// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #ifdef __linux__ # include # include # if BOOST_VERSION >= 108800 # define BOOST_PROCESS_VERSION 1 # include # include # include # else # include # endif #endif #include #include #include #include #include #include #include #include using namespace std::chrono_literals; namespace po = boost::program_options; std::mutex recv_mutex; static bool stop_signal_called = false; static bool overflow_message = true; void sig_int_handler(int) { stop_signal_called = true; } #ifdef __linux__ /* * Very simple disk write test using dd for at most 1 second. * Measures an upper bound of the maximum * sustainable stream to disk rate. Though the rate measured * varies depending on the system load at the time. * * Does not take into account OS cache or disk cache capacities * filling up over time to avoid extra complexity. * * Returns the measured write speed in bytes per second */ double disk_rate_check(const size_t sample_type_size, const size_t channel_count, size_t samps_per_buff, const std::string& file) { std::string err_msg = "Disk benchmark tool 'dd' did not run or returned an unexpected output format"; boost::process::ipstream pipe_stream; boost::filesystem::path temp_file = boost::filesystem::path(file).parent_path() / boost::filesystem::unique_path(); std::string disk_check_proc_str = "dd if=/dev/zero of=" + temp_file.native() + " bs=" + std::to_string(samps_per_buff * channel_count * sample_type_size) + " count=100"; try { boost::process::child c( disk_check_proc_str, boost::process::std_err > pipe_stream); std::this_thread::sleep_for(std::chrono::seconds(1)); if (c.running()) { c.terminate(); } } catch (std::system_error& err) { std::cerr << err_msg << std::endl; if (boost::filesystem::exists(temp_file)) { boost::filesystem::remove(temp_file); } return 0; } // sig_int_handler will absorb SIGINT by this point, but other signals may // leave a temporary file on program exit. boost::filesystem::remove(temp_file); std::string line; std::string dd_output; while (pipe_stream && std::getline(pipe_stream, line) && !line.empty()) { dd_output += line; } // Parse dd output this format: // 1+0 records in // 1+0 records out // 80000000 bytes (80 MB, 76 MiB) copied, 0.245538 s, 326 MB/s // and capture the measured disk write speed (e.g. 326 MB/s) std::smatch dd_matchs; std::regex dd_regex( R"(\d+\+\d+ records in)" R"(\d+\+\d+ records out)" R"(\d+ bytes \(\d+(?:\.\d+)? [KMGTP]?B, \d+(?:\.\d+)? [KMGTP]?iB\) copied, \d+(?:\.\d+)? s, (\d+(?:\.\d+)?) ([KMGTP]?B/s))" ); std::regex_match(dd_output, dd_matchs, dd_regex); if ((dd_output.length() == 0) || (dd_matchs[0].str() != dd_output)) { std::cerr << err_msg << std::endl; } else { double disk_rate_sigfigs = std::stod(dd_matchs[1]); switch (dd_matchs[2].str().at(0)) { case 'K': return disk_rate_sigfigs * 1e3; case 'M': return disk_rate_sigfigs * 1e6; case 'G': return disk_rate_sigfigs * 1e9; case 'T': return disk_rate_sigfigs * 1e12; case 'P': return disk_rate_sigfigs * 1e15; case 'B': return disk_rate_sigfigs; default: std::cerr << err_msg << std::endl; } } return 0; } #endif template void recv_to_file(uhd::usrp::multi_usrp::sptr usrp, const std::string& cpu_format, const std::string& wire_format, const std::vector& channel_nums, const size_t total_num_channels, const std::string& file, size_t samps_per_buff, unsigned long long num_requested_samples, double& bw, double time_requested = 0.0, bool stats = false, bool null = false, bool enable_size_map = false, bool continue_on_bad_packet = false, const std::string& thread_prefix = "") { unsigned long long num_total_samps = 0; // create a receive streamer uhd::stream_args_t stream_args(cpu_format, wire_format); stream_args.channels = channel_nums; uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); uhd::rx_metadata_t md; // Cannot use std::vector as second dimension type because recv will call // reinterpret_cast on each subarray, which is incompatible with // std::vector. Instead create new arrays and manage the memory ourselves std::vector buffs(rx_stream->get_num_channels()); try { for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { buffs[ch] = new samp_type[samps_per_buff]; } } catch (std::bad_alloc& exc) { UHD_LOGGER_ERROR("UHD") << "Bad memory allocation. " "Try a smaller samples per buffer setting or free up additional memory"; std::exit(EXIT_FAILURE); } std::vector outfiles(rx_stream->get_num_channels()); std::string filename; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { if (not null) { if (rx_stream->get_num_channels() == 1) { // single channel filename = file; } else { // multiple channels // check if file extension exists if (file.find('.') != std::string::npos) { const std::string base_name = file.substr(0, file.find_last_of('.')); const std::string extension = file.substr(file.find_last_of('.')); filename = base_name + "_" + "ch" + std::to_string(channel_nums[ch]) + extension; } else { // file extension does not exist filename = file + "_" + "ch" + std::to_string(channel_nums[ch]); } } outfiles[ch].open(filename.c_str(), std::ofstream::binary); } } // setup streaming uhd::stream_cmd_t stream_cmd((num_requested_samples == 0) ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = size_t(num_requested_samples); stream_cmd.stream_now = rx_stream->get_num_channels() == 1; stream_cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.05); rx_stream->issue_stream_cmd(stream_cmd); typedef std::map SizeMap; SizeMap mapSizes; const auto start_time = std::chrono::steady_clock::now(); const auto stop_time = start_time + (1s * time_requested); // Track time and samps between updating the BW summary auto last_update = start_time; unsigned long long last_update_samps = 0; // Run this loop until either time expired (if a duration was given), until // the requested number of samples were collected (if such a number was // given), or until Ctrl-C was pressed. while (not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0) and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) { const auto now = std::chrono::steady_clock::now(); size_t num_rx_samps = rx_stream->recv(buffs, samps_per_buff, md, 3.0, enable_size_map); if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << std::endl << thread_prefix << "Timeout while streaming" << std::endl; break; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) { const std::lock_guard lock(recv_mutex); if (overflow_message) { overflow_message = false; std::cerr << boost::format( "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of %0.3fMB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n") % (usrp->get_rx_rate(channel_nums[0]) * total_num_channels * sizeof(samp_type) / 1e6); } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { const std::lock_guard lock(recv_mutex); std::string error = thread_prefix + "Receiver error: " + md.strerror(); if (continue_on_bad_packet) { std::cerr << error << std::endl; continue; } else throw std::runtime_error(error); } if (enable_size_map) { const std::lock_guard lock(recv_mutex); SizeMap::iterator it = mapSizes.find(num_rx_samps); if (it == mapSizes.end()) mapSizes[num_rx_samps] = 0; mapSizes[num_rx_samps] += 1; } num_total_samps += num_rx_samps; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) { if (outfiles[ch].is_open()) { outfiles[ch].write( (const char*)buffs[ch], num_rx_samps * sizeof(samp_type)); } } last_update_samps += num_rx_samps; const auto time_since_last_update = now - last_update; if (time_since_last_update > 1s) { const std::lock_guard lock(recv_mutex); const double time_since_last_update_s = std::chrono::duration(time_since_last_update).count(); bw = double(last_update_samps) / time_since_last_update_s; last_update_samps = 0; last_update = now; } } const auto actual_stop_time = std::chrono::steady_clock::now(); stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; rx_stream->issue_stream_cmd(stream_cmd); for (size_t i = 0; i < outfiles.size(); i++) { if (outfiles[i].is_open()) { outfiles[i].close(); } } for (size_t i = 0; i < rx_stream->get_num_channels(); i++) { delete[] buffs[i]; } if (stats) { const std::lock_guard lock(recv_mutex); std::cout << std::endl; const double actual_duration_seconds = std::chrono::duration(actual_stop_time - start_time).count(); std::cout << boost::format("%sReceived %d samples in %f seconds") % thread_prefix % num_total_samps % actual_duration_seconds << std::endl; if (enable_size_map) { std::cout << std::endl; std::cout << "Packet size map (bytes: count)" << std::endl; for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++) std::cout << it->first << ":\t" << it->second << std::endl; } } } typedef std::function get_sensor_fn_t; bool check_locked_sensor(std::vector sensor_names, const char* sensor_name, get_sensor_fn_t get_sensor_fn, double setup_time) { if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name) == sensor_names.end()) return false; const auto setup_timeout = std::chrono::steady_clock::now() + (setup_time * 1s); bool lock_detected = false; std::cout << "Waiting for \"" << sensor_name << "\": "; std::cout.flush(); while (true) { if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) { std::cout << " locked." << std::endl; break; } if (get_sensor_fn(sensor_name).to_bool()) { std::cout << "+"; std::cout.flush(); lock_detected = true; } else { if (std::chrono::steady_clock::now() > setup_timeout) { std::cout << std::endl; throw std::runtime_error( str(boost::format( "timed out waiting for consecutive locks on sensor \"%s\"") % sensor_name)); } std::cout << "_"; std::cout.flush(); } std::this_thread::sleep_for(100ms); } std::cout << std::endl; return true; } int UHD_SAFE_MAIN(int argc, char* argv[]) { // variables to be set by po std::string args, file, type, ant, subdev, ref, wirefmt, channels; size_t total_num_samps, spb; double rate, freq, gain, bw, total_time, setup_time, lo_offset; std::vector threads; std::vector channel_list; std::vector channel_strings; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "multi uhd device address args") ("file", po::value(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to") ("type", po::value(&type)->default_value("short"), "sample type: double, float, or short") ("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to receive") ("duration", po::value(&total_time)->default_value(0), "total number of seconds to receive") ("spb", po::value(&spb)->default_value(10000), "samples per buffer") ("rate", po::value(&rate)->default_value(1e6), "rate of incoming samples") ("freq", po::value(&freq)->default_value(0.0), "RF center frequency in Hz") ("lo-offset", po::value(&lo_offset)->default_value(0.0), "Offset for frontend LO in Hz (optional)") ("gain", po::value(&gain), "gain for the RF chain") ("ant", po::value(&ant), "antenna selection") ("subdev", po::value(&subdev), "subdevice specification") ("channels,channel", po::value(&channels)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("bw", po::value(&bw), "analog frontend filter bandwidth in Hz") ("ref", po::value(&ref), "reference source (internal, external, mimo)") ("wirefmt", po::value(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)") ("setup", po::value(&setup_time)->default_value(1.0), "seconds of setup time") ("progress", "periodically display short-term bandwidth") ("stats", "show average bandwidth on exit") ("sizemap", "track packet size and display breakdown on exit. Use with multi_streamer option if CPU limits stream rate.") ("null", "run without writing to file") ("continue", "don't abort on a bad packet") ("skip-lo", "skip checking LO lock status") ("int-n", "tune USRP with integer-N tuning") ("multi_streamer", "Create a separate streamer per channel.") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << "UHD RX samples to file " << desc << std::endl; std::cout << std::endl << "This application streams data from a single channel of a USRP " "device to a file.\n" << std::endl; return ~0; } bool bw_summary = vm.count("progress") > 0; bool stats = vm.count("stats") > 0; bool null = vm.count("null") > 0; bool enable_size_map = vm.count("sizemap") > 0; bool continue_on_bad_packet = vm.count("continue") > 0; bool multithread = vm.count("multi_streamer") > 0; if (enable_size_map) std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl; // create a usrp device std::cout << std::endl; std::cout << "Creating the usrp device with: " << args << "..." << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // Parse channel selection string boost::split(channel_strings, channels, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { try { int chan = std::stoi(channel_strings[ch]); if (chan >= static_cast(usrp->get_rx_num_channels()) || chan < 0) { throw std::runtime_error("Invalid channel(s) specified."); } else { channel_list.push_back(static_cast(chan)); } } catch (std::invalid_argument const& c) { throw std::runtime_error("Invalid channel(s) specified."); } catch (std::out_of_range const& c) { throw std::runtime_error("Invalid channel(s) specified."); } } // Lock mboard clocks if (vm.count("ref")) { usrp->set_clock_source(ref); } // always select the subdevice first, the channel mapping affects the other settings if (vm.count("subdev")) usrp->set_rx_subdev_spec(subdev); std::cout << "Using Device: " << usrp->get_pp_string() << std::endl; // set the sample rate if (rate <= 0.0) { std::cerr << "Please specify a valid sample rate" << std::endl; return ~0; } std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_rx_rate(rate, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate(channel_list[0]) / 1e6) << std::endl << std::endl; // set the center frequency if (vm.count("freq")) { // with default of 0.0 this will always be true std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl; std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset / 1e6) << std::endl; uhd::tune_request_t