
This document isn’t meant for the general audience, it goes into a lot of detail of the process itself, however, it’s
not refined such that it’s easily understandable. If you’re looking for an easy to understand guide, there isn’t any
for now.
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Part I

Preface

1 Define Difficulty

What makes a map difficult, what is a difficult map? Could it be the following? The map was difficult because of
...

1. Failing

2. Combo Breaks

3. High Stamina Requirement

4. Low Accuracy

We discuss all of these scenarios and we will choose one to tackle, possibly integrate the other options into our
calculations in the future.

Failing The most significant way that we can readily control if players fail is via Health Drain in which most
VSRGs will implement. However, this value is inconsistent and will not provide useful information on higher Health
Drain values due to lack of players passing certain maps.

Combo Breaks Combo Breaks analysis is another method that isn’t consistent, whereby chokes can be random,
creating too much noise on higher skill plays. Combo breaks mainly can only determine the hardest points on the
map, it doesn’t depict a difficulty cure.

High Stamina Requirements While stamina is a good way to look at difficulty, it can readily be derived from
accuracy, which is conveniently what we’ll be looking at next

Low Accuracy This is the best way to look at difficulty, because not only it gives us a figure, it tells us the story
and correlation between accuracy and patterning. This will be the main focus of the document.

1.1 Comparing Accuracy in Replays to Patterns

Details aside, how can we describe the impact of patterns on replays, what story does the replay tell us about the
pattern?

Consider this...

1. Player1 plays PatternA and PatternB

2. Player1 achieves AccuracyA > AccuracyB

3. Considering AccuracyA and AccuracyB are independent events

4. We deduce PatternA < PatternB in difficulty

It is a simple idea to pitch, but we will have to dive into more details on how we can ”teach” a machine this
concept and ”learn” from it!
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2 Machine Learning

A tangent from this article, I will briefly talk about what is machine learning.

Making a Prediction Machine Learning is all about making a prediction, by looking at already curated data.
We show the someone 100 pictures of rabbits and explained to them that they are rabbits, can they tell if the next
picture of an animal is a rabbit?

Same idea we have here, we show the machine hundred of beatmaps, we tell the machine how difficult all of
them are (according to score regression). Can the machine predict the difficulty of the next one? The answer is
yes, but it won’t be accurate!

2.1 Valid input

Think about a neural network, you’ve most likely seen one, it’s circle(s) connected to more circle(s), in the end,
there will be circle(s) that tell you something. Each circle represents a neuron.

Each neuron holds a numeric value, we need to put a value in each of these neurons. Ignoring Timing Points
and Scroll Speed Changes, how do we squeeze a beatmap into these neurons?

Hit Object Neurons Remember that a neuron will only work with numeric values, what do you want to have
in the neuron that represents a Hit Object? Putting either the offset or column will not work because both are
vital!

Column Neurons It is a possible idea, to have a neuron for each millisecond, then put column value on
those neurons that match the offset. We run into a glaring issue where input neurons will stretch to the hundred
thousands, computational power required on this scale would be too high. If we decide to bin the offsets (binning
is the act of grouping things together to reduce the number of fields) to 100ms steps, it might prove to be too
inaccurate and prone to abuse.

2.1.1 Subdivide the Issue

Does it have to be the whole map?
It doesn’t! That’s what we are doing for this research, we don’t look at the whole map, we look at parts of it,

the inner mechanisms, the patterns! Sure, even though the whole map must be present to calculate difficulty but
consider this:

For each note in the map, the player will have to play a pattern (the input) and produce a feedback (the
output). If we can parse a pattern and get an input, we should be able to teach the machine the expected output,
and predict with it afterwards.

Patterns to Input In the following sections we will be discussing how we can task the machine to learn what
patterns are easy and which are harder

Output to a Single Rating We can get output for each specific pattern, but how do we represent the difficulty
as one number? Do we rate it by the average, maximum or median? We will discuss those later.

2.2 Expected output

Just like the example in valid inputs, we have to tell the machine that that picture is of a cat, else it doesn’t
know what is and what isn’t.

In this case, we can relate back to Accuracy (from the player), where it is the most reliable source of difficulty
rating as explained earlier.

One good source of this data is to grab replays (not scores!), because we can then analyse small parts of it in
order to match with the input.
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2.3 Differing and Multiple Accuracies

Multiple Players There will be multiple replays, there isn’t a replay that is all-encompassing (it’ll be too biased!).
So we need to create a middle-ground for these data.

Different Players Not everyone will perform similarly for every beatmap, there will be discrepancies. We can’t
just take the accuracy as a raw value and run a function through them, we will have to make use of relative
accuracies instead of raw accuracies before finding the ”ideal” replay.

2.4 Differing Keys

Is it possible to mash all keys together, to form a model that works for 9 keys? I believe that it can be done,
however, anything beyond 7 keys will be arguably bad in rating. This is mainly due to the lack of beatmaps in
that category and also a lack of players. So how is it done?

Column to Action Is a small keyword I would use in my script to signify, map this column to the finger used
in real life. To simply put, imagine if all columns were named by their most commonly pressed finger, that’s the
process I’m using to funnel all of them together.

2.5 Recap

To sum it up

1. Grab beatmap from server

2. Grab replay from server

3. Convert beatmap into simpler bite-sized patterns

4. Convert replay to a list of accuracies for each note

5. For each pattern, there’s an expected accuracy

6. Teach that concept to the machine and create a model

7. Predict accuracies with the model

8. Give the map a rating according to the expected accuracies
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Part II

Process

3 Grabbing Beatmaps

3.1 Beatmap Downloading

In this study we will only look at maps where StarRating ≥ 5.0. Any maps below this StarRating will usually only
have SS scores, which will prove to be redundant in analysis.

osu!API GET beatmaps Using this, we can find out the IDs of the maps to download.

3.1.1 Downloading through web crawling

Using python, we can download .osu (osu! difficulty file extension) using the format below with authentication:

https ∶ //osu.ppy.sh/osu/ < beatmap id >
We save all of these using < beatmap id > .osu file naming system.
All .osu will be converted to .acd. The action format is the same idea, where we have a list of offset and

action.

