--- name: dspy-ruby description: This skill should be used when working with DSPy.rb, a Ruby framework for building type-safe, composable LLM applications. Use this when implementing predictable AI features, creating LLM signatures and modules, configuring language model providers (OpenAI, Anthropic, Gemini, Ollama), building agent systems with tools, optimizing prompts, or testing LLM-powered functionality in Ruby applications. --- # DSPy.rb Expert ## Overview DSPy.rb is a Ruby framework that enables developers to **program LLMs, not prompt them**. Instead of manually crafting prompts, define application requirements through type-safe, composable modules that can be tested, optimized, and version-controlled like regular code. This skill provides comprehensive guidance on: - Creating type-safe signatures for LLM operations - Building composable modules and workflows - Configuring multiple LLM providers - Implementing agents with tools - Testing and optimizing LLM applications - Production deployment patterns ## Core Capabilities ### 1. Type-Safe Signatures Create input/output contracts for LLM operations with runtime type checking. **When to use**: Defining any LLM task, from simple classification to complex analysis. **Quick reference**: ```ruby class EmailClassificationSignature < DSPy::Signature description "Classify customer support emails" input do const :email_subject, String const :email_body, String end output do const :category, T.enum(["Technical", "Billing", "General"]) const :priority, T.enum(["Low", "Medium", "High"]) end end ``` **Templates**: See `assets/signature-template.rb` for comprehensive examples including: - Basic signatures with multiple field types - Vision signatures for multimodal tasks - Sentiment analysis signatures - Code generation signatures **Best practices**: - Always provide clear, specific descriptions - Use enums for constrained outputs - Include field descriptions with `desc:` parameter - Prefer specific types over generic String when possible **Full documentation**: See `references/core-concepts.md` sections on Signatures and Type Safety. ### 2. Composable Modules Build reusable, chainable modules that encapsulate LLM operations. **When to use**: Implementing any LLM-powered feature, especially complex multi-step workflows. **Quick reference**: ```ruby class EmailProcessor < DSPy::Module def initialize super @classifier = DSPy::Predict.new(EmailClassificationSignature) end def forward(email_subject:, email_body:) @classifier.forward( email_subject: email_subject, email_body: email_body ) end end ``` **Templates**: See `assets/module-template.rb` for comprehensive examples including: - Basic modules with single predictors - Multi-step pipelines that chain modules - Modules with conditional logic - Error handling and retry patterns - Stateful modules with history - Caching implementations **Module composition**: Chain modules together to create complex workflows: ```ruby class Pipeline < DSPy::Module def initialize super @step1 = Classifier.new @step2 = Analyzer.new @step3 = Responder.new end def forward(input) result1 = @step1.forward(input) result2 = @step2.forward(result1) @step3.forward(result2) end end ``` **Full documentation**: See `references/core-concepts.md` sections on Modules and Module Composition. ### 3. Multiple Predictor Types Choose the right predictor for your task: **Predict**: Basic LLM inference with type-safe inputs/outputs ```ruby predictor = DSPy::Predict.new(TaskSignature) result = predictor.forward(input: "data") ``` **ChainOfThought**: Adds automatic reasoning for improved accuracy ```ruby predictor = DSPy::ChainOfThought.new(TaskSignature) result = predictor.forward(input: "data") # Returns: { reasoning: "...", output: "..." } ``` **ReAct**: Tool-using agents with iterative reasoning ```ruby predictor = DSPy::ReAct.new( TaskSignature, tools: [SearchTool.new, CalculatorTool.new], max_iterations: 5 ) ``` **CodeAct**: Dynamic code generation (requires `dspy-code_act` gem) ```ruby predictor = DSPy::CodeAct.new(TaskSignature) result = predictor.forward(task: "Calculate factorial of 5") ``` **When to use each**: - **Predict**: Simple tasks, classification, extraction - **ChainOfThought**: Complex reasoning, analysis, multi-step thinking - **ReAct**: Tasks requiring external tools (search, calculation, API calls) - **CodeAct**: Tasks best solved with generated code **Full documentation**: See `references/core-concepts.md` section on Predictors. ### 4. LLM Provider Configuration Support for OpenAI, Anthropic Claude, Google Gemini, Ollama, and OpenRouter. **Quick configuration examples**: ```ruby # OpenAI DSPy.configure do |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY']) end # Anthropic Claude DSPy.configure do |c| c.lm = DSPy::LM.new('anthropic/claude-3-5-sonnet-20241022', api_key: ENV['ANTHROPIC_API_KEY']) end # Google Gemini DSPy.configure do |c| c.lm = DSPy::LM.new('gemini/gemini-1.5-pro', api_key: ENV['GOOGLE_API_KEY']) end # Local Ollama (free, private) DSPy.configure do |c| c.lm = DSPy::LM.new('ollama/llama3.1') end ``` **Templates**: See `assets/config-template.rb` for comprehensive examples including: - Environment-based configuration - Multi-model setups for different tasks - Configuration with observability (OpenTelemetry, Langfuse) - Retry logic and fallback strategies - Budget tracking - Rails initializer patterns **Provider compatibility matrix**: | Feature | OpenAI | Anthropic | Gemini | Ollama | |---------|--------|-----------|--------|--------| | Structured Output | ✅ | ✅ | ✅ | ✅ | | Vision (Images) | ✅ | ✅ | ✅ | ⚠️ Limited | | Image URLs | ✅ | ❌ | ❌ | ❌ | | Tool Calling | ✅ | ✅ | ✅ | Varies | **Cost optimization strategy**: - Development: Ollama (free) or gpt-4o-mini (cheap) - Testing: gpt-4o-mini with temperature=0.0 - Production simple tasks: gpt-4o-mini, claude-3-haiku, gemini-1.5-flash - Production complex tasks: gpt-4o, claude-3-5-sonnet, gemini-1.5-pro **Full documentation**: See `references/providers.md` for all configuration options, provider-specific features, and troubleshooting. ### 5. Multimodal & Vision Support Process images alongside text using the unified `DSPy::Image` interface. **Quick reference**: ```ruby class VisionSignature < DSPy::Signature description "Analyze image and answer questions" input do const :image, DSPy::Image const :question, String end output do const :answer, String end end predictor = DSPy::Predict.new(VisionSignature) result = predictor.forward( image: DSPy::Image.from_file("path/to/image.jpg"), question: "What objects are visible?" ) ``` **Image loading methods**: ```ruby # From file DSPy::Image.from_file("path/to/image.jpg") # From URL (OpenAI only) DSPy::Image.from_url("https://example.com/image.jpg") # From base64 DSPy::Image.from_base64(base64_data, mime_type: "image/jpeg") ``` **Provider support**: - OpenAI: Full support including URLs - Anthropic, Gemini: Base64 or file loading only - Ollama: Limited multimodal depending on model **Full documentation**: See `references/core-concepts.md` section on Multimodal Support. ### 6. Testing LLM Applications Write standard RSpec tests for LLM logic. **Quick reference**: ```ruby RSpec.describe EmailClassifier do before do DSPy.configure do |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY']) end end it 'classifies technical emails correctly' do classifier = EmailClassifier.new result = classifier.forward( email_subject: "Can't log in", email_body: "Unable to access account" ) expect(result[:category]).to eq('Technical') expect(result[:priority]).to be_in(['High', 'Medium', 'Low']) end end ``` **Testing patterns**: - Mock LLM responses for unit tests - Use VCR for deterministic API testing - Test type safety and validation - Test edge cases (empty inputs, special characters, long texts) - Integration test complete workflows **Full documentation**: See `references/optimization.md` section on Testing. ### 7. Optimization & Improvement Automatically improve prompts and modules using optimization techniques. **MIPROv2 optimization**: ```ruby require 'dspy/mipro' # Define evaluation metric def accuracy_metric(example, prediction) example[:expected_output][:category] == prediction[:category] ? 1.0 : 0.0 end # Prepare training data training_examples = [ { input: { email_subject: "...", email_body: "..." }, expected_output: { category: 'Technical' } }, # More examples... ] # Run optimization optimizer = DSPy::MIPROv2.new( metric: method(:accuracy_metric), num_candidates: 10 ) optimized_module = optimizer.compile( EmailClassifier.new, trainset: training_examples ) ``` **A/B testing different approaches**: ```ruby # Test ChainOfThought vs ReAct approach_a_score = evaluate_approach(ChainOfThoughtModule, test_set) approach_b_score = evaluate_approach(ReActModule, test_set) ``` **Full documentation**: See `references/optimization.md` section on Optimization. ### 8. Observability & Monitoring Track performance, token usage, and behavior in production. **OpenTelemetry integration**: ```ruby require 'opentelemetry/sdk' OpenTelemetry::SDK.configure do |c| c.service_name = 'my-dspy-app' c.use_all end # DSPy automatically creates traces ``` **Langfuse tracing**: ```ruby DSPy.configure do |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY']) c.langfuse = { public_key: ENV['LANGFUSE_PUBLIC_KEY'], secret_key: ENV['LANGFUSE_SECRET_KEY'] } end ``` **Custom monitoring**: - Token tracking - Performance monitoring - Error rate tracking - Custom logging **Full documentation**: See `references/optimization.md` section on Observability. ## Quick Start Workflow ### For New Projects 1. **Install DSPy.rb and provider gems**: ```bash gem install dspy dspy-openai # or dspy-anthropic, dspy-gemini ``` 2. **Configure LLM provider** (see `assets/config-template.rb`): ```ruby require 'dspy' DSPy.configure do |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY']) end ``` 3. **Create a signature** (see `assets/signature-template.rb`): ```ruby class MySignature < DSPy::Signature description "Clear description of task" input do const :input_field, String, desc: "Description" end output do const :output_field, String, desc: "Description" end end ``` 4. **Create a module** (see `assets/module-template.rb`): ```ruby class MyModule < DSPy::Module def initialize super @predictor = DSPy::Predict.new(MySignature) end def forward(input_field:) @predictor.forward(input_field: input_field) end end ``` 5. **Use the module**: ```ruby module_instance = MyModule.new result = module_instance.forward(input_field: "test") puts result[:output_field] ``` 6. **Add tests** (see `references/optimization.md`): ```ruby RSpec.describe MyModule do it 'produces expected output' do result = MyModule.new.forward(input_field: "test") expect(result[:output_field]).to be_a(String) end end ``` ### For Rails Applications 1. **Add to Gemfile**: ```ruby gem 'dspy' gem 'dspy-openai' # or other provider ``` 2. **Create initializer** at `config/initializers/dspy.rb` (see `assets/config-template.rb` for full example): ```ruby require 'dspy' DSPy.configure do |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY']) end ``` 3. **Create modules in** `app/llm/` directory: ```ruby # app/llm/email_classifier.rb class EmailClassifier < DSPy::Module # Implementation here end ``` 4. **Use in controllers/services**: ```ruby class EmailsController < ApplicationController def classify classifier = EmailClassifier.new result = classifier.forward( email_subject: params[:subject], email_body: params[:body] ) render json: result end end ``` ## Common Patterns ### Pattern: Multi-Step Analysis Pipeline ```ruby class AnalysisPipeline < DSPy::Module def initialize super @extract = DSPy::Predict.new(ExtractSignature) @analyze = DSPy::ChainOfThought.new(AnalyzeSignature) @summarize = DSPy::Predict.new(SummarizeSignature) end def forward(text:) extracted = @extract.forward(text: text) analyzed = @analyze.forward(data: extracted[:data]) @summarize.forward(analysis: analyzed[:result]) end end ``` ### Pattern: Agent with Tools ```ruby class ResearchAgent < DSPy::Module def initialize super @agent = DSPy::ReAct.new( ResearchSignature, tools: [ WebSearchTool.new, DatabaseQueryTool.new, SummarizerTool.new ], max_iterations: 10 ) end def forward(question:) @agent.forward(question: question) end end class WebSearchTool < DSPy::Tool def call(query:) results = perform_search(query) { results: results } end end ``` ### Pattern: Conditional Routing ```ruby class SmartRouter < DSPy::Module def initialize super @classifier = DSPy::Predict.new(ClassifySignature) @simple_handler = SimpleModule.new @complex_handler = ComplexModule.new end def forward(input:) classification = @classifier.forward(text: input) if classification[:complexity] == 'Simple' @simple_handler.forward(input: input) else @complex_handler.forward(input: input) end end end ``` ### Pattern: Retry with Fallback ```ruby class RobustModule < DSPy::Module MAX_RETRIES = 3 def forward(input, retry_count: 0) begin @predictor.forward(input) rescue DSPy::ValidationError => e if retry_count < MAX_RETRIES sleep(2 ** retry_count) forward(input, retry_count: retry_count + 1) else # Fallback to default or raise raise end end end end ``` ## Resources This skill includes comprehensive reference materials and templates: ### References (load as needed for detailed information) - [core-concepts.md](./references/core-concepts.md): Complete guide to signatures, modules, predictors, multimodal support, and best practices - [providers.md](./references/providers.md): All LLM provider configurations, compatibility matrix, cost optimization, and troubleshooting - [optimization.md](./references/optimization.md): Testing patterns, optimization techniques, observability setup, and monitoring ### Assets (templates for quick starts) - [signature-template.rb](./assets/signature-template.rb): Examples of signatures including basic, vision, sentiment analysis, and code generation - [module-template.rb](./assets/module-template.rb): Module patterns including pipelines, agents, error handling, caching, and state management - [config-template.rb](./assets/config-template.rb): Configuration examples for all providers, environments, observability, and production patterns ## When to Use This Skill Trigger this skill when: - Implementing LLM-powered features in Ruby applications - Creating type-safe interfaces for AI operations - Building agent systems with tool usage - Setting up or troubleshooting LLM providers - Optimizing prompts and improving accuracy - Testing LLM functionality - Adding observability to AI applications - Converting from manual prompt engineering to programmatic approach - Debugging DSPy.rb code or configuration issues