tune_request(freq, lo_offset); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); for (size_t chan : channel_list) usrp->set_rx_freq(tune_request, chan); std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the rf gain if (vm.count("gain")) { std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl; usrp->set_rx_gain(gain, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain(channel_list[0]) << std::endl << std::endl; } // set the IF filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6) << std::endl; for (size_t chan : channel_list) usrp->set_rx_bandwidth(bw, chan); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the antenna if (vm.count("ant")) for (size_t chan : channel_list) usrp->set_rx_antenna(ant, chan); std::this_thread::sleep_for(1s * setup_time); // check Ref and LO Lock detect if (not vm.count("skip-lo")) { for (size_t channel : channel_list) { std::cout << "Locking LO on channel " << channel << std::endl; check_locked_sensor( usrp->get_rx_sensor_names(channel), "lo_locked", [usrp, channel](const std::string& sensor_name) { return usrp->get_rx_sensor(sensor_name, channel); }, setup_time); } if (ref == "mimo") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "mimo_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } if (ref == "external") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "ref_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } } if (total_num_samps == 0) { std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } #ifdef __linux__ const double req_disk_rate = usrp->get_rx_rate(channel_list[0]) * channel_list.size() * uhd::convert::get_bytes_per_item(wirefmt); const double disk_rate_meas = disk_rate_check( uhd::convert::get_bytes_per_item(wirefmt), channel_list.size(), spb, file); if (disk_rate_meas > 0 && req_disk_rate >= disk_rate_meas) { std::cerr << boost::format( " Disk write test indicates that an overflow is likely to occur.\n" " Your write medium must sustain a rate of %0.3fMB/s,\n" " but write test returned write speed of %0.3fMB/s.\n" " The disk write rate is also affected by system load\n" " and OS/disk caching capacity.\n") % (req_disk_rate / 1e6) % (disk_rate_meas / 1e6); } #endif std::vector chans_in_thread; std::vector rates(channel_list.size()); #define recv_to_file_args(format) \ (usrp, \ format, \ wirefmt, \ chans_in_thread, \ channel_list.size(), \ multithread ? "ch" + std::to_string(chans_in_thread[0]) + "_" + file : file, \ spb, \ total_num_samps, \ rates[i], \ total_time, \ stats, \ null, \ enable_size_map, \ continue_on_bad_packet, \ th_prefix) for (size_t i = 0; i < channel_list.size(); i++) { std::string th_prefix = ""; if (multithread) { chans_in_thread.clear(); chans_in_thread.push_back(channel_list[i]); th_prefix = "Thread " + std::to_string(i) + ":\n"; } else { chans_in_thread = channel_list; } threads.push_back(std::thread([=, &rates]() { // recv to file if (wirefmt == "s16") { if (type == "double") recv_to_file recv_to_file_args("f64"); else if (type == "float") recv_to_file recv_to_file_args("f32"); else if (type == "short") recv_to_file recv_to_file_args("s16"); else throw std::runtime_error("Unknown type " + type); } else { if (type == "double") recv_to_file> recv_to_file_args("fc64"); else if (type == "float") recv_to_file> recv_to_file_args("fc32"); else if (type == "short") recv_to_file> recv_to_file_args("sc16"); else throw std::runtime_error("Unknown type " + type); } })); if (!multithread) { break; } } if (total_time == 0) { if (total_num_samps > 0) { total_time = std::ceil(total_num_samps / usrp->get_rx_rate()); } } // Wait a bit extra for the first updates from each thread std::this_thread::sleep_for(500ms); const auto end_time = std::chrono::steady_clock::now() + (total_time - 1) * 1s; while (threads.size() > 0 && (std::chrono::steady_clock::now() < end_time || total_time == 0) && !stop_signal_called) { std::this_thread::sleep_for(1s); // Remove any threads that are finished for (size_t i = 0; i < threads.size(); i++) { if (!threads[i].joinable()) { // Thread is not joinable, i.e. it has finished and 'joined' already // Remove the thread from the list. threads.erase(threads.begin() + i); // Clear last bandwidth value after thread is finished rates[i] = 0; } } // Report the bandwidth of remaining threads if (bw_summary && threads.size() > 0) { const std::lock_guard lock(recv_mutex); std::cout << "\t" << (std::accumulate(std::begin(rates), std::end(rates), 0) / 1e6 / threads.size()) << " Msps" << std::endl; } } // join any remaining threads for (size_t i = 0; i < threads.size(); i++) { if (threads[i].joinable()) { threads[i].join(); } } // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }