/** ========================================================================= * @file DRWI_NoCellular.ino * @brief Example for DRWI CitSci without cellular service. * * @author Sara Geleskie Damiano * @copyright (c) 2017-2022 Stroud Water Research Center (SWRC) * and the EnviroDIY Development Team * This example is published under the BSD-3 license. * * Build Environment: Visual Studios Code with PlatformIO * Hardware Platform: EnviroDIY Mayfly Arduino Datalogger * * DISCLAIMER: * THIS CODE IS PROVIDED "AS IS" - NO WARRANTY IS GIVEN. * ======================================================================= */ // ========================================================================== // Include the libraries required for any data logger // ========================================================================== /** Start [includes] */ // The Arduino library is needed for every Arduino program. #include // EnableInterrupt is used by ModularSensors for external and pin change // interrupts and must be explicitly included in the main program. #include // Include the main header for ModularSensors #include /** End [includes] */ // ========================================================================== // Data Logging Options // ========================================================================== /** Start [logging_options] */ // The name of this program file const char* sketchName = "DRWI_NoCellular.ino"; // Logger ID, also becomes the prefix for the name of the data file on SD card const char* LoggerID = "XXXXX"; // How frequently (in minutes) to log data const uint8_t loggingInterval = 15; // Your logger's timezone. const int8_t timeZone = -5; // Eastern Standard Time // NOTE: Daylight savings time will not be applied! Please use standard time! // Set the input and output pins for the logger // NOTE: Use -1 for pins that do not apply const int32_t serialBaud = 115200; // Baud rate for debugging const int8_t greenLED = 8; // Pin for the green LED const int8_t redLED = 9; // Pin for the red LED const int8_t buttonPin = 21; // Pin for debugging mode (ie, button pin) const int8_t wakePin = 31; // MCU interrupt/alarm pin to wake from sleep // Mayfly 0.x D31 = A7 const int8_t sdCardPwrPin = -1; // MCU SD card power pin const int8_t sdCardSSPin = 12; // SD card chip select/slave select pin const int8_t sensorPowerPin = 22; // MCU pin controlling main sensor power /** End [logging_options] */ // ========================================================================== // Using the Processor as a Sensor // ========================================================================== /** Start [processor_sensor] */ #include // Create the main processor chip "sensor" - for general metadata const char* mcuBoardVersion = "v1.1"; ProcessorStats mcuBoard(mcuBoardVersion); /** End [processor_sensor] */ // ========================================================================== // Maxim DS3231 RTC (Real Time Clock) // ========================================================================== /** Start [ds3231] */ #include // Create a DS3231 sensor object MaximDS3231 ds3231(1); /** End [ds3231] */ // ========================================================================== // Campbell OBS 3 / OBS 3+ Analog Turbidity Sensor // ========================================================================== /** Start [obs3] */ #include const int8_t OBS3Power = sensorPowerPin; // Power pin (-1 if unconnected) const uint8_t OBS3NumberReadings = 10; const uint8_t ADSi2c_addr = 0x48; // The I2C address of the ADS1115 ADC // Campbell OBS 3+ *Low* Range Calibration in Volts const int8_t OBSLowADSChannel = 0; // ADS channel for *low* range output const float OBSLow_A = 0.000E+00; // "A" value (X^2) [*low* range] const float OBSLow_B = 1.000E+00; // "B" value (X) [*low* range] const float OBSLow_C = 0.000E+00; // "C" value [*low* range] // Create a Campbell OBS3+ *low* range sensor object CampbellOBS3 osb3low(OBS3Power, OBSLowADSChannel, OBSLow_A, OBSLow_B, OBSLow_C, ADSi2c_addr, OBS3NumberReadings); // Campbell OBS 3+ *High* Range Calibration in Volts const int8_t OBSHighADSChannel = 1; // ADS channel for *high* range output const float OBSHigh_A = 0.000E+00; // "A" value (X^2) [*high* range] const float OBSHigh_B = 1.000E+00; // "B" value (X) [*high* range] const float OBSHigh_C = 0.000E+00; // "C" value [*high* range] // Create a Campbell OBS3+ *high* range sensor object CampbellOBS3 osb3high(OBS3Power, OBSHighADSChannel, OBSHigh_A, OBSHigh_B, OBSHigh_C, ADSi2c_addr, OBS3NumberReadings); /** End [obs3] */ // ========================================================================== // Meter Hydros 21 Conductivity, Temperature, and Depth Sensor // ========================================================================== /** Start [hydros21] */ #include const char* hydrosSDI12address = "1"; // The SDI-12 Address of the Hydros 21 const uint8_t hydrosNumberReadings = 6; // The number of readings to average const int8_t SDI12Power = sensorPowerPin; // Power pin (-1 if unconnected) const int8_t SDI12Data = 7; // The SDI12 data pin // Create a Meter Hydros 21 sensor object MeterHydros21 hydros(*hydrosSDI12address, SDI12Power, SDI12Data, hydrosNumberReadings); /** End [hydros21] */ // ========================================================================== // Creating the Variable Array[s] and Filling with Variable Objects // ========================================================================== /** Start [variable_arrays] */ Variable* variableList[] = { new MeterHydros21_Cond(&hydros), new MeterHydros21_Temp(&hydros), new MeterHydros21_Depth(&hydros), new CampbellOBS3_Turbidity(&osb3low, "", "TurbLow"), new CampbellOBS3_Turbidity(&osb3high, "", "TurbHigh"), new ProcessorStats_Battery(&mcuBoard), new MaximDS3231_Temp(&ds3231), }; // All UUID's, device registration, and sampling feature information can be // pasted directly from Monitor My Watershed. To get the list, click the "View // token UUID list" button on the upper right of the site page. // Even if not publishing live data, this is needed so the logger file will be // "drag-and-drop" ready for manual upload to the portal. // *** CAUTION --- CAUTION --- CAUTION --- CAUTION --- CAUTION *** // Check the order of your variables in the variable list!!! // Be VERY certain that they match the order of your UUID's! // Rearrange the variables in the variable list if necessary to match! // *** CAUTION --- CAUTION --- CAUTION --- CAUTION --- CAUTION *** /* clang-format off */ const char* UUIDs[] = { "12345678-abcd-1234-ef00-1234567890ab", // Electrical conductivity (Decagon_CTD-10_Cond) "12345678-abcd-1234-ef00-1234567890ab", // Temperature (Decagon_CTD-10_Temp) "12345678-abcd-1234-ef00-1234567890ab", // Water depth (Decagon_CTD-10_Depth) "12345678-abcd-1234-ef00-1234567890ab", // Turbidity (Campbell_OBS3_Turb) "12345678-abcd-1234-ef00-1234567890ab", // Turbidity (Campbell_OBS3_Turb) "12345678-abcd-1234-ef00-1234567890ab", // Battery voltage (EnviroDIY_Mayfly_Batt) "12345678-abcd-1234-ef00-1234567890ab" // Temperature (EnviroDIY_Mayfly_Temp) }; const char* registrationToken = "12345678-abcd-1234-ef00-1234567890ab"; // Device registration token const char* samplingFeature = "12345678-abcd-1234-ef00-1234567890ab"; // Sampling feature UUID /* clang-format on */ // Count up the number of pointers in the array int variableCount = sizeof(variableList) / sizeof(variableList[0]); // Create the VariableArray object VariableArray varArray(variableCount, variableList, UUIDs); /** End [variable_arrays] */ // ========================================================================== // The Logger Object[s] // ========================================================================== /** Start [loggers] */ // Create a new logger instance Logger dataLogger(LoggerID, loggingInterval, &varArray); /** End [loggers] */ // ========================================================================== // Working Functions // ========================================================================== /** Start [working_functions] */ // Flashes the LED's on the primary board void greenredflash(uint8_t numFlash = 4, uint8_t rate = 75) { for (uint8_t i = 0; i < numFlash; i++) { digitalWrite(greenLED, HIGH); digitalWrite(redLED, LOW); delay(rate); digitalWrite(greenLED, LOW); digitalWrite(redLED, HIGH); delay(rate); } digitalWrite(redLED, LOW); } // Reads the battery voltage // NOTE: This will actually return the battery level from the previous update! float getBatteryVoltage() { if (mcuBoard.sensorValues[0] == -9999) mcuBoard.update(); return mcuBoard.sensorValues[0]; } /** End [working_functions] */ // ========================================================================== // Arduino Setup Function // ========================================================================== /** Start [setup] */ void setup() { // Start the primary serial connection Serial.begin(serialBaud); // Print a start-up note to the first serial port Serial.print(F("Now running ")); Serial.print(sketchName); Serial.print(F(" on Logger ")); Serial.println(LoggerID); Serial.println(); Serial.print(F("Using ModularSensors Library version ")); Serial.println(MODULAR_SENSORS_VERSION); // Set up pins for the LED's pinMode(greenLED, OUTPUT); digitalWrite(greenLED, LOW); pinMode(redLED, OUTPUT); digitalWrite(redLED, LOW); // Blink the LEDs to show the board is on and starting up greenredflash(); // Set the timezones for the logger/data and the RTC // Logging in the given time zone Logger::setLoggerTimeZone(timeZone); // It is STRONGLY RECOMMENDED that you set the RTC to be in UTC (UTC+0) Logger::setRTCTimeZone(0); // Attach information pins to the logger dataLogger.setLoggerPins(wakePin, sdCardSSPin, sdCardPwrPin, buttonPin, greenLED); dataLogger.setSamplingFeatureUUID(samplingFeature); // Begin the logger dataLogger.begin(); // Note: Please change these battery voltages to match your battery // Set up the sensors, except at lowest battery level if (getBatteryVoltage() > 3.4) { Serial.println(F("Setting up sensors...")); varArray.setupSensors(); } // Create the log file, adding the default header to it // Do this last so we have the best chance of getting the time correct and // all sensor names correct // Writing to the SD card can be power intensive, so if we're skipping // the sensor setup we'll skip this too. if (getBatteryVoltage() > 3.4) { Serial.println(F("Setting up file on SD card")); dataLogger.turnOnSDcard( true); // true = wait for card to settle after power up dataLogger.createLogFile(true); // true = write a new header dataLogger.turnOffSDcard( true); // true = wait for internal housekeeping after write } // Call the processor sleep Serial.println(F("Putting processor to sleep\n")); dataLogger.systemSleep(); } /** End [setup] */ // ========================================================================== // Arduino Loop Function // ========================================================================== /** Start [loop] */ // Use this short loop for simple data logging and sending void loop() { // Note: Please change these battery voltages to match your battery // At very low battery, just go back to sleep if (getBatteryVoltage() < 3.4) { dataLogger.systemSleep(); } // If the battery is OK, log data else { dataLogger.logData(); } } /** End [loop] */