Turno mañana

Comisión:

Apellido y Nombre:

Nota Final:

Carrera:

- 1. (20 pts.) Sea \mathbbm{k} un cuerpo y V, W, U espacios vectoriales sobre \mathbbm{k} . Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales. Demostrar que la composición de $S\circ T$ es una transformación lineal.
- 2. Sea $T: \mathbb{R}^3 \to \mathbb{R}_3[x]$ definida por

$$T(a,b,c) = (a+b)x^2 + (2a+4c)x + a - b + 4c$$

- (a) (15 pts.) Dar la dimensión del núcleo de T. Justifique apropiadamente.
- (b) (10 pts.) Calcular la matriz de la transformación T con respecto a la base canónica ordenada $\mathcal{C} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 y la base ordenada $\mathcal{B} = \{1, 1+x, 1+x+x^2\}$ de $\mathbb{R}_3[x]$.
- (c) (15 pts.) Calcular los autovalores reales y complejos de la matriz $[T]_{\mathcal{CB}}$.
- 3. (30 pts.) Definir una transformación lineal $T: \mathbb{R}^3 \to M_2(\mathbb{R})$ que verifique que

$$Nu(T) = \{(x, y, z) : z = x = 3y\},\$$

$$\operatorname{Im}(T) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \middle| b = a - c, b - d = c \right\}.$$

Escribir explícitamente T(x, y, z) para cualquier $(x, y, z) \in \mathbb{R}^3$. Justifique cada paso.

4. (10 pts.) Sea $T: M_2(\mathbb{R}) \to \mathbb{R}$ una transformación lineal **no** nula. Demostrar que existe una matriz triangular superior $A \in M_2(\mathbb{R})$ **no nula** tal que T(A) = 0.

1	2(a)	2(b)	2(c)	3	4	Total	Nota

Algunas recomendaciones:

- 1. Ordene y numere las páginas.
- 2. Coloque bien su nombre y carrera.
- 3. Tache en la grilla los ejercicios que no han sido resueltos.
- 4. Ordene los ejercicios en orden ascendente.