

73 Nombre:

Número de hojas adicionales:

Modelos y Simulación

Parcial 1 - Abril 14, 2009

Problema 1: Si X e Y son dos variables aleatorias independientes, con densidades de probabilidad exponencial y cuyos valores medios son $1/\lambda$ y $1/\mu$, respectivamente,

25 a) calcular P(X < y = y), donde y es un valor dado de la variable Y.

Dos personas entran a una peluquería simultáneamente, una de ellas para un afeitado y la otra para un corte de pelo. Si la cantidad de tiempo para realizar un corte de pelo (afeitado) está exponencialmente distribuida con media 20 (15) minutos, y si ambos son atendidos inmediatamente,

b) ¿Cuál es la probabilidad de que quien se afeita termine antes que el otro cliente?

Suponer que los tiempos de afeitado y de corte de pelo son independientes.

Problema 2: Los vehículos pasan por un punto de una autopista siguiendo un proceso de Poisson de razón 1 por minuto.

- a) Si el cinco por ciento de vehículos en carretera son camionetas, calcular la razón λ del proceso de Poisson C(t) correspondiente a las camionetas. Expresar λ en las unidades 1/minuto y en 1/hora, y escribir la correspondiente expresión para P(C(t) = k).
- b) ¿Cuál es la probabilidad de que al menos una camioneta pase durante una hora? * 20%
- c) ¿Cuál es la probabilidad de que en una hora pasen exactamente 3 camionetas, sabiendo que en los primeros 15 minutos no pasó ninguna?

Problema 3: Mediante una simulación de Monte Carlo, utilizando los códigos previamente elaborados, estimar el valor de las siguientes integrales:

a)
$$\int_0^\pi x \ln(\sin x) dx$$
, b) $\int_0^\infty \frac{\sin^4 x}{x^4} dx$.

Para cada caso, describir brevemente cómo se implementa el algoritmo y, luego de correrlo en computadora, completar con los valores obtenidos la siguiente tabla:

`	N^o de sim.	Integral (a)	Integral (b)
2)50%	1 000	-3,690042	1.065948
50%	10 000	-3,375231	1.038606
100%	100,000	-3, 421067	
100 10	1 000 000	-3,415014	1.046219

Ayuda: El valor de π puede obtenerse numéricamente recordando que arc $\cos 0 = \pi/2$.

Importante: Enviar por correo electrónico el código utilizado, comentado y especificando qué generador de números aleatorios se empleó, pero sin adjuntar esas rutinas, a pury@famaf.unc.edu.ar y kisbye@famaf.unc.edu.ar