1	2	3	4	CALIF.

APELLIDO Y NOMBRE:

Comisión:

Mañana

Algebra II - 2do Cuatrimestre 2019 Segundo Parcial (12/11/2019)

1. (2pts) Sea $\mathbb{R}[t]_2$ el \mathbb{R} -espacio vectorial de polinomios de grado menor o igual que 2, y sea $T:\mathbb{R}[t]_2 \to \mathbb{R}^4$ la transformación lineal dada por

$$T(p(x)) = (p(0), p'(0), p(1), p'(1)).$$

Dadas las bases $\mathcal{B}_2 = \{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, -1)\}$ de \mathbb{R}^4 y $\mathcal{B}_1 = \{2 + t, t^2 + t + 1, t^2 + 1\}$ de $\mathbb{R}[t]_2$, calcular $[T]_{\mathcal{B}_1, \mathcal{B}_2}$.

2. (3pts) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la siguiente transformación lineal:

$$T(x, y, z) = (-2x + 6y + 8z, -2x + 6y + 4z, x - 3y), \qquad x, y, z \in \mathbb{R}.$$

- (a) Calcular los autovalores de T y sus correspondientes autoespacios.
- (b) Decidir si T es diagonalizable. En caso que lo sea, dar una base B de \mathbb{R}^3 tal que la matriz de T en dicha base sea diagonal.
- 3. (2pts) Sea $(\mathbb{R}^3, \langle , \rangle)$ el espacio vectorial con producto interno dado por

$$\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = x_1 x_2 - x_1 y_2 - x_2 y_1 + 2y_1 y_2 + 3z_1 z_2.$$

- Dado el subespacio W generado por los vectores $\{(1,1,0),(0,1,1)\}$, encontrar una base ortogonal de W.
- Dar una base de W^{\perp} .
- 4. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (1pt) Toda matriz $A \in M_{2\times 2}(\mathbb{R})$ es diagonalizable.
 - (b) (1pt) Miremos \mathbb{R}^3 con el producto interno canónico $\langle \ , \ \rangle$. Dada la transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}$, dada por f((1,1,0)) = 1, f((1,0,-1)) = -1 y f((0,1,1)) = 0, existe un vector $v = (a,b,c) \in \mathbb{R}^3$ tal que para todo vector $w \in \mathbb{R}^3$, $f(w) = \langle v, w \rangle$.
 - (c) (1pt) Si $A \in M_{3\times 3}(\mathbb{R})$ es tal que $\det(A) = 0$ entonces A tiene toda una fila o toda una columna de ceros.