4 Grabbing Replays

4.1 Replay Downloading

We need to look at replays as a mean to find out how well the player does (in other words, difficulty of the map)

osu!API GET replay The API provides us with the replay file itself. Not going into detail, we are able to
extract all key taps (including releases) of the player during the play.

These files are not saved, instead they are instantly decoded into the following format.

4.2 Replay Decoding

The format we get from running the python code goes as follows

actionreplay ∶= {(offset1, action1), (offset2, action2), ..., (offsetn, actionn)}
Whereby,

n ∈ {−9,−8, ...,−2,−1,1,2, ...,8,9}
offset is when the action happens. For action, −n means the key n is released, n means the key n is pressed.
We will save this data in a file with < beatmap id > .acr extension.

5



5 Difficulty from Beatmaps

We turn our attention to how we can figure out difficulty from the map itself, the expected output we want would
be:

difficulty ∶= {(offset1, difficulty1), (offset2, difficulty2), ..., (offsetn, difficultyn)}
Whereby we estimate difficulty at offset n from the map itself:

difficultyn ≈model
⎛
⎝
readingn,

keys

∑
k=1

(straink) , ...
⎞
⎠

There are more factors (denoted by ...) that contribute to difficulty, but we will regard them as noise in this
research and fine tune this equation later.

Reading This denotes how hard is it to read all the patterns on the screen. We can draw similarities between
this and density, however density focuses a lot more on its previous and future surroundings where reading looks
at the future ones only.

Density This focuses on the imminent density of the offset. contrary to strain, it disregards the global trends
of patterns. We will not use this in our network as strain does a better job in calculation.

Strain This is reliant on density whereby continuous high values of density will result in a high strain. This has
an additional hyperparameter, decay, where it denotes how fast the player can recover from strainn. Finger strain
on the same hand will likely affect the other strain values of the other fingers.

5.1 Note Type Weights

This will define the weightages of each note type.

weightNN defines for normal notes

weightLNh defines for long notes heads

weightLNt defines for long notes tails

weightSSh defines for strain shift for hands (explained later)

weightSSb defines for strain shift for body (explained later)

5.2 Reading

reading(n,n+θ) ∶= count(NN), count(LNh), count(LNt) = {n ≤ offset ≤ (n + θ)}
Where,

n is the initial offset

θ is the hyperparameter for length. We will not take into consideration the length of notelong
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5.3 Density

We will look into density before strain as it’s derived from this.
Considering the notes on the k column

{..., n − 2, n − 1, n, n + 1, n + 2, ...}

∆k
nx =

1

∣n − x∣

densitykn =
n+σ

∑
N=n−σ

(∆k
nN)

So for σ = 2 and
columnk ∶= {a, b, n, d, e}

densitykn = ∆k
na +∆k

nb +∆k
nd +∆k

ne

densitykn =
1

∣n − a∣ +
1

∣n − b∣ +
1

∣n − d∣ +
1

∣n − e∣

∆k
nx will be the the inverse of the (ms) distance between notes n and x on column k. Notes that are further away

will be penalized more heavily.

σ defines the range, front and back of the search. Higher sigma may prove to be useless with further ∆k
nx being

too small.

5.4 Strain

This will work in relationship with density, whereby a strain is a cumulative function of density with a linear
decay function.

Notes:

1. Better players have higher decay gradients

2. If decay > density, strain will decrease

3. If decay < density, strain will increase

4. There will be a point where strain is high enough to affect physical performance, indirectly affecting accuracy.

5.4.1 Strain Shift

Strain will not only affect one finger, it will affect the hand and both after time, just on a smaller scale

Hand We will denote the strain shift hyperparameter of one finger to another on the same hand to be SSH

Body Likewise, for body, we will denote as SSB
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5.4.2 Strain Example

Consider the case, without Strain Shift

Where,weightNN = 1, σ = 2

2500 0 0 0 0.022 0.016
2000 weightNN 0 0 0.003 0.022 0.017
1500 weightNN 0 0 0.005 0.019 0.015
1000 weightNN 0 0 0.006 0.014 0.011
500 weightNN 0 0 0.005 0.008 0.006
0 weightNN 0 0 0.003 0.003 0.002

-500 0 0 0 0 0
-1000 0 0 0 0 0

Offset(ms) k=1 k=2 k=3 ≈Density Strain (dec=0) Strain (dec=0.001)

Consider the case, with Strain Shift

2500 0 0 0
2000 weightNN weightSSh weightSSb
1500 weightNN weightSSh weightSSb
1000 weightNN weightSSh weightSSb
500 weightNN weightSSh weightSSb
0 weightNN weightSSh weightSSb

-500 0 0 0
-1000 0 0 0

Offset(ms) k=1 k=2 k=3

It’s hard to include the calculations in the table, so we’ll look at density(1,1000).

density11000 = (∆1
(1000,0)) + (∆1

(1000,500)) + (∆1
(1000,1500)) + (∆1

(1000,2000))

density11000 =
1

1000
+ 1

500
+ 1

500
+ 1

1000
= 0.006

density21000 = (∆2
(1000,0)) + (∆2

(1000,500)) + (∆2
(1000,1500)) + (∆2

(1000,2000))

density21000 = (weightSSh
1000

) + (weightSSh
500

) + (weightSSh
500

) + (weightSSh
1000

) = 3 ∗weightSSh
250

density31000 =
3 ∗weightSSb

250

density1000 ∶= density11000, density21000, density31000 = {0.006,
3 ∗weightSSh

250
,
3 ∗weightSSb

250
}

5.5 Density Generalization

In the case where we want to find densityn, where, n is the offset index, k is key count.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

weight(n+σ,1) weight(n+σ,2) . . . weight(n+σ,k)
⋮ ⋮ ⋰ ⋮

weight(n+1,1) weight(n+1,2) . . . weight(n+1,k)
weight(n,1) weight(n,2) . . . weight(n,k)
weight(n−1,1) weight(n−1,2) . . . weight(n−1,k)

⋮ ⋮ ⋱ ⋮
weight(n−σ,1) weight(n−σ,2) . . . weight(n−σ,k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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∗
[offsetn+σ . . . offsetn+1 offsetn offsetn−1 . . . offsetn−σ]

=
[densityn+σ . . . densityn+1 densityn densityn−1 . . . densityn−σ]

densityn ∶= [densityn+σ . . . densityn+1 densityn densityn−1 . . . densityn−σ]
From here, we can calculate the strain by running the through a python code.

