
1

Extended Shape Buffer Format
June 20, 2012

2

Introduction
The shapefile record structure has been extended to allow for the presence of additional modifiers in a shape record.
Additional modifiers currently include information about curved segments and point IDs, both explained later. The
format extension has been structured in a way that should allow even more modifiers to be added in the future with
minimal complication.

Multipatch shape type is also extended to accommodate some additional modifiers. This type is used to represent
certain 3D geometries with material properties.

Existing shape formats
As a brief review, the current shape structure for Polylines, polygons, and multipatches is this:

long type;
WKEnvelope boundingBox;1
long cParts,
 cPoints,
 parts[cParts];
 partTypes[cParts]; // Multipatches only
WKSPoint points[cPoints];

This persistent structure can be read into memory very quickly, and very quickly converted into a format useable by
the Win32 drawing API. These properties need to be preserved.

Polylines, polygons, and multipatches can also be tagged with M and Z information. This information appears
immediately after the structure shown above. The Z information is structured like this:

double ZMin;
double ZMax;
double Zs[cPoints];

If Ms are present, they appear after the Zs if Zs are present, or after the points if there are no Zs. Their structure is
analogous to the Z structure.

Overview of the new format
The new format can be easily broken down into sections, some of which are present in all records, and others of
which are present only in a fraction of records. This section of the document will cover the layout of the record
sections and provide a brief description of each. The following sections of the document will then provide more
detailed information about each record section.

The first section stores the structural geometry of the shape. It is the most important of the sections and occurs in
every shape record. One item stored in the first section is the shape-type, which allows the reader to determine
which of the other sections will be present.

1 WKSEnvelope is defined as:
struct WKSEnvelope
{
 double xMin, yMin, xMax, yMax;
};

WKSPoint is defined as:
struct WKSPoint
{
 double x, y;
}

3

The other sections contain information about modifiers to the structural geometry. Each section is present only if
the modifier associated with it is present in the shape. The second section contains Z data for the shape. The third
section contains M data for the shape. The fourth section contains curve data for the shape. The fifth section
contains point ID data for the shape.

Structural geometry section
This section looks nearly identical to an older shape record with no Ms or Zs. For points:

long type;
double x,
 y;

For multipoints:

long type;
WKSEnvelope boundingBox;
long cPoints;
WKSPoint points[cPoints];

For polygons and polylines:

long type;
WKEnvelope boundingBox;
long cParts,
 cPoints,
 parts[cParts];
WKSPoint points[cPoints];

For multipatches:

long type;
WKEnvelope boundingBox;
long cParts,
 cPoints,
 parts[cParts];
 partDescriptors[cParts];
WKSPoint points[cPoints];

The difference is that there are some new values possible for the shape type (the first four bytes). The shape type
may have any of the values that have been used in the past, in which case the record’s format will be unchanged
from that previously encountered with the shape type.

Alternatively, the shape type may be a new value. Each new value has two distinct parts. The first part tells what
general structure the shape has. It may be any of the following values:

 esriShapeGeneralPolyline = 50,
 esriShapeGeneralPolygon = 51,
 esriShapeGeneralPoint = 52,
 esriShapeGeneralMultipoint = 53,
 esriShapeGeneralMultiPatch = 54

Shapes with any of these values for the first part of their shape type will hereafter be referred to as having a “general
type.” A special mask, esriShapeBasicTypeMask, has been provided for extracting the first part of any shape type.
Performing a bitwise OR between a shape type and this mask will give the first part of the shape type:

4

 structuralPart = shapeType & esriShapeBasicTypeMask;

Performing a bitwise OR between an older shape type and this mask will return the shape type, with no changes.

The second part tells what types of modifiers will be applied to the shape, and consequently which additional
sections the reader will have to look for. The second part may contain any combination of the following bits:

 esriShapeHasZs = 0x80000000,
 esriShapeHasMs = 0x40000000,
 esriShapeHasCurves = 0x20000000,
 esriShapeHasIDs = 0x10000000,
 esriShapeHasNormals = 0x08000000,
 esriShapeHasTextures = 0x04000000,
 esriShapeHasPartIDs = 0x02000000,
 esriShapeHasMaterials = 0x01000000

These modifier bits are never combined with the old shape type values, such as esriShapePolyline or
esriShapePolygonM, since the old values already carry information about their modifiers.

