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1 Introduction

Assuming that the time-series data x follow random variables at each time, we are often interested in
the evolution of the shape of the conditional probability distribution p(x|t). Learning the evolution
of statistical moments is a useful proxy. Extreme values of a heavy tail random variable often
correspond to significant real-world events and their changes are also worth learning from data. In
this note, we propose a simple modification from linear regression that could learn the evolution of
statistical moments and extreme values from data. We will explore the benefits and shortcomings
of this method, and compare this method with existing methods in the literature.

2 Linear regression for learning changes in arbitrary expectations

Suppose in a time period t ∈ [0, T ] there is a random variable Xt ∈ R× [0, T ] that evolves in time.
It has the probability density function p(x, t). The expected value of f(Xt) conditioned on t is:

g(t) = Et[f(Xt)] =

∫
R
f(x)p(x|t) dx. (1)

We have Xi: samples of Xt at time t = ti. In this note, we will show that we can extract information
about the time-change of g(t) from applying least-squares fit to f(Xi). Specifically, by choosing
specific f functions, we could diagnose the evolution of statistical moments and extreme events.
For example, f(x) = x gives the mean x(t) and f(x) = (x− x(t))2 gives the variance k2(t) (second
cumulant) as a function of time.

Consider the function g(t) ∈ L2([0, T ]) and a number of linearly independent basis functions
ej(t) ∈ L2([0, T ]). Linear regression finds

∑
j αjej(t), an approximation of g(t), by minimizing

inf
αj

∫ T

0

g(t)−∑
j

αjej(t)

2

dt. (2)

Since the optimization is convex, it is equivalent to setting the derivative to zero:∫ T

0

g(t)−∑
j

αjej(t)

 ei(t) dt = 0 for all i. (3)
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We can interpret this formulation as the requirement that the residual of the fit is orthogonal to
the span of the basis functions ej(t).

Now we combine (1) and (3) and have that if we were to apply linear regression to approximate
probability expectation of f(Xt) (i.e.: E[f(Xt)]), we need to satisfy

∫ T

0

∫
R

f(x)−∑
j

αjej(t)

 ei(t)p(x, t) dxdt = 0 for all i (4)

where we used

∫
R
p(x, t) dx = 1 for all t and ei(t)’s are independent of x. This is equivalent to the

minimization problem

inf
αj

∫ T

0

∫
R

f(x)−∑
j

αjej(t)

2

p(x, t) dxdt. (5)

Therefore to fit the time-change of E[f(Xt)] = g(t), we could apply the method of least-squares to
the data f(Xi).

To make this explicit, as long as the data is sampled uniformly in time1, the double integral
could be approximated as a sum. In principle, we use Monte-Carlo to approximate the probability
integral and Riemann sum for the time integral. We have the minimization problem

inf
α

[f(Xi)−Aα]T [f(Xi)−Aα] (6)

where f(Xi) is the vector of f evaluated at Xi, A is the Vandermonde matrix with the jth columns
as ej(ti), and α is the vector with entries αj . Taking the gradient of the above minimization
problem with respect to α, we get the discrete version of (4)

ATAα = AT f(Xi). (7)

This is equivalent to the over-determined linear algebra problem

Aα = f(Xi). (8)

We are in the familiar territory of linear regression.

3 Some numerical tests for statistical moments and extreme val-
ues

We apply this method to synthetic data with known probability distributions for all time and learn
the trend in moments and extreme values. But the method is very general, we could choose any
function f and any set of basis functions ej ’s.

1. If the data is not uniformly sampled in time, we should consider appropriately weighting the sum (see Dù 2023).
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Figure 1: Synthetic data generated using the Pearson system. The four moments change linearly,
they follow the black lines in Figure 2.
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Figure 2: The true evolution (black lines) and learned evolution from data (red lines) for the four
moments of interest.

3.1 Learn the linear trend of statistical moments

In t ∈ [−1, 1], we use the Pearson system of random numbers to generate samples Xi of size
50× 365 (50 years of daily data, see Figure 1). We prescribe the four statistical moments — mean,
variance, skewness, and kurtosis — to change linearly (black lines in Figure 2 and 3). We then
apply the described method to these data, using the basis functions e1(t) = 1, e2(t) = t. For the
four moments, we use

f1(x) = x, f2(x) = (x− x)2, (9)

f3(x) =
(x− x)3

κ
3/2
2

f4(x) =
(x− x)4

κ22
(10)

where x is the fitted mean, and κ2 is the fitted variance. Note that the higher moments depend on
the fitted first two moments, therefore to have good fits for the higher moments, it is important to
learn the mean and variance well. However, this is not a necessary feature of our method. Different
choices of f could avoid this issue. For example in the next section, we will show an f that does
not depend on any fitted quantity.

Figure 2 shows a set of results of our method. We see that the learned changes match the true
evolution very well. Figure 3 shows a set where the results do not look as perfect. This is because
the magnitudes of changes for the higher statistical moments are an order of magnitude less than
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Figure 3: The top and bottom figures are similar to Figure 1 and 2 respectively.

the change in the mean. Therefore the error in the fit for the mean is relatively more influential for
the fits for the higher statistical moments. From this example we see that it might not be a great
practice to choose f that depends on other fitted quantities.

We comment that it is simple to apply some kind of significant testing (e.g.: the bootstrapping
procedure described in Falasca et al. 2022) to check whether there are statistically significant
changes in the moments (i.e. non-zero slope). Preliminary results (not shown) indicated that it
works well.

3.2 Learn the time-change in extreme values

An interesting choice for f(x) is a step function f(x) = χx>a. We have∫
R
χx>ap(x|t) dx = P(Xt > a), (11)

We are learning the time change in the probability of extreme values. For example, this could be
the probability of dangerously high wet-bulb temperatures, or the probability of high sea levels in
a city.

We use the same data from the last section as examples. Since we are using the Pearson
system of distributions, we know the true P(Xt > a) theoretically. We pick the threshold of a = 5.
Because the probability of extremes changes non-linearly in time, we use e1(t) = 1, e2(t) = t, and
the exponential (e3(t) = et) as basis functions. It is conceivable that we could obtain a better fit if
we choose better basis functions, informed by the mathematical theory of extremes. We show the
result using the data in Figure 1 on the left of Figure 4, and the result using the data in Figure
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Figure 4: Left: the true and fitted (learned) time-change in the probability of extremes in the data
in Figure 1. Right: the same for the data in Figure 3.

3 on the right. The method learns the change in extremely well. In particular, the result is not
dependent on the fit of some other quantities.

We remark that f(x) as a step function gives the probability of extreme values. Another choice
of f(x) can also account for the severity of the extremes as well. One example is the ReLU function.

4 Comments on the method, and comparison with existing meth-
ods

4.1 Benefits and deficiencies

The method presented in this note is a simple extension of linear regression. It is easy to under-
stand and implement for a wide array of applications. This is its main strength. The method can
be improved from its current form by incorporating improvements for nonparametric regression.
For example, one could choose better basis functions for a more general class of functions (Tibshi-
rani 2018), or incorporate regularization by using a Bayesian framework (Bishop 2006). In fact,
Tibshirani 2018 mentioned our method for variance estimation in §8.

However, the method suffers from similar problems as regression. In particular, the convergence
rate of the fit degrades with high-dimensional data. There are many ideas to improve the conver-
gence behavior in the literature on high-dimensional regression that we can incorporate into our
method. For example, when the parameters can be assumed to be “sparse”, we could use LASSO
(Bishop 2006).

To use our method to diagnose the change in the probability of the extreme, we need enough
samples in the extreme regime so that the Monte Carlo approximation of the integral is accurate.
This might not be the case for the given data set when extreme events are very rare. For these
situations, one could resort to sampling techniques that are geared towards sampling the probability
tails (e.g.: important sampling).
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4.2 Compare with methods in the literature

There are many methods to diagnose variance from data, and many are discipline specific. Here
we will compare our method to a few that we have seen. The list is by no means extensive.

Our method is superior to methods that bin the data to estimate statistical quantities first.
For example, Tank and Können 2003 listed many quantities of practical interests in climate science
in form of days per year. Calculating statistical quantities in a chosen time period is equivalent
to performing the Monte Carlo approximation to the probability integral in our formula per bin.
Linear regression on the data calculated from each bin is an approximation of the time integral.
Our calculation shows that we can combine the two steps and approximate the double integral
together. This makes use of the available data efficiently. We can use our method as long as the
quantity of interests can be written as a function f(x) on the data.

McKinnon et al. 2016 proposed a method of calculating linear changes in quantities close to
statistical moments via quantile regression. Their method was improved by Falasca et al. 2022.
Their method shows an interesting connection between linear changes in qualities to linear changes
in moments-like quantities (both papers explicitly warned against interpreting their results as actual
changes in moments, but called those changes as changes in mean, variance, skewness, and kurtosis).
However, if one wants to diagnose the changes in moments directly, our method is numerically
cheaper and more versatile. Our method can learn the nonlinear evolution of many statistical
quantities not just moments, and it can be extended to higher dimensions.

Tabak and Trigila 2018 proposed a general framework that could be applied to our problem of
moments estimation. They solved the problem of conditional density estimation (and sampling)
using optimal transport in §6. For time-series data, their method would map the data Xt to
Y = Y (Xt; t), which follows a single random variable (the weighted barycenter) µ(y) that is inde-
pendent of t. The map would minimize some cost measuring the introduced distortion. We can
estimate or sample the conditional probability ρ(x|t) by estimating or sampling µ(y) and using the
inverse maps. Estimating moments is then an easy extension. Although the adaptation of their
framework to estimate higher moments is not trivial, we believe that it has promise to outperform
our method in high-dimension, data-poor regimes. Additionally, its unifying approach connects
many common methods in an intellectually satisfying way and extends them. Anyone who is inter-
ested in estimating the evolution of probability distribution over parameters should consider their
methods. However, we think our method is useful in its simplicity. It works well as a quick tool
for proof of concepts.
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