// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #ifdef __linux__ # include # include # if BOOST_VERSION >= 108800 # define BOOST_PROCESS_VERSION 1 # include # include # include # else # include # endif #endif #include #include #include #include #include #include #include #include using namespace std::chrono_literals; namespace po = boost::program_options; std::mutex recv_mutex; static bool stop_signal_called = false; static bool overflow_message = true; void sig_int_handler(int) { stop_signal_called = true; } #ifdef __linux__ /* * Very simple disk write test using dd for at most 1 second. * Measures an upper bound of the maximum * sustainable stream to disk rate. Though the rate measured * varies depending on the system load at the time. * * Does not take into account OS cache or disk cache capacities * filling up over time to avoid extra complexity. * * Returns the measured write speed in bytes per second */ double disk_rate_check(const size_t sample_type_size, const size_t channel_count, size_t samps_per_buff, const std::string& file) { std::string err_msg = "Disk benchmark tool 'dd' did not run or returned an unexpected output format"; boost::process::ipstream pipe_stream; boost::filesystem::path temp_file = boost::filesystem::path(file).parent_path() / boost::filesystem::unique_path(); std::string disk_check_proc_str = "dd if=/dev/zero of=" + temp_file.native() + " bs=" + std::to_string(samps_per_buff * channel_count * sample_type_size) + " count=100"; try { boost::process::child c( disk_check_proc_str, boost::process::std_err > pipe_stream); std::this_thread::sleep_for(std::chrono::seconds(1)); if (c.running()) { c.terminate(); } } catch (std::system_error& err) { std::cerr << err_msg << std::endl; if (boost::filesystem::exists(temp_file)) { boost::filesystem::remove(temp_file); } return 0; } // sig_int_handler will absorb SIGINT by this point, but other signals may // leave a temporary file on program exit. boost::filesystem::remove(temp_file); std::string line; std::string dd_output; while (pipe_stream && std::getline(pipe_stream, line) && !line.empty()) { dd_output += line; } // Parse dd output this format: // 1+0 records in // 1+0 records out // 80000000 bytes (80 MB, 76 MiB) copied, 0.245538 s, 326 MB/s // and capture the measured disk write speed (e.g. 326 MB/s) std::smatch dd_matchs; std::regex dd_regex( R"(\d+\+\d+ records in)" R"(\d+\+\d+ records out)" R"(\d+ bytes \(\d+(?:\.\d+)? [KMGTP]?B, \d+(?:\.\d+)? [KMGTP]?iB\) copied, \d+(?:\.\d+)? s, (\d+(?:\.\d+)?) ([KMGTP]?B/s))" ); std::regex_match(dd_output, dd_matchs, dd_regex); if ((dd_output.length() == 0) || (dd_matchs[0].str() != dd_output)) { std::cerr << err_msg << std::endl; } else { double disk_rate_sigfigs = std::stod(dd_matchs[1]); switch (dd_matchs[2].str().at(0)) { case 'K': return disk_rate_sigfigs * 1e3; case 'M': return disk_rate_sigfigs * 1e6; case 'G': return disk_rate_sigfigs * 1e9; case 'T': return disk_rate_sigfigs * 1e12; case 'P': return disk_rate_sigfigs * 1e15; case 'B': return disk_rate_sigfigs; default: std::cerr << err_msg << std::endl; } } return 0; } #endif template void recv_to_file(uhd::usrp::multi_usrp::sptr usrp, const std::string& cpu_format, const std::string& wire_format, const std::vector& channel_nums, const size_t total_num_channels, const std::string& file, size_t samps_per_buff, unsigned long long num_requested_samples, double& bw, double time_requested = 0.0, bool stats = false, bool null = false, bool enable_size_map = false, bool continue_on_bad_packet = false, const std::string& thread_prefix = "") { unsigned long long num_total_samps = 0; // create a receive streamer uhd::stream_args_t stream_args(cpu_format, wire_format); stream_args.channels = channel_nums; uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); uhd::rx_metadata_t md; // Cannot use std::vector as second dimension type because recv will call // reinterpret_cast on each subarray, which is incompatible with // std::vector. Instead create new arrays and manage the memory ourselves std::vector buffs(rx_stream->get_num_channels()); try { for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { buffs[ch] = new samp_type[samps_per_buff]; } } catch (std::bad_alloc& exc) { UHD_LOGGER_ERROR("UHD") << "Bad memory allocation. " "Try a smaller samples per buffer setting or free up additional memory"; std::exit(EXIT_FAILURE); } std::vector outfiles(rx_stream->get_num_channels()); std::string filename; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { if (not null) { if (rx_stream->get_num_channels() == 1) { // single channel filename = file; } else { // multiple channels // check if file extension exists if (file.find('.') != std::string::npos) { const std::string base_name = file.substr(0, file.find_last_of('.')); const std::string extension = file.substr(file.find_last_of('.')); filename = base_name + "_" + "ch" + std::to_string(channel_nums[ch]) + extension; } else { // file extension does not exist filename = file + "_" + "ch" + std::to_string(channel_nums[ch]); } } outfiles[ch].open(filename.c_str(), std::ofstream::binary); } } // setup streaming uhd::stream_cmd_t stream_cmd((num_requested_samples == 0) ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = size_t(num_requested_samples); stream_cmd.stream_now = rx_stream->get_num_channels() == 1; stream_cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.05); rx_stream->issue_stream_cmd(stream_cmd); typedef std::map SizeMap; SizeMap mapSizes; const auto start_time = std::chrono::steady_clock::now(); const auto stop_time = start_time + (1s * time_requested); // Track time and samps between updating the BW summary auto last_update = start_time; unsigned long long last_update_samps = 0; // Run this loop until either time expired (if a duration was given), until // the requested number of samples were collected (if such a number was // given), or until Ctrl-C was pressed. while (not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0) and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) { const auto now = std::chrono::steady_clock::now(); size_t num_rx_samps = rx_stream->recv(buffs, samps_per_buff, md, 3.0, enable_size_map); if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << std::endl << thread_prefix << "Timeout while streaming" << std::endl; break; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) { const std::lock_guard lock(recv_mutex); if (overflow_message) { overflow_message = false; std::cerr << boost::format( "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of %0.3fMB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n") % (usrp->get_rx_rate(channel_nums[0]) * total_num_channels * sizeof(samp_type) / 1e6); } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { const std::lock_guard lock(recv_mutex); std::string error = thread_prefix + "Receiver error: " + md.strerror(); if (continue_on_bad_packet) { std::cerr << error << std::endl; continue; } else throw std::runtime_error(error); } if (enable_size_map) { const std::lock_guard lock(recv_mutex); SizeMap::iterator it = mapSizes.find(num_rx_samps); if (it == mapSizes.end()) mapSizes[num_rx_samps] = 0; mapSizes[num_rx_samps] += 1; } num_total_samps += num_rx_samps; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { if (outfiles[ch].is_open()) { outfiles[ch].write( (const char*)buffs[ch], num_rx_samps * sizeof(samp_type)); } } last_update_samps += num_rx_samps; const auto time_since_last_update = now - last_update; if (time_since_last_update > 1s) { const std::lock_guard lock(recv_mutex); const double time_since_last_update_s = std::chrono::duration(time_since_last_update).count(); bw = double(last_update_samps) / time_since_last_update_s; last_update_samps = 0; last_update = now; } } const auto actual_stop_time = std::chrono::steady_clock::now(); stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; rx_stream->issue_stream_cmd(stream_cmd); for (size_t i = 0; i < outfiles.size(); i++) { if (outfiles[i].is_open()) { outfiles[i].close(); } } for (size_t i = 0; i < rx_stream->get_num_channels(); i++) { delete[] buffs[i]; } if (stats) { const std::lock_guard lock(recv_mutex); std::cout << std::endl; const double actual_duration_seconds = std::chrono::duration(actual_stop_time - start_time).count(); std::cout << boost::format("%sReceived %d samples in %f seconds") % thread_prefix % num_total_samps % actual_duration_seconds << std::endl; if (enable_size_map) { std::cout << std::endl; std::cout << "Packet size map (bytes: count)" << std::endl; for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++) std::cout << it->first << ":\t" << it->second << std::endl; } } } typedef std::function get_sensor_fn_t; bool check_locked_sensor(std::vector sensor_names, const char* sensor_name, get_sensor_fn_t get_sensor_fn, double setup_time) { if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name) == sensor_names.end()) return false; const auto setup_timeout = std::chrono::steady_clock::now() + (setup_time * 1s); bool lock_detected = false; std::cout << "Waiting for \"" << sensor_name << "\": "; std::cout.flush(); while (true) { if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) { std::cout << " locked." << std::endl; break; } if (get_sensor_fn(sensor_name).to_bool()) { std::cout << "+"; std::cout.flush(); lock_detected = true; } else { if (std::chrono::steady_clock::now() > setup_timeout) { std::cout << std::endl; throw std::runtime_error( str(boost::format( "timed out waiting for consecutive locks on sensor \"%s\"") % sensor_name)); } std::cout << "_"; std::cout.flush(); } std::this_thread::sleep_for(100ms); } std::cout << std::endl; return true; } int UHD_SAFE_MAIN(int argc, char* argv[]) { // clang-format off const std::string program_doc = "usage: rx_samples_to_file [-h] [--args ARGS] [-f FREQ] [-r RATE]\n" " [--file FILE] [--type {double,float,short}]\n" " [--nsamps NSAMPS] [--duration DURATION]\n" " [--spb SPB] [--lo-offset LO_OFFSET]\n" " [--gain GAIN] [--ant ANT] [--subdev SUBDEV]\n" " [--channels CHANNELS] [--bw BW]\n" " [--ref {internal,external,mimo,gpsdo}]\n" " [--otw {sc16,sc8}] [--setup SETUP]\n" " [--progress] [--stats] [--sizemap] [--null]\n" " [--continue] [--skip-lo] [--int-n]\n" " [--multi-streamer]" "\n\n" "This example program configures the USRP device for reception of\n" "an RF signal and writes the resulting complex baseband data to a raw\n" "binary file. It supports multi-channel operation, automated file naming\n" "for each channel, and optional multi-threaded reception per channel.\n" "\n" "Key features:\n" " - Configures the USRP device(s) for receive operation.\n" " - Supports simultaneous reception from multiple USRP devices and from\n" " multiple RX channels.\n" " - Automatically generates distinct output filenames for each channel.\n" " - Optional multi-threaded reception, with each channel processed in a\n" " separate thread.\n" " - Streams received data directly to disk in the specified format.\n" " - Allows configuration of sample rate, frequency, gain, bandwidth, LO\n" " offset, antenna selection, and more via command-line options.\n" " - Provides progress reporting and statistics.\n" " - Suitable for recording IQ data for later analysis or processing.\n" "\n" "Notes:\n" " - The USRP may round the requested sample rate to the nearest\n" " supported value; use the actual rate shown in the console for\n" " subsequent processing of the data.\n" " If supported by your USRP device model, you could also change the\n" " master clock rate to an integer multiple of the desired sample rate\n" " to achieve precise sampling. For available master clock rates for a\n" " specific USRP device model, see the UHD manual.\n" " - Although this example program supports simultaneous reception from\n" " multiple USRP devices, it does not synchronize them to a common time\n" " reference such as an external PPS pulse.\n" "\n" "Usage examples:\n" " 1. Assume we want to capture 10ms of a 5 MHz LTE signal transmitted at\n" " 2.4 GHz, the program call would look like:\n" " rx_samples_to_file --args \"addr=192.168.10.2\" --freq 2.4e09\n" " --rate 7.68e06 --duration 0.01\n" " 2. Change master clock rate to an integer multiple of the desired\n" " sampling rate:\n" " rx_samples_to_file --args \"addr=192.168.10.2, master_clock_rate=184.32e6\"\n" " --freq 2.4e09 --rate 7.68e06 --duration 0.01\n" " 3. Optionally, you may set the analog filter bandwidth:\n" " rx_samples_to_file --args \"addr=192.168.10.2\" --freq 2.4e09\n" " --rate 7.68e06 --bw 5e06 --duration 0.01\n" " 4. To capture 10 seconds with detailed status messages enabled:\n" " rx_samples_to_file --args \"addr=192.168.10.2\" --freq 2.4e09\n" " --rate 7.68e06 --duration 10 --progress --stats --sizemap\n" " 5. To capture signals from two antennas, with a user-specified file\n" " name and separate threads for each channel:\n" " rx_samples_to_file --args \"addr=192.168.10.2\" --freq 2.4e09\n" " --rate 7.68e06 --channels \"0,1\" --duration 0.01\n" " --file \"lte_5mhz.dat\" -- multi-streamer\n" " 6. Capture signals from two USRP devices each having two RX channels:\n" " rx_samples_to_file --args \"addr0=192.168.10.2,addr1=192.168.10.3, master_clock_rate=184.32e6\"\n" " --freq 2.4e09 --rate 7.68e06 --channels \"0,1,2,3\"\n" " --duration 0.01 --file \"lte_5mhz.dat\" --multi-streamer\n"; // clang-format on // variables to be set by po std::string args, file, type, ant, subdev, ref, otw, channels; size_t total_num_samps, spb; double