DAGs

DEPRICATED

This appendix presents an alternative, byte-oriented prefix code for Simplicity DAGs. This code is not
as compact as the bit-oriented code presented in Section 7.2 and it imposes some arbitrary limits on the size
of the DAG and witness values. Its only advantage is that it might be faster to decode. This code probably
should not be used by any application and maybe should be removed from this report.

First we define a byte-string serialization for numbers ¢ known to be less than a bound b by determining
the minimum number of bytes needed to fit a number less than b.

byteCode(1,0) := eps

byteCode(b,i) := byteCode(25", q)-BE(|i]s)

where 28 ¢ <i<23(g+1)and 28" < b <28tV andi<b

For witness data, which is a bit-string, we group the bits into bytes to form a byte-string, padding the
least significant bits with zero bits.

bytePad(e)

bytePad(bo 4b; 4by 4b3;4by 4b5 4 b 4b; 4 ’U)

bytePad(v)

= €28

:= bytePad(v-[0]8~1*])

(({bo, b1), (b2, b3)), ((ba, bs), (bs, b7))) < bytePad(v)

when0 < |v| <8

Note that by itself bytePad is not a prefix code and forgets how many bits where in the vector. Both issues
are addressed by prefixing this encoding with the length of the number of bits in the original bit-string.

Next we define a byte-string serialization for Node, byteCode : N x Node — (28)*

. The first parameter to

byteCode, k, is the index at which the Node occurs in the Dag. It is used to determine the bound on the
size of the sub-expression offsets for serialization of those values.

byteCode(k, ‘comp’ 11 [00] s
byteCode(k, ‘case’ 11 [01] 58
byteCode(k, ‘pair' 11 [02] 5s

byteCode(k, ‘disconnect’ 11 [03]5s

)

)

)

)
byteCode(k, ‘comp’ 1) [04] zs-byteCode(k — 1, j — 2) where 1 < j
byteCode(k, ‘case’ 1) [05] zs-byteCode(k — 1, j — 2) where1 < j
byteCode(k, ‘pair' 1) [06] 2s-byteCode(k — 1, j — 2) where1 < j
byteCode(k, ‘disconnect’ 1 5) [07] zs-byteCode(k — 1, j — 2) where 1 < j
byteCode(k, ‘comp’i1) [08] zs-byteCode(k — 1,7 — 2) where 1 <
byteCode(k, ‘case’i1) [09] »s-byteCode(k — 1,7 — 2) where 1 <i
byteCode(k, ‘pair'i1) [0a] zs-byteCode(k — 1,7 — 2) where 1 <4
byteCode(k, ‘disconnect’ i 1) [0b] »s-byteCode(k — 1,7 — 2) where 1 < i
byteCode(k, ‘comp’ i) [0c] zs-byteCode(k — 1,7 — 2)-byteCode(k — 1,5 —2) wherel <iand1<j
byteCode(k, ‘case’ i) [0d] zs-byteCode(k — 1,7 — 2)-byteCode(k — 1,5 —2)  wherel <iand1<j
byteCode(k, ‘pair' i j) [0e] zs-byteCode(k — 1,i — 2)-byteCode(k — 1,5 —2) wherel <iand1<j
byteCode(k, ‘disconnect’ i j) [0£]s-byteCode(k — 1,7 — 2)-byteCode(k — 1,5 —2)  wherel <iand1<j
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byteCode(k, ‘injl’ 1
byteCode(k, ‘injr' 1
byteCode(k, ‘take’ 1
byteCode(k, ‘drop’ 1
byteCode(k, ‘injl’
byteCode(k, ‘injr'

byteCode(k, ‘drop’ i

[10] s
[11] s
[12] s
[13] s
[18]zs-byteCode(k — 1,7 —2)
[19]zs-byteCode(k — 1,7 — 2)
[1a]s-byteCode(k — 1,7 —2)
[1b]ss-byteCode(k — 1,7 — 2)

ALTERNATIVE SERIALIZATION OF SIMPLICITY DAGSs

where 1 <1
where 1 <4
where1 <1
where 1 <4

byteCode(k, ‘iden’ [20] s
byteCode(k, ‘unit’) = [21]s
byteCode(k, ‘fail' b)) = [22]1,s-BE(b)

byteCode(k, 'hidden’ h

byteCode(k, ‘witness’ v
byteCode(k, ‘witness’ v

— [231,+BE(h)
= BE(|802s + |v|]s)-bytePad(v)

)
)
1)
)
)
)
byteCode(k, ‘take’ 7)
)
)
)
)
)
)
) = [££15sBE(||v|]16)-bytePad(v)

where |v| <127
where 127 <|v| < 216

The byte codes for primitives begin with a byte between [24],s and [3f] ;s inclusive. The codes can contain

multiple bytes. However, for the Bitcoin primitives, we only need to use one byte per primitive.

byteCode(k, ‘version’
byteCode(k, ‘lockTime'
byteCode(k, ‘inputsHash'’
byteCode(k, ‘outputsHash'’
byteCode(k, ‘numlnputs’
byteCode(k, ‘totalnputValue
byteCode(k, ‘currentPrevOutpoint’
byteCode(k, ‘currentValue
byteCode(k, ‘currentSequence
byteCode(k, ‘currentindex’
byteCode(k, ‘inputPrevOutpoint’
byteCode(k, ‘inputValue'
byteCode(k, ‘inputSequence
byteCode(k, ‘'numQutputs
byteCode(k, ‘totalOutputValue'
byteCode(k, ‘outputValue
byteCode(k, ‘outputScriptHash’
byteCode(k, ‘scriptCMR'’

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

[24] 5s
[25] 58
[26] s
[27] 58
[28] s
[29] s
[2a] 58
[2b] »s
[2c] s
[2d] s
[2e] s
[2f] s
[30] s
[31] s
[32] s
[33] 5
[34] s
[35] s

We define a byte-string prefix code for Simplicity DAGs as a concatenation of byte-string codes of its nodes,

terminated by a sentinel value that has been reserved as an end-of-stream byte.

byteCode(l) := ((u* o n° o byteCode™ o indexed)(1))- [1£] 58

Notice that while byteCode(0, x) for = :Node seems like it could call byteCode(—1,n) for some n: N, this can
never happen for Simplicity DAGs. Recall from Section 7.1, that a well-formed Simplicity DAG, [ : Node™,

satisfies the condition

V(i,a) € indexed(l).Vj e ref(a). 0 < j <i.

The condition on DAGs implies that |ref({[0])| =0. This condition means that byteCode(—

for any n: IN.

1,m) never occurs
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