Bit(s) 31 30 29 28 27 26 25 24 23…8 7…0
Purpose has Zs has Ms has

Curves
has IDs has

Normals
has
Textures

has
PartIDs

has
Materials

unused basic
shape type

Additionally, there is a set of values that have special interpretations: If the shape is esriShapeGeneralPolygon or
esriShapeGeneralPolyline, but it does not have any of the newer modifier bits, it should be interpreted as having
curves. To check whether a shape type contains any new modifier bits, one can perform a bitwise OR between the
shape type and a special mask provided for this purpose:

 shapeType & esriShapeNonBasicModifierMask

If the result is zero, the shape type does not contain any new modifier bits and should be interpreted as having
curves in addition to the modifiers specifically indicated by any other bits that may be present. If the result is non-
zero, the shape type contains one of the new bits. In the latter case, the only modifiers present are the ones
corresponding to the bits in the shape type.

Part Descriptors data section
This section is only present if the shape type is esriShapeGeneralMultiPatch. Multipatch shapes also have the
esriShapeHasPartIDs bit set.

long partDescriptors[cParts];

To define and interpret partDescriptors values, the following struct should be used:

struct esriPartDescriptor
{
 union
 {
 long descriptor; // generalized part ID
 struct
 {
 int PartType : 4;
 unsigned LevelOfDetail : 6;
 int Priority : 6;
 unsigned Material : 16;

5

 };
 };
};

The values used for encoding part type are defined as follows:

esriPatchTypeTriangleStrip = 0,
esriPatchTypeTriangleFan = 1,
esriPatchTypeOuterRing = 2,
esriPatchTypeInnerRing = 3,
esriPatchTypeFirstRing = 4,
esriPatchTypeRing = 5,
esriPatchTypeTriangles = 6 // new in esriShapeGeneralMultiPatch

Figure 1
Multipatch General Type Part Examples

V2

V1 V3

V4

V5

V6

V7

V8

V9

Triangle Strip

V2

V1 V3

V4
V5

V6

V7

Triangle Fan

Outer Ring

Inner Rings

Unknown Ring

First
Unknown
Ring

Examples of all types of Multipatch parts, including the new esriPatchTypeTriangles.

LevelOfDetail value is a hint reserved for future use.

Priority is an integer value in the range of [-32,31] indicating the relative priority between the coincident surface
patches. The default is zero as the most typical value.

Material value is the index into materials[] array (see Materials data section bellow).

Z data section
This section is only present if the shape has Zs. All of the following types indicate the presence of Z values:

 esriShapePointZM = 11,
 esriShapePointZ = 9,
 esriShapeMultipointZM = 18,
 esriShapeMultipointZ = 20,

Triangles

V1

V2

V3

V4

V5

V6
V7

V8
V9

6

 esriShapePolylineZM = 13,
 esriShapePolylineZ = 10,
 esriShapePolygonZM = 15,
 esriShapePolygonZ = 19

Zs will also be present if there is a general type with the esriShapeHasZs bit.

For all storage types except points, the Z section starts by giving the minimum and maximum Z values found in the
shape. Next come the Z value found at each point in the shape. Thus, for points:

double Z;

For multipoints, polygons, and polylines:

double ZMin;
double ZMax;
double Zs[cPoints];

M data section
This section is only present if the shape has Ms. All of the following types indicate the presence of M values:

 esriShapePointM = 21,
 esriShapePointZM = 11,
 esriShapeMultipointM = 28,
 esriShapeMultipointZM = 18,
 esriShapePolylineM = 23,
 esriShapePolylineZM = 13,
 esriShapePolygonM = 25,
 esriShapePolygonZM = 15,

Ms will also be present if there is a general type with the esriShapeHasMs bit.

The M section is very similar to the Z section. It gives the minimum and maximum M values found in the shape,
except for points, followed by the M value found at each point in the shape. For points:

double M;
For multipoints, polygons, and polylines:

double MMin;
double MMax;
double Ms[cPoints];

Curve data section
The curve section is the first of the sections associated only with general types. All shapes with curves will have a
general type, and they will be some sort of polygon or polyline. Shapes with curves will almost always have the
esriShapeHasCurves bit set, but there is a special case described in the structural geometry section above, in the
discussion of bit flags. As with the M and Z sections, the curve section will only be present if the shape has curves.
The section begins by giving the number of curved segments in the shape. It then provides that number of curve
sub-records. Thus if only one or two segments in a shape are non-linear, this section will be very short.

long cSegmentModifiers;
esriSegmentModifier curvedSegments[cSegmentModifiers];