rate, freq, gain, bw, total_time, setup_time, lo_offset; std::vector threads; std::vector channel_list; std::vector channel_strings; // setup the program options po::options_description desc("Allowed options"); po::options_description alias_options; po::options_description all_options; // clang-format off desc.add_options() ("help,h", "Show this help message and exit.") ("args", po::value(&args)->default_value(""), "USRP device selection and configuration " "arguments." "\nSpecify key-value pairs (e.g., addr, serial, type, master_clock_rate) separated by commas." "\nFor multi-device setups, specify multiple IP addresses (e.g., addr0, addr1) to group multiple USRPs into a " "single virtual device." "\nSee the UHD manual for model-specific options." "\nExamples:" "\n --args \"addr=192.168.10.2\"" "\n --args \"addr=192.168.10.2,master_clock_rate=200e6\"" "\n --args \"addr0=192.168.10.2,addr1=192.168.10.3\"" "\nIf not specified, UHD connects to the first available device.") ("file", po::value(&file)->default_value("usrp_samples.dat"), "Name of the raw binary " "file to which received data will be written.") ("type", po::value(&type)->default_value("short"), "Specifies the data format of the " "file. The data will be written as interleaved IQ samples in one of the following numeric formats: 'double' " "(64-bit float, fc64), 'float' (32-bit float, fc32), or 'short' (16-bit integer, sc16, scaled to int16 range " "-32768 to 32767)." "\nChoosing 'short' as the file format matches the default sc16 over-the-wire format and is usually sufficient. Using " "'float' or 'double' does not improve precision, but may be more convenient for post processing or for " "compatibility with certain analysis tools.") ("nsamps", po::value(&total_num_samps)->default_value(0), "Total number of samples to " "receive. The program stops when this number is reached. If set to 0, data will be continuously received and " "written to file.") ("duration", po::value(&total_time)->default_value(0), "Total number of samples to receive. " "The program stops when this number is reached. If set to 0, data will be continuously received and written " "to file.") ("spb", po::value(&spb)->default_value(10000), "Size of the host data buffer that is " "allocated for each Rx channel." "\nLarger values may help to improve throughput.") ("freq,f", po::value(&freq)->default_value(0.0), "RF center frequency in Hz.") ("rate,r", po::value(&rate)->default_value(1e6), "Sample rate in samples/second. Note that each USRP " "device only supports a set of discrete sample rates, which depend on the hardware model and configuration. " "If you request a rate that is not supported, the USRP device will automatically select and use the closest " "available rate. For accurate processing of received baseband data, always verify and use the actual sample " "rate.") ("lo-offset", po::value(&lo_offset)->default_value(0.0), "LO offset for the frontend in Hz.") ("gain", po::value(&gain), "RX gain for the RF chain in dB.") ("ant", po::value(&ant), "Antenna port selection string selecting a specific antenna " "port for USRP daughterboards having multiple antenna connectors per RF channel." "\nExample: --ant \"TX/RX\"") ("subdev", po::value(&subdev), "RX subdevice configuration defining the mapping of " "channels to RF RX paths." "\nThe format and available values depend on your USRP model. If not specified, the channels will be numbered " "in order of the devices, daughterboard slots, and their RF RX channels." "\nFor typical applications, this default subdevice configuration is sufficient." "\nNote: this example program expects a single-USRP subdevice configuration which is applied to all USRPs " "equally, if multiple USRPs are configured." "\nExample:" "\nAssume we have an X310 with two UBX daughterboards installed. Then the default channel mapping is:" "\n - Ch 0 -> A:0 (1st UBX in slot A, RF RX 0)" "\n - Ch 1 -> B:0 (2nd UBX in slot B, RF RX 0)" "\nSpecifying --subdev=\"B:0 A:0\" would change the channel mapping to:" "\n - Ch 0 -> B:0 (2nd UBX in slot B RF RX 0)" "\n - Ch 1 -> A:0 (1st UBX in slot A RF RX 0)") ("channels,channel", po::value(&channels)->default_value("0"), "Specifies which channels " "to use. E.g. \"0\", \"1\", \"0,1\", etc.") ("bw", po::value(&bw), "Sets the analog frontend filter bandwidth for the RX path in Hz. Not " "all USRP devices support programmable bandwidth; if an unsupported value is requested, the device will use " "the nearest supported