Nombre y Apellido:

Justifique todas sus respuestas

Justifique todas sus respuestas

Parte práctica.

- 1. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado los vectores $\alpha_1 = (-3, 1, 0, 0), \alpha_2 = (-2, 0, 1, 0)$ y $\alpha_3 = (-1, 1, -1, 1)$.
 - a) Probar que $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ es base de W y dar las coordenadas de un vector (x, y, z, t) de W en la base ordenada \mathcal{B} .
 - b) Determinar todos los valores de $a \in \mathbb{R}$ tales que el subespacio generado por los vectores (1,0,a,0) y (2,0,-1,-a) esté contenido en W.
 - c) Sea $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + z 2t = y + 2z t = 0\}$. Dar una descripción implícita y una base del subespacio $W \cap U$ y determinar su dimensión.
- 2. (15 pts.) Sea $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$ la transformación lineal definida por $T\begin{pmatrix} x & y \\ z & t \end{pmatrix} = (x-y, z-t, -x+y-z+t)$.
 - a) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
 - b) Dar una descripción implícita de Im T, calcular su dimensión y mostrar una base.
 - c) Hallar $[T]_{\mathcal{B}_1}^{\mathcal{B}_2}$, donde \mathcal{B}_1 y \mathcal{B}_2 son las bases ordenadas de $\mathbb{R}^{2\times 2}$ y de \mathbb{R}^3 dadas, respectivamente, por

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}, \qquad \mathcal{B}_2 = \{(0,1,0), (-1,0,-1), (1,0,-1)\}.$$

3. (15 pts.) Sea $\{e_1, e_2, e_3\}$ la base ordenada canónica de \mathbb{C}^3 y sea $T: \mathbb{C}^3 \to \mathbb{C}^3$ la transformación lineal que cumple que

$$T(e_1) = (-i, 0, i), \quad T(e_2) = (0, 1 + i, 0), \quad T(e_3) = (0, 1, -1).$$

- a) Calcular el determinante de T.
- b) Probar que T es inversible y dar una fórmula explícita para $T^{-1}(x,y,z)$, donde $(x,y,z) \in \mathbb{C}^3$.
- c) Determinar los autovalores de T y dar una base de los autoespacios correspondientes. ¿Es T diagonalizable?
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Para todo $c \in \mathbb{R}$, el conjunto $\{(1,0,c,0),(0,c,1,0),(-1,0,1,0)\}$ puede extenderse a una base de \mathbb{R}^4 .
 - b) Existe una transformación lineal $T: \mathbb{R}^5 \to \mathbb{R}^5$ tal que $\operatorname{Nu}(T) = \operatorname{Im}(T)$.
 - c) Si $A \in F^{3 \times 2}$ y $B \in F^{2 \times 3}$, entonces $\det(AB) = 0$.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial de dimensión finita n sobre un cuerpo \mathbb{F} .
 - a) Dar la definición de base de V.
 - b) Probar que cualquier subconjunto de V con más de n vectores es linealmente dependiente.
 - c) Probar que ningún subconjunto de V con menos de n vectores puede generar V.
- 6. (20 pts.) Sean W_1 y W_2 subespacios de un espacio vectorial V.
 - a) Dar la definición de $W_1 \cap W_2$ y $W_1 + W_2$ y probar que son subespacios de V.
 - b) ¿Bajo qué condiciones se dice que la suma $W_1 + W_2$ es directa?
 - c) Probar que si W_1 y W_2 son de dimensión finita, entonces $W_1 + W_2$ es de dimensión finita y $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				