
MASTER’S THESIS

Multilingual Gaussian Latent Dirichlet Allocation

Elias Kamyab

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019





Thesis for the Degree of Master of Science

Multilingual Gaussian Latent Dirichlet Allocation

Elias Kamyab

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden

Gothenburg, September 2019



Multilingual Gaussian Latent Dirichlet Allocation
Elias Kamyab

© Elias Kamyab, 2019.

Supervisor: Johan Jonasson, Department of Mathematical Sciences
Examiner: Richard Johansson, Department of Computer Science and Engineer-
ing

Master’s Thesis 2019
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

iv



Multilingual Gaussian Latent Dirichlet Allocation
Elias Kamyab
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

Topic modeling is a type of statistical modeling for discovering the abstract “topics”
that occur in corpus data. Depending on basic assumptions, there are different
probabilistic algorithms for this purpose. One way to achieve this goal is to use
the semantic relations between the words in the documents.

Since continuous space word embeddings or word vectors, pre-trained on a large
and unstructured collection of documents, have been shown to be effective in
capturing these relations, the Gaussian version of Latent Dirichlet Allocation will
be the main focus in this master thesis. By this model we will be able to group
words, which are a priori known to be semantically related, into topics.
To perform the inference, an introduction of collapsed Gibbs sampling, based on
Cholesky decomposition of the covariance matrix of the posterior predictive, will
be given.

Multilingual models are interesting in general for different reasons. In order to
make the perception of the multilingual models simpler in this thesis, we call a
language, where there exist possibly more data, as source language and others
as targets.

We investigate how to make the Gaussian Latent Dirichlet Allocation poly- or mul-
tilingual by finding some cross-lingual bridges between languages. What is meant
by multilingual (in this thesis) is that the model performs a better topic prediction
on the corpus from target languages and shorten the computing time.
This will be thanks to the cross-lingual techniques that provide semantic regulari-
ties from the corpus of the source language to the target ones.
These techniques will be presented in detail in this paper in form of algorithms
and the outcome and the running time from monolingual and bilingual cases will
be compared to evaluate the models.

Experiments will be done on two document collections, one that contains 11,914
product reviews from the Amazon website and the other a collection of documents
supplied by the Swedish audio book company Storytel. To furnish a better view
of model performance, the result from Amazon data will be partly demonstrated
locally in a corresponding section and the ones from Storytel’s data set will be
provided in the Results and Experiments section.
Moreover, the models will be run on both pre-trained and trained word vectors or
word embeddings. In the trained case, the word embedding is created from the
same corpus that the model later will be trained on for topic prediction.

v





Acknowledgements

First, I would like to take the opportunity to thank Storytel for providing the access
to their large database of books and thank Arian Barakat, who patiently taught
me how to use the Google Cloud Platform for this work and for other technical
supervising. I surely hope that my work will be interesting to you and Storytel and
will be useful in the future in some manner. Also, thanks a lot to my supervisor
Johan Jonasson, who suggested the topic of this wonderful thesis and helped me
with connecting to Storytel and his guidance and advice.

Elias Kamyab, Gothenburg, September 2019

vii





List of Figures

1.1 Two dimensional location (captured by principal component analy-
sis) of some related words, mostly animals, illustrated in this pic-
ture. The Large animals such as "elephant", "tiger", "lion" and "go-
rilla" are located much closer to each other than the small ones
such as "mouse" and "rat". . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An illustration of the multi-level hierarchical Bayesian model of the
LDA and how they are connected to each other. . . . . . . . . . . . 6

2.2 An illustration of the perplexity values over 50 iterations on the test
data set. The decreasing trend of the curve means that the results
of the LDA improve for each Gibbs iteration. . . . . . . . . . . . . . 10

2.3 There are 10000 words in a toy corpora and we want to build an
300 dimensional word embedding. Each neuron in the hidden layer
represents a dimension in the weight vector (word vector) . . . . . 12

3.1 A decreasing trend of negative log-likelihood. The picture might
indicate that a good number of Gibbs iterations is 8 due to the
minimum point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 While the Gibbs algorithm learns in each iteration, the updating
rate, i.e. the number of words that switch topic assignment between
each iteration decreases. . . . . . . . . . . . . . . . . . . . . . . . 21

ix



List of Figures

x



List of Tables

2.1 3 types of pre-trained word vectors and some related informations . . . . . 14
3.1 Topic assignment of some iteration by Gibbs sampling in GLDA. By document-

wise sum of the counts nd,k one can notice how fast the topics converge to
some specific topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Top words in ascending order of 8 topics from the LDA model by Algorithm
2.2. The model have been trained on 10% of the Amazon reviews. . . . . . 34

5.2 Top words in ascending order of 12 topics from the Gaussian LDA model
with Fasttext’s pre-trained word embedding named: wiki.news.300d.1M.vec.
The model is run on 10% of Amazon reviews. . . . . . . . . . . . . . . . . . 35

5.3 Top words in ascending order of 12 topics from the Gaussian LDA model
with trained word embedding. The embedding is trained on the entire Ama-
zon reviews. The GLDA model is then run on 10% of the same data after-
wards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Top words in ascending order of the LDA model and their corresponding
PMI values by blue color. The LDA is run on the collection of 10 documents
of the Storytel’s database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Top words in ascending order of the GLDA with Fasttext’s pre-trained em-
bedding named: wiki.en.vec and their corresponding PMI values. The
GLDA is run on the collection of 10 documents of the Storytel’s database . 38

5.6 Top words in ascending order of the GLDA model with trained embedding,
created from the collection of 10 documents of the Storytel’s database, and
their corresponding PMI values. The GLDA is then run on the same data set. 39

5.7 The upper table consists of top words by Algorithm 4.1 (simple MGLDA)
and the lower table by the monolingual GLDA. For both part, the same data
i.e. 10% of the Amazon data have been used. . . . . . . . . . . . . . . . . . 42

5.8 The upper table consists of top words by Algorithm 4.1 (simple MGLDA)
and the lower one by monolingual GLDA. The data for both cases is the
Novel from Stroytel, called "En Dåre Fri". . . . . . . . . . . . . . . . . . . . . 43

5.9 The upper table consists of top topic words by Algorithm 4.3 (approximate
MGLDA) and the lower one of top words by the monolingual Swedish word
vector. The data for both cases is 10% of the Amazon data. . . . . . . . . . 44

5.10 This table consists of top words by approximate MGLDA model corre-
sponding to algorithm 4.3. The text data is the novel from Storytel, called
"En dåre Fri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



List of Tables

xii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Collapsed Gibbs sampling for LDA . . . . . . . . . . . . . . 8
2.3 Word embedding . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Pre-trained word embedding . . . . . . . . . . . . 14
2.3.2 Training your own word embedding . . . . . . . . 15

2.4 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . 17
3 GLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Collapsed Gibbs sampling for GLDA . . . . . . . . . . . . . 19
3.2 Speed Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Cholesky factorization . . . . . . . . . . . . . . . . 23
3.3 Pointwise Mutual Information . . . . . . . . . . . . . . . . . 26

4 Multilingual GLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Results and Experiments . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Results from LDA and GLDA models . . . . . . . . . . . . . 33
5.2 Results from Multilingual GLDA models . . . . . . . . . . . 40

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

xiii



Contents

xiv



1 Introduction

Nowadays, thanks to the internet, digitization and translation, the transfer of sci-
ence and information worldwide is much easier and more efficient than before.
As a benefit, the ability to access the same book, document, news, etc. in more
than solely the original language increases. As access to the multilingual corpora
grows, demand for the systems that can handle multilingual texts, in the sense
that topic classification for one language should be essentially the same as for
another language, increases.

Multilingual Gaussian LDA (MGLDA) is a new idea that will be investigated in this
thesis. It is considered to be capable of dealing with topic modeling in a multilin-
gual setting. In this paper, we will present and test some new ideas that make
topic modeling of a corpus of a target language easier by using some information
from a corpus of a source language, from which we assume that we have access
to a much larger database of text. We will use some natural assumptions to make
cross-lingual connection more simple and practically realistic.

Latent Dirichlet Allocation (LDA) and Gaussian Latent Dirichlet Allocation (GLDA)
are Bayesian techniques that are used for topical modeling and text clustering.
These models represent two different techniques that are able to capture the
topic structure in a collection of documents. In this paper, we will explain these
models in detail, in particular GLDA.

There are similarities between the models and there are contrasting differences
as well, which partly will be mentioned in this section.
Unlike the LDA, there are some clear benefits with Gaussian LDA. In traditional
LDA, a fixed vocabulary of words is assumed and the size of the vocabulary is lim-
ited to the number of unique words in the training data. Therefore it can not handle
unseen words (out of vocabulary) in the "held out documents" (test data), but this
problem is solved in Gaussian LDA. The model can assign high topic probability
to an unseen word by taking advantage of the contiguity of semantically similar
words in the embedding space. This makes Gaussian LDA an important and use-
ful model in the field of Natural language processing.

There are some basic assumptions in common for both models such as "Bag of
words" (BoW) and "exchangeability of words and documents" which means that
the order of words in a text respectively the order of documents in a corpus can
be neglected. These assumptions should not be interpreted as identically and
independently distributed property. Exchangeability is rather "conditionally inde-
pendent and identically distributed" where the conditioning is with the respect to
an underlying latent parameter of a probability distribution [2]. In other words,
each document is a mixture of a number of topics, and each topic has a separate
word distribution. Depending on what these topics are, the words will be drawn
conditionally from them.

1



Contents

The results of the topic classifications are presented in the form of top represent-
ing words, i.e. most probable words for the corresponding topic.

Both models consider a document as a mixture of a small number of topics with
the difference that LDA regards the topics as discrete distributions over words
whereas GLDA consider them as multivariate Gaussian distributions over the em-
bedding space. In other words, each topic k is a multivariate normal distribution
with mean µk and covariance Σk.

An embedding views each word as a vector of continuous numbers in a multidi-
mensional space, named word vector. In this paper, the concept word embedding
is referred to the embedding for the entire vocabulary and the word vector to the
one for a single word.
The word embeddings are trained on very large, unstructured corpora with mil-
lions and thousands of words and documents respectively and learn syntactic
and semantic coherence of the words in the sentences. They have been shown
to capture lexico-semantic regularities in a language in a way that words with the
similar syntactic and semantic properties are found to be close to each other in
the embedding space [1]. This means, for instance, that words such as "lion"
and "tiger" will have the word vectors that are very close to the word "animal",
whereas the word "Mars" will be quite distant. In Figure 1.1 the proximity of the
word "elephant" is shown in two dimensional space.

A beauty of representing the words as numbers in vectors is that they lend them-
selves to mathematical operators. For example, we can add and subtract vectors
by using word vectors: king - man + woman = queen (Mikolov et al., 2013).

