Nombre:

delos y Simulación

Parcial 1 - Abril 10, 2008

- a) Calcular E[X].
- b) Se dice que una variable aleatoria carece de memoria si para todo $s,\ t>0$ se cumple que $P\{X>s+t\mid X>t\}=P\{X>s\}.$ Pruebe que una v.a. geométrica carece de memoria.

Problema 2: Sean X e Y variables aleatorias independientes distribuídas exponencialmente

$$f_X(x) = \lambda \exp(-\lambda x)$$
, $(x > 0)$ $f_Y(y) = \mu \exp(-\mu y)$, $(y > 0)$.

- a) Calcular $f_{X|Y}(x|y)$.
- b) Calcular P(X < y), donde y es un valor dado.
- c) Calcular $P(X < Y) \ (\equiv E[P(X < y)])$

Problema 3: Mediante una simulación de Monte Carlo, estimar el valor de las siguientes integrales:

a)
$$\int_0^1 \frac{\ln x}{1-x} dx$$
, b) $\int_0^\infty x^2 \exp(-x^2) dx$.

Para cada caso, describir brevemente cómo se implementa el algoritmo y, luego de correrlo en computadora, completar con los valores obtenidos la siguiente tabla:

N^o de sim.	Integral (a)	Integral (b)
100)	
1000		(
10 000		
100 000	,	7
1 000 000	.1	

Problema 4: Para U_1, U_2, \ldots variables aleatorias uniformemente distribuídas en el intervalo (0, 1), se define:

 $N = \operatorname{M\'inimo}\left\{n: \sum_{i=1}^n U_i > 1
ight\}$

Es decir, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1.

- a) Explique cómo utilizar la técnica de Monte Carlo para estimar la cantidad deseada.
- b) Obtener la aproximación Monte Carlo sorteando 10, 100, y 1000 números aleatorios.