5.6 Allocating Notes to Fingers

We cannot assume that column1 where keys = 4 is the same as column1 where keys = 7. This is due to how
different fingers interact with the same column.

As to counter this, we need to find out the most common set-up for players.

key LP LR LM LI S RI RM RR RP
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 5 6
7 1 2 3 4 5 6 7
8 1 2 3 4 5 6 7 8
8S 1 2 3 4 5 6 7 8
9 1 2 3 4 5 6 7 8 9

L represents left, R is right, the second letter will be th e name for the fingers (LP: Left Pinky, LR: Left Ring
and so on...)

This allocation will give us a consistent result for all beatmaps, so key = 1 will always mean Left Pinky, key = 2
for Left Ring, and so on...

5.6.1 8 Key Scratch Bias

The issue with 8 Key maps is how maps will usually have a scratch column, this will create a setup that excludes
a pinky but includes the thumb. Due to this, we will shift the configuration to left pinky and right thumb,
excluding the right pinky. See the above 8S

5.7 Assigning Hyperparameters

In this section alone, we have used quite a few hyperparameters. To recap:

(Reading) θ is the hyperparameter for reading length.

(Density) σ defines the range, front and back of the density search. Higher sigma may prove to be useless with
further ∆k

nx being too small.

(Density) weightNN defines for normal notes

(Density) weightLNh defines for long notes heads

(Density) weightLNt defines for long notes tails

(Density) weightSSh defines for strain shift for hands
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(Density) weightSSb defines for strain shift for body
Now what we need to do is to assign a reasonable values to these, and run the results to find our:

difficulty ∶= {(offset1, difficulty1), (offset2, difficulty2), ..., (offsetn, difficultyn)}

Whereby we estimate difficulty at offset n from the map itself:

difficultyn ≈model
⎛
⎝
readingn,

keys

∑
k=1

(straink) , ...
⎞
⎠

We can further expand this to:

difficultyn ≈model
⎛
⎝
count(NN), count(LNh), count(LNt),

keys

∑
k=1

(straink)
⎞
⎠

Where strain

5.7.1 Values of Hyperparameters

There will definitely be issues when it comes to assuming hyperparameters because of how it will affect accuracy of
the model. However, as long as we reasonably assign them, most of the errors will be offset by the neural network
learning. We just need to focus on if a certain value should be larger/smaller or negative/positive.

(Reading) θ 1000 (ms)

(Density) σ 2

(Density) weightNN 1

(Density) weightLNh 0.75 (we will follow Reading)

(Density) weightLNt 0.75 (we will follow Reading)

(Density) weightSSh 0.25

(Density) weightSSb 0.1
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6 Difficulty from Replays

We are able to extract data from replays, however, they are not linked to the beatmaps themselves. This means
that it only has data of what keys and when did the player press it, there’s no data on accuracy achieved.

To recap, we managed to decode the replay sent into the following format:

actionreplay ∶= {(offset1, action1), (offset2, action2), ..., (offsetn, actionn)}
Whereby,

n ∈ {−9,−8, ...,−2,−1,1,2, ...,8,9}
offset is when the action happens. For action, −n means the key n is released, n means the key n is pressed.

In this section, we will be discussing how we can make this a suitable output for the neural network to predict.

6.1 Mapping a Replay to Beatmap

In this, we match all similar actions in their respective columns.
There are a few things we need to take note of when matching:

1. Not all actionbeatmap will have a matching actionreplay

2. We put the threshold of this matching as 100ms, i.e. actionbeatmap that doesn’t have any actionreplay within
100ms will be regarded as a miss.

3. The nearest actionreplay will match the actionbeatmap, not the earliest one.

4. We will deviate on how osu! calculate accuracy due to the above pointers, this allows us to calculate on a
more common basis.

We will expect the output of:

deviation ∶= {(offset1, deviation1), (offset2, deviation2), ..., (offsetn, deviationn)}
Where:

n = length(actionbeatmap)
And if there’s no match, deviation > 100, this is to allow us to understand that it’s a miss instead of a 100ms

hit.
This doesn’t proportionally represent accuracy (which will be easier to understand), as its lower value represents

a better judgement, so we will adjust to the following:

accuracy ∶= {(offset1, accuracy1), (offset2, accuracy2), ..., (offsetn, accuracyn)}

Where:
accuracyn = 100 − deviationn

Therefore, a miss would simply just be accuracy = 0 instead.
So accuracy will only span:

(Miss)0 ≤ accuracyn ≤ (Perfect)1
where, deviationn ∈ [0,1,2, ...,99,100]

6.2 Replay Soloing

As discussed in the preface, we need to resolve two issues. Multiple Replays and Multiple Players. We will
expect an output similar to a replay, this is where the first major assumption kicks in.
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6.2.1 Assumption of the Top 50

In this, we assume that if we took the median all top 50 replays, we will end up with a replay that is all-
encompassing.

This leads some problems:

Top Player Bias The neural network will perform worse on easier maps ≈ 3.0S.R. due to the median in easier
maps being too consistently perfect, this leads to amplification of noise (in this case, chokes).

Population Interaction This assumption will only hold if the beatmaps are old enough such that most of the
general playerbase has played it, else it doesn’t represent the population well enough due to low participation

Population Decay/Improvement The beatmaps we check must be ranked within close proximity with each
other, this is to avoid the Top 50 median from adjusting too much

6.2.2 Assumption of the Player

In this, instead of looking at it per beatmap, we will do it per player. This is much more consistent in data,
however it’s consistent for that player only.

In this method, we grab the all replays that Player X has played and compare them with each other. However
this still leads to assumptions:

1. The player played all the beatmaps at a similar time, or the player never improved

2. The player is representative of the community (bias)

The problem of the machine being biased to only the player can be fixed if we ran an averaging function on
the output with hundreds of other players.

However, due to how osu! sends API scores, I couldn’t get more than 50 scores per player. This means that
there will be no data for these replays.

6.3 Choosing an Assumption

Despite this, we will work with Assumption of the Top 50 as it’s reasonable enough, and it’s easier.
This means that the median of all replays will be saved in a different data file with < beatmap id > .acrv

extension. (v represents virtual)

6.4 Virtual Player/Replay

The median of the top 50 creates a virtual replay, where we expect it to be a good enough representation of a
virtual player. We can now pivot from this player as we calculate difficulty!

