

OptimizeRasters

User Documentation | July 6, 2021

Copyright © 2018 Esri All

rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of Esri. This work is protected under United States copyright

law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or

by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system,

except as expressly permitted in writing by Esri. All requests should be sent to Attention: Contracts and Legal Services Manager,

Esri, 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

Esri, the Esri globe logo, The Science of Where, ArcGIS, esri.com, and @esri.com are trademarks, service marks, or registered

marks of Esri in the United States, the European Community, or certain other jurisdictions. Other companies and products or

services mentioned herein may be trademarks, service marks, or registered marks of their respective mark owners.

This document applies to OptimizeRasters Version 20180705 (see the OptimizeRasters.py header). OptimizeRasters and the

associated GDAL library are currently provided as a prototype and for testing only. The functionality has not been exhaustively

tested and is not currently covered under ArcGIS Support. Please address questions or suggestions related to this workflow to the

OptimizeRasters GitHub forum or to ImageManagementWorkflows@esri.com.

http://www.esri.com/
http://www.esri.com/

Contents

Overview ... 1

What is OptimizeRasters? ... 1

What are the system requirements? .. 1

What’s in this document? ... 1

Introduction .. 1

Converting raster data to optimized formats ... 2

Moving data to cloud storage ... 2

Creating raster proxies to simplify data management ... 2

Additional benefits of OptimizeRasters .. 3

OptimizeRasters installation .. 3

Windows installation .. 3

Linux/Unix installation .. 5

Common OptimizeRasters Workflows .. 6

Optimizing raster data for enterprise storage .. 6

Optimizing raster data for cloud storage .. 6

Accessing Landsat 8 data from Amazon Public Data Sets .. 7

Using OptimizeRasters in ArcGIS Pro .. 8

How to use the OptimizeRasters tool ... 8

Configuration file templates ... 13

Configuration file parameters (advanced options) .. 14

Using OptimizeRasters at the Command Line .. 18

Standard command line usage ... 18

Command line arguments .. 18

Using OptimizeRasters with Cloud Storage ... 21

Working with Amazon S3.. 21

Working with Microsoft Azure ... 25

Working with Google Cloud .. 27

Using OptimizeRasters: Sample Python scripts ... 29

Appendix A: Working with Raster Proxy Files.. 29

Using raster proxy files with ArcGIS ... 29

Creating raster proxy files from network-attached storage ... 31

Cache management .. 33

Appendix B: Additional OptimizeRasters GP Tools .. 35

Profile Editor Tool ... 36

Resume Jobs Tool ... 37

Appendix C: Using Obfuscation for Access Control in the Cloud ... 40

Using the -hashkey flag ... 40

Example usage .. 41

Obfuscation with raster proxy files .. 41

Obfuscation highlights .. 41

Appendix D: Working with ArcGIS Server and ArcGIS Desktop ... 42

Appendix E: Common Raster File Formats .. 42

1

Overview

What is OptimizeRasters?

Use OptimizeRasters to accomplish three tasks:

1. Optimization through file conversion and compression—convert rasters from a variety of file

formats to optimized formats: MRF, tiled TIFF, or Cloud Optimized GeoTIFF.

2. Transfer data to and from cloud storage (including Amazon S3, Microsoft Azure, and Google

Cloud Storage) or enterprise storage.

3. Create raster proxies—small files stored on local files systems that reference much larger files
stored in cloud storage—which simplify data management.

Benefits of using OptimizeRasters to manage raster collections include:

• Streamlined data management

• Faster read performance

• Simplified transfer into and out of cloud storage

• Minimized storage requirements

This OptimizeRasters package contains the following geoprocessing tools:

OptimizeRasters Tool: Converts rasters to optimized output formats, transfers data to and from

the cloud, and creates raster proxies

Profile Editor Tool: Maintains cloud storage profiles for Amazon S3 and Microsoft Azure

Resume Jobs Tool: Tracks incomplete jobs and allows the user to resume later

What are the system requirements?

• Python 2.7+ or Python 3.0+ (installed with ArcMap 10.4+ and ArcGIS Pro 1.4+, respectively)

• The OptimizeRasters geoprocessing toolbox requires ArcMap 10.4.1+ or ArcGIS Pro 1.3+

• Windows or Linux

• OptimizeRasters can be run from the command line even if ArcGIS is not installed

• OptimizeRasters can be used with Amazon Web Services Lambda serverless compute service (for
rasters smaller than 500 MB)

What’s in this document?

• An introduction to OptimizeRasters

• A description of common workflows using OptimizeRasters

• Instructions for installing the OptimizeRasters geoprocessing tools

• How to use the OptimizeRasters geoprocessing tools and CLI commands

• Appendixes describing technical specifications for working with raster proxies and cloud storage

Introduction
OptimizeRasters is an efficient, configurable, robust tool for converting raster data to optimized file

formats, moving data to cloud storage, and creating raster proxies.

2

Converting raster data to optimized formats
OptimizeRasters converts a variety of non-optimized raster formats into optimized MRF, tiled TIFF, or
Cloud Optimized GeoTIFF (COG) formats. The result is more efficient, scalable, and elastic data access

with a lower storage cost.

For more information about the differences between these file formats, see Appendix E.

Files can be converted to tiled TIFF, Cloud Optimized GeoTIFF, or MRF format:

Tiled TIFF - TIFF raster products from data providers are often not tiled internally

- Tiling minimizes the number of disk access requests to get a subset of pixels

- Optional JPEG or LZW compression can reduce file sizes

- Optional pyramids can increase access efficiency at smaller scales

Cloud-

Optimized

GeoTIFF

- Similar to tiled TIFF, but pyramids are required and the file organization is optimized for
HTTP range requests

- Can provide a slight performance improvement for applications that only view the image
at small scales or need to crawl for the metadata

- Take longer to create than tiled TIFF

- In ArcGIS, performance improvements are negligible compared to tiled TIFF

MRF - MRF is a tile-based format developed by NASA specifically for storing and accessing
rasters more efficiently.

- Optional Limited Error Rate Compression (LERC) saves additional storage space while

speeding up data access with faster compression and decompression rates

File conversion to tiled TIFF, Cloud Optimized GeoTIFF, or MRF (including optional compression) can

speed up read performance in three ways:

• Improving the data structure, which makes data access and transfer (especially from cloud

storage) more efficient

• Generating pyramids, which provides faster access to data at smaller scales

• Performing optional JPEG, LERC, or LZW/Deflate compression, which further reduces the

amount of data stored and transmitted

Note: All three formats can be read from cloud storage, but read performance depends on minimizing
the requests made in order to access the data.

Moving data to cloud storage
As part of the data conversion process, OptimizeRasters can simultaneously transfer raster data to and

from cloud (or enterprise) storage, speeding up the process of getting rasters into the cloud.

OptimizeRasters supports Amazon S3, Microsoft Azure, and Google Cloud Storage services.

See Using OptimizeRasters with Cloud Storage for more information on Amazon S3, Microsoft Azure,
and Google Cloud Storage.

Creating raster proxies to simplify data management
OptimizeRasters can generate raster proxies to simplify access to raster data stored on cloud or network

storage.

Raster proxies are small pointer files, stored on local file systems, that contain minimal metadata and
reference much larger raster data files stored remotely. A user can work efficiently with collections of

3

small raster proxy files, using them in ArcGIS as if they were conventional raster files. ArcGIS uses the

raster proxies to access the large-volume, remotely stored raster data as needed. Raster proxy files can
also cache tiles read from the slower remote storage, speeding up access and reducing the need to

access the same data multiple times. Raster proxies can have any extension and typically are given the

same extension as the source files to ensure that raster product support in ArcGIS, which is based on file
extensions, works correctly.

Note that raster proxies are not the same as the MRF file format, though they are sometimes confused.

MRF is a file format similar to TIFF. A raster proxy is file that references a larger file. When caching is
enabled, the cache of the raster proxy is stored as an MRF file. See Appendix A for more information on

raster proxy files.

Additional benefits of OptimizeRasters
OptimizeRasters employs processing strategies to maximize efficient data transfer:

• Uses parallel processing to speed up conversion and upload of multiple files simultaneously.

• Writes intermediate data on local fast disk to speed up the conversion process.

OptimizeRasters implements strategies to ensure robust data processing:

• Performs various checks during file conversion and upload to ensure all files are correctly

transferred.

• Creates a record of the conversion and upload process with extensive logging, which can be used

(1) to investigate unresolvable errors and (2) to help the program resume the conversion at a
later time, in cases where the processing was prematurely halted.

OptimizeRasters is both configurable and open-source:

• Uses editable configuration files to define parameters and simplify automation.

• OptimizeRasters code is open source and implemented in Python using GDAL 2.1. As a result,

users can adapt and expand the code as new needs arise.

Note: GDAL 2.1+ without the Kakadu driver, as implemented in OptimizeRasters, is equivalent to

the ArcGIS 10.5.1 GDAL DLLs.

• The GDAL library enables OptimizeRasters to handle a wide variety of raster file formats.

OptimizeRasters installation

Windows installation

1. Download the OptimizeRasters setup file from GitHub. In a browser, navigate to

https://github.com/Esri/OptimizeRasters/raw/master/Setup/OptimizeRastersToolsSetup.exe.

The file should begin downloading immediately.

2. Double click the downloaded OptimizeRastersToolsSetup.exe file and step through the wizard to

install.

Note: By default, OptimizeRasters is installed in the

https://github.com/Esri/OptimizeRasters/raw/master/Setup/OptimizeRastersToolsSetup.exe
https://github.com/Esri/OptimizeRasters/raw/master/Setup/OptimizeRastersToolsSetup.exe

4

C:\Image_Mgmt_Workflows\OptimizeRasters directory. If you use a different directory,

ensure the OptimizeRasters user has write access to it so OptimizeRasters report files can
be written.

Installing third-party Python packages for cloud storage

If you are using OptimizeRasters to read to or write from cloud storage (Amazon S3, Microsoft Azure, or

Google Cloud Storage), you will need to install additional packages for Python:

Cloud platform Python package needed

Amazon S3 boto3 (boto is no longer supported)

Microsoft Azure azure

Google Cloud Storage google-cloud-storage (google-cloud is no longer supported)

ArcGIS Pro

1. Clone the Pro Python environment. Before installing third-party Python packages, you should go

to the Python Package Manager tab in Pro and click Manage Environments to clone the Python
environment. New packages should then be added to the clone.

Note: There is a known issue cloning Python environments in Pro 2.2; this blog post provides a

command line workaround if you run into problems.

2. Install packages.

a. boto3 and azure: The boto3 and azure Python packages can be installed directly by

selecting Add Packages in the Python Package Manager in ArcGIS Pro.

b. google-cloud-storage: The google-cloud-storage Python package will need to be
installed manually. Pip (a common package manager for Python, included with Pro) can

be used to install these packages:

1. In a Windows command prompt, navigate to the Scripts folder in the cloned Pro

Python environment you plan to use (e.g.

C:\Users\[your_username]\AppData\Local\ESRI\conda\envs\arcgispro-

py3clone\Scripts).

2. Enter pip install google-cloud-storage to install the Python package

ArcMap

The Python packages need to be installed manually. Pip (a common package manager for Python) can be

used to install these packages (Pip is installed with ArcMap; learn more here):

1. In a Windows command prompt, navigate to the Scripts folder in the Python27 directory that

was installed with ArcMap (e.g. C:/Python27/ArcGIS10.6/Scripts).

2. Use a pip install command to install the necessary packages (pip install boto3, for example)

Updating third-party Python packages for cloud storage

If these packages are already installed, ensure you are running the most up-to-date version before

working with OptimizeRasters in the cloud. To update these packages, open a Command Prompt and run
the relevant command:

 To upgrade azure: pip install --upgrade azure.storage.blob

https://community.esri.com/docs/DOC-12021-python-at-arcgispro-22
https://community.esri.com/docs/DOC-12021-python-at-arcgispro-22
http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm#ESRI_SECTION1_8FF4335414D942AC846A988C73E7B9EE
http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm#ESRI_SECTION1_8FF4335414D942AC846A988C73E7B9EE
https://pip.pypa.io/en/latest/
https://pip.pypa.io/en/latest/
https://pip.pypa.io/en/latest/

5

 To upgrade boto3 (for Amazon S3): pip install --upgrade boto3

 To upgrade google cloud: pip install --upgrade google-cloud-storage

Linux/Unix installation

1. Download the OptimizeRasters ZIP file. To do this, navigate to the OptimizeRasters GitHub repo

(https://github.com/Esri/OptimizeRasters), then select Clone or Download > Download ZIP

2. Unzip the OptimizeRasters-master.zip file and do the following:

a. Delete all the files in the GDAL/bin folder of OptimizeRasters

b. Copy your flavor of Linux GDAL binaries and the shared libraries into the GDAL/bin
folder.

Note: If you already have GDAL installed on your Linux box, only included the following

binaries into GDAL/bin: gdalinfo gdaladdo gdalbuildvrt gdal_translate gdalinfo

3. Set the Linux environment variable LD_LIBRARY_PATH to point at the GDAL shared library path

(e.g. export LD_LIBRARY_PATH=~/OptimizeRasters-master/GDAL/bin or export
LD_LIBRARY_PATH=~/path/to/your/shared/GDAL/library)

4. Re-zip the updated OptimizeRasters-master file, transfer to Linux, unzip in your desired location

At this point, you can open a terminal and type python OptimizeRasters.py, followed by the CLI flags

described in the documentation, to begin processing.

Installing third-party Python packages for cloud storage

If you will be transferring data in and out of cloud storage, you’ll need to install the appropriate Python

package:

Cloud platform Python package needed

Amazon S3 boto3 (boto is no longer supported)

Microsoft Azure azure

Google Cloud Storage google-cloud-storage (google-cloud is no longer supported)

To install via pip at the console, enter the relevant command:

sudo pip install boto3

sudo pip install azure.storage.blob

sudo pip install google loud

Credentials needed to access cloud storage should also be placed in the appropriate location:

Cloud platform Credential location

Amazon S3 AWS credential file should be placed in the ~/.aws folder

Microsoft Azure Azure credentials should be placed in the file

~/.OptimizeRasters/Microsoft/azure_credentials

Google Cloud Storage Google service account JSON files should be placed in the

~/.OptimizeRasters/Google folder

https://github.com/Esri/OptimizeRasters
https://github.com/Esri/OptimizeRasters
https://github.com/Esri/OptimizeRasters
https://pip.pypa.io/en/latest/installing/
https://pip.pypa.io/en/latest/installing/

6

Common OptimizeRasters Workflows
OptimizeRasters assists with both image management and sharing. Below are example scenarios

illustrating the types of situations in which a user might use common OptimizeRasters workflows.

Optimizing raster data for enterprise storage

A satellite imagery vendor delivers imagery as TIFF files, along with auxiliary metadata files,

that are not tiled and do not have pyramids.

Workflow: Use OptimizeRasters to transfer all raster files from one directory to another (e.g. from
an external hard disk to your organization’s shared file storage). Simultaneously, OptimizeRasters

will convert the TIFFs into tiled TIFFs with internal pyramids. The conversion can be lossless

(depending on compression method) and the filenames are unchanged, but the TIFFs will be faster

to access.

Note: This is similar to the ArcGIS Copy Rasters command, but preserves all the data files (not just

the raster files) and handles nested directories.

Configuration templates to use: Imagery_to_TIF_JPEG or Imagery_to_TIF_LZW

Source raster data is taking up too much storage space.

Workflow: Use OptimizeRasters to convert files using a compression option to reduce storage space.

Compression can be lossless (e.g. using Deflate) or lossy (e.g. using JPEG). The user can also convert

to MRF and use Limited Error Raster Compression (LERC), which can be lossless or controlled lossy.

Configuration templates to use: Imagery_to_MRF_JPEG, Imagery_to_MRF_LERC,

Imagery_to_TIF_JPEG or Imagery_to_TIF_LZW

A vendor delivers the source raster data in a slow-to-read JP2 format.

Workflow: Use OptimizeRasters to transfer all raster files from one directory to another while

converting the format to tiled TIFF (or MRF), which is faster to read (though the file size may be

larger).

Note: It is possible to convert the files while keeping the original filenames, which may be required
when a metadata file references the raster data file by name. OptimizeRasters also includes a

custom extension naming option.

Configuration templates to use: Imagery_to_MRF_JPEG, Imagery_to_MRF_LERC,

Imagery_to_TIF_JPEG or Imagery_to_TIF_LZW

Optimizing raster data for cloud storage

Your organization wants to move existing raster data into cloud storage.

Workflow: Use OptimizeRasters to transfer raster data to cloud storage by defining the output

directory as cloud storage (such as S3). The user will usually convert the raster format to MRF (or

Cloud Optimized GeoTIFF) during the transfer.

7

Configuration templates to use: CopyFilesOnly, Imagery_to_COG_DEF, Imagery_to_COG_JPG

Imagery_to_MRF_JPEG, Imagery_to_MRF_LERC, Imagery_to_TIF_JPEG or Imagery_to_TIF_LZW

Your organization needs to efficiently access large collections of rasters stored in the cloud.

Workflow: Use OptimizeRasters to create raster proxy files. Raster proxies (small, local pointer files)

can be used as if they were standard raster datasets and raster products in ArcGIS, but take only a

small fraction of the original disk space. Only the required pixels will be read from raster data files in
cloud storage, and those pixels can be locally cached so subsequent requests to the same area are

very fast.

Note: OptimizeRasters can create raster proxy files that access raster data in a variety of formats as

long as the rasters are tiled or have pyramids. Raster proxies are most efficient when
accessing rasters stored as MRF files. If the imagery is not stored in a public bucket/container,

the machine with the raster proxies must have access to the bucket/container.

Configuration templates to use: CreateRasterProxy

Your organization has stored non-optimized raster files in the cloud, and wishes to convert

them to an optimized raster format in the cloud.

Workflow: Use OptimizeRasters to convert the original raster files to either MRF or Cloud Optimized

GeoTIFF in the cloud. For best results, run OptimizeRasters in the cloud close to where the input
and/or output data will be stored, on infrastructure such as Amazon EC2 instances or Azure

compute. Alternatively, OptimizeRasters can be run using Lambda serverless compute.

Note: During the conversion process, it is standard to create raster proxy files to reference the new

rasters. The raster proxy files can then be transferred to local storage, enabling more efficient,

virtual access to the data stored in the cloud.

Configuration templates to use: Imagery_to_COG_DEF, Imagery_to_MRF_JPEG,

Imagery_to_MRF_LERC

Your organization wants to embed raster proxy files in the mosaic dataset to eliminate

dependency on local files.

Workflow: Use OptimizeRasters to generate raster proxies, but point to a CSV file instead of a folder

location. A table of raster proxies will be generated instead of individual files. The raster proxies can
be embedded in a mosaic dataset, bypassing any local files and making it simpler to transfer the

mosaic dataset to another machine.

Configuration templates to use: CreateRasterProxy, Imagery_to_COG_DEF, Imagery_to_MRF_JPEG,

Imagery_to_MRF_LERC, Imagery_to_TIF_JPEG or Imagery_to_TIF_LZW

Accessing Landsat 8 data from Amazon Public Data Sets

You wish to use ArcGIS Desktop to access free Landsat 8 data from Amazon, but you do not

want to download the full dataset (more info at http://aws.amazon.com/public-

datasets/landsat).

Workflow: Use OptimizeRasters to create raster proxy files to access Landsat 8 data in ArcGIS.

The resulting output directory will contain the specified Landsat scene as eight raster proxy TIFF files

(and a corresponding .met file), which will then reference the source TIFFs stored in the cloud.

http://aws.amazon.com/public-data-sets/landsat
http://aws.amazon.com/public-data-sets/landsat
http://aws.amazon.com/public-data-sets/landsat
http://aws.amazon.com/public-data-sets/landsat
http://aws.amazon.com/public-data-sets/landsat
http://aws.amazon.com/public-data-sets/landsat

8

These raster proxy files can be used as a raster product in ArcGIS, but the size of the files will only be

a few KB.

A sample command line entry for accessing this data (using the provided OptimizeRasters
configuration file) would be:

“C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe”

C:\Image_Mgmt_Workflows\OptimizeRasters\OptimizeRasters.py -

config=C:\Image_Mgmt_Workflows\OptimizeRasters\Templates\Landsat8_RasterProxy.xml -

input=c1/L8/160/043/LC08_L1TP_160043_20180326_20180404_01_T1 -clouddownload=true -

inputbucket=landsat-pds -clouddownloadtype=amazon -
output=c:\temp\landsatpdsdat\c1\L8\160\043\LC08_L1TP_160043_20180326_20180404_01_T1

Configuration templates to use: Landsat8_RasterProxy (The user must provide the input path, the

Landsat path/row, and the scene ID of the desired Landsat 8 scene)

Using OptimizeRasters in ArcGIS Pro
The OptimizeRasters tool allows you to convert most raster formats to tiled TIFF, Cloud Optimized

GeoTIFF, or MRF file formats. It includes options to transfer data into or out of cloud storage and
enables the creation of raster proxies (either during the conversion process or as a separate step).

Most parameters for common operations will be defined in the provided configuration files. Other

parameters will need to be selected in the tool dialog box or specified at the command line.

Note: OptimizeRasters also includes two additional tools, described in Appendix B. The Profile Editor

tool allows you to store credential profiles for Amazon S3 or Microsoft Azure cloud storage,

simplifying access to secured cloud storage. The Resume Jobs tool will show a list of pending jobs,

and allow you to resume any processes that failed to complete. This is helpful when working with
large projects where interruptions and some failures can occur.

How to use the OptimizeRasters tool

To access the OptimizeRasters Python toolbox, follow these steps:

1. Start ArcGIS Pro and create a new project.

2. In the Catalog Pane, right click Toolboxes and select Add Toolbox. Navigate to the
OptimizeRasters directory (C:\Image_Mgmt_Workflows\OptimizeRasters), select

OptimizeRasters.pyt, and click OK.

3. Open the toolbox by clicking the arrow next to OptimizeRasters.pyt (see Figure 1).

9

Figure 1: OptimizeRasters Catalog Pane

To use the OptimizeRasters geoprocessing tool, follow these steps:

1. If you will read or write from cloud storage, create the required Amazon S3, Microsoft Azure, or

Google Cloud Storage profile. See Using OptimizeRasters with Cloud Storage, below.

2. Double-click to open the OptimizeRasters tool from the OptimizeRasters Toolbox.

3. Complete the OptimizeRasters dialog (Figure 2) to perform jobs. A brief description of each

parameter can be found in Table 1.

10

Figure 2: OptimizeRasters dialog for local and cloud input data

Table 1: Description of OptimizeRasters dialog options

Dialog parameter Description

Configuration File (Required) These templates set the appropriate default parameters for a
given task (like converting file formats or creating raster proxies). Use the
dropdown list to select a template that suits your needs. See
Configuration file templates, below, for a more detailed description.

11

Input Source (Required) The input storage type. Options include: Local, Amazon S3,

Microsoft Azure, and Google Cloud.

Dialog parameter Description

Input Profile (Required for input from cloud storage) The cloud storage user profile
for your input data. To add or edit a profile, use the Profile Editor tool
(discussed below).
Note: If the input source is Amazon S3, “Using_EC2

Instance_with_IAM_Role” will be an option. Assuming you are

working from an EC2 instance with IAM role access to the input S3

bucket, this selection allows secure access to AWS resources

without requiring credential keys.

Secured Bucket (Optional) Check on if your bucket is secure (you’ll need credentials to

access it). If it’s public, leave this unchecked. If checked on, vsis3 will be

used to access the data instead of vsicurl.

Input Bucket / Container (Required for input from cloud storage) The name of the Amazon S3

bucket, Google bucket, or Azure container holding the input files. This

will be automatically populated based on your Input Profile. See

Accessing Cloud Storage, below.

Input Path (Required) The local or cloud storage folder where input data is located.

For input from local storage, this will be a directory name, like

C:\MyData\Samples. For input from cloud storage, this will be the folder
path without the bucket/container name. See Accessing Cloud Storage,
below.
Note: The browse button will only work with local storage.

Input Temporary Folder (Optional) A local folder used to temporarily hold input files while
downloading from cloud storage. Data will be first downloaded to this
location and then converted.
Note: Recommended if space is limited in the default system temp

location.

Output Destination (Required) The output storage type. Options include: Local, Amazon S3,

Microsoft Azure, and Google Cloud.

Output Profile (Required for output to cloud storage) The cloud storage user profile for
your output data. To add or edit a profile, use the Profile Editor tool
(discussed below).
Note: If the output source is Amazon S3, “Using_EC2

Instance_with_IAM_Role” will be an option. Assuming you are

working from an EC2 instance with IAM role access to the output

S3 bucket, this selection allows secure access to AWS resources

without requiring credential keys.

12

Output Bucket/Container (Required for output to cloud storage) The name of the Amazon S3

bucket, Google bucket, or Azure container holding the output files. This

will be automatically populated based on your Output Profile. See

Accessing Cloud Storage, below.

Output Path (Required) The local or cloud storage folder where output data will be

stored. For output to local storage, this will be a directory name, like

C:\MyData\Samples. For output to cloud storage, this will be the path

without the bucket/container name. (The browse button will only work

with local storage.) See Accessing Cloud Storage, below.

Dialog parameter Description

 Note: If the Mode is RasterProxy (in the CreateRasterProxy config file, for

example), the output path can also point to a .csv file (existing or

not). The contents of the raster proxies will be saved to the .csv file

as rows, and individual raster proxies will not be generated.

Output Temporary Folder (Required for output to cloud storage) A local folder used to temporarily
hold output files before they’re uploaded to a final location. The output
will be first written to this directory, then transferred to the cloud or
enterprise storage.

For locally stored output, this is recommended if storage space is

restricted in the default system temp location, or when the output

location is a network drive. Using a faster temporary drive will speed

processing, since the full resolution data is written first and then read

again to create pyramids.

Raster Proxy Folder (Optional) A local output folder where raster proxies, which are created
at the same time data is transferred, will be stored.

Alternatively, the Raster Proxy Folder can also point to a .csv file (existing

or not). In this case, the contents of the raster proxies will be saved to

the .csv file as rows, and individual raster proxies will not be generated.

Cache Folder (Optional) An output folder for cache files used with raster proxies.
Recommended cache path is Z:\mrfcache\. See Appendix A: Working
with Raster Proxy Files: Cache Management, below, for more
information.
Note: If left blank, the cache will be stored in the same directory as the

raster proxy files. A separate directory is recommended to make it

easier to empty the cache periodically.

Accessing cloud storage

Example cloud storage path: If

the complete path is…
http://landsat-pds.s3.amazonaws.com/L8/139/045/LC81390452014295LGN00

Then…

The bucket/container name is: landsat-pds

13

The input path is: L8/139/045/LC81390452014295LGN00

For more information on Amazon S3, refer to

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro.

For information on Microsoft Azure, refer to

https://docs.microsoft.com/enus/rest/api/storageservices/fileservices/naming-and-referencing-

containers--blobs--andmetadata#resource-uri-syntax.

Configuration file templates
OptimizeRasters comes with configuration template files that set OptimizeRasters parameters for a

variety of common workflows and data types (see Table 2).

Once a configuration template file is selected in the OptimizeRasters dialog, the parameters set by that

file can be viewed and edited in the Advanced section of the OptimizeRasters tool (or with a text editor).

The configuration template files are located in the Templates folder in the OptimizeRasters directory

location.

See Configuration file parameters (advanced options) for more detailed descriptions of the parameters

defined in each file.

Table 2: Configuration File Templates

Default configuration files Description

Airbus_SatelliteProduct_to_MRF_LERC
 Converts Airbus Satellite Product data to MRF using LERC

compression.

CopyFilesOnly

Copies between different storage systems (S3, Azure, Google

Cloud, and local storage) with no file conversion and without

creating raster proxies.

CreateRasterProxy Creates raster proxy files from various raster file formats.

DG_SatelliteProduct_to_MRF_LERC
Converts Digital Globe Satellite imagery to MRF using LERC

compression.

Imagery_to_COG_DEF
Converts imagery to Cloud Optimized GeoTIFF format using

deflate compression.

Imagery_to_COG_JPEG
Converts imagery to Cloud Optimized GeoTIFF format using

JPEG compression.

Imagery_to_MRF_JPEG Converts imagery to MRF using JPEG compression.

Imagery_to_MRF_LERC Converts imagery to MRF using LERC compression.

Imagery_to_MRF_ZLERC

Converts imagery to MRF using LERC compression and

additional Deflate. Can be beneficial for sparse datasets (from

small sensors or non-IT devices)

Imagery_to_TIF_JPEG Converts imagery to TIF using JPEG compression.

Imagery_to_TIF_LZW Converts imagery to TIF using LZW compression.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/naming-and-referencing-containers--blobs--and-metadata#resource-uri-syntax

14

Landsat8_RasterProxy
Creates raster proxy files from Landsat 8 data stored in

Amazon S3 Public Data Sets.

Landsat_to_MRF_LERC Converts Landsat imagery to MRF using LERC compression.

Overviews_to_MRF_JPEG Converts overview imagery to MRF using JPEG compression.

Overviews_to_MRF_LERC Converts overview imagery to MRF using LERC compression.

Sentinel2_to_MRF
Converts Sentinel-2 imagery to MRF using LERC compression.

Configuration file parameters (advanced options)
For most users, one of the existing configuration files should be sufficient without any changes.

If customization is necessary, generally the user will start with one of the predefined configuration files,

edit parameters under advanced options, then run the process. (The selected configuration settings will
be saved as a new, timestamped configuration file.)

To edit configuration file parameters, complete the following steps:

1. In the OptimizeRasters tool dialog, select the configuration file you wish to modify.

2. To edit values, expand the Advanced section and select the check box labeled Edit Configuration

Values.

Note: Select Show Help at the bottom of the dialog box to view a list of options for each
parameter.

15

Figure 3: Example OptimizeRasters advanced options for Imagery_to_MRF_JPEG config file

3. After editing the desired parameters, click Run to implement them. The new values will be
saved to a new configuration file, with the timestamp appended to the original filename.

Note: If the user-created configuration file is edited again, the new changes will be saved to the

same file.

Table 3 contains a list of possible configuration file parameters (for parameters related to cloud storage,

see the Using OptimizeRasters with Cloud Storage).

Table 3: OptimizeRasters configuration file parameters

Configuration File

Parameter
Description

16

Mode

Defines the output file format. Options include:

• mrf (used to convert input data to MRF)

• tif (used to convert input data to tiled TIFF)

• tif_cog (used to convert input data into Cloud Optimized
GeoTIFF)

• rasterproxy (used to generate raster proxies without

copying or converting the original data)

RasterFormatFilter

Defines the file extension of rasters that should be converted.
Typically this is set to “tif,TIF,mrf,tiff”—rasters with these
extensions will be converted. All other files (e.g. a JPEG file
containing a logo) are simply copied from source to destination.
Note: File extensions are case sensitive.

ExcludeFilter

Defines the file extensions that will not be copied. Examples

include files that may not be needed once the rasters are

converted (e.g. ovr, rrd, tfw, or aux.xml files) or files that would

typically be replaced (e.g. idx, lrc, mrf_cache, pjp, ppng, pft, or pzp

files).

IncludeSubdirectories
If true, OR will scan for rasters in subdirectories. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

Compression
Compression type to use on output rasters. Acceptable values are:

LERC, JPEG, LZW, DEFLATE.

Interleave

(Optional) Defines the interleave setting for compression.

Acceptable values are: Band, Pixel. (Default is Pixel)

Note: Compression is improved when the output is 3band and the

interleave is Pixel.

Quality JPEG compression quality (default is 85)

LERCPrecision
LERC compression precision (Default is 0.5 for integer data and

0.001 for float data)

BuildPyramids
Determines if pyramids should be built. Acceptable values are:
true, yes, t, 1, y, false, no, f, 0, n.
Note: setting -pyramids=external will create external pyramids.

PyramidFactor

Pyramid levels to create. The default value is a factor of 2,

resulting in pyramids as follows: 2 4 8 16 32 64. It can also be set

to a factor of 3 (e.g., 3 9 27 81).

PyramidSampling

Defines sampling to use for pyramids. The default is: average

sampling. Acceptable values are: average, nearest, gauss, cubic,

cubicspline, lanczos, average_mp, average_magphase, mode, AVG

(a form of average where each pixel is the average of 4. Only

available for MRF)

PyramidCompression
Compression type to use for pyramids (default is jpeg). Acceptable

values are: jpeg, lzw, deflate.

17

Configuration File

Parameter
Description

NoDataValue

Specifies the NoDataValue in the source (if applicable). The
default is: undefined.
Note: If rasters have 0 as NoData, the NoDataValue parameter

must be set so pyramid generation will not include this

value.

BlockSize

Defines tile size in the output image. A value of 512 is
recommended for most datasets.
Note: Smaller values that are powers of 2 (e.g. 128, 256) may be

better for datasets used to generate temporal profiles.

KeepExtension

Specifies whether output raster file extensions (and
accompanying raster proxy extensions) should be changed. If true,
the extension remains the same as the input, even if the format
was changed (e.g. to MRF). If false, the extension will be based on
the output format (typically .tif or .mrf).
Note: This parameter will apply to the raster proxies, as well.

Threads
Defines the number of simultaneous threads used for parallel

processing (default is 10).

LogPath

Defines the location for log files. By default, these XML files are
created in the Logs directory in the same location as
OptimizeRasters.py. An alternative location must be a network

path; it cannot be on cloud storage.

GDAL_Translate_UserParameters

User-defined GDAL_Translate values. Values will be passed on
without any modification. Refer to
http://www.gdal.org/gdal_translate.html for more options.
Examples: (Refer to the link above for full explanations.)

• -scale 200 255 0 255 (Rescale the input pixel values)

• -outsize 10% 10% (Set the size of the output file)

• -Scale 0 65536 1 256 (scale from 16 to 8 bit and leave 0)

• -b 1 -b 2 -b 3 (Extract 3 bands)

• -co NBITS=8 (Output should be 8bits)

• -ot Byte (Set output to byte)

• -scale 0 65535 0 4096 -co NBITS=12 -ot UInt16 (rescales input

pixel values, converts to 12-bit, and uses 12-bit JPEG

compression)

http://www.gdal.org/gdal_translate.html
http://www.gdal.org/gdal_translate.html

18

Op

Flag used for operational settings. Acceptable values include:

• Noconvert (will copy raster files between different storage
types without performing any file conversion)

• Upload (will back up a local -input to S3, Azure, Google, or
local storage)

• copyonly (will copy files without conversion or creating raster
proxies)

• lambda (should be used when implementing

OptimizeRasters as an Amazon Web Services lambda

function)

Note that for local or network input/output, the following parameters can’t be set in the configuration

file. They must be specified either in the tool dialog discussed above, or using command line flags:

• Input path • Output temporary folder

• Input temporary folder • Raster proxy folder

• Output path • Cache folder

Using OptimizeRasters at the Command Line
OptimizeRasters can be called as a command line tool, even if ArcGIS Desktop is not installed.

Standard command line usage
The standard command line usage uses the following syntax:

<path to python.exe> <path to optimizerasters.py> -input=<path to input folder> -output=<path

to outputfolder> -mode=mrf

For help with OptimizeRasters command line, enter the following:

<path_to_python.exe> <path_to_optimizerasters.py> --help

Command line arguments
The following parameters and switches can be used with OptimizeRasters at the command line, for local,

enterprise, or cloud-based input and output.

Note: Some below parameters can also be specified in the configuration file. Command line parameters
will override the configuration file.

Table 4: OptimizeRasters command line arguments

Command Line

Argument
Description

-input= Path to input directory or job file.

Note: All files in a directory will be processed. If the input is a job file, no

other parameters are needed—this is the equivalent of running the

Resume Geoprocessing tool.

19

-output= Path to a local or enterprise output directory. If the mode is rasterproxy, this

can also point to a .csv file (existing or not). In this case, the contents of the

raster proxies will be saved to the .csv file as rows, and individual raster

proxies will not be generated.

-config= Path to the configuration file with default settings used to set any
parameters not defined on the command line. If undefined, then the
OptimizeRasters.xml file, stored in the same location as OptimizeRasters.py,

will be used.

-mode= Defines the output file format. Options include:

• mrf (used to convert input data to MRF)

• tif (used to convert input data to tiled TIFF)

• tif_cog (used to convert input data into Cloud Optimized GeoTIFF)

• rasterproxy (used to generate raster proxies without copying or

converting the original data)

Command Line

Argument
Description

 • createjob (generates an OptimizeRasters .orjob file, but won’t

automatically start processing the file list. This is useful if users need to

see the generated file list before processing.)

-cache= (Optional) An output folder for cache files used with raster proxies.
Recommended cache path is Z:\mrfcache\. See Appendix A: Working with
Raster Proxy Files: Cache Management, below, for more information.
Note: If left blank, the cache will be stored in the same directory as the raster

proxy files. A separate directory is recommended to make it easier to

empty the cache periodically.

-quality= JPEG compression quality (default is 85)

-prec= LERC compression precision (Default is 0.5 for integer data and 0.001 for float

data)

-pyramids= Determines if pyramids should be built. Acceptable values are: true, yes, t, 1,
y, false, no, f, 0, n. Pyramids are created by default, but this flag will override
the BuildPyramids parameter in config file.
Note: setting -pyramids=external will create external pyramids.

-op= Operation parameter. Acceptable values include:

• Noconvert (will copy raster files between different storage types
without performing any file conversion)

• Upload (will back up a local -input to S3, Azure, Google, or local storage)

• copyonly (will copy files without conversion or creating raster proxies)

• lambda (should be used when implementing OptimizeRasters as an

Amazon Web Services lambda function)

20

-subs= If true, OR will scan for rasters in subdirectories. Acceptable values are: true,

yes, t, 1, y, false, no, f, 0, n. If true, all subdirectories of the input directory

will also be processed.

-job= User-defined name for the job file generated when OptimizeRasters is run.

-tempinput= A local folder used to temporarily hold input files while downloading from
cloud storage. Data will be first downloaded to this location and then
converted.

Note: Recommended if space is limited in the default system temp location.

-tempoutput= (Required for cloud output) A local folder used to temporarily hold output
files before they’re uploaded to a final location. The output will be first
written to this directory, then transferred to the cloud or enterprise storage.

For locally stored output, this is recommended if storage space is restricted in

the default system temp location, or when the output location is a network

drive. Using a faster temporary drive will speed processing, since the full

resolution data is written first and then read again to create pyramids.

-clouddownload= Flag to let the program know whether the input location is cloud storage or

not. Acceptable values are: true, yes, t, 1, y, false, no, f, 0, n.

Command Line

Argument
Description

-clouddownloadtype= Parameter linked to -clouddownload (default is Amazon if -clouddownload is
true and -clouddownloadtype is unspecified). Acceptable values are:
Amazon, Azure, Google.

-inputprofile= Cloud profile name that corresponds with the credential file for the input
cloud storage type. The profile name will be used to pick up the relevant
credentials.

Note: If Google is selected as the cloud download type and you’re using this

parameter at the command line, this parameter must point to a JSON

service account key file on the local machine.

-inputbucket= Input cloud bucket/container name. The specified credentials must have

access to this location.

-usetoken
Set to true if the input and/or output bucket is private. Acceptable values are:

true, yes, t, 1, y, false, no, f, 0, n.

-cloudupload= Flag to let the program know whether the output location is cloud storage or

not. Acceptable values are: true, yes, t, 1, y, false, no, f, 0, n.

-clouduploadtype= Parameter linked to -cloudupload (Default is Amazon if -cloudupload is true

and -clouduploadtype is unspecified). Acceptable values are: Amazon, Azure,

Google.

21

-outputprofile= Cloud profile name that corresponds with the credential file for the output
cloud storage type. The profile name will be used to pick up the relevant
credentials.

Note: If Google is selected as the cloud upload type and you’re using this

parameter at the command line, this parameter must point to a JSON

service account key file on the local machine.

-outputbucket= Output cloud bucket/container name. The specified credentials must have

access to this location.

-rasterproxypath= Path to a local directory where raster proxy files are generated during the
conversion process. This can also point to an XML file, in which case the
raster proxies will be added as rows in the file (individual raster proxy files
won’t be created).

Note: This is equivalent to the Raster Proxy Output folder in the UI, and will

be ignored if the mode is rasterproxy.

Note: If you want to set non-default values for any of the following, you will need to use a configuration

file (see: OptimizeRasters Tool: Configuration file parameters, above). If there is a default value,

it’s provided in parentheses below. If you’re using a provided configuration file, confirm the value

set there.

RasterFormatFilter

ExcludeFilter

Compression

Interleave

PyramidFactor

PyramidSampling

PyramidCompression DeleteAfterUpload (true)

NoDataValue Out_S3_ACL

BlockSize (512) LogPath (OptimizeRasters logs

KeepExtension (false) folder)

Threads (4)

GDAL_Translate_UserParameters

Using OptimizeRasters with Cloud Storage
OptimizeRasters supports three cloud storage providers: Amazon S3, Microsoft Azure, and Google Cloud

Storage. This section covers general guidelines for transferring data into and out of these three storage
options using OptimizeRasters, including valid configuration file parameters for each. For more

information about working with cloud storage at the command line, see Using OptimizeRasters:

Command Line.

Working with Amazon S3
To work with Amazon S3, you must first install the boto3 third-party Python package. See

OptimizeRasters installation, above.

Note: File names in S3 buckets are case sensitive, so it is very important not to change the case of the

file names or their extensions when copying data to S3, or when referencing these files.

Managing S3 credentials

OptimizeRasters supports the AWS standards to manage credentials (more information can be found at

http://docs.aws.amazon.com/cli/latest/reference/configure/index.html).

This means credentials can be set up the following ways:

http://docs.aws.amazon.com/cli/latest/reference/configure/index.html
http://docs.aws.amazon.com/cli/latest/reference/configure/index.html

22

1. (Recommended) The user can use the AWS credential file located at

%USERPROFILE%\.aws\credentials. This can be managed with the Profile Editor tool.

Note: If you are using the OptimizeRasters GP tool, this is required.

2. The user can use environment variables to set credentials on their machine

(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)

3. The user can set AWS credentials using Amazon command line tools. If you are using an EC2

instance, these tools are already set up on your system. If the tools are not already installed,
they can be downloaded at http://aws.amazon.com/cli. You can use the following command to

set up the credentials:

$ aws configure

4. (Not recommended) The user can set AWS credentials in the OptimizeRasters configuration file

or using OptimizeRasters command line.

Security is the primary advantage of using an AWS credential file—the S3 keys for the default user will
be stored using the access security offered by the OS. The credential file will only be accessible to the

user who already has the read/write access to the profile location. If the OptimizeRasters package is
copied onto another machine, credentials available in the OptimizeRasters configuration file will not be

unintentionally exposed.

Configuration file parameters to read/write to S3

The following table lists all the S3-specific configuration file parameters and acceptable values. Values

added to the parameter files will be used unless they aren’t overridden at the command line. (See Using
OptimizeRasters: Command Line for equivalent command line parameters where they exist.)

Table 3: Configuration file parameters for S3 storage

Configuration File

Parameter: S3
Description

CloudDownload
Set to true if the input will be from the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

In_Cloud_Type
Specifies the cloud storage provided for the input data. Valid
options are: amazon, azure, google.
Note: For S3 storage, enter amazon.

In_S3_AWS_Profile_Name

Use this parameter to select a profile name for the AWS security
credentials you wish to use to access the input location.
Note: This must match a profile name in the AWS credential file.

In_S3_ID

In_S3_Secret

(Not recommended) Use these parameters to set the AWS access
key and secret key needed to access the input location. The keys
in the configuration file will take precedence over the AWS
standard credential manager.
Note: If these keys are embedded in the configuration file, it is

more likely that they will accidentally be shared.

UseToken
Set to true if the input and/or output bucket is private.

Acceptable values are: true, yes, t, 1, y, false, no, f, 0, n.

http://aws.amazon.com/cli
http://aws.amazon.com/cli

23

In_S3_Bucket
The name of the bucket holding the input files. The specified input

credentials must provide access to this folder.

In_S3_ParentFolder
The input folder path where the input data is located. Exclude the

bucket name.

CloudUpload
Set to true if the file destination is in the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

Out_Cloud_Type
Specifies the cloud storage to be used for the output data. Valid
options are: amazon, azure, google.
Note: For S3 storage, enter amazon.

Out_S3_AWS_Profile_Name

Use this parameter to select a profile name for the AWS security

credentials you wish to use to access the output location. This

must match a profile name in the AWS credential file.

Out_S3_ID

Out_S3_Secret

(Not recommended) Use these parameters to set the AWS access
key and secret key needed to access the output location. The keys
in the configuration file will take precedence over the AWS
standard credential manager
Note: If these keys are embedded in the configuration file, it is

more likely that they will accidentally be shared.

Out_S3_Bucket
The name of the bucket where the output files will be located. The

specified output credentials must provide access to this folder.

Out_S3_ParentFolder
The output folder path where the output data will be stored.

(Exclude the bucket name)

DeleteAfterUpload
Set to true to delete temporary rasters/files after processing is

complete. Acceptable values are: true, yes, t, 1, y, false, no, f, 0, n.

Configuration File

Parameter: S3
Description

Out_S3_ACL Defines the canned Access Control List to apply to uploaded files.

Default is public-read. For secure buckets, the bucket policy takes

priority. Acceptable values are: private, public-read, public-

readwrite, authenticated-read, bucket-owner-read, bucket-

ownerfull-control

For cloud input/output, the following parameters can’t be set in the configuration file. They must be

specified either in the OptimizeRasters tool dialog discussed above, or at the command line:

• Input temporary folder • Raster proxy folder

• Output temporary folder • Cache folder

Example S3 workflows

Following are example configuration file parameters needed for common S3 workflows. These all

assume that the relevant AWS credential file contains the following profile:

24

[OptimizeRasters_S3Out] aws_access_key_id =

XXX_YOUR_ACCESS_KEY_ID_XXX
aws_secret_access_key =

XXX_SECRET_ACCESS_KEY_XXX

Writing files to S3 storage

You want to upload data to cloud storage located at http://mydata.s3.amazonaws.com/abc/pqr/t.

To accomplish this, the following parameters should be added to the configuration file:

<CloudUpload>true</CloudUpload>

<Out_Cloud_Type>amazon</Out_Cloud_Type>

<Out_S3_Bucket>mydata</Out_S3_Bucket>

<Out_S3_ParentFolder>abc/pqr/t</Out_S3_ParentFolder>

<Out_S3_AWS_ProfileName>OptimizeRasters_S3Out</Out_S3_AWS_ProfileName>

<Out_S3_DeleteAfterUpload>true</Out_S3_DeleteAfterUpload> Alternatively,

you could enter the following at the command line:

python OptimizeRasters.py -cloudupload=true -clouduploadtype=amazon -outputbucket=mydata

output=abc/pqr/t -outputprofile=OptimizeRasters_S3Out -tempoutput=c:/temp/mydata

Reading from public S3 buckets

The following configuration keys need to be left empty to enforce reading from a public AWS bucket.

 <In_S3_AWS_ProfileName></In_S3_AWS_ProfileName>

<In_S3_ID></In_S3_ID>

<In_S3_Secret></In_S3_Secret>

Note: See the Landsat8_RasterProxy configuration file as an example.

Generating raster proxies from S3

If you are copying or converting data, you can create raster proxies at the same time. To do this, specify

a Raster Proxy Folder in the tool dialog, or set -rasterproxypath at the command line, and the raster

proxy files will automatically be generated.

Some users already have rasters in the cloud, and only want to generate raster proxy files. To do this,

use the CreateRasterProxy configuration file, which uses rasterproxy mode. (See Appendix A: Working

with Raster Proxy Files for more information on rasterproxy mode).

In this case, you can do one of three things:

1. Use the OptimizeRasters tool UI to specify the S3 input parameters and the output raster proxy

folder location

2. Edit the configuration file parameters and add command line flags. For example, if the input

raster files are in http://mydata.s3.amazonaws.com/abc/pqr/t, the user should make the

following changes to the configuration file:

<mode>rasterproxy</mode>

<CloudDownload>true</CloudDownload>

<In_Cloud_Type>amazon</In_Cloud_Type>

<In_S3_Bucket>mydata</Out_S3_Bucket>

<In_S3_ParentFolder>abc/pqr/t</Out_S3_ParentFolder>

http://mydata.s3.amazonaws.com/abc/pqr/t
http://mydata.s3.amazonaws.com/abc/pqr/t

25

<In_S3_AWS_ProfileName>OptimizeRasters_S3In</In_S3_AWS_ProfileName>

And specify the local output location at the command line: -output=<path to outputfolder> or

using the OptimizeRasters tool dialog

3. Set all parameters at the command line:

<path to python.exe> <path to optimizerasters.py> -clouddownload=true -

clouddownloadtype=Amazon -inputbucket=<S3 bucket name> -input=<path to s3 input folder>

output=<path to rasterproxyfolder> -mode=rasterproxy

 Note: -clouddownloadtype is optional for Amazon (the default).

Setting access control on Amazon S3

Access to data in S3 buckets is defined using the Amazon S3 Access Control Lists (ACLs). Find more

information at http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL.

By default, OptimizeRasters will use the public-read ACL, which enables all users to read the data. The

ACL can also be defined manually in the configuration file by using the Out_S3_ACL parameter. For

secure buckets, the bucket policy will take priority.

To avoid making your data public, set the ACL as private and apply a secure S3 bucket policy.

For more information on this, refer to the documentation from Amazon:

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html

See also Using Obfuscation for Access Control in the Cloud, below.

Working with Microsoft Azure
To work with Azure, you must first install the azure third-party Python package. See OptimizeRasters

installation, above.

Managing Azure credentials

If you’re using the Profile Editor to manage Azure credentials, they will be saved in the file

C:\Users\%username%\.optimizerasters\Microsoft\azure_credentials.

Configuration file parameters to read/write to Azure

The following table lists all the Azure-specific configuration file parameters and acceptable values.

Values added to the parameter files will be used unless they aren’t overridden at the command line.

(See Using OptimizeRasters: Command Line for equivalent command line parameters where they exist.)

Table 6: Configuration file parameters for Microsoft Azure storage

Configuration File

Parameter: Azure
Description

CloudDownload
Set to true if the input will be from the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

In_Cloud_Type
Specifies the cloud storage provided for the input data. Valid
options are: amazon, azure, google.
Note: For Azure storage, enter azure.

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#CannedACL
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html

26

In_Azure_ProfileName
Use this parameter to select a profile name for the Azure security
credentials you wish to use to access the input location.
Note: This must match a profile name in the Azure credential file.

In_Azure_AccountName

In_Azure_AccountKey

(Not recommended) Use these parameters to set the Azure
account name and account key needed to access the input
location. The keys in the configuration file will take precedence.
Note: If these values are embedded in the configuration file, it is

more likely that they will accidentally be shared.

In_Azure_Container
The name of the container holding the input files. The specified

input credentials must provide access to this folder.

In_Azure_ParentFolder
The input folder path where the input data is located. Exclude the

container name.

CloudUpload
Set to true if the file destination is in the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

Out_Cloud_Type
Specifies the cloud storage provided for the output data. Valid
options are: amazon, azure, google.
Note: For Azure storage, enter azure.

Out_Azure_ProfileName
Use this parameter to select a profile name for the Azure security
credentials you wish to use to access the output location.
Note: This must match a profile name in the Azure credential file.

Out_Azure_AccountName

Out_Azure_AccountKey

(Not recommended) Use these parameters to set the Azure
account name and account key needed to access the output
location. The keys in the configuration file will take precedence.
Note: If these values are embedded in the configuration file, it is

more likely that they will accidentally be shared.

Out_Azure_Access

Identifies the access type. Valid values are:

• private (the container is accessible only to the user)

• blob (files within the container are publicly accessible)

• container (files within the container and container metadata

are publicly accessible)

Out_Azure_Container
The name of the container that will hold the output files. The

specified output credentials must provide access to this folder.

Configuration File

Parameter: Azure
Description

Out_Azure_ParentFolder
The output folder path where the output data will be copied.

Exclude the container name.

DeleteAfterUpload
Set to true to delete temporary rasters/files after processing is

complete. Acceptable values are: true, yes, t, 1, y, false, no, f, 0, n.

Azure upload specifications

Specifications for uploading files to Azure include:

Parallel upload support: Yes

27

Number of parallel threads per file: 20

Azure blob type: Block blob

Upload payload size per thread: 4 MB

Working with Google Cloud
To use OptimizeRasters with Google Cloud Storage, you will need to install the google-cloud-storage

third-party Python package. See OptimizeRasters installation, above.

Managing Google credentials

To use Google Cloud Storage, you will need to generate a Google service account credential key file

(profiles can’t be created with the Profile Editor tool).

Note: OptimizeRasters only supports Google service accounts for validation. This is the recommended

approach for authentication, since it is application-specific rather than user-specific. For more info

on service accounts, see Creating a service account from Google help documentation.

Generating Google service account credential key files

Before creating a new service account key, the owner of the Google account must give the necessary
permissions using the existing datastore and storage roles.

1. To generate a service account key, log in to your https://console.cloud.google.com account,
select API Manager → Credentials → Create credentials, and then select the service account

key item from the list. The downloaded JSON service account key file will be used to gain access

to read/write to buckets.

2. Save the downloaded service account key in the root folder at

C:\Users\%username%\.optimizerasters\google. Multiple service keys (and JSON files) can exist

at this location.

Accessing public Google buckets

To access publicly available buckets, you must still authenticate with a valid service account using the

following steps:

1. Create and download a separate service account key without any security roles attached.

2. Save it (alongside the other key files, if present) at the Google credential file location
(C:\Users\%username%\.OptimizeRasters\Google).

3. Rename the file to public-buckets.json so it can be easily identified.

This service account will show up in the list of profiles when using OptimizeRasters, and can be used to

access any publicly available Google bucket.

Known limitations

Access Control List (ACL) settings can’t be set while uploading files to Google Cloud Storage. As a result,

if you’re creating raster proxy files using rasters already present on Google Cloud Storage, you’ll have to

make those files publicly readable temporarily through your Google Cloud Platform account. To do this,

check the Share publicly check box next to each file on cloud storage.

Configuration file parameters

The following table lists all the Google-specific configuration file parameters and acceptable values.

Values added to the parameter files will be used unless they aren’t overridden at the command line.

https://developers.google.com/identity/protocols/OAuth2ServiceAccount
https://developers.google.com/identity/protocols/OAuth2ServiceAccount
https://console.cloud.google.com/
https://console.cloud.google.com/

28

(See Using OptimizeRasters: Command Line for equivalent command line parameters where they exist.)

Table 7: Configuration file parameters for Google Cloud Storage

Configuration File

Parameter: Google
Description

CloudDownload
Set to true if the input will be from the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

In_Cloud_Type
Specifies the cloud storage provided for the input data. Valid
options are: amazon, azure, google.
Note: For Google storage, enter google.

In_Google_ProfileName

Use this parameter to select a profile name for the security

credentials you wish to use to access the input location. Note:

This must match a profile name in the Google credential file.

In_Google_Bucket

The name of the bucket holding the input files. The specified

input credentials must provide access to this folder.

In_Google_ParentFolder
The input folder path where the input data is located. Exclude

the bucket name.

CloudUpload
Set to true if the file destination is in the cloud. Acceptable values

are: true, yes, t, 1, y, false, no, f, 0, n.

Out_Cloud_Type
Specifies the cloud storage provided for the output data. Valid
options are: amazon, azure, google.
Note: For Google storage, enter google.

Out_Google_ProfileName

Use this parameter to select a profile name for the security

credentials you wish to use to access the output location. Note:

This must match a profile name in the Google credential file.

Out_Google_Bucket
The name of the bucket that will hold the output files. The

specified output credentials must provide access to this folder.

Out_Google_ParentFolder
The output folder path where the output data will be copied.

Exclude the bucket name.

Configuration File

Parameter: Google
Description

DeleteAfterUpload

Set to true to delete temporary rasters/files after processing is

complete. Acceptable values are: true, yes, t, 1, y, false, no, f, 0,

n.

29

Using OptimizeRasters: Sample Python scripts
OptimizeRasters can be incorporated directly into custom client code. This is likely the preferred way for

developers to interact with OptimizeRasters in an automated batch processing environment (no ArcGIS

required). Included with OptimizeRasters (found in the …/OptimizeRasters/CodeSamples/ directory) are
three source files that provide sample scripts for common OptimizeRasters tasks: Table 8: Sample

Python scripts

Script filename Description

processUsingAListOfFiles.py Demonstrates how to process rasters using a list of known files

processUsingAnInputFolder.py Demonstrates how to process rasters using an input folder path

and how to deal with errors

validatingCredentialsUsingUI.py Demonstrates the OR validation process

To use these sample scripts, developers should note the following:

• The scripts include comments to guide developers.

• The preferred way to test these source files is to copy them to the same location as

OptimizeRasters.py. The default path in the OR setup points to

C:\Image_Mgmt_Workflows\OptimizeRasters.

• Temp values prefixed and suffixed with ‘!!’ will need to be edited with actual values before the

code will run successfully.

Appendix A: Working with Raster Proxy Files

Using raster proxy files with ArcGIS

What are raster proxy files?

A raster proxy file is a small file that has the same name (and valid extension) as a raster, but instead of
storing the pixels, it stores only a reference to a raster (which is often located in cloud or enterprise

storage). In ArcGIS ArcMap 10.4.1+, Pro 1.3+, and Server 10.4.1+, raster proxy files can be used to access

raster data. The user works directly with the locally stored raster proxy files, which access the large
raster data files as needed. As a result, data management is improved: the large raster datasets can be

stored in slower, inexpensive storage (like cloud storage or a storage area network), while users can

quickly work with and transfer the smaller raster proxies and associated auxiliary files.

ArcGIS treats raster proxy files the same as a full raster data file. When ArcGIS attempts to read the

pixels, it identifies the file as a raster proxy. It then reads and provides back primary metadata including

extent, number of bits, and number of bands. If pixel data is required, it accesses the slower raster data

storage, reading only the necessary tiles of raster data. Initially, such access will be slower than

accessing the data locally. However, there are two benefits: the data can be accessed without
downloading it locally, and raster proxies have the option of caching the accessed pixels (stored as highly

optimized MRF files with the extension .mrf_cache). If a cache is created, subsequent access to the same
areas occurs very quickly.

30

As a result, raster proxies can speed up and simplify the process of managing and accessing collections

of rasters, while minimizing storage costs and requirements.

Note: Raster proxies are sometimes confused with the MRF file format. While raster proxy files are

generated as a part of the MRF file format, they can also be created separately to point to any
raster file. They can also take any raster file extension. For example, a user might use

OptimizeRasters to transfer imagery into the cloud as Cloud Optimized GeoTIFF files, and generate

local raster proxy files that maintain the .tif file extension.

Typical workflow for using raster proxy files

Most commonly, raster proxies are used to create mosaic datasets from collections of rasters stored in

cloud storage.

The typical workflow for using raster proxies follows three steps:

1. Use OptimizeRasters to create small raster proxies from the remotely stored raster data files

and copy them to a machine used for image management.

2. Create mosaic datasets from the raster proxies using standard image management workflows.

The mosaic datasets can be tested using ArcGIS desktop.

3. Serve the mosaic datasets as image services.

Note: Prior to serving the imagery, the raster proxies (and any auxiliary files) may need to be

copied to the server computer, but since these files are small the process is quick. If paths
to the files change, the paths will need to be repaired in the mosaic dataset.

Access to the remotely stored raster data is an important consideration. The machine storing the raster

proxies must be able to access the raster data. For data stored in secure buckets/containers in the cloud,

this can be an issue. Some possible solutions include:

• Storing raster proxies on a virtual machine with access to the storage location (e.g. using an IAM

role)

• Providing access to relevant IP addresses in the storage location’s bucket/container policy

• Setting the raster proxy machine’s environment variables for the key/secret key needed to

access the storage location

Accessing Landsat with raster proxies

Raster proxies can be used to access free Landsat imagery from Amazon Web Services. Amazon stores

each Landsat 8 scene on publicly accessible S3 storage, formatted as eight tiled TIFF files and an

associated .met (metadata) file.

Traditionally, the user would download the files to local storage. Since one Landsat scene is about 1GB,

copying full scenes is time consuming, uses significant bandwidth, and requires substantial storage.

A better option is to use OptimizeRasters to create a locally stored raster proxy for each of the TIF files,

copying only the small .met file from the cloud. When ArcGIS views the local directory of raster proxies,

it will treat the files as if they were a complete Landsat scene—the Landsat 8 raster product and raster

types in ArcGIS will work as normal, even though the raster data remains in S3 storage.

http://pro.arcgis.com/en/pro-app/help/data/imagery/mosaic-datasets.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/mosaic-datasets.htm

31

Maximizing performance with raster proxy files

Initial access performance of raster proxies is dependent on two things:

1. The structure of the data. The performance of raster proxies is influenced by the structure of

the source data, which should be tiled and contain pyramids. If the source data is not tiled,
accessing areas of the raster at high resolution requires a large number of requests. Without

pyramids, accessing a raster at low resolution requires the whole image be accessed, which is

very slow. Using OptimizeRasters to create or transfer the rasters to cloud storage is the best
way to ensure your rasters are tiled with pyramids.

Additionally, although raster proxies created from tiled TIFF files work well, raster proxies

created from MRF files work better for two reasons: (1) MRF files are structured to minimize the

number of requests needed to extract any tile of data, and (2) MRF files offer LERC compression.

With LERC, performance is improved because the raster proxy cache is stored using the same
compression as the MRF files themselves, so no transcoding is required.

 LERC is especially well-suited for these data types:

• Higher bit-depth data (e.g., newer satellite imagery or elevation models)

• Categorical or lower-bit-depth data (e.g., classification results)

• 8-bit/band images (e.g., orthoimagery), if lossless compression is required

LERC also explicitly handles NoData values, which can reduce artifacts at the edges of some
images.

2. The connection between the machine and the storage system. While a raster proxy can be

used from any internet-accessible machine to access raster data stored on Amazon, for

example, performance will be significantly better when accessing the raster data from an EC2

instance running in the same AWS region as the S3 storage. Once a mosaic dataset of raster

proxies has been created and tested locally, the raster proxies and mosaic dataset can be copied

to an EC2 instance on AWS and served as image services.

Additionally, properly managing the block size and cache will help maximize performance.

• The block size defined in the raster proxy should be the same size as the input tile size.

• Use a GDAL block cache that is large enough to hold all the blocks. If the remote file is pixel
interleaved but the raster proxy file is band interleaved (as in the case of LERC compression),

using a large enough block cache will prevent the remote page from being read and

decompressed multiple times, once for each and every output band.

Note: GDAL block cache size is set in the system environmental variables in MB (e.g.

GDAL_CACHEMAX=64). In most cases the default values are sufficient, but if using data

with large input tiles it may be advantageous to check this value.

Creating raster proxy files from network-attached storage

Raster proxies can be used to speed up access to slower enterprise storage area networks or

networkattached storage, especially when network latency is affecting performance. Raster proxies

improve performance by reducing the number of requests to the slower storage.

32

To accomplish this, (1) create raster proxies of the network rasters on a fast SSD or direct access drive on

the server, and (2) define the cache to reside on the faster drive.

The command line for creating raster proxy files would read as follows:

<path to python.exe> <path to optimizerasters.py> -input=<path to source data> -output=<path to fast

disk> -mode=rasterproxy

Converting overviews to raster proxies

When transferring overviews to cloud storage, configuration files that do not create pyramids (included

with OptimizeRasters) should be used.

Overviews are reduced-resolution datasets created from mosaic datasets. While pyramids are required

for most rasters, they are not required for overviews, which are already created at appropriate

resolutions. For more information on overviews, see

http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-
datasetoverviews.htm.

The following OptimizeRasters configuration files offer two different compression options:

Overviews_to_MRF_LERC: Used with data that should be lossless or for floating point data.

Overviews_to_MRF_JPEG: Used with data that can be losslessly compressed, like natural color

imagery.

To create overviews for a mosaic dataset and store them in cloud storage, follow these steps:

1. Create the overviews using the ArcGIS “Define and Build Overviews” command, directing output

to a local datastore.

2. Run OptimizeRasters (using one of the configuration files listed below) to transform and copy
the overviews to cloud storage.

3. Repair mosaic dataset paths in ArGIS to point to the raster proxies. (See
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm.)

The locally stored overviews are no longer required.

Serving imagery using raster proxies

To serve imagery, raster proxy files can be transferred to a server, which will then reference the original

source data and create its own local data copies as needed.

If your imagery is not in a public bucket, the raster proxies must have access to the imagery storage

location. Example implementations include:

• Server is on an EC2 instance with IAM role access to the S3 bucket with imagery

• S3 bucket policy includes access for the IP addresses of all federated servers

• Environment variables are set on all federated servers for the user role credentials used to

access the S3 bucket

Note: To maximize performance, the server should be well-connected and located as close as possible to
where the data is stored. In the Amazon Web Services cloud, for example, the user should put the

server in the same region as the S3 storage.

http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/mosaic-dataset-overviews.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/repairing-paths-in-a-mosaic-dataset.htm

33

Embedding raster proxies into mosaic datasets

If rasters are accessed using mosaic datasets, and access to the raster proxies does not require any

auxiliary files, the raster proxies can be embedded directly into the mosaic dataset. Mosaic datasets with

embedded raster proxies no longer reference external files, so they can be easily transferred between
servers without also needing to copy additional files.

This is relevant either if the raster is a simple raster dataset, or if the raster type used to ingest the

rasters into the mosaic dataset has copied the required auxiliary data.

Note: If the raster requires additional metadata, either embedded in the raster or as an .aux.xml file next

to the raster, the raster proxy can’t be embedded into the mosaic dataset without losing access to
this metadata.

OptimizeRasters supports the creation of raster proxies as a CSV file to make it simpler to embed them

in a mosaic dataset. This can be accomplished two ways:

• Using rasterproxy mode, the output location can be defined as a .csv file (not a folder

location). This will generate a raster proxy table without creating additional raster datasets.

• Using mrf, tif, or tif_cog mode, the rasterproxypath can be defined as a .csv file (not a folder
location). This will generate a raster proxy table at the same time raster files are being
converted or transferred.

Either way, a CSV file will be generated with a header row and a single line for each raster containing the

contents of the raster proxy. A mosaic dataset can take this CSV file as input, embedding the raster
proxies in the mosaic dataset.

To embed the raster proxies after generating a CSV file, do the following:

1. Right click the mosaic dataset in the Catalog pane and select Add Rasters….

2. For Raster Type, select Table / Raster Catalog

3. Click the Browse… button and select the CSV of raster proxies you created.

4. Click Run.

To verify that the raster proxy is embedded, do the following:

1. Open the mosaic dataset’s attribute table.

2. Select an embedded raster, then click Explore Raster Items on the Data tab (be sure the mosaic

dataset is still be selected in the Contents pane).

3. Click the Item Functions button, then hover the mouse over the blue input raster. Check to

make sure the raster proxy string has been embedded properly.

It is also possible to embed raster proxies using a Python raster type (available with ArcMap 10.5+ and

ArcGIS Pro 1.4+), which is a specialized script that copies the raster proxy into the items of the mosaic

dataset.

Cache management
ArcGIS will only add to the cache as required; it will not automatically clear the cache. The cache for

raster proxies is not managed because the appropriate amount of time to keep a cache is dependent on
both the application and the size of the drive available. As a result, the user should follow the best

practices outlined here to manage the cache.

http://pro.arcgis.com/en/pro-app/help/data/imagery/custom-raster-types-in-python.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/custom-raster-types-in-python.htm
http://pro.arcgis.com/en/pro-app/help/data/imagery/custom-raster-types-in-python.htm

34

Defining a cache directory

The user should define a directory specifically for storing cache created when raster proxies are

accessed. It is recommended that z:\mrfcache\ is used as a standard. Although the cache for raster

proxies can be stored in the same location as the raster proxies, defining a dedicated directory for the
cache (ideally set as fast, accessible disk) makes cache management simpler.

When using Amazon Elastic Compute Cloud (EC2) or similar infrastructure, ephemeral disks should be

used for the cache. Ephemeral disks are fast SSD drives that are directly connected to the machines. This

means they are not limited by network bandwidths and can be easily assigned as the Z drive.

If a Z:\ drive is unavailable, create a virtual Z:\ drive that maps to any user-specified drive with these
steps:

1. Share a folder with all users granting full permission to write to the directory.

2. In Windows Explorer, click on the dropdown menu on the home tab and choose “map as drive.”

3. In the dialog box, select “Z:\” as the drive, and enter the directory path for the folder type.

Alternatively, a command similar to the following can be used at the Windows Command Prompt: subst

z: c:\temp

 The cache should follow the directory structure and naming of the source data. Since cache files have

the same name as the source raster, this will prevent errors resulting from duplicate file names.

Caches can only be safely shared by multiple processes (ArcSOC) on the same machine on a local drive.

If you’re using a non-local drive or different machines, cache corruption is likely.

How to stop caching

The user may want to stop caching temporarily under some circumstances. To stop caching

temporarily, set the environment variable MRF_BYPASSCACHING to TRUE. This variable can also be set
as a GDAL configuration option.

Following are three example scenarios when a user would turn off caching:

• Creating a high resolution tile cache of a mosaic datasets (for example, persisting a mosaic

dataset of orthoimagery as a basemap). This will typically require all data in a mosaic dataset to

be read only once. As a result, caching has little value, but could cause an overflow of the cache

storage.

• Running a process that results in all rasters being read once (for example, generating statistics

using a skip factor of one).

• Running types of raster analytics that access all the rasters once (for example, running

segmentation on a large collection of rasters using raster analytics).

Note: All raster proxy files opened while this variable is set to true are affected. Additionally, data that

has been cached already can still be read, making this suitable for some partially connected applications.

Working with CleanMRFCache to clear the cache

The user must periodically delete cached files. It is important that the files in the cache directories are

deleted periodically, or when additional space is required. Care should be taken to ensure they are

properly managed, since a full disk can lead to errors. The CleanMRFCache.py tool can help simplify this
process (see Working with CleanMRF, below).

35

Cache created by proxy rasters will have the extension .mrfcache. These files can be deleted at any time

and will not influence the running of ArcGIS.

Note: If a cache file is actively written in parallel to a request to delete it, then a file access error will

result and that file should not be deleted.

The CleanMRFCache.py tool simplifies the process of clearing the cache. CleanMRFCache is a simple
cache clean up tool that clears the cache based on amount of memory required. The CleanMRF script

should be scheduled to run on a regular basis using the Windows task scheduler.

To run CleanMRFCache, the command line would read as follows:

<path to python.exe> <path to CleanMRFCache.py> -input=<path_to_rootdirectory> -ext=<extension of

files to be deleted> -size=< Size in Bytes that should remain on the disk>

Example commands:

C:\“Program Files”\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe

C:\Image_Mgmt_Workflows\OptimizeRasters CleanMRFCache.py -input=z:\mrfcache ext=txt,mrf_cache

-size=1

C:\“Program Files”\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe

C:\Image_Mgmt_Workflows\OptimizeRasters CleanMRFCache.py -input=z:\mrfcache Optional
arguments include:

Table 9: Optional arguments for the CleanMRFCache tool

Parameter Description

-mode= The mode used to clean up the cache. Options include:

scan: (default) displays files found, their sizes, and last access date, starting

with least-accessed files first. del: Deletes files until the target -size has been

reached.

-ext= Extension of files to delete. By default, this is mrf_cache.

-size= Size in Gigabytes to remain on the disk. The default is 2 GB.

Cache management summary

• ArcGIS will not automatically clear the cache.

• The user should define a directory specifically for cache (z:\mrfcache\ is recommended).

• The cache should follow the directory structure and naming of the source data.

• Caching can be suspended temporarily, if needed.

• The user must periodically delete cached files.

• CleanMRF is a tool provided with OptimizeRasters to help simplify clearing your cache.

Appendix B: Additional OptimizeRasters GP Tools
Two additional tools are included with OptimizeRasters: The Profile Editor tool and the Resume Jobs

tool.

36

To access the OptimizeRasters Python toolbox, follow these steps:

1. Start ArcGIS Pro and create a new project.

2. In the Catalog Pane, right click Folders and select Add Folder Connection. Navigate to the
OptimizeRasters directory (C:\Image_Mgmt_Workflows\OptimizeRasters) and click OK.

3. Open the toolbox by clicking the + sign next to the OptimizeRasters directory and
OptimizeRasters.pyt (see Figure 1).

Profile Editor Tool

The Profile Editor tool allows you to store and edit credential profiles for Amazon S3 or Microsoft Azure

cloud storage.

To use OptimizeRasters with either Amazon S3 or Azure Blob, you will need specific credentials to read

or write to storage. The Profile Editor tool stores access keys and secret keys for any number of S3 or

Azure profiles. Based on the profile selected, the stored keys are then used by OptimizeRasters to access
protected cloud storage.

Profiles to use with Google Cloud Storage accounts can’t be created with the Profile Editor tool. See

Working with Google Cloud, above.

Note: When accessing S3 via an EC2 instance with IAM role access, these credentials are not required.

Instead, you’ll either check the Secured Bucket checkbox in the OptimizeRasters tool dialog, or set

the command line flag -usetoken=true.

How to add a new profile

1. Double-click the Profile Editor in the OptimizeRasters Toolbox.

2. Select a profile type (Amazon S3 or Microsoft Azure) in the Profile Editor dialog (Figure 4).

3. Enter the profile name, Access Key ID, and Secret Access Key.

4. (Optional) Enter a custom Endpoint URL (the entry point for the data access storage), if different

from the default endpoints:

 Microsoft Azure: http://blob.core.windows.net

 Amazon S3: http://s3.amazonaws.com

5. Click OK to save.

http://blob.core.windows.net/
http://blob.core.windows.net/
http://s3.amazonaws.com/
http://s3.amazonaws.com/

37

Figure 4: Profile Editor dialog

How to edit an existing profile

1. Double-click the Profile Editor in the OptimizeRasters Toolbox.

2. Select the Profile Type and enter the existing Profile Name you wish to edit.

3. Enter the new Access ID and Secret Access Key

4. (Optional) Enter a custom Endpoint URL (the entry point for the data access storage), if different
from the default endpoints:

 Microsoft Azure: http://blob.core.windows.net

 Amazon S3: http://s3.amazonaws.com

5. (Optional) Select the Editor Option ‘Overwrite Existing,’ then click OK.

How to delete an existing profile

6. Double-click the Profile Editor in the OptimizeRasters Toolbox.

7. Select the profile type and enter the profile name you wish to delete.

8. Select the Editor Option ‘Delete Existing,’ then click OK.

Resume Jobs Tool

The Resume Jobs tool is used to complete workflows that were accidentally stopped or failed to

complete. Running the Resume Jobs tool will show a list of pending jobs, and allow you to resume any
failed workflows.

http://blob.core.windows.net/
http://blob.core.windows.net/
http://s3.amazonaws.com/
http://s3.amazonaws.com/

38

How to resume unfinished jobs

1. Double-click Resume Jobs in the OptimizeRasters Toolbox to see a dropdown list of pending jobs

(Figure 5).

2. To resume a pending job, select a job from the list and click OK.

Note: Completed jobs will no longer show up in this list.

Figure 5: Resume Jobs dialog

Working with the Resume Jobs tool

When moving large collections of imagery to cloud storage, it is common for processing to be

interrupted. To make it easier to complete interrupted transfers, OptimizeRasters automatically creates

a job file each time it’s run.

A job file is a text file with a header indicating the processes performed, followed by a list of the files
remaining to be processed. The default job filename format is OR_YYYYMMDDTHHMMSSssssss.orjob,

indicating the date the job was initiated.

Note: It’s also possible to name the job files using the command-line flag -job. The .orjob extension will

be added if omitted.

If an error occurs during a workflow:

OptimizeRasters will automatically retry processing the problem raster file. If unsuccessful, the issue will

be flagged in the job file. Before completing the process entirely, OptimizeRasters will again attempt to

process any flagged files. If the issue is still unresolved, the failed raster file will remain listed in the job
file. After running OptimizeRasters, the resulting job file will list any files that were not fully processed.

Users can resume failed workflows using the Resume Jobs geoprocessing tool or by using

OptimizeRasters with the -input command line flag pointing at the job file, i.e.:

<path to python.exe> <path to OptimizeRasters> -input=OR_20151211T024329630000.orjob

The user can manually inspect the job file to see the processing stage at which each raster file failed.

If a workflow is processed successfully:

39

Once a workflow is processed successfully, the job file will be archived in the Job folder; if there are

errors, the file will remain at the OptimizeRasters.py location.

Example OptimizeRasters job files:

1. Job file for working with user-defined Sentinel HTTP raster URL entries

input=http://sentinel-s2-l1c.s3.amazonaws.com/

pyramids=false

config=C:/Image_Mgmt_Workflows/OptimizeRasters/Templates/Sentinel2_to_MRF.xml #

mode=mrf

output=C:/processed/files

SOURCE COPIED PROCESSED UPLOADED http://sentinel-s2-
l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2 http://sentinel-s2-
l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2

2. Job file with entries pointing at a local resource

Note: The listed file below that starts with “##” is commented out and will not be processed.

input=C:/your_raster/files/path

config=C:/Image_Mgmt_Workflows/OptimizeRasters/Templates/Imagery_to_TIF_JPEG.xml #

output=C:/processed/files
SOURCE COPIED PROCESSED UPLOADED

C:/your_raster/files/path/metadata.txt

C:/your_raster/files/path/bahrain.TIF

C:/your_raster/files/path/subfolder0/earth.TIF

C:/your_raster/files/path/subfolder0/subfolder1/water.tif

C:/your_raster/files/path/subfolder1/fire.TIF

3. Job file for processing rasters in an S3 bucket and uploading the processed files to Azure storage

input=your_raster/files/path

inputbucket=your_s3_bucket_name

clouddownload=true

clouddownloadtype=amazon

inputprofile = amazon_credential_profile_name

config=C:/Image_Mgmt_Workflows/OptimizeRasters/Templates/Imagery_to_TIF_JPEG.xml

output=your_processed_amazon/files/on/azure

tempoutput=C:/temp/storage/to/store/before/pushed/to_azure

cloudupload=true

clouduploadtype=azure

outputprofile=azure_credential_profile_name

outputbucket=your_azure_container_or_bucket_name SOURCE

COPIED PROCESSED UPLOADED

your_raster/files/path/world.tif

your_raster/files/path/subfolder0/air.tif

http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B01.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2
http://sentinel-s2-l1c.s3.amazonaws.com/tiles/10/R/EV/2016/1/13/0/B02.jp2

40

Appendix C: Using Obfuscation for Access Control in the Cloud
OptimizeRasters’ -haskkey flag helps with file obfuscation, which is a simpler alternative to common

access control methods used in cloud environments.

OptimizeRasters has a feature to help obfuscate directories by optionally appending an obfuscation key

to a directory name for the output imagery. The obfuscation key is generated using a hash of the original
directory and a hashkey, so the same key can be regenerated if additional data is added to the directory.

Frequently, a user may need to make imagery accessible to only a select group. Two common options

for controlling access include ACL (Access Control List) and VPC (Virtual Private Cloud). However, these

and other common access control options require the maintenance of multiple user names and
passwords, and the additional security overhead can slow down access speed.

A simpler method is file obfuscation. File obfuscation locates files in public buckets that can be accessed

by anyone, but (1) the names of the files are obfuscated so that it is not possible to guess the contents

and (2) the bucket policy is set up so that users cannot query or get listings of the bucket content. Only
users who know the URLs of the files can access them or share them (by email, for example).

The largest limitation to the file obfuscation method is that once a URL has been shared, access cannot

be easily revoked for a single user. The file can be deleted from the bucket, but then all users lose

access. However, even using secure storage, once a user has downloaded a file, access to the original file

is irrelevant. As a result, sharing the short URL to the raster should be considered equivalent to sharing

the data files. Ultimately, though, obfuscation usually provides sufficient access security for large
datasets, with advantages in terms of simplicity, performance, and interoperability.

Using the -hashkey flag
The command line flag -hashkey can be set to a value that will be used to generate the hash output text.

You can use your own custom key as hash text; you can insert that text at any folder position; or you can
use randomly generated hash text:

Table 40: Hashkey flag syntax

Usage Description

-hashkey=secret_key Generates the hash text in the output path based on your <secret_key>.

Using your own private key is useful if you or anyone on your team will add data to the output cloud

path in the future. Additionally, using the same <secret_key> will make sure data will be synced properly
with existing folders and avoid creating new output folder hash paths each time OptimizeRasters is run.

Table 51: Hashkey flag syntax for custom hash positioning

Usage Description

-hashkey=secret_key@2 The @ sign followed by a numeric value can be used to position the

generated hash text in the output cloud path.

A. If the @ sign is omitted, or the number specified is less than 2, OptimizeRasters defaults to

inserting the hash text as the second subfolder from the left:

 Example 1: \ParentFolder\RFd8GFf5_@\Scene1\a.tif

41

B. If the specified value is larger than the maximum number of subfolders in the user-entered output
path, OptimizeRasters automatically inserts the hash text just above the base filename: Example 2:
\ParentFolder\Scene1\RFd8GFf5_@\a.tif

Note: While Example 2 is also equivalent to -hashkey=secret_key@3, entering a very large number after

the @ sign (e.g. -hashkey=secret_key@10000) will ensure that OptimizeRasters always inserts the

hash text just above the base filename.

Using the # flag is useful if the user simply wants to hash out the output folder but still ensure that the
output folder structure isn’t easy to guess by anyone with access to the data.

Table 62: Syntax for hashing an individual output folder

Usage Description

-hashkey=# Creates random hash text for any individual cloud output folder.

Example usage
To help visualize hash text in cloud output folders, the same files are shown with and without

obfuscation.

Without -hashkey enabled:

\ParentFolder\Scene1\a.tif

\ParentFolder\Scene1\b.tif

\ParentFolder\Scene2\c.tif

With -hashkey set at the command line:

\ParentFolder\RFd8GFf5_@\Scene1\a.tif

\ParentFolder\RFd8GFf5_@\Scene1\b.tif

\ParentFolder\fgEfQRrq_@\Scene2\c.tif

Note: The hashed folders above for the files a.tif and b.tif share the same hash text in the output folder

path because their original folder path was the same.

Obfuscation with raster proxy files
Raster proxy files created during a file conversion won’t include the hash keys. If the raster proxy files
are created separately, using the rasterproxy mode, the hash key will be placed on the local disk.

Obfuscation highlights

• -hashkey is an optional flag at the command line.

• -hashkey is only effective if clubbed together with the -cloudupload=true.

• The output hash is always suffixed with ‘_@’ for easy identification and easy removal, if needed.

• The generated hash text is 10 characters long, including the hash suffix.

• The hashing algorithm uses MD5 one-way hashing.

• The same -hashkey will result in the same hash text for the specific output path in order to

simplify adding additional files to an existing folder at a later time.

• -hashkey usage does not affect -cache and -rasterproxy folder paths entered at the command

line.

42

Appendix D: Working with ArcGIS Server and ArcGIS Desktop
The raster proxy caching support is designed to allow multiple processes to write to the same cache

simultaneously without corrupting the cache. However, when using ArcGIS Desktop and Server on the

same machine, some special considerations are required. If ArcGIS Server creates a file, ArcGIS Desktop
(which is logged in as a different user) is not automatically able to read the file.

To resolve this problem, be sure to set permissions so that all users have read and write permission to

the folder where the cache will be stored.

Appendix E: Common Raster File Formats
Below is a breakdown of common raster file formats referenced in this document.

TIFF (or

GeoTIFF)

- Very popular format for imagery and rasters

- Supports different bit depths and numbers of bands

- Includes additional metadata in tags internal to the file

- TIFF files from data providers are often in the simplest form and inefficient to access

- Can include georeferencing information embedded as tags (sometimes called GeoTIFF)

Tiled TIFF - Type of TIFF or GeoTIFF

- Pixels are structured into tiles to optimize access, especially for large files. This minimizes
the number of disk access requests to get a subset of pixels.

- Tiling is done by including an index to the tiles as part of the metadata tags.

- Optional JPEG or LZW/Deflate compression can reduce file sizes

- Optional pyramids (sometimes referred to as reduced resolution datasets or overviews)

increase access efficiency at smaller scales. These pyramids increase the file size by

between 30% - 50% depending on the compression and type of data.

Cloud-

Optimized

GeoTIFF

- Two differences from tiled TIFF: Pyramids are required, and the index and pyramids are
moved to the beginning of the file.

- This file restructuring can provide a slight performance improvement in applications that
only view the image at small scales or need to crawl for the metadata.

- Creating COG files takes longer than tiled TIFF because the pyramids and tags are moved to
the start of the files.

- In ArcGIS Pro, performance improvements are negligible compared to tiled TIFF.

