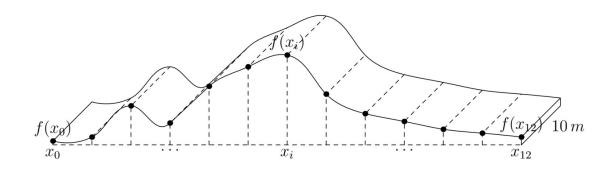
ANÁLISIS NUMÉRICO I/ANÁLISIS NUMÉRICO – 2022 Parcial 1 Laboratorio


Fecha de inicio: 10/06/2022

Fecha de entrega: 13/06/2022 23:59 (noche del lunes)

Forma de entrega:

• Archivos .py enviados en la tarea creada en el aula virtual. Agregar todos los archivos necesarios para correr las soluciones desde la carpeta de la entrega. NO COMPRIMIR LOS ARCHIVOS.

- Dejar instrucciones de ejecución de cada uno en los comentarios o en un único archivo de texto para todos los .py.
- 1. En 2017, el huracán Irma fue el más intenso que impactó en Estados Unidos desde el huracán Katrina en 2005, con ráfagas de viento de hasta 285 km/h. Durante el 10 de septiembre, el centro del huracán ingresó al estado de Florida y en los datos en el archivo irma.csv se muestran las coordenadas del mismo cada 3 horas, durante 24 horas. La primer columna denota la hora, la segunda la longitud y la tercera muestra la latitud.
 - (a) Realice un gráfico que muestre los puntos de los datos (nota: la longitud indica el eje X y la latitud el eje Y).
 - (b) Interpolar las funciones longitud(t) y latitud(t) utilizando los métodos de interpolación de Lagrange y Spline cúbico y estimar las longitudes y latitudes del ojo del huracán cada una hora. Realice un gráfico que muestre los puntos de los datos y las trayectorias calculadas con ambos métodos de interpolación.
- 2. Se desea encontrar la cantidad aproximada de metros cúbicos de tierra que deben ser removidos para nivelar a 0 metros un terreno de $12m \times 10m$. Este terreno particular puede verse como un cierto perfil a lo largo de 10m.

Del perfil a ser considerado tenemos las siguientes mediciones (en metros):

x_i	0	1.5	2	2.9	4	5.6	6	7.1	8.05	9.2	10	11.3	12
$f(x_i)$	0.1	0.2	1	0.56	1.5	2.0	2.3	1.3	0.8	0.6	0.4	0.3	0.2

- (a) Realice un gráfico de los datos utilizando puntos discretos.
- (b) Modificar el método del trapecio para integrar funciones en intervalos de longitud arbitraria (no equidistantes). Crear una función (trapecio_adaptativo) que, dadas la partición y los valores de la función en la partición, devuelva la aproximación de la integral usando este método.
- (c) Usando la función trapecio_adaptativo calcular la cantidad (aproximada) de metros cúbicos de tierra que deben ser removidos para nivelar a 0 metros el terreno considerado.