7

These sub-records vary in length, depending on the type of curve. . The general layout follows:

struct esriSegmentModifier
{
 long startPointIndex,
 segmentType;
 union {
 SegmentArc arc;
 SegmentBezierCurve bezierCurve;
 SegmentEllipticArc ellipticArc;
 SegmentOther otherKindsOfSegment;
 …
 } segmentParams;
}

Each sub-record provides the information needed to determine the non-linear connection between some pair of
points j and j+1, where j is given by the startPointIndex, as shown above. The segmentType identifies the type of
curve described by the sub-record. The remainder of the sub-record is specific to its associated segment type.
The following segmentType values are currently defined.

enum esriSegmentType
{
 esriSegmentArc = 1,
 esriSegmentLine = 2,
 esriSegmentSpiral = 3,
 esriSegmentBezier3Curve = 4,
 esriSegmentEllipticArc = 5
}

The esriSegmentLine value will never appear in the curve data section. However, that value should be considered
reserved.

8

Circular arc sub-records
A circular arc is a part of a circle. Each end point of the segment will lie on a circle, and the segment between
them will be one of the two resulting pieces. A circular arc sub-record provides the details about the circle and
about which of the two pieces should be used:

struct SegmentArc
{
 union {

WKSPoint centerPoint; // If IsPoint is 0. Also, it is ignored if
 // IsLine is 1.
double angles[2]; // If IsPoint is 1: start and central angle

 // centerPoint = endPoint
 }

 long Bits; // contains among others bits for IsPoint, IsLine...
};

Bits contains the following bits (starting with bit 0):

IsEmpty; // arc is undefined
(reserved)
(reserved)
IsCCW; // 1 if arc is in counterclockwise order
IsMinor; // 1 if central angle of arc does not exceed pi
IsLine; // only SP and EP are defined;
IsPoint; // CP, SP, EP are identical; angles are stored instead of CP

 DefinedIP; // IP – interior point; arcs persisted with 9.2 persist
 // endpoints + 1 interior
 // point, rather than endpoints and center point so that the
 // arc shape can be recovered after projecting to another
 // spatial reference and back again; point arcs still replace
 // the center point with SA and CA

Bezier curve sub-records
A bezier curve segment is simply a section of a third order bezier curve (the only type considered here). The
curve is defined by four control points. The first and last of these points are the segment end points are given
by the segment end points, found in the structural geometry section of the shape record. This leaves the middle
two control points to be stored in the bezier sub-record:

struct SegmentBezierCurve
{

WKSPoint controlPoints[2]; // The two middle control points
};

Elliptic arc sub-records
An elliptic arc is similar to a circular arc. Instead of being a section of a circle, though, it is a section of an
ellipse. As with a circular arc, the elliptic arc sub-record describes the ellipse on which the segment lies, and
indicates which of the two parts between the end points is to be used:

struct SegmentEllipticArc
{
 union {
 WKSPoint Center; // If CenterTo and CenterFrom are both 0

9

 double Vs[2]; // If CenterTo or CenterFrom is 1: from and delta Vs.
 // Center = fromPoint or toPoint, depending on
 // values. Vs are similar to angles. If you think of
 // an ellipse as a stretched circle, then Vs are
 // angles on the circle being stretched.
 }

 union {
 double Rotation; // If CenterFrom is 1 or CenterTo is 1 or IsLine
 // is 0. Rotation of the semimajor axis relative to
 // the x-axis, in radians.
 double FromV; // If CenterTo is 0, CenterFrom is 0, and IsLine
 // is 1.
 }

 double SemiMajor; // On the embedded ellipse, this is the distance
 // from the center to the point furthest from the
 // center.

 union {
 double MinorMajorRatio; // If CenterFrom is 1 or CenterTo is 1
 // or IsLine is 0. The ratio between the
 // semiminor and semimajor axes.
 double DeltaV; // If CenterFrom is 0 and CenterTo is 0 and
 // IsLine is 1.
 }

 long Bits;
};

Bits contains the following bits (starting with bit 0):

IsEmpty // 1 if the arc is undefined
(reserved)
(reserved) // These 5 bits are used only at run-time. Their values
(reserved) // are ignored when reading from disk.
(reserved)
(reserved)
IsLine // 1 if the MinorMajorRatio is 0.
IsPoint // 1 if the SemiMajor axis is 0.
IsCircular // 1 if the MinorMajorRatio is 1.
CenterTo // 1 if the Center and the ToPoint are identical.
CenterFrom // 1 if the Center and the FromPoint are identical.
IsCCW // 1 if the arc is in counterclockwise order
IsMinor // 1 if DeltaV does not exceed pi (or go below –pi).
IsComplete // 1 if DeltaV is plus or minus 2*pi.

