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1 Introduction

In applied math, data often follow power-laws of the form:

y(x) = Cxγ . (1)

Here γ is the power-law exponent. For example, in turbulence theory, conserved quantities often
distribute over scales (wave-numbers k) following a power-law. One result of this kind is the famed
“Kolmogorov 5/3 law” which states that the kinetic energy spectrum E(k) of 3D hydrodynamics
turbulence follows the law (Frisch 1995):

E(k) = Ck−5/3. (2)

Another example is in the field of numerical analysis. Numerical integration schemes commonly
have errors asymptotically proportional to powers of discretization step size. To give two concrete
cases: 1. composite trapezoidal rule for integration has error asymptotically following

e(h) = Ch2 (3)

and 2. explicit Runge–Kutta 4th order method (Rk4) for solving differential equations has

e(h) = Ch4 (4)

where h is (spatial or temporal) discretization step size (Süli and Mayers 2003). It suffices to say
there are more examples than the ones listed, and power-laws are constantly being plotted and
analyzed.

Power-laws are commonly visualized using a log-log plot, where the x and y-axis are in log
scale and power-laws appear as straight lines. To obtain the power-law exponent, it is common to
use linear regression on the log-log scale data. In §2 this note we will examine the application of
linear regression on data distributed following power-laws and conclude that while it is appropriate
in many cases, the choice of cost function deserves more case-specific consideration. §3 gives our
suggestions for plotting data following power-laws. This necessitates a discussion of when it is
appropriate to diagnose a power-law exponent from data.
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2 Diagnosing power-law exponent from data

We will work with the general power-law

y(x) = Cxγ . (5)

We assume that the data z follows (5) with small deviations:

z(x) = Cxγ + ϵ. (6)

Assumptions on the form of the error and how we measure it will dictate the best regression to use.
Only in some cases is the common linear regression on the log-log scale appropriate.

2.1 Scaled L2 norm

One interpretation of regression with least square error is that it is the orthogonal projection onto
the selected basis functions. The projection minimizes the functional L2 norm:∫

|log z − (logC + γ log x)|2 d(log x). (7)

We focus on

log z − (logC + γ log x) = log z − log y = log z − log(z − ϵ). (8)

We assume that the deviation ϵ is small so that Taylor expansion is appropriate. We have

log z − log(z − ϵ) ≈ ϵ

z
(9)

⇒ log z − (logC + γ log x) ≈ z − Cxγ

z
. (10)

We replace the integrand in (7) ∫ ∣∣∣∣z − Cxγ

z

∣∣∣∣2 d(log x). (11)

A change of variable to dx gives ∫ ∣∣∣∣z − Cxγ

z

∣∣∣∣2 1

x
dx. (12)

Without the 1/x factor, we see that linear regression on the log-log scale is in fact minimizing the
L2 error relative to the values of the data z. This normalization is desirable in some cases: because
the data follow power-laws, their magnitude can change significantly over a large range of x. If the
error scale as the magnitude of the data, it is appropriate to minimize the relative error. However,
if we know a priori the error magnitude is uniform, the normalized error is not appropriate.
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2.2 Density of data

The 1/x factor comes from the change of variable in the integration. We will show that it directly
relates to the density of the discrete data. We have focused on the integral functional norm, but
we only have discrete data. One way to relate them is to use the discrete data to numerically
approximate the integration. A factor will appear if the data are distributed unevenly. Take the
example of turbulence spectra, we have data for each integer wavenumber x. This means in the
log-log scale, the data appear at each log x and have gaps of approximate size 1/x. The simple sum
error used in linear regression on the log-log scale∑

i

|log zi − (logC + γ log xi)|2 (13)

is a discrete approximation of the scaled integral∫
x |log z − (logC + γ log x)|2 d(log x). (14)

Intuitively, the x factor is due to the denser data for larger x. Apply the calculations in §2.1 we
have that it is approximately equivalent to∫ ∣∣∣∣z − Cxγ

z

∣∣∣∣2 dx (15)

the integrated relative error squared. Because the data are distributed evenly in x, the 1/x factor
disappears in integration with regards to x. (13) and (15) connect the commonly used linear re-
gression on the log-log scale to a more interpretable relative L2 error on the unscaled data. For
diagnosing the power law exponent of turbulence spectra, this interpretation is the most appropri-
ate. This is the interpretation assumed in Dù and Bühler 2023 when they diagnose power laws for
turbulence spectra.

In other cases, the data is collected with an even distance in log x. For example, to check the
convergence of a numerical scheme, one usually uses results with discretization step h, h/2, h/4, . . . .
In these situations, the simple sum (13) is an approximation of (12). The 1/x appears because the
data distribute unevenly in x.

2.3 Maximum likelihood interpretation

An alternative interpretation of inference using least square error is that it maximizes the log-
likelihood function assuming the deviations are independent and Gaussian. Further assuming that
the errors have uniform standard deviations in the log-log scale, we recover the error (13). To retain
the Gaussian nature of the errors, we assume again that the error is small so that the linear Taylor
expansion is a sufficient approximation. Then for x and z, this means the errors are independent
Gaussians with standard deviations that scale as z. We have the cost function∑

i

∣∣∣∣zi − Cxγi
zi

∣∣∣∣2 . (16)

This is the underlying interpretation for the regression in Figure 3 of Dù and Bühler 2023.
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Alternatively, assuming that the error is uniform in the regular scale, maximum likelihood
minimizes ∑

i

|zi − Cxγi |
2 ⇐⇒

∑
i

|zi (log zi − (logC + γ log xi))|2 . (17)

We see that the maximum likelihood interpretation recovers the result of the functional L2 norm
interpretation except the scaling due to data density. Indeed, with the assumption of independence,
the maximum likelihood interpretation takes no account of the distribution of data in x.

2.4 ℓ1 norm and KL divergence

We pay special attention to the right-hand-side equation in (17). Instead of the squared sum, we
sum the absolute values (ℓ1 norm). We have∑

i

|zi (log zi − log yi)| =
∑
i

∣∣∣∣zi log(zi
yi

)∣∣∣∣ = DKL[z||y]

where DKL denotes the Kullback–Leibler (KL) divergence. Note the KL divergence is not a norm.
The loss of symmetry between y and z comes from the choice of z as the center for the Taylor
expansion. We could understand this surprising connection by noting that many probability dis-
tributions of interests have power-law tails (e.g.: Cauchy distribution). This opens the tools of
applying the tools of probability and information theory to our problem.

3 Plotting data following power-laws

We have addressed how to diagnose the power-law exponent from data. However, it is not always
appropriate to do the diagnostic in the first place. In many cases, we know the power-law exponent
the data should follow. Then we should plot the data and the theoretical power-law on the same
plot and compare them, instead of fitting a power-law to the data. We will showcase this point
using some examples. They will also serve as examples of plotting data that follows power-laws.

3.1 Turbulence spectra

Data measuring turbulence spectra are commonly plotted on the log-log scale. We often know
the power-law it should follow from theory. Figure 1 is an example of such a plot, and it does
several things right. Since we know the power-law, we should not measure the exponent from data.
Instead, this figure plots the power-law alongside the data and we can compare the data and theory
easily. Additionally, this plot labels its axes correctly. It is more stylistic to label the axes using
raw values, instead of labeling them using log x and log y and the correspondent log values. And
it is incorrect to label the numbers using the unscaled numbers (101, 102, . . . ), and label the axes
log x and log y. That would mean log x = 101, 102, . . . and is absurd. In Matlab, the numerical
labels are automatically correct, and one only have to make sure that the text labels are not in log.
Finally, since we have discrete data, it is better to plot the data as discrete data points and not
connect them.
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Figure 1: Example plot from Frisch 1995, Fig. 5.9.

3.2 Numerical errors

The same principle applies to plotting numerical errors. Figure 2 shows an example of a clear plot.
The axes are labeled correctly. Power-laws are not diagnosed, instead, the theoretical power-law
is plotted alongside the data so that their agreements and differences are clear at one glance. The
data are plotted using dots to signify their discreteness.

4 Concluding remarks

This note treats the topics of when and how to diagnose power-law exponents from data. We
conclude that not all situations require the diagnostics of power-law exponents via regression. And
in situations when their diagnostics are appropriate, there are subtleties in choosing the correct
cost functions to minimize for regression. One must take care when plotting and analyzing data
that follow power-laws.
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Figure 2: Example plot from Figure 1d of Milewski and Tabak 1999. Original label: Propagation

of an oblique solitary wave, with parameters ϵ = 0.1 and k = 1√
5
(2, 1), in a grid with periods L = 14π and

H = 28π and 256× 256 points. (d) Log-log plot of the normalized error after one tour of the periodic box,

as a function of ∆t.
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