ÁLGEBRA LINEAL y ÁLGEBRA II PARCIAL 2 (17/11/2006)

A tener en cuenta:

- La prolijidad afecta el humor del corrector. =)
- Enumerar las hojas.
- No usar calculadora.
- (1) 3pts. Sea $T: \mathbb{R}^5 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1 - x_2 + 2x_4, -x_1 + x_2 + x_3 - 4x_5, 2x_1 - 2x_2 + x_3 + 6x_4 - 4x_5),$$

- (a) Dar una base del núcleo de T.
- (b) Calcular la dimensión de la imagen de T.
- (c) Indicar cuales de estos vectores están en Nu T: (1,1,4,-3,1), (0,2,-2,1,0). Idem con lo siguientes en Im T: (1,-4,-1), (-1,-4,1).
- (2) **2,5pts.** $\mathcal{B} = \{\alpha_1, \alpha_2\}$ es base de \mathbb{R}^2 con $\alpha_1 = (1,0), \alpha_2 = (1,1)$. Sea $F : \mathbb{R}^2 \to \mathbb{R}^3$ la transformación lineal definida por
 - $F(\alpha_1) = (-1, 0, 0); \quad F(\alpha_2) = (2, 0, 1).$
 - (a) Describir F para cualquier $(x, y) \in \mathbb{R}^2$.
 - (b) Calcular $[F]_{\mathcal{C}_3}^{\tilde{B}}$, donde \mathcal{C}_3 es la base canónica de \mathbb{R}^3 .
 - (c) Calcular $[F]_{\mathcal{C}_3}^{\widetilde{\mathcal{C}}_2}$, donde \mathcal{C}_2 es la base canónica de \mathbb{R}^2 .
- (3) 2,5pts. Decir si las siguientes afirmaciones son verdaderas o falsas, justificando sus respuestas.
 - (a) Si $T_1: \mathbb{R}^5 \to \mathbb{R}^3$ es una transformación lineal, entonces dim(Nu T_1) ≥ 3 .
 - (b) Sea $T_2: \mathbb{C}^2 \to \mathbb{C}^2$ dada por $T_2(x,y) = (-y,x)$. El vector $\alpha = (i,1)$ es autovector de T_2 con autovalor asociado i.
 - (c) El conjunto $\{A \in M_{2\times 2} : A \text{ es no inversible}\}$ es un subespacio vectorial de $M_{2\times 2}$.
- (4) **2pts.** Sea $T: V \to W$ una transformación lineal inyectiva. Si $\{\alpha_1, \ldots, \alpha_n\}$ es un conjunto linealmente independiente, entonces $\{T(\alpha_1), \ldots, T(\alpha_n)\}$ también lo es.