10

Point ID data section
As with previous sections, the point ID section will only be present if the shape has point IDs. Only shapes with
general types and the esriShapeHasIDs bit set will have point IDs.

Minimum and maximum values are not stored for point IDs, so this section consists of just the point ID values found
at each point. This also means that there is no difference in the format of this section between points and other
geometries (for points, cPoints is assumed to be 1).

long PointIDs[cPoints];

Point Normal data section
As with previous sections, the point Normal section will only be present if the shape has point Normals. Only
shapes with general types and the esriShapeHasNormals bit set will have point Normals. Face vertex normals are
used in shading intensity calculations under illumination.

This section consists of just the point Normal component values found at each point. It is recommended that
individual Normal vectors be normalized, that is, have magnitude of 1.

long cNormals; // cNormals = cPoints or 0 if no Normals
float PtNormals[cNormals][3]; // present if cNormals > 0

Point Texture Coordinates data section
The point Texture Coordinates section will only be present if the shape has point Texture Coordinates. Only shapes
with general types and the esriShapeHasTextures bit set will have point Texture Coordinates. Face vertex Texture
Coordinates are used in texturing faces when Materials with texture data are present.

The Texture Coordinates can have 1, 2, or 3 components, corresponding to 1-, 2-, or 3-dimensional texture image
recorded in Materials data section bellow. Not all shape parts need to have texture coordinates:

long cTexPts; // 0 if no Texture Coordinates present
long texDim; // 1, 2, or 3 (present if cTexPts > 0)
long texParts[cParts]; // present only if cTexPts > 0
float texPoints[cTexturePts][texDim]; // present only if cTexPts > 0

An array element texParts[i] holds the index of the first texture coordinate within texPoints[] which
corresponds to part i. If part i has no texture coordinates, then texParts[i] = texParts[i+1]. As a
consequence, it is permissible to have cTexPts <= cPoints.

11

Materials data section
As with previous sections, the Materials section will only be present if the shape has materials. Only shapes with
general types and the esriShapeHasMaterials bit set will have Materials. Materials are used in rendering faces of an
areal shape, typically a Multipatch.

long cMaterials; // 0 if no Materials present
long texCompressionType; // present only if cMaterials > 0
long materials[cMaterials+1]; // present only if cMaterials > 0
Byte materialBlocks[materials[cMaterials]]; // present only if cMaterials > 0

Where:

The values used for encoding texCompressionType are defined as follows:

esriTextureCompressionNever = 1,
esriTextureCompressionNone = 2,
esriTextureCompressionJPEG = 3,
esriTextureCompressionJPEGPlus = 4 // with transparency mask

Array element materials[i] represents the offset, starting at 4, into materialBlocks buffer corresponding
to the Material i block. The size in bytes of the Material block i is consequently equal to materials[i+1]-
materials[i].

The first 4 bytes of the materialBlocks are reserved for internal use (e.g.: for storing the uncompressed buffer
size), followed by the serialized buffer of all MaterialBlocks in the range [0, cMaterials-1]. Note again that
materials[0]cannot be less than 4 as a consequence.

MaterialBlock has one or more material properties identified by materialType value stored in the first byte.

enum materialType
{
 materialColor = 1,
 materialTextureMap = 2,
 materialTransparency = 3,
 materialShininess = 4,
 materialSharedTexture = 5,
 materialCullBackFaces = 6,
 materialEdgeColor = 9,
 materialEdgeWidth = 10,
 materialLast = 11
};

Material Properties by materialType:

materialColor:
{
 Byte type; // materialColor
 Byte red, green, blue; // [0, 255]
}

materialTextureMap:
{

12

 Byte type; // materialTextureMap
 Byte bpp; // Bytes per pixel
 short width; // texture width
 short height; // texture height
 long size; // texture buffer size
 long tcType; // esriTextureCompressionType
 Byte texBuff[size]; // texBuff[height][width][bpp] if not compressed
}

Note that texBuff is stored row-wise, where:

texBuff[0][anyCol] corresponds to texture coordinates (s, t = 0.0);
texBuff[height-1][anyCol] corresponds to texture coordinates (s, t = 1.0);
texBuff[anyRow][0] corresponds to texture coordinates (s = 0.0, t);
texBuff[anyRow][width-1] corresponds to texture coordinates (s = 1.0, t).

Color components, if not compressed, are stored in RGBA order. For example, in the case of 3 bytes per pixel
(bpp = 3), the components are stored as:

texBuff[row][col][0] representing Red value;
texBuff[row][col][1] representing Green value;
texBuff[row][col][2] representing Blue value.

If texture is compressed, texBuff contains the compressed stream, and size is the compressed size in bytes.

materialTransparency:
{
 Byte type; // materialTransparency
 Byte transparency; // percent transparency [0, 100]
}

materialShininess:
{
 Byte type; // materialShininess
 Byte shininess; // percent shininess [0, 100]
}

materialSharedTexture:
{
 Byte type; // materialSharedTexture
 long materialIndex; // material with the full materialTextureMap
}

materialCullBackFaces:
{
 Byte type; // materialCullBackFaces
}

materialEdgeColor:
{
 Byte type; // materialEdgeColor
 Byte red, green, blue; // [0, 255]
}

materialEdgeWidth:
{
 Byte type; // materialEdgeWidth

13

 Byte width; // <= 255
}

14

Summary of complete records
Putting together all of the sections described above, one can assemble the format for any type of geometry. They are
provided here for ease of reference.

Before the record layout for each shape type, there is a description of how to use the shape type to determine
whether the record is of the format in question. The layouts will refer to whether or not a shape has certain
modifiers. Refer back to the section on any given modifier to find out how to determine if the shape has that
modifier.

A shape is a point if any of the following are true:

 shapeType == esriShapePoint
 shapeType == esriShapePointZ
 shapeType == esriShapePointM
 shapeType == esriShapePointZM
 (shapeType & esriShapeBasicTypeMask) == esriShapeGeneralPoint

Table 1

Point Record Contents

Position

Field Type Number Byte Order

Byte 0 ShapeType Integer 1 Little
Byte 4 X Double 1 Little
Byte 12 Y Double 1 Little
Byte 202 Z Double 1 Little
Byte A3 M Double 1 Little
Byte B4 ID Integer 1 Little

A shape is a multipoint if any one of the following is true:

 shapeType == esriShapeMultipoint
 shapeType == esriShapeMultipointZ
 shapeType == esriShapeMultipointM
 shapeType == esriShapeMultipointZM
 (shapeType & esriShapeBasicTypeMask) == esriShapeGeneralMultipoint

Table 2
Multipoint Record Contents

Position

Field Type Number Byte Order

Byte 0 ShapeType Integer 1 Little
Byte 4 Box Double 4 Little
Byte 36 NumPoints Integer 1 Little
Byte 40 Points Point NumPoints Little
Byte C5 ZMin Double 1 Little

2 Only present if shape has Zs.
3 Only present if shape has Ms. A = 20 + (0 if no Zs OR 8 if Zs present)
4 Only present if shape has IDS. B = A + (0 if no Ms OR 8 if Ms present)
5 Only present if shape has Zs. C = 40 + (16 * NumPoints)

15

Byte C + 85 ZMax Double 1 Little
Byte C + 165 Zs Double NumPoints Little
Byte D6 MMin Double 1 Little
Byte D + 86 MMax Double 1 Little
Byte D + 166 Ms Double NumPoints Little
Byte E7 IDs Integer NumPoints Little

A shape is a polyline if any one of the following is true:

 shapeType == esriShapePolyline
 shapeType == esriShapePolylineZ
 shapeType == esriShapePolylineM
 shapeType == esriShapePolylineZM
 (shapeType & esriShapeBasicTypeMask) == esriShapeGeneralPolyline

A shape is a polygon if any one of the following is true:

 shapeType == esriShapePolygon
 shapeType == esriShapePolygonZ
 shapeType == esriShapePolygonM
 shapeType == esriShapePolygonZM
 (shapeType & esriShapeBasicTypeMask) == esriShapeGeneralPolygon

Table 3
Polyline and Polygon Record Contents

Position

Field Type Number Byte Order

Byte 0 ShapeType Integer 1 Little
Byte 4 Box Double 4 Little
Byte 36 NumParts Integer 1 Little
Byte 40 NumPoints Integer 1 Little
Byte 44 Parts Integer NumParts Little
Byte F8 Points Point NumPoints Little
Byte G9 ZMin Double 1 Little
Byte G + 89 ZMax Double 1 Little
Byte G + 169 Zs Double NumPoints Little
Byte H10 MMin Double 1 Little
Byte H + 810 MMax Double 1 Little
Byte H + 1610 Ms Double NumPoints Little
Byte I11 NumCurves Integer 1 Little
Byte I + 411 SegmentModifiers SegmentModifier NumCurves Little
Byte J12 IDs Integer NumPoints Little

6 Only present if shape has Ms. D = C + [0 if no Zs OR 16 + (8 * NumPoints) if Zs present]
7 Only present if shape has IDs. E = D + [0 if no Ms OR 16 + (8 * NumPoints) if Ms present]
8 F = 44 + (4 * NumParts)
9 Only present if shape has Zs. G = F + (16 * NumPoints)
10 Only present if shape has Ms. H = G + [0 if no Zs OR 16 + (8 * NumPoints) if Zs present]
11 Only present if shape has curves. I = H + [0 if no Ms OR 16 + (8 * NumPoints) if Ms present]
12 Only present if shape has IDs. J = I + [0 if no curves OR 4 + (28 per circular arc) + (40 per bezier curve) + (52
per elliptic arc)]

16

A shape is a multipatch if any one of the following is true:

 shapeType == esriShapeMultiPatch
 shapeType == esriShapeMultiPatchM
 (shapeType & esriShapeBasicTypeMask) == esriShapeGeneralMultiPatch

Table 4
Multipatch General Type Record Contents

Position

Field Type Number Byte Order

Byte 0 ShapeType Integer 1 Little
Byte 4 Box Double 4 Little
Byte 36 NumParts Integer 1 Little
Byte 40 NumPoints Integer 1 Little
Byte 44 Parts Integer NumParts Little
Byte K13 PartDescriptors Integer NumParts Little
Byte L14 Points Point NumPoints Little
Byte M15 ZMin Double 1 Little
Byte M + 815 ZMin Double 1 Little
Byte M + 1615 Zs Double NumPoints Little
Byte N16 NumMs Integer 1 Little
Byte N + 417 MMin Double 1 Little
Byte N + 1217 MMax Double 1 Little
Byte N + 2017 Ms Double NumMs Little
Byte O18 NumIds Integer 1 Little
Byte O + 417 IDs Integer NumIds Little
Byte P19 NumNormals Integer 1 Little
Byte P + 417 Normals Float[3] NumNormals Little
Byte Q20 NumTex Integer 1 Little
Byte Q + 417 TexDim Integer 1 Little
Byte Q + 817 TexParts Integer NumParts Little
Byte Q + 8 + (4*NumParts)17 TexCoords Float[TexDim] NumTex Little
Byte R21 NumMaterials Integer 1 Little
Byte R + 417 TexCompType Integer 1 Little
Byte R + 817 Materials Integer NumMaterials+1 Little
Byte S22 Material Material block NumMaterials Little

Note that NumMs, NumIds, and NumNormals can only have two values: 0 or NumPoints, depending on the presence of the
corresponding modifier attribute.

13 K = 44 + (4 * NumParts)
14 L = K + (4 * NumParts)
15 M = L + (16 * NumPoints)
16 N = M + 16 + (8 * NumPoints)
17 Only present if shape has the corresponding modifier.
18 O = N + [4 if no Ms OR 20 + (8 * NumMs) if Ms present]
19 P = O + [4 if no IDs OR (4 + 4 * NumIds) if IDs present]
20 Q = P + [4 if no Normals OR (4 + 12 * NumNormals) if Normals present]
21 R = Q + [4 if no Texture Coords OR 8 + (4 * NumParts) + (4 * TexDim * NumTex) if Texture Coords present]
22 Only present if shape has Materials. S = R + (12 + 4 * NumMaterials).

	Extended Shape Buffer Format
	Existing shape formats
	Overview of the new format
	Structural geometry section
	Part Descriptors data section
	Z data section
	Triangles
	M data section
	Curve data section
	Circular arc sub-records
	Bezier curve sub-records
	Elliptic arc sub-records

	Point ID data section
	Point Normal data section
	Point Texture Coordinates data section
	Materials data section
	Material Properties by materialType:
	materialColor:
	materialTextureMap:
	materialTransparency:
	materialShininess:
	materialSharedTexture:
	materialCullBackFaces:
	materialEdgeColor:
	materialEdgeWidth:

	Summary of complete records