bandwidth instead.") ("ref", po::value(&ref), "Sets the source for the frequency reference. Available values " "depend on the USRP model. Typical values are 'internal', 'external', 'mimo', and 'gpsdo'.") ("otw", po::value(&otw)->default_value("sc16"), "Specifies the over-the-wire (OTW) data " "format used for transmission between the host and the USRP device. Common values are \"sc16\" (16-bit signed " "complex) and \"sc8\" (8-bit signed complex). Using \"sc8\" can reduce network bandwidth at the cost of " "dynamic range." "\nNote, that not all conversions between CPU and OTW formats are possible.") ("setup", po::value(&setup_time)->default_value(1.0), "Sets the amount of time (in seconds) " "the program waits for hardware locks (e.g. LO) to ensure the device is properly synchronized before starting " "reception.") ("progress", "Periodically display the estimated short-term USRP device to host streaming rate in " "samples per second.") ("stats", "Show the total number of samples received and the elapsed time when the program exits.") ("sizemap", "Track and display a breakdown of received packet sizes on exit. This helps diagnose " "streaming performance and packetization issues. Use with multi-streamer option if CPU limits stream rate.") ("null", "Run without writing to file.") ("continue", "Continue streaming even if a bad packet is received.") ("skip-lo", "Skip checking and waiting for hardware locks (LO, reference, MIMO synchronization) " "before starting reception.") ("int-n", "Use integer-N tuning for USRP RF synthesizers. With this mode, the LO can only be tuned in " "discrete steps, which are integer multiples of the reference frequency. This mode can improve phase noise " "and spurious performance at the cost of coarser frequency resolution.") ("multi-streamer", "Create a separate data streamer for each channel, each running in a separate " "thread.") ; alias_options.add_options() ("wirefmt", po::value(&otw), "") // alias for --otw for backward compatibility ("multi_streamer", "") // alias for --multi-streamer for backward compatibility ; all_options.add(desc).add(alias_options); // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, all_options), vm); // print the help message if (vm.count("help")) { std::cout << program_doc << std::endl; std::cout << desc << std::endl; return ~0; } po::notify(vm); // only called if --help was not requested bool bw_summary = vm.count("progress") > 0; bool stats = vm.count("stats") > 0; bool null = vm.count("null") > 0; bool enable_size_map = vm.count("sizemap") > 0; bool continue_on_bad_packet = vm.count("continue") > 0; bool multithread = (vm.count("multi-streamer") || vm.count("multi_streamer")) > 0; if (enable_size_map) std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl; // create a usrp device std::cout << std::endl; std::cout << "Creating the usrp device with: " << args << "..." << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // Parse channel selection string boost::split(channel_strings, channels, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { try { int chan = std::stoi(channel_strings[ch]); if (chan >= static_cast(usrp->get_rx_num_channels()) || chan < 0) { throw std::runtime_error("Invalid channel(s) specified."); } else { channel_list.push_back(static_cast(chan)); } } catch (std::invalid_argument const& c) { throw std::runtime_error("Invalid channel(s) specified."); } catch (std::out_of_range const& c) { throw std::runtime_error("Invalid channel(s) specified."); } } // Lock mboard clocks if (vm.count("ref")) { usrp->set_clock_source(ref); } // always select the subdevice first, the channel mapping affects the other settings if (vm.count("subdev")) usrp->set_rx_subdev_spec(subdev); std::cout << "Using Device: " << usrp->get_pp_string() << std::endl; // set the sample rate if (rate <= 0.0) { std::cerr << "Please specify a valid sample rate" << std::endl; return ~0; } std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_rx_rate(rate, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate(channel_list[0]) / 1e6) << std::endl << std::endl; // set the center frequency if (vm.count("freq")) { std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl; std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset / 1e6) << std::endl; uhd::tune_request_t tune_request(freq, lo_offset); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); for (size_t chan : channel_list) usrp->set_rx_freq(tune_request, chan); std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the