

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Álgebra / Álgebra II Segundo parcial - 04/06/2015

Nombre y apellido:

Carrera:

Justifique todas las respuestas.

- 1. (30 pts.) Sea $\mathcal{B} = \{(0,1,0,0), (1,1,0,0), (0,0,-1,1), (0,0,1,0)\} \subseteq \mathbb{R}^4$.
 - a) Probar que \mathcal{B} es una base de \mathbb{R}^4 .
 - b) Hallar la matriz de coordenadas de un vector $(x, y, z, t) \in \mathbb{R}^4$ en la base ordenada \mathcal{B} .
 - c) Determinar la matriz de cambio de base de la base ordenada canónica a la base ordenada \mathcal{B} .
- 2. (30 pts.) Sea $T:\mathbb{R}^3\to\mathbb{R}^4$ la transformación lineal definida en la forma

$$T(x, y, z) = (x - y, y - z, 2x - y - z, -x + z).$$

- a) Dar una descripción implícita y una base de Nu T y calcular su dimensión.
- b) Dar una descripción implícita y una base de Im T y calcular su dimensión.
- c) Decidir si el vector (1,0,-1,1) pertenece a Im T.
- 3. (20 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Sea F un cuerpo. Existen subespacios V y W de F^5 tales que dim $V=2=\dim W$ y $F^5=V\oplus W$.
 - b) Si $T: \mathbb{R}^2 \to \mathbb{R}^3$ es una transformación lineal tal que T(1,0)=(1,0,-1) y T(0,1)=(0,1,0), entonces T(1,-1)=(1,-1,1).
 - c) Existe una transformación lineal $T: \mathbb{R}^7 \to \mathbb{R}^3$ tal que dim Nu T=2.
- 4. (20 pts.) Sean V y W espacios vectoriales sobre un cuerpo F.
 - a) Dar la definición de transformación lineal $T:V\to W.$
 - b) Definir núcleo e imagen de una transformación lineal $T: V \to W$.

Ejercicio	1a	1b	1c	2a	2b	2c	3a	3b	3c	4a	4b	Total
Evaluación												