6.5 Smoothing

As expected, the median gathered will not be a smooth graph, we will smooth out with an moving aggregation
of its mean with a window of 30. This means that it’ll grab 30 data points, front and back, and calculate its
median, creating a new series/vector.

As player’s deviations usually will not be consistent throughout, this will help hammer down large errors, while
also affecting its neighbouring data points. In turn, this aids the machine to learn that the error may not only be
the issue of that one note, but instead a group of it.
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7 Creating a Neural Network

Before we dive into creating a neural network to finalize the calculation, we need to define specifically these few
things:

1. Input

2. Output

3. Layers

Input Our input will be a vector containing information about 12 parameters.
# name description
1 LP Left Pinky
2 LR Left Ring
3 LM Left Middle
4 LI Left Index
5 S Spacebar
6 RI Right Index
7 RM Right Middle
8 RR Right Ring
9 RP Right Pinky
10 NN(count) Normal Note (count)
11 LNH(count) Long Note Head (count)
12 LNT(count) Long Note Tail (count)

Output The output will be the expected accuracy, which is gathered from the replays.
# name description
1 roll Rolling average (window=30) of the replays’ Medians

Layers The amount and neurons of layers we use will be a hyperparameter. We will assign a value for those later,
and talk more about this in the next part, we will firstly look into bad data

7.1 Bad Data Filtering

One of the biggest problems in the model is how we didn’t take into consideration Scroll Speed. This stems from
ignoring them in the difficulty calculation from beatmaps.

7.1.1 Scroll Speed Changes

It’s hard to tell specifically which data is affected by the scroll speed change, but it’s easy to tell what maps have
scroll speed changes. However, by totally ignoring any maps with a slither of scroll speed changes, we will be left
with a small group of hard maps. This is largely due to the nature that harder maps are frequently paired with
them, so we need to find a filter.

Scroll Speed Manipulation Selection This is a subjective issue to tackle. I personally have tried doing an
automated rejection of maps that have more than 1 SV or BPM value, however that proved to fail due to maps
having intentional scroll speed changes, despite not oriented to be difficult in that aspect.

We will source out these maps manually, it is not a hard task, so it will be worth the effort.

13



7.2 Drafting the Model

Firstly, we need to identify the nature of this issue. This falls under the category of Regression as we are dealing
with a range of values, instead of a yes or no, which is instead labelled Classification.

The main problem we will face is scoring. We can label how many yes or no predictions are false positives, but
we require another method to score how well we did by prediction.

7.3 Custom Scoring

We will use a custom scoring to find out if the model has done well. It’s a simple function we are going to use, which
is to find the average absolute difference between the expected graph and predicted graph. In mathematical
terms:

∑(∣prediction − actual∣)
length(prediction) = score

Where, the score is better if it’s closer to 0. We also calculate the standard deviation of the absolutes as an
extra parameter to reference.
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Part III

Refinement

8 Refining Neural Network

In this section, we will be talking about how the neural network goes through change to score best.

8.1 Initial Draft

For this neural network, we will firstly start off with the following code. A simple neural network, with 2 layers,
the input, and the output.

def model c ( ) :

model = keras . models . S equent i a l ( )
model . add ( keras . l a y e r s . Dense(<neurons>, input shape =(12 ,) , \

k e r n e l i n i t i a l i z e r=’ normal ’ , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( keras . l a y e r s . Dense (1 , k e r n e l i n i t i a l i z e r=’ normal ’ ) )
model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ )

return model

input shape This defines how many dimensions we have the input as, we have 12 parameters, hence 12.

kernal initializer This defines how the weights are randomly allocated before the learning process. For this we
just use the normal.

activation We will simply be using ReLU (rectified linear unit) as our activation function. This simply maps
any positive values in the neuron to a linear function, anything non-positive is mapped to 0.

loss The loss describes how far the machine is predicting all values correctly. In this case, we will use mean
squared error as our minimum loss target as we are dealing with a regression problem.

optimizer It’s hard to describe what is Adam (adaptive moment estimation), however, it is described to be
”better” than SGD (Stochastic Gradient Descent). More info here: https://machinelearningmastery.com/adam-
optimization-algorithm-for-deep-learning/

8.1.1 Layer Improvements

We will keep it short on the guess and check for neuron layers, here are the results and improvements done.
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Parameters Loss
# L1 L2 L3 Epochs Batch Size Mean STDEV
1 96 48 24 10 500 1.80 0.60

Drop Batch Size to 200
2 96 48 24 10 200 1.81 0.58

Half Neurons
3 48 24 12 10 200 1.81 0.61

Add Reg L1 (0.01) on L2 and L3

4 96 48 24 10 200 1.67 0.67
5 L10.01 L10.01

Add Reg L1 (0.02) on L2 and L3

6 96 48 24 10 200 1.73 0.63
L10.02 L10.02

Add Reg L2 (0.01) on L2 and L3

7 96 48 24 10 200 1.72 0.64
L20.01 L20.01

Add Dropout (0.25) after L2 and L3

8 96 48 24 10 200 1.73 0.63
L10.01 L10.01
DO0.25 L20.25

Revert to 7, increased Epoch and Decreased Batch Size
9 96 48 24 50 50 1.69 0.56

L20.01 L20.01
Increase Reg L2 to 0.03

10 96 48 24 50 50 1.81 0.57
L20.03 L20.03

Revert to 7, doubled neurons
11 192 96 48 50 50 1.75 0.57

L20.03 L20.03
In the end of the experimenting, we will settle on Model 9
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Part IV

Results

9 Results

We will now test the model with high star rated maps

scor medn metadata
1 .15 06 .70 typeMARS − Triumph & Regret ( Regret )
1 .80 06 .75 g i nk i ha − Anemoi ( Daybreak )
1 .43 06 .85 g i nk i ha − B o r e a l i s (GRAVITY)
1 .22 07 .04 x i − over the top ( Extra )
0 .97 07 .04 Hermit − Dysnomia ( Tidek ’ s 4K Monochrome)
1 .00 07 .05 I m p e r i a l Circus Dead Decadence − Uta ( Tragic Ends )
2 .15 07 .19 Utsu−P f e a t . Kagamine Rin − Tokyo Teddy Bear (SHD)
1 .43 07 .47 Team Grimoire − G1ll35 d3 R415 ( Shana ’ s Extra )
1 .19 07 .52 MAZARE − Mazare Party (Ash ’ s 4K Extra )
1 .54 07 .55 Team Grimoire − G1ll35 d3 R415 (L45T C4LL)
0 .87 07 .55 C o l o r f u l Sounds Port − ETERNAL DRAIN ( Black Another )
1 .18 07 .63 TeamGrimoire+amaneko − croiX (GRAVITY)
1 .44 07 .64 He lb l i nde − Memoria ( Or i g i na l Mix) ( Memories )
1 .20 07 .64 Hypern i te I n d u s t r i e s − Speedcore 300 ( Extra )
1 .03 07 .71 kamome sano − arch ive : : z ip (GRAVITY)
1 .10 07 .77 ZOGRAPHOS ( Yu Asahina+Yamajet ) − Verse IV (INFINITE)
1 .45 07 .78 Team Grimoire − C18H27NO3( extend ) (4K Capsa ic in )
0 .75 07 .86 Kobaryo − Dotabata Animation [ f e a t . t+p a z o l i t e ] ( Ultra . . .
0 .99 07 .88 Camel l ia as ”Bang Riot ” − B l a s t i x Riotz ( J i n j i n ’ s INFI . . .
1 .29 07 .98 Kurokote i − Galaxy Col lapse ( Cataclysmic Hypernova )
1 .28 08 .02 Team Grimoire − Sher i ruth ( Arzenvald ’ s EXtinct ion )
0 .64 08 .02 C o l o r f u l Sounds Port − ETERNAL DRAIN ( Eterna l )
0 .67 08 .07 UNDEAD CORPORATION − The Empress scream o f f ver ( Zenx ’ . . .
1 .02 08 .08 Chroma − I ( Chicken AI ’ s Maximum)
1 .60 08 .10 Kaneko Chiharu − Z e t t a i Reido (GRAVITY)
2 .57 08 .10 S−C−U f e a t . Qrispy Joybox − anemone (Kawa & Ju l i e ’ s 7K . . .
0 .98 08 .12 RoughSketch f e a t . Aikapin − Grimm ( Kobaryo ’ s FTN−Remix ) . . .
1 .10 08 .23 AAAA − Hoshi o Kakeru Adventure ˜ we are f o r e v e r f r i e n . . .
1 .12 08 .26 Camel l ia as ”Bang Riot ” − B l a s t i x Riotz ( Shirou ’ s EXTR . . .
2 .51 08 .45 Se i ryu − Time to Air ( Bruce ’ s 7K Another )
1 .10 08 .51 P*Light f e a t . mow*2 − Homeneko* Sensat ion (8K Lv . 1 2 )
1 .99 08 .54 S−C−U f e a t . Qrispy Joybox − anemone (Kawa & Ju l i e ’ s 8K . . .
1 .05 08 .64 Kaneko Chiharu − iLLness LiLin (HEAVENLY)
1 .59 08 .73 Amane − Space Time (Amane Hardcore Remix ) (7K Lv . 4 0 )
0 .97 08 .73 Ryu* − Yukizukiyo ( v i c t o r i c a ’ s 8K Lv . 1 2 )
2 .42 08 .74 GReeeeN − Shinobi (7K Burst ! )
0 .77 08 .75 x i − Double He l ix ( Nuc l e i c )
1 .63 08 .76 Yooh − I c e Angel ( Euphoria )
1 .34 08 .83 Ogura Yui − Baby Sweet Berry Love (3R2 Remix ) ( Sweetne . . .
1 .64 08 .87 Ryu* Vs . Sota − Go Beyond ! ! (7K Black Another )
1 .63 08 .91 vo id − Valed i c t ( Black Another )
1 .55 08 .92 Cres − End Time ( Epi logue )
1 .10 08 .92 High Speed Music Team Sharpnel − M.A.M.A. (ExTra )
0 .72 08 .97 XeoN − Xeus (LV.12 Leggendaria )
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1 .20 08 .97 D(ABE3) − MANIERA ( Col lab Another )
1 .20 08 .98 o r a n g e n t l e / Yu Asahina − HAELEQUIN ( Extended ver . ) ( J . . .
1 .25 09 .01 p e n o r e r i − Ev e r l a s t i ng Message (GRAVITY)
1 .68 09 .02 Gekikara Mania − Deub l i th i ck ( Blocko ’ s Extra )
1 .30 09 .02 Cres − End Time ( Afterword )
1 .03 09 .02 S i s t e r z − Inve r s e World ( Universe )
1 .34 09 .05 w t r e r e s p e c t f o r AT&HU − Schur ’ s Theorem ( Black Anoth . . .
1 .63 09 .07 Hermit − Dysnomia (8K Melodie de t r i s t e s s e )
1 .37 09 .07 Shar l o & y e a l i n a − Kakushigoto (Rumi ’ s 7K MX)
1 .66 09 .08 Shoujo − Reminisc ing ( Black Another )
3 .66 09 .08 x i − Happy End o f the World (9K Col lab Insane )
1 .25 09 .09 BlackY − Harpuia ( INFINITE)
1 .59 09 .09 p e n o r e r i − Preserved Valkyr ia (GRAVITY)
1 .10 09 .10 Yooh − LiFE Garden ( Extended Mix) ( Eutopia )
1 .33 09 .10 kamome sano − arch ive : : z ip (GRAVITY)
1 .12 09 .12 S o l e i l y − Vio l e t Soul (D’ s Extra )
1 .67 09 .12 LeaF − LeaF Sty l e Super*Shredder (SC)
1 .61 09 .14 x i − Quietus Ray ( Heaven )
1 .51 09 .15 DJ TOTTO VS TOTTO − Vajra ( Emiria ’ s 8K Leggendaria )
1 .95 09 .16 Hermit − Dysnomia (D’ s 8K Another )
1 .58 09 .18 Midd le I s l and − Achromat (7K Black Another )
1 .19 09 .20 gmtn . ( witch ’ s s l a v e ) − f u r i o s o melodia (7K f u r i o s o ma . . .
1 .58 09 .22 DJ SHARPNEL − Touch the ange l (K−ON! ! )
0 .81 09 .23 MAZARE − Mazare Party (Ash ’ s 6K Extra )
1 .87 09 .28 DJ Mashiro − Pri smat ic L o l l i p o p s (Lv . 2 0 )
0 .95 09 .28 S o l e i l y − Renatus ( Another )
1 .21 09 .29 BlackY − FLOWER −SPRING Long VER.− (As Flowers Bloom A . . .
1 .81 09 .30 Nekomata Master − Sennen no Kotowari (GRAVITY)
0 .74 09 .31 UNDEAD CORPORATION − The Empress scream o f f ver ( Jepet . . .
1 .37 09 .36 Team Grimoire − C18H27NO3( extend ) (7K A x i t i e s )
1 .69 09 .38 Camel l ia as ”Bang Riot ” − B l a s t i x Riotz (GRAVITY)
1 .65 09 .39 Kucchi− − Remil ia ˜ Kyuuketsuki no Tame no Kyousoukyoku . . .
1 .80 09 .51 Kucchi− − Remil ia ˜ Kyuuketsuki no Tame no Kyousoukyoku . . .
1 .26 09 .52 Halozy − Kanshou no Matenrou ( Etern i ty )
1 .63 09 .54 x i − Garyou Tensei ( Mi l l i on ’ s 7K MX)
1 .29 09 .54 Mitsuyosh i Takenobu no Ani − Amphisbaena ( Fa l l en Heave . . .
1 .59 09 .56 Chroma − Hoshi ga Furanai Machi ( Meteor Shower // ppor . . .
1 .72 09 .58 LeaF − Al i c e in Misanthrope −Ensei Al ice − ( A l i c e in Wo. . .
1 .33 09 .58 Umeboshi Chazuke − Panic ! Pop ’ n ! P i cn i c ! ( P i cn i c ! )
1 .10 09 .65 x i − Ascension to Heaven ( Elysium )
1 .57 09 .65 Ayane − Endless Tears . . . ( CrossOver )
1 .07 09 .65 CLIMAX of MAXX 360 − PARANOiA Revolut ion ( Expert )
1 .22 09 .67 Jun Kuroda + AAAA − Ultimate Fate (The Apocalypse )
1 .35 09 .69 Warak − REANIMATE ( Reanimated obj . Kamikaze )
1 .29 09 .69 I c e − citanLu ( pporse ’ s Lunatic )
1 .28 09 .72 Yooh − FIRE FIRE −DARK BLAZE REMIX− (GRAVITY)
1 .55 09 .75 x i − Happy End o f the World ( a jee ’ s 5K Armageddon )
1 .74 09 .79 m108 − * Crow So lace * (KK’ s 7K Extra )
1 .22 09 .79 Cardboard Box − The Limit Does Not Exi s t ( Extra )
1 .63 09 .86 DragonForce − Symphony o f the Night ( Rhapsody o f the W. . .
1 .97 09 .88 x i − F (X)
1 .89 09 .91 DJ Genki VS Camel l ia f e a t . moimoi − YELL! ( So l i t u de )
0 .94 09 .93 Gekikara Mania − Deub l i th i ck ( Ultra )
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1 .14 09 .98 KRUX − I l l u s i o n o f I n f l i c t (7K Krux i f i ed )
1 .22 10 .02 Toromaru − Enigma (GRAVITY)
1 .46 10 .02 sakuzyo − AXION (Ex−ray )
1 .53 10 .06 x i − Garyou Tensei ( Mi l l i on ’ s 7K SC)
1 .92 10 .06 DJ Genki vs . Camel l ia f e a t . moimoi − Sunshine (7K Lumi . . .
1 .44 10 .10 m108 − * Crow So lace * ( r i chard ’ s 7K S o l u i s )
1 .81 10 .13 LeaF − LeaF Sty l e Super*Shredder (SHD)
3 .25 10 .20 s a r a d i s k − 220 − Kumano (Kumano ! ! Kumano ! ! Kuma ! ! )
1 .70 10 .20 D(ABE3) − MANIERA ( Masterp iece )
1 .23 10 .23 x i − ANiMA (Pew ’ s 7K Lv . 3 6 )
1 .24 10 .28 Cardboard Box − The Limit Does Not Exi s t ( I n f i n i t y )
1 .30 10 .33 Umeboshi Chazuke − Panic ! Pop ’ n ! P i cn i c ! (Kawawa ’ s Ex7 . . .
1 .29 10 .34 vo id − Just Hold on (To Al l F ighte r s ) ( Blocko & Soul ’ s . . .
0 .93 10 .36 DETRO − v o l c a n i c ( Pyroclasm )
1 .89 10 .42 kamome sano − arch ive : : z ip (GRAVITY) <Fresh Chicken>
3 .17 10 .49 senya − Mahou ga Umareta Hi ( Elegance Lunatic )
1 .43 10 .59 technop lane t − Inscape (HEAVENLY)
1 .44 10 .60 Yu Asahina − Ongaku − r e s o l v e − ( Music )
1 .21 10 .87 vo id − Just Hold on (To Al l F ighte r s ) ( Resolve )
1 .91 10 .90 DragonForce − The Warrior I n s i d e (6K Col lab Guardian )
2 .36 11 .08 x i − Happy End o f the World (9K Meteor Shower )
1 .26 11 .39 Doin − Further ( Lulu ’ s Go Beyond )
1 .54 11 .40 Lime − Smi l ing (Be Happy)
1 .38 11 .40 Gekikara Mania − Deub l i th i ck ( Mania )
1 .94 11 .75 MAZARE − Mazare Party (JAKARE’ s 6K Extra )
2 .28 11 .86 HO−KAGO TEA TIME − GO! GO! MANIAC (TV Si z e ) (K−ON! ! )
2 .23 11 .91 OISHII − ONIGIRI FREEWAY ( Unagi O n i g i r i ”UHD”)

There are more results in the GitHub Repo.

10 Conclusion

10.1 The model isn’t reliable

While I think the model is good to a certain degree, I don’t think it’s stable enough compared to a non-black box
model. In other words, I don’t think this model is production ready for a few reasons:

1. The model doesn’t calculate less popular key counts well

2. The model leans to the Top 50 population, so

(a) The model is bad at calculating easy maps as there’s little to no data with regards to deviation in those

(b) The model is bad at matching situations where 2 maps are actually the same difficulty, but due to low
interaction, the medians are vastly different.

(c) The model doesn’t have enough results for bad deviation situations.

(d) The model seems to be reliably calculating how hard is it to get a very high score (i.e. Varying LN
ends are hard to perfect, compared to hard jacks), however, most player’s perception of difficulty rating
doesn’t fall in line with that.

3. The model has very strong bias towards maps that are popular, e.g. Triumph & Regret, which seems to be
heavily affected by this issue

4. Even if the model works, it’s hard to explain what happens in the model since the neural network acts like a
black-box.
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10.2 How to fine-tune the model

I think the main reason of this issue is the Assumption of the Top 50. In other words, we assumed that the Top
50 results’ median can be treated like a player. However, this assumption proved to be very disastrous in terms of
reliability.

1. One way to prevent this is to look at specific player’s replays and do the same modelling again, however, we
will pivot from the player’s perspective.

2. We could have also, instead of looking at Top 50, we would focus on the a specific range of scores (which is
painfully annoying to grab from the API), e.g. 750000 − 850000, in which will give us more information on
bad deviations instead of extremely high scores with less bad deviations.

3. We could have dropped the idea of looking at key counts over 7 due to the small amount of data we would
have gotten from them. This has created a lot of noise in the model.

4. We did not take into account in-depth reading difficulty (i.e. how hard is it to read a broken stair compared to
a smooth one). If we could’ve calculated that one reliably, it would’ve smoothed out the LN map difficulties

5. If we were able to grab Double Time results, it’ll double our data, and increased the pool of harder maps,
this makes it significantly easier for the machine to rate them.
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Part V

Annex

11 Scripts

In this, I’ll be talking about the scripts I used. Note that this is for reference, for myself, in the future, so for anyone else reading
it, it may be a bit confusing.

11.1 Parsing a beatmap

In the hierarchy, it’ll look like this:

[ g e t o su f r om webs i t e . py ]
bm id −[DL]−> osu

[ o s u t o o s u s . py ]
osu −[Py]−> osuho + osutp + params
osutp : used to check f o r s c r o l l speed changes
params : beatmap metadata

[ osuho to acd . py ]
osuho −[Py]−> acd

[ g e t p l y r i d . py ]
bm id −[API]> p l y r i d

[ p l y r i d t o a c r . py ]
p l y r i d −[Py]−> acr

[ a c t o a c r v . py ]
acr+acd −[Py]−> acrv

[ a c t o p p s h i f t . py ]
acrv+acd − [Py]−> p p s h i f t

11.2 Feeding the map

[ i n t e r f a c e n e u r a l n e t w o r k . py ]

# This i s the overarch ing pu b l i c f unc t i on
def t r a i n ( s e l f , epochs : int , b a t c h s i z e : int ) :

s e l f . l o a d t r a i n i n g ( )
s e l f . t r a in mode l ( epochs , b a t c h s i z e )

# This conver t s the p p s h i f t i n t o a u sab l e pandas . Dataframe
def l o a d t r a i n i n g ( s e l f ) :

print ( ”Merging ” + str ( len ( s e l f . t r a i n i n g i d s ) ) + ” f i l e s ” )
print ( s e l f . t r a i n i n g i d s )

21



p p s h i f t l i s t = [ ]

for bm id in s e l f . t r a i n i n g i d s :
p p s h i f t f = open( s e l f . p p s h i f t d i r + str ( bm id ) + ’ . p p s h i f t ’ , ’ r ’ )
# Important : The f i r s t 29 r e s u l t s has a 0 output , so we w i l l cut
# those r e s u l t s out wi th s p l i c i n g .
# This i s due to the r o l l i n g Aggregat ion
p p s h i f t s t r = p p s h i f t f . read ( ) . s p l i t l i n e s ( ) [ 2 9 : ]
p p s h i f t f . c l o s e ( )
p p s h i f t l i s t . extend ( l i s t (map( eval , p p s h i f t s t r ) ) )

s e l f . t r a i n i n g d f = \
pandas . DataFrame ( p p s h i f t l i s t ,\

columns=[ ’OFF ’ , ’LP ’ , ’LR ’ , ’LM’ , ’ LI ’ , ’ S ’ , \
’ RI ’ , ’RM’ , ’RR’ , ’RP ’ , ’NN’ , ’LNH’ , ’LNT ’ , ’MED’ ] )

# This i s the Keras Model i t s e l f , based on model 9 in Part I I I
def model c ( s e l f ) :

model = keras . Sequent i a l ( )

# We make t h i s user − f r i e n d l y to ad j u s t
s e l f . l a y e r 1 n r n s = 96
s e l f . l a y e r 2 n r n s = 48
s e l f . l a y e r 3 n r n s = 24

# Layer 1
model . add ( keras . l a y e r s . Dense (\

s e l f . l ay e r 1 n rn s , input shape =(12 ,) , \
k e r n e l i n i t i a l i z e r=’ normal ’ , \
a c t i v a t i o n=’ r e l u ’ ) )

# Layer 2
i f ( s e l f . l a y e r 2 n r n s != None ) :

model . add ( keras . l a y e r s . Dense (
s e l f . l ay e r 2 n rn s ,\
e r n e l r e g u l a r i z e r=keras . r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) ) )

# Layer 3
i f ( s e l f . l a y e r 3 n r n s != None ) :

model . add ( keras . l a y e r s . Dense (
s e l f . l ay e r 3 n rn s ,\
k e r n e l r e g u l a r i z e r=keras . r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) ) )

# Output Layer
model . add ( keras . l a y e r s . Dense (1 , k e r n e l i n i t i a l i z e r=’ normal ’ ) )

model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ )

return model

# This f e e d s the machine
def t r a in mode l ( s e l f , epochs : int , b a t c h s i z e : int ) :
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# This i s the dataframe , e x t r a c t e d from p p s h i f t
df = s e l f . t r a i n i n g d f

# Shu f f l e
df = df . sample ( f r a c =1)
d s s = df . va lue s

i n d s s = d s s [ : , 1 : 1 3 ]
o u t d s s = d s s [ : , 1 3 ]

model = s e l f . model c ( )
model . f i t ( i n d s s , out ds s , epochs=epochs , b a t c h s i z e=b a t c h s i z e )

# Save model
model . model . save ( s e l f . mode l d i r + s e l f . model name + ’ . hdf5 ’ )

s e l f . model = model

11.3 Testing the model

# This i s the overarch ing pu b l i c f unc t i on
def t e s t ( s e l f ) :

s e l f . l oad mode l ( )
s e l f . t e s t mode l ( s e l f . t e s t i n g i d s , ’ r e s u l t s t s t ’ )
s e l f . t e s t mode l ( s e l f . t r a i n i n g i d s , ’ r e s u l t s t r n ’ )

# This s imply g e t s the model
def l oad mode l ( s e l f ) :

def dummy( ) :
return

model = KerasRegressor ( b u i l d f n=dummy, epochs =1, b a t c h s i z e =10, verbose =1)
model . model = ld mdl ( s e l f . mode l d i r + s e l f . model name + ’ . hdf5 ’ )

s e l f . model = model

# This w i l l t e s t the model and use a custom scor ing method
def t e s t mode l ( s e l f , bm ids , l o g f i l e n a m e = ’ r e s u l t s ’ ) :

r a t i n g l i s t = [ ]
l og = [ ]

for bm id in bm ids :
p p s h i f t f = open( s e l f . p p s h i f t d i r + str ( bm id ) + ’ . p p s h i f t ’ , ’ r ’ )
# Important : The f i r s t 29 r e s u l t s has a 0 output , so we w i l l cut
# those r e s u l t s out wi th s p l i c i n g .
# This i s due to the r o l l i n g Aggregat ion
p p s h i f t s t r = p p s h i f t f . read ( ) . s p l i t l i n e s ( ) [ 2 9 : ]
p p s h i f t f . c l o s e ( )

p p s h i f t d f = pandas . DataFrame ( l i s t (map( eval , p p s h i f t s t r ) ) )
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ds = p p s h i f t d f . va lue s

i n d s = ds [ : , 1 : 1 3 ]
out ds = ds [ : , [ 0 , 1 3 ] ]

# We pr e d i c t the r e s u l t s here
out p = s e l f . model . p r e d i c t ( in ds , verbose =0)

out o = pandas . DataFrame ( out ds , columns=[ ’ o f f s e t ’ , ’ o r i g i n a l ’ ] )
out p = pandas . DataFrame ( out p , columns=[ ’ pred ’ ] )

# We jo in back wi th the o r i g i n a l dataframe to compare
out = out o . j o i n ( out p )

# This i s where the p l o t s c rea t ed i s ra ted
out [ ’ d e l t a ’ ] = out [ ’ pred ’ ] . subt rac t ( out [ ’ o r i g i n a l ’ ] ) . abs ( )
l og . append ( str ( out [ ’ d e l t a ’ ] . mean ( ) ) + ”\ t ” + \

get beatmap metadata . metadata from id ( int ( bm id ) )

r a t i n g l i s t . append ( out [ ’ d e l t a ’ ] . mean ( ) )

# Append s t a t s
l og . append ( ”mean : ” + str ( s t a t i s t i c s . mean( r a t i n g l i s t ) ) )
l og . append ( ” stdev : ” + str ( s t a t i s t i c s . s tdev ( r a t i n g l i s t ) ) )
l og . append ( ” range : ” + str (min( r a t i n g l i s t ) ) + ’ − ’ \

+ str (max( r a t i n g l i s t ) ) )

# Export to a . t x t f i l e
l o g f = open( s e l f . p l o t d i r + l o g f i l e n a m e + ” . txt ” , ”w+” )
l o g f . wr i t e ( ’ \n ’ . j o i n ( l og ) )

11.4 Interface

Interface allows you to quickly parse, feed and predict from the model, it’s a bit messy but it should be easy enough to understand

# This reads the i d s and parses i t from osu to p p s h i f t
def p a r s e i d s ( ) :

# bm ids = g e t i d s ( s t a r r a t i n g a b o v e=5)

# Parsing a custom made id l i s t
f = open(<d i r e c to ry >, ’ r ’ )
bm ids = f . read ( ) . s p l i t l i n e s ( )
bm ids = l i s t (map( int , bm ids ) )
counter = 1

for bm id in bm ids :
try :

print ( ’ [ ’ + str ( counter ) + ’ ] ’ , end=’ \ t ’ )
bm = i n t e r f a c e c l a s s . parse beatmap id (

beatmap id=bm id , s o f t l o a d f l a g=True )
bm. par s e o su ( )

except :
print ( str ( bm id ) + ’ ERROR’ )
pass
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counter += 1

# This reads maps from the d i r e c t o r y and parses i t from osu to p p s h i f t
def p a r s e e v a l s ( ) :

f i l e l i s t = [ x . s p l i t ( ’ . ’ ) [ 0 ] for x in os . l i s t d i r (<d i r e c to ry >) ]

for f i l e in f i l e l i s t :
bm = i n t e r f a c e c l a s s . par se beatmap f i l e name (\

beatmap f i l e name=f i l e , s o f t l o a d f l a g=True )
bm. par s e o su ( )

# This f e e d s the model , the d i r e c t o r y w i l l be d e f a u l t e d to where
# the i n t e r f a c e c l a s s has expor ted the f i l e s
def t ra in mode l ( model name : str , seed : int = None) :

nn = i n t e r f a c e n e u r a l n e t w o r k . t ra in mode l ( model name , seed )

# Model 9
nn . l a y e r 1 n r n s = 96
nn . l a y e r 2 n r n s = 48
nn . l a y e r 3 n r n s = 24

nn . t r a i n (50 , 50)

# This g e t s f e e d s the model on ly the input , f o r p r e d i c t i on scor ing
def t e s t mode l ( model name : str , seed : int = None) :

nn = i n t e r f a c e n e u r a l n e t w o r k . t ra in mode l ( model name , seed )
nn . t e s t ( )

# This g e t s osu from a s p e c i f i c d i r e c t o r y to p r e d i c t
def eva l model ( model name : str ) :

nn = i n t e r f a c e n e u r a l n e t w o r k . eva l model ( model name , )
nn . eva luate ( )
return
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