rf gain if (vm.count("gain")) { std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl; usrp->set_rx_gain(gain, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain(channel_list[0]) << std::endl << std::endl; } // set the IF filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6) << std::endl; for (size_t chan : channel_list) usrp->set_rx_bandwidth(bw, chan); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the antenna if (vm.count("ant")) for (size_t chan : channel_list) usrp->set_rx_antenna(ant, chan); std::this_thread::sleep_for(1s * setup_time); // check Ref and LO Lock detect if (not vm.count("skip-lo")) { for (size_t channel : channel_list) { std::cout << "Locking LO on channel " << channel << std::endl; check_locked_sensor( usrp->get_rx_sensor_names(channel), "lo_locked", [usrp, channel](const std::string& sensor_name) { return usrp->get_rx_sensor(sensor_name, channel); }, setup_time); } if (ref == "mimo") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "mimo_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } if (ref == "external") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "ref_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } } if (total_num_samps == 0) { std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } #ifdef __linux__ const double req_disk_rate = usrp->get_rx_rate(channel_list[0]) * channel_list.size() * uhd::convert::get_bytes_per_item(otw); const double disk_rate_meas = disk_rate_check( uhd::convert::get_bytes_per_item(otw), channel_list.size(), spb, file); if (disk_rate_meas > 0 && req_disk_rate >= disk_rate_meas) { std::cerr << boost::format( " Disk write test indicates that an overflow is likely to occur.\n" " Your write medium must sustain a rate of %0.3fMB/s,\n" " but write test returned write speed of %0.3fMB/s.\n" " The disk write rate is also affected by system load\n" " and OS/disk caching capacity.\n") % (req_disk_rate / 1e6) % (disk_rate_meas / 1e6); } #endif std::vector chans_in_thread; std::vector rates(channel_list.size()); #define recv_to_file_args(format) \ (usrp, \ format, \ otw, \ chans_in_thread, \ channel_list.size(), \ multithread ? "ch" + std::to_string(chans_in_thread[0]) + "_" + file : file, \ spb, \ total_num_samps, \ rates[i], \ total_time, \ stats, \ null, \ enable_size_map, \ continue_on_bad_packet, \ th_prefix) for (size_t i = 0; i < channel_list.size(); i++) { std::string th_prefix = ""; if (multithread) { chans_in_thread.clear(); chans_in_thread.push_back(channel_list[i]); th_prefix = "Thread " + std::to_string(i) + ":\n"; } else { chans_in_thread = channel_list; } threads.push_back(std::thread([=, &rates]() { // recv to file if (otw == "s16") { if (type == "double") recv_to_file recv_to_file_args("f64"); else if (type == "float") recv_to_file recv_to_file_args("f32"); else if (type == "short") recv_to_file recv_to_file_args("s16"); else throw std::runtime_error("Unknown type " + type); } else { if (type == "double") recv_to_file> recv_to_file_args("fc64"); else if (type == "float") recv_to_file> recv_to_file_args("fc32"); else if (type == "short") recv_to_file> recv_to_file_args("sc16"); else throw std::runtime_error("Unknown type " + type); } })); if (!multithread) { break; } } if (total_time == 0) { if (total_num_samps > 0) { total_time = std::ceil(total_num_samps / usrp->get_rx_rate()); } } // Wait a bit extra for the first updates from each thread std::this_thread::sleep_for(500ms); const auto end_time = std::chrono::steady_clock::now() + (total_time - 1) * 1s; while (threads.size() > 0 && (std::chrono::steady_clock::now() < end_time || total_time == 0) && !stop_signal_called) { std::this_thread::sleep_for(1s); // Remove any threads that are finished for (size_t i = 0; i < threads.size(); i++) { if (!threads[i].joinable()) { // Thread is not joinable, i.e. it has finished and 'joined' already // Remove the thread from the list. threads.erase(threads.begin() + i); // Clear last bandwidth value after thread is finished rates[i] = 0; } } // Report the bandwidth of remaining threads if (bw_summary && threads.size() > 0) { const std::lock_guard lock(recv_mutex); std::cout << "\t" << (std::accumulate(std::begin(rates), std::end(rates), 0) / 1e6 / threads.size()) << " Msps" << std::endl; } } // join any remaining threads for (size_t i = 0; i < threads.size(); i++) { if (threads[i].joinable()) { threads[i].join(); } } // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }