EXAMEN FINAL

26/07/2018

Nombre y Apellido:

1	2	3	4	5	Total

El código python utilizado en la resolución de los ejercicios marcados con "▶" se deberá subir a moodle para su evaluación. El envío deberá contar con las siguientes características

- Enviar un solo archivo, que deberá llamarse apellido_nombre.py
- El mismo deberá contener las funciones necesarias para ejecutar ej2(), ej3() y ej4() con las resoluciones correspondientes a los ejercicios considerados.
- El código debe cumplir PEP8
- Está permitido usar los códigos desarrollados en los prácticos.

Ejercicio 1.

- a) Pruebe que la distribución del estadístico *D* de Kolmogorov Smirnov no depende de la distribución de la muestra inicial con la cual se lo construye.
- b) Si N(t) es un proceso de Poisson no homogéneo, enuncie las condiciones que lo definen, y diga como generar un test de bondad de ajuste para este modelo.

Ejercicio 2. \blacktriangleright Las máquinas tragamonedas usualmente generan un premio cuando hay un acierto. Supongamos que se genera el acierto con el siguiente esquema: se genera un número aleatorio U, y

- i) si U es menor a un tercio, se suman dos nuevos números aleatorios,
- ii) si U es mayor o igual a un tercio, se suman tres nuevos números aleatorios.

Si el resultado X de la suma es menor o igual a 1, se genera un acierto.

- a) Calcule en forma exacta la probabilidad de no acertar.
- b) Diga si la probabilidad de no acertar es independiente de U. Justifique.
- c) Implementar un algoritmo en computadora que estime la probabilidad de no acertar, esto es, la fracción de veces que se no se acierta en *n* realizaciones del juego. Completar la siguiente tabla:

n	P[X>1]
100	
1000	
10000	
100000	

Ejercicio 3. Para verificar que un dado es honesto se registraron 1000 lanzamientos, resultando que el número de veces que el dado arrojó el valor i (i = 1, 2, 3, 4, 5, 6) fue, respectivamente, 162, 181, 164, 193, 146, 154. ¿Se puede aceptar, a un nivel de confianza del 95 %, que estos resultados corresponden a un dado homogéneo?. Responder esta pregunta por medio de las siguientes consignas.

- 1. Plantear el test de hipótesis pertinente.
- 2. Realizar un cálculo a mano del estadístico de test adecuado.
- 3. Dar el p-valor de la prueba y la conclusión que este provee
 - i) utilizando un aproximación chi-cuadrada,
 - ii) realizando una simulación.

Ejercicio 4. ▶ Desea determinarse mediante Monte Carlo el valor de la integral

$$I = \int_{-\infty}^{\infty} x^4 \exp(-x^2) \, dx.$$

- a) Indicar cómo se obtiene mediante simulación el valor de la integral.
- b) Definir la desviación estándar del estimador de la integral.
- c) Obtener mediante simulación en computadora el valor de la integral. Detener la simulación cuando la desviación estándar del estimador sea menor que 10^{-5} . Indicar cuál es el número de simulaciones N_s necesarias para lograr la condición pedida y completar con los valores obtenidos la siguiente tabla (usando 6 decimales):

Nº de sim.	Integral	$\sigma[\bar{I}]$
100		
1 000		
10 000		
100 000		
N_s		

Ejercicio 5.

- a) Dar la definición de distribución estacionaria de una cadena de Markov.
- b) Dada la cadena de Markov $\{X_t, t \ge 0\}$ con conjunto de estados $S = \{0, 1, 2, 3\}$ y matriz de transición:

$$Q = \begin{pmatrix} \frac{1}{5} & \frac{4}{5} & 0 & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- i) Dar el diagrama de transición correspondiente.
- ii) Probar que la cadena es ergódica y determinar su distribución estacionaria.