For simplicity in this paper, we use some abbreviations such as LDA for Latent
Dirichlet Allocation, GLDA for Gaussian Latent Dirichlet Allocation and MGLDA
for multilingual Gaussian Latent Dirichlet Allocation.

This thesis is organized as follows. In section 2, the LDA, Gibbs sampling, word
embedding and data pre-processing will be presented. In section 3, the GLDA
and all related fields such as a speeding-up technique will be discussed. In sec-
tion 4, two MGLDA algorithms will be introduced and then discussed in detail. In
section 5, results of experiments on both the Storytel’s and Amazon data sets will
be provided and the last section contains summary, calculations and openings for
future work.

2



Contents

Figure 1.1: Two dimensional location (captured by principal component analysis)
of some related words, mostly animals, illustrated in this picture. The Large animals
such as "elephant", "tiger", "lion" and "gorilla" are located much closer to each other
than the small ones such as "mouse" and "rat".

3



Contents

2 Background

In this section we will describe the LDA model, Gibbs sampling, word embedding
and data pre-processing as a stepping stone towards Gaussian LDA. But first,
we start with a short description of different distributions that will be used in this
paper.
The Dirichlet distribution or Dir(α) is a multivariate generalization of the Beta
distribution and is a continuous probability distribution with a positive real valued
vector α as input parameter.
This distribution (like the Beta distribution) generates probability vectors. More
precisely, the output θ ∼ Dir(α) will be an element of the simplex {x ∈ [0, 1]K ;∑K

k=1 xk = 1}, where K is the dimension of α. The Dirichlet distribution is used in
Bayesian statistics as a conjugate prior of the Categorical and Multinomial distri-
butions. For a K-dimensional probability vector θ:

• A random variable X is said to be categorically distributed, X ∼ Cat(θ) if
P (X = k|θ) = θk for each k = 1, ..., K.

• A random vector Y = (Y1, ..., Yk) is multinomial distributed, Y ∼ Mult(m, θ)
if X1, X2, ..., Xm are iid Cat(θ) and Yk is the number of Xi:s such that Xi = k.

As mentioned before, the Dirichlet distribution is a conjugate prior of the Categori-
cal distribution. This means that both prior and posterior have the same algebraic
form. More precisely we claim that if θ ∼ Dir(α) and the data X = x1, x2, ..., xn
is a vector of iid Cat(θ) random variables, the θ|X ∼ Dir(α + c), where ck is the
number of i such that xi = k. This can be proved as follows:

P (X = x|θ) =
n∏
i=1

p(x = xi|θ) =
n∏
i=1

θxi

Which can be rewritten as:

P (X = x|θ) =
n∏
i=1

K∏
k=1

θ
I(xi=k)
k =

K∏
k=1

θ
∑n
i=1 I(xi=k)

k =
K∏
k=1

θckk (2.1)

By definition:

p(θ) = p(θ|α) =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)

K∏
k=1

θαk−1
k (2.2)

By deleting the terms that do not depend on θ, we get:

p(θ|α) ∝
K∏
k=1

θαi−1
i (2.3)

Once we have the prior and likelihood, we can find the posterior p(θ|X), by using
Bayes formula as follows:

p(θ|X = x) =
p(X = x|θ) · p(θ)

p(X = x)
∝ p(X = x|θ) · p(θ) =⇒

4



Contents

p(θk|X = x) ∝
K∏
k=1

θckk ·
K∏
k=1

θαk−1
k =

K∏
k=1

θck+αk−1 (2.4)

This can be recognized as the Dir(c+ α) distribution.

5



Contents

2.1 LDA

The LDA model regards documents as a mixture of a number of topics and topics
as distributions over the words which can be interpreted that one single document
can contain more than one topic and at the same time, one specific word or word
type can be present in different topics but with different probabilities.
Once the training is done, we have estimates of the topic distribution of docu-
ments as well as the word distribution for each topic. These estimates give us a
way of understanding the contents of the corpus at a high level [3].

For simplicity, some extra assumptions are made. First, the number of topics K is
assumed to be known a priori. Second, the size of the vocabulary V (or number
of unique words in the corpus) is fixed. We define the word probability matrix as
Π = [πkn], where πkn is the probability of word n for topic k. It follows from the
assumptions that the dimension of Π is fixed before, namely K × V .

LDA is a multi-level hierarchical Bayesian model in which the parameters α and β
are corpus-level hyper-parameters. For simplicity, they are set as symmetric and
uniform, i.e. α1 = α2 = ... = αk and β1 = β2 = ... = βv. A corpus of D documents
and Nd words (in the corresponding document) is then assumed to be generated
as follows:

1. Independent K-dimensional Dir(α) distributed topic distributions: θ1, ...θD
are chosen once per document.

2. Independent V -dimensional Dir(β) distributed word distributions: π1, ..., πk,
are chosen once per topic.

3. Given θ and π, for each position (d, n), d = 1, ..., D and n = 1, ..., Nd, a topic
zdn is chosen according to θd and then a word wd,n according to πk and zdn.

Figure 2.1: An illustration of the multi-level hierarchical Bayesian model of the
LDA and how they are connected to each other.

6



Contents

In pseudo-code, the generative algorithm is as follow:
for each topic k ∈ [1, K] do

-Draw πk ∼ Dirv(β)
end
for each document d ∈ [1, D] do

-Draw θd ∼ Dirk(α)
for each word n ∈ [1, Nd] do

-Draw a topic zd,n ∼ Cat(θd)
-Draw a word (word index) wd,n ∼ Cat(πzd,n)

end
end

Algorithm 2.1: Generative process of the LDA

LDA is a Bayesian model and we want to find the posterior distribution over the
topic parameters and latent topics. At the same time we realize that the calcula-
tion of this posterior (the joint distribution below)

p(θ, π,Z|W) =
p(θ, π,Z,W)

p(W)
(2.5)

is intractable due to the denominator in the right hand side. The equation for the
denominator is as follow:

p(W) =

(
K∏
k=1

∫
p(θk|α)p(πk|β)

) Nd∏
dn=1

∑
zdn

p(zdn|θ)p(Wdn|Zdn , π)

 dθ1...dθk dπ1...dπk (2.6)

The function above can be rewritten as:

p(W) =

(
Γ(
∑
αk)∏

Γ(αk)

Γ(
∑
βk)∏

Γ(βk)

∫ K∏
k=1

θαk−1
k πβk−1

k

)(
Nd∏
n=1

K∑
k=1

V∏
v=1

(θkπk,v)
wvn

)
dθ1...dθk dπ1...dπk (2.7)

Obviously it is intractable to compute this.

As an approximate computation of the posterior, there are some inference algo-
rithms such as Variational inference and Markov Chain Monte Carlo, the latter
one usually in the form of Gibbs sampling. In this thesis we will focus on Gibbs
sampling.
In the next subsection we will briefly introduce Gibbs sampling and how this tech-
nique can be used for the LDA model.

7



Contents

2.2 Collapsed Gibbs sampling for LDA

Gibbs sampling is a special case of Markov Chain Monte Carlo (MCMC). In
MCMC as for any Markov chain, the state at each time step, conditionally given
the previous step, is independent of the states at times before that.
Gibbs sampling is a popular technique for generating random samples of mul-
tivariate data from complex distributions. The sampling technique works by at
each time step picking a coordinate at random and then updating the value there
according to the conditional distribution given the values at all other coordinates.

In the case of the LDA model, we sample from the posterior distribution of the
latent topics given the corpus. This is done by picking a document d and word n
at random from the corpus and update zd,n according to:
p(zd,n = k|z¬(d,n), V, α, β), k = 1, ..., K.

There are two kind of counts that have been used in this sampling, nd,k and nk,v.
The first one represents the number of words assigned to topic k across a doc-
ument and the latter one the number of positions a topic k assigned to word v
across a vocabulary.
Once a topic for the current word is sampled, the nd,k and nk,v will be updated,
which in turn will be used for the next step of the MCMC. This sampling distribu-
tion will converge to the true distribution in the long enough Gibbs-iterations. The
Gibbs algorithm in this form is called collapsed Gibbs due to the fact that we in-
tegrate out or collapse some parameters of the true posterior, in this case θ and π.

By the above, we sample from the posterior probability distribution of topic as-
signment:

p(Z|W, θ, π, α, β) =
p(Z,W|θ, π, α, β)

p(W|α, β)
(2.8)

The Equation 2.8 can be rewritten (after collapsing) as below:

p(zd,n = k|z¬(d,n), V, α, β) ∝

(
α + nd,k

Kα +
∑K

k=1 nd,k

)
·

(
β + nk,v

V β +
∑V

v=1 nk,v

)
(2.9)

8



Contents

By formula (2.9), the training algorithm for the LDA with collapsed Gibbs sampling
can be defined as follows:

-Initialize the topic of each word randomly from ∼ U(1, K)
for each iteration i ∈ [1, I] do

for each document d ∈ [1, D] do
for each word n ∈ [1, Nd] do

for each topic k ∈ [1, K] do

-Calculate probability of topic k by formula:
p(zd,n = k|z¬(d,n), V, α, β) =

(
α + nd,k

Kα +
∑K
k=1 nd,k

)
·
(

β + nk,v

V β +
∑V
v=1 nk,v

)
end

- Normalize the probability vector p=[p1, p2, ..., pk] to sum of one.
- Sample a new topic k from p and assign it to the current word zd,n

end
end
- (Optional) Calculate perplexity after each iteration

end
Algorithm 2.2: LDA with collapsed Gibbs sampling

Perplexity is a measure of how well a discrete probability distribution predicts
samples and is algebraically equivalent to the inverse of the geometric mean per-
word likelihood or average of negative log likelihood.
This measurement applies on test data or data that the model has not been
trained on and is supposed to have a monotonically decreasing trend [2]. A low
perplexity indicates that the model is good at predicting and has a good general-
ization performance.

The formula for the perplexity in the LDA is as follows:

perplexity(Datatest) = exp

(
−

D∑
d=1

∑Nd
n=1 log p(Wn)

Nd

)
(2.10)

In Figure 2.2, the perplexity is shown as a function of the number of Gibbs itera-
tions. The LDA model is run on 10% of Amazon reviews, of which 90% for training
the model and 10% held out for the testing purpose. The corresponding results
in terms of top words for topics are presented in the Table 5.1 in Results and
Experiments section.

9



Contents

Figure 2.2: An illustration of the perplexity values over 50 iterations on the test
data set. The decreasing trend of the curve means that the results of the LDA
improve for each Gibbs iteration.

10



Contents

2.3 Word embedding

In this part, the process of representing words as real vectors will be outlined.
The word embedding represent each word w as a vector v(w) ∈ RM for some
given dimension M . The idea behind word embedding is that each unique word
in the vocabulary will have its own unique vector, but words with a close semantic
and syntactic relation will be located close to each other in that multidimensional
space.
As a side remark, we note that it has been found, sometimes, that similarity of
word representations goes beyond syntactic regularities and even some mathe-
matical operations can be applied to the embedding. It was shown, for example,
that vector("King") - vector("Man") + vector("Woman") results in a vector that is
closest to the vector representation of the word "Queen" [1].

How are these word embeddings generated? There are two traditional algorithms
for this purpose, continuous bag of words (CBOW) and continuous Skip-gram.
CBOW predicts the current word based on the context, whereas the skip-gram
predicts the context given the word. Hence CBOW and skip-gram can be consid-
ered as inverted methods of each other. The idea is to use the fact that the words
that share similar contexts tend to have similar meanings.

How do these work? Assume each word in the vocabulary is indexed by i =
{1, 2, ..., V }, where V is the vocabulary size. Take a word as central word wc
and the surrounding words in a size of m (max window size) as context words:
ws1, ..., ws2m.
In order to compute the above-mentioned probabilities, each word in CBOW and
Skip-gram is represented as two vectors:

• vi ∈ RM when the word at index i is a central word.
• ui ∈ RM when the same word is a context (surrounding) word of other words

that now are central words.
The conditional probability of generating a central word given the context can be
defined as follow:

P (wc|ws1, ..., ws2m) =
eu

T
c

(vs1+...+vs2m)
2m∑

i e
uTi

(vs1+...+vs2m)
2m

In skip-gram case, under the assumption that context words given a central are
independently generated, the conditional probability (in basic formulation by Soft-
max) is obtained as follows [5]:

P (ws|wc) =
eu

T
s vc∑

i e
uTi vc

where uTs vc is the inner product of the vectors.

Something important to pay attention to is that the word embedding is only a
byproduct of a predictive task and not its output. The output is, as we just stated,

11



Contents

word- or context-probability given the context or the word respectively.

The embedding of a given word is then given as a function of the weights of the
hidden layer, where these have been chosen to minimize the loss function of the
output predictions. The loss (negative log likelihood) for skip-gram is given as
follows:

− logP (ws|wc) = −uTs vc + log

(∑
i

e(uTi vc)

)
(2.11)

By representing words as one-hot vectors, the weights of the hidden layer can be
seen as the dimensions of the word vector where each row represents a word
and each column (or neuron in the hidden layer) represents a dimension.

Figure 2.3: There are 10000 words in a toy corpora and we want to build an
300 dimensional word embedding. Each neuron in the hidden layer represents a
dimension in the weight vector (word vector)

In general, the Softmax formulation is impractical since the computational com-
plexity of gradient of the loss is proportional to the vocabulary size.

In order to reduce this complexity, an approximate training method called nega-
tive sampling is introduced [6]. In this case, all context words are considered as
positive examples and negatives or noise words are sampled at random from the
dictionary (vocabulary).
Now the problem is considered as a binary classification task since the goal is
to independently predict the presence or absence of the context word. In other

12



Contents

words, to distinguish a context word ws from draws from the noise distribution.
The Softmax loss in Equation 2.11 replaces by binary logistic loss function in the
Equation below:

− logP (ws|wc) = − log
(
σ(uTs vc)

)
−

N∑
n

log
(
σ(−uTnvc)

)
(2.12)

where σ(uT v) = (1 + e−u
T v)−1 and N is number of negative words.

In negative sampling, the gradient computation in each step of the training is no
longer related to the vocabulary size, but linearly related to N.

Let’s explain the skip-gram process by a simple example. Suppose we have this
text as a toy text: "my cat chases mice in the garden at nights". The n-gram
training sample for n = 5, window = 2 and "chases" as central word will be as
follows:

(my, cat, chases), (my, cat, chases, mice), (my, cat, chases, mice, in)

(cat, chases, mice, in), (chases, mice, in)

The training samples (the surrounding words of the central word) include only the
words in max range of 2 × window, not all the words in the text. This means (in
the simple example above) given the central word “chases”, the words "cat" and
"mice" will have a higher probability estimate than the words "my" and "in" and
the remaining words will have zero probability.

CBOW and Skip-gram have some advantages and disadvantages compared to
each other. Since CBOW can use many context words to predict a single target
word, it offers very good performance even when our input data is not so large.
It trains several times faster than Skip-gram, has a better accuracy for frequent
words and does not take so much memory.
On the other hand, Skip-gram works well with a larger amounts of data and has
better accuracy for rare words. The skip-gram model is able to select more in-
formation from training data and consequently offer more accurate embeddings
when the training data is large, but training takes longer time and needs more
memory than CBOW.

Both algorithms use local context with a defined number of neighboring words or
window. These methods are used by Google’s Word2Vec and are expended as
basic methods for other embedding algorithms. One can say that, the word em-
bedding of type Word2vec is a combination of CBOW and Skip-gram methods.
There are other and newer embedding algorithms as well, such as Global Vectors
for Word Representation or GloVe and Facebook’s Fasttext.

The GloVe algorithm is introduced by Pennington, Socher and Manning (2014)
[7] and can be seen as an extension of word2vec. It seems to have a better
performance by capturing some semantic relations such as analogous properties

13



Contents

between the words. For example, the analogy “king to queen as man to woman”
should be encoded in the vector space by the vector equation: king - queen =
man - woman [8]. This semantic improvement of the algorithm is due to the fact
that the method takes advantage of global co-occurrence counts, and statistics of
the whole corpus rather than the local context or local co-occurrence.

None of the mentioned methods above can handle out of vocabulary words in the
sense that an unseen word in the training corpus will get a word vector. But, by
incorporating sub-word information, the Fasttext algorithm has the ability to sup-
port unseen words. The algorithm splits all words into a bag of n-gram characters
usually of size 3-6. This sub-word information is then added up to create a new
word as a final feature. This makes the Fasttext a powerful embedding method.
Due to this fact, we will mainly focus on this method for the rest of this thesis.

When doing topic modeling, we can either choose to use a pre-trained word
embedding or train one ourselves from the text data relevant to our application.

2.3.1 Pre-trained word embedding

There are some pre-trained word vectors by Facebook1, Stanford 2 and Google.
Some exist in different languages and some mainly in English with many bor-
rowed non-English words from other languages. They have been trained on very
large and unstructured corpora of billions of words. The larger corpus the word
embedding has been trained on, the higher the semantic accuracy and the more
comprehensive the embedding will be.

Pre-trained word embeddings are of different dimensions. The higher the dimen-
sion the more information can be captured from the corpus and consequently the
higher accuracy will be achieved when using it in the GLDA model, but of course
it requires longer training time and also a larger database of texts to train on. The
most common dimension of the current pre-trained word vector are 300.

Table 2.1: 3 types of pre-trained word vectors and some related informations

Company or Author: Facebook Stanford Google
Embeddings name: FastText GloVe Word2Vec
Algorithm behind: bag of n-gram Global statistic’s CBOW &

characters and co-occurence skip-gram
Dimension: 300 25,50,100,200,300,1000 300, 1000
Language: 294 languages English English

Some of the word embeddings above are very memory consuming, up to 5-6
gigabytes and take time to download. In Table 5.2 in the Results and Experiments
section, a pre-trained word embedding from Fasttext with dimension of 300 and

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html

14

https://fasttext.cc/docs/en/crawl-vectors.html
https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html


Contents

vocabulary size of 1 million words (wiki.news.300d.1M.vec) has been used for
training the GLDA.

2.3.2 Training your own word embedding

It is possible to train your own word embedding on your own database. Most of
the pre-trained word embeddings are trained on Wikipedia, Common Crawl, Twit-
ter or text from social media, which might be considered as an advantage since
we can use them generally for any kind of text and in any field.
However this can be seen as a drawback too partly because most of this heavy
volume of vectors will not be used on the data you want to classify. As a conse-
quence, this will slow down the training since the dictionary of embedded words
is much larger than necessary. Therefore, it can be a good idea to train your own
embedding.

Facebook has created a library that called Fasttext that can be imported from the
Gensim package in Python. Using this, one can train one’s own word embedding
on text that better represents to context of the corpus that one wants to train a
model on. There are some hyper-parameters in the library that need be adjusted
before training while others can be left as default or optional. The choice of these
parameters has a large effect on the embeddings and consequently on the results
of topic classification. Some of the important parameters will be introduced here3.

• size or dimensionality of word vector (M ): For larger training data with a
huge vocabulary size, we need higher dimensions. High dimensionality re-
quires longer time and harder training. The range between 100 and 300 is
popular. The default dimension is 100.

• learning rate or α: The higher the α, the faster the model converges to a
solution, but also higher risk of overfitting. Another risk is that the model
might miss the global minimum of the loss. On the other hand, having too
low α can lead to getting stuck in local minima. The default rate is 0.05.

• sg = {1,0}: zero for choosing CBOW algorithm as underlying algorithm and
one for continuous skip-gram.

• word-ngram = {1,0} zero for Word2Vec algorithm and one for Fasttext and
enriching the word embedding with sub-word or char (n-grams) information.

• min-n: Minimum length of char n-grams to be used for training word repre-
sentations.

• max-n: Max length of char n-grams to be used for training word represen-
tations. The higher the amount of n-grams, the more information about the
local word order will be included. The values 3 and 6 are popular as min-

3https://radimrehurek.com/gensim/models/fasttext.html

15

https://radimrehurek.com/gensim/models/fasttext.html


Contents

and max-n.

• window: The maximum distance between the input and predicted word
within a sentence. 2 × window defines the maximum number of surround-
ing words of the current word in a training sample. Larger window size
enriches the embeddings with more topical information and lower with more
semantical.

Once you get familiar with these hyper-parameters and have a sufficiently large
training corpus, you can train your own word embedding. Training your own word
embedding on a smaller corpus spares you time and memory, but such embed-
ding are not useful for other kinds of text data.

In Table 5.3 in Results and Experiments section, a word embedding is first trained
on the entire Amazon data set by hyper-parameters: M = 150, word-ngram = 1,
α = 0.05, 3 as min-n and 5 as max-n and then the embedding is used as word
vectors in the GLDA.

16



Contents

2.4 Data Pre-processing

Before starting with the training, we need to prepare the data. Texts and corpus
are written in natural language for human perception, But in text mining, those
data are not always easy for computers to process. [12]

Tokenization and filtering are among the important pre-processing steps of a text.
The first one is about treating a text as a string and partition it into a list of tokens
and the second one about cleaning.
Cleaning or filtering a corpus (from noisy words) helps us partly to save memory
and computation time and partly to give more weight to the words that are topic
informative. [12] The steps in filtering are as follows:

• removing stopword or highly frequent words such as "the", "of", "in" and
"on".

• removing characters such as #, ¤ and &.
• deleting numbers.
• converting capitals into lowercase.
• removing extremely short words such as "I", "u" and "r".
• getting rid of misspelled words.

An example of a text from Amazon reviews before and after filtering is present as
below:

Before filtering: outstanding camera in every respect <3.. i ’ve owned several
digital cameras in recent years (sony &nikon). the n2 ’s giant 3" lcd, the touch
screen features,
After filtering: outstanding camera every respect owned several digital cameras
recent years sony nikon giant lcd touch screen features

The tokenized text: ’outstanding’, ’camera’, ’every’, ’respect’, ’owned’, ’several’,
’digital’, ’cameras’, ’recent’, ’years’, ’sony’, ’nikon’, ’giant’, ’lcd’, ’touch’, ’screen’,
’features’

17



Contents

3 GLDA

Gaussian latent Dirichlet allocation or GLDA was introduced by Das, Zaheer and
Dyer [3]. As mentioned earlier, the model shares some basic premises with the
LDA such as the assumption of exchangeability and considering a document as
a mixture of topics and topics as distributions over the words. But unlike LDA, the
GLDA considers topics as multivariate Gaussian distributions on the continuous
embedding space rather than discrete categorical distributions over words.

In other words, each topic k is a Gaussian distribution with expectation µk and
covariance matrix Σk on the embedding space RM . This is to say that a word
vector chosen from topic k is drawn from N(µk, Σk).
The conjugate priors of µk and Σk are as below:

• an Inverse Wishart distribution for the covariance Σk ∼ W−1(Ψ, ν), where
ν ≥ M is the prior of degrees of freedom and Ψ ≥ 0 is a scale positive
definite matrix of size M ×M .

• Given Σk, a zero centered Gaussian distribution for the mean µk ∼ (0, Σk
κ

)
with the prior covariance (scaled by a real scalar κ > 0) as its covariance.

Since we don’t have any prior knowledge of K-dimensional dirichlet parameter α,
a symmetric and uniform one will be considered. Therefore, the distribution can
be parametrized by a single scalar α, i.e. α1 = ... = αk. We set Ψ = 3 · IM×M and
ν = M + 1.

The generative process of the GLDA algorithm will be as follows:

for each topic k ∈ [1, K] do
- Draw prior topic covariance Σk ∼ W−1(Ψ, ν)
- Draw prior topic mean µk ∼ N(0, Σk

κ
)

end
for each document d ∈ [1, D] do

-Draw topic distribution θd ∼ Dirk(α);
for each word n ∈ [1, Nd] do

-Draw a topic zn ∼ Cat(θd)
-Draw a word (word vector) vd,n ∼ N(µzn , Σzn)

end
end

Algorithm 3.1: Generative process of GLDA

As for the LDA, computing the true posterior is infeasible and again we will instead
use Gibbs sampling which will be discussed in the next subsection.

18



Contents

3.1 Collapsed Gibbs sampling for GLDA

The desire is to infer a posterior distribution for the topic parameters µk,Σk and
the topic assignment of individual word zd,n. Since the true posterior is analyti-
cally unsolvable and thanks to the fact that some variables can be collapsed or
integrated out, a collapsed Gibbs sampler has been derived [4]. The equation
below is the conditional distribution of the topic of the current word.

P (zd,n = k|z¬(d,n),Vd, ζ, α) ∝ (nd,k + α) · tdfk
(

vd,n| µk,
κk + 1

κk
Σk

)
(3.1)

Here:
• z¬(d,n) represents the topic assignments of all words in the corpus, except

the one at nth position of document d.
• Vd is the sequence of word vectors for the words in document d.
• The tuple ζ = (Ψ, ν, κ) represents the parameters of the prior distribution.
• α is learning rate.
• nd,k represents the count of words assigned to topic k in each document.
• κk = κ+

∑D
1 nd,k is scalar and a scale factor for the mean and covariance.

• νk = ν +
∑D

1 nd,k is scalar and a scale factor to calculate the degrees of
freedom dfk = νk −M + 1.

• tdf (x′|µ′,Σ′) is the density of multivariate t-distribution (or Student distribu-
tion) with degrees of freedom df , location µ′ and shape Σ

′.

By replacing the second term of the Equation 3.1 to PDF of the multivariate t-
distribution4, the equation can be written as follows:

p(zd,n = k|z¬(d,n),Vd, ζ, α) ∝ (nd,k+α)·
Γ[dfk+M

2
]

Γ(dfk
2

)df
M
2
k π

M
2 |Σk|−1

(
1 +

(x− µk)TΣ−1
k (x− µk)

dfk

)− dfk+M

2

(3.2)

where x is the word vector for the word in position d, n.
Topic parameters µk and Σk, where k is the topic of the current word xk, updates
twice for each word, once before the assignment of the new topic (by formula 3.2)
and once after. The formulas for corresponding update are as follow:

Σnew
k := Σold

k −zzT , where z = (xk−µoldk )·
√
κk + 1

κk
and µnewk :=

µoldk · (κk + 1)− xk
κk

(3.3)

µnewk :=
µoldk · (κk − 1) + xk

κk
and Σnew

k := Σold
k +zzT , where z = (xk−µnewk )·

√
κk

κk − 1
(3.4)

The training algorithm of the Gibbs sampling can be defined as follows:

4https://www.researchgate.net/publication/228613894_A_short_review_of_
multivariate_t-distribution

19

https://www.researchgate.net/publication/228613894_A_short_review_of_multivariate_t-distribution
https://www.researchgate.net/publication/228613894_A_short_review_of_multivariate_t-distribution


Contents

-Initialize the topic of each word randomly from ∼ U(1, K)
for each iteration: i ∈ [1, I] do

for each document in the corpus: d ∈ [1, D] do
for each word in the document: n ∈ [1, Nd] do

- n[d, k] = n[d, k]− 1, k = topic of the current word,
- Update topic parameters: Σk, µk by formula 3.3
for each topic k ∈ [1, K] do

-Calculate probability: p(zd,n = k|z¬(d,i),Vd, ζ, α) = by Equation 3.2
end
- Normalize the probability vector pd,n = [p1, p2, ..., pk] to sum of one.
- Sample a topic k from p and assign it as new topic to the current word
- n[d, k] = n[d, k] + 1
- Update topic parameters: µk,Σk by formula 3.4

end
end
- (optional) Calculate the loss function after each iteration

end

Algorithm 3.2: Training algorithm for GLDA with Gibbs sampling

A low loss function (in our case Negative log-likelihood) indicates a better op-
timization of the parameters. The formula for the average of the negative log-
likelihood is given by:

mean(− log P (X|µ,Σ)) =

∑D
d

∑Nd
n − log

(2π)−
M
2 Det(Σk)−

1
2 e−

(xd,n−µk)TΣ−1
k

(xd,n−µk)

2


Nd

D
(3.5)

In Figure 3.1, Figure 3.2 and Table 3.1, the algorithm with Gibbs sampling of 15
iterations and 50 topics K is run on 10% of Amazon data (consisting of 1191 re-
views and 75616 words) with pre-trained word embedding (of dimension M equal
to 300) named wiki-news-300d-1M.
Figure 3.1 visualizes the monotonous behavior of the loss function. We can
clearly see that the loss decreases as the optimization progresses. As a con-
sequence, the updating rate in Figure 3.2, where the new topic of the current
word is unequal to its old topic, decreases.

20



Contents

Figure 3.1: A decreasing trend of negative log-likelihood. The picture might
indicate that a good number of Gibbs iterations is 8 due to the minimum point

Figure 3.2: While the Gibbs algorithm learns in each iteration, the updating
rate, i.e. the number of words that switch topic assignment between each iteration
decreases.

In Table 3.1, total number of words assigned to each topic in iteration number =
[0, 1, 5, 10, 15], are illustrated. Initially (in iteration number 0), a topic ∈ [1, K] is
assigned uniformly to each word. Then in each iteration, the sampling converges
more and more to some specific topics and finally in the last iteration, to 26 topics.

21



Contents

Table 3.1: Topic assignment of some iteration by Gibbs sampling in GLDA. By
document-wise sum of the counts nd,k one can notice how fast the topics converge
to some specific topics

iter. No The number of words assigned to each topic
0 1954 1632 1589 1063 1694 1303 1017 1188 1759 1570

1784 1383 1794 1842 1833 1688 1578 1790 1585 1554
1207 1499 1482 1370 1471 1548 1304 1195 1406 1133
1860 1989 1231 1235 1385 1397 1181 1451 1294 1718
1578 1234 1429 2036 1874 1755 1509 1585 1410 1250

1 786 2709 313 296 3071 172 3594 3368 12911 55
321 708 4015 4436 795 3466 1277 1155 95 111
222 2087 149 109 315 128 1987 248 360 728
5232 1529 50 1164 191 65 322 1308 2201 175
234 105 972 4028 2507 905 1886 2253 306 196

5 1443 2757 0 0 2555 0 2074 1904 3317 0
0 4204 2434 3055 0 2822 865 3152 0 0
0 3418 0 0 0 0 2874 0 0 10847
2432 1276 0 7584 0 0 0 1933 2352 0
0 0 1863 1545 1922 3352 1451 2185 0 0

10 10176 2372 0 0 2215 0 3750 1856 3334 0
0 2090 2313 2812 0 2679 1035 2540 0 0
0 3471 0 0 0 0 6561 0 0 3248
2399 1352 0 2832 0 0 0 2120 2261 0
0 0 4664 1478 1918 2712 1675 1753 0 0

15 3850 1736 0 0 2272 0 4195 1799 2631 0
0 2389 2221 2524 0 2846 9574 2748 0 0
0 3031 0 0 0 0 2612 0 0 3402
1960 1376 0 2377 0 0 0 6037 3341 0
0 0 3014 1999 1753 2558 1614 1757 0 0

By comparing the output of the GLDA to the LDA as will be seen later in Results
and Experiments section, one can say that the GLDA model seems to produce
more comprehensible topics than LDA. However, it comes at a cost; the running
time for the algorithm is much higher than for LDA. This depends partly on the
high dimensionality of the word embedding and partly, in particular in the pre-
trained case, on the vocabulary size.

In the next subsection, a technique that will shorten the computational time and
save memory will be explained.

22



Contents

3.2 Speed Up

As can be seen in Algorithm 3.2 and Equation 3.2, for computation of the pos-
terior predictive we need to calculate the determinant |Σk| and the inverse of
the posterior covariance matrix Σ−1

k . The naive computation of these terms cost
O(M3) operations [3]. Since the count matrix nd,k and the scale parameters νk, κk
change and update during the topic assignment, the determinant and the covari-
ance need to be calculated at least as many times as the number of words ×
number of topics × number of Gibbs iterations. This computation can take up to
several days for a medium to a large size corpus. To shorten the required running
time, a technique called Cholesky factorization, will be applied on the covariance.

3.2.1 Cholesky factorization

Depending on the characteristics of a matrix, there are different variants of matrix
factorization that can be employed with the purpose of saving memory and com-
putational time. As in Das et al, we use Cholesky, or LDLT , factorization

Assume that the matrix A is symmetric. One can write A as A = LU , where the
upper triangular matrix U can be constructed by Gaussian elimination and the
lower triangular L by row operation. Taking D = diag(U), we get U = DX, where
X is uniquely determined and has ones on its diagonal. Since A is symmetric
and LT has ones on the diagonal, X = LT and hence A = LDLT . If A is positive
definite D1/2 is defined and we can write A = CCT , where C = LD1/2. This is the
so called Cholesky factorization.

An example of the Cholesky factorization is as follows:

A =

[
4 8
8 25

]
, then :

[
4 8
8 25

]
︸ ︷︷ ︸

A

=

[
1 0
2 1

]
︸ ︷︷ ︸

L

∗
[
4 8
0 9

]
︸ ︷︷ ︸

U

=

[
1 0
2 1

]
︸ ︷︷ ︸

L

∗
[
4 0
0 9

]
︸ ︷︷ ︸

D

∗
[
1 2
0 1

]
︸ ︷︷ ︸

LT

LDLTcan be written as: LD
1
2D

1
2LT

A =


[
1 0
2 1

]
︸ ︷︷ ︸

L

[
2 0
0 3

]
︸ ︷︷ ︸
D

1
2


︸ ︷︷ ︸

C


[
2 0
0 3

]
︸ ︷︷ ︸
D

1
2

[
1 2
0 1

]
︸ ︷︷ ︸

LT


︸ ︷︷ ︸

CT

= CCT (3.6)

23



Contents

Note that diag(U) has positive elements only if A is positive definite and it is only
then that one can write C = LD1/2.

Why is Cholesky decomposition so useful? The importance appears when we
estimate how much each operation might cost. As mentioned in the paper [3] if
we don’t use Cholesky factorization, a solution to the equation Axk = bk will in
general cost O(M3) operations (addition and multiplication). Given a LU factor-
ization, the cost reduces to O(M2) since Lz = b and Ux = z both cost O(M2).
Now the LU costs O(M3) in itself, but it can be done once and for all. Once we
have Cholesky factorization Σk = CkC

T
k , we can in future work solely with Ck in-

stead of Σk, in the Equation 3.2 and 3.5.

The expression (x− µk)TΣ−1
k (x− µk), where x is the word vector for the current

word, can now be solved with this technique.
Take bk = (x− µk), then:

(x− µk)T︸ ︷︷ ︸
bk

T

Σ−1
k (x− µk)︸ ︷︷ ︸

bk

= bk
T Σ−1

k bk (3.7)

Due to the symmetry and positive definite characteristics of covariance Σk, we
can apply the Cholesky factorization as follows:

bk
T Σ−1

k bk = [by 3.6] = bk
T (CkCk

T )−1bk = bk
T (Ck

−1)T C−1k bk = (Ck
−1bk)T (Ck

−1bk).

The factorization can also be used to compute the determinant |Σk|:

log(|Σk|) = 2×
M∑
m=1

log(Ckm,m) (3.8)

Due to this factorization, the covariance in Equation 3.3 and 3.4 can be updated
by rank one downdate and rank one update respectively on Ck.
In pseudo-code, the algorithm for the rank 1 update is as follow [13]:
- input: A triangular Cholesky factor C ∈ RMM of the covariance Σ and z ∈ RM

- output: the updated version of C by C + zzT

24



Contents

for m = 1,...M do

- r =
√
C2
mm+z2

m

- Cmm = r
- r∗ = r

Cmm
- z∗ = zm

Cmm

for k = m+1,...,M do

- Cmk = Cmk + z∗ zk
r∗

- zk = r∗ zk − z∗ Cmk

end
end

Algorithm 3.3: Rank one update

The pseudo code above can easily be adapted to do a rank 1 downdate: one
merely needs to replace the two red additions by subtractions.

There are other techniques that also speed up an algorithm and shorten the run-
ning time. Some of them that have been used in the GLDA case are as follow:

• Refactor: Short Python programs and splitting the functions into mini-functions
helps a lot where each small function takes care of preferably only one task.
Large functions fill up the memory and slow down the calculations. Clever
coding decreases the computation time drastically specially when coding
high dimensional models such as GLDA.

• Numba package: Using some python package such as Numba and com-
piling python code with @jit lets you significantly improve the speed of your
code.
To avoid compilation times each time you invoke a Python program, you
can instruct Numba by @numba.jit(cache=True)5 to write the result of the
function compilation into a file-based cache. This is very effective for rank 1
update or downdate in Algorithm 3.3 and speed up the GLDA in our experi-
ment 3.4 times faster.

5https://numba.pydata.org/numba-doc/dev/user/jit.html

25

https://numba.pydata.org/numba-doc/dev/user/jit.html


Contents

3.3 Pointwise Mutual Information

According to Das et al [3], it is not correct to compare perplexities or likelihood
on a held-out test data when comparing discrete models with continuous models.
The perplexity is considered as a suitable measurement only in discrete cases
such as LDA.
Also, based on the results of Chang (2009) [9], a higher likelihood of held-out
documents (or lower negative log likelihood) doesn’t necessarily correspond to
human perception of topic coherence. They mean that a topic model which per-
forms better on held-out likelihood may infer less semantically meaningful topics.
Instead, the paper suggests to follow Newman’s method (2009) [10] and choose
Pointwise Mutual Information (PMI) of top- or topic words as a measurement of
performance.

PMI is a function of pairs of words and the score of a topic is computed by aver-
aging the scores of pairly co-occurrence statistics over top words. The PMI score
of a model is achieved by averaging the PMI scores of all the topics. This gives
all comparison of topic coherence for different models. The PMI of two top words
wi and wj is calculated as follows:

PMI(wi, wj) = log

(
p(wi, wj)

p(wi)p(wj)

)
(3.9)

where p(wi, wj) is the relative frequency of documents where both words wi and
wj occur and p(wi) and p(wj) are the relative frequencies of documents where the
two words appear, respectively. A model with a high PMI value is considered to
have a better performance in term of topic coherence than a model with a lower
one.
The corpora for the measuring of the PMI values will be a part of Storytel’s
database, consisting of 141,389,251 words.

In the next section we will extend GLDA to a multilingual model.

26



Contents

4 Multilingual GLDA

We present two new techniques of multilingual modeling that work well. First, a
joint and aligned word embedding will be trained by Fasttext on the multilingual
corpus. Then, by applying the first technique, the topic modeling on the target
language will be more comprehensive and by the second one, the running time
will be shortened.

Some assumptions are required in order to make cross-lingual connection be-
tween the languages practical. As has been mentioned before, in both LDA and
GLDA, the documents are considered as a mixture of a number of topics. Here
we go further and assume that the documents of different languages should have
this property, in other words, the same topic distribution. It would otherwise be
difficult to train two distinct documents of different languages in parallel, if for in-
stance, one is about astronomy and other about Tinder reviews.

Additionally we assume that the words of different languages are independent of
each other. This means, for instance that, the same word (but in two different lan-
guages) can be present in different topic distributions with different probabilities
without any requirement of having identical topic distributions. Due to this simple
yet essential assumption, the words in different languages with similar topics are
aligned so that the topic distributions of different languages are aligned.

Before we apply the techniques on the GLDA, we need to make the word vectors
multilingually aligned. This part is important because the same word in two differ-
ent languages can have different location on the embedding space. Combining
non-aligned embeddings with parameters from another language might make the
covariance singular and unstable.

Facebook’s Fasttext give us the opportunity to design own desirable word em-
bedding by adjustment of the hyper-parameters even on a small corpora. It is
possible to make a joint multilingual word embedding which is trained on a mixed
multilingual text data, all together. In this way, we align the word embedding of
different languages into the same vector space and then simply apply the multilin-
gual models. Better alignment achieves when two languages are closely related
to each other.
Using this kind of the word embedding makes also the embedding richer and en-
hances the ability of capturing the topics by the GLDA model. This is partly thanks
to the sub-word information of the Fasttext.

Fasttext’s word-ngram consider each word w as a bag of n-gram characters Gw
and provide sharing of the information between the words in a corpus.
Let’s explain it by an example to make it clear. Suppose we have the word w: uni-
versity . First we add "<" at the beginning and ">" at the end of the word (<univer-
sity>) to distinguish prefixes and suffixes from other character sequences. Take

27



Contents

the n = 3, then a set of n-grams Gw will be: (<un, uni, niv, ive, ver, ers, rsi, sit, ity,
ty>) + the word itself <university>. Note that the sequence <sit> corresponding
to the word "sit", is different from the tri-gram sit here. Each subgram g is now
represented by a word representation zg from a ngram dictionary [11]. Then the
final word vector uw for the word university will be sum of word representations,
uw =

∑
g∈Gw zg.

The n-gram set of the corresponding Swedish one is (<un, uni, niv, ive, ver, ers,
rsi, sit, ite, tet, et>, <universitet>). As can be seen here, the both words share
information and internal structure in the 8 first positions.

Sharing the representations across the words allows the model to learn reliable
representation for the rare words and to learn rich representations from a much
smaller data set. A rich embedding in its turn, supports the model to a more com-
prehensive and precise topic modeling.
The more related and close the languages are to each other the more cross-
lingual interaction and sharing of character level information.

Now the first technique is simple since we don’t involve any statistics or parame-
ters from the source language into the targets. The fact is that the GLDA model
will be trained on each language in parallel but with a trained joint (multilingual)
word embedding.
Training a joint embedding by Fasttext on the mixed corpus, is a requirement
for this technique, partly because pre-trained embedding from non-Fasttext are
neither aligned or provided in other languages than English and partly because
Fasttext provide the tool for one to train its own embedding and it can handle un-
seen words.

The Equation 3.2 replaces by Equation 4.1 as follows:

p(z
(`)
d,i = k|z(`)

¬(d,i),V
(`)
d , ζ

(`), α) = (n
(`)
d,k + α)·

·
Γ[

df
(`)
k + M

2
]

Γ(df
(`)

2
) df

(`)
k

M
2 π

M
2 |Σk|−1(`)

(
1 +

(x(`) − µk
(`))TΣ−1

k
(`)(x(`) − µk

(`))

df
(`)
k

)− df(`)
k

+M

2

(4.1)

` = 1, ..., L and L is number of languages. This technique is described in Algo-
rithm 4.1.

The corresponding generative process of the algorithm is defined in Algorithm
4.2.

28



Contents

- Mix the corpus of language l ∈ [1, L] and Create an joint word embedding
for each language ` ∈ [1, L] do

for each iteration i ∈ [1, I] do
for each document d ∈ [1, D(`)] do

for each word n ∈ [1, N
(`)
d ] do

- n(`)[d, k] = n(`)[d, k]− 1
- Update topic parameters µk

(`) and Σk
(`) by rank one downdate

for each topic k ∈ [1, K] do
-Calculate probability of topic k, p(z(`)

d,n = k|z(`)
¬(d,i),V

(`)
d , ζ

(`), α)
by Equation 4.1

end
- Normalize the probability vector p(`)

d,n = [p1, p2, ..., pk] to sum of one.
- Sample a topic k from p(`) and assign it to the current word
- n(`)[d, k] = n(`)[d, k] + 1
- Update topic parameters: µk

(`) and Σk
(`) by rank 1 update

end
end

end
end

Algorithm 4.1: Simple training algorithm for MGLDA with Gibbs sampling

for each language l ∈ [1, L] do
for each topic k ∈ [1, K] do

- Draw prior topic covariance Σ
(l)
k ∼ W−1(Ψ(l), ν(l))

- Draw topic mean µ(l)
k ∼ N(µ(l), 1

k
Σ

(l)
k )

end
end
for each language l ∈ [1, L] do

for each document d ∈ [1, D(l)] do
-Draw topic distribution θd ∼ Dirk(α);
for each word n ∈ [1, N

(l)
d ] do

-Draw a topic z(l)
n ∼ Cat(θd)

-Draw a word v(l)
d,n ∼ N(µ

(l)
zn , Σ

(l)
zn)

end
end

end
Algorithm 4.2: Generative process of MGLDA

29



Contents

GLDA with the multilingual word embedding yields more comprehensive and pre-
cise topic prediction on the target corpus than with the embedding that is trained
only on the target language. This method is especially favorable when we don’t
have access to a rich text data of the target language, but instead have quite
enough in the source language.

The algorithm indeed, has not really much to do with GLDA but is a way to utilize
the way that Fasttext works in order to train an embedding that learns better by
using a larger database even if the database expands only with documents from
another languages.

In order to gain maximum benefit from the sub-word information across the lan-
guages (and consequently more comprehensive topic prediction) we think that
the languages need to be closely related.

It should be noted that Facebook has published pre-trained aligned word vectors
for 44 languages 6 which would be a natural first choice to use here. However
it turns out that one can create, by the first technique of MGLDA, an alignment
(between two languages) that seems to work better than the one the pre-trained
aligned provide. Unfortunately the topic classification, using these pre-trained
word embeddings (tested on bilingual corpus from Amazon reviews), are far from
comprehensive in comparison with the results from this technique.

Next we move to our second multilingual technique. Here information from the
source language will be borrowed to be used to speed up the inference on the
target languages. More precisely, the topic parameters µ

(1)
k and Σ

(1)
k which are

trained on the source language will be set as initial values for µ(`)
k and Σ

(`)
k in the

training for the target languages, where ` ∈ [2, L].
This procedure makes it faster for Gibbs sampling to converge in corpus of the
target languages and spares us the running time and number of iterations.
Since parameters from the source have been used in the targets one can call
the algorithm, approximate MGLDA. The method is described step by step in
Algorithm 4.3.

This technique is a developed case of the previous multilingual algorithm (simple
MGLDA) which means that one can achieve two goals, first more comprehensive
topic prediction as the previous technique and then shorter computational time
on corpus of target languages.

6https://fasttext.cc/docs/en/aligned-vectors.html

30

https://fasttext.cc/docs/en/aligned-vectors.html


Contents

- Mix the corpus of language l ∈ [1, L] and train an joint word embedding
for source language (1) do

for each iteration of the source language i ∈ [i, I(1)] do
for each document d ∈ [1, D(1)] of the source language do

for each word n ∈ [1, N
(1)
d ] do

- n(1)[d, k] = n(1)[d, k]− 1
- Update topic parameters µk

(1) and Σk
(1) by rank one downdate

for each topic k ∈ [1, K] do
-Calculate probability of topic k, p(z(1)

d,n = k|z(1)
¬(d,i),V

(1)
d , ζ(1), α)

by Equation 3.2
end
- Normalize the probability vector p(1)

d,n = [p1, p2, ..., pk] to sum of one.
- Sample a topic k from p and assign it to the current word
- n(1)[d, k] = n(1)[d, k] + 1
- Update topic parameters: µk

(1) and Σk
(1) by rank 1 update

end
end

end
- spare µk

I,(1),Σk
I,(1) from the last iteration

end
for each language of the target languages ` ∈ [2, L] do

for each topic k ∈ [1, K] do
- Initialize µ0,(`)

k = µ
I,(1)
k , Σ

0,(`)
k = Σ

I,(1)
k

end
for each iteration of the target language i ∈ [1, I(`)] do

for each document d ∈ [1, D(`)] of the target language do
for each word n ∈ [1, N

(`)
d ] do

- n(`)[d, k] = n(`)[d, k]− 1
- Update topic parameters µk

(`) and Σk
(`) by rank one downdate

for each topic k ∈ [1, K] do
-Calculate probability of topic k, p(z(`)

d,n = k|z(`)
¬(d,i),V

(`)
d , ζ

(`), α)
by Equation 4.1

end
- Normalize the probability vector p(`)

d,n = [p1, p2, ..., pk] to sum of one.
- Sample a topic k from p(`) and assign it to the current word
- n(`)[d, k] = n(`)[d, k] + 1
- Update topic parameters: µk

(`) and Σk
(`) by rank 1 update

end
end

end
end

Algorithm 4.3: Approximate training algorithm for MGLDA

31



Contents

5 Results and Experiments

In this section, the models that have been described earlier such as LDA, GLDA
with pre-trained, GLDA with trained embedding, simple MGLDA and approxima-
tive MGLDA will be applied and tested on two different data sets. These data
sets are imported from two different sources: Amazon website and Storytel’s
database.

First a file named all-sentiment-shuffled.txt, containing around 12,000 reviews of
Amazon products, has been downloaded7 in order to test LDA and both cases of
GLDA. Then, for testing multilingual models, 20% of them have been translated
into Swedish by Google Translate.

These reviews are mostly about 6 product types: camera, DVD, music, software,
book and other products such as health product used in the paper by Blitzer et
al., (2007) [14]. The data has been formatted so that there is one review per line.
For simplicity we assume that the true topics of the reviews are these 6 types,
but other semantically related top words (that have been captured by the models)
will be presented as well. In some tables a descriptive word (marked with brown
text color) about the topic that top words represent, has been added to the top of
columns.

The rest of the data is from Storytel’s database. In order to test LDA and both
GLDA cases, a collection of ten documents consisting of 204,159 words (after
pre-processing), has been selected from the database. The selection is randomly
which means that the documents can contain completely different and unknown
topics. This makes, in its turn, the classification an unsupervised task also for us
as human.

In the Bilingual case, both MGLDA models have been tested on a novel of Beate
Grimsrud called, "A Fool Free" with corresponding Swedish edition: "En Dåre
Fri". It’s about a girl who lives alone and hears voices in her head. She is periodi-
cally admitted to the psychiatric ward. The Swedish one consists of 54,025 words
after pre-processing.

7https://svn.spraakdata.gu.se/repos/richard/pub/statnlp2015_web/assignment1.
html

32

https://svn.spraakdata.gu.se/repos/richard/pub/statnlp2015_web/assignment1.html
https://svn.spraakdata.gu.se/repos/richard/pub/statnlp2015_web/assignment1.html


Contents

5.1 Results from LDA and GLDA models

The output or top words (in ascending order) of the monolingual models such as
LDA by algorithm 2.2, GLDA by algorithm 3.2 both with pre-trained and trained
word embedding are shown in the coming tables: 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.
The first three tables correspond to the output of the models applied on Amazon
data and the latter three on the Storytel’s collection of 10 documents.

Tables 5.1, 5.2 and 5.3—LDA, GLDA with pre-trained, and GLDA with trained em-
bedding respectively— have been trained on 10% of the reviews. In both GLDA
cases (pre-trained and trained), the number of Gibbs iterations and number of
topics K have been set to 5 and 50 respectively but in LDA to 50 and 12 because
of poor performance if a lower respectively a higher numbers have been chosen.
The word embedding in Table 5.2 is from Fasttext’s pre-trained : wiki.news.300d.1M.vec
and in Table 5.3 is trained on the entire Amazon reviews with the dimension M
equal to 150. The GLDA in latter case is then run on 10% of the reviews after-
wards.
In LDA (Table 5.1), despite the high number of iterations, some of the top words
in respective columns are not semantically related to others. On the other hand,
in both GLDA cases almost all the true topics have been successfully classified,
and the models captured some other topics (semantically related top words) as
well.
These new topics in Table 5.2, seem to be family member words, colors, num-
bers, positive adjectives, names and Emoji words which are different from the
new ones in Table 5.3.
That these "extra" topics seem to be so coherent is an effect of the fact that the
embedding itself captures the semantics of the language and the fact that GLDA
identifies topics with multivariate Gaussian distributions and that the word vectors
close to that mode will necessarily be semantically close.
One thing to consider is that these extra topics can slightly variate when training
several times but variation in capturing the true topics is low and minimal.

The total running time, in trained case, was 68 minutes of which 2.5 minutes for
creating the word embedding. This time is 4.4 times shorter than the running time
with a pre-trained word embedding.

Tables 5.4, 5.5 and 5.6—LDA, GLDA with pre-trained, and GLDA with trained
embedding respectively— have been trained on a collection of the 10 documents
from Storytel.
The number of topics in LDA and both GLDA cases are set to 50 but the number
of Gibbs iterations are set to 30, 5 and 10 in respective cases. The GLDA model
in trained case, required more iterations (10 iterations) than the pre-trained one
because it took longer time for negative log likelihood to keep an ascending trend.
The word embedding in Table 5.5 is Fasttext’s pre-trained one, named: wiki.en.vec
and in Table 5.6, it has been trained on these 10 documents before applying the
GLDA on them.

33



Contents

It seems that the LDA (in table 5.4) captured some topics in areas such as:
medicine, music, traffic (twice), school related words but not semantically pre-
cise.
The captured ones in GLDA with pre-trained embedding (in table 5.5) are in areas
such as: medicine, body parts, music, riding, negative feelings, top names within
Islams history (shiite and sunni), building parts, accidents, service system and
process related words. Most topics in trained case, in Table 5.6, are the same as
in pre-trained one. It can been seen that the semantic relation between the top
words in both GLDA cases are higher than the one in LDA model in table 5.4.
It might be good to mention that there are ,in GLDA cases, some other semanti-
cally related top words of other topics as well but we chose not to present them
here.

Since the true topics in this collection are unknown for us, the PMI values have
been used as a measurement of the performance. The corresponding PMI value
for each topic are marked with blue text color under the corresponding column.
The average PMI of the top words in LDA and respective GLDA models are 10.09,
11.53 and 12.08 which indicates that the GLDA has a better performance and
topic coherence than the LDA.

Table 5.1: Top words in ascending order of 8 topics from the LDA model by
Algorithm 2.2. The model have been trained on 10% of the Amazon reviews.

digital war people zoom really etc better bought
well scenes go look characters using guitar need
battery great let back written makes wa used
canon acting wa product made fact much computer
used ever think problem know series spanish days
easy two enough hair much several mm first
product best buy light books information version price
could make great water author little band last
bought even music really say words album new
software love good right book true songs also
pictures music best also story guess cd work
camera dvd also use read find lens version

34



Contents

Table 5.2: Top words in ascending order of 12 topics from the Gaussian LDA
model with Fasttext’s pre-trained word embedding named: wiki.news.300d.1M.vec.
The model is run on 10% of Amazon reviews.

camera DVD music software book family member
camera cd songs software movie father
cameras dvd album version book mother
lens gman music concept film wife
lenses divx song system story man
photography zune albums aspect movies girl
photographs bluray tunes approach films friend
pictures cds singer thing novel boy
photographer panasonic lyrics program books daughter
viewfinder cdrom recordings idea sequel brother
photos windoze musician problem novels son
camcorder flac band picture screenplay woman
zoom winxp melodies data documentary person
color numbers positive adjectives trade names emoji
brown two wonderful bought bellamy suks
water three good buy phillip okk
metal several nice purchased loretta OMG
yellow four fantastic sold damien Hahahahahah
skin five great sell eleanor pplz
plastic many amazing purchase ronald jeezus
white first terrific buying rhys wazzup
blue six fabulous selling stacey wuts
hair other terrible owned crowe peepz
glass seven brilliant built nicholas lololololol
black numerous interesting rented dwayne mmmmmmmmm
red previous lovely shipped cassidy yea

35



Contents

Table 5.3: Top words in ascending order of 12 topics from the Gaussian LDA model
with trained word embedding. The embedding is trained on the entire Amazon
reviews. The GLDA model is then run on 10% of the same data afterwards.

camera DVD music software book quantity
camera dvd album software book small
lens movie songs computer read size
canon watch song program books smallpox
cameras movies music install reading smalltown
lenses tv cd softwares author smallish
nikon watching tracks windows written larger
digital series albums installer novel smaller
pictures show lyrics vista chapters unit
flash films listening system publishers large
battery video band preinstalled textbooks fit
slingshot fullscreen instrumental pc wading double
zoom netflix tunes xp story diameter

spending quality problem version sound product
money quality problem version sound use
waste bit problems original listen product
worth good fix versions sounds used
spend overall solved released hear works
spending quite conection rereleased recordings bought
save far issue latest listening using
buy pretty unsolved editions homerecording work
hardearned high seem previous soundworld products
wasting poor tried rerecorded band packages
pay excellent troubleshooting upgraded bluesrock purchases
dollars great complains updated live inexpensive
refunded compared malfunction remastered rock serum

36



Contents

Table 5.4: Top words in ascending order of the LDA model and their corresponding
PMI values by blue color. The LDA is run on the collection of 10 documents of the
Storytel’s database.

somewhere scene journeys traffic matches
hospital yeti holes avoid librarian
never song scale trainer tweynine
nurse squawker notes training jokes
morning ha chapter examiner lake
major cat note need papers
bed mabel enchaed you’re values
john mayor play must lad’s
though fit guide use swank
soon wiggles flutes you’ll sports
us susie style road paracetamol
say halloweena american riding chess
seemed audience native motorcycle huey
tom johnnie palying ride esther
said bessie flute test arthur
8.94 12.23 10.54 9.30 11.92
coll him traffic technology time
man dayroom braking chapter knowledge
iraq behaviour chapter week business
truck illness time hours figure
plane grounds vehicle you’ll change
anwar triplets information work support
black this hazards lesson table
us carrier vehicles you’re known
imjiw ’come use pmpm root
khalid garden position step record
looked began machine study servic
preside peter riding learning incide
caliph doors see course process
men title speed elearning manageme
stanley peter road online problem
10.54 9.72 9.60 9.22 8.92

37



Contents

Table 5.5: Top words in ascending order of the GLDA with Fasttext’s pre-trained
embedding named: wiki.en.vec and their corresponding PMI values. The GLDA is
run on the collection of 10 documents of the Storytel’s database

medical eyes flute riders telling
obstetrics eyelids flutes rider embarrassed
pediatrics ears percussively men worried
pediatric forehead percussive rode annoyed
gynecology lips fingering cyclists afraid
pediatrician eyebrows flutemaker motorcyclists ashamed
surgeons fingers orchestration women scared
surgeon cheeks instruments cyclist disgusted
cardiology fingernails guitar motorcyclist knowing
gynecologist eyelid horns bike terrified
physician hair brass ride amused
pediatricians noses pentatonic bikes angry
doctors eyeballs bass motorcycle disappointed
physicians nostrils instrument motorcycling frightened
cardiologists skin drums dismounting horrified
urologist fingertips flutemakers bicycles surprised
hospital nose symphonic sprinting thrilled
clinic eye octaves horses infuriating
urology cheekbones keyboard motorbike frustrated
orthopedic thighs fluting downhill astonished
11.78 9.99 12.02 10.83 10.11
khalid room incident service process
bakr hallway incidents services processes
caliph upstairs accidents providers procedures
muhammad door accident provider procedure
caliphs stairwell incident selfservice interprocess
abdul downstairs deaths hourly processing
imam bathroom altercation customer mechanisms
caliphate rooms happened customers processed
abu bedrooms fatality staffing entails
shiite bedroom collision provision workflows
hussein floor kidnappings timetables workflow
sunnis balcony occurred operated methods
khalids doors crash uniformed mechanism
fakhr doorway repercussions agencies method
anwar stairs horrific firstline automating
hassan staircase disaster delivery prioritization
ahmed foyer aftermath operate rationalization
sunni basement allegations serving application

ali cloakroom bystanders ambulance involves
gassan cupboard confrontation personnel system
17.09 9.95 10.95 11.09 11.45

38



Contents

Table 5.6: Top words in ascending order of the GLDA model with trained embed-
ding, created from the collection of 10 documents of the Storytel’s database, and
their corresponding PMI values. The GLDA is then run on the same data set.

inexcusable road enchants riding vehicles
expendable carriageway enchanting multitasking vehicle
philosophypsychology carriageways flutemaker physiological overtake
pheromones roadside flutemakers minimising overtaken
chorioamnionitis osmpsl enchanted riders motorcyclists
scissors crossroads styles vulnerability checklist
anthropology roadworks quickstart riders driver
inexcusable markings chaplin risks follows
gastrointestinal oneway kickstart attitudes crossroads
anesthetic slowspeed flute rider motorcyclist
philadelphia roundabouts penchant vulnerable twoway
brooklyn irregularities antiamerican affects drivers
hematocrits slope style slowspeed obstacles
hyperkinetic multilane flutecrafting selfassessment cyclists
hertfordshire curve dilute downhill parked
13.67 12.57 13.70 11.68 11.27
imjiw slowspeed problem service process
furthermore motorcycle management restoration processes
sunni speed managements services processing
jihad machines managers workflow organization
kurdish roadworthiness csfs desktop procedures
muslims motorcycles manager outages csfs
syrian motorways problems supplier organizational
infidels motorcyclist incident disruptions reorganization
soldiers ride kpis reduction proceed
mujahideen roadworks implementing hierarchical organizations
islamic speeding matrix outlook procedure
syria osmpsl occurrences suppliers make
beers speeds inputs customerfacing workflow
squish motorcyclists implement postimplementation highlevel
islam controlling activities applications measurements
12.57 12.17 10.77 11.66 10.81

39



Contents

5.2 Results from Multilingual GLDA models

In the Bilingual case, both MGLDA models i.e. simple MGLDA and approximate
MGLDA, have been tasted on bilingual texts from both Amazon website and Sto-
rytel’s database. The tables 5.7 and 5.8 regards simple MGLDA and tables 5.9
and 5.10 approximate MGLDA model.

20% of the reviews have been translated into English so the both Swedish and
English texts share the same topic distribution. The Swedish data then divided
into two parts with distinct number of documents and vocabulary size. A joint
word embedding is trained on the entire English version together with the first
half of the Swedish corpus. Then the embedding is used for topic modeling on
the second half of the Swedish data.
This result is compared with the monolingual embedding case (trained only on
the first half of the Swedish corpus) in Table 5.7 where the upper part of the table
consists of top topic words by Algorithm 4.1 and the lower part of top words by
the monolingual Swedish word vector.
For randomness the same seed function has been used and the number of Gibbs
iterations and topics are 5 and 50 respectively in both cases.
It seems that the topics Camera (Kamera on Swedish), software (programvara
on Swedish) and book (bok) are captured by both. The monolingual case has
almost missed the topic music which is captured by bilingual one. The missing
occurs even when trying with different numbers of topics. The occurrence of En-
glish words (red colored) is rare despite the fact that the majority of words in the
embedding vectors are in English.

Algorithm 4.1 have also been applied on the bilingual novels "A Fool Free" and
"En Dåre Fri". The results are shown in Table 5.8 where the upper part is for sim-
ple MGLDA and the lower part for monolingual model. The procedure is the same
as the previous experiment i.e. first a joint embedding is trained on both Swedish
and English novels together, then the model have been trained on the Swedish
one. At the same time a monolingual embedding is trained only on Swedish for
monolingual GLDA.
The number of iterations, topics and the dimension of the word embedding are
10, 4 respectively 50 in both cases.
In the upper part ot the table, topics 1 and 3 seem to represent the same topic:
care. Topic 2 says nothing specific and topic 4 is about forced psychiatric treat-
ment. In the lower part, topics 1, 2, and 4 seem to represent the same topic i.e.
care and topic 3 is not represented. The simple multilingual model has captured
one more topic than the corresponding monolingual one.

In order to test Algorithm 4.3 (approximate MGLDA), also two experiments on the
same bilingual data sets: Amazon reviews and Storytel’s novels have been car-
ried out.

In Amazon case, the entire data set in English is taken as the source language

40



Contents

and 10% of the same data in Swedish is used as target language. A joint word
embedding is trained on the mixed bilingual corpus. The GLDA model is first
trained on the 10% of the source data, which corresponds to the Swedish one,
with 5 iterations. Then the topic parameters of the last iteration are used as initial
values for the parameters in the target corpus. The GLDA is then run on the target
data only up to three iterations. The outcomes of the third iteration of the target
language by approximate multilingual model and monolingual one are shown in
upper respectively lower part of Table 5.9.

It can been seen from the table that the multilingual model has carried out a better
topic prediction than the monolingual case since the latter one missed totally the
topic: software and is not as precise as the multilingual one in DVD and book. The
words from the source language (English), marked by red color, are sometimes
found in the upper one since we use a joint word embedding.
Note that because of the time consuming we don’t train the GLDA on entire source
data.

Table 5.10 regards the second experiment of approximate MGLDA (on the nov-
els). The number of topics and the dimension of the word embedding are 4 and
50 respectively, but number of iterations is 5 which is half the number of iterations
in the monolingual case (the lower part of the Table 5.8). The words from the
source language i.e. English, is marked by red color.
Topic 3 and 4 seem to represent the same topic: care. Topic 2 is almost about
forced psychiatric treatment. Topic 1 dominates by names and English words.
Again despite the lower number of iterations, the model captured one more topic
than the monolingual case. In addition, the model spared us the running time and
several number of iterations.

41



Contents

Table 5.7: The upper table consists of top words by Algorithm 4.1 (simple
MGLDA) and the lower table by the monolingual GLDA. For both part, the same
data i.e. 10% of the Amazon data have been used.

Camera DVD Music software book product
kamera film album programvara bok produkt
kameran filmskapare albums programmet fascinerande betaprodukt
bilder skräckfilm band programvaran omtvistad produktens
kameraväska filmerna albumen program författarens produktsidan
inomhusbilder skådespelarna song installera tvivelaktiga produktlinje
bilderna budskap cd installerar kvardröjande produkter
digitalkamera sköljer songs installerade filosofer företagsprodukt
utomhus skådespeleriet rock påskynda bokhylla produkten
videokameran tacksam debutalbum programmering synpunkter produktbilder
bilden manuset soloalbum installer letade officeprodukt
suddiga inspektör studioalbum leverantörerna chockerande kontorsprodukter
bildskärm inspirerande music automatiska öde adobeprodukter

Camera DVD Music software book product
kamera filmen cd program bok produkt
kameran film debutalbum programmet boken produkter
kameraväska filmer lyssnade programvara bokhylla produkten
digitalkamera filmerna gorillaz programvaran trumpetade produktion
kameror filmskapare träffat programmering filosofier produktionen
videokameran dialogen jason ritprogram läsningen returnera
digitalkameror dialog demon pro tips pro
videokamera jet bonusspår acrobat författare returneras
videokameror ronald ångra quad boot produceras
lcdskärmen hyllning lynnat bärbar leonardo salicylsyra
lenma skådespeleriet debut penna splittingly rakhyvel
batteri skådespelarna grace laptop böcker projekt

42



Contents

Table 5.8: The upper table consists of top words by Algorithm 4.1 (simple
MGLDA) and the lower one by monolingual GLDA. The data for both cases is
the Novel from Stroytel, called "En Dåre Fri".

topic 1 topic 2 topic 3 topic 4
ursäkt säger ursäkt emellan
jesus språk jesus sjukhusets
sjuksköterskan väldigt sjuksköterskan centre
sjukdomen då råd polischefen
mjuk säg mjuk hastigt
kostym schemat ide polisen
konstnär någon sjukdom sjuksköterskan
råd bra sjukhuset ursäkt
ide ni ungefär vård
ihåg lyder lugnande camera
frysa lyda skydd desperate
här säg ihåg ungefär
lugnande sprutan förhandlingarna tvångsvård
nyfiken uppmärksamhet levande dig
klunkar läkaren kostym ytterligare
sjukhuset sätt inlagd samtal
skydd piper konstnär engelska
inlagd följa gräva ide
levande dunker frysa lunatic

topic 1 topic 2 topic 3 topic 4
ytterligare patienten vill patient
patient ytterligare bara patienten
ursäkt ursäkt vilja ytterligare
patienten patient elsa ursäkt
emellan honung hon patienter
planerat planerat vila emellan
samtalet samtalet gömt samtalet
druckit inlagd värd honung
honung emellan planerat hon
patienter skötare permission planerad
jobbet producenten ville druckit
inlagd patienter tillstånd jobbet
hon engelska frivilligt pjäs
elsa munkjacka jämt uppsala
engelska jesus gräva jesus
jesus oss lyfta elsa
munkjacka druckit uppmärksamhet engelska

skötare pjäs smärtan oss
ihåg gräva glömma inlagd

43



Contents

Table 5.9: The upper table consists of top topic words by Algorithm 4.3 (approx-
imate MGLDA) and the lower one of top words by the monolingual Swedish word
vector. The data for both cases is 10% of the Amazon data.

camera DVD music software book
kamera film cd datorn bok
kameran filmskapare album dator bokhylla
kameraväska filmen soloalbum datorer djup
digitalkamera dialogen studioalbum ner författarens
videokameran skådespeleriet sköna installerar kunskap
digitalkameror filmerna debutalbum installera boken
kameror karaktär förgyllda installerade kvardröjande
videokamera sådespeleri begåvade installerat författaren
skärpa story skratta användaren begrepp
utomhus films sköljer installer kapitel
ljusförhållanden skådespelarna lyssnat bländaren bokstavligen
blixt skräckfilm bonusspår påskynda filosofer
bilder intetsägande utbildade ladda filosofier
inomhusbilder centrerad skrika kabeln synpunkter
videokameror filmer spåra användarvänlighet författarna
oskärpa vilde smörjer användare djupare
värme utbildade albumen uppdateringar omtvistad
objektet kommande spåren kopiera skandalen
blixten skurkar vuxna nämne ideer
suddiga manuset kommersiella användarvänligt kurser

camera DVD music software book
bilder film album boken
bilderna filmen albumet bokhylla
bilden filmer albumen squash
bild skräckfilm soloalbum bok
inomhusbilder filmerna debutalbum hoppades
spökbilder filmbranschen exil jordbrukarens
suddig oscar huvudgatan livsmedelsbutiker
suddiga lecter studioalbum kunskap
bryn filmskapare rolling universum
bilda sotl bandets indelad
kortet dialogen bob ironweed
bildskärm adam bonusspår romantik
vidöppen spökbilder solon bänk
nyansen dream låtarna lärd
byggnader skräck spåret indeed
pixlar sutherland pågår varken
upplösningen tantillizing avgång läsningen
bildkvalitet eliminerar spåren intelligent
sundet nevad marley kapitel
bil burton rankad budskap

44



Contents

Table 5.10: This table consists of top words by approximate MGLDA model cor-
responding to algorithm 4.3. The text data is the novel from Storytel, called "En
dåre Fri.

topic 1 topic 2 topic 3 topic 4
marit sjukhusets ursäkt ursäkt
marilyn emellan jesus jesus
mats ursäkt mjuk sjuksköterskan
cabin sjuksköterskan sjuksköterskan sjukdomen
cats hastigt råd kostym
unit ungefär ide mjuk
desperate ide skydd klunkar
handle centre sjukdom ihåg
fire engelska ihåg här
midst vård ungefär frysa
armband camera lugnande ide
union jesus förhandlingarna råd
halfway tvångsvård kostym konstnär
tray jobbet klunkar lugnande
suit journalen sjukhuset nyfiken
hardly munkjacka inlagd skydd
mad polischefen levande gå
holiday samtal gräva levande
shirt samtalet munkjacka inlagd
lost koncentrera frysa ungefär

45



Contents

6 Conclusion and Future Work

In this thesis, we have studied the GLDA model in detail and compared it to the
basic and simple model, the traditional LDA. We have shown that the GLDA,
more than LDA, is an intelligent and practical algorithm in capturing the latent
topics with semantic relationship between the top words.

This was exhibited and tested on several small and medium sized corpus, some
from Amazon Reviews and others from Storytel’s database. In both cases the
GLDA made a better job than LDA. This was possible thanks to the structure
of the GLDA and the word embedding which can be downloaded or created by
Facebook’s function Fasttext. Word vectors are becoming more and more impor-
tant tools in unsupervised learning problems and natural language processing.
We can train them in different dimensions and in different languages and also
produce a joint multilingual word embedding by training on a mixed multilingual
corpora.

We have shown that our multilingual techniques makes the GLDA model signifi-
cantly better in catching the topics of data from the target languages and shorten
the running time. These multilingual models are uncomplicated methods and can
easily be applied on different corpus or corpora without drawing any extreme as-
sumptions about equality in the number of documents, vocabulary or sample size
of the text in different languages. It is possible that there can be other methods
as well that can work as multilingual techniques for the GLDA but these will be
left as future works and analysis.

As a future work it can also be interesting to expand the GLDA algorithm with
topics modeled as a hidden Markov chain where the order of words matters. In
this case the bag of word assumption will be violated.

46



Bibliography

[1] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regular-
ities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 746–751, Atlanta,
Georgia, June. Association for Computational Linguistics.

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet
allocation. J. Mach. Learn. Res., 3:993–1022, March

[3] Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaussian LDA for Topic
Models with Word Embeddings. In Proceedings of the Meeting of the Associ-
ation for Computational Linguistics (ACL). ACL, 795–804.

[4] T. L. Griffiths and M. Steyvers. 2004. Finding scientific topics. Proceedings of
the National Academy of Sciences, 101:5228–5235, April.

[5] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality. Ad-
vances in neural information processing systems (pp. 3111–3119)

[6] Michael U Gutmann and Aapo Hyv¨arinen. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics.
The Journal of Machine Learning Research, 13:307–361, 2012.

[7] Jeffrey Pennington, Richard Socher, Christopher D. Manning. Glove:
Global Vectors for Word Representation. Published in EMNLP 2014
DOI:10.3115/v1/D14-1162

[8] Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and
Trends in Machine Learning, 2(1), pp.1-127

[9] Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and
David M. Blei. 2009. Reading tea leaves: How humans interpret topic models.
In Neural Information Processing Systems.

[10] David Newman, Sarvnaz Karimi, and Lawrence Cavedon. 2009. External
evaluation of topic models. pages 11–18, December

[11] Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. (2017). Enriching Word
Vectors with Subword Information. Transactions of the Association for Com-
putational Linguistics, 5, 135-146

[12] Tong Z, Zhang H (2016) A Text mining research based on LDA topic mod-
elling. In: International Conference on Computer Science, Engineering and
Information Technology, pp 201–210

[13] Stewart, G. W. (1998). Basic decompositions. Philadelphia: Soc. for Indus-
trial and Applied Mathematics. ISBN 0-89871-414-1.

47



Bibliography

[14] Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In Pro-
ceedings of Association for Computational Linguistics (ACL’07).

48






	Introduction
	Background
	LDA
	Collapsed Gibbs sampling for LDA
	Word embedding
	Pre-trained word embedding
	Training your own word embedding

	Data Pre-processing

	GLDA
	Collapsed Gibbs sampling for GLDA
	Speed Up
	Cholesky factorization

	Pointwise Mutual Information

	Multilingual GLDA
	Results and Experiments
	Results from LDA and GLDA models
	Results from Multilingual GLDA models

	Conclusion and Future Work
	Bibliography

